WO2019062870A1 - 一种电动车辆热量管理系统 - Google Patents
一种电动车辆热量管理系统 Download PDFInfo
- Publication number
- WO2019062870A1 WO2019062870A1 PCT/CN2018/108411 CN2018108411W WO2019062870A1 WO 2019062870 A1 WO2019062870 A1 WO 2019062870A1 CN 2018108411 W CN2018108411 W CN 2018108411W WO 2019062870 A1 WO2019062870 A1 WO 2019062870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- pipe
- pipeline
- management system
- electric vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00271—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
- B60H1/00278—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00357—Air-conditioning arrangements specially adapted for particular vehicles
- B60H1/00385—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
- B60H1/00392—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/425—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the invention belongs to the technical field of electric vehicle thermal management, and particularly relates to an electric vehicle thermal management system.
- New energy buses especially pure electric buses, have no engine residual heat during the winter heating because of the limitation of their driving mode. They can be used to provide warm air to the vehicles, which makes the heating effect of the vehicles worse. This problem is particularly prominent in winter. Since the temperature inside the cabin is too low, it will seriously affect the comfort of the driver and passengers, so measures need to be taken to heat the vehicle.
- the heating method commonly used in vehicles is to install an electric air conditioner and an electric auxiliary heat device on the vehicle, and the two devices use the vehicle to heat.
- power batteries need to be used for power supply.
- the invention provides an electric vehicle thermal management system for meeting the temperature requirements of different components on an electric vehicle in cold weather.
- An electric vehicle thermal management system includes a first pipeline loop and a second pipeline loop, wherein heat exchange is performed between the first pipeline loop and the second pipeline loop through a heat exchanger;
- the first pipeline circuit is provided with a braking resistor heater and a device whose working temperature satisfies a first temperature condition, wherein the braking resistor heater is used for cooling the braking resistor and heating the coolant in the first pipeline circuit. ;
- the second pipeline circuit is provided with a power battery temperature adjusting device and a device whose working temperature satisfies a second temperature condition, and the power battery temperature adjusting device is used for heating or cooling the power battery;
- the heat exchanger is provided with a first pipe and a second pipe, wherein the first pipe is disposed in the first pipe loop, and the second pipe is disposed in the second pipe loop;
- the first temperature condition is that the temperature is greater than the first temperature setting value
- the second temperature condition is that the temperature is less than the second temperature setting value; the first temperature setting value is greater than the second temperature setting value.
- the technical solution provided by the invention adopts the heat generated by the braking resistor during the braking of the energy to heat the power battery, so that the temperature of the power battery is increased, the electric energy fed back can be absorbed, and the cruising range of the vehicle is increased.
- a brake resistor heater having a relatively high temperature value requirement and a device whose operating temperature satisfies the first temperature condition are disposed in the first pipeline loop, and the temperature value requirement is relatively low and varies.
- a wide range of heating devices and a device having an operating temperature that satisfies the second temperature condition are disposed in the second pipe loop, which not only satisfies the different temperature requirements of the various components, but also facilitates control of the temperature of each component.
- the device whose operating temperature satisfies the second temperature condition is a cooling device for being disposed at the driving motor and/or the motor controller to cool the driving motor and/or the motor controller.
- Heating the coolant in the second pipeline by using the heat generated by the driving motor and/or the motor controller can reduce the energy loss of the braking resistor heater, reduce the energy loss of the battery, and increase the cruising range of the vehicle.
- a cooling fan is provided at the pipe connecting the cooling device for controlling the temperature value of the coolant flowing into the cooling device.
- the cooling fan is used to control the temperature value of the coolant flowing into the cooling device so that the temperature of the coolant flowing into the cooling device is not too high, so as not to affect the working state of the driving motor and/or the motor controller.
- a pipeline connected to the cooling device is provided with a temperature sensor for detecting the temperature of the coolant flowing into the cooling device, and controlling the working state of the electric fan according to the data detected by the temperature sensor.
- a temperature sensor is provided to monitor the temperature of the coolant flowing into the cooling device.
- a first water tank and a first water pump are disposed in the first pipeline loop.
- a second water tank and a second water pump are disposed in the second pipeline loop.
- a water tank and a water pump are respectively arranged in the first pipeline loop and the second pipeline loop, and the circulation speed of the coolant can be adjusted, and the heat of the vehicle can be more easily managed.
- the power battery temperature adjusting device is provided with a pipeline, and a check valve is arranged on the parallel pipeline.
- the heating device can be bypassed by a one-way valve.
- the second pipeline circuit is further provided with a temperature adjustment device, and the temperature adjustment device is configured to be disposed in the air conditioner for providing heat to the air conditioner condenser when the air conditioner condenser is defrost, or when the power battery needs to be cooled. Cooling the coolant in the second conduit loop.
- the temperature adjustment device is provided to provide heat to the air conditioner, and the waste heat of the vehicle can be fully utilized.
- the temperature adjusting device is provided with a pipeline, and a check valve is arranged on the parallel pipeline.
- the temperature regulating device When the temperature regulating device is not required to operate, the temperature regulating device can be bypassed by a one-way valve.
- the device whose working temperature satisfies the first temperature condition is a cabin heating device
- the cabin heating device includes a radiator and/or a water heater defroster
- the radiator is used for heating the compartment of the vehicle
- the plumbing defroster is used for defrosting the glass of the cabin.
- a cabin heating device that is provided for heating of the cabin can use the braking energy to heat the interior of the cabin and/or defrost the glass.
- the cabin heating device is provided with a pipeline, and a check valve is arranged on the parallel pipeline.
- the cabin heating unit can be bypassed by a one-way valve.
- the heat exchanger is a plate heat exchanger.
- a temperature sensor is disposed on the pipeline connecting the power battery temperature adjusting device for detecting the temperature of the coolant flowing into the power battery temperature adjusting device, and controlling the working efficiency of the heat exchanger according to the data detected by the temperature sensor.
- the temperature sensor is provided to detect the temperature of the coolant flowing into the power battery temperature adjusting device to ensure the cooling or heating effect on the power battery.
- a temperature sensor is disposed on the pipeline connected to the brake resistor heater for detecting the temperature of the coolant flowing out of the brake resistor heater, and controlling the power of the brake resistor heater according to the data detected by the temperature sensor.
- the temperature sensor is set to detect the temperature of the coolant flowing out of the brake resistor heater, to ensure the cooling effect on the braking resistor, and to ensure that the working temperature meets the temperature requirement of the first temperature condition device.
- the first pipe of the heat exchanger is provided with a pipeline, and a check valve is arranged on the parallel pipeline.
- the heat exchanger When heat exchange is not required between the first conduit loop and the second conduit loop, the heat exchanger can be bypassed by a one-way valve.
- FIG. 1 is a structural diagram of an electric vehicle management system provided in an embodiment.
- the invention provides an electric vehicle thermal management system for meeting the temperature requirements of different components on an electric vehicle in cold weather.
- An electric vehicle thermal management system includes a first pipeline loop and a second pipeline loop, wherein heat exchange is performed between the first pipeline loop and the second pipeline loop through a heat exchanger;
- the first pipeline circuit is provided with a braking resistor heater and a device whose working temperature satisfies a first temperature condition, wherein the braking resistor heater is used for cooling the braking resistor and heating the coolant in the first pipeline circuit. ;
- the second pipeline circuit is provided with a power battery temperature adjusting device and a device whose working temperature satisfies a second temperature condition, and the power battery temperature adjusting device is used for heating or cooling the power battery;
- the heat exchanger is provided with a first pipe and a second pipe, wherein the first pipe is disposed in the first pipe loop, and the second pipe is disposed in the second pipe loop;
- the first temperature condition is that the temperature is greater than the first temperature setting value
- the second temperature condition is that the temperature is less than the second temperature setting value; the first temperature setting value is greater than the second temperature setting value.
- the embodiment provides an electric vehicle thermal management system for setting on an electric vehicle to reasonably distribute the heat of the electric vehicle and improve the cruising range of the electric vehicle.
- the electric vehicle thermal management system has the structural principle as shown in FIG. 1 , and includes a first pipeline loop and a second pipeline loop.
- the first pipeline loop and the second pipeline loop pass heat exchange.
- the device exchanges heat.
- the heat exchanger is a plate heat exchanger provided with a first pipe and a second pipe.
- the brake resistor heater 11 is connected in series with the plumbing defroster 13, the first conduit of the heat exchanger 1, the first water tank 14, and the first water pump 15 in a loop, which is the first conduit loop.
- the brake resistor heater 11 is connected to the pipe of the plumbing defroster 13 and is provided with an electronic check valve 102, a line connecting the electronic check valve 102 and the plumbing defroster 13 and two pipelines, one of which is provided
- a radiator 12 and an electronic check valve 101 are arranged in the middle of the road, and an electronic check valve 103 is arranged in the other line.
- a conduit is also provided at the first conduit of the heat exchanger 1, and the conduit is provided with an electronic check valve 104.
- the braking resistor heating device 11 is disposed at the braking resistor of the vehicle, and when the power battery is unable to receive the energy of the vehicle feedback, the heat generated by the braking resistor energy braking is used to heat the coolant in the first pipeline circuit, and also Cooling the braking resistor; when the power battery can receive the energy feedback of the vehicle, if the braking resistor works in the heater mode, the power battery is used to heat the coolant to supply heat to the first pipeline circuit; the plumbing defroster 13 utilizes the brake The heat of the electric resistance heater defrosts the glass of the vehicle, and the radiator 12 is disposed inside the vehicle, and heats the cabin by the heat of the braking resistor heater.
- the second pipeline circuit is a circuit in which the temperature regulating device 21, the power battery temperature adjusting device 22, the second water tank 23, the second water pump 24, the cooling device, and the second pipe of the heat exchanger 1 are connected in series through a pipe, wherein the temperature adjustment
- the device 21 is configured to be disposed at an air conditioner, and can provide heat to the condenser of the air conditioner by using the coolant in the second pipeline circuit, for condensing the condenser of the air conditioner in winter, or using the refrigeration function of the air conditioner as the second pipeline loop
- the cooling liquid is cooled;
- the power battery temperature adjusting device 22 is disposed in the power battery for heating or cooling the power battery to maintain the temperature of the power battery;
- the cooling device includes a first cooling device 261 and a second cooling device 262.
- first cooling device 261 is disposed in the driving motor of the vehicle for cooling the driving motor
- second cooling device 262 is disposed in the motor controller for cooling the motor brake.
- An electric fan 25 is provided beside the duct connecting the first cooling device 261 and the second cooling device 262, and the electric fan 25 is used to cool down the coolant flowing into the first cooling device 261 and the second cooling device 262.
- the temperature adjusting device 21 is provided with a valve 202
- the power battery temperature adjusting device 22 is provided with a valve 201.
- a temperature sensor 31 is provided on the pipe to which the brake resistor heater 11 is connected to the water heater defroster 13, and the heat generation power of the brake resistor heater 11 is controlled based on the data detected by the temperature sensor 31.
- a temperature sensor 32 is provided at a pipe connecting the temperature adjusting device 21 to the power battery temperature adjusting device 22, and the heat exchange power of the heat exchanger 1 is controlled based on the data detected by the temperature sensor 32.
- a temperature sensor 33 is provided on the pipe connecting the first cooling device 261 and the second cooling device 262, and the operating state of the electric fan 252 is controlled based on the data detected by the temperature sensor 33.
- the working mode of the heat system provided in this embodiment is:
- the control electronic check valve 202 is opened, the electronic check valve 201 is closed, and the second pipeline circuit obtains heat from the first pipeline loop through the heat exchanger 1 for heating by the power battery, and controls the heat exchange according to the temperature detected by the temperature sensor 32.
- the heat exchange power of the device 1 ensures that the water inlet temperature of the power battery satisfies the power battery heating demand, for example, the data detected by the temperature sensor 32 is controlled between 50-55 ° C; and the data is controlled according to the data detected by the temperature sensor 33.
- the operating state of the fan 25 ensures that the temperature of the coolant entering the first cooling device 261 and the second cooling device 262 satisfies the heat dissipation requirements of the drive motor and the motor controller, such as the data detected by the control temperature sensor 33 is not more than 55 °C.
- the temperature of the power battery reaches the temperature required for full power operation, the power battery works hot, the temperature can be self-maintained, and no external heat is needed.
- the electronic check valve 201 is opened, and the power battery heating device 22 is bypassed and cooled. The liquid no longer flows through the power battery temperature adjustment device 22.
- the power battery can be heated by the driving motor and the motor controller, and the heat generated by the heat generated by the power battery itself maintains the temperature required for the work without losing the temperature, and can be controlled by the electric fan 25.
- the working state ensures that the system is not over temperature, so that the heat generated by the drive motor and the motor drive is effectively utilized.
- excess heat can be used for condensing the air conditioner condenser, reducing the air conditioning defrosting time and improving the air conditioning working efficiency. Because the system makes full use of the energy generated by the energy brake and the electric drive system, using the system in winter will greatly reduce the system power consumption and increase the cruising range of the vehicle.
- the air conditioning refrigeration unit and the electric fan 25 Under the joint action of the summer low temperature system, the air conditioning refrigeration unit and the electric fan 25, the water inlet temperature of the power battery temperature adjusting device 22 is not higher than 25 ° C, and the inlet water temperature of the first cooling device 261 and the second cooling device 262 are ensured. Not higher than 55 degrees, at this time, the electronic check valve 201 and the electronic check valve 202 are both turned off, and the system controls the water temperature by adjusting the power of the air conditioning cooling unit, the electric fan 25, and the water circulation system flow rate. And the heat generated by the braking resistor in the first pipeline circuit is exchanged to the second pipeline loop through the heat exchanger and consumed in the second pipeline loop. In the summer, the system will not accept the electric feedback because the power battery core is too cold, so the braking resistor will work intermittently only when the power battery SOC is too high, and the operating frequency is low.
- the working mode of the winter high temperature system the electronic check valve 101 and the electronic check valve 102 are opened, the electronic check valve 103 and the electronic check valve 104 are turned off, and the braking resistor heater 11 is operated to ensure that the data detected by the temperature sensor 31 is not Below 70 ° C, the interior of the vehicle is heated by the radiator 12, and the front windshield is defrosted by the plumbing defroster 13 and a part of the heat is transferred to the second duct circuit through the heat exchanger 1.
- the brake resistor heater 11 can directly utilize the heat generated by the vehicle's energy consumption brake or can operate in the heater mode to heat the coolant in the first pipeline circuit.
- the first conduit circuit adjusts the operating power of the brake resistor heater 11 and the heat exchange power of the heat exchanger 1 based on the temperature fed back by the temperature sensor 31.
- the water flow rate and the water pressure are adjusted by the first water pump 15 to ensure the system temperature is stable.
- the summer car does not need to be heated, and the plumbing defroster 13 works in the natural wind position.
- the electronic check valve 102 and the electronic check valve 101 are closed, and the electronic check valve 104 and the electronic check valve 103 are opened.
- the vehicle SOC is too high, the first water pump 15 starts to work, and at this time, the electronic check valve 104 is closed, and the heat generated by the braking resistor due to the electric brake is exchanged from the heat exchanger 1 to the low temperature pipeline loop, and the low temperature pipeline loop Cool and dissipate heat.
- the electronic check valve 104 is closed, the first water pump 15 stops working, and the first pipeline circuit stops working.
- the power battery temperature adjusting device 22 may be a water-cooling plate inside the water-cooled battery, or may be a pipe disposed inside the power battery, as long as it is disposed at the power battery, and can provide heat exchange for the power battery. It can be used as the heating device 22 in this embodiment.
- the brake resistor heater 11 is a water-cooled braking resistor that satisfies the vehicle type II braking power requirement, and it can also operate in the heater mode, and relies on the brake feedback or the energy of the battery to heat the flow.
- the coolant that has been modified by the braking resistor is used as a system heat source.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
一种电动车辆热量管理系统,包括第一管道回路和第二管道回路,第一管道回路和第二管道回路之间通过热交换器(1)进行热量交换;第一管道回路中设有制动电阻加热器(11)和工作温度满足第一温度条件的装置,第二管道回路中设有动力电池加热装置(22)和工作温度满足第二温度条件的装置;热交换器(1)设有第一管道和第二管道,第一管道设置在第一管道回路中,第二管道设置在第二管道回路中;第一温度条件的温度值大于第二温度条件的温度值。通过将对温度值要求比较高的设备设置在第一管道回路,将对温度值要求相对较低且范围变化比较大的设备设置在第二管道回路,不仅满足了各部件对温度的不同需求,而且方便对各部件的温度进行控制。
Description
本发明属于电动车辆热量管理技术领域,具体涉及一种电动车辆热量管理系统。
新能源客车,尤其是纯电动客车,由于其驱动方式的限制,在冬季制热时没有发动机余热可用来为车辆提供暖风,使车辆的制暖效果较差,在冬季该问题尤为突出。由于车厢内温度过低会严重影响驾驶员及乘客的舒适度,所以需要采取措施,为车辆供暖。目前车辆上常用的取暖方式,是在车辆上设置电空调及电辅热装置,两种装置配合使用车辆供暖。但是电空调及电辅热工作时需要采用动力电池为其供电,如此便增加了车辆的耗电量,使动力电池的电量消耗过快,车辆的续航里程下降,在某些工况下续驶里程下降可达30%以上。并且由于冬季的早晨气温非常低,车辆在启动后很长时间内,由于动力电池芯体温度过低无法吸收车辆回馈的电能,造成车辆在启动后的能耗进一步加大。
发明内容
本发明提供一种电动车辆热量管理系统,用于满足在寒冷天气中电动车辆上不同零部件对温度的需求。
为实现上述目的,本发明提供的技术方案是:
一种电动车辆热量管理系统,包括第一管道回路和第二管道回路,第一管道回路和第二管道回路之间通过热交换器进行热量交换;
所述第一管道回路中设有制动电阻加热器和工作温度满足第一温度条件的装置,所述制动电阻加热器用于为制动电阻降温,并为第一管道回路中的冷却液加热;
所述第二管道回路中设有动力电池温度调节装置和工作温度满足第二温度条件的装置,所述动力电池温度调节装置用于为动力电池加热或降温;
所述热交换器设有第一管道和第二管道,其中第一管道设置在第一管道回路中,第二管道设置在第二管道回路中;
所述第一温度条件为温度大于第一温度设定值,所述第二温度条件为温度小于第二温度设定值;所述第一温度设定值大于第二温度设定值。
本发明所提供的技术方案,采用能耗制动时制动电阻所产生的热量为动力电池加热,使动力电池的温度升高,能够吸收回馈的电能,增加车辆的续航里程。由于本发明所提供的技术方案,将对温度值要求比较高的制动电阻加热器和工作温度满足第一温度条件的装置设置在第一管道回路中,将对温度值要求相对较低且变化范围大的加热装置和工作温度满足第二温度条件的装置设置在第二管道回路中,不仅满足了各部件对温度的不同需求,而且方便对各部件的温度进行控制。
进一步的,所述工作温度满足第二温度条件的装置为冷却装置,冷却装置用于设置在驱动电机和/或电机控制器处,为驱动电机和/或电机控制器降温。
采用驱动电机和/或电机控制器工作时所产生的热量加热第二管道回路的冷却液,能够减少制动电阻加热器的能量损耗,减少电池能量损耗,增加车辆的续航里程。
进一步的,在连接所述冷却装置的管道处设置有冷却风扇,用于控制流入冷却装置中冷却液的温度值。
采用冷却风扇控制流入冷却装置中冷却液的温度值,使流入冷却装置中冷却液的温度不会过高,以免影响驱动电机和/或电机控制器的工作状态。
进一步的,连接所述冷却装置的管道上设置有温度传感器,用于检测流入冷却装置的冷却液温度,并根据温度传感器检测到的数据控制电风扇的工作状态。
设置温度传感器能够对流入冷却装置的冷却液温度进行监控。
进一步的,所述第一管道回路中设置有第一水箱和第一水泵。
进一步的,所述第二管道回路中设置有第二水箱和第二水泵。
分别在第一管道回路和第二管道回路中设置水箱和水泵,能够对冷却液的循环速度进行调整,更容易对车辆的热量进行管理。
进一步的,所述动力电池温度调节装置并设有管道,在并设的管道上设置有单向阀。
当不需要动力电池温度调节装置工作时,可以通过单向阀将加热装置旁路。
进一步的,所述第二管道回路中还设有温度调节装置,温度调节装置用于设 置在空调内,用于在空调冷凝器化霜时为空调冷凝器提供热量,或者在动力电池需要降温时为第二管道回路中的冷却液降温。
设置温度调节装置为空调提供热量,能够对车辆的余热充分利用。
进一步的,所述温度调节装置并设有管路,在并设的管路上设置有单向阀。
当不需要温度调节装置工作时,可以通过单向阀将温度调节装置旁路。
所述工作温度满足第一温度条件的装置为车厢供暖装置,车厢供暖装置包括散热器和/或水暖除霜器,散热器用于为车辆的车厢供暖,水暖除霜器用于为车厢的玻璃除霜。
设置为车厢供暖的车厢供暖装置,能够利用制动能量为车厢内部供暖和/或为玻璃除霜。
进一步的,所述车厢供暖装置并设有管道,在并设的管道上设置有单向阀。
当不需要车厢供暖装置工作时,可以通过单向阀将车厢供暖装置旁路。
进一步的,所述热交换器为板式热交换器。
进一步的,在连接所述动力电池温度调节装置的管道上设置有温度传感器,用于检测流入动力电池温度调节装置的冷却液的温度,并根据温度传感器检测到的数据控制热交换器的工作效率。
设置温度传感器能够对流入动力电池温度调节装置的冷却液温度进行检测,保证对动力电池的冷却或加热效果。
进一步的,所述制动电阻加热器连接的管道上设置有温度传感器,用于检测流出制动电阻加热器的冷却液的温度,并根据温度传感器检测到的数据控制制动电阻加热器的功率。
设置温度传感器对制动电阻加热器中流出的冷却液温度进行检测,保证对制动电阻的冷却效果,也保证工作温度满足第一温度条件装置对温度的需求。
进一步的,所述热交换器的第一管道并设有管路,在并设的管路上设置有单向阀。
当第一管道回路和第二管道回路之间不需要进行热交换时,可通过单向阀将热交换器旁路。
图1为实施例中所提供电动车辆管理系统的结构图。
本发明提供一种电动车辆热量管理系统,用于满足在寒冷天气中电动车辆上不同零部件对温度的需求。
为实现上述目的,本发明提供的技术方案是:
一种电动车辆热量管理系统,包括第一管道回路和第二管道回路,第一管道回路和第二管道回路之间通过热交换器进行热量交换;
所述第一管道回路中设有制动电阻加热器和工作温度满足第一温度条件的装置,所述制动电阻加热器用于为制动电阻降温,并为第一管道回路中的冷却液加热;
所述第二管道回路中设有动力电池温度调节装置和工作温度满足第二温度条件的装置,所述动力电池温度调节装置用于为动力电池加热或降温;
所述热交换器设有第一管道和第二管道,其中第一管道设置在第一管道回路中,第二管道设置在第二管道回路中;
所述第一温度条件为温度大于第一温度设定值,所述第二温度条件为温度小于第二温度设定值;所述第一温度设定值大于第二温度设定值。
下面结合具体实施例对本发明的技术方案作进一步说明。
本实施例提供一种电动车辆热量管理系统,用于设置在电动车辆上,对电动车辆的热量进行合理的分配,提高电动车辆的续航里程。
本实施例所提供的一种电动车辆热量管理系统,其结构原理如图1所示,包括第一管道回路和第二管道回路两部分,第一管道回路和第二管道回路之间通过热交换器进行热量交换。热交换器为板式热交换器,设有第一管道和第二管道。
制动电阻加热器11通过管道与水暖除霜器13、热交换器1的第一管道、第一水箱14和第一水泵15串接成回路,该回路即为第一管道回路。制动电阻加热器11连接水暖除霜器13的管道上设置有电子单向阀102,电子单向阀102和水暖除霜器13连接成的管路并设有两条管路,其中一条管路中串设有散热器12和电子单向阀101,另一条管路中设置有电子单向阀103。热交换器1的第一管道处也并设有管路,该管路串设有电子单向阀104。制动电阻加热装置11设置在车辆的制动电阻处,当动力电池无法接受车辆回馈的能量时利用制动电阻能耗制动时产生的热量为第一管道回路中的冷却液加热,同时也为制动电阻降温;当 动力电池能够接受车辆能量回馈时,如果制动电阻工作在加热器模式,则利用动力电池电能加热冷却液为第一管道回路提供热量;水暖除霜器13利用制动电阻加热器的热量为车辆的玻璃除霜,散热器12设置在车辆内部,利用制动电阻加热器的热量为车厢供暖。
第二管道回路为温度调节装置21、动力电池温度调节装置22、第二水箱23、第二水泵24、冷却装置和热交换器1的第二管道通过管道串接而成的回路,其中温度调节装置21用于设置在空调处,可利用第二管道回路中的冷却液为空调的冷凝器提供热量,用于在冬季为空调的冷凝器化霜,或者利用空调的制冷作用为第二管道回路中的冷却液降温;动力电池温度调节装置22设置在动力电池内,用于为动力电池加热或冷却,保持动力电池的温度;冷却装置包括第一制冷却置261和第二制冷却置262两部分,其中第一冷却装置261设置在车辆的驱动电机内,用于为驱动电机降温,第二冷却装置262设置在电机控制器内,用于为电机制动器降温。在连接第一冷却装置261和第二冷却装置262的管道旁设置有电风扇25,电风扇25用于对流入第一冷却装置261和流入第二冷却装置262的冷却液进行降温处理。温度调节装置21上并设有阀门202,动力电池温度调节装置22上并设有阀门201。
在制动电阻加热器11连接水暖除霜器13的管道上设置有温度传感器31,根据温度传感器31检测到的数据控制制动电阻加热器11的发热功率。在温度调节装置21连接动力电池温度调节装置22的管道处设置有温度传感器32,根据温度传感器32检测到的数据控制热交换器1的热交换功率。在连接第一冷却装置261和第二冷却装置262的管道上设置有温度传感器33,根据温度传感器33检测到的数据控制电风扇252的工作状态。
冬季低温早晨气温比较低时,本实施例所提供热量系统的工作方式为:
控制电子单向阀202打开,电子单向阀201关闭,第二管道回路通过热交换器1从第一管道回路获得热量,供动力电池加热使用,并根据温度传感器32检测到的温度控制热交换器1的热交换功率,保证动力电池的进水温度满足动力电池加热需求,比如将温度传感器32所检测到的数据控制在50-55℃之间;同时根据温度传感器33检测到的数据控制电风扇25的工作状态,以确保进入第一冷却装置261和第二冷却装置262的冷却液温度满足驱动电机和电机控制器的散热需 求,比如控制温度传感器33检测到的数据不大于55℃。当动力电池温度达到满功率工作所需求的温度后,动力电池工作过程发热,温度可以自保持,不再需要外界热量,此时电子单向阀201打开,动力电池加热装置22被旁路,冷却液不再流经动力电池温度调节装置22。第二管道回路运行一段时间后,动力电池可以由驱动电机和电机控制器产生的热量,以及动力电池自身发热产生的热量维持工作所需要的温度而不失温,又可以通过控制电风扇25的工作状态确保系统不过温,使得驱动电机和电机驱动器产生的热量得到有效利用。与此同时,电子单向阀202关闭后,可将多余的热量用于空调冷凝器化霜,减少空调化霜时间,提高空调工作效率。因系统充分利用了能耗制动和电驱动系统产生的热量,冬季使用该系统会大幅降低系统电耗,增加车辆的续航里程。
夏季低温系统工作方式,空调制冷单元和电风扇25的联合作用下,保证动力电池温度调节装置22的进水温度不高于25℃,第一冷却装置261和第二冷却装置262的进水温度不高于55度,此时电子单向阀201和电子单向阀202均关断,系统通过调节制空调冷单元、电风扇25的功率和水循环系统流速控制水温。并且第一管道回路中制动电阻工作所产生的热量会通过热交换器交换到第二管道回路中,在第二管道回路中消耗掉。而夏季的时候由于系统不会因为动力电池芯体过冷导致无法接受电回馈,因此制动电阻仅在动力电池SOC过高时才会间歇性工作,工作频率较低。
冬季高温系统工作方式:电子单向阀101和电子单向阀102打开,电子单向阀103和电子单向阀104关断,制动电阻加热器11工作,保证温度传感器31检测到的数据不小于70℃,通过散热器12为车内供暖,通过水暖除霜器13为前挡风玻璃除霜,并将一部分热量通过热交换器1传递到第二管道回路。制动电阻加热器11既可以直接利用车辆能耗制动产生的热量,也可以工作在加热器模式,为第一管道回路中的冷却液加热。第一管道回路根据温度传感器31反馈的温度,调节制动电阻加热器11的工作功率和热交换器1的热交换功率。并通过第一水泵15调节水路流速与水压,确保系统温度稳定。
夏季车厢不需要加热,水暖除霜器13工作在自然风档位即可,此时电子单向阀102和电子单向阀101关闭,电子单向阀104和电子单向阀103打开。而当车辆SOC过高时,第一水泵15开始工作,此时电子单向阀104关闭,制动电阻 因电制动产生的热量由换热器1交换到低温管道回路中,由低温管道回路冷却散热。当SOC降低到动力电池可以吸收电回馈所产生的电能时,电子单向阀104闭合,第一水泵15停止工作,第一管道回路停止工作。
本实施例中,动力电池温度调节装置22可以为水冷电池内部的水冷板,也可以是设置在动力电池内部的管道,只要是设置在动力电池处,能够为动力电池提供热交换的装置,都可以作为本实施例中的加热装置22。
本实施例中,制动电阻加热器11是经过匹配计算的满足车辆II型制动功率要求的水冷制动电阻,同时它也可以工作在加热器模式,靠制动回馈或电池的能量加热流经改制动电阻的冷却液,作为系统热源使用。
Claims (15)
- 一种电动车辆热量管理系统,其特征在于,包括第一管道回路和第二管道回路,第一管道回路和第二管道回路之间通过热交换器进行热量交换;所述第一管道回路中设有制动电阻加热器和工作温度满足第一温度条件的装置,所述制动电阻加热器用于为制动电阻降温,并为第一管道回路中的冷却液加热;所述第二管道回路中设有动力电池温度调节装置和工作温度满足第二温度条件的装置,所述动力电池温度调节装置用于为动力电池加热或降温;所述热交换器设有第一管道和第二管道,其中第一管道设置在第一管道回路中,第二管道设置在第二管道回路中;所述第一温度条件为温度大于第一温度设定值,所述第二温度条件为温度小于第二温度设定值;所述第一温度设定值大于第二温度设定值。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述工作温度满足第二温度条件的装置包括冷却装置,冷却装置用于设置在驱动电机和/或电机控制器处,为驱动电机和/或电机控制器降温。
- 根据权利要求2所述的一种电动车辆热量管理系统,其特征在于,在连接所述冷却装置的管道处设置有冷却风扇,用于调节流入冷却装置中冷却液的温度值。
- 根据权利要求3所述的一种电动车辆热量管理系统,其特征在于,在连接所述冷却装置的管道上设置有温度传感器,用于检测流入冷却装置的冷却液温度,并根据温度传感器检测到的数据控制电风扇的工作状态。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述第一管道回路中设置有第一水箱和第一水泵。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述第二管道回路中设置有第二水箱和第二水泵。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述动力电池温度调节装置并设有管道,在并设的管道上设置有单向阀。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述第二管道回路中还设有温度调节装置,温度调节装置用于设置在空调内,用于在 空调冷凝器化霜时为空调冷凝器提供热量,或者在动力电池需要降温时为第二管道回路中的冷却液降温。
- 根据权利要求8所述的一种电动车辆热量管理系统,其特征在于,所述温度调节装置并设有管路,在并设的管路上设置有单向阀。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述工作温度满足第一温度条件的装置为车厢供暖装置,车厢供暖装置包括散热器和/或水暖除霜器,散热器用于为车辆的车厢供暖,水暖除霜器用于为车厢的玻璃除霜。
- 根据权利要求10所述的一种电动车辆热量管理系统,其特征在于,所述车厢供暖装置并设有管道,在并设的管道上设置有单向阀。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述热交换器为板式热交换器。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,在连接所述动力电池温度调节装置的管道上设置有温度传感器,用于检测流入动力电池温度调节装置的冷却液的温度,并根据温度传感器检测到的数据控制热交换器的工作效率。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述制动电阻加热器连接的管道上设置有温度传感器,用于检测流出制动电阻加热器的冷却液的温度,并根据温度传感器检测到的数据控制制动电阻加热器的功率。
- 根据权利要求1所述的一种电动车辆热量管理系统,其特征在于,所述热交换器的第一管道并设有管路,在并设的管路上设置有单向阀。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710901700.1A CN110015195B (zh) | 2017-09-28 | 2017-09-28 | 一种电动车辆热量管理系统 |
CN201710901700.1 | 2017-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019062870A1 true WO2019062870A1 (zh) | 2019-04-04 |
Family
ID=65903078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/108411 WO2019062870A1 (zh) | 2017-09-28 | 2018-09-28 | 一种电动车辆热量管理系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110015195B (zh) |
WO (1) | WO2019062870A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3862201A1 (fr) * | 2020-02-06 | 2021-08-11 | Belenos Clean Power Holding AG | Dispositif de récuperation et de régulation d' énergie thermique d'un véhicule électrique à génerateur électrochimique avec un système hvac |
WO2024114853A1 (de) * | 2022-11-28 | 2024-06-06 | Schaeffler Technologies AG & Co. KG | Thermomanagement-system für ein elektrisch betriebenes kraftfahrzeug |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102669104B1 (ko) * | 2019-12-03 | 2024-05-24 | 마이크로바스트 파워시스템즈 컴퍼니 리미티드 | 전기자동차 열관리 시스템, 배터리 열관리 방법 및 전기자동차 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102452297A (zh) * | 2010-10-29 | 2012-05-16 | 杭州三花研究院有限公司 | 电动汽车及其热管理系统 |
DE102011118898A1 (de) * | 2011-11-18 | 2012-06-06 | Daimler Ag | Vorrichtung und Verfahren zur thermischen Kopplung zweier Kühlkreisläufe in einem Fahrzeug |
DE102012004008A1 (de) * | 2012-02-25 | 2012-09-13 | Daimler Ag | Verfahren zum Betrieb eines zumindest zeit- oder abschnittsweise elektromotorisch angetriebenen Fahrzeugs mit einem elektrischen Energiespeicher, einem Niedertemperaturkreislauf und einem Kältekreislauf |
DE102012019459A1 (de) * | 2012-10-04 | 2013-03-28 | Daimler Ag | Temperiervorrichtung eines Fahrzeugs und Verfahren zu deren Betrieb |
CN203888578U (zh) * | 2014-04-22 | 2014-10-22 | 广州汽车集团股份有限公司 | 一种电动汽车热管理系统 |
DE102015215424A1 (de) * | 2015-08-13 | 2017-02-16 | Continental Automotive Gmbh | Verfahren zum Beheizen und Beheizungssystem |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1298996B1 (it) * | 1998-04-01 | 2000-02-07 | Manuela Fornari | Dispositivo per proteggere un reostato di frenatura di locomotori ferroviari |
DE102009042774A1 (de) * | 2009-09-25 | 2011-03-31 | Behr Gmbh & Co. Kg | System für ein Kraftfahrzeug zum Erwärmen und/oder Kühlen einer Batterie und eines Kraftfahrzeuginnenraumes |
-
2017
- 2017-09-28 CN CN201710901700.1A patent/CN110015195B/zh active Active
-
2018
- 2018-09-28 WO PCT/CN2018/108411 patent/WO2019062870A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102452297A (zh) * | 2010-10-29 | 2012-05-16 | 杭州三花研究院有限公司 | 电动汽车及其热管理系统 |
DE102011118898A1 (de) * | 2011-11-18 | 2012-06-06 | Daimler Ag | Vorrichtung und Verfahren zur thermischen Kopplung zweier Kühlkreisläufe in einem Fahrzeug |
DE102012004008A1 (de) * | 2012-02-25 | 2012-09-13 | Daimler Ag | Verfahren zum Betrieb eines zumindest zeit- oder abschnittsweise elektromotorisch angetriebenen Fahrzeugs mit einem elektrischen Energiespeicher, einem Niedertemperaturkreislauf und einem Kältekreislauf |
DE102012019459A1 (de) * | 2012-10-04 | 2013-03-28 | Daimler Ag | Temperiervorrichtung eines Fahrzeugs und Verfahren zu deren Betrieb |
CN203888578U (zh) * | 2014-04-22 | 2014-10-22 | 广州汽车集团股份有限公司 | 一种电动汽车热管理系统 |
DE102015215424A1 (de) * | 2015-08-13 | 2017-02-16 | Continental Automotive Gmbh | Verfahren zum Beheizen und Beheizungssystem |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3862201A1 (fr) * | 2020-02-06 | 2021-08-11 | Belenos Clean Power Holding AG | Dispositif de récuperation et de régulation d' énergie thermique d'un véhicule électrique à génerateur électrochimique avec un système hvac |
WO2021156034A1 (fr) * | 2020-02-06 | 2021-08-12 | Belenos Clean Power Holding Ag | Dispositif de recuperation et de regulation d'energie thermique d'un vehicule electrique a generateur electrochimique avec un systeme hvac |
TWI774203B (zh) * | 2020-02-06 | 2022-08-11 | 瑞士商畢雷諾斯潔淨電力控股公司 | 設有具hvac系統之電化學發電機的電動車之熱能回收和調節裝置 |
WO2024114853A1 (de) * | 2022-11-28 | 2024-06-06 | Schaeffler Technologies AG & Co. KG | Thermomanagement-system für ein elektrisch betriebenes kraftfahrzeug |
Also Published As
Publication number | Publication date |
---|---|
CN110015195A (zh) | 2019-07-16 |
CN110015195B (zh) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110774863B (zh) | 一种电动汽车用集成间接式热泵的整车热管理系统 | |
WO2020108542A1 (zh) | 车辆热管理系统及其控制方法、车辆 | |
CN111016737B (zh) | 一种电动汽车热管理系统、控制方法和电动汽车 | |
CN109774409B (zh) | 汽车热管理系统 | |
CN107298001A (zh) | 一种纯电动汽车整车热管理系统及控制方法 | |
TWI577581B (zh) | 電動車之溫控系統 | |
CN110978945B (zh) | 一种增程式电车热管系统及其方法 | |
WO2019062553A1 (zh) | 汽车热管理系统及具有该系统的汽车 | |
US9682611B2 (en) | Air conditioning system | |
CN102452297A (zh) | 电动汽车及其热管理系统 | |
CN108376808A (zh) | 一种汽车电池温度调节装置 | |
KR20180112160A (ko) | 전기자동차 공조 시스템 | |
CN109455059B (zh) | 集合水冷冷凝器和水冷蒸发器的热泵空调及热管理系统 | |
CN104890500A (zh) | 插电式混合动力汽车冷却系统 | |
US11052722B2 (en) | Air-conditioning system | |
TWI577578B (zh) | 電動車之溫控系統 | |
WO2019062870A1 (zh) | 一种电动车辆热量管理系统 | |
CN107351639B (zh) | 一种采用毛细管网辐射末端的电动汽车空调系统 | |
CN105633484A (zh) | 电动车电池温度管理系统 | |
CN108944333B (zh) | 用于纯电动车辆的制暖控制系统和制暖控制方法 | |
CN208698430U (zh) | 利用燃料电池余热的车载空调 | |
CN105398308B (zh) | 电动汽车的空调系统 | |
CN111746297B (zh) | 车辆热管理系统及新能源汽车 | |
RU174819U1 (ru) | Модульная система терморегулирования состояния тяговых аккумуляторных батарей | |
CN205365158U (zh) | 不受空调压缩机影响的汽车热交换器辅助装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18862196 Country of ref document: EP Kind code of ref document: A1 |