Nothing Special   »   [go: up one dir, main page]

WO2019044709A1 - 打音の低減された熱可塑性樹脂組成物及び成形品 - Google Patents

打音の低減された熱可塑性樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2019044709A1
WO2019044709A1 PCT/JP2018/031381 JP2018031381W WO2019044709A1 WO 2019044709 A1 WO2019044709 A1 WO 2019044709A1 JP 2018031381 W JP2018031381 W JP 2018031381W WO 2019044709 A1 WO2019044709 A1 WO 2019044709A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
aromatic vinyl
resin
derived
resin composition
Prior art date
Application number
PCT/JP2018/031381
Other languages
English (en)
French (fr)
Inventor
博幸 野村
成季 田中
Original Assignee
テクノUmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノUmg株式会社 filed Critical テクノUmg株式会社
Priority to EP18851541.5A priority Critical patent/EP3699212B1/en
Priority to JP2019539457A priority patent/JP7195260B2/ja
Priority to CN201880056146.4A priority patent/CN111032715B/zh
Priority to US16/641,980 priority patent/US20200216657A1/en
Publication of WO2019044709A1 publication Critical patent/WO2019044709A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a thermoplastic resin composition that can not only provide high rigidity but also provide a molded article in which the generation of hammering noise is suppressed.
  • Rubber-reinforced resins such as ABS resins are widely used as molding materials for vehicle parts such as automobile interior parts due to their excellent mechanical properties, heat resistance and moldability.
  • Patent Documents 2 to 4 it has been practiced to impart damping properties by blending an elastomeric block polymer with a flame retardant rubber reinforced resin. It only evaluates the loss factor at the secondary resonance frequency in ° C., and does not consider at all to suppress noise such as hitting sound.
  • an object of the present invention is to provide a thermoplastic resin composition capable of providing a molded article in which the generation of tapping noise is suppressed and which preferably has high rigidity.
  • the present inventors mix a specific sound reduction material into a thermoplastic resin composition to reduce the maximum sound pressure of the frequency spectrum of sound generation of a resin molded article.
  • a specific sound reduction material into a thermoplastic resin composition to reduce the maximum sound pressure of the frequency spectrum of sound generation of a resin molded article.
  • thermoplastic resin composition comprising at least a rubber reinforced resin (A) having a rubbery portion (a1) and a resin portion (a2),
  • the rubbery portion (a1) comprises a block (I) having a structural unit derived from an aromatic vinyl compound and a structural unit derived from isoprene or isoprene and butadiene and having a main dispersion of tan ⁇ at 0 ° C. or higher.
  • the resin portion (a2) contains a structural unit derived from an aromatic vinyl compound,
  • the thermoplastic resin composition is provided, wherein the maximum value of the sound pressure in the frequency range of 20 to 20,000 Hz is 3.0 Pa / N or less when measured under the following conditions.
  • Measurement condition A test piece that is an integral molding of a shape with a 120 mm long, 60 mm wide, and 3 mm thick rectangular main body provided with a trapezoidal protrusion with an upper base 20 mm, a lower base 40 mm, and a height 8 mm, 1.5 mm thick on the upper end
  • the center of one surface of the test piece is struck with a force of 20 ⁇ 5 N with a stainless steel hammer,
  • the measurement is based on the sound pressure frequency spectrum obtained by collecting sound with a sound pressure microphone installed at a distance of 12 cm in the vertical direction.
  • a block (I) comprising a structural unit derived from an aromatic vinyl compound and a structural unit derived from isoprene or isoprene and butadiene and having tan ⁇ at 0 ° C. or higher
  • a rubbery portion (a1-1) derived from a block copolymer containing a block (II) having a main dispersion peak or a hydrogenated product thereof, and a resin portion containing a structural unit derived from an aromatic vinyl compound (The tapping noise reduction material for thermoplastic resin compositions which consists of rubber-reinforced aromatic vinyl-type resin (A1) which has a2) is provided.
  • the thermoplastic resin composition is blended with a specific tapping noise reducing material, and the maximum value of the sound pressure in the frequency range of 20 to 20,000 Hz of the tapping noise of the resin molded article is 3.0 Pa /
  • the offensive component of the hitting sound can be made inconspicuous, and preferably, the rigidity of the resin molded product can be maintained at a certain level or more.
  • the frequency spectrum of the sound pressure obtained under the above measurement conditions is 2 at a frequency slightly exceeding each of 9,000 Hz and 19,000 Hz.
  • One prominent peak is shown, and one peak gives the maximum value of sound pressure.
  • the peak near the frequency 19,000 Hz appears as an overtone of the peak near the frequency 9,000 Hz.
  • the frequency giving the maximum value of the sound pressure is preferably in the range of 20 to 9,000 Hz or 14,000 to 19,000 Hz.
  • (co) polymerization means homopolymerization and / or copolymerization
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate” means , Acrylate and / or methacrylate.
  • fusing point It may describe as “Tm” in this specification
  • DSC differential scanning calorimeter
  • thermoplastic resin composition (X) of the present invention is a block copolymer or block copolymer containing the above block (I) and block (II) as the rubbery portion (a1)
  • the rubber-reinforced resin (A) provided with the rubbery portion (a1-1) derived from the hydrogen additive may be included, and may be constituted of only the rubber-reinforced resin (A), or rubber-reinforced You may be comprised from the mixture of resin (A) and another thermoplastic resin (B).
  • thermoplastic resin composition (X) of the present invention can be obtained, for example, by blending the rubber-reinforced aromatic vinyl resin (A1) with the thermoplastic resin (B) as a hitting noise reduction material.
  • the rubbery portion (a1-1) constituting the rubbery portion (a1) of the thermoplastic resin composition (X) is derived from the rubber-reinforced aromatic vinyl resin (A1) And the effects of the present invention such as reduction of hitting sound can be achieved.
  • the rubber-reinforced resin (A) may contain other rubber-reinforced resin in addition to the rubber-reinforced aromatic vinyl resin (A1).
  • thermoplastic resin (B) which can be added to the thermoplastic resin composition (X) of the present invention include polycarbonate resin, polyamide resin, polyester resin, vinyl chloride resin, silicone resin, polylactic acid resin, etc. .
  • the abnormal noise risk value measured using a stick-slip measuring device SSP-02 manufactured by Ziegler (ZIEGLER) indicates 3 or less under the following measurement conditions .
  • the noise risk value indicates the risk of occurrence of stick-slip noise when using the same material and made of the same material in accordance with the German Automotive Industry Association (VDA) standard, as a ten-level index, as described above. If the abnormal noise level is 3 or less, it is considered as a pass.
  • VDA German Automotive Industry Association
  • thermoplastic resin composition (X) of the present invention not only the rubber reinforced resin (A) contained in the thermoplastic resin composition (X) of the present invention, but also the thermoplastic resin composition (X) of the present invention itself exhibits the above-mentioned abnormal noise risk value 3 or less In some cases, not only the generation of a striking sound but also the generation of a squeaking sound can be suppressed, so that acoustically high-quality molded articles can be provided.
  • the thermoplastic resin composition (X) of the present invention is 100% by mass of the entire thermoplastic resin composition (X) from the viewpoint of mechanical properties such as impact resistance and acoustic properties such as hitting sound and squeaky sound.
  • the rubber content is preferably 5 to 60% by mass.
  • the thermoplastic resin composition (X) has crystallinity or contains a component having crystallinity, the effect of suppressing generation of squeaky noise is further excellent and preferable.
  • the thermoplastic resin composition (X) preferably has a melting point in the range of 0 to 120 ° C., more preferably 10 to 90 ° C., as measured according to JIS K 7121-1987. A range of ⁇ 80 ° C. is even more preferred.
  • the melting point (Tm) is obtained according to JIS K 7121-1987, but the number of endothermic pattern peaks in the range of 0 to 120 ° C. is not limited to one, and two or more May be.
  • the Tm (melting point) observed in the range of 0 to 120 ° C. may be derived from the rubber-reinforced resin (A), particularly the rubbery portion, or the following in relation to the rubber-reinforced resin (A)
  • the additive may be derived from a sliding property imparting agent such as a low molecular weight polyolefin wax having a number average molecular weight of 10,000 or less.
  • the slidability imparting agent may be added to the rubber reinforced resin (A) or may be added directly to the thermoplastic resin composition (X).
  • thermoplastic resin composition (X) of the present invention preferably retains high mechanical strength. Therefore, the thermoplastic resin composition (X) preferably has a deflection temperature under load (1.8 MPa) of 70 ° C. or higher, preferably has a Rockwell hardness of 98 or higher, and a tensile strength of 35 MPa or higher. The bending strength is preferably 45 MPa or more.
  • the rubber-reinforced resin (A) may be composed of only the rubber-reinforced aromatic vinyl resin (A1) which functions as a hitting noise reduction material, but usually, the rubber-reinforced aromatic vinyl resin (A1); It is composed of a mixture with other rubber reinforced resins such as diene rubber reinforced aromatic vinyl resins and non-diene rubber reinforced aromatic vinyl resins.
  • the rubber-reinforced resin (A) preferably has crystallinity in order to further enhance the function of suppressing the generation of abnormal noise such as squeaky sound which the thermoplastic resin composition (X) has.
  • the melting point of the thermoplastic resin composition (X) measured according to JIS K 7121-1987 is preferably in the range of 0 to 120 ° C., more preferably in the range of 10 to 90 ° C., A range of ⁇ 80 ° C. is even more preferred.
  • the rubber reinforced resin (A) has a rubbery portion (a1) derived from a rubbery polymer and a resin portion (a2) containing a constitutional unit derived from a vinyl-based monomer.
  • the rubbery portion (a1) preferably forms a graft copolymer in which the resin portion (a2) is bonded by graft polymerization or the like.
  • the rubber reinforced resin is constituted at least by the graft copolymer and the (co) polymer constituting the resin portion (a2) which is not graft polymerized to the rubber portion (a1), and further,
  • the resin portion (a2) may contain a non-grafted rubber portion (a1) or other components such as additives.
  • Rubbery part (a1) of rubber reinforced resin (A) The rubbery portion (a1) may be a homopolymer or a copolymer as long as it is rubbery (having rubber elasticity) at 25 ° C.
  • the rubbery portion (a1) is at least composed of a rubbery portion (a1-1) derived from a block copolymer containing the block (I) and the block (II) or a hydrogenated substance thereof.
  • other rubbery parts derived from the rubbery polymer other than the above-mentioned block copolymer or its hydrogenated substance may be provided.
  • the rubbery portion (a1) is composed of a rubbery portion (a1-2) derived from non-diene rubber from the viewpoint of the suppressing effect of abnormal noise such as striking sound and squeak noise.
  • the rubbery portion (a1-1) and the non-diene system derived from the block copolymer containing the block (I) and the block (II) or the hydrogenated product thereof It is particularly preferred to be composed of a rubbery portion (a1-2) derived from rubber.
  • the rubbery polymer constituting the rubbery portion (a1-1) includes a block (I) having a structural unit derived from an aromatic vinyl compound and a structural unit derived from isoprene or isoprene and butadiene, A block copolymer comprising the block (II) having a peak of the main dispersion of tan ⁇ at 0 ° C. or higher or a hydrogenated product thereof is used.
  • aromatic vinyl compound constituting the block (I) examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene and vinyl toluene , Vinylxylene, vinylnaphthalene and the like. These compounds can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferred.
  • the peak of the main dispersion of tan ⁇ of the block (II) needs to be 0 ° C. or more, preferably 5 ° C. or more, more preferably 10 ° C. or more.
  • the peak of the main dispersion of tan ⁇ is measured using a visco-elasticity measuring apparatus (DOD III III EP manufactured by Toyo Boldwin Co., Ltd.) at a frequency of 11 Hz, a measurement temperature of ⁇ 110 ° C. to + 100 ° C., and a temperature rise rate of 2 ° C./min. Can be asked.
  • the 3,4 bond and 1,2 bond content of the block (II) is preferably 40% or more, more preferably 50% or more, and still more preferably 60 to 98%.
  • the number average molecular weight of the block (I) is preferably 2,500 to 40,000, more preferably 3500 to 35,000, and still more preferably 4,000 to 30,000.
  • the number average molecular weight of the block (II) is preferably 10,000 to 200,000, more preferably 20,000 to 100,000, and still more preferably 25,000 to 150,000.
  • the total number average molecular weight of the block copolymer is preferably 30,000 to 300,000, more preferably 40,000 to 270,000, and still more preferably 50,000 to 250,000.
  • Non-diene rubbers constituting the rubbery portion (a1-2) include ethylene / ⁇ -olefin rubber; urethane rubber; acrylic rubber; silicone rubber; silicone / acrylic IPN rubber; derived from conjugated diene compound And hydrogenated polymers (in which the hydrogenation rate is 50% or more, excluding the above-mentioned block copolymer) and the like.
  • the hydrogenated polymer may be a block copolymer or a random copolymer.
  • an ethylene / ⁇ -olefin rubber as the non-diene rubber from the viewpoint of suppressing the abnormal noise such as hitting noise and squeak noise.
  • the ethylene / ⁇ -olefin rubber is a copolymer rubber containing a structural unit derived from ethylene and a structural unit derived from an ⁇ -olefin.
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1- Eikosen etc. are mentioned.
  • ⁇ -olefins can be used alone or in combination of two or more.
  • the number of carbon atoms of the ⁇ -olefin is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 8, from the viewpoint of impact resistance.
  • the mass ratio of ethylene: ⁇ -olefin in the ethylene / ⁇ -olefin rubber is usually 5 to 95:95 to 5, preferably 50 to 95:50 to 5, more preferably 60 to 95:40 to 5. When the mass ratio of ethylene: ⁇ -olefin is in the above range, the impact resistance of the resulting molded article is further excellent and preferred.
  • the ethylene / ⁇ -olefin rubber may optionally contain a structural unit derived from a non-conjugated diene.
  • Nonconjugated dienes include alkenyl norbornenes, cyclic dienes and aliphatic dienes, preferably 5-ethylidene-2-norbornene and dicyclopentadiene. These nonconjugated dienes can be used alone or in combination of two or more.
  • the ratio of structural units derived from nonconjugated diene to the whole non-diene rubber is usually 0 to 10% by mass, preferably 0 to 5% by mass, more preferably 0 to 3% by mass.
  • an ethylene / ⁇ -olefin rubber having a melting point (Tm) of 0 to 120 ° C it is preferable to use an ethylene / ⁇ -olefin rubber having a melting point (Tm) of 0 to 120 ° C.
  • Tm melting point
  • the Tm (melting point) of the ethylene / ⁇ -olefin rubber is more preferably 10 to 90 ° C., still more preferably 20 to 80 ° C.
  • Tm melting point
  • the thermoplastic resin composition (X) is made to express a melting point in the range of 0 to 120 ° C. Noise suppression effect can be further enhanced.
  • the rubber reinforced resin (A) has such crystallinity, the occurrence of the stick-slip phenomenon is suppressed. Therefore, when the molded article and another article are in dynamic contact with each other, the generation of abnormal noise such as squeaking occurs. It is considered to be suppressed.
  • the stick-slip phenomenon is disclosed in Japanese Patent Application Laid-Open No. 2011-174029 and the like.
  • the Mooney viscosity (ML1 + 4, 100 ° C .; in accordance with JIS K 6300-1) of the ethylene / ⁇ -olefin rubber is generally 5 to 80, preferably 10 to 65, and more preferably 10 to 45.
  • the Mooney viscosity is in the above range, the moldability is excellent and the impact strength and the appearance of the molded article are further excellent and preferable.
  • the ethylene / ⁇ -olefin rubber is preferably an ethylene / ⁇ -olefin copolymer which does not contain a non-conjugated diene component from the viewpoint of the reduction of the generation of abnormal noise such as hitting noise and squeaking noise, among which ethylene / propylene is preferred.
  • Copolymers, ethylene / 1-butene copolymers, and ethylene / 1-octene copolymers are more preferred, with ethylene / propylene copolymers being particularly preferred.
  • diene-based rubber constituting the rubbery portion (a1-3) examples include homopolymers such as polybutadiene and polyisoprene; styrene / butadiene copolymer, styrene / butadiene / styrene copolymer, acrylonitrile / styrene / butadiene copolymer Butadiene copolymers such as acrylonitrile, butadiene copolymer, etc .; isoprene copolymers such as styrene isoprene copolymer, styrene isoprene styrene copolymer, acrylonitrile styrene isoprene copolymer, etc. Be These may be random copolymers or block copolymers. These can be used alone or in combination of two or more.
  • the diene rubbery polymer may be a crosslinked polymer or an uncross
  • the rubbery portion (a1) of the rubber reinforced resin (A) is derived from a diene rubber in addition to the rubber portion (a1-2) derived from the non-diene rubber from the viewpoint of mechanical strength such as rigidity. It is preferable to be composed of a rubbery portion (a1-3). In this case, the moldability and impact resistance of the thermoplastic resin composition (X) and the appearance of the resulting molded article are further sufficient.
  • the content of the rubbery portion (a1) in the rubber reinforced resin (A), that is, the rubber content is preferably 3 to 80% by mass, more preferably 100% by mass with respect to the entire rubber reinforced resin (A). Is preferably 3 to 75% by mass, more preferably 4 to 70% by mass, still more preferably 5 to 70% by mass, and particularly preferably 7 to 65% by mass.
  • the impact resistance of the thermoplastic resin composition (X) the effect of reducing abnormal noise such as hitting noise and squeaking noise, dimensional stability, moldability and the like are further excellent and preferred.
  • Resin part (a2) of rubber reinforced resin (A) comprises a structural unit derived from a vinyl monomer, contains an aromatic vinyl compound as an essential component, and copolymerizes an aromatic vinyl compound and the aromatic vinyl compound It may be composed of possible compounds.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinyl Naphthalene etc. are mentioned. These compounds can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferred.
  • the compound copolymerizable with the aromatic vinyl compound preferably, at least one selected from a vinyl cyanide compound and a (meth) acrylic acid ester compound can be used, and further, if necessary, these compounds may be used together with these compounds.
  • Other polymerizable vinyl monomers can also be used.
  • vinyl cyanide compound examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -ethyl acrylonitrile, ⁇ -isopropyl acrylonitrile and the like. These compounds can be used alone or in combination of two or more. Among these, acrylonitrile is preferred.
  • the (meth) acrylic acid ester compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n (meth) acrylate -Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, n-octyl (meth) acrylate, (meth) acrylate 2 -Ethylhexyl, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate and the like. These compounds can be used alone or in combination of two or more. Of these, methyl methacrylate is preferred.
  • maleimide compound examples include N-phenyl maleimide, N-cyclohexyl maleimide and the like. These compounds can be used alone or in combination of two or more.
  • unsaturated acid anhydride examples include maleic anhydride, itaconic anhydride, citraconic anhydride and the like. These compounds can be used alone or in combination of two or more.
  • carboxyl group-containing unsaturated compound examples include (meth) acrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, cinnamic acid and the like. These compounds can be used alone or in combination of two or more.
  • hydroxyl group-containing unsaturated compounds include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3 And -hydroxy-2-methyl-1-propene, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate and the like. These compounds can be used alone or in combination of two or more.
  • the lower limit value of the content of the structural unit derived from the above aromatic vinyl compound in the rubber reinforced resin (A) is derived from the structural unit derived from the aromatic vinyl compound and the compound copolymerizable with the aromatic vinyl compound
  • the total amount of structural units is 100% by mass, it is preferably 40% by mass, more preferably 50% by mass, and still more preferably 60% by mass.
  • the upper limit is usually 100% by mass.
  • the content of structural units derived from the aromatic vinyl compound is both
  • the total content of the structural units derived from the vinyl cyanide compound is generally 100% by mass, and is usually 40 to 90% by mass, preferably 55 to 85% by mass. When it is%, it is 10 to 60% by mass, preferably 15 to 45% by mass.
  • a rubber-reinforced resin (A) is, for example, a vinyl-based unit containing an aromatic vinyl compound in the presence of various rubber polymers (a) constituting the above-mentioned rubbery portion It can be produced by graft polymerization of the body (b).
  • the polymerization method in this production method is not particularly limited as long as the above graft copolymer can be obtained, and known methods can be applied.
  • the polymerization method may be emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or a combination of these. In these polymerization methods, known polymerization initiators, chain transfer agents (molecular weight modifiers), emulsifiers and the like can be appropriately used.
  • a graft copolymer obtained by graft polymerizing a (co) polymer of vinyl monomers with a rubbery polymer, and a vinyl copolymer which is not graft polymerized with a rubbery polymer are generally used.
  • the rubber-reinforced resin (A) comprises a rubbery portion (a1) derived from a rubbery polymer and a resin portion (a2) having a structural unit derived from a vinyl-based monomer, and the rubbery portion (a1) comprises Since it is preferable to form a graft copolymer in which the resin portion (a2) is graft polymerized, the mixture product of the graft copolymer produced as described above and the (co) polymer is reinforced with rubber. It can be used as it is as a resin (A).
  • the rubber reinforcing resin (A) is obtained by adding a (co) polymer (A ') produced by polymerizing a vinyl monomer in the absence of the rubbery polymer (a), It is also good.
  • This (co) polymer (A ') when added to the rubber-reinforced resin (A), constitutes a resin portion (a2) which is not graft polymerized with the rubber portion (a1).
  • the rubber-reinforced resin (A) used in the present invention is a rubber derived from a block copolymer containing the above block (I) and the above block (II) or a hydrogenated product thereof. It may be composed of the quality portion (a1-1) and the rubbery portion (a1-2) derived from non-diene rubber and / or the rubbery portion (a1-3) derived from diene rubber.
  • a rubber-reinforced resin (A) containing a plurality of such rubbers for example, a rubber containing a non-diene rubber and / or a diene rubber in addition to the above-mentioned block copolymer or its hydrogenated substance
  • a rubber-reinforced resin (A) containing a plurality of such rubbers for example, a rubber containing a non-diene rubber and / or a diene rubber in addition to the above-mentioned block copolymer or its hydrogenated substance
  • the method of graft-polymerizing a vinyl-type monomer (b) in presence of a polymer (a) and manufacturing is mentioned.
  • a rubber having a rubbery portion (a1-1) derived from the block copolymer or the hydrogenated product thereof and a resin portion (a2) containing a structural unit derived from an aromatic vinyl compound It has a reinforced aromatic vinyl resin (A1), a rubbery portion (a1-2) derived from a non-diene rubber polymer, and a resin portion (a2) containing a structural unit derived from an aromatic vinyl compound
  • a rubbery portion (a1-3) derived from a rubber-reinforced aromatic vinyl resin (A2) and / or a diene rubbery polymer, and a resin portion (a2) containing a structural unit derived from an aromatic vinyl compound A rubbery portion (a1-3) derived from a rubber-reinforced aromatic vinyl resin (A2) and / or a diene rubbery polymer, and a resin portion (a2) containing a structural unit derived from an aromatic vinyl compound
  • A3 derived from a rubber-reinforced aromatic vinyl resin (A2) and / or a
  • the rubber-reinforced aromatic vinyl resin (A1) is produced by graft-polymerizing a vinyl monomer (b) containing an aromatic vinyl compound in the presence of the block copolymer or the hydrogenated product thereof. be able to.
  • the rubber-reinforced aromatic vinyl resin (A2) can be produced by graft polymerization of a vinyl monomer (b) containing an aromatic vinyl compound in the presence of a non-diene rubber.
  • the rubber-reinforced aromatic vinyl resin (A3) can be produced by graft polymerization of a vinyl monomer (b) containing an aromatic vinyl compound in the presence of a diene rubber.
  • the graft ratio of the rubber-reinforced resin (A) is usually 10 to 150%, preferably 15 to 120%, and more preferably 20 to 100 for all of the rubber-reinforced aromatic vinyl resins (A1) to (A3). %, Particularly preferably 20 to 80%.
  • the graft ratio of the rubber reinforced resin (A) is in the above range, the impact resistance of the molded article of the present invention is further improved.
  • S is charged with 1 gram of a rubber-reinforced resin (A) in 20 ml of acetone, shaken with a shaker for 2 hours under a temperature condition of 25 ° C., and then centrifuged under a temperature condition of 5 ° C.
  • T is 1 gram of the rubber-reinforced resin (A) It is mass (g) of the rubbery part (a1) contained.
  • the mass of the rubbery portion (a1) can be determined by infrared spectroscopy, pyrolysis gas chromatography, CHN elemental analysis or the like, in addition to the method of calculating from the polymerization formulation and the polymerization conversion rate
  • the graft ratio is, for example, the type and amount of chain transfer agent used in graft polymerization when producing the rubber reinforced resin (A), the type and amount of polymerization initiator, and the addition method and addition of monomer components at the time of polymerization. It can adjust by selecting time, polymerization temperature, etc. suitably.
  • the limiting viscosity (in methyl ethyl ketone, 30 ° C.) of a component soluble in acetone (hereinafter also referred to as “acetone soluble component”) of the rubber reinforced resin (A) in the thermoplastic resin composition of the present invention is usually 0.05 It is -0.9 dl / g, preferably 0.07-0.8 dl / g, more preferably 0.1-0.7 dl / g.
  • acetone soluble component a component soluble in acetone
  • the measurement of the intrinsic viscosity [ ⁇ ] can be performed by the following method. First, the acetone-soluble component of the rubber-reinforced resin (A) was dissolved in methyl ethyl ketone to make five different concentrations. The limiting viscosity [ ⁇ ] was determined from the result of measuring the reduced viscosity at each concentration at 30 ° C. using a Ubbelohde viscosity tube. The unit is dl / g.
  • the intrinsic viscosity [ ⁇ ] is, for example, the type and amount of chain transfer agent used when graft polymerizing the rubber-reinforced resin (A), the type and amount of polymerization initiator, and the method of adding the monomer component at the time of polymerization And the addition time, the polymerization temperature, the polymerization time and the like can be adjusted appropriately.
  • the rubber-reinforced resin (A) can be adjusted by mixing a (co) polymer (A ') having an intrinsic viscosity [ ⁇ ] different from the intrinsic viscosity [ ⁇ ] of the acetone solubles.
  • the rubber reinforced resin (A) may contain a slidability imparting agent and other additives.
  • the slidability imparting agent not only renders the thermoplastic resin composition (X) slidable to facilitate the assembly of an article comprising the molded article of the present invention, but also comprises the molded article of the present invention at the time of use It is possible to impart an effect of suppressing the generation of abnormal noise such as a stagnant sound from an article.
  • slidability imparting agent examples include low molecular weight polyethylene oxide (c1), ultrahigh molecular weight polyethylene (c2), polytetrafluoroethylene (c3), low molecular weight polyethylene as described in JP-A-2011-137066, and Molecular weight (for example, number average molecular weight 10,000 or less) polyolefin wax, silicone oil and the like can be mentioned.
  • polyethylene wax having a melting point of 0 to 120 ° C. is preferable.
  • a polyolefin wax having such a melting point and other additives having a melting point of 0 to 120 ° C. are added to the rubber reinforcing resin (A)
  • the rubbery portion of the rubber reinforcing resin (A) has a melting point ( Even if Tm) is not provided, it is possible to obtain an effect of suppressing the generation of abnormal noise such as a stagnant sound.
  • These slidability imparting agents can be used singly or in combination of two or more.
  • the compounding amount of these slidability imparting agents is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber reinforced resin (A).
  • antioxidants antioxidants, ultraviolet light absorbers, weathering agents, antiaging agents, fillers, antistatic agents, flame retardants, antifogging agents, lubricants, antibacterial agents, antifungal agents
  • examples thereof include tackifiers, plasticizers, colorants, graphite, carbon black, carbon nanotubes, and pigments (for example, having infrared absorbing and reflecting ability and including functional-imparted pigments). These may be used alone or in combination of two or more.
  • the compounding amount of these additives is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the rubber reinforced resin (A).
  • the amount of the rubber-reinforced aromatic vinyl resin (A1) which functions as a hitting noise reducing material is preferably 100% by mass of the entire thermoplastic resin composition (X). Is 0.1 to 40% by mass, more preferably 1 to 35% by mass. When the amount of the rubber-reinforced aromatic vinyl resin (A1) used is in the above range, the balance between the reduction effect of the molding noise and the mechanical strength becomes good.
  • thermoplastic resin composition (X) of the present invention is a single-screw extruder after mixing each component at a predetermined compounding ratio with a tumbler mixer, Henschel mixer, etc. It can be produced by melt-kneading under appropriate conditions using a kneader such as a twin-screw extruder, a Banbury mixer, a kneader, a roll, a feeder ruder or the like.
  • the preferred kneader is a twin screw extruder.
  • those components may be kneaded at once, or may be compounded in multiple stages and divided.
  • melt-kneading temperature is usually 180 to 240 ° C., preferably 190 to 230 ° C.
  • the molded article of the present invention comprises injection molding, press molding, sheet extrusion molding, vacuum molding, profile extrusion molding, foam molding, material extrusion deposition method, powder molding of a thermoplastic resin composition (X) It can manufacture by shape
  • thermoplastic resin composition (X) of the present invention has the above-mentioned excellent properties, vehicle interior parts such as meter visors, console boxes, glove boxes, cup holders, etc., front grills, wheel caps, bumpers, fenders , Spoiler, garnish, door mirror, radiator grille, vehicle exterior parts such as knobs, straight tube type LED lamp, bulb type LED lamp, lighting fixture such as bulb type fluorescent lamp, mobile phone, tablet terminal, rice cooker, refrigerator, microwave oven , Gas stoves, vacuum cleaners, dishwashers, air purifiers, air conditioners, air conditioners, heaters, TVs, home appliances such as recorders, printers, fax machines, copiers, personal computers, office automation equipment such as projectors, audio appliances, organs, electronic pianos, etc. Used as acoustic equipment, cap of cosmetic container, battery cell case, etc. It can be, it can be particularly preferably used as a vehicle interior equipment.
  • vehicle interior parts such as meter visors, console boxes, glove boxes, cup holders, etc., front grills, wheel
  • the molded article of the present invention can also be used as a part of an article that has at least two parts in contact with each other, and both parts are in contact with each other to generate a tapping noise.
  • at least two parts in contact with each other at least a part of the part of the other part in contact with at least one of the two parts with the thermoplastic resin composition (X)
  • the formed article can be provided.
  • it comprises at least a first part and a second part in contact with each other, said first part being in contact with said second part (in particular, said first part)
  • it is possible to provide an article in which at least a part of the end face of the part is formed of the thermoplastic resin composition (X).
  • the first part is entirely or partially or entirely the part in contact with the second part (in particular, the end face of the first part) with the thermoplastic resin composition (X)
  • the article may be any article as long as the first and second parts come into contact with each other as described above, but in particular, an article in which both parts come in contact with each other through a concavo-convex portion by snap fitting, screwing, or It can be suitably used for an article in which the two parts are adjacent to each other with a gap but intermittently contact due to vibration or the like.
  • the second part in contact with the first part may be a part formed of the thermoplastic resin composition (X), and resins other than the thermoplastic resin composition (X) Or parts made of other materials such as metal.
  • thermoplastic resin composition (X) rubber reinforced aromatic vinyl resins such as polypropylene resins and ABS resins, acrylic resins such as polymethyl methacrylate, polycarbonate resins, polycarbonate / ABS alloys, nylon resins, Nylon / ABS alloy, PET resin, PET / ABS alloy, PBT / ABS alloy, thermoplastic elastomer, thermosetting elastomer, etc. may be mentioned.
  • Raw material [P] The raw material P1 obtained in the following Synthesis Example 1-1 was used as a rubber-reinforced aromatic vinyl resin (A1) used as a hitting sound reduction material.
  • Synthesis Example 1-1 (synthesis of raw material P1 (slipper reducing material))
  • SIS styrene-isoprene-styrene
  • HYBLER 5127 trade name, manufactured by Kuraray Co., Ltd., styrene content 20%, glass transition temperature (Tg) 8 ° C., peak temperature of main dispersion of tan ⁇ 25 ° C. , 3,4 bond and 1,2 bond content (95%) were prepared.
  • Raw material [Q] Raw materials Q1 and Q2 of the following synthesis examples 2-1 and 2-2 were used as the rubber-reinforced aromatic vinyl resins (A2) and (A3).
  • the internal temperature is cooled to 100 ° C., and 0.2 parts of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenol) -propionate, dimethyl silicone oil; KF-96-100 cSt (trade name)
  • the reaction mixture is withdrawn from the autoclave, and the unreacted material and solvent are distilled off by steam distillation, and a 40 mm ⁇ vented extruder (cylinder temperature 220 ° C., vacuum degree)
  • the volatiles were substantially degassed using 760 mm Hg) and pelletized.
  • the graft ratio of the obtained ethylene / ⁇ -olefin rubber reinforced aromatic vinyl resin (A2) was 47%, and the intrinsic viscosity [ ⁇ ] of acetone soluble matter was 0.47 dl / g.
  • Synthesis Example 2-2 (synthesis of raw material Q2 (diene rubber reinforced aromatic vinyl resin))
  • a polymerization vessel equipped with a stirrer 280 parts of water and, as a diene rubber-like polymer, 60 parts of polybutadiene latex having a weight average particle diameter of 0.26 ⁇ m and a gel fraction of 90% (solid content conversion), sodium formaldehyde sulfoxylate 0.3
  • Raw material [R] The following raw materials R1 and R2 were used as a thermoplastic resin which did not contain the part derived from a rubbery polymer.
  • Raw material R1 (AS resin) The acrylonitrile styrene copolymer whose ratio of an acrylonitrile unit and a styrene unit is 27% and 73%, respectively, and whose intrinsic viscosity [eta] (in methyl ethyl ketone, 30 degreeC) is 0.47 dl / g.
  • the glass transition temperature (Tg) was 103.degree.
  • the polymerization conversion was 99%. Thereafter, the obtained latex was coagulated by adding calcium chloride, and after washing, filtration and drying steps, a powdery copolymer was obtained.
  • the intrinsic viscosity [ ⁇ ] of the acetone soluble matter of the obtained copolymer was 0.40 dl / g.
  • Raw material [S] 4-1 Raw material S1 (PC resin) A polycarbonate resin "NOVAREX 7022J (trade name)" manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used.
  • Examples 1 to 6 and Comparative Examples 1 to 4 Preparation of Thermoplastic Resin Composition
  • Raw materials [P], [Q], [R] and [S] shown in Table 1 were mixed at the mixing ratio shown in the same table. Then, it melt-kneaded at 250 degreeC, and pelletized using the twin-screw extruder (model
  • Adekastab AO-20 (ADEKA, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) was used as a compounding aid.
  • Adekastab PEP-24G made by Adeka, bis (2,4-di-tert-butyl)
  • Adekastab 2112 manufactured by ADEKA Corporation, Tris (2,4-di-tert-) was used as a blending aid.
  • 0.2 parts of butylphenyl) phosphite was blended.
  • Tm Melting point
  • thermoplastic resin composition as shown in FIG. 1 120 mm long, 60 mm wide, 3 mm thick rectangular main body upper end 20 mm, lower base 40 mm, height 8 mm, thickness
  • Test pieces which are integrally molded products with a 1.5 mm trapezoidal projection, are injection molded at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. using an IS-170 FA injection molding machine manufactured by Toshiba Machine did. Then, in a state in which two threads are attached by tape to the projection of the test piece and suspended, the center of one surface of the test piece is made of stainless steel made of PCB Piezotronics, which can measure the striking force.
  • Sound pressure microphone made by PCB Piezotronics (trade name: 378B02) installed by separating it by a distance of 12 cm in the vertical direction with respect to the surface when a hammer (trade name: 086C03) is struck with a force of 20 ⁇ 5N.
  • the sound was collected by) and converted to a sound pressure frequency spectrum by an Oros Fourier Transform Analyzer (trade name: Multi-JOB FFT Analyzer OR34J-4).
  • the maximum value of sound pressure (Pa / N) in the obtained frequency spectrum and its frequency (Hz) were used as measurement values.
  • the measurement was performed in a room at a room temperature of 23 ° C.
  • the sound pressure (Pa / N) obtained as the measurement value means the sound pressure per 1 N of impact force measured.
  • Attenuation of hitting sound The same operation as measuring the sound pressure of the hitting sound was performed, and the time change of sound pressure was measured with a Fourier transform analyzer (trade name: Multi-JOB FFT analyzer OR34J-4) manufactured by Oros. The time required for the sound pressure to settle to a sound pressure that is 1/4 of the maximum sound pressure from the generation of sound was used as the attenuation time for the tapping sound.
  • the attenuation of the hitting sound is preferably less than 0.01 seconds, more preferably less than 0.008 seconds.
  • thermoplastic resin composition is injection molded using Toshiba IS-170FA injection molding machine at a cylinder temperature of 250 ° C, an injection pressure of 50MPa, and a mold temperature of 60 ° C, and an injection molded plate 150 mm long, 100 mm wide and 4 mm thick I got From this plate, use a disk saw to cut out test pieces of 60 mm long, 100 mm wide, 4 mm thick, 50 mm long, 25 mm wide and 4 mm thick, chamfer the end with sandpaper # 100, and then make small burrs. It removed with the cutter knife and used the plate of 2 sheets of large and small as a test piece. Two test pieces were aged for 300 hours in an oven adjusted to 80 ° C.
  • Table 1 shows the following.
  • the rigidity is high, and the maximum value of the sound pressure in the frequency range of 20 to 20,000 Hz is 3.0 Pa / N or less
  • the frequency giving the maximum value of the sound pressure is also in the range of 20 to 9,000 Hz or 14,000 to 19,000 Hz, and further, the noise risk value is low, and not only rigidity but also striking sound and squeak noise Etc.
  • thermoplastic resin composition of the present invention can be suitably applied as a molding material for providing a molded article having a high rigidity, preferably while suppressing generation of hammering noise.
  • a molding material for vehicle parts such as automobile interior parts It can be suitably used as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

【課題】打音の発生が抑制され、好ましくは高い剛性を備えた成形品を提供し得る熱可塑性樹脂組成物を提供する。 【解決手段】 芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレンまたはイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分を含むゴム質部分(a1)と、芳香族ビニル化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化樹脂(A)を含み、所定の条件で測定された20~20,000Hzの周波数域の音圧の最大値が3.0Pa/N以下である熱可塑性樹脂組成物。

Description

打音の低減された熱可塑性樹脂組成物及び成形品
 本発明は、高い剛性を備えるだけでなく、打音の発生が抑制された成形品を提供し得る熱可塑性樹脂組成物に関する。
 ABS樹脂などのゴム強化樹脂は、その優れた機械的性質、耐熱性、成形性により自動車内装部品等の車両部品の成形材料として広範囲に使用されている。
 樹脂で車両部品を成形する場合、一定以上の機械的強度を充足するだけでなく、車両室内での居住性の関係から、部品から発生する騒音を低下させ、車両の静粛性を向上させることが一層求められている。
 従来、ゴム成分としてエチレン・α-オレフィン系ゴム質重合体を用いたゴム強化樹脂で自動車内装部品を成形することで、機械的強度を一定水準に維持しつつ、部品同士が接触することにより発生する軋み音を防止することは既に行われている(特許文献1)が、「ラトル(rattle)」と呼ばれる打音のような騒音を抑制することについては未解決であった。
 一方、従来、難燃性ゴム強化樹脂にエラストマー性ブロック重合体を配合することにより制振性を付与することが行われている(特許文献2~4)が、片持ち梁共振法によって、25℃での2次共振周波数における損失係数を評価しているに過ぎず、打音のような騒音を抑制することについては何ら検討していない。
特開2013-112812号公報 特開2001-158841号公報 特開平3-45646号公報 特開平8-3249号公報
 本発明者は、車両部品等に求められる機械的強度を充足するために一定以上の剛性を発現するように樹脂を改良した場合、樹脂成形品から発生する打音が目立つようになることを見出した。
 そこで、本発明の目的は、打音の発生が抑制された成形品であって、好ましくは高い剛性を備えたものを提供し得る熱可塑性樹脂組成物を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、特定の打音低減材を熱可塑性樹脂組成物に配合して、樹脂成形品の打音の周波数スペクトルの最大音圧を低下させることで、樹脂成形品から発生する打音を抑制でき、所望により樹脂成形品の剛性を一定水準に維持することもできることを見出し、本発明を完成するに至った。
 かくして、本発明の一局面によれば、ゴム質部分(a1)と樹脂部分(a2)とを有するゴム強化樹脂(A)から少なくとも構成される熱可塑性樹脂組成物であって、
 前記ゴム質部分(a1)は、芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレンまたはイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)を含み、
 前記樹脂部分(a2)は、芳香族ビニル化合物に由来する構造単位を含み、
 下記の条件で測定した場合に、20~20,000Hzの周波数域の音圧の最大値が3.0Pa/N以下である熱可塑性樹脂組成物が提供される。
測定条件:
縦120mm、横60mm、厚さ3mmの矩形本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品である試験片の前記突起に2本の糸をテープで貼り付けて吊り下げた状態で、前記試験片の一方の面の中央をステンレス製のハンマーで20±5Nの力で叩いた時の響きを、前記面に対して垂直方向に12cm離して設置した音圧マイクロホンで集音して求めた音圧の周波数スペクトルに基づいて測定。
 また、本発明の他の局面によれば、芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレンまたはイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と、芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A1)からなる、熱可塑性樹脂組成物用の打音低減材が提供される。
 本発明によれば、樹脂組成物の剛性やきしみ音の発生と打音の発生は必ずしも連動したものではないことが明らかとなった。かくして、この知見に基づき、熱可塑性樹脂組成物に特定の打音低減材を配合して、樹脂成形品の打音の20~20,000Hzの周波数域の音圧の最大値を3.0Pa/N以下に維持した場合、打音の耳障りな成分を目立たなくすることができ、好ましくは、樹脂成形品の剛性を一定水準以上に維持することが可能となった。本発明の打音低減材を添加していない熱可塑性樹脂組成物の場合、上記測定条件下で得られた音圧の周波数スペクトルは9,000Hz及び19,000Hzのそれぞれをやや超えた周波数で2つの顕著なピークを示し、何れか一方のピークが音圧の最大値を与える。ここで、上記周波数19,000Hz付近のピークは上記周波数9,000Hz付近のピークの倍音として現れるものと考えられる。これに対し、本発明の打音低減材を添加した熱可塑性樹脂組成物の場合、上記測定条件下で得られた音圧の周波数スペクトルの2つの顕著なピークが低周波側にシフトし、これが打音の耳障りな成分を目立たなくする一因となっていると考えられる。したがって、本発明において、前記音圧の最大値を与える周波数は20~9,000Hzまたは14,000~19,000Hzの範囲に存在することが好ましい。
本発明において打音の測定に使用した試験片を示す斜視図である。
 以下、本発明を詳しく説明する。
 本発明において、「(共)重合」とは、単独重合及び/又は共重合を意味し、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
 また、JIS K 7121-1987に準じて測定した融点(本明細書において、「Tm」と表記することもある)は、DSC(示差走査熱量計)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度を読みとった値である。
1.本発明の熱可塑性樹脂組成物(X)
 本発明の熱可塑性樹脂組成物(本明細書では「成分(X)」ともいう)は、ゴム質部分(a1)として、上記ブロック(I)とブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)を備えているゴム強化樹脂(A)を含んでいればよく、ゴム強化樹脂(A)のみから構成されてもよく、または、ゴム強化樹脂(A)と他の熱可塑性樹脂(B)との混合物から構成されてもよい。
 本発明の熱可塑性樹脂組成物(X)は、例えば、熱可塑性樹脂(B)に上記ゴム強化芳香族ビニル系樹脂(A1)を打音低減材として配合することによって得られる。この場合、熱可塑性樹脂組成物(X)のゴム質部分(a1)を構成する前記ゴム質部分(a1-1)は、上記ゴム強化芳香族ビニル系樹脂(A1)に由来するものであるため、打音の低減等の本発明の効果を達成することができる。
 本発明の熱可塑性樹脂組成物(X)において、ゴム強化樹脂(A)は、上記ゴム強化芳香族ビニル系樹脂(A1)以外に、他のゴム強化樹脂を含んでもよい。他のゴム強化樹脂としては、例えば、ジエン系ゴム強化芳香族ビニル系樹脂、非ジエン系ゴム強化芳香族ビニル系樹脂が挙げられる。
 本発明の熱可塑性樹脂組成物(X)に配合できる他の熱可塑性樹脂(B)の例としては、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、塩化ビニル樹脂、シリコーン樹脂、ポリ乳酸樹脂などが挙げられる。
 前記ゴム強化樹脂(A)としては、とりわけ、ジグラー(ZIEGLER)社製スティックスリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の測定条件において3以下を示すものが好ましい。
測定条件:
縦60mm、横100mm、厚さ4mmの試験片、及び、縦50mm、横25mm、厚さ4mmの試験片を用意し、温度23℃、湿度50%RH、荷重40N、速度10mm/秒、振幅20mmで3回、前者の試験片の面と後者の試験片の面とを擦り合わせて測定。
 異音リスク値は、ドイツ自動車工業会(VDA)規格準拠の仕様にて、同一の材質で接触部材を作製した時のスティックスリップ異音発生リスクを10段階の指数で示したものであり、上記異音レベルが3以下なら合格とされている。
 本発明の熱可塑性樹脂組成物(X)に含まれる前記ゴム強化樹脂(A)だけでなく、本発明の熱可塑性樹脂組成物(X)自体が、上記異音リスク値3以下を示すものである場合、打音の発生だけでなく、きしみ音の発生も抑制できるので、音響的に高品質の成形品を提供することができる。
 本発明の熱可塑性樹脂組成物(X)は、耐衝撃性等の機械的特性、及び、打音やきしみ音等の音響特性の観点から、熱可塑性樹脂組成物(X)全体を100質量%とした場合に、ゴム含量が5~60質量%であることが好ましい。また、熱可塑性樹脂組成物(X)が結晶性を有すると、又は、結晶性を有する成分を含有すると、きしみ音の発生を抑制する効果がさらに優れて好ましい。具体的には、熱可塑性樹脂組成物(X)は、JIS K 7121-1987に準じて測定した融点が0~120℃の範囲にあることが好ましく、10~90℃の範囲がより好ましく、20~80℃の範囲がさらにより好ましい。尚、上記のように、融点(Tm)は、JIS K 7121-1987に準じて得られるが、0~120℃の範囲における吸熱パターンのピークの数は、一つに限定されず、二つ以上でもよい。また、0~120℃の範囲に見られるTm(融点)は、ゴム強化樹脂(A)、特にゴム質部分に由来するものであってよく、または、ゴム強化樹脂(A)に関連して下記する添加剤、例えば、数平均分子量が10,000以下といった低分子量のポリオレフィンワックス等の摺動性付与剤に由来するものであってもよい。なお、該摺動性付与剤は、ゴム強化樹脂(A)に添加されたものであっても、熱可塑性樹脂組成物(X)に直接添加されたものであってもよい。
 本発明の熱可塑性樹脂組成物(X)は、高い機械的強度を保持していることが好ましい。したがって、熱可塑性樹脂組成物(X)は、荷重たわみ温度(1.8MPa)が70℃以上であることが好ましく、ロックウェル硬さが98以上であることが好ましく、引張強度が35MPa以上であることが好ましく、曲げ強度が45MPa以上であることが好ましい。
1-1.ゴム強化樹脂(A)
 ゴム強化樹脂(A)は、打音低減材として機能する上記ゴム強化芳香族ビニル系樹脂(A1)のみから構成されてもよいが、通常、上記ゴム強化芳香族ビニル系樹脂(A1)と、ジエン系ゴム強化芳香族ビニル系樹脂、非ジエン系ゴム強化芳香族ビニル系樹脂等の他のゴム強化樹脂との混合物から構成される。
 ゴム強化樹脂(A)は、上記熱可塑性樹脂組成物(X)が有するきしみ音等の異音の発生を抑制する機能をさらに優れたものとするため、結晶性を有することが好ましい。具体的には、JIS K 7121-1987に準じて測定した上記熱可塑性樹脂組成物(X)の融点が0~120℃の範囲にあることが好ましく、10~90℃の範囲がより好ましく、20~80℃の範囲がさらにより好ましい。
 ゴム強化樹脂(A)は、ゴム質重合体に由来するゴム質部分(a1)とビニル系単量体に由来する構成単位を含む樹脂部分(a2)とを有する。ゴム質部分(a1)は樹脂部分(a2)がグラフト重合などにより結合したグラフト共重合体を形成していることが好ましい。換言すれば、ゴム強化樹脂(A)において、樹脂部分(a2)の少なくとも一部がゴム質部分(a1)にグラフト重合などにより結合していることが好ましい。したがって、ゴム強化樹脂は、上記グラフト共重合体と、ゴム質部分(a1)にグラフト重合していない樹脂部分(a2)を構成する(共)重合体とから少なくとも構成されることが好ましく、さらに、樹脂部分(a2)がグラフトしていないゴム質部分(a1)、又は、添加剤等のその他の成分を含んでもよい。
1-2.ゴム強化樹脂(A)のゴム質部分(a1)
 上記ゴム質部分(a1)は、25℃でゴム質(ゴム弾性を有する)であれば、単独重合体であってもよいし、共重合体であってもよい。また、上記ゴム質部分(a1)は、上記ブロック(I)と上記ブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)から少なくとも構成されている必要があるが、これに加えて、上記ブロック共重合体またはその水素添加物以外のゴム質重合体に由来する他のゴム質部分を備えていてもよい。他のゴム質部分としては、例えば、非ジエン系重合体(以下、「非ジエン系ゴム」という)に由来するゴム質部分(a1-2)、ジエン系重合体(以下、「ジエン系ゴム」という)に由来するゴム質部分(a1-3)が挙げられる。また、これらの重合体は、架橋重合体であってもよいし、非架橋重合体であってもよい。このうち、本発明においては、耐衝撃性、剛性等の機械的強度向上の点から、上記ゴム質部分(a1)の少なくとも一部がジエン系ゴムに由来するゴム質部分(a1-3)から構成されることが好ましい。また、打音やきしみ音等の異音の抑制効果の点から、上記ゴム質部分(a1)の少なくとも一部が非ジエン系ゴムに由来するゴム質部分(a1-2)から構成されることが好ましく、上記ゴム質部分(a1)が、上記ブロック(I)と上記ブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と非ジエン系ゴムに由来するゴム質部分(a1-2)とから構成されることが特に好ましい。
 ゴム質部分(a1-1)を構成するゴム質重合体としては、芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレンまたはイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体またはその水素添加物が使用される。
 上記ブロック(I)を構成する芳香族ビニル系化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、スチレン及びα-メチルスチレンが好ましい。
 上記ブロック(II)のtanδの主分散のピークは、0℃以上であることが必要であるが、好ましくは5℃以上であり、より好ましくは10℃以上である。tanδの主分散のピークは、粘弾性測定装置〔東洋ボールドウイン(株)製、DDV III EP〕を用い、周波数11Hz、測定温度-110℃~+100℃、昇温速度2℃/minで測定して求めることができる。上記ブロック(II)の3,4結合及び1,2結合含有量は、好ましくは40%以上であり、より好ましく50%以上であり、さらにより好ましくは60~98%である。
 上記ブロック(I)の数平均分子量は好ましくは2500~40000であり、より好ましくは3500~35000であり、さらにより好ましくは4000~30000である。上記ブロック(II)の数平均分子量は好ましくは10000~200000であり、より好ましくは20000~180000であり、さらにより好ましくは25000~150000である。前記ブロック共重合体の全体の数平均分子量は好ましくは30000~300000であり、より好ましくは40000~270000であり、さらにより好ましくは50000~250000である。
 ゴム質部分(a1-2)を構成する非ジエン系ゴムとしては、エチレン・α-オレフィン系ゴム;ウレタン系ゴム;アクリル系ゴム;シリコーンゴム;シリコーン・アクリル系IPNゴム;共役ジエン系化合物に由来する構造単位を含む(共)重合体を水素添加してなる水素添加重合体(但し、水素添加率は50%以上で、上記ブロック共重体は除く)等が挙げられる。この水素添加重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 本発明においては、打音やきしみ音等の異音の抑制効果の点から、上記非ジエン系ゴムとして、エチレン・α-オレフィン系ゴムを使用することが好ましい。エチレン・α-オレフィン系ゴムは、エチレンに由来する構造単位と、α-オレフィンに由来する構造単位とを含む共重合体ゴムである。α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、1-エイコセン等が挙げられる。これらのα-オレフィンは、単独で又は二種以上を組み合わせて用いることができる。α-オレフィンの炭素原子数は、耐衝撃性の観点から、好ましくは3~20、より好ましくは3~12、更に好ましくは3~8である。エチレン・α-オレフィン系ゴムにおけるエチレン:α-オレフィンの質量比は、通常5~95:95~5、好ましくは50~95:50~5、より好ましくは60~95:40~5である。エチレン:α-オレフィンの質量比が上記範囲にあると、得られる成形品の耐衝撃性がさらに優れて、好ましい。エチレン・α-オレフィン系ゴムは、必要に応じて、非共役ジエンに由来する構造単位を含んでもよい。非共役ジエンとしては、アルケニルノルボルネン類、環状ジエン類、脂肪族ジエン類が挙げられ、好ましくは5-エチリデン-2-ノルボルネンおよびジシクロペンタジエンである。これらの非共役ジエンは、単独でまたは2種以上を混合して使用することができる。非共役ジエンに由来する構造単位の、非ジエン系ゴム全体に対する割合は、通常0~10質量%、好ましくは0~5質量%、より好ましくは0~3質量%である。
 本発明においては、エチレン・α-オレフィン系ゴムとして、融点(Tm)が0~120℃のものを使用することが好ましい。エチレン・α-オレフィン系ゴムのTm(融点)は、より好ましくは10~90℃、さらにより好ましくは20~80℃である。エチレン・α-オレフィン系ゴムが融点(Tm)を有するということは、該ゴムが結晶性を有することを意味する。したがって、かかる融点(Tm)を備えるエチレン・α-オレフィン系ゴムを使用することで、上記熱可塑性樹脂組成物(X)に0~120℃の範囲で融点を発現させ、打音やきしみ音等の異音抑制効果をさらに優れたものとすることができる。ゴム強化樹脂(A)がかかる結晶性を有すると、スティックスリップ現象の発生が抑制されるため、その成形品と他の物品とが動的に接触した場合、きしみ音等の異音の発生が抑制されると考えられる。尚、スティックスリップ現象は、特開2011-174029公報等に開示されている。
 エチレン・α-オレフィン系ゴムのムーニー粘度(ML1+4、100℃;JIS K 6300-1に準拠)は、通常5~80、好ましくは10~65、より好ましくは10~45である。ムーニー粘度が上記範囲にあると、成形性が優れる他、成形品の衝撃強度及び外観がさらに優れて、好ましい。
 エチレン・α-オレフィン系ゴムは、打音、軋み音等の異音発生の低減の観点から、非共役ジエン成分を含有しないエチレン・α-オレフィン共重合体が好ましく、これらのうち、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-オクテン共重合体がさらに好ましく、エチレン・プロピレン共重合体が特に好ましい。
 ゴム質部分(a1-3)を構成するジエン系ゴムとしては、ポリブタジエン、ポリイソプレン等の単独重合体;スチレン・ブタジエン共重合体、スチレン・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体等のブタジエン系共重合体;スチレン・イソプレン共重合体、スチレン・イソプレン・スチレン共重合体、アクリロニトリル・スチレン・イソプレン共重合体等のイソプレン系共重合体等が挙げられる。これらは、ランダム共重合体であっても、ブロック共重合体であってもよい。これらは、単独でまたは2種以上を組み合わせて用いることができる。該ジエン系ゴム質重合体は、架橋重合体であってよいし、未架橋重合体であってもよい。
 ゴム強化樹脂(A)のゴム質部分(a1)は、剛性等の機械的強度の観点から、上記非ジエン系ゴムに由来するゴム質部分(a1-2)に加えて、ジエン系ゴムに由来するゴム質部分(a1-3)から構成されることが好ましい。この場合、熱可塑性樹脂組成物(X)の成形性及び耐衝撃性、並びに、得られる成形品の外観がさらに十分なものとなる。
 本発明において、ゴム強化樹脂(A)中のゴム質部分(a1)の含有量即ちゴム含量は、ゴム強化樹脂(A)全体100質量%に対して、好ましくは3~80質量%、より好ましくは3~75質量%、さらに好ましくは4~70質量%、さらに好ましくは5~70質量%、特に好ましくは7~65質量%である。ゴム含量が前記範囲にあると、熱可塑性樹脂組成物(X)の耐衝撃性、打音やきしみ音等の異音の低減効果、寸法安定性、及び成形性等がさらに優れて好ましい。
1-3.ゴム強化樹脂(A)の樹脂部分(a2)
 ゴム強化樹脂(A)の樹脂部分(a2)は、ビニル系単量体に由来する構造単位からなり、芳香族ビニル化合物を必須成分として含み、芳香族ビニル化合物と該芳香族ビニル化合物と共重合可能な化合物とから構成されてもよい。上記芳香族ビニル化合物の具体例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、スチレン及びα-メチルスチレンが好ましい。
 芳香族ビニル化合物と共重合可能な化合物としては、好ましくは、シアン化ビニル化合物及び(メタ)アクリル酸エステル化合物から選ばれた少なくとも1種が使用でき、さらに必要に応じて、これらの化合物と共重合可能な他のビニル系単量体も使用することができる。かかる他のビニル系単量体としては、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、オキサゾリン基含有不飽和化合物、エポキシ基含有不飽和化合物等が挙げられ、これらは、1種単独でまたは2種以上を組み合わせて用いることができる。
 上記シアン化ビニル化合物の具体例としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、アクリロニトリルが好ましい。
 上記(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、メタクリル酸メチルが好ましい。
 上記マレイミド系化合物の具体例としては、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
 上記不飽和酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
 上記カルボキシル基含有不飽和化合物の具体例としては、(メタ)アクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
 上記ヒドロキシル基含有不飽和化合物の具体例としては、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
 ゴム強化樹脂(A)中の上記芳香族ビニル化合物に由来する構造単位の含有量の下限値は、芳香族ビニル化合物に由来する構造単位と、芳香族ビニル化合物と共重合可能な化合物に由来する構造単位の合計を100質量%とした場合に、好ましくは40質量%、より好ましくは50質量%、更に好ましくは60質量%である。尚、上限値は、通常、100質量%である。
 ゴム強化樹脂(A)の樹脂部分(a2)が構造単位として、芳香族ビニル化合物及びシアン化ビニル化合物に由来する構造単位を含む場合、芳香族ビニル化合物に由来する構造単位の含有量は、両者の合計を100質量%とした場合に、通常40~90質量%であり、好ましくは55~85質量%であり、シアン化ビニル化合物に由来する構造単位の含有量は、両者の合計を100質量%とした場合に、10~60質量%であり、好ましくは15~45質量%である。
1-4.ゴム強化樹脂(A)の製造方法
 ゴム強化樹脂(A)は、例えば、上記ゴム質部分を構成する各種ゴム質重合体(a)の存在下に、芳香族ビニル系化合物を含むビニル系単量体(b)をグラフト重合して製造することができる。この製造方法における重合方法は、上記グラフト共重合体が得られる限り特に限定されず、公知の方法を適用することができる。重合方法としては、乳化重合、懸濁重合、溶液重合、塊状重合、又は、これらを組み合わせた重合方法とすることができる。これらの重合方法では、公知の重合開始剤、連鎖移動剤(分子量調節剤)、乳化剤等を適宜使用することができる。
 上記製造方法では、通常、ビニル系単量体同士の(共)重合体がゴム質重合体にグラフト重合したグラフト共重合体と、ゴム質重合体にグラフト重合していないビニル系単量体同士の(共)重合体との混合生成物が得られる。場合により、上記混合生成物は、該(共)重合体がグラフト重合していないゴム質重合体を含むこともある。ゴム強化樹脂(A)は、ゴム質重合体に由来するゴム質部分(a1)とビニル系単量体に由来する構成単位を有する樹脂部分(a2)とからなり、ゴム質部分(a1)は樹脂部分(a2)がグラフト重合したグラフト共重合体を形成していることが好ましいので、上記のようにして製造されたグラフト共重合体と(共)重合体との混合生成物を、ゴム強化樹脂(A)としてそのまま使用することができる。
 ゴム強化樹脂(A)は、ゴム質重合体(a)の不存在下に、ビニル系単量体を重合することにより製造した(共)重合体(A’)を添加されたものであってもよい。この(共)重合体(A’)は、ゴム強化樹脂(A)に添加されると、ゴム質部分(a1)にグラフト重合していない樹脂部分(a2)を構成することになる。
 上記のとおり、本発明で用いるゴム強化樹脂(A)は、ゴム質部分(a1)が上記ブロック(I)と上記ブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と、非ジエン系ゴムに由来するゴム質部分(a1-2)及び/又はジエン系ゴムに由来するゴム質部分(a1-3)とから構成されてもよい。このような複数のゴムを含有するゴム強化樹脂(A)の製造方法としては、例えば、上記ブロック共重合体またはその水素添加物に加えて非ジエン系ゴム及び/又はジエン系ゴムを含有するゴム質重合体(a)の存在下にビニル系単量体(b)をグラフト重合して製造する方法が挙げられる。その他の製造方法としては、前記ブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A1)と、非ジエン系ゴム質重合体に由来するゴム質部分(a1-2)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A2)及び/又はジエン系ゴム質重合体に由来するゴム質部分(a1-3)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A3)とを溶融混練等の方法で混合する方法が挙げられる。
 上記ゴム強化芳香族ビニル系樹脂(A1)は、前記ブロック共重合体またはその水素添加物の存在下に、芳香族ビニル系化合物を含むビニル系単量体(b)をグラフト重合して製造することができる。上記ゴム強化芳香族ビニル系樹脂(A2)は、非ジエン系ゴムの存在下に、芳香族ビニル系化合物を含むビニル系単量体(b)をグラフト重合して製造することができる。上記ゴム強化芳香族ビニル系樹脂(A3)は、ジエン系ゴムの存在下に、芳香族ビニル系化合物を含むビニル系単量体(b)をグラフト重合して製造することができる。
 ゴム強化樹脂(A)のグラフト率は、ゴム強化芳香族ビニル系樹脂(A1)~(A3)の何れの場合も、通常10~150%、好ましくは15~120%、より好ましくは20~100%、特に好ましくは20~80%である。ゴム強化樹脂(A)のグラフト率が前記範囲にあると、本発明の成形品の耐衝撃性がさらに良好となる。
 グラフト率は、下記数式(1)により求めることができる。
グラフト率(質量%)=((S-T)/T)×100         …(1)
上記式中、Sはゴム強化樹脂(A)1グラムをアセトン20mlに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(g)であり、Tはゴム強化樹脂(A)1グラムに含まれるゴム質部分(a1)の質量(g)である。このゴム質部分(a1)の質量は、重合処方及び重合転化率から算出する方法の他、赤外分光分析、熱分解ガスクロマトグラフィー、CHN元素分析等により求めることができる。
 グラフト率は、例えばゴム強化樹脂(A)を製造する際のグラフト重合で用いる連鎖移動剤の種類及び使用量、重合開始剤の種類及び使用量、重合時の単量体成分の添加方法及び添加時間、重合温度等を適宜選択することにより調整することができる。
 本発明の熱可塑性樹脂組成物におけるゴム強化樹脂(A)のアセトンに可溶な成分(以下、「アセトン可溶分」ともいう)の極限粘度(メチルエチルケトン中、30℃)は、通常0.05~0.9dl/g、好ましくは0.07~0.8dl/g、より好ましくは0.1~0.7dl/gである。極限粘度が前記範囲にあると、樹脂組成物の耐衝撃性、成形性がより良好となる。
 極限粘度[η]の測定は下記方法で行うことができる。まず、ゴム強化樹脂(A)のアセトン可溶分をメチルエチルケトンに溶解させ、濃度の異なるものを5点作った。ウベローデ粘度管を用い、30℃で各濃度の還元粘度を測定した結果から、極限粘度[η]を求めた。単位は、dl/gである。
 極限粘度[η]は、例えば、ゴム強化樹脂(A)をグラフト重合する際に用いる連鎖移動剤の種類及び使用量、重合開始剤の種類及び使用量、重合時の単量体成分の添加方法及び添加時間、重合温度、重合時間等を適宜選択することにより調整することができる。また、ゴム強化樹脂(A)に、このアセトン可溶分の極限粘度[η]と異なる極限粘度[η]を備える(共)重合体(A’)を混合して調整することができる。
 ゴム強化樹脂(A)は、摺動性付与剤及びその他の添加剤を含んでもよい。摺動性付与剤は、熱可塑性樹脂組成物(X)に摺動性を付与して本発明の成形品からなる物品の組み立てを容易にするだけでなく、使用時に本発明の成形品からなる物品から軋み音等の異音が発生するのを抑制する効果を付与することができる。摺動性付与剤の代表例としては、特開2011-137066号公報に記載されるような低分子量酸化ポリエチレン(c1)、超高分子量ポリエチレン(c2)、ポリテトラフルオロエチレン(c3)や、低分子量(例えば、数平均分子量10,000以下)ポリオレフィンワックス、シリコーンオイルなどが挙げられる。
 ポリオレフィンワックスとしては、融点が0~120℃に存在するポリエチレンワックス等が好ましい。また、このような融点を有するポリオレフィンワックスや、融点が0~120℃に存在するその他の添加剤をゴム強化樹脂(A)に添加した場合、ゴム強化樹脂(A)のゴム質部分が融点(Tm)を備えていなくても、軋み音等の異音の発生抑制効果を得ることができる。これらの摺動性付与剤は、一種単独でまたは二種以上を組み合わせて用いることができる。これらの摺動性付与剤の配合量は、ゴム強化樹脂(A)100質量部に対して、通常0.1~10質量部である。
 また、他の添加剤としては、酸化防止剤、紫外線吸収剤、耐候剤、老化防止剤、充填剤、帯電防止剤、難燃性付与剤、防曇剤、滑剤、抗菌剤、防かび剤、粘着付与剤、可塑剤、着色剤、黒鉛、カーボンブラック、カーボンナノチューブ、顔料(たとえば、赤外線吸収、反射能力を有する、機能性を付与した顔料も含む。)等が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。これらの添加剤の配合量は、ゴム強化樹脂(A)100質量部に対して、通常0.1~30質量部である。
 本発明の熱可塑性樹脂組成物(X)において打音低減材として機能するゴム強化芳香族ビニル系樹脂(A1)の使用量は、熱可塑性樹脂組成物(X)全体を100質量%として、好ましくは0.1~40質量%であり、より好ましくは1~35質量%である。ゴム強化芳香族ビニル系樹脂(A1)の使用量が上記範囲にあると、成形品の打音の低減効果と機械的強度とのバランスが良好になる。
2.本発明の熱可塑性樹脂組成物(X)の製造方法
 本発明の熱可塑性樹脂組成物(X)は、各成分を所定の配合比で、タンブラーミキサーやヘンシェルミキサーなどで混合した後、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ロール、フィーダールーダー等の混練機を用いて適当な条件下で溶融混練して製造することができる。好ましい混練機は、二軸押出機である。更に、各々の成分を混練するに際しては、それらの成分を一括して混練しても、多段、分割配合して混練してもよい。尚、バンバリーミキサー、ニーダー等で混練したあと、押出機によりペレット化することもできる。溶融混練温度は、通常180~240℃、好ましくは190~230℃である。
3.本発明の成形品の製造方法
 本発明の成形品は、熱可塑性樹脂組成物(X)を射出成形、プレス成形、シート押出成形、真空成形、異形押出成形、発泡成形、材料押出堆積法、粉末焼結積層造形等の公知の成形法により成形することで製造することができる。
 本発明の熱可塑性樹脂組成物(X)は、上記のような優れた性質を有するので、メータバイザー、コンソールボックス、グローブボックス、カップホルダー等の車両内装品、フロントグリル、ホイールキャップ、バンパー、フェンダー、スポイラー、ガーニッシュ、ドアミラー、ラジエターグリル、ノブ等の車両外装品、直管型LEDランプ、電球型LEDランプ、電球型蛍光灯などの照明器具、携帯電話、タブレット端末、炊飯器、冷蔵庫、電子レンジ、ガスコンロ、掃除機、食器洗浄機、空気清浄機、エアコン、ヒーター、TV、レコーダーなどの家電器具、プリンター、FAX、コピー機、パソコン、プロジェクター等のOA機器、オーディオ器具、オルガン、電子ピアノ等の音響機器、化粧容器のキャップ、電池セル筐体等として使用することができ、特に車両内装品として好ましく使用することができる。
 また、本発明の成形品は、互いに接触する2つの部品を少なくとも備え、両部品が互いに接触して打音を発生する危険性がある物品の部品として用いることができる。本発明によれば、例えば、互いに接触する2つの部品を少なくとも備え、前記2つの部品の少なくとも一方の部品と接触する他方の部品の部分の少なくとも一部を上記熱可塑性樹脂組成物(X)で形成した物品を提供することができる。換言すれば、本発明によれば、互いに接触する第一の部品と第二の部品とを少なくとも備え、前記第一の部品は、前記第二の部品と接触する部分(特に、前記第一の部品の端面)の少なくとも一部が、上記熱可塑性樹脂組成物(X)で形成されている物品を提供することができる。この場合、前記第一の部品は、その全体又は前記第二の部品と接触する部分(特に、前記第一の部品の端面)の一部若しくは全部が、前記熱可塑性樹脂組成物(X)で形成されていることが好ましい。上記物品は、前記第一及び第二の部品が上記のように互いに接触するものであればよいが、特に、両部品がスナップフィット、螺合等により凹凸部を介して接触する物品、または、両部品が隙間をおいて隣接しているが振動等により間欠的に接触する物品に好適に使用することができる。なお、前記第一の部品が接触する第二の部品は、前記熱可塑性樹脂組成物(X)で成形された部品であってもよく、また、前記熱可塑性樹脂組成物(X)以外の樹脂で成形された部品や金属のような他の材料でできた部品であってもよい。前記熱可塑性樹脂組成物(X)以外の樹脂としては、ポリプロピレン系樹脂、ABS樹脂等のゴム強化芳香族ビニル系樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート樹脂、ポリカーボネート/ABSアロイ、ナイロン樹脂、ナイロン/ABSアロイ, PET樹脂,PET/ABSアロイ,PBT/ABSアロイ,熱可塑性エラストマー,熱硬化性エラストマー等が挙げられる。
 以下、実施例により、本発明をさらに具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。実施例中、部および%は特に断らない限り質量基準である。
1.原料〔P〕
 打音低減材として使用するゴム強化芳香族ビニル系樹脂(A1)として、下記の合成例1-1で得られた原料P1を用いた。
1-1.合成例1-1(原料P1(打音低減材)の合成)
 エラストマーとして、スチレン-イソプレン-スチレン(SIS)ブロック共重合体「ハイブラー5127」(商品名、クラレ社製、スチレン含量20%、ガラス転移温度(Tg)8℃、tanδの主分散のピーク温度25℃、3,4結合及び1,2結合含有量95%)を用意した。
 リボン型攪拌機翼を備えた内容積10リットルのステンレス製オートクレーブに予め均一溶液にした上記エラストマー30部、スチレン51部、アクリロニトリル19部、トルエン120部およびtert-ドデシルメルカプタン0.1部を仕込み、攪拌しながら昇温し50℃にて、ベンゾイルパーオキサイド0.5部、ジクミルパーオキサイド0.1部を添加し、更に昇温し、80℃に達した後は80℃に一定に制御しながら攪拌回転数を200rpmにて重合反応を行わせた。反応終了後2,2-メチレン-ビス-4-メチル-6-t-ブチルフェノール0.2部を添加したのち、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し細かく粉砕した後、40mmベント付き押出機(220℃、700mmHg真空)にて実質的に揮発分を留去するとともにゴム強化芳香族ビニル系樹脂(A1)をペレット化した。本ゴム強化芳香族ビニル系樹脂(A1)のグラフト率は55%、アセトン可溶分の極限粘度[η]は0.45dl/gであった。
2.原料〔Q〕
 ゴム強化芳香族ビニル系樹脂(A2)及び(A3)として、下記の合成例2-1及び2-2の原料Q1及びQ2を用いた。
2-1.合成例2-1(原料Q1(エチレン・プロピレン(EP)ゴム強化芳香族ビニル系樹脂)の合成)
 リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブに、エチレン・α-オレフィン系ゴム質重合体として、エチレン・プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4 ,100℃)20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)22部、スチレン55部、アクリロニトリル23部、t-ドデシルメルカプタン0.5部、トルエン110部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間攪拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温を更に昇温して、100℃に達した後は、この温度を保持しながら、攪拌回転数100rpmとして重合反応を行った。重合反応開始後4時間目から、内温を120℃に昇温し、この温度を保持しながら更に2時間反応を行って重合反応を終了した。その後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部、ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)0.02部を添加した後、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し、さらに40mmφベント付き押出機(シリンダー温度220℃、真空度760mmHg)を用いて揮発分を実質的に脱気させ、ペレット化した。得られたエチレン・α-オレフィン系ゴム強化芳香族ビニル系樹脂(A2)のグラフト率は47%、アセトン可溶分の極限粘度[η]は0.47dl/gであった。
2-2.合成例2-2(原料Q2(ジエン系ゴム強化芳香族ビニル系樹脂)の合成)
 攪拌機付き重合容器に、水280部およびジエン系ゴム質重合体として、重量平均粒子径0.26μm、ゲル分率90%のポリブタジエンラテックス60部(固形分換算)、ナトリウムホルムアルデヒドスルホキシレート0.3部、硫酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部を仕込み、脱酸素後、窒素気流中で撹拌しながら60℃に加熱した後、アクリロニトリル10部、スチレン30部、t-ドデシルメルカプタン0.2部、クメンハイドロパーオキサイド0.3部からなる単量体混合物を60℃で5時間かけて連続的に滴下した。滴下終了後、重合温度を65℃にし、1時間撹拌を続けた後、重合を終了させ、グラフト共重合体のラテックスを得た。重合転化率は98%であった。その後、得られたラテックスに、2,2′-メチレン-ビス(4-エチレン-6-t-ブチルフェノール)0.2部を添加し、塩化カルシウムを添加して凝固し、洗浄、濾過および乾燥工程を経てパウダー状の樹脂組成物を得た。得られたゴム強化芳香族ビニル系樹脂(A3)のグラフト率は40%、アセトン可溶分の極限粘度[η]は0.38dl/gであった。
3.原料〔R〕
 ゴム質重合体に由来する部分を含まない熱可塑性樹脂として、下記の原料R1及びR2を用いた。
3-1.原料R1(AS樹脂)
 アクリロニトリル単位及びスチレン単位の割合が、それぞれ、27%及び73%であり、極限粘度[η](メチルエチルケトン中、30℃)が、0.47dl/gであるアクリロニトリル・スチレン共重合体。ガラス転移温度(Tg)は、103℃であった。
3-2.合成例3(原料R2(耐熱性AS樹脂)の合成)
 撹拌機付き重合容器に、水250部およびパルミチン酸ナトリウム1.0部を投入し、脱酸素後、窒素気流中で撹拌しながら70℃まで加熱した。さらにナトリウムホルムアルデヒドスルホキシレート0.4部、硫酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部を仕込み後、α-メチルスチレン70部、アクリロニトリル25部、スチレン5部、t-ドデシルメルカプタン0.5部、クメンハイドロパーオキサイド0.2部から成る単量体混合物を、重合温度70℃で連続的に7時間かけて滴下した。滴下終了後、重合温度を75℃にし、1時間撹拌を続けて重合を終了させ、共重合体のラテックスを得た。重合転化率は99%であった。その後、得られたラテックスを塩化カルシウムを添加して凝固し、洗浄、濾過および乾燥工程を経てパウダー状の共重合体を得た。得られた共重合体のアセトン可溶分の極限粘度[η]は0.40dl/gであった。
4.原料〔S〕
4-1.原料S1(PC樹脂)
 三菱エンジニアリングプラスチック社製ポリカーボネート樹脂「NOVAREX 7022J(商品名)」を使用した。
実施例1~6及び比較例1~4
1.熱可塑性樹脂組成物の作製
 表1に示す原料〔P〕、〔Q〕、〔R〕及び〔S〕を同表に示す配合割合で混合した。その後、二軸押出機(型式名「TEX44、日本製鋼所」)を用いて、250℃で溶融混練してペレット化した。得られた樹脂組成物を用い、下記の測定及び評価に供した。結果を下記表1に示す。なお、実施例1~3及び比較例1~2では、配合助剤として、アデカスタブAO-20(ADEKA社製、1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)0.1部及びアデカスタブPEP-24G(ADEKA社製、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトール-ジホスファイト)0.2部を配合し、実施例4~6及び比較例3~4では、配合助剤として、アデカスタブ2112(ADEKA社製、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト)0.2部を配合した。
2.融点(Tm)
 JIS K7121-1987に従い、DSC(示差走査熱量計)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度から求めた。
3.曲げモジュラス(剛性)
 ISO178に従って測定
4.荷重たわみ温度
 ISO75に従って、1.8MPa荷重条件で測定
5.ロックウェル硬さ
 ISO2039に従って測定
6.引張強度 
 ISO527に従って測定
7.曲げ強度
 ISO178に従って測定
8.打音の音圧測定
 各熱可塑性樹脂組成物を用い、図1に示すような縦120mm、横60mm、厚さ3mmの矩形本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品である試験片を、東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形した。そして、この試験片の前記突起に2本の糸をテープで貼り付けて吊り下げた状態で、前記試験片の一方の面の中央を、打撃力を測定できるPCBピエゾトロニクス社製のステンレス製のハンマー(商品名:086C03)を用いて20±5Nの力で叩いた時の響きを、前記面に対して垂直方向に12cm離して設置したPCBピエゾトロニクス社製の音圧マイクロホン(商品名:378B02)で集音して、オロス社製のフーリエ変換アナライザー(商品名:マルチJOB FFTアナライザ OR34J-4)にて音圧の周波数スペクトルに変換した。得られた周波数スペクトル中の音圧(Pa/N)の最大値とその周波数(Hz)を測定値として用いた。なお、測定は室温23℃の部屋で行った。なお、測定値として得られた音圧(Pa/N)は、測定された打撃力1Nあたりの音圧を意味する。
9.打音の減衰
 前記打音の音圧測定と同様の操作を行い、オロス社製のフーリエ変換アナライザー(商品名:マルチJOB FFTアナライザ OR34J-4)にて音圧の時間変化を測定した。音の発生から、音圧が最大音圧の1/4の音圧に静まるまでに要する時間を打音の減衰時間として用いた。打音の減衰は、0.01秒よりも短いことが好ましく、0.008秒よりも短いことがより好ましい。
10.軋み音評価(異音リスク値)
 各熱可塑性樹脂組成物を東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形し、縦150mm、横100mm、厚さ4mmの射出成形プレートを得た。このプレートから、縦60mm、横100mm、厚さ4mm及び縦50mm、横25mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、大小2枚のプレートを試験片として用いた。
 2枚の試験片を80℃±5℃に調整したオーブンで300時間エージングし、25℃で24時間冷却後、大きな試験片と小さな試験片をジグラー(ZIEGLER)社製スティックスリップ試験機SSP-02に固定し、温度23℃、湿度50%RH、荷重40N、速度10mm/秒、振幅20mmで3回擦り合わせたときの異音リスク値が最も大きい条件の数値を抽出して測定値とした。異音リスク値が大きいほど軋み音の発生リスクは高くなり、異音リスク値が3以下であれば良好である。
Figure JPOXMLDOC01-appb-T000001
 表1から以下のことがわかる。
 本発明の熱可塑性樹脂組成物〔X〕を用いた実施例1~6は、剛性が高く、かつ、20~20,000Hzの周波数域の音圧の最大値が3.0Pa/N以下であり、また、該音圧の最大値を与える周波数も20~9,000Hzまたは14,000~19,000Hzの範囲であり、さらには、異音リスク値が低く、剛性だけでなく打音及びきしみ音等の音響特性にも優れることが判った。
 これに対し、打音低減材を含まない比較例1~4では、剛性が高く、かつ、異音リスク値が低かったが、20~20,000Hzの周波数域の音圧の最大値が3.0Pa/Nを超えており、また、該音圧の最大値を与える周波数も9000Hz超または14,000~19,000Hzの範囲を外れ、打音の減衰も0.008秒以上であり、打音の発生が顕著であった。
 本発明の熱可塑性樹脂組成物は、打音の発生が抑制され、好ましくは高い剛性を備えた成形品を提供する成形材料として好適に応用でき、例えば、自動車内装部品等の車両部品の成形材料として好適に用いることができる。

Claims (10)

  1.  ゴム質部分(a1)と樹脂部分(a2)とを有するゴム強化樹脂(A)から少なくとも構成される熱可塑性樹脂組成物であって、
     前記ゴム質部分(a1)は、芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレンまたはイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)を含み、
     前記樹脂部分(a2)は、芳香族ビニル化合物に由来する構造単位を含み、
     下記の条件で測定した場合に、20~20,000Hzの周波数域の音圧の最大値が3.0Pa/N以下である熱可塑性樹脂組成物。
    測定条件:
    縦120mm、横60mm、厚さ3mmの矩形本体の上端に上底20mm、下底40mm、高さ8mm、厚さ1.5mmの台形状の突起を備えた形状の一体成形品である試験片の前記突起に2本の糸をテープで貼り付けて吊り下げた状態で、前記試験片の一方の面の中央をステンレス製のハンマーで20±5Nの力で叩いた時の響きを、前記面に対して垂直方向に12cm離して設置した音圧マイクロホンで集音して求めた音圧の周波数スペクトルに基づいて測定。
  2.  前記音圧の最大値を与える周波数が20~9,000Hzまたは14,000~19,000Hzの範囲に存在する請求項1に記載の熱可塑性組成物。
  3.  ジグラー(ZIEGLER)社製スティックスリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の測定条件において3以下である請求項1又は2に記載の熱可塑性樹脂組成物。
    測定条件:
    縦60mm、横100mm、厚さ4mmの試験片、及び、縦50mm、横25mm、厚さ4mmの試験片を用意し、温度23℃、湿度50%RH、荷重40N、速度10mm/秒、振幅20mmで3回、前者の試験片の面と後者の試験片の面とを擦り合わせて測定。
  4.  前記ゴム質部分(a1)が、さらに、エチレン・α-オレフィン系ゴム質重合体に由来するゴム質部分(a1-2)を含む、請求項1乃至3の何れか1項に記載の熱可塑性樹脂組成物。
  5.  前記ゴム強化樹脂(A)は、前記ブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A1)と、エチレン・α-オレフィン系ゴム質重合体に由来するゴム質部分(a1-2)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A2)とからなる、請求項4に記載の熱可塑性樹脂組成物。
  6.  前記ゴム質部分(a1)が、さらに、ジエン系ゴム質重合体に由来するゴム質部分(a1-3)を含む、請求項4に記載の熱可塑性樹脂組成物。
  7.  前記ゴム強化樹脂(A)は、前記ブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A1)と、エチレン・α-オレフィン系ゴム質重合体に由来するゴム質部分(a1-2)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A2)と、ジエン系ゴム質重合体に由来するゴム質部分(a1-3)と芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A3)とからなる、請求項6に記載の熱可塑性樹脂組成物。
  8.  ゴム含量が5~60質量%である、請求項1乃至7の何れか1項に記載の熱可塑性樹脂組成物。
  9.  請求項1~8の何れか1項に記載の熱可塑性樹脂組成物からなる成形品。
  10.  芳香族ビニル系化合物に由来する構造単位を備えたブロック(I)と、イソプレンまたはイソプレン及びブタジエンに由来する構造単位を備え、0℃以上にtanδの主分散のピークを有するブロック(II)とを含むブロック共重合体またはその水素添加物に由来するゴム質部分(a1-1)と、芳香族ビニル系化合物に由来する構造単位を含む樹脂部分(a2)とを有するゴム強化芳香族ビニル系樹脂(A1)からなる、熱可塑性樹脂組成物用の打音低減材。
PCT/JP2018/031381 2017-08-29 2018-08-24 打音の低減された熱可塑性樹脂組成物及び成形品 WO2019044709A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18851541.5A EP3699212B1 (en) 2017-08-29 2018-08-24 Thermoplastic resin composition and moulded article with reduced rattling noise
JP2019539457A JP7195260B2 (ja) 2017-08-29 2018-08-24 打音の低減された熱可塑性樹脂組成物及び成形品
CN201880056146.4A CN111032715B (zh) 2017-08-29 2018-08-24 减低碰撞噪声的热塑性树脂组合物及成型品
US16/641,980 US20200216657A1 (en) 2017-08-29 2018-08-24 Thermoplastic resin composition and moulded article with reduced rattling noise

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164766 2017-08-29
JP2017164766 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044709A1 true WO2019044709A1 (ja) 2019-03-07

Family

ID=65527373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031381 WO2019044709A1 (ja) 2017-08-29 2018-08-24 打音の低減された熱可塑性樹脂組成物及び成形品

Country Status (5)

Country Link
US (1) US20200216657A1 (ja)
EP (1) EP3699212B1 (ja)
JP (1) JP7195260B2 (ja)
CN (1) CN111032715B (ja)
WO (1) WO2019044709A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055205A (ja) * 2018-10-02 2020-04-09 東ソー株式会社 金属部材−ポリアリーレンスルフィド樹脂部材複合体の製造方法
WO2020175612A1 (ja) * 2019-02-27 2020-09-03 テクノUmg株式会社 打音の低減された熱可塑性樹脂組成物及び成形品
JP2021021026A (ja) * 2019-07-29 2021-02-18 テクノUmg株式会社 ゴム強化樹脂用の艶消剤、これを含有する熱可塑性樹脂組成物及び成形品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102701629B1 (ko) * 2020-10-06 2024-09-03 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345646A (ja) 1989-07-12 1991-02-27 Kuraray Co Ltd Abs樹脂組成物
JPH05331246A (ja) * 1992-06-03 1993-12-14 Japan Synthetic Rubber Co Ltd ゴム強化熱可塑性樹脂およびその組成物
JPH083249A (ja) 1994-06-23 1996-01-09 Kuraray Co Ltd 熱可塑性樹脂及びその組成物
JP2001158841A (ja) 1999-12-02 2001-06-12 Techno Polymer Co Ltd 制振性難燃樹脂組成物
JP2002037974A (ja) * 2000-07-27 2002-02-06 Kanegafuchi Chem Ind Co Ltd 耐チッピング性及び耐衝撃性に優れた車両用外装材
JP2011137066A (ja) 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2011174029A (ja) 2009-04-08 2011-09-08 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2013112812A (ja) 2011-12-01 2013-06-10 Techno Polymer Co Ltd 軋み音低減用熱可塑性樹脂組成物、接触用部品及び構造体
WO2015146743A1 (ja) * 2014-03-27 2015-10-01 三井化学株式会社 遮音材
WO2018030398A1 (ja) * 2016-08-09 2018-02-15 テクノポリマー株式会社 打音の低減された熱可塑性樹脂組成物及び成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2418246B1 (en) * 2009-04-08 2014-08-20 Techno Polymer Co., Ltd. Automobile interior part with reduced squeaking noises
JP6146890B2 (ja) * 2010-08-27 2017-06-14 テクノポリマー株式会社 軋み音を低減した熱可塑性樹脂組成物製接触用部品
WO2013031946A1 (ja) * 2011-09-02 2013-03-07 テクノポリマー株式会社 軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体
CN111995825A (zh) * 2013-04-08 2020-11-27 大科能宇菱通株式会社 接触用部件、以及包含该接触用部件的结构体
CN107223148A (zh) * 2015-02-11 2017-09-29 普立万公司 声音阻尼热塑性弹性体制品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345646A (ja) 1989-07-12 1991-02-27 Kuraray Co Ltd Abs樹脂組成物
JPH05331246A (ja) * 1992-06-03 1993-12-14 Japan Synthetic Rubber Co Ltd ゴム強化熱可塑性樹脂およびその組成物
JPH083249A (ja) 1994-06-23 1996-01-09 Kuraray Co Ltd 熱可塑性樹脂及びその組成物
JP2001158841A (ja) 1999-12-02 2001-06-12 Techno Polymer Co Ltd 制振性難燃樹脂組成物
JP2002037974A (ja) * 2000-07-27 2002-02-06 Kanegafuchi Chem Ind Co Ltd 耐チッピング性及び耐衝撃性に優れた車両用外装材
JP2011174029A (ja) 2009-04-08 2011-09-08 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2011137066A (ja) 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2013112812A (ja) 2011-12-01 2013-06-10 Techno Polymer Co Ltd 軋み音低減用熱可塑性樹脂組成物、接触用部品及び構造体
WO2015146743A1 (ja) * 2014-03-27 2015-10-01 三井化学株式会社 遮音材
WO2018030398A1 (ja) * 2016-08-09 2018-02-15 テクノポリマー株式会社 打音の低減された熱可塑性樹脂組成物及び成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699212A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055205A (ja) * 2018-10-02 2020-04-09 東ソー株式会社 金属部材−ポリアリーレンスルフィド樹脂部材複合体の製造方法
JP7143713B2 (ja) 2018-10-02 2022-09-29 東ソー株式会社 金属部材-ポリアリーレンスルフィド樹脂部材複合体の製造方法
WO2020175612A1 (ja) * 2019-02-27 2020-09-03 テクノUmg株式会社 打音の低減された熱可塑性樹脂組成物及び成形品
JP2020139028A (ja) * 2019-02-27 2020-09-03 テクノUmg株式会社 打音の低減された熱可塑性樹脂組成物及び成形品
JP7343985B2 (ja) 2019-02-27 2023-09-13 テクノUmg株式会社 打音の低減された熱可塑性樹脂組成物及び成形品
JP2021021026A (ja) * 2019-07-29 2021-02-18 テクノUmg株式会社 ゴム強化樹脂用の艶消剤、これを含有する熱可塑性樹脂組成物及び成形品
JP7360838B2 (ja) 2019-07-29 2023-10-13 テクノUmg株式会社 ゴム強化樹脂用の艶消剤、これを含有する熱可塑性樹脂組成物及び成形品

Also Published As

Publication number Publication date
CN111032715A (zh) 2020-04-17
EP3699212A1 (en) 2020-08-26
EP3699212A4 (en) 2021-10-06
US20200216657A1 (en) 2020-07-09
JPWO2019044709A1 (ja) 2020-10-01
JP7195260B2 (ja) 2022-12-23
CN111032715B (zh) 2022-10-04
EP3699212B1 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
US10189982B2 (en) Contacting component and structure containing said contacting component
JP7195260B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
US11603465B1 (en) Thermoplastic composition and molded article thereof
JP7085479B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形体
WO2020175612A9 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
JP7240898B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
JP7074227B1 (ja) 熱可塑性組成物及びその成形品
JP7122194B2 (ja) 打音の低減された熱可塑性樹脂組成物及び成形品
CN114127181B (zh) 热塑性树脂组合物及其成型品
JP2022150927A (ja) 打音低減材、熱可塑性組成物及びその成形品
JP6370682B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP7360838B2 (ja) ゴム強化樹脂用の艶消剤、これを含有する熱可塑性樹脂組成物及び成形品
JP7092273B1 (ja) 熱可塑性組成物及びその成形品
JP7468606B1 (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019539457

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851541

Country of ref document: EP

Effective date: 20200330