Nothing Special   »   [go: up one dir, main page]

WO2018229891A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2018229891A1
WO2018229891A1 PCT/JP2017/021941 JP2017021941W WO2018229891A1 WO 2018229891 A1 WO2018229891 A1 WO 2018229891A1 JP 2017021941 W JP2017021941 W JP 2017021941W WO 2018229891 A1 WO2018229891 A1 WO 2018229891A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
end effector
processor
control mode
living tissue
Prior art date
Application number
PCT/JP2017/021941
Other languages
English (en)
French (fr)
Inventor
みずき 塙
彰人 加納
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/021941 priority Critical patent/WO2018229891A1/ja
Publication of WO2018229891A1 publication Critical patent/WO2018229891A1/ja
Priority to US16/699,819 priority patent/US20200100832A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1482Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00654Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00958Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device for switching between different working modes of the main function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • A61B2018/167Passive electrodes capacitively coupled to the skin

Definitions

  • the present invention relates to a control device used together with an end effector capable of applying a high-frequency current to a living tissue and a treatment instrument including an ultrasonic transducer that transmits generated ultrasonic vibration to the end effector.
  • US2013 / 0123820A1 discloses a treatment instrument including an end effector and a treatment system including a counter electrode separate from the treatment instrument.
  • the treatment instrument is provided with an ultrasonic transducer.
  • the end effector and the counter electrode are supplied with the first electric energy (high frequency power) and at the same time the second electric energy is supplied to the ultrasonic transducer.
  • the end effector and the counter electrode are supplied with the first electric energy (high frequency power) and at the same time the second electric energy is supplied to the ultrasonic transducer.
  • high-frequency current is applied to the living tissue by supplying the first electric energy to the end effector and the counter electrode plate, and ultrasonic waves are generated by the ultrasonic transducer by supplying the second electric energy to the ultrasonic transducer. Vibration occurs.
  • the ultrasonic vibration transmitted from the ultrasonic transducer is applied to the living tissue simultaneously with the high-frequency current.
  • the living tissue is incised simultaneously with coagulation.
  • a site coagulated and incised in a living tissue using a high-frequency current and an ultrasonic current be appropriately incised and hemostatic.
  • An object of the present invention is to provide a control device that appropriately incises and stops a site to which a high-frequency current and ultrasonic vibration are applied in a treatment for coagulating and incising a living tissue by high-frequency current and ultrasonic vibration. There is to do.
  • an end effector capable of applying a high-frequency current to a living tissue by supplying the first electric energy and the second electric energy.
  • the control device includes an ultrasonic transducer that generates ultrasonic vibrations and transmits the generated ultrasonic vibrations to the end effector.
  • the crest factor is A second voltage that causes the end effector to output the first electric energy with a first voltage waveform of 1.5 or less, and in the second control mode, generates a discharge between the end effector and the living tissue.
  • the ultrasonic transducer is made to output the second electric energy so that the living tissue can be incised and / or denatured by frictional heat caused by vibration, and a predetermined condition is satisfied in the first control mode.
  • a processor for switching to the second control mode.
  • FIG. 1 is a schematic view showing a treatment system according to the first embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration for supplying electric energy to the treatment instrument according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a first voltage waveform of an output voltage to the end effector and the counter electrode plate according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a second voltage waveform of the output voltage to the end effector and the counter electrode plate according to the first embodiment.
  • FIG. 5 is a flowchart showing a process performed by the processor in the output control of the electric energy to the treatment tool according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of a change over time between the first control mode and the second control mode in the treatment using the treatment system according to the first embodiment.
  • FIG. 1 is a diagram showing a treatment system 1 of the present embodiment.
  • the treatment system 1 includes a treatment tool 2 and a power supply device 3.
  • the treatment instrument 2 includes a cylindrical shaft 4, a holdable housing 5, and an end effector 6.
  • the housing 5 is connected to one side of the shaft 4 in the direction along the central axis of the shaft 4.
  • the central axis of the housing 5 is coaxial or substantially coaxial with the central axis of the shaft 4.
  • the side where the housing 5 is located with respect to the shaft 4 in the direction along the central axis of the shaft 4 is a base end side, and the side opposite to the base end side is a front end side.
  • One end of the cable 7 is connected to the base end portion of the housing 5.
  • the other end of the cable 7 is detachably connected to the power supply device 3.
  • the rod member 8 extends from the inside of the housing 5 through the inside of the shaft 4 toward the distal end side.
  • the end effector 6 is formed from a part of the rod member 8.
  • the rod member 8 projects from the distal end of the shaft 4 to the distal end side, and the end effector 6 is formed by the projecting portion of the rod member 8 from the shaft 4.
  • the rod member 8 is made of a material having high vibration transmission properties such as a titanium alloy. Further, the end effector 6 has conductivity.
  • the end effector 6 is formed in any one of a hook shape, a spatula shape, a ball shape, and the like, for example.
  • the housing 5 is provided with an operation button 11 as an operation member.
  • an operation button 11 an operation for supplying electric energy to the treatment instrument 2 as described later can be input.
  • a foot switch or the like separate from the treatment tool 2 can input an operation for supplying electric energy to the treatment tool 2. It may be provided as an operation member.
  • the treatment system 1 is provided with a counter electrode plate 12 that is separate from the treatment instrument 2.
  • the counter electrode plate 12 is detachably connected to the power supply device 3 via the cable 13.
  • FIG. 2 is a diagram showing a configuration for supplying electric energy to the treatment instrument 2.
  • the power supply device 3 includes a processor (controller) 15 and a storage medium 16.
  • the processor 15 is formed of an integrated circuit or circuit configuration including a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or the like. Only one processor 15 may be provided in the power supply device 3, or a plurality of processors 15 may be provided in the power supply device 3. In the present embodiment, the processor 15 constitutes at least a part of a control device that controls the treatment system 1.
  • the processing in the processor 15 is performed according to a program stored in the processor 15 or the storage medium 16.
  • the storage medium 16 stores a processing program used by the processor 15, parameters, functions, tables, and the like used for calculation by the processor 15.
  • the processor 15 determines whether or not an operation input is performed with the operation button (operation member) 11, that is, whether or not the operation input with the operation button 11 is ON or OFF.
  • a switch (not shown) corresponding to the operation button 11 is provided inside the housing 5, and the switch is switched between ON and OFF corresponding to the operation with the operation button 11.
  • the processor 15 determines whether or not an operation input is performed with the operation button 11 based on whether the switch is ON or OFF.
  • the power supply device 3 includes an output source (high frequency power supply) 21.
  • the output source 21 includes a waveform generator, a conversion circuit, a relay circuit, a transformer, and the like, and forms a drive circuit (high frequency drive circuit).
  • the output source 21 can convert electric power from a battery power source or an outlet power source into high-frequency power (high-frequency electric energy) that is first electric energy, and can output the first electric energy.
  • the output source 21 is electrically connected to the end effector 6 via the electric path 22 and is electrically connected to the counter electrode plate 12 via the electric path 23.
  • the electrical path 22 is extended through the inside of the cable 7, for example, and the electrical path 23 is extended through the inside of the cable 13, for example.
  • the first electrical energy output from the output source 21 is supplied to the end effector 6 and the counter electrode plate 12 through the electrical paths 22 and 23.
  • the end effector 6 and the counter electrode plate 12 function as electrodes having different potentials with respect to each other.
  • a high-frequency current can flow between the end effector 6 and the counter electrode plate 12, and a high-frequency current can be applied to a living tissue or the like.
  • the processor 15 controls the output from the output source 21 and controls the supply of the first electrical energy to the end effector 6 and the counter electrode plate 12.
  • the power supply device 3 is provided with a current detection circuit 25, a voltage detection circuit 26, and an A / D converter 27.
  • the current detection circuit 25 detects the output current I from the output source 21 to the end effector 6 and the counter electrode plate 12, and the voltage detection circuit 26 detects the output voltage V to the end effector 6 and the counter electrode plate 12.
  • the A / D converter 27 converts the analog signal indicating the current value of the output current I detected by the current detection circuit 25 and the analog signal indicating the voltage value of the output voltage V detected by the voltage detection circuit 26 into a digital signal. And the converted digital signal is transmitted to the processor 15. Thereby, the processor 15 acquires information on the output current I and the output voltage V from the output source 21.
  • the processor 15 sets the impedance Z between the end effector 6 and the counter electrode plate 12 as the impedance of the circuit through which the high-frequency current (output current I) flows based on the output current I and the output voltage V from the output source 21. ,calculate.
  • the impedance Z between the end effector 6 and the counter electrode plate 12 changes corresponding to the impedance of the living tissue, and the impedance of the living tissue.
  • the impedance Z is a parameter related to the first electrical energy, and is a parameter that changes in accordance with the state of the living tissue.
  • the processor 15 calculates the output power P from the output source 21 based on the output current I and the output voltage V from the output source 21.
  • the processor 15 controls the output of the first electric energy from the output source 21 to the end effector 6 and the counter electrode plate 12 based on the output current I, the output voltage V, the impedance Z, the output power P, and the like.
  • the treatment instrument 2 is provided with an ultrasonic transducer 18.
  • the ultrasonic transducer 18 is connected to the rod member 8 inside the housing 5.
  • the power supply device 3 includes an output source (ultrasonic power supply) 31.
  • the output source 31 includes a waveform generator, a conversion circuit, a relay circuit, a transformer, and the like, and forms a drive circuit (ultrasonic drive circuit).
  • the output source 31 can convert the electric power from the battery power source or the outlet power source into the second electric energy and output the second electric energy.
  • the output source 31 is connected to the ultrasonic transducer 18 via electrical paths 32 and 33. Each of the electrical paths 32 and 33 is extended through the inside of the cable 7, for example.
  • the second electrical energy output from the output source 31 is supplied to the ultrasonic transducer 18 via the electrical paths 32 and 33. At this time, AC power having a predetermined frequency range as the second electrical energy is supplied to the ultrasonic transducer 18.
  • the processor 15 controls the output from the output source 31 and controls the supply of the second electrical energy to the ultrasonic transducer 18.
  • the ultrasonic transducer 18 converts the electrical energy into vibration energy using a piezoelectric element (not shown) or the like, and generates ultrasonic vibration. .
  • the ultrasonic vibration generated by the ultrasonic transducer 18 is transmitted to the end effector 6 through the rod member 8.
  • the end effector 6 vibrates, and the end effector 6 can apply the transmitted ultrasonic vibration to a living tissue or the like.
  • the rod member 8 including the end effector 6 vibrates at a certain frequency within a predetermined frequency range, and in this embodiment, the vibration direction of the rod member 8 is parallel or substantially parallel to the central axis of the housing 5. .
  • the power supply device 3 is provided with a current detection circuit 35, a voltage detection circuit 36, and an A / D converter 37.
  • the current detection circuit 35 detects an output current I ′ from the output source 31 to the ultrasonic transducer 18, and the voltage detection circuit 36 detects an output voltage V ′ to the ultrasonic transducer 18.
  • the A / D converter 37 receives an analog signal indicating the current value of the output current I ′ detected by the current detection circuit 35 and an analog signal indicating the voltage value of the output voltage V ′ detected by the voltage detection circuit 36.
  • the digital signal is converted, and the converted digital signal is transmitted to the processor 15. Thereby, the processor 15 acquires information on the output current I ′ and the output voltage V ′ from the output source 31.
  • the processor 15 calculates the impedance Z ′ of the ultrasonic transducer 18 as the impedance of the circuit through which the output current I ′ flows based on the output current I ′ and the output voltage V ′ from the output source 31.
  • the impedance Z ′ of the ultrasonic transducer 18 is a parameter related to the second electrical energy, and is a parameter that changes in accordance with the state of the living tissue.
  • the processor 15 calculates the output power P ′ from the output source 31 based on the output current I ′ and the output voltage V ′ from the output source 31.
  • the processor 15 controls the output of the second electrical energy from the output source 41 to the ultrasonic transducer 18 based on the output current I ′, the output voltage V ′, the impedance Z ′, the output power P ′, and the like.
  • the processor 15 performs PLL control (Phase Locked Loop control) in a state where there is no phase difference between the output current I ′ and the output voltage V ′.
  • the power supply device 3 is provided with a touch panel 17.
  • the touch panel 17 functions as, for example, an input unit that can input settings related to outputs from the output sources 21 and 31 such as output levels of the output sources 21 and 31.
  • the touch panel 17 also relates to outputs from the output sources 21, 31 such as an output current I and an output voltage V from the output source 21, and an output current I 'and an output voltage V' from the output source 31, for example. It also functions as a display unit for displaying information.
  • the operation and effect of the control device formed from the processor 15 of the present embodiment and the treatment system 1 will be described.
  • the surgeon places the counter electrode plate 12 on a subject such as a human body and holds the housing 5.
  • the end effector 6 is inserted into a body cavity such as the abdominal cavity, and the end effector 6 is disposed in the vicinity of the biological tissue to be treated.
  • operation input is performed with the operation button 9 in a state where the end effector 6 is positioned in the vicinity of the living tissue.
  • the processor 15 outputs electric energy from the power supply device 3 as described later.
  • the end effector 6 is brought close to or in contact with the biological tissue to be treated, and the living body is treated as described later using high-frequency current and ultrasonic vibration that is the treatment energy.
  • the tissue is treated.
  • the processor 15 is capable of controlling the output of the first electric energy and the output of the second electric energy in the first control mode, and the first electric energy in the second control mode different from the first control mode.
  • the output of energy and the output of the second electrical energy can be controlled.
  • the processor 15 outputs the first electric energy to the end effector 6 and the counter electrode plate 12 with the first voltage waveform. Further, in the first control mode, the processor 15 does not cause the ultrasonic transducer 18 to output the second electrical energy. For this reason, in the state where the output control is performed in the first control mode, even if the end effector 6 is brought close to or in contact with the living tissue, only the high-frequency current is applied to the living tissue, and no ultrasonic vibration is applied.
  • FIG. 3 shows an example of a first voltage waveform of the output voltage V to the end effector 6 and the counter electrode plate 12.
  • the horizontal axis represents time t
  • the vertical axis represents output voltage V.
  • the first electric energy is output continuously over time
  • the first voltage waveform is a continuous wave.
  • the maximum value (crest value) of the output voltage V is 200 V or less
  • the crest factor (CF) of the output voltage V is 1.5 or less.
  • the crest factor is a value obtained by dividing the maximum value of the output voltage V by the effective value (RMS) of the output voltage V.
  • the end effector in the first control mode, since the first electrical energy is output with the first voltage waveform, even if a gap is generated between the end effector 6 and the living tissue, the end effector is as described above. No discharge occurs between 6 and the living tissue. For this reason, in the living tissue, a sufficient high-frequency current flows not only on the surface portion but also in the deep portion so that the living tissue is denatured and solidified, and a sufficient amount of Joule heat is generated in the living tissue to the deep portion. For this reason, when the end effector 6 is brought close to or in contact with the living tissue while the output control is performed in the first control mode, not only the surface portion but also the deep portion of the living tissue is denatured and solidified by Joule heat. . As described above, the deep part is solidified in addition to the surface part in the living tissue, so that the hemostatic performance by the high-frequency current is high in the state where the output control is performed in the first control mode.
  • the processor 15 causes the end effector 6 and the counter electrode plate 12 to output the first electric energy with a second voltage waveform different from the first voltage waveform.
  • the processor 15 causes the ultrasonic transducer 18 to output the second electrical energy. For this reason, in a state where output control is performed in the second control mode, when the end effector 6 is brought close to or in contact with the living tissue, both high-frequency current and ultrasonic vibration are applied to the living tissue.
  • FIG. 4 shows an example of a second voltage waveform of the output voltage V to the end effector 6 and the counter electrode plate 12.
  • the horizontal axis represents time t
  • the vertical axis represents the output voltage V.
  • the first electrical energy is intermittently output over time
  • the first electrical energy is intermittently output.
  • the second voltage waveform is a burst wave.
  • the crest factor (CF) of the output voltage V is 5 or more.
  • the intermittent output of the first electric energy is performed, in calculating the crest factor of the second voltage waveform, the effective of the output voltage V through the period during which the output is performed and the period during which the output is not performed. The value is used.
  • the second voltage waveform does not have to be the burst wave shown in the figure, and it is sufficient that the crest factor is 5 or more.
  • the first electrical energy is output to the end effector 6 and the counter electrode plate 12 with a voltage waveform having a crest factor larger than 1.5 and smaller than 5, a gap between the end effector 6 and the living tissue.
  • a discharge may occur or a discharge may not occur.
  • the processor 15 controls the output of the second electric energy by, for example, constant current control that makes the current value of the output current I ′ constant or substantially constant over time.
  • constant current control that makes the current value of the output current I ′ constant or substantially constant over time.
  • the magnitude of the output current I ′ is adjusted so that the living tissue can be incised and / or denatured (coagulated) by the frictional heat caused by the ultrasonic vibration in the end effector 6.
  • the amplitude and vibration speed at the end effector 6 are adjusted.
  • the output of the second electrical energy to the ultrasonic transducer 18 is brought into a state in which the living tissue can be dissected and / or denatured by the frictional heat caused by the ultrasonic vibration in the end effector 6. Be controlled.
  • the end effector 6 vibrates at high speed by ultrasonic vibration. For this reason, by bringing the end effector 6 close to or in contact with the living tissue while the output control is being performed in the second control mode, the end effector 6 can quickly contact and separate from the living tissue. Repeat with.
  • the second control mode since the first electrical energy is output with the second voltage waveform, if a gap is generated between the end effector 6 and the living tissue, as described above, Electric discharge occurs between living tissues. For this reason, when the end effector 6 repeats the contact with the living tissue and the separation from the living tissue at a high speed, a discharge is generated in the gap between the end effector 6 and the living tissue, and the discharged high-frequency current becomes the living tissue. To be granted. When the discharged high-frequency current is applied to the living tissue, the surface portion of the living tissue is incised simultaneously with coagulation by the heat generated due to the discharge.
  • friction heat is generated between the end effector 6 that vibrates at high speed and the living tissue by bringing the end effector 6 close to or in contact with the living tissue while the output control is performed in the second control mode.
  • the living tissue is also incised and / or denatured (coagulated) by frictional heat caused by ultrasonic vibration. Further, in the second control mode, the end effector 6 vibrates at a high speed, so that sticking of the living tissue to the end effector 6 is effectively prevented.
  • FIG. 5 is a flowchart showing processing performed by the processor 15 in the output control of electric energy to the treatment instrument 2.
  • the processor 15 determines whether or not an operation is input with an operation member such as the operation button 11, that is, whether an operation input with the operation member is ON or OFF (S ⁇ b> 101). If no operation is input (S101-No), the process returns to S101. That is, the processor 15 stands by until an operation for supplying the treatment tool 2 with electric energy is input.
  • the processor 15 controls the output of the first electric energy and the output of the second electric energy in the first control mode described above.
  • the processor 15 When the output control in the first control mode is started, the processor 15 outputs the first electrical energy to the end effector 6 and the counter electrode plate 12 with the first voltage waveform (S102). That is, HF (high-frequency) output with the first voltage waveform is performed. Further, in the first control mode, the processor 15 maintains a state where the output of the second electric energy to the ultrasonic transducer 18, that is, the US (ultrasonic) output is not performed (S103). Then, the processor 15 acquires the impedance Z between the end effector 6 and the counter electrode plate 12, that is, the impedance of the circuit through which the output current I flows as a parameter that changes in accordance with the state of the living tissue (S104).
  • the processor 15 determines whether or not the operation input with the operation button 11 or the like is stopped, that is, whether or not the operation input with the operation button 11 is switched from ON to OFF (S105).
  • the processor 15 stops the output of the first electric energy (HF output), the first electric energy is not output, and the second electric energy is not output.
  • An energy output (US output) is not performed (S106).
  • the processor 15 determines whether or not the impedance Z acquired in S103 is higher than a predetermined threshold value Zth (S107). Thereby, the processor 15 determines whether or not a predetermined condition is satisfied.
  • the predetermined threshold value Zth may be set on the touch panel 17 or may be stored in the storage medium 16. Further, the processor 15 sets the predetermined threshold value Zth within a range of 500 ⁇ to 1000 ⁇ .
  • the process returns to S102, and the processor 15 sequentially performs the processes after S102. Therefore, the output control in the first control mode is continued while the operation input is kept ON and the impedance Z is equal to or less than the predetermined threshold value Zth. If the impedance Z is higher than the predetermined threshold value (S107-Yes), the processor 15 determines that the predetermined condition is satisfied, and starts output control in the second control mode. That is, the output control of electric energy to the treatment instrument 2 is switched from the first control mode to the second control mode.
  • the processor 15 When the output control in the second control mode is started, the processor 15 outputs the first electric energy to the end effector 6 and the counter electrode plate 12 with the second voltage waveform (S108). That is, HF (high-frequency) output with the second voltage waveform is performed. In the second control mode, the processor 15 outputs the second electric energy to the ultrasonic transducer 18 (S109). At this time, the magnitude of the output current I ′ is adjusted so that the living tissue can be incised and / or denatured by frictional heat caused by ultrasonic vibration. That is, output control is performed on the US output so that the living tissue can be incised and / or denatured by frictional heat caused by ultrasonic vibration. Also in the second control mode, the processor 15 acquires the impedance Z (S110).
  • the processor 15 determines whether or not the operation input with the operation button 11 or the like is stopped (S111).
  • the processor 15 stops the output of the first electric energy (HF output) and the output of the second electric energy (US output). That is, the process proceeds to S106, and the processor 15 enters a state where the first electrical energy is not output and the second electrical energy is not output (S106).
  • the processor 15 determines whether or not the impedance Z acquired in S110 is equal to or less than a predetermined threshold Zth (S112).
  • the predetermined threshold Zth used in S112 is the same as the predetermined threshold Zth used in the determination in S107.
  • the process returns to S108, and the processor 15 sequentially performs the processes after S108. Therefore, the output control in the second control mode is continued while the operation input is kept ON and the impedance Z is higher than the predetermined threshold value Zth. If the impedance Z is equal to or lower than the predetermined threshold (S112—Yes), the process proceeds to S102, and the processor 15 sequentially performs the processes after S102. Therefore, when the operation input is continuously turned ON and the impedance Z becomes equal to or lower than the predetermined threshold value Zth, the processor 15 controls the output of electric energy to the treatment instrument 2 from the second control mode to the first control mode. The mode is switched to the control mode, and the output control in the first control mode is performed again. In this case, the processor 15 performs the output control in the first control mode again after the output control in the second control mode.
  • the processor 15 switches to the output control in the second control mode again. .
  • the processor 15 alternately repeats the output control in the first control mode and the output control in the second control mode.
  • a solid organ such as a liver in which a large number of blood vessels are extended inside (in the deep part) may be coagulated and incised as a treatment target.
  • the end effector 6 in a state where the output control is performed in the first control mode or the second control mode, the end effector 6 is brought close to or in contact with a real organ that is a living tissue, and the treatment energy is supplied as described above. To grant.
  • the processor 15 determines that the impedance Z is equal to or less than the predetermined threshold value Zth. Therefore, the processor 15 continues the output control in the first control mode until a certain amount of time elapses after the treatment energy starts to be applied to a part of the real organ.
  • the processor 15 continues the output control in the first control mode until a certain amount of time elapses after the treatment energy starts to be applied to a part of the real organ.
  • the processor 15 determines that the impedance Z is higher than the predetermined threshold Zth, the processor 15 determines that the second control mode is in the second control mode. Switch to output control.
  • the surface portion When the control is switched to the output control in the second control mode, the surface portion is incised at the same time as the coagulation by the heat generated due to the discharge at the site where the treatment energy is applied in the real organ. At this time, at the site where treatment energy is applied in the parenchymal organ, the surface portion is incised and / or denatured (coagulated) by frictional heat caused by ultrasonic vibration.
  • the operator moves the end effector 6 along the surface of the real organ. Then, the end effector 6 is brought close to or in contact with a certain part of the parenchymal organ where incision and coagulation are not performed. In another part where the end effector 6 is moved in the parenchymal organ and in the vicinity thereof, the temperature is low and the water content is high. For this reason, when the end effector 6 is moved to another site in the real organ and treatment energy is started to be applied to another site, the impedance Z decreases, and the processor 15 causes the impedance Z to be equal to or less than a predetermined threshold value Zth. Judge that there is. Therefore, when treatment energy starts to be applied to a certain part in the parenchymal organ, the processor 15 switches to output control in the first control mode.
  • the treatment is performed as described above also at another part where the end effector 6 is moved in the parenchymal organ. That is, even in another part where the end effector 6 is moved in the parenchymal organ, the surface portion and the deep portion are denatured and solidified by Joule heat caused by the high-frequency current.
  • the control is switched to the output control in the second control mode, and the processor 15 is simultaneously solidified by the heat and ultrasonic vibration caused by the discharge. An incision is made.
  • FIG. 6 shows an example of a change over time between the first control mode and the second control mode in the treatment using the treatment system 1.
  • the processor 15 since the treatment is performed on the parenchymal organ, as illustrated in FIG. 6, the processor 15 performs the output control in the second control mode after the output control in the first control mode in the treatment. Then, the processor 15 performs the output control in the first control mode again after the output control in the second control mode. That is, by performing the treatment as described above, the processor 15 alternately repeats the output control in the first control mode and the output control in the second control mode.
  • the horizontal axis indicates time t.
  • the period during which output control is performed in the first control mode is indicated by hatching
  • the period during which output control is performed in the second control mode is indicated by dot hatching.
  • the treatment system 1 of the present embodiment at a site where treatment energy is applied in a living tissue, first, the surface portion and the deep portion are denatured and solidified by Joule heat caused by a high-frequency current. . Then, after the surface portion and the deep portion are sufficiently solidified, the surface portion is cut simultaneously with the solidification by heat and ultrasonic vibration caused by the discharge. Since the incision by discharge is performed after coagulation to the deep part by Joule's heat, the coagulated and incised part is appropriate even in the treatment of coagulating and incising the substantial organ such as the liver where many blood vessels are extended in the deep part He was hemostatic.
  • the coagulated and incised site is appropriately incised.
  • the end effector 6 vibrates by ultrasonic vibration. For this reason, for example, in a state where the surface portion of the living tissue is dissected simultaneously with coagulation by discharging while moving the end effector 6, sticking of the living tissue to the end effector 6 is prevented.
  • the output of the first electrical energy and the output of the second electrical energy are controlled as described above, in the treatment of coagulating and incising the living tissue by the high frequency current and ultrasonic vibration, The site to which the ultrasonic vibration is applied is appropriately incised and stopped.
  • the first control mode and the second control mode are automatically switched. For this reason, without detaching the end effector 6 from the body or the like, incision of the treatment target is performed in one action while hemostasis is stopped by heat to the depth of the treatment target by the end effector 6.
  • a temperature sensor (not shown) is attached to the end effector 6, and the temperature T of the end effector is detected by the temperature sensor. Then, based on the temperature T instead of the impedance Z, switching between the first control mode and the second control mode is performed.
  • the processor 15 acquires the temperature T of the end effector 6 from the detection result of the temperature sensor or the like. Then, instead of the process of S107, the processor 15 determines whether or not the temperature T is higher than a predetermined threshold Tth. At this time, when the temperature T is equal to or lower than the predetermined threshold Tth, the process returns to S102, and the processor 15 continues the output control of the electric energy in the first control mode. On the other hand, when the temperature T is higher than the predetermined threshold Tth, the processor 15 determines that the predetermined condition is satisfied. Then, the process proceeds to S108, and the processor 15 switches to output control in the second control mode.
  • the processor 15 determines whether or not the temperature T is equal to or lower than a predetermined threshold Tth. At this time, if the temperature T is higher than the predetermined threshold Tth, the process returns to S108, and the processor 15 continues the output control of the electric energy in the second control mode. On the other hand, when the temperature T is equal to or lower than the predetermined threshold Tth, the process proceeds to S102, and the processor 15 switches to output control in the first control mode.
  • the predetermined threshold Tth may be set on the touch panel 17 or may be stored in the storage medium 16. Further, the temperature T is a parameter that changes in accordance with the state of the living tissue, like the impedance Z.
  • the temperature is low at the site where the treatment energy is applied and in the vicinity thereof until a certain amount of time elapses after the treatment energy starts to be applied. For this reason, the temperature T of the end effector 6 is low until a certain time elapses after the treatment energy is applied, and the processor 15 determines that the temperature T is equal to or lower than the predetermined threshold Tth. Therefore, similarly to the above-described embodiment and the like, in this modification as well, output control in the first control mode is continued until a certain amount of time elapses after the treatment energy starts to be applied, and the joule caused by the high-frequency current is continued.
  • the surface portion and deep portion of the living tissue are denatured and solidified by heat.
  • the end effector 6 is moved and starts applying treatment energy to another certain site.
  • the temperature is low in the region where the end effector 6 is moved and in the vicinity thereof.
  • the processor 15 determines that the temperature T is equal to or lower than a predetermined threshold value Tth. Therefore, when treatment energy starts to be applied to another site in the living tissue, the processor 15 switches to output control in the first control mode.
  • the processor 15 acquires the impedance Z ′ of the ultrasonic transducer 18 as the impedance of the circuit through which the output current I ′ flows.
  • the processor 15 instead of the process of S103, the processor 15 causes the ultrasonic transducer 18 to output the second electric energy with a low output (micro output). At this time, even if the end effector 6 is brought into contact with or close to the living tissue, the second electrical energy is output with a low output so that the living tissue is not denatured and incised by the ultrasonic vibration.
  • the US output is performed in the first control mode, but it is sufficient that the impedance Z ′ is detected by the output of the second electric energy, and the output current I ′ from the output source 31 is very small. is there. For this reason, the amplitude and vibration speed at the end effector 6 are small, and the living tissue is not denatured due to ultrasonic vibration and is not incised.
  • the processor 15 determines whether or not the impedance Z ′ is higher than a predetermined threshold value Z′th. At this time, if the impedance Z ′ is equal to or less than the predetermined threshold value Z′th, the process returns to S102, and the processor 15 continues the output control of electric energy in the first control mode. On the other hand, when the impedance Z ′ is higher than the predetermined threshold Z′th, the processor 15 determines that the predetermined condition is satisfied. Then, the process proceeds to S108, and the processor 15 switches to output control in the second control mode.
  • the processor 15 determines whether or not the impedance Z ′ is equal to or less than a predetermined threshold value Z′th. At this time, if the impedance Z ′ is higher than the predetermined threshold Z′th, the process returns to S108, and the processor 15 continues the output control of the electric energy in the second control mode. On the other hand, when the impedance Z ′ is equal to or less than the predetermined threshold value Z′th, the process proceeds to S102, and the processor 15 switches to output control in the first control mode.
  • the predetermined threshold value Z′th may be set on the touch panel 17 or may be stored in the storage medium 16. Similarly to the impedance Z, the impedance Z ′ is a parameter that changes in accordance with the state of the living tissue.
  • the impedance Z ′ is low and it is determined that the impedance Z ′ is equal to or less than the predetermined threshold value Z′th.
  • the living tissue is denatured to some extent by Joule heat, the living tissue is hardened, so that the end effector 6 is difficult to vibrate due to ultrasonic vibration. For this reason, when the living tissue is denatured to some extent by Joule heat, the impedance Z ′ increases, and it is determined that the impedance Z ′ is higher than the predetermined threshold Z′th.
  • the processor 15 acquires the duration Y of the output control in the first control mode, and instead of the process of S110, the processor 15 The output control duration Y ′ in the control mode is acquired. Then, instead of the process of S107, the processor 15 determines whether or not the duration time Y is longer than a predetermined threshold Yth. At this time, if the duration time Y is equal to or less than the predetermined threshold Yth, the process returns to S102, and the processor 15 continues the electric energy output control in the first control mode. On the other hand, when the duration Y is longer than the predetermined threshold Yth, the processor 15 determines that a predetermined condition is satisfied. Then, the process proceeds to S108, and the processor 15 switches to output control in the second control mode.
  • the processor 15 determines whether or not the duration Y ′ is longer than a predetermined threshold Y′th. At this time, if the duration Y ′ is equal to or less than the predetermined threshold Y′th, the process returns to S108, and the processor 15 continues the electric energy output control in the second control mode. On the other hand, if the duration Y ′ is longer than the predetermined threshold Y′th, the process proceeds to S102, and the processor 15 switches to output control in the first control mode.
  • Each of the predetermined threshold values Yth and Y′th may be set on the touch panel 17 or stored in the storage medium 16. In one embodiment, each of the predetermined threshold values Yth and Y′th is set to 0.5 second to 2 seconds, for example.
  • the first control mode is the same as in the above-described embodiment.
  • the second control mode are appropriately switched.
  • this modification also has the same operations and effects as the above-described embodiment and the like.
  • the power supply device that outputs the first electrical energy and the power supply device that outputs the second electrical energy are separate.
  • the above-mentioned output source 21, current detection circuit 25, voltage detection circuit 26, and A / D converter 27 are provided in the power supply device that outputs the first electrical energy.
  • the power source device that outputs the second electrical energy is provided with the output source 31, the current detection circuit 35, the voltage detection circuit 36, and the A / D converter 37 described above.
  • Each power supply apparatus is provided with a storage medium and one or more processors. Then, a control device that controls the treatment system 1 is formed by one or more processors provided in each of the power supply devices, and the above-described processing is performed.
  • the treatment instrument 2 is provided with one or more processors that perform the above-described processing, and a control device that controls the treatment system 1 is formed by the one or more processors provided in the treatment instrument 2. Is done.
  • the processor causes the end effector (6) to output the first electric energy with the first voltage waveform having a crest factor of 1.5 or less in the first control mode, and In the second control mode, the end effector (6) outputs a first electric energy with a second voltage waveform that generates a discharge between the end effector (6) and the living tissue, and the end effector (6)
  • the ultrasonic transducer (18) outputs the second electrical energy so that the living tissue can be dissected and / or denatured by frictional heat resulting from the ultrasonic vibration.
  • the processor switches to the second control mode when a predetermined condition is satisfied in the first control mode.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage.
  • the embodiments may be appropriately combined as much as possible, and in that case, the combined effect can be obtained.
  • the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

制御装置は、エンドエフェクタ(6)及び超音波トランスデューサ(18)を備える処置具(2)と共に使用される。制御装置のプロセッサ(15)は、第1の制御モードと第2の制御モードとの間で切り替わる。第1の制御モードでは、出力源(31)がエンドエフェクタ(6)に出力する電圧波形のクレストファクタは1.5以下である。同モードではエンドエフェクタ(6)に接触する生体組織に高周波電流が流れ、ジュール熱が発生する。よって、生体組織の表面部及び深部が変性、凝固する。ジュール熱により組織の脱水が進み、組織のインピーダンスが増大すると、第2の制御モードに切り替わる。同モードでは、超音波トランスデューサ(18)がエンドエフェクタ(6)を振動させ、エンドエフェクタ(6)と組織との間に摩擦熱及び一時的な隙間を生ずる。当該隙間において放電が起こる。摩擦熱と放電により、組織の表面部が凝固、切開される。このようにして、組織の表面部から深部まで止血しつつ組織を切開することができる。

Description

制御装置
 本発明は、高周波電流を生体組織に付与可能なエンドエフェクタ、及び、生成した超音波振動をエンドエフェクタに伝達する超音波トランスデューサを備える処置具とともに用いられる制御装置に関する。
 US2013/0123820A1には、エンドエフェクタを備える処置具、及び、処置具とは別体の対極板を備える処置システムが、開示されている。この処置システムでは、処置具に超音波トランスデューサが設けられる。この処置システムを用いた処置においては、エンドエフェクタ及び対極板に第1の電気エネルギー(高周波電力)が供給されると同時に超音波トランスデューサに第2の電気エネルギーが供給される状態で、エンドエフェクタを処置対象である生体組織に接触させる。この際、エンドエフェクタ及び対極板への第1の電気エネルギーの供給によって、生体組織に高周波電流が付与されるとともに、超音波トランスデューサへの第2の電気エネルギーの供給によって、超音波トランスデューサで超音波振動が発生する。そして、エンドエフェクタにおいて、超音波トランスデューサから伝達された超音波振動が、高周波電流と同時に生体組織に付与される。前述のように生体組織に高周波電流及び超音波振動が同時に付与されている状態では、生体組織は、凝固と同時に切開される。
 US2013/0123820A1のような処置システムを用いた処置では、生体組織において高周波電流及び超音波電流を用いて凝固及び切開された部位が、適切に切開及び止血されることが求められる。
 本発明の目的とするところは、高周波電流及び超音波振動によって生体組織を凝固及び切開する処置において、高周波電流及び超音波振動が付与された部位が、適切に切開及び止血される制御装置を提供することにある。
 前記目的を達成するため、本発明のある態様は、第1の電気エネルギーが供給されることにより、高周波電流を生体組織に付与可能になるエンドエフェクタと、第2の電気エネルギーが供給されることにより、超音波振動を生成し、生成した前記超音波振動を前記エンドエフェクタに伝達する超音波トランスデューサと、を備える処置具とともに用いられる制御装置であって、第1の制御モードでは、クレストファクタが1.5以下の第1の電圧波形で前記エンドエフェクタに前記第1の電気エネルギーを出力させ、第2の制御モードでは、前記エンドエフェクタと前記生体組織との間で放電を生じさせる第2の電圧波形で前記エンドエフェクタに前記第1の電気エネルギーを出力させるとともに、前記エンドエフェクタにおいて前記超音波振動に起因する摩擦熱によって前記生体組織を切開可能及び/又は変性可能な状態に、前記超音波トランスデューサに前記第2の電気エネルギーを出力させ、前記第1の制御モードにおいて所定の条件を満たしたことに基づいて、前記第2の制御モードに切替える、プロセッサを備える。
図1は、第1の実施形態に係る処置システムを示す概略図である。 図2は、第1の実施形態に係る処置具に電気エネルギーを供給する構成を概略的に示すブロック図である。 図3は、第1の実施形態に係るエンドエフェクタ及び対極板への出力電圧の第1の電圧波形の一例を示す概略図である。 図4は、第1の実施形態に係るエンドエフェクタ及び対極板への出力電圧の第2の電圧波形の一例を示す概略図である。 図5は、第1の実施形態に係る処置具への電気エネルギーの出力制御においてプロセッサによって行われる処理を示すフローチャートである。 図6は、第1の実施形態に係る処置システムを用いた処置における第1の制御モードと第2の制御モードとの間の経時的な切替わりの一例を示す概略図である。
 (第1の実施形態) 
 本発明の第1の実施形態について、図1乃至図6を参照して説明する。
 図1は、本実施形態の処置システム1を示す図である。図1に示すように、処置システム1は、処置具2及び電源装置3を備える。処置具2は、筒状のシャフト4、保持可能なハウジング5、及び、エンドエフェクタ6を備える。ハウジング5は、シャフト4の中心軸に沿う方向についてシャフト4の一方側に連結される。また、本実施形態では、ハウジング5の中心軸は、シャフト4の中心軸と同軸又は略同軸になる。ここで、シャフト4の中心軸に沿う方向についてシャフト4に対してハウジング5が位置する側を基端側とし、基端側とは反対側を先端側とする。ハウジング5の基端部には、ケーブル7の一端が、接続される。ケーブル7の他端は、電源装置3に分離可能に接続される。
 また、処置具2では、ロッド部材8が、ハウジング5の内部からシャフト4の内部を通って、先端側に向かって延設される。エンドエフェクタ6は、ロッド部材8の一部から形成される。本実施形態では、ロッド部材8は、シャフト4の先端から先端側へ突出し、ロッド部材8においてシャフト4からの突出部分によって、エンドエフェクタ6が形成される。なお、ロッド部材8は、チタン合金等の振動伝達性が高い材料から形成される。また、エンドエフェクタ6は、導電性を有する。なお、エンドエフェクタ6は、例えば、フック形状、ヘラ形状及びボール形状等のいずれかに形成される。
 ハウジング5には、操作部材として操作ボタン11が設けられる。操作ボタン11では、電気エネルギーを後述のように処置具2に供給させる操作を、入力可能である。なお、ある実施例では、操作ボタン11の代わりに、又は、操作ボタン11に加えて、処置具2とは別体のフットスイッチ等が、電気エネルギーを処置具2に供給させる操作を入力可能な操作部材として、設けられてもよい。また、処置システム1には、処置具2とは別体の対極板12が設けられる。対極板12は、ケーブル13を介して電源装置3に、分離可能に接続される。
 図2は、処置具2に電気エネルギーを供給する構成を示す図である。図2に示すように、電源装置3は、プロセッサ(コントローラ)15及び記憶媒体16を備える。プロセッサ15は、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等を含む集積回路又は回路構成(circuitry)等から形成される。プロセッサ15は、電源装置3において1つのみ設けられてもよく、電源装置3において複数設けられてもよい。本実施形態では、プロセッサ15は、処置システム1を制御する制御装置の少なくとも一部を構成する。プロセッサ15での処理は、プロセッサ15又は記憶媒体16に記憶されたプログラムに従って行われる。そして、記憶媒体16には、プロセッサ15で用いられる処理プログラム、及び、プロセッサ15での演算で用いられるパラメータ、関数及びテーブル等が記憶される。
 プロセッサ15は、操作ボタン(操作部材)11で操作入力が行われているか否か、すなわち、操作ボタン11での操作入力がONであるか又はOFFあるかを、判断する。ある実施例では、操作ボタン11に対応させてスイッチ(図示しない)が、ハウジング5の内部に設けられ、スイッチは、操作ボタン11での操作に対応してONとOFFとの間が切替わる。プロセッサ15は、スイッチがONであるか又はOFFであるかに基づいて、操作ボタン11で操作入力が行われているか否かを判断する。
 電源装置3は、出力源(高周波電源)21を備える。出力源21は、波形生成器、変換回路、リレー回路及び変圧器等を備え、駆動回路(高周波駆動回路)を形成する。出力源21は、バッテリー電源又はコンセント電源等からの電力を第1の電気エネルギーである高周波電力(高周波電気エネルギー)に変換するとともに、第1の電気エネルギーを出力可能である。出力源21は、電気経路22を介してエンドエフェクタ6に電気的に接続されるとともに、電気経路23を介して対極板12に電気的に接続される。電気経路22は、例えば、ケーブル7の内部を通って延設され、電気経路23は、例えば、ケーブル13の内部を通って延設される。
 出力源21から出力された第1の電気エネルギーは、電気経路22,23を介して、エンドエフェクタ6及び対極板12に供給される。エンドエフェクタ6及び対極板12に第1の電気エネルギー(高周波電力)が供給されることにより、エンドエフェクタ6及び対極板12は、互いに対して異なる電位を有する電極として機能する。これにより、エンドエフェクタ6と対極板12との間で高周波電流を流すことが可能になり、生体組織等に高周波電流を付与可能となる。プロセッサ15は、操作ボタン11で操作入力が行われると、出力源21からの出力を制御し、エンドエフェクタ6及び対極板12への第1の電気エネルギーの供給を制御する。
 また、電源装置3には、電流検出回路25、電圧検出回路26及びA/D変換器27が設けられる。電流検出回路25は、出力源21からエンドエフェクタ6及び対極板12への出力電流Iを検出し、電圧検出回路26は、エンドエフェクタ6及び対極板12への出力電圧Vを検出する。A/D変換器27は、電流検出回路25で検出された出力電流Iの電流値を示すアナログ信号、及び、電圧検出回路26で検出された出力電圧Vの電圧値を示すアナログ信号をデジタル信号に変換し、変換したデジタル信号をプロセッサ15に伝達する。これにより、プロセッサ15は、出力源21からの出力電流I及び出力電圧Vに関する情報を取得する。
 また、プロセッサ15は、出力源21からの出力電流I及び出力電圧Vに基づいて、高周波電流(出力電流I)が流れる回路のインピーダンスとして、エンドエフェクタ6と対極板12との間のインピーダンスZを、算出する。ここで、エンドエフェクタ6によって高周波電流が生体組織に付与されている状態では、エンドエフェクタ6と対極板12との間のインピーダンスZは、生体組織のインピーダンスに対応して変化し、生体組織のインピーダンスが増加すると、インピーダンスZが増加する。このため、インピーダンスZは、第1の電気エネルギーに関連するパラメータであり、生体組織の状態に対応して変化するパラメータである。また、プロセッサ15は、出力源21からの出力電流I及び出力電圧Vに基づいて、出力源21からの出力電力Pを算出する。プロセッサ15は、出力電流I、出力電圧V、インピーダンスZ及び出力電力P等に基づいて、出力源21からエンドエフェクタ6及び対極板12への第1の電気エネルギーの出力を制御する。
 処置具2には、超音波トランスデューサ18が設けられる。超音波トランスデューサ18は、ハウジング5の内部においてロッド部材8に接続される。また、電源装置3は、出力源(超音波電源)31を備える。出力源31は、波形生成器、変換回路、リレー回路及び変圧器等を備え、駆動回路(超音波駆動回路)を形成する。出力源31は、バッテリー電源又はコンセント電源等からの電力を第2の電気エネルギーに変換するとともに、第2の電気エネルギーを出力可能である。出力源31は、電気経路32,33を介して超音波トランスデューサ18に接続される。電気経路32,33のそれぞれは、例えば、ケーブル7の内部を通って延設される。
 出力源31から出力された第2の電気エネルギーは、電気経路32,33を介して、超音波トランスデューサ18に供給される。この際、第2の電気エネルギーとして所定の周波数範囲のある周波数の交流電力が、超音波トランスデューサ18に供給される。プロセッサ15は、操作ボタン11で操作入力が行われると、出力源31からの出力を制御し、超音波トランスデューサ18への第2の電気エネルギーの供給を制御する。
 超音波トランスデューサ18に第2の電気エネルギー(交流電力)が供給されることにより、超音波トランスデューサ18は、圧電素子(図示しない)等によって電気エネルギーを振動エネルギーに変換し、超音波振動を生成する。超音波トランスデューサ18で発生した超音波振動は、ロッド部材8を介してエンドエフェクタ6に伝達される。エンドエフェクタ6に超音波振動が伝達されることにより、エンドエフェクタ6は振動し、エンドエフェクタ6は、伝達された超音波振動を生体組織等に付与可能になる。この際、エンドエフェクタ6を含むロッド部材8は、所定の周波数範囲のある周波数で振動し、本実施形態では、ロッド部材8の振動方向はハウジング5の中心軸に対して平行又は略平行になる。
 また、電源装置3には、電流検出回路35、電圧検出回路36及びA/D変換器37が設けられる。電流検出回路35は、出力源31から超音波トランスデューサ18への出力電流I´を検出し、電圧検出回路36は、超音波トランスデューサ18への出力電圧V´を検出する。A/D変換器37は、電流検出回路35で検出された出力電流I´の電流値を示すアナログ信号、及び、電圧検出回路36で検出された出力電圧V´の電圧値を示すアナログ信号をデジタル信号に変換し、変換したデジタル信号をプロセッサ15に伝達する。これにより、プロセッサ15は、出力源31からの出力電流I´及び出力電圧V´に関する情報を取得する。
 また、プロセッサ15は、出力源31からの出力電流I´及び出力電圧V´に基づいて、出力電流I´が流れる回路のインピーダンスとして、超音波トランスデューサ18のインピーダンスZ´を算出する。超音波トランスデューサ18のインピーダンスZ´は、第2の電気エネルギーに関連するパラメータであり、生体組織の状態に対応して変化するパラメータである。また、プロセッサ15は、出力源31からの出力電流I´及び出力電圧V´に基づいて、出力源31からの出力電力P´を算出する。プロセッサ15は、出力電流I´、出力電圧V´、インピーダンスZ´及び出力電力P´等に基づいて、出力源41から超音波トランスデューサ18への第2の電気エネルギーの出力を制御する。ある実施例では、プロセッサ15は、出力電流I´と出力電圧V´との位相差がなくなる状態に、PLL制御(Phase Locked Loop制御)を行う。
 また、本実施形態では、電源装置3に、タッチパネル17が設けられる。タッチパネル17は、例えば、出力源21,31のそれぞれ出力レベル等の出力源21,31のそれぞれからの出力に関する設定を入力可能な入力部として機能する。また、タッチパネル17は、例えば、出力源21からの出力電流I及び出力電圧V、及び、出力源31からの出力電流I´及び出力電圧V´等の出力源21,31のそれぞれからの出力に関する情報が表示される表示部としても機能する。
 次に、本実施形態のプロセッサ15から形成される制御装置、及び、処置システム1の作用及び効果について説明する。処置システム1を用いて処置を行う際には、術者は、対極板12を人体等の被検体に設置し、ハウジング5を保持する。そして、エンドエフェクタ6を腹腔等の体腔に挿入し、処置対象である生体組織の近傍にエンドエフェクタ6を配置する。そして、エンドエフェクタ6が生体組織の近傍に位置する状態で、操作ボタン9において操作入力を行う。操作ボタン9での操作入力がONになることにより、プロセッサ15は、後述するように、電源装置3から電気エネルギーを出力させる。そして、電源装置3から電気エネルギーが出力されている状態において、エンドエフェクタ6を処置対象である生体組織に近接又は接触させ、処置エネルギーである高周波電流及び超音波振動を用いて後述のように生体組織が処置される。
 プロセッサ15は、第1の制御モードで第1の電気エネルギーの出力及び第2の電気エネルギーの出力を制御可能であるとともに、第1の制御モードとは異なる第2の制御モードで第1の電気エネルギーの出力及び第2の電気エネルギーの出力を制御可能である。プロセッサ15は、第1の制御モードにおいて、第1の電圧波形でエンドエフェクタ6及び対極板12へ第1の電気エネルギーを出力させる。また、第1の制御モードでは、プロセッサ15は、超音波トランスデューサ18へ第2の電気エネルギーを出力させない。このため、第1の制御モードで出力制御が行われている状態では、エンドエフェクタ6を生体組織に近接又は接触させても、生体組織に高周波電流のみが付与され、超音波振動は付与されない。
 図3は、エンドエフェクタ6及び対極板12への出力電圧Vの第1の電圧波形の一例を示す。なお、図3では、横軸に時間tを示し、縦軸に出力電圧Vを示す。図3の一例では、第1の制御モードにおいて、経時的に連続して第1の電気エネルギーが出力され、第1の電圧波形は連続波となる。また、第1の電圧波形では、出力電圧Vの最大値(波高値)が200V以下で、かつ、出力電圧Vのクレストファクタ(CF)が1.5以下となる。ここで、クレストファクタは、出力電圧Vの最大値を出力電圧Vの実効値(RMS)で除算した値である。最大値(波高値)が200V以下で、かつ、クレストファクタが1.5以下の第1の電圧波形で第1の電気エネルギーがエンドエフェクタ6及び対極板12に出力される場合、エンドエフェクタ6と生体組織との間に隙間が生じても、エンドエフェクタ6と生体組織との間で放電は生じないと解されている。
 第1の制御モードで出力制御が行われている状態でエンドエフェクタ6を生体組織に近接又は接触させることにより、エンドエフェクタ6と対極板12との間で生体組織を通して高周波電流が流れる。そして、高周波電流が生体組織に流れることにより、生体組織の抵抗によってジュール熱が発生し、ジュール熱によって、生体組織が変性及び凝固される。
 ここで、第1の制御モードでは、第1の電圧波形で第1の電気エネルギーが出力されるため、エンドエフェクタ6と生体組織との間に隙間が生じても、前述のように、エンドエフェクタ6と生体組織との間で放電が生じない。このため、生体組織では表面部だけでなく深部にも、生体組織が変性及び凝固させるために十分な高周波電流が流れ、生体組織において深部まで十分な量のジュール熱が発生する。このため、第1の制御モードで出力制御が行われている状態でエンドエフェクタ6を生体組織に近接又は接触させると、生体組織において表面部だけでなく深部も、ジュール熱によって変性及び凝固される。前述のように生体組織において表面部に加えて深部が凝固されるため、第1の制御モードで出力制御が行われている状態では、高周波電流による止血性能が高い。
 また、プロセッサ15は、第2の制御モードにおいて、第1の電圧波形とは異なる第2の電圧波形でエンドエフェクタ6及び対極板12へ第1の電気エネルギーを出力させる。そして、第2の制御モードでは、プロセッサ15は、超音波トランスデューサ18へ第2の電気エネルギーを出力させる。このため、第2の制御モードで出力制御が行われている状態では、エンドエフェクタ6を生体組織に近接又は接触させると、生体組織に高周波電流及び超音波振動の両方が付与される。
 図4は、エンドエフェクタ6及び対極板12への出力電圧Vの第2の電圧波形の一例を示す。なお、図4では、横軸に時間tを示し、縦軸に出力電圧Vを示す。図4の一例では、第2の制御モードにおいて、経時的に断続的に第1の電気エネルギーが出力され、第1の電気エネルギーは、間欠出力される。このため、第2の電圧波形はバースト波となる。また、第2の電圧波形では、出力電圧Vのクレストファクタ(CF)が5以上となる。ここで、第1の電気エネルギーの間欠出力が行われる場合、第2の電圧波形のクレストファクタの算出では、出力が行われている期間及び出力が行われていない期間を通しての出力電圧Vの実効値が、用いられる。クレストファクタが5以上の第2の電圧波形で第1の電気エネルギーがエンドエフェクタ6及び対極板12に出力される場合、エンドエフェクタ6と生体組織との間に隙間が生じると、エンドエフェクタ6と生体組織との間で放電が生じると解されている。
 なお、第2の電圧波形は図示のバースト波である必要はなく、クレストファクタが5以上であればよい。また、クレストファクタが1.5より大きく、かつ、5より小さい電圧波形で第1の電気エネルギーがエンドエフェクタ6及び対極板12へ出力される場合は、エンドエフェクタ6と生体組織との間の隙間において、放電が生じることもあれば、放電が生じないこともあると解されている。そして、最大値(波高値)が200Vより大きく、かつ、クレストファクタが1.5以下の電圧波形で第1の電気エネルギーがエンドエフェクタ6及び対極板12へ出力される場合も、エンドエフェクタ6と生体組織との間の隙間において、放電が生じることもあれば、放電が生じないこともあると解されている。
 また、第2の制御モードでは、プロセッサ15は、例えば、出力電流I´の電流値を経時的に一定又は略一定にする定電流制御で、第2の電気エネルギーの出力を制御する。ここで、超音波振動によるエンドエフェクタ6での振幅及び振動速度は、出力電流I´の大きさに対応して変化する。このため、第2の電気エネルギーの出力について定電流制御が行われる場合、エンドエフェクタ6での振幅及び振動速度は、経時的に一定又は略一定に維持される。
 また、第2の制御モードでは、エンドエフェクタ6において超音波振動に起因する摩擦熱によって生体組織を切開可能及び/又は変性可能(凝固可能)な状態に、出力電流I´の大きさが調整され、エンドエフェクタ6での振幅及び振動速度が調整される。すなわち、第2の制御モードでは、エンドエフェクタ6において超音波振動に起因する摩擦熱によって生体組織を切開可能及び/又は変性可能な状態に、超音波トランスデューサ18への第2の電気エネルギーの出力が制御される。
 第2の制御モードでは、超音波振動によってエンドエフェクタ6が高速で振動する。このため、第2の制御モードで出力制御が行われている状態でエンドエフェクタ6を生体組織に近接又は接触させることにより、エンドエフェクタ6は、生体組織への接触及び生体組織からの離間を高速で繰返す。また、第2の制御モードでは、第2の電圧波形で第1の電気エネルギーが出力されるため、エンドエフェクタ6と生体組織との間に隙間が生じると、前述のように、エンドエフェクタ6と生体組織との間で放電が生じる。このため、エンドエフェクタ6が生体組織への接触及び生体組織からの離間を高速で繰返すことにより、エンドエフェクタ6と生体組織との間の隙間で放電が発生し、放電された高周波電流が生体組織に付与される。放電された高周波電流が生体組織に付与されることにより、放電に起因して発生した熱によって、生体組織において表面部が凝固と同時に切開される。
 なお、放電によって生体組織が凝固と同時に切開されている状態においても、生体組織に高周波電流が流れ、生体組織においてジュール熱が発生する。そして、ジュール熱によっても、生体組織が変性及び凝固される。ただし、第2の制御モードで出力制御が行われている状態では、エンドエフェクタ6と生体組織との間で放電が生じるため、第1の制御モードで出力制御が行われている状態に比べて、生体組織に流れる高周波電流は小さく、生体組織で発生するジュール熱は小さい。
 また、第2の制御モードで出力制御が行われている状態でエンドエフェクタ6を生体組織に近接又は接触させることにより、高速で振動するエンドエフェクタ6と生体組織との間に摩擦熱が発生する。そして、超音波振動に起因する摩擦熱によっても、生体組織が切開及び/又は変性(凝固)される。また、第2の制御モードでは、エンドエフェクタ6が高速で振動するため、生体組織のエンドエフェクタ6への貼付きが、有効に防止される。
 図5は、処置具2への電気エネルギーの出力制御においてプロセッサ15によって行われる処理を示すフローチャートである。図5に示すように、プロセッサ15は、操作ボタン11等の操作部材で操作が入力されたか否か、すなわち、操作部材での操作入力がONかOFFかを判断する(S101)。操作が入力されていない場合は(S101-No)、処理はS101 に戻る。すなわち、プロセッサ15は、電気エネルギーを処置具2に供給させる操作が入力されるまで、待機する。操作部材で操作が入力されると(S101-Yes)、プロセッサ15は、前述した第1の制御モードで、第1の電気エネルギーの出力及び第2の電気エネルギーの出力を制御する。
 第1の制御モードでの出力制御が開始されると、プロセッサ15は、第1の電圧波形で第1の電気エネルギーをエンドエフェクタ6及び対極板12へ出力させる(S102)。すなわち、第1の電圧波形でのHF(high-frequency)出力が行われる。また、第1の制御モードでは、プロセッサ15は、超音波トランスデューサ18への第2の電気エネルギーの出力、すなわち、US(ultrasonic)出力が行われない状態を、維持する(S103)。そして、プロセッサ15は、生体組織の状態に対応して変化するパラメータとして、エンドエフェクタ6と対極板12との間のインピーダンスZ、すなわち、出力電流Iが流れる回路のインピーダンスを取得する(S104)。
 そして、プロセッサ15は、操作ボタン11等での操作入力が停止されたか否か、すなわち、操作ボタン11での操作入力がONからOFFに切替わったか否かを判断する(S105)。操作入力が停止された場合は(S105-Yes)、プロセッサ15は、第1の電気エネルギーの出力(HF出力)を停止し、第1の電気エネルギーの出力が行われず、かつ、第2の電気エネルギーの出力(US出力)が行われない状態にする(S106)。一方、操作ボタン11での操作入力が継続されている場合は(S105-No)、プロセッサ15は、S103で取得したインピーダンスZが所定の閾値Zthより高いか否かを判断する(S107)。これにより、所定の条件を満たしたか否かがプロセッサ15で判断される。所定の閾値Zthは、タッチパネル17で設定されてもよく、記憶媒体16に記憶されていてもよい。また、プロセッサ15は、所定の閾値Zthを500Ω以上1000Ω以下の範囲で設定する。
 インピーダンスZが所定の閾値Zth以下の場合は(S107-No)、処理は、S102に戻り、プロセッサ15は、S102以降の処理を順次に行う。したがって、操作入力のONが継続され、かつ、インピーダンスZが所定の閾値Zth以下の間は、第1の制御モードでの出力制御が継続される。インピーダンスZが所定の閾値より高い場合は(S107-Yes)、プロセッサ15は、所定の条件を満たしたと判断し、第2の制御モードでの出力制御を開始する。すなわち、処置具2への電気エネルギーの出力制御について、第1の制御モードから第2の制御モードに切替えられる。
 第2の制御モードでの出力制御が開始されると、プロセッサ15は、第2の電圧波形で第1の電気エネルギーをエンドエフェクタ6及び対極板12へ出力させる(S108)。すなわち、第2の電圧波形でのHF(high-frequency)出力が行われる。また、第2の制御モードでは、プロセッサ15は、超音波トランスデューサ18への第2の電気エネルギーを出力させる(S109)。この際、超音波振動に起因する摩擦熱によって生体組織を切開可能及び/又は変性可能な状態に、出力電流I´の大きさが調整される。すなわち、超音波振動に起因する摩擦熱によって生体組織を切開可能及び/又は変性可能な状態に、US出力について出力制御が行われる。また、第2の制御モードにおいても、プロセッサ15は、インピーダンスZを取得する(S110)。
 そして、プロセッサ15は、操作ボタン11等での操作入力が停止されたか否かを判断する(S111)。操作入力が停止された場合は(S111-Yes)、プロセッサ15は、第1の電気エネルギーの出力(HF出力)及び第2の電気エネルギーの出力(US出力)を停止させる。すなわち、処理は、S106に進み、プロセッサ15は、第1の電気エネルギーの出力が行われず、かつ、第2の電気エネルギーの出力が行われない状態にする(S106)。一方、操作ボタン11での操作入力が継続されている場合は(S105-No)、プロセッサ15は、S110で取得したインピーダンスZが所定の閾値Zth以下である否かを判断する(S112)。なお、S112で用いる所定の閾値Zthは、S107の判断で用いられる所定の閾値Zthと同一である。
 インピーダンスZが所定の閾値Zthより高い場合は(S112-No)、処理は、S108に戻り、プロセッサ15は、S108以降の処理を順次に行う。したがって、操作入力のONが継続され、かつ、インピーダンスZが所定の閾値Zthより高い間は、第2の制御モードでの出力制御が継続される。インピーダンスZが所定の閾値以下の場合は(S112-Yes)、処理はS102に進み、プロセッサ15は、S102以降の処理を順次に行う。したがって、操作入力のONが継続され、かつ、インピーダンスZが所定の閾値Zth以下になった場合は、プロセッサ15は、処置具2への電気エネルギーの出力制御について第2の制御モードから第1の制御モードに切替え、再び第1の制御モードでの出力制御を行う。この場合、プロセッサ15は、第2の制御モードでの出力制御の後に、再び第1の制御モードでの出力制御を行う。
 また、再び第1の制御モードでの出力制御に切替えられた後、インピーダンスZが所定の閾値Zthより高くなると(S107-Yes)、プロセッサ15は、再び第2の制御モードでの出力制御に切替える。この場合、プロセッサ15は、第1の制御モードでの出力制御及び第2の制御モードでの出力制御を交互に繰返す。
 本実施形態の処置システム1を用いた処置として、内部(深部)に多数の血管が延設される肝臓等の実質臓器を、処置対象として凝固及び切開することがある。この場合、第1の制御モード又は第2の制御モードで出力制御が行われている状態において、エンドエフェクタ6を生体組織である実質臓器に近接又は接触させ、前述のように処置エネルギーを実質臓器に付与する。
 実質臓器のある部位に処置エネルギーが付与され始めてからある程度の時間が経過するまでは、処置エネルギーが付与されている部位及びその近傍において、温度が低く、かつ、水分も多い。このため、実質臓器のある部位に処置エネルギーが付与され始めてからある程度の時間が経過するまでは、インピーダンスZは低く、プロセッサ15は、インピーダンスZが所定の閾値Zth以下であると判断する。したがって、実質臓器のある部位に処置エネルギーが付与され始めてからある程度の時間が経過するまでは、プロセッサ15は、第1の制御モードでの出力制御を継続する。これにより、実質臓器において処置エネルギーが付与されている部位では、処置エネルギーが付与され始めてからある程度の時間が経過するまでは、深部まで十分な高周波電流が流れ、表面部だけでなく深部も、ジュール熱によって変性及び凝固される。
 そして、実質臓器において処置エネルギーが付与されている部位がジュール熱によってある程度変性されると、処置エネルギーが付与される部位及びその近傍では、温度が上昇するとともに、脱水される。このため、実質臓器においてある部位に処置エネルギーが付与され始めてからある程度の時間が経過すると、インピーダンスZが上昇する。したがって、実質臓器においてある部位に処置エネルギーが付与され始めてからある程度の時間が経過し、プロセッサ15が、インピーダンスZが所定の閾値Zthより高いと判断すると、プロセッサ15は、第2の制御モードでの出力制御に切替える。そして、第2の制御モードでの出力制御に切替えられると、実質臓器において処置エネルギーが付与されている部位では、放電に起因して発生した熱によって、表面部が凝固と同時に切開される。この際、実質臓器において処置エネルギーが付与されている部位では、超音波振動に起因する摩擦熱によっても、表面部が切開及び/又は変性(凝固)される。
 そして、実質臓器の処置エネルギーが付与されている部位において表面部が切開及び凝固されると、術者は、エンドエフェクタ6を実質臓器の表面に沿って移動させる。そして、実質臓器において切開及び凝固が行われていない別のある部位に、エンドエフェクタ6を近接又は接触させる。実質臓器においてエンドエフェクタ6を移動した別のある部位及びその近傍では、温度が低く、かつ、水分が多い。このため、実質臓器において別のある部位にエンドエフェクタ6を移動し、別のある部位に処置エネルギーを付与し始めると、インピーダンスZが低下し、プロセッサ15は、インピーダンスZが所定の閾値Zth以下であると判断する。したがって、実質臓器において別のある部位に処置エネルギーが付与され始めると、プロセッサ15は、第1の制御モードでの出力制御に切替える。
 そして、実質臓器においてエンドエフェクタ6を移動した別のある部位でも、前述のようにして処置が行われる。すなわち、実質臓器においてエンドエフェクタ6を移動した別のある部位でも、高周波電流に起因するジュール熱によって、表面部及び深部が変性及び凝固される。そして、ジュール熱によって表面部及び深部がある程度変性されると、第2の制御モードでの出力制御に切替えられ、プロセッサ15は、放電に起因する熱及び超音波振動によって、表面部が凝固と同時に切開される。
 図6は、処置システム1を用いた処置における第1の制御モードと第2の制御モードとの間の経時的な切替わりの一例を示す。前述のように、実質臓器において処置が行われるため、図6に示すように、プロセッサ15は、処置において、第1の制御モードの出力制御の後に第2の制御モードでの出力制御を行う。そして、プロセッサ15は、第2の制御モードでの出力制御の後に、再び第1の制御モードでの出力制御を行う。すなわち、前述のように処置が行われることにより、プロセッサ15は、第1の制御モードでの出力制御及び第2の制御モードでの出力制御を交互に繰返す。なお、図6では、横軸に時間tを示す。そして、図6では、第1の制御モードで出力制御が行われている期間を斜線のハッチングで示し、第2の制御モードで出力制御が行われている期間をドットのハッチングで示す。
 前述のように、本実施形態の処置システム1を用いることにより、生体組織において処置エネルギーが付与される部位では、まず、高周波電流に起因するジュール熱によって、表面部及び深部が変性及び凝固される。そして、表面部及び深部が十分に凝固された後に、放電に起因する熱及び超音波振動によって、表面部が凝固と同時に切開される。ジュール熱によって深部まで凝固された後に、放電による切開が行われるため、深部に多数の血管が延設される肝臓等の実質臓器を凝固及び切開する処置においても、凝固及び切開された部位が適切に止血される。また、放電される高周波電流を生体組織に付与することにより生体組織の表面部が凝固と同時に切開されるため、凝固及び切開された部位が適切に切開される。また、放電によって生体組織の表面部を凝固と同時に切開している状態では、超音波振動によってエンドエフェクタ6が振動する。このため、例えばエンドエフェクタ6を移動させながら放電によって生体組織の表面部を凝固と同時に切開している状態において、生体組織のエンドエフェクタ6への貼り付きが防止される。
 本実施形態では、第1の電気エネルギーの出力及び第2の電気エネルギーの出力が前述のように制御されるため、高周波電流及び超音波振動によって生体組織を凝固及び切開する処置において、高周波電流及び超音波振動が付与された部位が、適切に切開及び止血される。そして、本実施形態では、第1の制御モードと第2の制御モードとの間が自動的に切替わる。このため、エンドエフェクタ6を体外に抜脱すること等なく、エンドエフェクタ6によって処置対象の深部まで熱で止血しながら処置対象を切開することが、1アクションで行われる。
 (変形例) 
 なお、ある変形例では、エンドエフェクタ6に温度センサ(図示しない)が取付けられ、温度センサによってエンドエフェクタの温度Tが検出される。そして、インピーダンスZの代わりに温度Tに基づいて、第1の制御モードと第2の制御モードとの間が切替られる。本変形例では、S104及びS110のそれぞれの処理の代わりに、プロセッサ15は、温度センサ等の検出結果から、エンドエフェクタ6の温度Tを取得する。そして、S107の処理の代わりに、プロセッサ15は、温度Tが所定の閾値Tthより高いか否かを判断する。この際、温度Tが所定の閾値Tth以下の場合は、処理はS102に戻り、プロセッサ15は、第1の制御モードでの電気エネルギーの出力制御を継続する。一方、温度Tが所定の閾値Tthより高い場合は、プロセッサ15は、所定の条件を満たしたと判断する。そして、処理はS108に進み、プロセッサ15は、第2の制御モードでの出力制御に切替える。
 また、本変形例では、S111の処理の代わりに、プロセッサ15は、温度Tが所定の閾値Tth以下であるか否かを判断する。この際、温度Tが所定の閾値Tthより高い場合は、処理はS108に戻り、プロセッサ15は、第2の制御モードでの電気エネルギーの出力制御を継続する。一方、温度Tが所定の閾値Tth以下の場合は、処理はS102に進み、プロセッサ15は、第1の制御モードでの出力制御に切替える。なお、所定の閾値Tthは、タッチパネル17で設定されてもよく、記憶媒体16に記憶されていてもよい。また、温度Tは、インピーダンスZと同様に、生体組織の状態に対応して変化するパラメータである。
 前述のように、処置エネルギーが付与され始めてからある程度の時間が経過するまでは、処置エネルギーが付与されている部位及びその近傍において、温度が低い。このため、処置エネルギーが付与され始めてからある程度の時間が経過するまでは、エンドエフェクタ6の温度Tは低く、プロセッサ15は、温度Tが所定の閾値Tth以下であると判断する。したがって、前述の実施形態等と同様に本変形例でも、処置エネルギーが付与され始めてからある程度の時間が経過するまでは、第1の制御モードでの出力制御を継続され、高周波電流に起因するジュール熱によって、生体組織(実質臓器)の表面部及び深部が変性及び凝固される。
 また、前述のように、ジュール熱によって生体組織がある程度変性されると、処置エネルギーが付与される部位及びその近傍では、温度が上昇する。このため、処置エネルギーが付与され始めてからある程度の時間が経過すると、エンドエフェクタ6の温度Tが上昇し、プロセッサ15は、温度Tが所定の閾値Tthより高いと判断する。したがって、処置エネルギーが付与されている部位がジュール熱によってある程度変性されると、プロセッサ15は、第2の制御モードでの出力制御に切替える。そして、放電に起因する熱及び超音波振動に起因する摩擦熱によって、生体組織(実質臓器)の表面部を凝固と同時に切開する。
 そして、放電及び超音波振動によって生体組織の表面部を凝固及び切開した後に、エンドエフェクタ6は移動され、別のある部位に処置エネルギーを付与し始める。この際、エンドエフェクタ6を移動させた部位及びその近傍では、温度が低い。このため、エンドエフェクタ6を生体組織において別のある部位に移動させると、エンドエフェクタ6の温度Tが低下し、プロセッサ15は、温度Tが所定の閾値Tth以下であると判断する。したがって、生体組織において別のある部位に処置エネルギーが付与され始めると、プロセッサ15は、第1の制御モードでの出力制御に切替える。
 前述のように、温度Tに基づいて第1の制御モードと第2の制御モードとの間を切替えても、実質臓器等の生体組織を凝固及び切開する処置において、前述の実施形態等と同様に、第1の制御モードと第2の制御モードとの間が適切に切替えられる。したがって、本変形例でも、前述の実施形態等と同様の作用及び効果を有する。
 また、別のある変形例では、S104及びS110のそれぞれの処理の代わりに、プロセッサ15は、出力電流I´が流れる回路のインピーダンスとして、超音波トランスデューサ18のインピーダンスZ´を取得する。この場合、S103の処理の代わりに、プロセッサ15は、超音波トランスデューサ18に低出力(微小出力)で第2の電気エネルギーを出力させる。この際、エンドエフェクタ6を生体組織に接触又は近接させても、超音波振動によって生体組織が変性及び切開されない程度の低出力で、第2の電気エネルギーが出力される。すなわち、本変形例では、第1の制御モードにおいてUS出力が行われるが、第2の電気エネルギーの出力によってインピーダンスZ´が検出されればよく、出力源31からの出力電流I´は微小である。このため、エンドエフェクタ6での振幅及び振動速度は小さく、生体組織は超音波振動に起因して変性されず、かつ、切開されない。
 また、本変形例では、S107の処理の代わりに、プロセッサ15は、インピーダンスZ´が所定の閾値Z´thより高いか否かを判断する。この際、インピーダンスZ´が所定の閾値Z´th以下の場合は、処理はS102に戻り、プロセッサ15は、第1の制御モードでの電気エネルギーの出力制御を継続する。一方、インピーダンスZ´が所定の閾値Z´thより高い場合は、プロセッサ15は、所定の条件を満たしたと判断する。そして、処理はS108に進み、プロセッサ15は、第2の制御モードでの出力制御に切替える。
 また、本変形例では、S111の処理の代わりに、プロセッサ15は、インピーダンスZ´が所定の閾値Z´th以下であるか否かを判断する。この際、インピーダンスZ´が所定の閾値Z´thより高い場合は、処理はS108に戻り、プロセッサ15は、第2の制御モードでの電気エネルギーの出力制御を継続する。一方、インピーダンスZ´が所定の閾値Z´th以下の場合は、処理はS102に進み、プロセッサ15は、第1の制御モードでの出力制御に切替える。なお、所定の閾値Z´thは、タッチパネル17で設定されてもよく、記憶媒体16に記憶されていてもよい。また、インピーダンスZ´は、インピーダンスZと同様に、生体組織の状態に対応して変化するパラメータである。
 ここで、ジュール熱によって生体組織がある程度変性されるまでは、生体組織は軟らかいため、エンドエフェクタ6は、超音波振動によって振動し易い。このため、ジュール熱によって生体組織がある程度変性されるまでは、インピーダンスZ´は低く、インピーダンスZ´が所定の閾値Z´th以下であると判断される。一方、ジュール熱によって生体組織がある程度変性されると、生体組織は硬化するため、エンドエフェクタ6は、超音波振動によって振動し難くなる。このため、ジュール熱によって生体組織がある程度変性されると、インピーダンスZ´は上昇し、インピーダンスZ´が所定の閾値Z´thより高いと判断される。
 したがって、インピーダンスZ´に基づいて第1の制御モードと第2の制御モードとの間を切替えても、実質臓器等の生体組織を凝固及び切開する処置において、前述の実施形態等と同様に、第1の制御モードと第2の制御モードとの間が適切に切替えられる。このため、本変形例でも、前述の実施形態等と同様の作用及び効果を有する。
 また、別のある変形例では、S104の処理の代わりに、プロセッサ15は、第1の制御モードでの出力制御の継続時間Yを取得し、S110の処理の代わりに、プロセッサ15は、第2の制御モードでの出力制御の継続時間Y´を取得する。そして、S107の処理の代わりに、プロセッサ15は、継続時間Yが所定の閾値Ythより長いか否かを判断する。この際、継続時間Yが所定の閾値Yth以下の場合は、処理はS102に戻り、プロセッサ15は、第1の制御モードでの電気エネルギーの出力制御を継続する。一方、継続時間Yが所定の閾値Ythより長い場合は、プロセッサ15は、所定の条件を満たしたと判断する。そして、処理はS108に進み、プロセッサ15は、第2の制御モードでの出力制御に切替える。
 また、本変形例では、S111の処理の代わりに、プロセッサ15は、継続時間Y´が所定の閾値Y´thより長いか否かを判断する。この際、継続時間Y´が所定の閾値Y´th以下の場合は、処理はS108に戻り、プロセッサ15は、第2の制御モードでの電気エネルギーの出力制御を継続する。一方、継続時間Y´が所定の閾値Y´thより長い場合は、処理はS102に進み、プロセッサ15は、第1の制御モードでの出力制御に切替える。なお、所定の閾値Yth,Y´thのそれぞれは、タッチパネル17で設定されてもよく、記憶媒体16に記憶されていてもよい。また、ある実施例では、所定の閾値Yth,Y´thのそれぞれは、例えば0.5秒~2秒に設定される。
 本変形例でも、所定の閾値Yth,Y´thが適切に設定されることにより、実質臓器等の生体組織を凝固及び切開する処置において、前述の実施形態等と同様に、第1の制御モードと第2の制御モードとの間が適切に切替えられる。このため、本変形例でも、前述の実施形態等と同様の作用及び効果を有する。
 また、前述の実施形態等では、電源装置3が1つのみ設けられるが、ある変形例では、第1の電気エネルギーを出力する電源装置及び第2の電気エネルギーを出力する電源装置が別体である。この場合、第1の電気エネルギーを出力する電源装置には、前述の出力源21、電流検出回路25、電圧検出回路26及びA/D変換器27が設けられる。そして、第2の電気エネルギーを出力する電源装置には、前述の出力源31、電流検出回路35、電圧検出回路36及びA/D変換器37が設けられる。また、電源装置のそれぞれには、記憶媒体及び1つ以上のプロセッサが設けられる。そして、電源装置のそれぞれに設けられる1つ以上のプロセッサによって、処置システム1を制御する制御装置が形成され、前述した処理が行わる。
 また、別のある変形例では、処置具2に前述した処理を行う1つ以上のプロセッサが設けられ、処置具2に設けられる1つ以上のプロセッサによって、処置システム1を制御する制御装置が形成される。
 前述の実施形態等では、プロセッサ(15)は、第1の制御モードにおいて、クレストファクタが1.5以下の第1の電圧波形でエンドエフェクタ(6)に第1の電気エネルギーを出力させ、第2の制御モードにおいて、エンドエフェクタ(6)と生体組織との間で放電を生じさせる第2の電圧波形でエンドエフェクタ(6)に第1の電気エネルギーを出力させるとともに、エンドエフェクタ(6)において前記超音波振動に起因する摩擦熱によって生体組織を切開可能及び/又は変性可能な状態に、超音波トランスデューサ(18)に第2の電気エネルギーを出力させる。プロセッサ(15)は、第1の制御モードにおいて所定の条件を満たしたことに基づいて、第2の制御モードに切替える。
 なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。

Claims (9)

  1.  第1の電気エネルギーが供給されることにより、高周波電流を生体組織に付与可能になるエンドエフェクタと、第2の電気エネルギーが供給されることにより、超音波振動を生成し、生成した前記超音波振動を前記エンドエフェクタに伝達する超音波トランスデューサと、を備える処置具とともに用いられる制御装置であって、
     第1の制御モードでは、クレストファクタが1.5以下の第1の電圧波形で前記エンドエフェクタに前記第1の電気エネルギーを出力させ、
     第2の制御モードでは、前記エンドエフェクタと前記生体組織との間で放電を生じさせる第2の電圧波形で前記エンドエフェクタに前記第1の電気エネルギーを出力させるとともに、前記エンドエフェクタにおいて前記超音波振動に起因する摩擦熱によって前記生体組織を切開可能及び/又は変性可能な状態に、前記超音波トランスデューサに前記第2の電気エネルギーを出力させ、
     前記第1の制御モードにおいて所定の条件を満たしたことに基づいて、前記第2の制御モードに切替える、
     プロセッサを具備する制御装置。
  2.  前記プロセッサは、前記生体組織の状態に対応して変化するパラメータを取得するとともに、取得した前記パラメータに基づいて、前記所定の条件を満たしたか否かを判断する、請求項1の制御装置。
  3.  前記プロセッサは、前記パラメータとして前記高周波電流が流れる回路のインピーダンスを取得し、
     前記プロセッサは、前記インピーダンスが所定の閾値より高いことに基づいて、前記所定の条件を満たしたと判断する、
     請求項2の制御装置。
  4.  前記プロセッサは、前記所定の閾値を500Ω以上1000Ω以下の範囲で設定する、請求項3の制御装置。
  5.  前記プロセッサは、前記パラメータとして前記エンドエフェクタの温度を取得し、
     前記プロセッサは、前記温度が所定の閾値より高いことに基づいて、前記所定の条件を満たしたと判断する、
     請求項2の制御装置。
  6.  前記プロセッサは、前記パラメータとして前記超音波トランスデューサのインピーダンスを取得し、
     前記プロセッサは、前記インピーダンスが所定の閾値より高いことに基づいて、前記所定の条件を満たしたと判断する、
     請求項2の制御装置。
  7.  前記プロセッサは、前記第1の制御モードでの出力制御の継続時間が所定の閾値より長いことに基づいて、前記所定の条件を満たしたと判断する、請求項1の制御装置。
  8.  前記プロセッサは、前記第2の制御モードでの出力制御の後に、再び前記第1の制御モードでの出力制御を行う、請求項1の制御装置。
  9.  前記プロセッサは、前記第1の制御モードでの前記出力制御及び前記第2の制御モードでの前記出力制御を交互に繰返す、請求項8の制御装置。
PCT/JP2017/021941 2017-06-14 2017-06-14 制御装置 WO2018229891A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/021941 WO2018229891A1 (ja) 2017-06-14 2017-06-14 制御装置
US16/699,819 US20200100832A1 (en) 2017-06-14 2019-12-02 Treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021941 WO2018229891A1 (ja) 2017-06-14 2017-06-14 制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/699,819 Continuation US20200100832A1 (en) 2017-06-14 2019-12-02 Treatment system

Publications (1)

Publication Number Publication Date
WO2018229891A1 true WO2018229891A1 (ja) 2018-12-20

Family

ID=64659790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021941 WO2018229891A1 (ja) 2017-06-14 2017-06-14 制御装置

Country Status (2)

Country Link
US (1) US20200100832A1 (ja)
WO (1) WO2018229891A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115252049A (zh) * 2022-07-01 2022-11-01 深圳高性能医疗器械国家研究院有限公司 治疗闭塞性病变的前向爆裂波发生系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005370A (ja) * 2008-06-26 2010-01-14 Olympus Medical Systems Corp 外科手術システム
JP2012223585A (ja) * 2011-04-21 2012-11-15 Erbe Elektromedizin Gmbh 切開を改良する電気外科装置
WO2016203867A1 (ja) * 2015-06-19 2016-12-22 オリンパス株式会社 高周波処置具のための電源装置、高周波処置システム、及び高周波処置システムの作動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005370A (ja) * 2008-06-26 2010-01-14 Olympus Medical Systems Corp 外科手術システム
JP2012223585A (ja) * 2011-04-21 2012-11-15 Erbe Elektromedizin Gmbh 切開を改良する電気外科装置
WO2016203867A1 (ja) * 2015-06-19 2016-12-22 オリンパス株式会社 高周波処置具のための電源装置、高周波処置システム、及び高周波処置システムの作動方法

Also Published As

Publication number Publication date
US20200100832A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP6643482B2 (ja) エネルギー制御装置及び処置システム
US10004526B2 (en) Ultrasonic dissection system
EP2138123B1 (en) Surgical system
JP4649545B2 (ja) 手術システム及び制御方法
JP4499893B2 (ja) 電気手術装置
EP3281711A1 (en) Ultrasonic and radiofrequency energy production and control from a single power converter
JP4653259B2 (ja) 手術システム及び制御方法
US11129671B2 (en) Energy control device, treatment system and actuating method of energy control device
WO2018229891A1 (ja) 制御装置
JP6773798B2 (ja) エネルギー処置システム、処置具制御装置、及び、処置具の動作制御方法
CN108135652B (zh) 能量处置器具、处置系统和控制装置
JP4530467B2 (ja) 電気手術装置
WO2017018025A1 (ja) 電源装置の作動方法、電源装置、及び高周波処置システム
JP3989166B2 (ja) 電気手術装置
WO2017018024A1 (ja) 電源装置の作動方法、電源装置、及び高周波処置システム
JP2002306507A (ja) 手術用装置および手術用装置の異物付着防止方法
JP2005000224A (ja) 電気手術装置
JP6095878B1 (ja) 高周波処置具のための電源装置、高周波処置システム、及び高周波処置システムの作動方法
JP6129459B1 (ja) 電源装置の作動方法、電源装置、及び高周波処置システム
US12053222B2 (en) Treatment system
JP6691223B2 (ja) エネルギー制御装置及び処置システム
WO2019123520A1 (ja) 制御装置及び処置システム
WO2018016016A1 (ja) エネルギー制御装置及び処置システム
JP2002306505A (ja) 電気手術装置
JP2020114485A (ja) エネルギー制御装置及び処置システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP