Nothing Special   »   [go: up one dir, main page]

WO2018212088A1 - Air intake/exhaust structure for compressed natural gas engine - Google Patents

Air intake/exhaust structure for compressed natural gas engine Download PDF

Info

Publication number
WO2018212088A1
WO2018212088A1 PCT/JP2018/018282 JP2018018282W WO2018212088A1 WO 2018212088 A1 WO2018212088 A1 WO 2018212088A1 JP 2018018282 W JP2018018282 W JP 2018018282W WO 2018212088 A1 WO2018212088 A1 WO 2018212088A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
intake
throttle valve
valve
passage
Prior art date
Application number
PCT/JP2018/018282
Other languages
French (fr)
Japanese (ja)
Inventor
義文 長島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880032625.2A priority Critical patent/CN110637150B/en
Publication of WO2018212088A1 publication Critical patent/WO2018212088A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to an intake / exhaust structure of a compressed natural gas engine.
  • Compressed natural gas vehicles use a three-way catalyst to purify nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust (see, for example, Patent Document 1).
  • a compressed natural gas engine requires a large amount of air to be supplied to the cylinder together with fuel in order to obtain a predetermined torque. Therefore, a compressed natural gas vehicle equipped with a supercharger has a small capacity. The transient response (starting response) is improved by using the prime mover.
  • the present disclosure provides an intake / exhaust structure for a compressed natural gas engine that suppresses an increase in exhaust temperature and does not adversely affect the durability of the compressed natural gas engine while reducing the loss of the turbocharger and reducing fuel consumption deterioration.
  • the purpose is to provide.
  • An intake / exhaust structure of a compressed natural gas engine includes a compressor of a supercharger installed in an intake passage, a first throttle valve installed in the intake passage on the intake downstream side of the compressor, A bypass intake passage communicating the intake passage upstream of the compressor with the intake passage between the compressor and the first throttle valve; a second throttle valve installed in the bypass intake passage; .
  • An intake manifold connected to an intake downstream end of the intake passage, an exhaust manifold connected to an exhaust upstream end of the exhaust passage, an exhaust recirculation passage communicating the exhaust manifold with the intake manifold, It is desirable to further include an exhaust gas recirculation valve installed in the exhaust gas recirculation passage.
  • the control device opens the first throttle valve and the second throttle valve and closes the exhaust relief valve and the exhaust recirculation valve in a low rotation low load operation region, It is desirable to close the second throttle valve as the valve rises.
  • control device opens the first throttle valve and the exhaust gas recirculation valve and closes the second throttle valve and the exhaust relief valve in the low rotation and high load operation region.
  • control device opens the first throttle valve, the second throttle valve, and the exhaust gas recirculation valve and closes the exhaust relief valve in the middle and high rotation low load operation region.
  • control device opens the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve in a low, medium, and high rotation middle load operation region.
  • the control device opens the first throttle valve, the second throttle valve, and the exhaust recirculation valve and closes the exhaust relief valve in the middle / high rotation / high load operation region, thereby accelerating the intake pressure.
  • the target intake pressure according to the opening degree and the engine speed cannot be reached, it is desirable to open the exhaust relief valve so that the intake pressure reaches the target intake pressure.
  • the control device opens the first throttle valve, the second throttle valve, and the exhaust relief valve and closes the exhaust recirculation valve in a medium / high rotation / high load operation region at low and high temperatures. Is desirable.
  • an exhaust brake valve installed in the exhaust passage on the exhaust downstream side of the prime mover is further provided, and the control device also opens and closes the exhaust brake valve.
  • the control device opens the first throttle valve and the second throttle valve and closes the exhaust brake valve.
  • FIG. 8 is a diagram for explaining the operation of the intake / exhaust structure in the middle / high rotation / low load operation region.
  • FIG. 9 is a diagram summarizing the control and the movement of the compressed natural gas engine in the middle / high rotation / low load operation region.
  • FIG. 10 is a diagram for explaining the operation of the intake / exhaust structure in the low, medium and high rotation / medium load operation region.
  • FIG. 11 is a diagram summarizing the control and the movement of the compressed natural gas engine in the low, middle and high rotation / medium load operation region.
  • FIG. 12 is a diagram for explaining the operation of the intake / exhaust structure in the middle / high rotation / high load operation region.
  • an intake / exhaust structure 100 for a compressed natural gas engine includes an intake passage 101, an exhaust passage 102, an intake manifold 103, an exhaust manifold 104, Compressor 106 of supercharger 105, prime mover 107 of supercharger 105, first throttle valve 108, bypass intake passage 109, second throttle valve 110, bypass exhaust passage 111, and exhaust relief valve 112, an exhaust gas recirculation passage 113, an exhaust gas recirculation valve 114, an exhaust braking valve 115, and a control device 116.
  • the intake manifold 103 is connected to the intake downstream end of the intake passage 101 and also distributes intake air supplied to the compressed natural gas engine through the intake passage 101 to each of the plurality of cylinders 117.
  • the exhaust manifold 104 is connected to the exhaust upstream end of the exhaust passage 102 and joins exhaust exhausted from each of the plurality of cylinders 117 to the exhaust passage 102.
  • the first pressure detector 118 is installed in the intake manifold 103.
  • the first pressure detector 118 is a so-called MAP sensor, and is connected to the control device 116 to detect the absolute pressure of the intake manifold 103.
  • the absolute pressure of the intake manifold 103 detected by the first pressure detector 118 is defined as “intake manifold pressure”.
  • the supercharger 105 includes a compressor 106, a prime mover 107, and a rotating shaft 119.
  • the supercharger 105 is a so-called exhaust turbine supercharger, and the prime mover 107 is driven using the kinetic energy of the exhaust gas, and the compressor 106 is driven using the kinetic energy of the prime mover 107.
  • the air is compressed (supercharged) and supplied to each of the plurality of cylinders 117.
  • the compressor 106 is a so-called compressor and is installed in the intake passage 101.
  • the prime mover 107 is a so-called turbine and is installed in the exhaust passage 102.
  • the rotating shaft 119 connects the compressor 106 and the prime mover 107 rotatably on the same axis.
  • a three-way catalyst 120 is installed in the exhaust passage 102 on the exhaust downstream side of the prime mover 107.
  • the three-way catalyst 120 purifies nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust.
  • the first throttle valve 108 is installed in the intake passage 101 on the intake downstream side of the compressor 106 and increases or decreases the amount of intake air supplied to the intake manifold 103 through the intake passage 101 according to the opening.
  • An intercooler 121 is installed in the intake passage 101 between the compressor 106 and the first throttle valve 108.
  • the intercooler 121 is a so-called heat exchanger, and cools the air compressed and heated by the supercharger 105.
  • a second pressure detector 122 is installed in the intake passage 101 between the first throttle valve 108 and the intercooler 121.
  • the second pressure detector 122 is a so-called MAP sensor, and is connected to the control device 116 to detect the absolute pressure of the intake passage 101 between the first throttle valve 108 and the intercooler 121.
  • the absolute pressure of the intake passage 101 between the first throttle valve 108 and the intercooler 121 detected by the second pressure detector 122 is defined as “intake passage pressure”.
  • the bypass intake passage 109 is a so-called bypass intake pipe, and the intake passage 101 on the intake upstream side of the compressor 106 is provided between the compressor 106 and the first throttle valve 108, more specifically, with the intercooler 121. While communicating with the intake passage 101 between the first throttle valve 108, the intake air supplied to the intake manifold 103 through the intake passage 101 is divided into two paths.
  • the second throttle valve 110 is installed in the bypass intake passage 109 and increases or decreases the intake air supplied to the intake manifold 103 through the bypass intake passage 109 according to the opening. As a result, the second throttle valve 110 increases or decreases the intake air supplied to the compressor 106 through the intake passage 101 according to the opening degree.
  • the bypass exhaust passage 111 is a so-called bypass exhaust pipe, and communicates the exhaust passage 102 on the exhaust upstream side of the prime mover 107 with the exhaust passage 102 on the exhaust downstream side of the prime mover 107, and the exhaust discharged through the exhaust passage 102. Shunt into the path.
  • the exhaust relief valve 112 is installed in the bypass exhaust passage 111 and increases or decreases the amount of exhaust discharged through the bypass exhaust passage 111 according to the opening.
  • the exhaust relief valve 112 increases or decreases the exhaust gas supplied to the prime mover 107 as a result according to the opening degree.
  • the exhaust gas recirculation passage 113 is a so-called exhaust gas recirculation pipe, which communicates the exhaust manifold 104 with the intake manifold 103 and circulates a part of the exhaust gas to the intake air.
  • An exhaust gas recirculation cooler 123 is installed in the exhaust gas recirculation passage 113.
  • the exhaust gas recirculation cooler 123 is a so-called heat exchanger, and cools the exhaust gas recirculated to the intake air through the exhaust gas recirculation passage 113.
  • the exhaust brake valve 115 is installed in the exhaust passage 102 on the exhaust downstream side of the prime mover 107, and shuts off exhaust discharged through the exhaust passage 102 when the exhaust brake is operated, thereby increasing the braking force.
  • the control device 116 is a so-called engine control unit, and opens and closes the first throttle valve 108, the second throttle valve 110, the exhaust relief valve 112, the exhaust recirculation valve 114, and the exhaust braking valve 115.
  • the accelerator opening and the engine speed are input to the control device 116.
  • the accelerator opening is detected by an accelerator opening sensor 124.
  • the engine speed is detected by an engine speed sensor 125.
  • an operation region where the engine speed is low is defined as a “low rotation operation region” and an operation region where the engine speed is higher than the “low rotation operation region” is defined as a “high rotation operation region”.
  • An operation region between the “low rotation operation region” and the “high rotation operation region” is defined as a “medium rotation operation region”.
  • an operation region where the engine load is low is defined as a “low load operation region” and an operation region where the engine load is higher than the “low load operation region” is defined as a “high load operation region”.
  • the operation region between the “low load operation region” and the “high load operation region” is defined as the “medium load operation region”.
  • the controller 116 reduces the first throttle valve 108 so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. open.
  • the target intake manifold pressure can be set according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125.
  • the control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected by the injector according to the set pulse width, and ignited by the spark plug according to the set ignition timing.
  • the compressor 106 may become a throttle loss of the intake air.
  • the compressor 106 since the intake air is supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the bypass intake passage 109, the compressor 106 is unlikely to become a driving resistance to the prime mover 107, and the prime mover 107 (and thus the compressor 106). ) And the supercharging pressure can be easily increased.
  • the exhaust relief valve 112 and the exhaust recirculation valve 114 are closed, the exhaust loss is small, the exhaust pressure is easily increased, and the supercharging pressure is also easily increased.
  • transient response starting response
  • a small-capacity prime mover 107 since the second throttle valve 110 is closed as the supercharging pressure increases, transient response (starting response) can be improved without using a small-capacity prime mover 107.
  • the torque can be quickly started up while suppressing deterioration of fuel consumption.
  • the controller 116 when the driver greatly depresses the accelerator, the controller 116 completely opens the first throttle valve 108 so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. Open to. Further, the control device 116 completely closes the second throttle valve 110 so as to increase the torque together with the supercharging pressure.
  • the first throttle valve 108 When the first throttle valve 108 is fully opened and the second throttle valve 110 is completely closed, the first throttle valve 108 does not become a throttle loss of the intake air, and the compressor 106 is driven to generate a large amount of intake air.
  • the rotational speed of the prime mover 107 (and thus the compressor 106) is increased and the supercharging pressure is also increased. Is done.
  • the control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
  • the control device 116 closes the exhaust relief valve 112
  • the difference between the intake pressure and the exhaust pressure is reduced by increasing the exhaust pressure, and calculation is performed based on the intake manifold pressure detected by the first pressure detector 118.
  • Exhaust gas recirculation can be applied to the extent that knocking can be prevented by opening the exhaust gas recirculation valve 114 by the control device 116 in accordance with the intake air amount and the engine speed detected by the engine speed sensor 125.
  • the knocking control device When the exhaust gas recirculation is applied, the knocking control device does not make a knocking determination, so the ignition timing is not delayed, and the ignition timing can be set to an optimum value. Furthermore, exhaust temperature can be lowered by applying exhaust gas recirculation.
  • the ignition timing can be set to an optimum value, so that fuel efficiency can be improved.
  • the controller 116 reduces the first throttle valve 108 so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. open.
  • the control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
  • the compressor 106 may become a throttle loss of the intake air.
  • the control device 116 bypasses by opening the second throttle valve 110 in accordance with the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. Intake air can be supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the intake passage 109.
  • the compressor 106 since the intake air is supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the bypass intake passage 109, the compressor 106 is unlikely to become a driving resistance to the prime mover 107, and the prime mover 107 (and thus the compressor 106). ) And the supercharging pressure can be easily increased.
  • the controller 116 opens the exhaust gas recirculation valve 114 in accordance with the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Since the opening of the throttle valve 108 is small and the intake pressure is low, the difference between the intake pressure and the exhaust pressure is large, and a large amount of exhaust gas is recirculated. A large amount of exhaust gas recirculation can reduce pumping loss and improve fuel efficiency.
  • the torque can be quickly started up while suppressing deterioration of fuel consumption.
  • the control device when the driver depresses the accelerator to a medium level (accelerator opening degree of about 50%), the control device is configured to make the intake manifold pressure detected by the first pressure detector 118 coincide with the target intake manifold pressure. 116 opens the first throttle valve 108 to a medium level (about 50% opening).
  • control device 116 opens the second throttle valve 110 in a small manner according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125.
  • the compressor 106 When the first throttle valve 108 is opened moderately and the second throttle valve 110 is opened small, the compressor 106 is driven to supply intake air to each of the plurality of cylinders 117 and to each of the plurality of cylinders 117. Since it is burned as a mixture with fuel, the rotational speed of the prime mover 107 (and thus the compressor 106) is increased and the supercharging pressure is also increased.
  • the control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
  • control device 116 opens the intake manifold pressure detected by the first pressure detector 118 and the intake passage pressure detected by the second pressure detector 122 in order to open the first throttle valve 108 as much as possible (completely). In order to make them coincide, the opening degree of the second throttle valve 110 is adjusted.
  • the first throttle valve 108 is closed, so that an intake throttle loss occurs, but the intake throttle loss is reduced as much as possible.
  • the opening of the second throttle valve 110 is adjusted so that the intake manifold pressure detected by the first pressure detector 118 and the intake passage pressure detected by the second pressure detector 122 coincide with each other. The resistance of the compressor 106 due to excessive increase in the pressure is reduced.
  • the first throttle valve 108 for controlling the torque is unlikely to cause a throttle loss of the intake air, and the fuel efficiency can be improved.
  • the control device 116 performs the first throttle valve 108, the second throttle valve 110, and the exhaust gas recirculation.
  • the valve 114 is opened and the exhaust relief valve 112 is closed, and the intake pressure (the intake manifold pressure detected by the first pressure detector 118) is detected by the accelerator position sensor 124 and the engine speed sensor 125.
  • the exhaust relief valve 112 is opened so that the intake pressure reaches the target intake pressure.
  • control is performed so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure.
  • Device 116 opens first throttle valve 108 completely.
  • control device 116 opens the second throttle valve 110 in a small manner according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125.
  • the compressor 106 When the first throttle valve 108 is fully opened and the second throttle valve 110 is opened small, the compressor 106 is driven to supply intake air to each of the plurality of cylinders 117 and to each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture, the rotational speed of the prime mover 107 (and consequently the compressor 106) is increased and the supercharging pressure is also increased. Further, the control device 116 increases the exhaust pressure by closing the exhaust relief valve 112.
  • the control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
  • control device 116 knocks by opening the exhaust gas recirculation valve 114 in accordance with the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Exhaust gas recirculation can be applied to the extent that can be prevented.
  • the second throttle valve 110 When the torque is increased excessively by opening the first throttle valve 108 completely, the second throttle valve 110 is opened to release the pressure. Further, if the target torque does not reach even when the second throttle valve 110 is completely closed, the boost pressure is adjusted by adjusting the opening of the exhaust relief valve 112.
  • the exhaust manifold pressure is increased by closing the exhaust relief valve 112.
  • the exhaust kinetic energy increases as the engine speed increases, the amount of intake air sent by the compressor 106 increases when the exhaust kinetic energy is large, the intake manifold pressure increases, and the exhaust gas recirculates. Therefore, the optimum state can be obtained by opening the second throttle valve 110 and releasing the pressure.
  • the controller 116 first sets the intake manifold pressure detected by the first pressure detector 118 to coincide with the target intake manifold pressure. Open the throttle valve 108 completely.
  • the intake manifold pressure detected by the first pressure detector 118 depends on the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. Further, the control device 116 opens the second throttle valve 110 small so as to coincide with the target intake manifold pressure for stopping exhaust gas recirculation.
  • the opening of the second throttle valve 110 is adjusted.
  • the compressor 106 When the first throttle valve 108 is fully opened and the second throttle valve 110 is opened small, the compressor 106 is driven to supply intake air to each of the plurality of cylinders 117 and to each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture, the rotational speed of the prime mover 107 (and consequently the compressor 106) is increased and the supercharging pressure is also increased.
  • the control device 116 is configured to stop fuel injection according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125.
  • a pulse width for exhaust gas and an ignition timing for exhaust gas recirculation stop are set, and fuel is injected according to the set pulse width for exhaust gas recirculation stop, and ignition is performed in accordance with the set ignition timing for exhaust gas recirculation stop. At this time, knocking does not occur because the boost pressure is lowered and the retarded ignition timing is used.
  • exhaust gas recirculation cannot be applied due to the influence of coagulated water at low water temperature and reliability problems of the exhaust gas recirculation cooler 123 at high water temperature.
  • an output can be obtained with a small amount of intake air, and therefore the intake air amount is reduced by opening the exhaust relief valve 112 and the second throttle valve 110.
  • the control device 116 cuts the fuel and matches the intake manifold pressure detected by the first pressure detector 118 with the target intake manifold pressure. Opens the first throttle valve 108 and sends a small amount of intake air.
  • control device 116 increases the exhaust pressure by closing the exhaust brake valve 115, and the accelerator opening detected by the accelerator opening sensor 124 and the engine speed sensor 125 are detected so as to bypass the compressor 106 that does not rotate.
  • the control device 116 opens the second throttle valve 110 according to the engine speed. As a result, air is compressed and braking force is improved. When the temperature decreases and the pressure decreases, the braking force decreases, so the first throttle valve 108 is opened while observing the pressure.
  • the compressor 106 becomes a throttle loss of the intake air, and the intake air does not enter and the exhaust braking force becomes small.
  • the second throttle valve 110 is opened. The intake air can be sent and the exhaust braking force can be increased.
  • the compressed natural gas that reduces the loss of the turbocharger and reduces the deterioration of the fuel consumption while suppressing an increase in the exhaust temperature and hardly adversely affecting the durability of the compressed natural gas engine.
  • An engine intake / exhaust structure 100 can be provided.
  • the present disclosure can prevent the adverse effect on the durability of the compressed natural gas engine by suppressing the increase in the exhaust temperature while reducing the deterioration of the fuel consumption by reducing the loss of the supercharger. This is useful in that it can contribute to the improvement of fuel consumption and the life of the compressed natural gas engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Abstract

A problem addressed by the present invention can be solved by an air intake/exhaust structure 100 for a compressed natural gas engine, the structure being characterized by being provided with: a compressor 106 of a supercharger 105 installed in an air intake passage 101; a first throttle valve 108 installed in the air intake passage 101 on an air intake downstream side of the compressor 106; a bypass air intake passage 109 for communicating the part of the air intake passage 101 on the air intake upstream side of the compressor 106 with the part of the air intake passage 101 on the air intake downstream side of the compressor 106, which is the air intake upstream side of the first throttle valve 108; and a second throttle valve 110 installed in the bypass air intake passage 109.

Description

圧縮天然ガス機関の吸排気構造Intake and exhaust structure of compressed natural gas engine
 本開示は、圧縮天然ガス機関の吸排気構造に関する。 This disclosure relates to an intake / exhaust structure of a compressed natural gas engine.
 圧縮天然ガス自動車に於いては、排気中の窒素酸化物、炭化水素、一酸化炭素を浄化する為に三元触媒を使用している(例えば特許文献1を参照)。 Compressed natural gas vehicles use a three-way catalyst to purify nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust (see, for example, Patent Document 1).
日本国特開2017-002865号公報Japanese Unexamined Patent Publication No. 2017-002865
 三元触媒を使用し排気中の窒素酸化物、炭化水素、一酸化炭素を浄化する為に圧縮天然ガス機関をストイキ燃焼運転領域に於いて運転する必要が有る。 It is necessary to operate the compressed natural gas engine in the stoichiometric combustion region in order to purify nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust using a three-way catalyst.
 しかしながら、圧縮天然ガス機関をストイキ燃焼運転領域に於いて運転すると、燃費の悪化と排気温度が高温と成る為、圧縮天然ガス機関の耐久性に悪影響を与える虞が有る。 However, if the compressed natural gas engine is operated in the stoichiometric combustion operation region, the fuel consumption deteriorates and the exhaust temperature becomes high, which may adversely affect the durability of the compressed natural gas engine.
 特に高負荷運転領域に於いては燃費悪化を伴う燃料リッチ化を使用せず排気再循環を使用し排気温度を低下させる必要が有るが、過給機を搭載した圧縮天然ガス自動車に於いては排気圧が吸気圧と比較し低圧と成り易く排気再循環率を上昇させ難い。 Especially in the high-load operation region, it is necessary to lower the exhaust temperature by using exhaust gas recirculation without using fuel enrichment that causes fuel consumption deterioration. However, in a compressed natural gas vehicle equipped with a supercharger, The exhaust pressure tends to be lower than the intake pressure, and it is difficult to increase the exhaust gas recirculation rate.
 また、圧縮天然ガス機関はディーゼル機関と相違し所定のトルクを得る為に大量の空気を燃料と共に気筒に供給する必要が有る為、過給機を搭載した圧縮天然ガス自動車に於いては小容量の原動機を使用する事によって過渡応答性(発進応答性)を向上させている。 In addition, unlike a diesel engine, a compressed natural gas engine requires a large amount of air to be supplied to the cylinder together with fuel in order to obtain a predetermined torque. Therefore, a compressed natural gas vehicle equipped with a supercharger has a small capacity. The transient response (starting response) is improved by using the prime mover.
 しかしながら、過給機を搭載した小容量の原動機を使用すると全領域において最適にはならなく少なからず損失が発生し、高回転高負荷運転領域に於いて排気圧が高圧と成る為、排気温度が上昇する虞が有る。 However, if a small-capacity prime mover equipped with a turbocharger is used, it will not be optimal in all areas, and a considerable amount of loss will occur, and the exhaust pressure will become high in the high-rotation and high-load operation area. There is a risk of rising.
 従って、本開示は、過給機の損失を削減し燃費悪化を低減させつつ、排気温度が上昇する事を抑制し圧縮天然ガス機関の耐久性に悪影響を与え難い圧縮天然ガス機関の吸排気構造を提供する事を目的とする。 Therefore, the present disclosure provides an intake / exhaust structure for a compressed natural gas engine that suppresses an increase in exhaust temperature and does not adversely affect the durability of the compressed natural gas engine while reducing the loss of the turbocharger and reducing fuel consumption deterioration. The purpose is to provide.
 本開示による圧縮天然ガス機関の吸排気構造は、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、を備える。 An intake / exhaust structure of a compressed natural gas engine according to the present disclosure includes a compressor of a supercharger installed in an intake passage, a first throttle valve installed in the intake passage on the intake downstream side of the compressor, A bypass intake passage communicating the intake passage upstream of the compressor with the intake passage between the compressor and the first throttle valve; a second throttle valve installed in the bypass intake passage; .
 排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、を更に備える事が望ましい。 A supercharger prime mover installed in the exhaust passage, a bypass exhaust passage that connects the exhaust passage upstream of the prime mover to the exhaust passage downstream of the prime mover, and a bypass exhaust passage It is desirable to further include an exhaust relief valve.
 前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、を更に備える事が望ましい。 An intake manifold connected to an intake downstream end of the intake passage, an exhaust manifold connected to an exhaust upstream end of the exhaust passage, an exhaust recirculation passage communicating the exhaust manifold with the intake manifold, It is desirable to further include an exhaust gas recirculation valve installed in the exhaust gas recirculation passage.
 前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置を更に備える事が望ましい。 It is desirable to further include a control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve.
 前記制御装置は、低回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気逃し弁と前記排気再循環弁とを閉じ、過給圧が上昇するに連れ前記第二絞気弁を閉じていく事が望ましい。 The control device opens the first throttle valve and the second throttle valve and closes the exhaust relief valve and the exhaust recirculation valve in a low rotation low load operation region, It is desirable to close the second throttle valve as the valve rises.
 前記制御装置は、低回転高負荷運転領域に於いては、前記第一絞気弁と前記排気再循環弁とを開くと共に前記第二絞気弁と前記排気逃し弁とを閉じる事が望ましい。 It is desirable that the control device opens the first throttle valve and the exhaust gas recirculation valve and closes the second throttle valve and the exhaust relief valve in the low rotation and high load operation region.
 前記制御装置は、中高回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じる事が望ましい。 It is desirable that the control device opens the first throttle valve, the second throttle valve, and the exhaust gas recirculation valve and closes the exhaust relief valve in the middle and high rotation low load operation region.
 前記制御装置は、低中高回転中負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開く事が望ましい。 It is preferable that the control device opens the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve in a low, medium, and high rotation middle load operation region.
 前記制御装置は、中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じ、吸気圧をアクセル開度と機関回転数とに応じた目標吸気圧に到達させる事が出来ない時は吸気圧を目標吸気圧に到達させるべく前記排気逃し弁を開く事が望ましい。 The control device opens the first throttle valve, the second throttle valve, and the exhaust recirculation valve and closes the exhaust relief valve in the middle / high rotation / high load operation region, thereby accelerating the intake pressure. When the target intake pressure according to the opening degree and the engine speed cannot be reached, it is desirable to open the exhaust relief valve so that the intake pressure reaches the target intake pressure.
 前記制御装置は、低高温時の中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁とを開くと共に前記排気再循環弁を閉じる事が望ましい。 The control device opens the first throttle valve, the second throttle valve, and the exhaust relief valve and closes the exhaust recirculation valve in a medium / high rotation / high load operation region at low and high temperatures. Is desirable.
 前記原動機の排気下流側の前記排気通路に設置される排気制動弁を更に備え、前記制御装置は、前記排気制動弁も開閉する事が望ましい。 It is preferable that an exhaust brake valve installed in the exhaust passage on the exhaust downstream side of the prime mover is further provided, and the control device also opens and closes the exhaust brake valve.
 前記制御装置は、排気制動作動運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気制動弁を閉じる事が望ましい。 In the exhaust braking operation operation region, it is preferable that the control device opens the first throttle valve and the second throttle valve and closes the exhaust brake valve.
 本開示による圧縮天然ガス機関の吸排気構造によれば、過給機の損失を削減し燃費を向上させつつ、排気温度が上昇する事を抑制し圧縮天然ガス機関の耐久性に悪影響を与え難い圧縮天然ガス機関の吸排気構造を提供する事が出来る。 According to the intake / exhaust structure of a compressed natural gas engine according to the present disclosure, it is difficult to adversely affect the durability of the compressed natural gas engine by suppressing the increase in the exhaust temperature while reducing the turbocharger loss and improving the fuel efficiency. An intake / exhaust structure of a compressed natural gas engine can be provided.
図1は、本開示の実施の形態に係る圧縮天然ガス機関の吸排気構造を説明する図である。FIG. 1 is a diagram illustrating an intake / exhaust structure of a compressed natural gas engine according to an embodiment of the present disclosure. 図2は、制御装置の入出力関係を説明する図である。FIG. 2 is a diagram for explaining the input / output relationship of the control device. 図3は、運転領域を説明する図である。FIG. 3 is a diagram for explaining an operation region. 図4は、低回転低負荷運転領域に於ける吸排気構造の動作を説明する図である。FIG. 4 is a diagram for explaining the operation of the intake / exhaust structure in the low rotation / low load operation region. 図5は、低回転低負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 5 is a diagram summarizing the control and the movement of the compressed natural gas engine in the low rotation / low load operation region. 図6は、低回転高負荷運転領域に於ける吸排気構造の動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the intake / exhaust structure in the low rotation high load operation region. 図7は、低回転高負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 7 is a diagram summarizing the control and the movement of the compressed natural gas engine in the low rotation and high load operation region. 図8は、中高回転低負荷運転領域に於ける吸排気構造の動作を説明する図である。FIG. 8 is a diagram for explaining the operation of the intake / exhaust structure in the middle / high rotation / low load operation region. 図9は、中高回転低負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 9 is a diagram summarizing the control and the movement of the compressed natural gas engine in the middle / high rotation / low load operation region. 図10は、低中高回転中負荷運転領域に於ける吸排気構造の動作を説明する図である。FIG. 10 is a diagram for explaining the operation of the intake / exhaust structure in the low, medium and high rotation / medium load operation region. 図11は、低中高回転中負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 11 is a diagram summarizing the control and the movement of the compressed natural gas engine in the low, middle and high rotation / medium load operation region. 図12は、中高回転高負荷運転領域に於ける吸排気構造の動作を説明する図である。FIG. 12 is a diagram for explaining the operation of the intake / exhaust structure in the middle / high rotation / high load operation region. 図13は、中高回転高負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 13 is a diagram summarizing the control and the movement of the compressed natural gas engine in the middle / high rotation / high load operation region. 図14は、低高温時の中高回転高負荷運転領域に於ける吸排気構造の動作を説明する図である。FIG. 14 is a diagram for explaining the operation of the intake / exhaust structure in the middle / high rotation / high load operation region at low temperature and high temperature. 図15は、低高温時の中高回転高負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 15 is a diagram summarizing the control and the operation of the compressed natural gas engine in the middle / high rotation / high load operation region at low and high temperatures. 図16は、排気制動作動運転領域に於ける吸排気構造の動作を説明する図である。FIG. 16 is a diagram for explaining the operation of the intake / exhaust structure in the exhaust braking operation operation region. 図17は、排気制動作動運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。FIG. 17 is a diagram summarizing the control and the movement of the compressed natural gas engine in the exhaust braking operation region.
 以下、本開示の実施の形態を添付図面に順って説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings.
 図1及び2に示す様に、本開示の実施の形態に係る圧縮天然ガス機関の吸排気構造100は、吸気通路101と、排気通路102と、吸気多岐管103と、排気多岐管104と、過給機105の圧縮機106と、過給機105の原動機107と、第一絞気弁108と、迂回吸気通路109と、第二絞気弁110と、迂回排気通路111と、排気逃し弁112と、排気再循環通路113と、排気再循環弁114と、排気制動弁115と、制御装置116と、を備える。 As shown in FIGS. 1 and 2, an intake / exhaust structure 100 for a compressed natural gas engine according to an embodiment of the present disclosure includes an intake passage 101, an exhaust passage 102, an intake manifold 103, an exhaust manifold 104, Compressor 106 of supercharger 105, prime mover 107 of supercharger 105, first throttle valve 108, bypass intake passage 109, second throttle valve 110, bypass exhaust passage 111, and exhaust relief valve 112, an exhaust gas recirculation passage 113, an exhaust gas recirculation valve 114, an exhaust braking valve 115, and a control device 116.
 吸気通路101は、所謂、吸気管であって、複数の気筒117の夫々に吸気を供給する。排気通路102は、所謂、排気管であって、複数の気筒117の夫々から排気を排出する。吸気通路101と排気通路102は、車種に応じ種々の経路に沿い配索される。 The intake passage 101 is a so-called intake pipe and supplies intake air to each of the plurality of cylinders 117. The exhaust passage 102 is a so-called exhaust pipe, and exhausts exhaust from each of the plurality of cylinders 117. The intake passage 101 and the exhaust passage 102 are routed along various routes according to the vehicle type.
 吸気多岐管103は、吸気通路101の吸気下流端に接続されると共に吸気通路101を通じ圧縮天然ガス機関に供給される吸気を複数の気筒117の夫々に分流する。排気多岐管104は、排気通路102の排気上流端に接続されると共に複数の気筒117の夫々から排出される排気を排気通路102に合流する。 The intake manifold 103 is connected to the intake downstream end of the intake passage 101 and also distributes intake air supplied to the compressed natural gas engine through the intake passage 101 to each of the plurality of cylinders 117. The exhaust manifold 104 is connected to the exhaust upstream end of the exhaust passage 102 and joins exhaust exhausted from each of the plurality of cylinders 117 to the exhaust passage 102.
 吸気多岐管103に第一圧力検出器118が設置される。第一圧力検出器118は、所謂、MAPセンサであって、制御装置116に接続され吸気多岐管103の絶対圧を検出する。本明細書に於いては、第一圧力検出器118が検出した吸気多岐管103の絶対圧を「吸気多岐管圧」と定義する。 The first pressure detector 118 is installed in the intake manifold 103. The first pressure detector 118 is a so-called MAP sensor, and is connected to the control device 116 to detect the absolute pressure of the intake manifold 103. In this specification, the absolute pressure of the intake manifold 103 detected by the first pressure detector 118 is defined as “intake manifold pressure”.
 過給機105は、圧縮機106と、原動機107と、回転軸119と、を有する。過給機105は、所謂、排気タービン式過給機であって、排気の運動エネルギを利用し原動機107が駆動されると共に原動機107の運動エネルギを利用し圧縮機106が駆動される事によって大量の空気を圧縮(過給)し複数の気筒117の夫々に供給する。圧縮機106は、所謂、コンプレッサであって、吸気通路101に設置される。原動機107は、所謂、タービンであって、排気通路102に設置される。回転軸119は、圧縮機106と原動機107とを同軸に於いて回転自在に連結する。 The supercharger 105 includes a compressor 106, a prime mover 107, and a rotating shaft 119. The supercharger 105 is a so-called exhaust turbine supercharger, and the prime mover 107 is driven using the kinetic energy of the exhaust gas, and the compressor 106 is driven using the kinetic energy of the prime mover 107. The air is compressed (supercharged) and supplied to each of the plurality of cylinders 117. The compressor 106 is a so-called compressor and is installed in the intake passage 101. The prime mover 107 is a so-called turbine and is installed in the exhaust passage 102. The rotating shaft 119 connects the compressor 106 and the prime mover 107 rotatably on the same axis.
 原動機107の排気下流側の排気通路102に三元触媒120が設置される。三元触媒120は、排気中の窒素酸化物、炭化水素、一酸化炭素を浄化する。 A three-way catalyst 120 is installed in the exhaust passage 102 on the exhaust downstream side of the prime mover 107. The three-way catalyst 120 purifies nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust.
 第一絞気弁108は、圧縮機106の吸気下流側の吸気通路101に設置されると共に吸気通路101を通じ吸気多岐管103に供給される吸気を開度に応じ増減量する。 The first throttle valve 108 is installed in the intake passage 101 on the intake downstream side of the compressor 106 and increases or decreases the amount of intake air supplied to the intake manifold 103 through the intake passage 101 according to the opening.
 圧縮機106と第一絞気弁108との間の吸気通路101にインタクーラ121が設置される。インタクーラ121は、所謂、熱交換器であって、過給機105が圧縮し昇温した空気を冷却する。 An intercooler 121 is installed in the intake passage 101 between the compressor 106 and the first throttle valve 108. The intercooler 121 is a so-called heat exchanger, and cools the air compressed and heated by the supercharger 105.
 第一絞気弁108とインタクーラ121との間の吸気通路101に第二圧力検出器122が設置される。第二圧力検出器122は、所謂、MAPセンサであって、制御装置116に接続され第一絞気弁108とインタクーラ121との間の吸気通路101の絶対圧を検出する。本明細書に於いては、第二圧力検出器122が検出した第一絞気弁108とインタクーラ121との間の吸気通路101の絶対圧を「吸気通路圧」と定義する。 A second pressure detector 122 is installed in the intake passage 101 between the first throttle valve 108 and the intercooler 121. The second pressure detector 122 is a so-called MAP sensor, and is connected to the control device 116 to detect the absolute pressure of the intake passage 101 between the first throttle valve 108 and the intercooler 121. In this specification, the absolute pressure of the intake passage 101 between the first throttle valve 108 and the intercooler 121 detected by the second pressure detector 122 is defined as “intake passage pressure”.
 迂回吸気通路109は、所謂、迂回吸気管であって、圧縮機106の吸気上流側の吸気通路101を圧縮機106と第一絞気弁108との間、具体的に言えば、インタクーラ121と第一絞気弁108との間の吸気通路101と連通すると共に吸気通路101を通じ吸気多岐管103に供給される吸気を二経路に分流する。 The bypass intake passage 109 is a so-called bypass intake pipe, and the intake passage 101 on the intake upstream side of the compressor 106 is provided between the compressor 106 and the first throttle valve 108, more specifically, with the intercooler 121. While communicating with the intake passage 101 between the first throttle valve 108, the intake air supplied to the intake manifold 103 through the intake passage 101 is divided into two paths.
 第二絞気弁110は、迂回吸気通路109に設置されると共に迂回吸気通路109を通じ吸気多岐管103に供給される吸気を開度に応じ増減量する。尚、第二絞気弁110は、結果的に吸気通路101を通じ圧縮機106に供給される吸気を開度に応じ増減量する。 The second throttle valve 110 is installed in the bypass intake passage 109 and increases or decreases the intake air supplied to the intake manifold 103 through the bypass intake passage 109 according to the opening. As a result, the second throttle valve 110 increases or decreases the intake air supplied to the compressor 106 through the intake passage 101 according to the opening degree.
 迂回排気通路111は、所謂、迂回排気管であって、原動機107の排気上流側の排気通路102を原動機107の排気下流側の排気通路102に連通すると共に排気通路102を通じ排出される排気を二経路に分流する。 The bypass exhaust passage 111 is a so-called bypass exhaust pipe, and communicates the exhaust passage 102 on the exhaust upstream side of the prime mover 107 with the exhaust passage 102 on the exhaust downstream side of the prime mover 107, and the exhaust discharged through the exhaust passage 102. Shunt into the path.
 排気逃し弁112は、迂回排気通路111に設置されると共に迂回排気通路111を通じ排出される排気を開度に応じ増減量する。尚、排気逃し弁112は、結果的に排気通路102を通じ原動機107に供給される排気を開度に応じ増減量する。 The exhaust relief valve 112 is installed in the bypass exhaust passage 111 and increases or decreases the amount of exhaust discharged through the bypass exhaust passage 111 according to the opening. The exhaust relief valve 112 increases or decreases the exhaust gas supplied to the prime mover 107 as a result according to the opening degree.
 排気再循環通路113は、所謂、排気再循環管であって、排気多岐管104を吸気多岐管103と連通すると共に排気の一部を吸気に環流する。排気再循環通路113に排気再循環クーラ123が設置される。排気再循環クーラ123は、所謂、熱交換器であって、排気再循環通路113を通じ吸気に環流される排気を冷却する。 The exhaust gas recirculation passage 113 is a so-called exhaust gas recirculation pipe, which communicates the exhaust manifold 104 with the intake manifold 103 and circulates a part of the exhaust gas to the intake air. An exhaust gas recirculation cooler 123 is installed in the exhaust gas recirculation passage 113. The exhaust gas recirculation cooler 123 is a so-called heat exchanger, and cools the exhaust gas recirculated to the intake air through the exhaust gas recirculation passage 113.
 排気再循環弁114は、排気再循環クーラ123の環流下流側の排気再循環通路113に設置されると共に排気再循環通路113を通じ吸気に環流される排気を開度に応じ増減量する。 The exhaust gas recirculation valve 114 is installed in the exhaust gas recirculation passage 113 downstream of the exhaust gas recirculation cooler 123 and increases or decreases the amount of exhaust gas circulated to the intake air through the exhaust gas recirculation passage 113 according to the opening degree.
 排気制動弁115は、原動機107の排気下流側の排気通路102に設置され、エキゾーストブレーキ作動時に排気通路102を通じ排出される排気を遮断しブレーキ力を高める。 The exhaust brake valve 115 is installed in the exhaust passage 102 on the exhaust downstream side of the prime mover 107, and shuts off exhaust discharged through the exhaust passage 102 when the exhaust brake is operated, thereby increasing the braking force.
 制御装置116は、所謂、エンジンコントロールユニットであって、第一絞気弁108と第二絞気弁110と排気逃し弁112と排気再循環弁114と排気制動弁115とを開閉する。 The control device 116 is a so-called engine control unit, and opens and closes the first throttle valve 108, the second throttle valve 110, the exhaust relief valve 112, the exhaust recirculation valve 114, and the exhaust braking valve 115.
 尚、制御装置116にアクセル開度と機関回転数とが入力される。アクセル開度は、アクセル開度センサ124によって検出される。機関回転数は、機関回転数センサ125によって検出される。 The accelerator opening and the engine speed are input to the control device 116. The accelerator opening is detected by an accelerator opening sensor 124. The engine speed is detected by an engine speed sensor 125.
 本明細書に於いては、機関回転数が低い運転領域を「低回転運転領域」と定義すると共に機関回転数が「低回転運転領域」よりも高い運転領域を「高回転運転領域」と定義する。「低回転運転領域」と「高回転運転領域」との間の運転領域を「中回転運転領域」と定義する。 In the present specification, an operation region where the engine speed is low is defined as a “low rotation operation region” and an operation region where the engine speed is higher than the “low rotation operation region” is defined as a “high rotation operation region”. To do. An operation region between the “low rotation operation region” and the “high rotation operation region” is defined as a “medium rotation operation region”.
 同様に機関負荷が低い運転領域を「低負荷運転領域」と定義すると共に機関負荷が「低負荷運転領域」よりも高い運転領域を「高負荷運転領域」と定義する。「低負荷運転領域」と「高負荷運転領域」との間の運転領域を「中負荷運転領域」と定義する。 Similarly, an operation region where the engine load is low is defined as a “low load operation region” and an operation region where the engine load is higher than the “low load operation region” is defined as a “high load operation region”. The operation region between the “low load operation region” and the “high load operation region” is defined as the “medium load operation region”.
 尚、各運転領域を区画する境界は機関性能に応じ変化する為、本明細書に於いて各運転領域を区画する境界を特定する事はしない。 In addition, since the boundary which divides each operation area changes according to engine performance, the boundary which divides each operation area is not specified in this specification.
 [低回転低負荷運転領域に於ける吸排気構造100の動作]
 図3に示す様に、低回転低負荷運転領域Aに於いては、制御装置116は、図4及び5に示す様に、第一絞気弁108と第二絞気弁110とを開くと共に排気逃し弁112と排気再循環弁114とを閉じ、過給圧が上昇するに連れ第二絞気弁110を閉じていく。排気制動弁115は、当然に閉じている。
[Operation of Intake / Exhaust Structure 100 in Low Rotation and Low Load Operation Region]
As shown in FIG. 3, in the low rotation and low load operation region A, the control device 116 opens the first throttle valve 108 and the second throttle valve 110 as shown in FIGS. The exhaust relief valve 112 and the exhaust recirculation valve 114 are closed, and the second throttle valve 110 is closed as the supercharging pressure increases. The exhaust brake valve 115 is naturally closed.
 具体的に言えば、運転者がアクセルを小さく踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を小さく開く。 Specifically, when the driver depresses the accelerator, the controller 116 reduces the first throttle valve 108 so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. open.
 尚、目標吸気多岐管圧は、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ設定する事が出来る。 The target intake manifold pressure can be set according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125.
 第一絞気弁108を小さく開くと、少量の吸気のみが複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される。 When the first throttle valve 108 is opened to a small extent, only a small amount of intake air is supplied to each of the plurality of cylinders 117 and burned as a mixture with fuel in each of the plurality of cylinders 117.
 尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料をインジェクタによって噴射させ設定した点火時期に応じ点火プラグによって点火させる。 The control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected by the injector according to the set pulse width, and ignited by the spark plug according to the set ignition timing.
 しかしながら、負荷が低く排気が原動機107を駆動させるに足る運動エネルギを持たない為、圧縮機106が吸気の絞り損失と成る虞が有る。 However, since the load is low and the exhaust does not have enough kinetic energy to drive the prime mover 107, the compressor 106 may become a throttle loss of the intake air.
 吸排気構造100に於いては、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を開く事によって迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給する事が出来る。 In the intake / exhaust structure 100, the control device 116 bypasses by opening the second throttle valve 110 in accordance with the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. Intake air can be supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the intake passage 109.
 圧縮機106が吸気の絞り損失と成る事を抑制する事が出来る為、トルクを素早く立ち上げ排気に原動機107を駆動させるに足る運動エネルギを持たせる事が出来る。 Since it is possible to suppress the compressor 106 from becoming a throttle loss of the intake air, it is possible to quickly raise the torque and give the kinetic energy sufficient to drive the prime mover 107 to the exhaust.
 また、迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給している為、圧縮機106が原動機107に対し駆動抵抗と成り難く、原動機107(ひいては圧縮機106)の回転数を上昇させ易く、過給圧も上昇させ易い。 In addition, since the intake air is supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the bypass intake passage 109, the compressor 106 is unlikely to become a driving resistance to the prime mover 107, and the prime mover 107 (and thus the compressor 106). ) And the supercharging pressure can be easily increased.
 更に、排気逃し弁112と排気再循環弁114とを閉じている為、排気損失が小さく、排気圧を上昇させ易く、過給圧も上昇させ易い。 Furthermore, since the exhaust relief valve 112 and the exhaust recirculation valve 114 are closed, the exhaust loss is small, the exhaust pressure is easily increased, and the supercharging pressure is also easily increased.
 また、過給圧が上昇するに連れ第二絞気弁110を閉じていく為、小容量の原動機107を使用しなくても過渡応答性(発進応答性)を向上させる事が出来る。 In addition, since the second throttle valve 110 is closed as the supercharging pressure increases, transient response (starting response) can be improved without using a small-capacity prime mover 107.
 従って、吸排気構造100に於いては、燃費の悪化を抑制しながらもトルクを素早く立ち上げる事が出来る。 Therefore, in the intake / exhaust structure 100, the torque can be quickly started up while suppressing deterioration of fuel consumption.
 [低回転高負荷運転領域に於ける吸排気構造100の動作]
 図3に示す様に、低回転高負荷運転領域Bに於いては、制御装置116は、図6及び7に示す様に、第一絞気弁108と排気再循環弁114とを開くと共に第二絞気弁110と排気逃し弁112とを閉じる。
[Operation of Intake / Exhaust Structure 100 in Low Rotation and High Load Operation Area]
As shown in FIG. 3, in the low rotation and high load operation region B, the controller 116 opens the first throttle valve 108 and the exhaust gas recirculation valve 114 as shown in FIGS. The double throttle valve 110 and the exhaust relief valve 112 are closed.
 具体的に言えば、運転者がアクセルを大きく踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を完全に開く。また、過給圧と共にトルクを上昇させるべく制御装置116が第二絞気弁110を完全に閉じる。 Specifically, when the driver greatly depresses the accelerator, the controller 116 completely opens the first throttle valve 108 so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. Open to. Further, the control device 116 completely closes the second throttle valve 110 so as to increase the torque together with the supercharging pressure.
 第一絞気弁108を完全に開くと共に第二絞気弁110を完全に閉じると、第一絞気弁108が吸気の絞り損失と成らず、圧縮機106が駆動し大量の吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。 When the first throttle valve 108 is fully opened and the second throttle valve 110 is completely closed, the first throttle valve 108 does not become a throttle loss of the intake air, and the compressor 106 is driven to generate a large amount of intake air. In addition to being supplied to each of the cylinders 117 and being burned as an air-fuel mixture in each of the plurality of cylinders 117, the rotational speed of the prime mover 107 (and thus the compressor 106) is increased and the supercharging pressure is also increased. Is done.
 尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
 同時に制御装置116が排気逃し弁112を閉じる為、排気圧が上昇される事によって吸気圧と排気圧との差が小さく成り、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開く事によってノッキングを防げる程度に排気再循環を掛ける事が出来る。 At the same time, since the control device 116 closes the exhaust relief valve 112, the difference between the intake pressure and the exhaust pressure is reduced by increasing the exhaust pressure, and calculation is performed based on the intake manifold pressure detected by the first pressure detector 118. Exhaust gas recirculation can be applied to the extent that knocking can be prevented by opening the exhaust gas recirculation valve 114 by the control device 116 in accordance with the intake air amount and the engine speed detected by the engine speed sensor 125.
 排気再循環が掛かると、ノッキング制御装置がノッキング判定をしない為、点火時期が遅く成らず、点火時期を最適値に設定する事が出来る。更に、排気再循環を掛ける事によって排気温度を低下させる事も出来る。 When the exhaust gas recirculation is applied, the knocking control device does not make a knocking determination, so the ignition timing is not delayed, and the ignition timing can be set to an optimum value. Furthermore, exhaust temperature can be lowered by applying exhaust gas recirculation.
 従って、吸排気構造100に於いては、吸気の絞り損失も無く、点火時期を最適値に設定する事が出来る為、燃費を向上させる事が出来る。 Therefore, in the intake / exhaust structure 100, there is no intake throttle loss, and the ignition timing can be set to an optimum value, so that fuel efficiency can be improved.
 [中高回転低負荷運転領域に於ける吸排気構造100の動作]
 図3に示す様に、中高回転低負荷運転領域(と低回転低負荷運転領域の一部)Cに於いては、制御装置116は、図8及び9に示す様に、第一絞気弁108と第二絞気弁110と排気再循環弁114とを開くと共に排気逃し弁112を閉じる。
[Operation of the intake / exhaust structure 100 in the middle / high rotation / low load operation region]
As shown in FIG. 3, in the middle / high rotation / low load operation region (and a part of the low rotation / low load operation region) C, the controller 116 controls the first throttle valve as shown in FIGS. 108, the second throttle valve 110 and the exhaust gas recirculation valve 114 are opened, and the exhaust relief valve 112 is closed.
 具体的に言えば、運転者がアクセルを小さく踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を小さく開く。 Specifically, when the driver depresses the accelerator, the controller 116 reduces the first throttle valve 108 so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. open.
 第一絞気弁108を小さく開くと、少量の吸気のみが複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される。 When the first throttle valve 108 is opened to a small extent, only a small amount of intake air is supplied to each of the plurality of cylinders 117 and burned as a mixture with fuel in each of the plurality of cylinders 117.
 尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
 しかしながら、負荷が低く排気が原動機107を駆動させるに足る運動エネルギを持たない為、圧縮機106が吸気の絞り損失と成る虞が有る。 However, since the load is low and the exhaust does not have enough kinetic energy to drive the prime mover 107, the compressor 106 may become a throttle loss of the intake air.
 吸排気構造100に於いては、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を開く事によって迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給する事が出来る。 In the intake / exhaust structure 100, the control device 116 bypasses by opening the second throttle valve 110 in accordance with the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. Intake air can be supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the intake passage 109.
 圧縮機106が吸気の絞り損失と成る事を抑制する事が出来る為、トルクを素早く立ち上げ排気に原動機107を駆動させるに足る運動エネルギを持たせる事が出来る。 Since it is possible to suppress the compressor 106 from becoming a throttle loss of the intake air, it is possible to quickly raise the torque and give the kinetic energy sufficient to drive the prime mover 107 to the exhaust.
 また、迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給している為、圧縮機106が原動機107に対し駆動抵抗と成り難く、原動機107(ひいては圧縮機106)の回転数を上昇させ易く、過給圧も上昇させ易い。 In addition, since the intake air is supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the bypass intake passage 109, the compressor 106 is unlikely to become a driving resistance to the prime mover 107, and the prime mover 107 (and thus the compressor 106). ) And the supercharging pressure can be easily increased.
 同時に第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開くが、第一絞気弁108の開度が小さく吸気圧が低い為、吸気圧と排気圧との差が大きく、大量に排気再循環が掛かる。大量に排気再循環を掛ける事によってポンピング損失を小さくし燃費を向上させる事が出来る。 At the same time, the controller 116 opens the exhaust gas recirculation valve 114 in accordance with the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Since the opening of the throttle valve 108 is small and the intake pressure is low, the difference between the intake pressure and the exhaust pressure is large, and a large amount of exhaust gas is recirculated. A large amount of exhaust gas recirculation can reduce pumping loss and improve fuel efficiency.
 更に、排気逃し弁112を閉じている為、排気損失が小さく、排気圧を上昇させ易く、過給圧も上昇させ易い。 Furthermore, since the exhaust relief valve 112 is closed, the exhaust loss is small, the exhaust pressure is easily increased, and the supercharging pressure is also easily increased.
 従って、吸排気構造100に於いては、燃費の悪化を抑制しながらもトルクを素早く立ち上げる事が出来る。 Therefore, in the intake / exhaust structure 100, the torque can be quickly started up while suppressing deterioration of fuel consumption.
 [低中高回転中負荷運転領域に於ける吸排気構造100の動作]
 図3に示す様に、低中高回転中負荷運転領域Dに於いては、制御装置116は、図10及び11に示す様に、第一絞気弁108と第二絞気弁110と排気逃し弁112と排気再循環弁114とを開く。
[Operation of Intake / Exhaust Structure 100 in Low, Medium and High Rotation Medium Load Operation Region]
As shown in FIG. 3, in the low, middle and high rotation middle load operation region D, the control device 116, as shown in FIGS. 10 and 11, the first throttle valve 108, the second throttle valve 110, and the exhaust relief. The valve 112 and the exhaust gas recirculation valve 114 are opened.
 具体的に言えば、運転者がアクセルを中程度(アクセル開度50%程度)に踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を中程度(開度50%程度)に開く。 Specifically, when the driver depresses the accelerator to a medium level (accelerator opening degree of about 50%), the control device is configured to make the intake manifold pressure detected by the first pressure detector 118 coincide with the target intake manifold pressure. 116 opens the first throttle valve 108 to a medium level (about 50% opening).
 更に、加速力を得る為に、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を小さく開く。 Furthermore, in order to obtain acceleration force, the control device 116 opens the second throttle valve 110 in a small manner according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125.
 第一絞気弁108を中程度に開くと共に第二絞気弁110を小さく開くと、圧縮機106が駆動し吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。 When the first throttle valve 108 is opened moderately and the second throttle valve 110 is opened small, the compressor 106 is driven to supply intake air to each of the plurality of cylinders 117 and to each of the plurality of cylinders 117. Since it is burned as a mixture with fuel, the rotational speed of the prime mover 107 (and thus the compressor 106) is increased and the supercharging pressure is also increased.
 尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
 同時に第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開く。更に、アクセル開度センサ124が検出したアクセル開度に応じ排気逃し弁112を開く。 At the same time, the controller 116 opens the exhaust gas recirculation valve 114 according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Further, the exhaust relief valve 112 is opened according to the accelerator opening detected by the accelerator opening sensor 124.
 排気圧が上昇するに連れ排気再循環が掛かり、たとえ第一絞気弁108が閉じていても吸気多岐管圧が正圧に近く成り、ポンピング損失が小さく成る為、燃費を向上させる事が出来る。 As the exhaust pressure rises, exhaust gas recirculation is applied. Even if the first throttle valve 108 is closed, the intake manifold pressure becomes close to positive pressure, and the pumping loss is reduced, so that fuel consumption can be improved. .
 また、制御装置116は、第一絞気弁108を極力(完全に)開くべく、且つ第一圧力検出器118が検出した吸気多岐管圧と第二圧力検出器122が検出した吸気通路圧を一致させるべく、第二絞気弁110の開度を調整する。 Further, the control device 116 opens the intake manifold pressure detected by the first pressure detector 118 and the intake passage pressure detected by the second pressure detector 122 in order to open the first throttle valve 108 as much as possible (completely). In order to make them coincide, the opening degree of the second throttle valve 110 is adjusted.
 即ち、圧縮機106が送り込む吸気量が圧縮天然ガス機関の必要吸気量を超えた場合に第一絞気弁108を閉じていく為、吸気の絞り損失が発生するが、吸気の絞り損失を極力無くす様に、第一圧力検出器118が検出した吸気多岐管圧と第二圧力検出器122が検出した吸気通路圧を一致させるべく第二絞気弁110の開度を調整し、過給圧の上昇し過ぎに伴う圧縮機106の抵抗を低減させる。 That is, when the intake air amount fed by the compressor 106 exceeds the required intake air amount of the compressed natural gas engine, the first throttle valve 108 is closed, so that an intake throttle loss occurs, but the intake throttle loss is reduced as much as possible. In order to eliminate the pressure, the opening of the second throttle valve 110 is adjusted so that the intake manifold pressure detected by the first pressure detector 118 and the intake passage pressure detected by the second pressure detector 122 coincide with each other. The resistance of the compressor 106 due to excessive increase in the pressure is reduced.
 従って、吸排気構造100に於いては、トルクを制御する第一絞気弁108が吸気の絞り損失と成り難く、燃費を向上させる事が出来る。 Therefore, in the intake / exhaust structure 100, the first throttle valve 108 for controlling the torque is unlikely to cause a throttle loss of the intake air, and the fuel efficiency can be improved.
 [中高回転高負荷運転領域に於ける吸排気構造100の動作]
 図3に示す様に、中高回転高負荷運転領域Eに於いては、制御装置116は、図12及び13に示す様に、第一絞気弁108と第二絞気弁110と排気再循環弁114とを開くと共に排気逃し弁112を閉じ、吸気圧(第一圧力検出器118が検出した吸気多岐管圧)をアクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じた目標吸気圧に到達させる事が出来ない時は吸気圧を目標吸気圧に到達させるべく排気逃し弁112を開く。
[Operation of Intake / Exhaust Structure 100 in Medium / High Speed / High Load Operation Area]
As shown in FIG. 3, in the middle / high rotation / high load operation region E, as shown in FIGS. 12 and 13, the control device 116 performs the first throttle valve 108, the second throttle valve 110, and the exhaust gas recirculation. The valve 114 is opened and the exhaust relief valve 112 is closed, and the intake pressure (the intake manifold pressure detected by the first pressure detector 118) is detected by the accelerator position sensor 124 and the engine speed sensor 125. When it is impossible to reach the target intake pressure according to the engine speed, the exhaust relief valve 112 is opened so that the intake pressure reaches the target intake pressure.
 具体的に言えば、運転者がアクセルを大きく(例えば、アクセル開度70%以上に)踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を完全に開く。 Specifically, when the driver depresses the accelerator greatly (for example, the accelerator opening is 70% or more), control is performed so that the intake manifold pressure detected by the first pressure detector 118 matches the target intake manifold pressure. Device 116 opens first throttle valve 108 completely.
 更に、加速力を得る為に、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を小さく開く。 Furthermore, in order to obtain acceleration force, the control device 116 opens the second throttle valve 110 in a small manner according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125.
 第一絞気弁108を完全に開くと共に第二絞気弁110を小さく開くと、圧縮機106が駆動し吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。更に、制御装置116が排気逃し弁112を閉じる事によって排気圧を上昇させる。 When the first throttle valve 108 is fully opened and the second throttle valve 110 is opened small, the compressor 106 is driven to supply intake air to each of the plurality of cylinders 117 and to each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture, the rotational speed of the prime mover 107 (and consequently the compressor 106) is increased and the supercharging pressure is also increased. Further, the control device 116 increases the exhaust pressure by closing the exhaust relief valve 112.
 尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 determines the fuel injection pulse width and ignition timing according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And fuel is injected according to the set pulse width and ignited according to the set ignition timing.
 同時に第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開く事によってノッキングを防げる程度に排気再循環を掛ける事が出来る。 At the same time, the control device 116 knocks by opening the exhaust gas recirculation valve 114 in accordance with the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Exhaust gas recirculation can be applied to the extent that can be prevented.
 排気再循環が掛かると、ノッキング制御装置がノッキング判定をせず、リタードしない。また、排気再循環が掛かり燃焼速度が遅くなる為、進角ができ、燃料リッチ化せずとも、排気温度が上昇しない。即ち、燃料の消費を抑制する事が出来る。 When the exhaust gas recirculation is applied, the knocking control device does not make a knocking determination and does not retard. Further, since exhaust gas recirculation is applied and the combustion speed becomes slow, the advance angle can be made, and the exhaust gas temperature does not rise even if the fuel is not enriched. That is, fuel consumption can be suppressed.
 尚、第一絞気弁108を完全に開く事によってトルクが上がり過ぎた場合は、第二絞気弁110を開き圧力を逃がす。更に、第二絞気弁110を完全に閉じても目標のトルクに成らない場合は、排気逃し弁112の開度を調整する事によって過給圧を調整する。 When the torque is increased excessively by opening the first throttle valve 108 completely, the second throttle valve 110 is opened to release the pressure. Further, if the target torque does not reach even when the second throttle valve 110 is completely closed, the boost pressure is adjusted by adjusting the opening of the exhaust relief valve 112.
 以上の様に、中高回転高負荷運転領域に於いては排気温度が高温と成り、排気温度を低下させる為に排気再循環率を上昇させる必要が有るが、吸気多岐管圧と排気多岐管圧との差によって排気再循環を掛ける為、排気逃し弁112を閉じる事によって排気多岐管圧を上昇させる。 As described above, in the middle / high rotation / high load operation region, the exhaust gas temperature becomes high, and it is necessary to increase the exhaust gas recirculation rate in order to lower the exhaust gas temperature. Therefore, the exhaust manifold pressure is increased by closing the exhaust relief valve 112.
 しかしながら、機関回転数の上昇と共に排気の運動エネルギが大きく成る為、排気の運動エネルギが大きい状態に於いては圧縮機106が送り込む吸気量も多く成り、吸気多岐管圧が上昇し、排気再循環が掛かり難く成る為、第二絞気弁110を開き圧力を逃がす事によって最適状態とする事が出来る。 However, since the exhaust kinetic energy increases as the engine speed increases, the amount of intake air sent by the compressor 106 increases when the exhaust kinetic energy is large, the intake manifold pressure increases, and the exhaust gas recirculates. Therefore, the optimum state can be obtained by opening the second throttle valve 110 and releasing the pressure.
 [低高温時の中高回転高負荷運転領域に於ける吸排気構造100の動作]
 低高温時の中高回転高負荷運転領域に於いては、制御装置116は、図14及び15に示す様に、第一絞気弁108と第二絞気弁110と排気逃し弁112とを開くと共に排気再循環弁114を閉じる。
[Operation of Intake / Exhaust Structure 100 in Medium / High Speed / High Load Operation Region at Low Temperature]
In the middle / high rotation / high load operation region at the time of low temperature and high temperature, the control device 116 opens the first throttle valve 108, the second throttle valve 110, and the exhaust relief valve 112 as shown in FIGS. At the same time, the exhaust gas recirculation valve 114 is closed.
 具体的に言えば、冷却水の水温が低い又は異常に高い場合は、排気再循環装置が故障しやすくなる為、排気再循環制御を停止し、排気再循環弁114を完全に閉じている。従って、運転者がアクセルを大きく(例えば、アクセル開度70%以上に)踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を完全に開く。 Specifically, when the coolant temperature is low or abnormally high, the exhaust gas recirculation device is likely to break down, so the exhaust gas recirculation control is stopped and the exhaust gas recirculation valve 114 is completely closed. Accordingly, when the driver depresses the accelerator greatly (for example, the accelerator opening degree is 70% or more), the controller 116 first sets the intake manifold pressure detected by the first pressure detector 118 to coincide with the target intake manifold pressure. Open the throttle valve 108 completely.
 更に、加速力を得る為に、第一圧力検出器118が検出した吸気多岐管圧を、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じた排気再循環停止時用目標吸気多岐管圧と一致させるべく制御装置116が第二絞気弁110を小さく開く。 Further, in order to obtain an acceleration force, the intake manifold pressure detected by the first pressure detector 118 depends on the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. Further, the control device 116 opens the second throttle valve 110 small so as to coincide with the target intake manifold pressure for stopping exhaust gas recirculation.
 また、第一圧力検出器118が検出した吸気多岐管圧が排気再循環停止時用目標吸気多岐管圧に到達しない時は、第二絞気弁110の開度を調整する。 Further, when the intake manifold pressure detected by the first pressure detector 118 does not reach the target intake manifold pressure for stopping exhaust gas recirculation, the opening of the second throttle valve 110 is adjusted.
 第一絞気弁108を完全に開くと共に第二絞気弁110を小さく開くと、圧縮機106が駆動し吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。 When the first throttle valve 108 is fully opened and the second throttle valve 110 is opened small, the compressor 106 is driven to supply intake air to each of the plurality of cylinders 117 and to each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture, the rotational speed of the prime mover 107 (and consequently the compressor 106) is increased and the supercharging pressure is also increased.
 尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射の排気再循環停止時用パルス幅と排気再循環停止時用点火時期とを設定すると共に設定した排気再循環停止時用パルス幅に応じ燃料を噴射させ設定した排気再循環停止時用点火時期に応じ点火させる。この時、過給圧を低下させると共にリタードした点火時期を使用する為、ノッキングが発生しない。 The control device 116 is configured to stop fuel injection according to the intake air amount calculated based on the intake manifold pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. A pulse width for exhaust gas and an ignition timing for exhaust gas recirculation stop are set, and fuel is injected according to the set pulse width for exhaust gas recirculation stop, and ignition is performed in accordance with the set ignition timing for exhaust gas recirculation stop. At this time, knocking does not occur because the boost pressure is lowered and the retarded ignition timing is used.
 尚、排気再循環が掛からず、排気逃し弁112を完全に開いてもトルクが出過ぎる為、第二絞気弁110を開き第一絞気弁108が吸気の絞り損失と成らない様に圧力を逃がす。この時、排気再循環が無い為、ノッキングを回避する為にリタードする。タイミングリタードによって排気温度が上昇し過ぎない様に燃料を増量し排気温度を低下させる。 Since exhaust gas recirculation is not applied and torque is excessively generated even when the exhaust relief valve 112 is fully opened, the second throttle valve 110 is opened, and the pressure is set so that the first throttle valve 108 does not cause intake throttle loss. Let it go. At this time, since there is no exhaust gas recirculation, retard is performed to avoid knocking. The amount of fuel is increased and the exhaust temperature is lowered so that the exhaust temperature does not rise too much due to the timing retard.
 以上の様に、低水温時は凝固水の影響、高水温時は排気再循環クーラ123の信頼性の問題から排気再循環を掛ける事が出来ない。排気再循環を使用する事が出来ない場合は、少量の吸気量によって出力を得る事が出来る為、排気逃し弁112と第二絞気弁110とを開く事によって吸気量を減らす様にする。 As described above, exhaust gas recirculation cannot be applied due to the influence of coagulated water at low water temperature and reliability problems of the exhaust gas recirculation cooler 123 at high water temperature. When exhaust gas recirculation cannot be used, an output can be obtained with a small amount of intake air, and therefore the intake air amount is reduced by opening the exhaust relief valve 112 and the second throttle valve 110.
 [排気制動作動運転領域に於ける吸排気構造100の動作]
 図3に示す様に、排気制動作動運転領域Fに於いては、制御装置116は、図16及び17に示す様に、第一絞気弁108と第二絞気弁110とを開くと共に排気制動弁115を閉じる。
[Operation of Intake / Exhaust Structure 100 in Exhaust Braking Operation Operation Area]
As shown in FIG. 3, in the exhaust braking operation region F, the control device 116 opens the first throttle valve 108 and the second throttle valve 110 and exhausts as shown in FIGS. The brake valve 115 is closed.
 具体的に言えば、運転者が排気制動スイッチを入れアクセルを抜くと、燃料をカットすると共に第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を小さく開き少量の吸気を送り込む。 Specifically, when the driver turns on the exhaust brake switch and removes the accelerator, the control device 116 cuts the fuel and matches the intake manifold pressure detected by the first pressure detector 118 with the target intake manifold pressure. Opens the first throttle valve 108 and sends a small amount of intake air.
 更に、制御装置116が排気制動弁115を閉じる事によって排気圧を上昇させ、回転しない圧縮機106を迂回させるべく、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を開く。以上によって空気を圧縮し制動力を向上させる。温度が低下し圧力も低下すると制動力が下がる為、圧力を見ながら第一絞気弁108を開く。 Further, the control device 116 increases the exhaust pressure by closing the exhaust brake valve 115, and the accelerator opening detected by the accelerator opening sensor 124 and the engine speed sensor 125 are detected so as to bypass the compressor 106 that does not rotate. The control device 116 opens the second throttle valve 110 according to the engine speed. As a result, air is compressed and braking force is improved. When the temperature decreases and the pressure decreases, the braking force decreases, so the first throttle valve 108 is opened while observing the pressure.
 排気制動が不要と成ったら排気制動弁115を開き通常の制御に戻る。即ち、機関回転数が燃料復帰回転数未満と成ったら排気制動弁115を開くと共に燃料の噴射を再開する。 When exhaust braking is no longer necessary, the exhaust brake valve 115 is opened to return to normal control. That is, when the engine speed is less than the fuel return speed, the exhaust brake valve 115 is opened and fuel injection is resumed.
 以上の様に、排気制動作動時は圧縮機106が吸気の絞り損失と成り、吸気が入り込まず排気制動力が小さく成るが、吸排気構造100に於いては、第二絞気弁110を開く事によって吸気を送り込み、排気制動力を上昇させる事が出来る。 As described above, when the exhaust braking operation is performed, the compressor 106 becomes a throttle loss of the intake air, and the intake air does not enter and the exhaust braking force becomes small. However, in the intake and exhaust structure 100, the second throttle valve 110 is opened. The intake air can be sent and the exhaust braking force can be increased.
 以上に説明した様に、本開示によって、過給機の損失を削減し燃費悪化を低減させつつ、排気温度が上昇する事を抑制し圧縮天然ガス機関の耐久性に悪影響を与え難い圧縮天然ガス機関の吸排気構造100を提供する事が出来る。 As described above, according to the present disclosure, the compressed natural gas that reduces the loss of the turbocharger and reduces the deterioration of the fuel consumption while suppressing an increase in the exhaust temperature and hardly adversely affecting the durability of the compressed natural gas engine. An engine intake / exhaust structure 100 can be provided.
 本出願は、2017年05月16日付で出願された日本国特許出願(特願2017-097373)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on May 16, 2017 (Japanese Patent Application No. 2017-097373), the contents of which are incorporated herein by reference.
 本開示は、過給機の損失を削減して燃費の悪化を低減させつつ、排気温度が上昇することを抑制することで圧縮天然ガス機関の耐久性に対する悪影響が生じることを防止することができるという効果を奏し、圧縮天然ガス機関の燃費向上と長寿命化に貢献することができるという点において有用である。 The present disclosure can prevent the adverse effect on the durability of the compressed natural gas engine by suppressing the increase in the exhaust temperature while reducing the deterioration of the fuel consumption by reducing the loss of the supercharger. This is useful in that it can contribute to the improvement of fuel consumption and the life of the compressed natural gas engine.
100 吸排気構造
101 吸気通路
102 排気通路
103 吸気多岐管
104 排気多岐管
105 過給機
106 圧縮機
107 原動機
108 第一絞気弁
109 迂回吸気通路
110 第二絞気弁
111 迂回排気通路
112 排気逃し弁
113 排気再循環通路
114 排気再循環弁
115 排気制動弁
116 制御装置
117 気筒
118 第一圧力検出器
119 回転軸
120 三元触媒
121 インタクーラ
122 第二圧力検出器
123 排気再循環クーラ
124 アクセル開度センサ
125 機関回転数センサ
A 低回転低負荷運転領域
B 低回転高負荷運転領域
C 中高回転低負荷運転領域
D 低中高回転中負荷運転領域
E 中高回転高負荷運転領域
F 排気制動作動運転領域
100 Intake / Exhaust Structure 101 Intake Passage 102 Exhaust Passage 103 Intake Manifold 104 Exhaust Manifold 105 Supercharger 106 Compressor 107 Motor 108 First Throttle Valve 109 Bypass Intake Passage 110 Second Throttle Valve 111 Bypass Exhaust Passage 112 Exhaust Escape Valve 113 Exhaust gas recirculation passage 114 Exhaust gas recirculation valve 115 Exhaust brake valve 116 Controller 117 Cylinder 118 First pressure detector 119 Rotating shaft 120 Three-way catalyst 121 Intercooler 122 Second pressure detector 123 Exhaust gas recirculation cooler 124 Accelerator opening Sensor 125 Engine speed sensor A Low rotation / low load operation region B Low rotation / high load operation region C Medium / high rotation / low load operation region D Low / high / high rotation / medium load operation region E Medium / high rotation / high load operation region F Exhaust braking operation region

Claims (12)

  1.  吸気通路に設置される過給機の圧縮機と、
     前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、
     前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、
     前記迂回吸気通路に設置される第二絞気弁と、
     を備える
     事を特徴とする圧縮天然ガス機関の吸排気構造。
    A turbocharger compressor installed in the intake passage;
    A first throttle valve installed in the intake passage on the intake downstream side of the compressor;
    A bypass intake passage communicating the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve;
    A second throttle valve installed in the bypass intake passage;
    A compressed natural gas engine intake and exhaust structure characterized by comprising
  2.  排気通路に設置される過給機の原動機と、
     前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、
     前記迂回排気通路に設置される排気逃し弁と、
     を更に備える
     請求項1に記載の圧縮天然ガス機関の吸排気構造。
    A prime mover for the turbocharger installed in the exhaust passage;
    A bypass exhaust passage communicating the exhaust passage upstream of the prime mover with the exhaust passage downstream of the prime mover;
    An exhaust relief valve installed in the bypass exhaust passage;
    The intake / exhaust structure for a compressed natural gas engine according to claim 1.
  3.  前記吸気通路の吸気下流端に接続される吸気多岐管と、
     前記排気通路の排気上流端に接続される排気多岐管と、
     前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、
     前記排気再循環通路に設置される排気再循環弁と、
     を更に備える
     請求項2に記載の圧縮天然ガス機関の吸排気構造。
    An intake manifold connected to an intake downstream end of the intake passage;
    An exhaust manifold connected to the exhaust upstream end of the exhaust passage;
    An exhaust recirculation passage communicating the exhaust manifold with the intake manifold;
    An exhaust gas recirculation valve installed in the exhaust gas recirculation passage;
    The intake / exhaust structure for a compressed natural gas engine according to claim 2.
  4.  前記第一絞気弁の開閉状態と前記第二絞気弁の開閉状態と前記排気逃し弁の開閉状態と前記排気再循環弁の開閉状態とを制御する制御装置を更に備える
     請求項3に記載の圧縮天然ガス機関の吸排気構造。
    The control apparatus which controls the open / close state of the first throttle valve, the open / close state of the second throttle valve, the open / close state of the exhaust relief valve, and the open / close state of the exhaust recirculation valve is further provided. Compressed natural gas engine intake and exhaust structure.
  5.  前記制御装置は、低回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気逃し弁と前記排気再循環弁とを閉じ、過給圧が上昇するに連れ前記第二絞気弁を閉じていく制御を行う
     請求項4に記載の圧縮天然ガス機関の吸排気構造。
    The control device opens the first throttle valve and the second throttle valve and closes the exhaust relief valve and the exhaust recirculation valve in a low rotation low load operation region, The intake / exhaust structure of the compressed natural gas engine according to claim 4, wherein the second throttle valve is controlled to close as the engine rises.
  6.  前記制御装置は、低回転高負荷運転領域に於いては、前記第一絞気弁と前記排気再循環弁とを開くと共に前記第二絞気弁と前記排気逃し弁とを閉じる制御を行う
     請求項4又は5に記載の圧縮天然ガス機関の吸排気構造。
    The control device performs control to open the first throttle valve and the exhaust recirculation valve and to close the second throttle valve and the exhaust relief valve in a low rotation and high load operation region. Item 6. The intake / exhaust structure of the compressed natural gas engine according to Item 4 or 5.
  7.  前記制御装置は、中高回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じる制御を行う
     請求項4乃至6の何れか一項に記載の圧縮天然ガス機関の吸排気構造。
    The control device performs control for opening the first throttle valve, the second throttle valve, and the exhaust recirculation valve and closing the exhaust relief valve in a middle and high rotation low load operation region. The intake / exhaust structure of a compressed natural gas engine according to any one of 4 to 6.
  8.  前記制御装置は、低中高回転中負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開く制御を行う
     請求項4乃至7の何れか一項に記載の圧縮天然ガス機関の吸排気構造。
    5. The control device performs control to open the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve in a low, medium, and high rotation middle load operation region. An intake / exhaust structure for a compressed natural gas engine according to any one of claims 1 to 7.
  9.  前記制御装置は、中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じ、吸気圧をアクセル開度と機関回転数とに応じた目標吸気圧に到達させる事が出来ない時は吸気圧を目標吸気圧に到達させるべく前記排気逃し弁を開く制御を行う
     請求項4乃至8の何れか一項に記載の圧縮天然ガス機関の吸排気構造。
    The control device opens the first throttle valve, the second throttle valve, and the exhaust recirculation valve and closes the exhaust relief valve in the middle / high rotation / high load operation region, thereby accelerating the intake pressure. The control for opening the exhaust relief valve is performed so that the intake pressure reaches the target intake pressure when the target intake pressure according to the opening degree and the engine speed cannot be reached. The intake / exhaust structure of the compressed natural gas engine according to the item.
  10.  前記制御装置は、低高温時の中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁とを開くと共に前記排気再循環弁を閉じる制御を行う
     請求項4乃至9の何れか一項に記載の圧縮天然ガス機関の吸排気構造。
    The control device is configured to open the first throttle valve, the second throttle valve, and the exhaust relief valve and close the exhaust recirculation valve in a medium / high rotation / high load operation region at low and high temperatures. The intake / exhaust structure for a compressed natural gas engine according to any one of claims 4 to 9.
  11.  前記原動機の排気下流側の前記排気通路に設置される排気制動弁を更に備え、
     前記制御装置は、前記排気制動弁の開閉状態を制御する
     請求項4乃至10の何れか一項に記載の圧縮天然ガス機関の吸排気構造。
    An exhaust brake valve installed in the exhaust passage on the exhaust downstream side of the prime mover;
    The intake / exhaust structure of a compressed natural gas engine according to any one of claims 4 to 10, wherein the control device controls an open / close state of the exhaust brake valve.
  12.  前記制御装置は、排気制動作動運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気制動弁を閉じる制御を行う
     請求項11に記載の圧縮天然ガス機関の吸排気構造。
    The compressed natural gas according to claim 11, wherein the control device performs control to open the first throttle valve and the second throttle valve and to close the exhaust brake valve in an exhaust braking operation operation region. Engine intake / exhaust structure.
PCT/JP2018/018282 2017-05-16 2018-05-11 Air intake/exhaust structure for compressed natural gas engine WO2018212088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880032625.2A CN110637150B (en) 2017-05-16 2018-05-11 Air intake and exhaust structure of compressed natural gas engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017097373A JP6907691B2 (en) 2017-05-16 2017-05-16 Intake and exhaust structure of compressed natural gas engine
JP2017-097373 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018212088A1 true WO2018212088A1 (en) 2018-11-22

Family

ID=64274498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018282 WO2018212088A1 (en) 2017-05-16 2018-05-11 Air intake/exhaust structure for compressed natural gas engine

Country Status (3)

Country Link
JP (1) JP6907691B2 (en)
CN (1) CN110637150B (en)
WO (1) WO2018212088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404599A (en) * 2021-06-28 2021-09-17 山西兰花大宁发电有限公司 Control method of gas internal combustion engine set

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172577B2 (en) * 2018-12-26 2022-11-16 マツダ株式会社 Intake air temperature control device for supercharged engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220462A (en) * 1998-11-27 2000-08-08 Mazda Motor Corp Control device for engine with turbo supercharger
JP2010043579A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Internal combustion engine with turbocharger
JP2014015922A (en) * 2012-07-11 2014-01-30 Hitachi Automotive Systems Ltd Control device for internal combustion engine
US20150240707A1 (en) * 2014-02-25 2015-08-27 Ford Global Technologies, Llc Wastegate valve seat position determination
WO2015181973A1 (en) * 2014-05-30 2015-12-03 日産自動車株式会社 Internal combustion engine and method for controlling internal combustion engine
JP2016098653A (en) * 2014-11-18 2016-05-30 三菱自動車工業株式会社 Engine with variable capacity supercharger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103083A (en) * 1996-09-27 1998-04-21 Hino Motors Ltd Exhaust braking device of gas engine
JP2007211710A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Controller for internal combustion engine
US8931463B2 (en) * 2010-06-07 2015-01-13 Alset Ip S A R.L. Bi-fuel engine with increased power
JP5912240B2 (en) * 2010-10-26 2016-04-27 いすゞ自動車株式会社 Exhaust gas recirculation device
US9243552B2 (en) * 2013-06-10 2016-01-26 Ford Global Technologies, Llc Method for determining wastegate valve lift

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220462A (en) * 1998-11-27 2000-08-08 Mazda Motor Corp Control device for engine with turbo supercharger
JP2010043579A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Internal combustion engine with turbocharger
JP2014015922A (en) * 2012-07-11 2014-01-30 Hitachi Automotive Systems Ltd Control device for internal combustion engine
US20150240707A1 (en) * 2014-02-25 2015-08-27 Ford Global Technologies, Llc Wastegate valve seat position determination
WO2015181973A1 (en) * 2014-05-30 2015-12-03 日産自動車株式会社 Internal combustion engine and method for controlling internal combustion engine
JP2016098653A (en) * 2014-11-18 2016-05-30 三菱自動車工業株式会社 Engine with variable capacity supercharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404599A (en) * 2021-06-28 2021-09-17 山西兰花大宁发电有限公司 Control method of gas internal combustion engine set
CN113404599B (en) * 2021-06-28 2022-08-05 山西兰花大宁发电有限公司 Control method of gas internal combustion engine set

Also Published As

Publication number Publication date
CN110637150B (en) 2021-08-03
JP2018193899A (en) 2018-12-06
CN110637150A (en) 2019-12-31
JP6907691B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US9115639B2 (en) Supercharged internal combustion engine having exhaust-gas recirculation arrangement and method for operating an internal combustion engine
US8001778B2 (en) Turbocharged engine control operation with adjustable compressor bypass
US9695740B2 (en) Methods and systems for boost control
JP2005146893A (en) Internal combustion engine and control method of internal combustion engine
US20160290220A1 (en) Exhaust-gas-turbocharged internal combustion engine having at least two turbines and switchable outlet openings, and method for operating an internal combustion engine of said type
JP5978662B2 (en) Control device for diesel engine with turbocharger
US11008985B2 (en) Control device for internal combustion engine
JP6406417B1 (en) Turbocharged engine
WO2018212088A1 (en) Air intake/exhaust structure for compressed natural gas engine
JP6763488B2 (en) Control method and control device for internal combustion engine for vehicles
JP6406301B2 (en) Engine control device
JP2007278066A (en) Control device for internal combustion engine
JP2004124744A (en) Turbocharged engine
JP5689316B2 (en) Gasoline engine with low-pressure exhaust gas recirculation circuit
WO2019117026A1 (en) Supercharger-equipped engine
JP2004316558A (en) Control device of supercharger with electric motor
JP6340629B2 (en) Hybrid vehicle drive system
JP6406158B2 (en) Engine control device
US10890129B1 (en) High pressure loop exhaust gas recirculation and twin scroll turbocharger flow control
JP2006299892A (en) Internal combustion engine with supercharger
JP2019105190A (en) Engine with supercharger
JP2018131924A (en) Control method of internal combustion engine and control device of internal combustion engine
JP5817634B2 (en) Control device for internal combustion engine
JP2019127849A (en) Catalyst warming-up control method and catalyst warming-up control device for internal combustion engine
WO2017115689A1 (en) Gas engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802532

Country of ref document: EP

Kind code of ref document: A1