Nothing Special   »   [go: up one dir, main page]

JP2007211710A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2007211710A
JP2007211710A JP2006033486A JP2006033486A JP2007211710A JP 2007211710 A JP2007211710 A JP 2007211710A JP 2006033486 A JP2006033486 A JP 2006033486A JP 2006033486 A JP2006033486 A JP 2006033486A JP 2007211710 A JP2007211710 A JP 2007211710A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033486A
Other languages
Japanese (ja)
Inventor
Hirohiko Ota
裕彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006033486A priority Critical patent/JP2007211710A/en
Publication of JP2007211710A publication Critical patent/JP2007211710A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for an internal combustion engine for surely supplying a start motor with electric power required for starting the internal combustion engine that can prevent startability of the internal engine from degrading. <P>SOLUTION: The controller is equipped with the start motor 5, a battery 6 connected with the start motor 5 and a turbosupercharger 8 drivable by an electric motor 8c connected with the battery 6 in which a compressor 8a is provided at an air intake passage 3 of the internal combustion engine 1 started by the start motor 5 and a turbine 8b is provided at an exhaust passage 4 of the internal combustion engine 1. An ECU 30 actuates the start motor 5 at the time of starting the internal combustion engine 1 and controls action of the electric motor 8c so that intake air is supercharged by the turbosupercharger 8. In the case that a factor to degrade startability of the internal combustion engine 1 when starting the internal combustion engine is arisen, the ECU 30 controls action of the electric motor 8c so as to limit supercharge of the intake air by the turbosupercharger 8 when starting the internal combustion engine 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電動モータにて駆動可能な過給機を備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine including a supercharger that can be driven by an electric motor.

エンジンの始動時に回転電機(電動モータ)によりターボ過給機を駆動して過給気圧を上昇させ、シリンダ内の圧縮圧力を増大させるエンジンの始動装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2、3が存在する。   2. Description of the Related Art An engine starter that drives a turbocharger with a rotating electric machine (electric motor) to increase the supercharging pressure and increase the compression pressure in the cylinder when starting the engine is known (see Patent Document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特許第2775195号公報Japanese Patent No. 2775195 特開2004−76687号公報JP 2004-76687 A 実開平5−69317号公報Japanese Utility Model Publication No. 5-69317

一般に内燃機関は始動モータによるクランキングによって始動されるが、内燃機関の始動時に始動モータによって消費される電力を考慮せずに電動モータでターボ過給機を駆動すると、バッテリの電圧が低下してバッテリから始動モータに内燃機関を始動するために必要な電力を十分に供給できないおそれがある。内燃機関の温度が低いほど内燃機関の潤滑油の粘度が高くなるので、内燃機関のフリクションが増加する。そのため、温度が低い内燃機関を始動するときに温度が高い内燃機関を始動するときと同様に電動モータでターボ過給機を駆動すると始動モータに内燃機関を始動するために必要な電力を十分に供給できないおそれがある。これらの場合、始動モータに十分な電力が供給されず、始動モータの出力が不足して内燃機関の始動性が悪化するおそれがある。   In general, an internal combustion engine is started by cranking by a starter motor. However, if the turbocharger is driven by an electric motor without considering the power consumed by the starter motor when starting the internal combustion engine, the voltage of the battery decreases. There is a possibility that the electric power necessary for starting the internal combustion engine from the battery to the starting motor cannot be sufficiently supplied. The lower the temperature of the internal combustion engine, the higher the viscosity of the lubricating oil of the internal combustion engine, so the friction of the internal combustion engine increases. Therefore, when the turbocharger is driven by the electric motor as in the case of starting the internal combustion engine having a high temperature when starting the internal combustion engine having a low temperature, the electric power necessary for starting the internal combustion engine is sufficiently supplied to the start motor. May not be able to supply. In these cases, sufficient power is not supplied to the starter motor, and the output of the starter motor is insufficient, which may deteriorate the startability of the internal combustion engine.

そこで、本発明は、始動モータに内燃機関の始動に必要な電力を確実に供給し、内燃機関の始動性の悪化を防止可能な内燃機関の制御装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a control device for an internal combustion engine that can reliably supply power necessary for starting the internal combustion engine to the starter motor and prevent deterioration of startability of the internal combustion engine.

本発明の内燃機関の制御装置は、始動モータと、前記始動モータと電気的に接続されたバッテリと、前記始動モータにて始動される内燃機関の吸気通路にコンプレッサが設けられるとともに前記内燃機関の排気通路にタービンが設けられ、かつ前記バッテリと電気的に接続される電動モータにより駆動可能なターボ過給機と、前記内燃機関の始動時に前記始動モータを動作させるとともに前記ターボ過給機により吸入空気が過給されるように前記電動モータの動作を制御する動作制御手段と、を備えた内燃機関の制御装置において、前記動作制御手段は、前記内燃機関の始動時に前記内燃機関の始動性を悪化させる要因が生じた場合、前記内燃機関の始動時に行われる前記ターボ過給機による吸入空気の過給が制限されるように前記電動モータの動作を制御する過給制限手段を備えていることにより、上述した課題を解決する(請求項1)。   An internal combustion engine control apparatus according to the present invention includes a starter motor, a battery electrically connected to the starter motor, a compressor provided in an intake passage of the internal combustion engine started by the starter motor, and the internal combustion engine. A turbocharger that is provided with a turbine in an exhaust passage and can be driven by an electric motor electrically connected to the battery, and operates the starter motor when the internal combustion engine starts, and suctions by the turbocharger An operation control means for controlling the operation of the electric motor so that air is supercharged, wherein the operation control means increases the startability of the internal combustion engine when the internal combustion engine is started. In the case where a deterioration factor occurs, the electric motor is controlled so that supercharging of the intake air by the turbocharger performed at the start of the internal combustion engine is limited. It allows to solve the problems described above which comprises a supercharging limiting means for controlling the operation (Claim 1).

本発明の制御装置によれば、内燃機関の始動性を悪化させる要因が生じた場合にターボ過給機による吸入空気の過給が制限されるので、電動モータで消費される電力を減少させることができる。これにより、バッテリの電圧低下を抑制して始動モータに供給可能な電力を増加させることができる。そのため、始動モータに内燃機関の始動に必要な電力を確実に供給し、内燃機関の始動性の悪化を防止できる。   According to the control device of the present invention, when a factor that deteriorates the startability of the internal combustion engine occurs, the supercharging of the intake air by the turbocharger is limited, so that the electric power consumed by the electric motor is reduced. Can do. Thereby, the electric power which can be supplied to a starting motor can be increased by suppressing the voltage drop of a battery. Therefore, it is possible to reliably supply electric power necessary for starting the internal combustion engine to the starter motor and to prevent deterioration of the startability of the internal combustion engine.

本発明の制御装置においては、前記バッテリの電圧を取得する電圧取得手段をさらに備え、前記過給制限手段は、前記電圧取得手段により取得された前記バッテリの電圧が前記内燃機関のフリクションを考慮して設定した判定電圧未満の場合に前記要因が生じたと判断してもよい(請求項2)。始動時のバッテリの電圧が低い場合は、始動モータへの供給電力が不足するおそれがあるため、始動性が悪化するおそれがある。そこで、このような場合にターボ過給機による吸入空気の過給を制限し、電動モータで消費される電力を減少させる。   The control device according to the present invention further comprises voltage acquisition means for acquiring the voltage of the battery, and the supercharging limiting means is configured such that the battery voltage acquired by the voltage acquisition means takes into account the friction of the internal combustion engine. It may be determined that the factor is generated when the determination voltage is lower than the predetermined determination voltage (claim 2). When the voltage of the battery at the time of starting is low, there is a possibility that the power supplied to the starting motor may be insufficient, and thus the startability may be deteriorated. Therefore, in such a case, the supercharging of the intake air by the turbocharger is limited to reduce the power consumed by the electric motor.

本発明の制御装置の一形態において、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時における前記バッテリの電圧が前記判定電圧以上の場合よりも前記内燃機関の始動時に前記電動モータの回転数を低下させてもよい(請求項3)。このように電動モータの回転数を低下させることにより電動モータによって消費される電力を低減できるので、バッテリの電圧低下を抑制できる。   In one aspect of the control device of the present invention, the supercharging limiting means is configured to start the internal combustion engine when the internal combustion engine starts when the voltage of the battery acquired by the voltage acquisition means is less than the determination voltage. The number of revolutions of the electric motor may be reduced when the internal combustion engine is started than when the voltage of the battery is equal to or higher than the determination voltage (Claim 3). Thus, since the electric power consumed by the electric motor can be reduced by lowering the rotation speed of the electric motor, the voltage drop of the battery can be suppressed.

本発明の制御装置の一形態において、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記電動モータによる前記ターボ過給機の駆動を禁止してもよい(請求項4)。この場合、電動モータによって電力が消費されないので、バッテリの電圧低下をさらに抑制できる。そのため、始動モータに供給可能な電力をさらに増加させることができる。また、電動モータによってターボ過給機が駆動されないので、排気通路に配置されたタービンが排気流れの抵抗となる。この場合、気筒からの排気の排出が妨げられるので、気筒内に残留する排気の量を増加させることができる。これにより、この気筒内に残留した排気によって気筒の温度低下を抑制して圧縮行程末期の気筒内の温度、いわゆる圧縮端の温度を上昇させることができるので、内燃機関の始動性を改善できる。   In one aspect of the control device of the present invention, the supercharging restriction unit is configured to start the internal combustion engine when the internal combustion engine is started when the voltage of the battery acquired by the voltage acquisition unit when the internal combustion engine is started is less than the determination voltage. The turbocharger may be prohibited from being driven by an electric motor (claim 4). In this case, since electric power is not consumed by the electric motor, the voltage drop of the battery can be further suppressed. Therefore, the electric power that can be supplied to the starter motor can be further increased. In addition, since the turbocharger is not driven by the electric motor, the turbine disposed in the exhaust passage serves as an exhaust flow resistance. In this case, exhaust of the exhaust from the cylinder is hindered, so that the amount of exhaust remaining in the cylinder can be increased. Thereby, the exhaust gas remaining in the cylinder can suppress the temperature drop of the cylinder and increase the temperature in the cylinder at the end of the compression stroke, that is, the so-called compression end temperature, so that the startability of the internal combustion engine can be improved.

本発明の制御装置の一形態において、前記電動モータは、前記内燃機関の排気エネルギを利用して発電する発電機として機能可能であるとともに発電した電力を前記バッテリに充電可能であり、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記電動モータを発電機として機能させて前記バッテリの充電を行ってもよい(請求項5)。この場合、電動モータにおいて発電された電力がバッテリに充電されるので、バッテリの電圧低下をさらに抑制できる。そのため、始動モータに内燃機関の始動に必要な電力を確実に供給できる。また、電動モータを発電機として機能させることによってタービンを回転し難くすることができるので、気筒から排気がさらに排出され難くなる。そのため、気筒内に残留する排気の量をさらに増加させて圧縮端の温度をさらに上昇させ、内燃機関の始動性をさらに改善できる。   In one form of the control device of the present invention, the electric motor can function as a generator that generates electric power using exhaust energy of the internal combustion engine and can charge the generated electric power to the battery. When the battery voltage acquired by the voltage acquisition unit when the internal combustion engine is started is less than the determination voltage, the limiting unit causes the electric motor to function as a generator when starting the internal combustion engine to charge the battery. (Claim 5). In this case, since the electric power generated in the electric motor is charged in the battery, the voltage drop of the battery can be further suppressed. Therefore, it is possible to reliably supply the electric power necessary for starting the internal combustion engine to the starting motor. In addition, since the turbine can be made difficult to rotate by causing the electric motor to function as a generator, the exhaust is further hardly discharged from the cylinder. Therefore, the amount of exhaust gas remaining in the cylinder can be further increased to further increase the compression end temperature, thereby further improving the startability of the internal combustion engine.

本発明の制御装置の一形態においては、前記内燃機関の気筒から排出された排気の一部を再度前記気筒内に戻すEGR手段をさらに備え、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に排気の一部が前記気筒内に戻されるように前記EGR手段の動作を制御してもよい(請求項6)。このように排気の一部を気筒に戻すことにより、気筒の温度低下を抑制することができる。そのため、圧縮端温度を上昇させて内燃機関の始動性を改善できる。   In one form of the control device of the present invention, the control device further includes an EGR means for returning a part of the exhaust discharged from the cylinder of the internal combustion engine into the cylinder again, and the supercharging limiting means is provided when the internal combustion engine is started. When the battery voltage acquired by the voltage acquisition unit is less than the determination voltage, the operation of the EGR unit may be controlled so that a part of the exhaust is returned into the cylinder when the internal combustion engine is started. (Claim 6). Thus, by returning a part of the exhaust gas to the cylinder, it is possible to suppress the temperature drop of the cylinder. Therefore, it is possible to improve the startability of the internal combustion engine by increasing the compression end temperature.

この形態においては、前記EGR手段として、前記吸気通路と前記排気通路とを接続するEGR通路と、前記EGR通路を通過する排気の流量を調整するEGR弁と、前記EGR通路の経路中に配置されて排気を冷却するEGRクーラと、前記EGRクーラをバイパスさせて前記排気通路から前記吸気通路に排気を導くバイパス通路と、前記排気通路から前記EGRクーラを介して前記吸気通路に排気が戻される第1の位置と前記排気通路から前記バイパス通路を介して前記吸気通路に排気が戻される第2の位置とに切り替え可能な流路切替弁と、が設けられ、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記吸気通路に排気が戻されるように前記EGR弁を開け、かつ前記流路切替弁を前記第2の位置に切り替えてもよい(請求項7)。この場合、排気中の未燃燃料などのEGRクーラへの付着を抑制できる。そのため、EGRクーラの詰まりの発生を防止できる。また、EGRクーラをバイパスさせることによって吸気通路に戻される排気の温度低下を抑制できる。そのため、圧縮端の温度を上昇させて内燃機関の始動性を改善できる。また、排気を吸気通路に戻すので、白煙の排出を防止できる。   In this embodiment, the EGR means is disposed in the path of the EGR passage, the EGR passage connecting the intake passage and the exhaust passage, the EGR valve for adjusting the flow rate of the exhaust gas passing through the EGR passage, and the EGR passage. An EGR cooler that cools the exhaust gas, a bypass passage that bypasses the EGR cooler and guides the exhaust gas from the exhaust passage to the intake passage, and an exhaust gas that is returned from the exhaust passage to the intake passage through the EGR cooler. 1 and a flow path switching valve that can be switched from the exhaust passage to a second position at which exhaust is returned to the intake passage through the bypass passage, and the supercharging limiting means includes the internal combustion engine When the voltage of the battery acquired by the voltage acquisition means at the time of starting the engine is less than the determination voltage, the exhaust gas is returned to the intake passage at the time of starting the internal combustion engine. The EGR valve opened as and may be switched to the flow path switching valve to the second position (claim 7). In this case, adhesion of unburned fuel or the like in the exhaust to the EGR cooler can be suppressed. Therefore, the occurrence of clogging of the EGR cooler can be prevented. Moreover, the temperature drop of the exhaust gas returned to the intake passage can be suppressed by bypassing the EGR cooler. Therefore, the startability of the internal combustion engine can be improved by increasing the temperature of the compression end. Further, since exhaust gas is returned to the intake passage, white smoke can be prevented from being discharged.

本発明の制御装置の一形態において、前記内燃機関は、前記タービンよりも下流の排気通路に設けられて前記排気通路を流れる排気の流量を調整可能な排気絞り弁を備え、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記排気通路の排気流量が減少するように前記排気絞り弁を閉じてもよい(請求項8)。このように排気絞り弁を閉めることによって、内燃機関の気筒から排気が排出され難くなる。そのため、気筒内に残留する排気の量を増加させて圧縮端の温度を上昇させることができる。したがって、内燃機関の始動性を改善できる。   In one form of the control apparatus of the present invention, the internal combustion engine includes an exhaust throttle valve provided in an exhaust passage downstream of the turbine and capable of adjusting a flow rate of exhaust flowing through the exhaust passage, and the supercharging limiting means If the battery voltage acquired by the voltage acquisition means at the start of the internal combustion engine is less than the determination voltage, the exhaust throttle valve is set so that the exhaust flow rate in the exhaust passage decreases at the start of the internal combustion engine. You may close (Claim 8). By closing the exhaust throttle valve in this way, it becomes difficult for exhaust to be discharged from the cylinder of the internal combustion engine. Therefore, it is possible to increase the amount of exhaust gas remaining in the cylinder and raise the compression end temperature. Therefore, the startability of the internal combustion engine can be improved.

本発明の制御装置の一形態において、前記ターボ過給機は、前記タービンの入口部分の流路断面積を変更可能な可変ノズルを備え、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記タービンの入口部分の流路断面積を減少させるべく前記可変ノズルを閉じてもよい(請求項9)。この場合も上述した排気絞り弁と同様に内燃機関の気筒から排気が排出され難くなる。そのため、気筒内に残留する排気の量を増加させることができるので、内燃機関の始動性を改善できる。   In one form of the control device of the present invention, the turbocharger includes a variable nozzle capable of changing a flow path cross-sectional area of an inlet portion of the turbine, and the supercharging limiting means is configured to start the internal combustion engine when starting the internal combustion engine. When the voltage of the battery acquired by the voltage acquisition means is less than the determination voltage, the variable nozzle may be closed to reduce the flow path cross-sectional area of the inlet portion of the turbine when the internal combustion engine is started. 9). In this case as well, it is difficult to exhaust the exhaust gas from the cylinder of the internal combustion engine, as in the exhaust throttle valve described above. Therefore, since the amount of exhaust gas remaining in the cylinder can be increased, the startability of the internal combustion engine can be improved.

本発明の制御装置の一形態においては、前記内燃機関の気筒に設けられる排気弁の閉弁時期を変更可能な可変動弁機構を備え、前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記排気弁の閉弁時期が早められるように前記可変動弁機構の動作を制御してもよい(請求項10)。このように排気弁の閉弁時期を早め、気筒内から排気が十分に排出される前に排気弁を閉弁することにより、気筒内に残留する排気の量を増加させることができる。そのため、内燃機関の始動性を改善できる。   In one embodiment of the control device of the present invention, the control device includes a variable valve mechanism that can change a closing timing of an exhaust valve provided in a cylinder of the internal combustion engine, and the supercharging limiting means is configured to start the internal combustion engine when the internal combustion engine is started. When the voltage of the battery acquired by the voltage acquisition means is less than the determination voltage, the operation of the variable valve mechanism may be controlled so that the closing timing of the exhaust valve is advanced when the internal combustion engine is started. (Claim 10). Thus, the amount of exhaust gas remaining in the cylinder can be increased by advancing the closing timing of the exhaust valve and closing the exhaust valve before exhaust gas is sufficiently exhausted from the cylinder. Therefore, the startability of the internal combustion engine can be improved.

本発明の制御装置の一形態においては、前記内燃機関の温度を取得する機関温度取得手段と、吸入空気の温度を取得する吸気温度取得手段と、前記内燃機関の始動時に前記機関温度取得手段が取得した前記内燃機関の温度及び前記吸気温度取得手段が取得した吸入空気の温度のそれぞれに基づいて前記判定電圧を補正する判定電圧補正手段と、をさらに備えていてもよい(請求項11)。内燃機関の始動時に始動モータに要求される出力は、吸入空気の温度及び内燃機関の温度によって変化する。例えば内燃機関の温度が低いほど内燃機関のフリクションが増加するので、始動モータに要求される出力は大きくなる。また、吸気温度が低いほど圧縮端の温度が上昇し難くなるので、始動モータの動作時間が長くなる。そこで、吸入空気の温度及び内燃機関の温度によって判定電圧を補正し、始動モータを内燃機関を始動するために必要な出力で確実に動作させる。これにより、内燃機関の始動性を改善できる。   In one form of the control device of the present invention, the engine temperature acquisition means for acquiring the temperature of the internal combustion engine, the intake air temperature acquisition means for acquiring the temperature of the intake air, and the engine temperature acquisition means at the start of the internal combustion engine The apparatus may further comprise determination voltage correction means for correcting the determination voltage based on the acquired temperature of the internal combustion engine and the intake air temperature acquired by the intake air temperature acquisition means. The output required for the starting motor when starting the internal combustion engine varies depending on the temperature of the intake air and the temperature of the internal combustion engine. For example, since the friction of the internal combustion engine increases as the temperature of the internal combustion engine decreases, the output required for the starting motor increases. Further, the lower the intake air temperature, the more difficult it is for the temperature at the compression end to rise, so the operation time of the starting motor becomes longer. Therefore, the determination voltage is corrected according to the temperature of the intake air and the temperature of the internal combustion engine, and the starter motor is reliably operated at the output necessary for starting the internal combustion engine. Thereby, the startability of the internal combustion engine can be improved.

本発明の制御装置の一形態においては、前記内燃機関の温度を取得する機関温度取得手段をさらに備え、前記過給制限手段は、前記機関温度取得手段により取得された前記内燃機関の温度が所定の判定温度未満の場合に前記要因が生じたと判断してもよい(請求項12)。始動時の内燃機関の温度が低い場合は内燃機関のフリクションが増加するので、温度が高い内燃機関を始動する場合よりも始動モータに要求される出力が大きくなる。そこで、ターボ過給機による吸入空気の過給を制限して電動モータで消費される電力を減少させ、始動モータに供給可能な電力を増加させる。   In one form of the control device of the present invention, the engine further includes engine temperature acquisition means for acquiring the temperature of the internal combustion engine, and the supercharging restriction means has a predetermined temperature of the internal combustion engine acquired by the engine temperature acquisition means. It may be determined that the factor has occurred when the temperature is lower than the determination temperature (claim 12). When the temperature of the internal combustion engine at the time of starting is low, the friction of the internal combustion engine increases, so that the output required for the starting motor becomes larger than when the internal combustion engine having a high temperature is started. Therefore, the supercharging of the intake air by the turbocharger is limited to reduce the electric power consumed by the electric motor, and the electric power that can be supplied to the starting motor is increased.

この形態において、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時における前記内燃機関の温度が前記判定温度以上の場合よりも前記内燃機関の始動時に前記電動モータの回転数を低下させてもよいし(請求項13)、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記電動モータによる前記ターボ過給機の駆動を禁止してもよい(請求項14)。また、前記電動モータは、前記内燃機関の排気エネルギを利用して発電する発電機として機能可能であるとともに発電した電力を前記バッテリに充電可能であり、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記電動モータを発電機として機能させて前記バッテリの充電を行ってもよい(請求項15)。電動モータの動作をこのように制御することにより、バッテリの電圧低下を抑制できる。そのため、始動モータに内燃機関の始動に必要な電力を確実に供給し、内燃機関の始動性の悪化を防止できる。   In this embodiment, the supercharging limiting means is configured to control the internal combustion engine at the time of starting the internal combustion engine when the temperature of the internal combustion engine acquired by the engine temperature acquisition means at the time of starting the internal combustion engine is lower than the determination temperature. The rotational speed of the electric motor may be reduced when the internal combustion engine is started than when the temperature is equal to or higher than the determination temperature. When the temperature of the internal combustion engine acquired by the temperature acquisition unit is lower than the determination temperature, the turbocharger may be prohibited from being driven by the electric motor when the internal combustion engine is started (Claim 14). In addition, the electric motor can function as a generator that generates electric power using the exhaust energy of the internal combustion engine and can charge the generated electric power to the battery. When the temperature of the internal combustion engine acquired by the engine temperature acquisition means at the start is lower than the determination temperature, the battery may be charged by causing the electric motor to function as a generator at the start of the internal combustion engine ( Claim 15). By controlling the operation of the electric motor in this way, it is possible to suppress a battery voltage drop. Therefore, it is possible to reliably supply electric power necessary for starting the internal combustion engine to the starter motor and to prevent deterioration of the startability of the internal combustion engine.

本発明の制御装置の一形態においては、前記内燃機関の気筒から排出された排気の一部を再度前記気筒内に戻すEGR手段をさらに備え、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に排気の一部が前記気筒内に戻されるように前記EGR手段の動作を制御してもよい(請求項16)。また、この形態においては、前記EGR手段として、前記吸気通路と前記排気通路とを接続するEGR通路と、前記EGR通路を通過する排気の流量を調整するEGR弁と、前記EGR通路の経路中に配置されて排気を冷却するEGRクーラと、前記EGRクーラをバイパスさせて前記排気通路から前記吸気通路に排気を導くバイパス通路と、前記排気通路から前記EGRクーラを介して前記吸気通路に排気が戻される第1の位置と前記排気通路から前記バイパス通路を介して前記吸気通路に排気が戻される第2の位置とに切り替え可能な流路切替弁と、が設けられ、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記吸気通路に排気が戻されるように前記EGR弁を開け、かつ前記流路切替弁を前記第2の位置に切り替えてもよい(請求項17)。このように排気の一部を気筒に戻すことにより、圧縮端の温度を上昇させることができるので、内燃機関の始動性を改善できる。   In one form of the control device of the present invention, the control device further includes an EGR means for returning a part of the exhaust discharged from the cylinder of the internal combustion engine into the cylinder again, and the supercharging limiting means is provided when the internal combustion engine is started. When the temperature of the internal combustion engine acquired by the engine temperature acquisition means is lower than the determination temperature, the operation of the EGR means is controlled so that a part of the exhaust is returned into the cylinder when the internal combustion engine is started. (Claim 16). In this embodiment, the EGR means includes an EGR passage connecting the intake passage and the exhaust passage, an EGR valve for adjusting the flow rate of exhaust gas passing through the EGR passage, and a path of the EGR passage. An EGR cooler that cools the exhaust gas, a bypass passage that bypasses the EGR cooler and guides the exhaust gas from the exhaust passage to the intake passage, and the exhaust gas returns from the exhaust passage to the intake passage through the EGR cooler. And a flow path switching valve that can be switched to a second position where exhaust is returned from the exhaust passage through the bypass passage to the intake passage. When the temperature of the internal combustion engine acquired by the engine temperature acquisition means when starting the internal combustion engine is lower than the determination temperature, the intake passage when starting the internal combustion engine The EGR valve opened so that the exhaust is returned, and may be switched to the flow path switching valve to the second position (claim 17). By returning a part of the exhaust gas to the cylinder in this way, the temperature at the compression end can be raised, so that the startability of the internal combustion engine can be improved.

本発明の制御装置の一形態において、前記内燃機関は、前記タービンよりも下流の排気通路に設けられて前記排気通路を流れる排気の流量を調整可能な排気絞り弁を備え、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記排気通路の排気流量が減少するように前記排気絞り弁を閉じてもよいし(請求項18)、前記ターボ過給機は、前記タービンの入口部分の流路断面積を変更可能な可変ノズルを備え、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記タービンの入口部分の流路断面積を減少させるべく前記可変ノズルを閉じてもよい(請求項19)。また、前記内燃機関の気筒に設けられる排気弁の閉弁時期を変更可能な可変動弁機構を備え、前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記排気弁の閉弁時期が早められるように前記可変動弁機構の動作を制御してもよい(請求項20)。これらの形態では、気筒内に残留する排気の量を増加させて圧縮端の温度を上昇させることができる。したがって、内燃機関の始動性を改善できる。   In one form of the control apparatus of the present invention, the internal combustion engine includes an exhaust throttle valve provided in an exhaust passage downstream of the turbine and capable of adjusting a flow rate of exhaust flowing through the exhaust passage, and the supercharging limiting means If the temperature of the internal combustion engine acquired by the engine temperature acquisition means at the start of the internal combustion engine is lower than the determination temperature, the exhaust throttle is set so that the exhaust flow rate in the exhaust passage decreases at the start of the internal combustion engine. The valve may be closed (Claim 18), and the turbocharger is provided with a variable nozzle capable of changing a flow path cross-sectional area of the inlet portion of the turbine, and the supercharging limiting means includes the internal combustion engine. When the temperature of the internal combustion engine acquired by the engine temperature acquisition means at the start is lower than the determination temperature, the flow passage cross-sectional area of the inlet portion of the turbine is reduced at the start of the internal combustion engine. May be closed nozzle (Claim 19). In addition, a variable valve mechanism capable of changing a closing timing of an exhaust valve provided in a cylinder of the internal combustion engine is provided, and the supercharging restriction means is acquired by the engine temperature acquisition means when the internal combustion engine is started. When the temperature of the internal combustion engine is lower than the determination temperature, the operation of the variable valve mechanism may be controlled so that the closing timing of the exhaust valve is advanced when the internal combustion engine is started (Claim 20). In these forms, the temperature of the compression end can be increased by increasing the amount of exhaust gas remaining in the cylinder. Therefore, the startability of the internal combustion engine can be improved.

以上に説明したように、本発明によれば、内燃機関の始動時におけるバッテリの電圧が判定電圧未満の場合、又は内燃機関の始動時における内燃機関の温度が判定温度未満の場合に内燃機関の始動性を悪化させる要因が生じたと判断してターボ過給機による吸気の過給が制限されるように電動モータの動作を制御するので、バッテリの電圧低下を抑制できる。そのため、始動モータに供給可能な電力を増加させることができる。したがって、始動モータに内燃機関の始動に必要な電力を確実に供給し、内燃機関の始動性の悪化を防止できる。   As described above, according to the present invention, when the voltage of the battery at the start of the internal combustion engine is lower than the determination voltage, or when the temperature of the internal combustion engine at the start of the internal combustion engine is lower than the determination temperature, Since it is determined that a factor that deteriorates the startability has occurred and the operation of the electric motor is controlled such that the supercharging of the intake air by the turbocharger is limited, the voltage drop of the battery can be suppressed. Therefore, the electric power that can be supplied to the starting motor can be increased. Therefore, it is possible to reliably supply power necessary for starting the internal combustion engine to the starter motor, and to prevent deterioration of the startability of the internal combustion engine.

図1は、本発明の一形態に係る制御装置が組み込まれた内燃機関を示している。内燃機関1は、車両に走行用動力源として搭載される4気筒直列式のディーゼルエンジンとして構成されている。以下、内燃機関1をエンジンと呼ぶこともある。エンジン1の各気筒2には、吸気通路3及び排気通路4がそれぞれ接続されている。また、エンジン1は、始動モータ5と、始動モータ5と電気的に接続されたバッテリ6とを備えている。吸気通路3には、吸気濾過用のエアクリーナ7、ターボ過給機8のコンプレッサ8a、吸気を冷却するインタークーラ9、及び吸気の流量を調整する吸気絞り弁10が設けられている。また、図1に示したように吸気通路3には、ターボ過給機8のコンプレッサ8aよりも上流側の吸気通路とコンプレッサ8aよりも下流側の吸気通路とを接続するコンプレッサバイパス通路11と、吸気の流れをコンプレッサ8a又はコンプレッサバイパス通路11のいずれか一方に切り替え可能な吸気バイパス弁12とが設けられている。なお、通常運転時は吸気がコンプレッサ8aに導かれるように吸気バイパス弁12の位置が切り替えられる。排気通路4には、ターボ過給機8のタービン8b、排気通路4を流通する排気の流量を調整する排気絞り弁13、及び排気を浄化するための排気後処理装置14が設けられている。排気絞り弁13の開度は全開状態と全閉状態との間で制御される。なお、排気絞り弁13の開度が全閉状態に変更されても排気通路4が完全に閉鎖されることはない。すなわち、排気絞り弁13を全閉状態にしても排気の一部は排気絞り弁13よりも下流側に流れる。エンジン1は、各気筒2にそれぞれ設けられて各気筒2内に燃料を噴射するインジェクタ15と、各インジェクタ15から噴射する高圧の燃料を蓄えるコモンレール16とを備えている。   FIG. 1 shows an internal combustion engine in which a control device according to one embodiment of the present invention is incorporated. The internal combustion engine 1 is configured as a four-cylinder in-line diesel engine that is mounted on a vehicle as a driving power source. Hereinafter, the internal combustion engine 1 may be referred to as an engine. An intake passage 3 and an exhaust passage 4 are connected to each cylinder 2 of the engine 1. The engine 1 also includes a starter motor 5 and a battery 6 electrically connected to the starter motor 5. The intake passage 3 is provided with an air cleaner 7 for filtering the intake air, a compressor 8a of the turbocharger 8, an intercooler 9 for cooling the intake air, and an intake throttle valve 10 for adjusting the flow rate of the intake air. Further, as shown in FIG. 1, the intake passage 3 includes a compressor bypass passage 11 that connects an intake passage upstream of the compressor 8a of the turbocharger 8 and an intake passage downstream of the compressor 8a; An intake bypass valve 12 that can switch the flow of intake air to either the compressor 8a or the compressor bypass passage 11 is provided. During normal operation, the position of the intake bypass valve 12 is switched so that intake air is guided to the compressor 8a. The exhaust passage 4 is provided with a turbine 8b of the turbocharger 8, an exhaust throttle valve 13 for adjusting the flow rate of the exhaust gas flowing through the exhaust passage 4, and an exhaust aftertreatment device 14 for purifying the exhaust gas. The opening degree of the exhaust throttle valve 13 is controlled between a fully open state and a fully closed state. Even if the opening degree of the exhaust throttle valve 13 is changed to the fully closed state, the exhaust passage 4 is not completely closed. That is, even if the exhaust throttle valve 13 is fully closed, a part of the exhaust flows downstream from the exhaust throttle valve 13. The engine 1 includes an injector 15 that is provided in each cylinder 2 and injects fuel into each cylinder 2, and a common rail 16 that stores high-pressure fuel injected from each injector 15.

図1に示したように、排気通路4と吸気通路3とはEGR通路20で接続され、EGR通路20には排気を冷却するためのEGRクーラ21と吸気通路3に戻される排気(以下、EGRガスと呼ぶこともある。)の流量を調整するEGR弁22とが設けられている。また、図1に示したようにEGR通路20には、EGRクーラ21を迂回して排気を吸気通路3に導くためのEGRバイパス通路23と、EGRガスをEGRクーラ21を介して吸気通路3に戻す第1の位置とEGRガスをEGRバイパス通路23を介して吸気通路3に戻す第2の位置とに切り替え可能な流路切替弁としてのEGRクーラバイパス弁24とが設けられている。なお、エンジン1の通常運転時はEGRクーラ21を介してEGRガスが吸気通路3に戻されるようにEGRクーラバイパス弁24は第1の位置に切り替えられる。なお、以降EGRクーラバイパス弁24を第1の位置に切り替えることをEGRクーラバイパス弁24を閉じると呼び、EGRクーラバイパス弁24を第2の位置に切り替えることをEGRクーラバイパス弁24を開けると呼ぶこともある。   As shown in FIG. 1, the exhaust passage 4 and the intake passage 3 are connected by an EGR passage 20. The EGR passage 20 has an EGR cooler 21 for cooling the exhaust and exhaust gas returned to the intake passage 3 (hereinafter referred to as EGR). And an EGR valve 22 that adjusts the flow rate of gas). Further, as shown in FIG. 1, the EGR passage 20 has an EGR bypass passage 23 that bypasses the EGR cooler 21 and guides exhaust gas to the intake passage 3, and EGR gas passes through the EGR cooler 21 to the intake passage 3. An EGR cooler bypass valve 24 is provided as a flow path switching valve that can be switched between a first position for returning and a second position for returning EGR gas to the intake passage 3 via the EGR bypass passage 23. During normal operation of the engine 1, the EGR cooler bypass valve 24 is switched to the first position so that EGR gas is returned to the intake passage 3 via the EGR cooler 21. Hereinafter, switching the EGR cooler bypass valve 24 to the first position is referred to as closing the EGR cooler bypass valve 24, and switching the EGR cooler bypass valve 24 to the second position is referred to as opening the EGR cooler bypass valve 24. Sometimes.

ターボ過給機8は、コンプレッサ8aとタービン8bとを同軸に連結する不図示の連結軸と、この連結軸を回転駆動可能な電動機及びエンジン1の排気によって回転駆動される連結軸の回転を利用して発電可能な発電機として機能する電動モータ8cとを備えている。図1に示したように電動モータ8cはバッテリ6と電気的に接続されている。電動モータ8cが電動機として機能する場合、電動モータ8cはバッテリ6から供給される電力によって駆動される。一方、電動モータ8cが発電機として機能する場合は、電動モータ8cにて発電された電気がバッテリ6に充電される。なお以降、電動モータ8cを発電機として機能させ、エンジン1の排気エネルギを利用して発電した電気をバッテリ6に充電することを回生と呼ぶこともある。また、電動モータ8cによって動作がアシストされるので、ターボ過給機8をMAT(Motor Assist Turbo)と呼ぶこともある。   The turbocharger 8 uses a connection shaft (not shown) that coaxially connects the compressor 8a and the turbine 8b, a motor that can rotationally drive the connection shaft, and rotation of a connection shaft that is rotationally driven by the exhaust of the engine 1. And an electric motor 8c functioning as a generator capable of generating electricity. As shown in FIG. 1, the electric motor 8 c is electrically connected to the battery 6. When the electric motor 8 c functions as an electric motor, the electric motor 8 c is driven by electric power supplied from the battery 6. On the other hand, when the electric motor 8c functions as a generator, the battery 6 is charged with electricity generated by the electric motor 8c. Note that, hereinafter, charging the battery 6 with electricity generated using the exhaust energy of the engine 1 by causing the electric motor 8c to function as a generator may be referred to as regeneration. Further, since the operation is assisted by the electric motor 8c, the turbocharger 8 may be referred to as MAT (Motor Assist Turbo).

ターボ過給機8の電動モータ8cの動作は、エンジンコントロールユニット(ECU)30によって制御される。ECU30は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータとして構成され、所定のセンサの出力信号を参照してインジェクタ15、吸気バイパス弁12、排気絞り弁13、EGR弁22、及びEGRクーラバイパス弁24などの動作を制御してエンジン1の運転状態を制御する周知のコンピュータユニットである。ECU30が参照するセンサとしては、バッテリ6の電圧に対応した信号を出力する電圧取得手段としての電圧センサ31、エンジン1の冷却水の温度に対応した信号を出力する冷却水温センサ32、及び吸気の温度に対応した信号を出力する吸気温度取得手段としての吸気温センサ33などが設けられる。   The operation of the electric motor 8c of the turbocharger 8 is controlled by an engine control unit (ECU) 30. The ECU 30 is configured as a computer including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation. The ECU 30 refers to an output signal of a predetermined sensor, the injector 15, the intake bypass valve 12, the exhaust throttle valve 13, the EGR. This is a known computer unit that controls the operation state of the engine 1 by controlling the operation of the valve 22 and the EGR cooler bypass valve 24. As sensors referred to by the ECU 30, a voltage sensor 31 as voltage acquisition means for outputting a signal corresponding to the voltage of the battery 6, a cooling water temperature sensor 32 for outputting a signal corresponding to the temperature of the cooling water of the engine 1, and intake air An intake air temperature sensor 33 is provided as intake air temperature acquisition means for outputting a signal corresponding to the temperature.

ECU30は、モータアシストターボコントローラ(以下、MATコントローラと略称する。)34を介して電動モータ8cの動作を制御している。すなわち、ECU30はこのMATコントローラ34を制御することによって電動モータ8cの動作を制御する。MATコントローラ34は、電動モータ8cを電動機又は発電機のいずれの機器として機能させるか制御するとともに電動モータ8cとバッテリ6との間の電力の授受を制御している。例えば、MATコントローラ34は、電動モータ8cを電動機として機能させる場合にバッテリ6から電動モータ8cへの供給電力を調整し、電動モータ8cを発電機として機能させる場合に電動モータ8cにて発電すべき電力の調整を行う。なお以降では、MATコントローラ34を省略し、ECU30が電動モータ8cの動作を制御すると記述することもある。エンジン1の運転時にECU30は、エンジン1の運転状態に応じて電動モータ8cの動作を制御する。例えば、エンジン1の加速時に過給圧を上昇させるべく電動モータ8cを電動機として機能させてMAT8の動作をアシストさせる。この制御方法は周知の制御方法と同様でよいため、ここでの詳細な説明は省略する。   The ECU 30 controls the operation of the electric motor 8 c via a motor assist turbo controller (hereinafter abbreviated as MAT controller) 34. That is, the ECU 30 controls the operation of the electric motor 8c by controlling the MAT controller 34. The MAT controller 34 controls whether the electric motor 8 c functions as an electric motor or a generator, and also controls the transmission and reception of electric power between the electric motor 8 c and the battery 6. For example, the MAT controller 34 adjusts the power supplied from the battery 6 to the electric motor 8c when the electric motor 8c functions as an electric motor, and should generate electric power with the electric motor 8c when the electric motor 8c functions as a generator. Adjust the power. Hereinafter, the MAT controller 34 may be omitted, and the ECU 30 may be described as controlling the operation of the electric motor 8c. During the operation of the engine 1, the ECU 30 controls the operation of the electric motor 8 c according to the operation state of the engine 1. For example, the operation of the MAT 8 is assisted by causing the electric motor 8c to function as an electric motor so as to increase the supercharging pressure when the engine 1 is accelerated. Since this control method may be the same as a known control method, a detailed description thereof is omitted here.

また、エンジン1の始動時に電動モータ8cを動作させ、MAT8で吸気を過給することにより、エンジン1の始動性を改善できる。図2は、ECU30がエンジン1の始動時に電動モータ8cの動作を制御するために実行するMAT動作制御ルーチンを示している。図2の制御ルーチンは、エンジン1が運転中か否かに拘わりなくECU30の動作中は所定の周期で繰り返し実行される。また、図2の制御ルーチンは、ECU30が実行する他の制御ルーチンと並列に実行される。   Moreover, the startability of the engine 1 can be improved by operating the electric motor 8c when the engine 1 is started and supercharging the intake air with the MAT 8. FIG. 2 shows a MAT operation control routine executed by the ECU 30 to control the operation of the electric motor 8 c when the engine 1 is started. The control routine of FIG. 2 is repeatedly executed at a predetermined cycle while the ECU 30 is operating regardless of whether the engine 1 is in operation. Further, the control routine of FIG. 2 is executed in parallel with other control routines executed by the ECU 30.

図2の制御ルーチンにおいてECU30は、まずステップS11でエンジン1の始動要求が有ったか否か判定する。エンジン1の始動は、例えばイグニッションキーが所定の始動位置に回されるなどイグニッションスイッチがオンの状態に変更された場合に要求されたと判断する。また、エンジン1が、所定の機関停止条件が満たされた場合に運転中のエンジン1を停止させる制御、いわゆるアイドルストップ制御の対象の場合、この所定の機関停止条件が満たされてエンジン1を停止させているときに例えば運転者によってアクセルペダル又はシフトギアが操作された場合にもエンジン1の始動が要求されたと判断する。エンジン1の始動が要求されていないと判断した場合は、今回の制御ルーチンを終了する。   In the control routine of FIG. 2, the ECU 30 first determines whether or not there has been a request for starting the engine 1 in step S11. It is determined that the engine 1 has been started when the ignition switch is changed to an on state, for example, when the ignition key is turned to a predetermined starting position. In addition, when the engine 1 is a target of so-called idle stop control that stops the operating engine 1 when a predetermined engine stop condition is satisfied, the engine 1 is stopped when the predetermined engine stop condition is satisfied. For example, when the accelerator pedal or the shift gear is operated by the driver, for example, it is determined that the start of the engine 1 is requested. If it is determined that the engine 1 is not required to be started, the current control routine is terminated.

一方、始動要求が有ったと判断した場合はステップS12に進み、ECU30は電圧センサ31、冷却水温センサ32、及び吸気温センサ33のそれぞれの出力信号を参照してエンジン1の冷却水温thw、吸気温度thia、及びバッテリ6の電圧Vbを取得する。続くステップS13において、ECU30はスタータ信号がオンの状態か否か判定する。ECU30は図2の制御ルーチンとは異なる制御ルーチンによって始動モータ5の動作を制御しており、スタータ信号は始動モータ5が動作しているときにこの制御ルーチンから発せられる。すなわち、スタータ信号は、始動モータ5が動作してエンジン1がクランキングされているときにオンの状態になり、始動モータ5が停止しているときにオフの状態になる。スタータ信号がオフの状態であると判断した場合は、今回の制御ルーチンを終了する。   On the other hand, if it is determined that there is a start request, the process proceeds to step S12, where the ECU 30 refers to the output signals of the voltage sensor 31, the cooling water temperature sensor 32, and the intake air temperature sensor 33, and the cooling water temperature thw of the engine 1 and the intake air The temperature thia and the voltage Vb of the battery 6 are acquired. In the subsequent step S13, the ECU 30 determines whether or not the starter signal is on. The ECU 30 controls the operation of the starter motor 5 by a control routine different from the control routine of FIG. 2, and the starter signal is generated from this control routine when the starter motor 5 is operating. That is, the starter signal is turned on when the starter motor 5 is operated and the engine 1 is cranked, and is turned off when the starter motor 5 is stopped. If it is determined that the starter signal is off, the current control routine is terminated.

スタータ信号がオンの状態であると判断した場合はステップS14に進み、ECU30は判定電圧αを設定する。判定電圧αは、基準判定電圧αbに冷却水温補正係数A1及び吸気温度補正係数A2を掛けることによって決定される。基準判定電圧αbには例えばエンジン1の温度及び吸気温度がそれぞれ所定温度のとき、すなわちエンジン1のフリクションが所定状態のときにエンジン1を確実かつ速やかに始動できる出力で始動モータ5を動作させることが可能な始動可能電圧範囲の下限値が設定される。このような始動可能電圧範囲はエンジン1の諸元(例えば、圧縮比、気筒数など)に応じて変化するので、基準判定電圧αbはエンジン1の諸元に基づいて適宜変更してよい。また、エンジン1の始動時に始動モータ5に要求される出力は、エンジン1の温度及び吸気温度に影響される。例えばエンジン1の温度が低いほどエンジン1の潤滑油の粘度が高くなるので、エンジン1のフリクションが増加する。また、吸気温度が低いほど圧縮端の温度が上昇し難くなるので、始動モータ5の動作時間が長くなる。このような場合は、始動モータ5に要求される出力が増加するので、バッテリ6から始動モータ5に供給する電力量も増加する。そこで、エンジン1の温度が低いほど、また吸気温度が低いほど判定電圧αを高く設定して始動モータ5に供給可能な電力がより多く確保されるように各補正係数A1、A2を設定する。なお、エンジン1の冷却水温はエンジン1の温度と相関を有しているので、エンジン1の温度の代わりにエンジン1の冷却水温に基づいて補正係数A1を設定する。   When it is determined that the starter signal is on, the process proceeds to step S14, where the ECU 30 sets the determination voltage α. The determination voltage α is determined by multiplying the reference determination voltage αb by the cooling water temperature correction coefficient A1 and the intake air temperature correction coefficient A2. For the reference determination voltage αb, for example, when the temperature of the engine 1 and the intake air temperature are respectively predetermined temperatures, that is, when the friction of the engine 1 is in a predetermined state, the starter motor 5 is operated with an output capable of starting the engine 1 reliably and quickly. Is set to the lower limit value of the startable voltage range. Since such a startable voltage range changes according to the specifications of the engine 1 (for example, the compression ratio, the number of cylinders, etc.), the reference determination voltage αb may be appropriately changed based on the specifications of the engine 1. Further, the output required for the starting motor 5 when the engine 1 is started is affected by the temperature of the engine 1 and the intake air temperature. For example, the lower the temperature of the engine 1, the higher the viscosity of the lubricating oil of the engine 1, so that the friction of the engine 1 increases. Further, the lower the intake air temperature, the more difficult the temperature at the compression end rises, so the operation time of the starter motor 5 becomes longer. In such a case, since the output required for the starter motor 5 increases, the amount of power supplied from the battery 6 to the starter motor 5 also increases. Therefore, as the temperature of the engine 1 is lower and the intake air temperature is lower, the determination voltage α is set higher and the correction coefficients A1 and A2 are set so as to secure more power that can be supplied to the starter motor 5. Since the coolant temperature of the engine 1 has a correlation with the temperature of the engine 1, the correction coefficient A1 is set based on the coolant temperature of the engine 1 instead of the temperature of the engine 1.

図3は、エンジン1の冷却水温thwと冷却水温補正係数A1との関係の一例を示し、図4は、吸気温度thiaと吸気温度補正係数A2との関係の一例を示している。なお、これらの関係は予め実験などにより求め、ECU30にマップとして記憶させておく。図3に示したように、エンジン1の冷却水温thwが低いほど冷却水温補正係数A1が増加する。また、図4に示したように吸気温度補正係数A2も同様に吸気温度thiaが低いほど増加する。このように補正係数A1、A2を設定することにより、始動モータ5に供給するための電力を確保し、始動モータ5の出力低下を抑制する。なお、図3では、エンジン1の冷却水温に基づいて補正係数A1を設定したが、補正係数A1の設定に使用するパラメータは冷却水温に限定されない。エンジン1の潤滑油の温度などエンジン1の温度と相関を有する種々のパラメータを冷却水温の代わりに使用してもよい。なお、このように判定電圧を補正することにより、ECU30は本発明の判定電圧補正手段として機能する。また、上述したようにエンジン1の冷却水の温度はエンジン1の温度と相関を有しているので、冷却水温センサ31が本発明の機関温度取得手段に相当する。   FIG. 3 shows an example of the relationship between the cooling water temperature thw of the engine 1 and the cooling water temperature correction coefficient A1, and FIG. 4 shows an example of the relationship between the intake air temperature thia and the intake air temperature correction coefficient A2. These relationships are obtained in advance by experiments or the like and stored in the ECU 30 as a map. As shown in FIG. 3, the coolant temperature correction coefficient A1 increases as the coolant temperature thw of the engine 1 decreases. Further, as shown in FIG. 4, the intake air temperature correction coefficient A2 similarly increases as the intake air temperature thia is lower. By setting the correction coefficients A1 and A2 in this way, power to be supplied to the starter motor 5 is ensured, and a decrease in output of the starter motor 5 is suppressed. In FIG. 3, the correction coefficient A1 is set based on the coolant temperature of the engine 1, but the parameter used for setting the correction coefficient A1 is not limited to the coolant temperature. Various parameters having a correlation with the temperature of the engine 1 such as the temperature of the lubricating oil of the engine 1 may be used instead of the cooling water temperature. By correcting the determination voltage in this way, the ECU 30 functions as the determination voltage correction unit of the present invention. Moreover, since the temperature of the cooling water of the engine 1 has a correlation with the temperature of the engine 1 as described above, the cooling water temperature sensor 31 corresponds to the engine temperature acquisition means of the present invention.

続くステップS15においてECU30は、バッテリ6の電圧Vbが判定電圧α未満か否か判定する。バッテリ6の電圧Vbが判定電圧α未満と判断した場合はステップS16に進み、ECU30は電動モータ8cを発電機として機能させて回生を行う。この回生によりバッテリ6が充電される。続くステップS17においてECU30は、排気絞り弁13の開度を全閉状態に変更する。次のステップS18においてECU30は、EGR弁22を開けるとともにEGRクーラバイパス弁24を開ける。その後、ステップS19においてECU30は、スタータ信号がオフの状態か否か判定する。スタータ信号がオンの状態と判断した場合はステップS15に戻る。一方、スタータ信号がオフの状態と判断した場合は、今回の制御ルーチンを終了する。   In subsequent step S15, the ECU 30 determines whether or not the voltage Vb of the battery 6 is less than the determination voltage α. When it is determined that the voltage Vb of the battery 6 is less than the determination voltage α, the process proceeds to step S16, and the ECU 30 performs regeneration by causing the electric motor 8c to function as a generator. The battery 6 is charged by this regeneration. In subsequent step S17, the ECU 30 changes the opening of the exhaust throttle valve 13 to a fully closed state. In the next step S18, the ECU 30 opens the EGR valve 22 and opens the EGR cooler bypass valve 24. Thereafter, in step S19, the ECU 30 determines whether or not the starter signal is in an off state. If it is determined that the starter signal is on, the process returns to step S15. On the other hand, if it is determined that the starter signal is off, the current control routine is terminated.

ステップS15においてバッテリ6の電圧Vbが判定電圧α以上と判断した場合はステップS20に進み、ECU30は電動モータ8cを電動機として機能させ、MAT8により吸気の過給を行う。続くステップS21においてECU30は、エンジン1の始動時にMAT8により連続して吸気を過給した過給時間(MAT過給時間)が予め設定した判定時間T以上か否か、又はバッテリ6の電圧Vbが判定電圧α未満か否か判定する。電動モータ8cを電動機として機能させた場合、電動モータ8cで消費される電力によってバッテリ6の電圧低下が早まる。そこで、電動モータ8cを動作させることが可能な時間を設定し、バッテリ6の電圧の低下速度を抑制する。判定時間Tには、この電動モータ8cを動作させることが可能な時間が設定される。なお、このような時間は電動モータ8cの消費電力及びバッテリ6の容量などによって異なるので、判定時間Tはこれらのパラメータに基づいて適宜変更してよい。MAT過給時間が判定時間T未満であり、かつバッテリ6の電圧Vbが判定電圧α以上であると判断した場合はステップS13に戻る。一方、MAT過給時間が判定時間T以上、又はバッテリ6の電圧Vbが判定電圧α未満と判断した場合はステップS22に進み、ECU30は電動モータ8cを停止させ、MAT8による吸気の過給を停止する。続くステップS23においてECU30は、スタータ信号がオフの状態か否か判定する。スタータ信号がオンの状態と判断した場合はステップS16に進む。一方、スタータ信号がオフの状態と判断した場合は、今回の制御ルーチンを終了する。   If it is determined in step S15 that the voltage Vb of the battery 6 is equal to or higher than the determination voltage α, the process proceeds to step S20, where the ECU 30 causes the electric motor 8c to function as an electric motor, and supercharges intake air using the MAT8. In the following step S21, the ECU 30 determines whether or not the supercharging time (MAT supercharging time) in which the intake air is continuously supercharged by the MAT 8 when the engine 1 is started is equal to or longer than a predetermined determination time T, or the voltage Vb of the battery 6 is It is determined whether or not the determination voltage is less than α. When the electric motor 8c is caused to function as an electric motor, the voltage drop of the battery 6 is accelerated by the electric power consumed by the electric motor 8c. Therefore, a time during which the electric motor 8c can be operated is set, and the voltage decrease rate of the battery 6 is suppressed. The determination time T is set to a time during which the electric motor 8c can be operated. In addition, since such time changes with power consumption of the electric motor 8c, the capacity | capacitance of the battery 6, etc., you may change the determination time T suitably based on these parameters. If it is determined that the MAT supercharging time is less than the determination time T and the voltage Vb of the battery 6 is equal to or higher than the determination voltage α, the process returns to step S13. On the other hand, if it is determined that the MAT supercharging time is equal to or greater than the determination time T or the voltage Vb of the battery 6 is less than the determination voltage α, the process proceeds to step S22, where the ECU 30 stops the electric motor 8c and stops supercharging of the intake air by the MAT8. To do. In subsequent step S23, the ECU 30 determines whether or not the starter signal is in an off state. If it is determined that the starter signal is on, the process proceeds to step S16. On the other hand, if it is determined that the starter signal is off, the current control routine is terminated.

図2の制御ルーチンでは、バッテリ6の電圧Vbが判定電圧α未満の場合、エンジン1の始動性が悪化すると判断してMAT8による吸気の過給を制限し、電動モータ8cを発電機として機能させ、回生を行ってバッテリ6の充電を行うので、始動モータ5の出力低下を抑制することができる。そのため、エンジン1の始動性の悪化を防止してエンジン1を確実に始動することができる。一方、バッテリ6が判定電圧α以上の場合には、MAT8による吸気の過給が行われるので、圧縮端の温度を速やかに上昇させることができる。そのため、エンジン1を確実かつ速やかに始動でき、エンジン1の始動性を改善できる。   In the control routine of FIG. 2, when the voltage Vb of the battery 6 is less than the determination voltage α, it is determined that the startability of the engine 1 is deteriorated, and supercharging of the intake air by the MAT 8 is limited, and the electric motor 8c is caused to function as a generator. Since the battery 6 is charged by regeneration, a decrease in the output of the starter motor 5 can be suppressed. Therefore, deterioration of the startability of the engine 1 can be prevented and the engine 1 can be started reliably. On the other hand, when the battery 6 is equal to or higher than the determination voltage α, the intake air is supercharged by the MAT 8, so that the temperature at the compression end can be quickly raised. Therefore, the engine 1 can be started reliably and quickly, and the startability of the engine 1 can be improved.

MAT8で回生を行う場合は排気絞り弁13の開度を全閉状態に変更する(ステップS17)ので、気筒2内に残留する排気の量、すなわち内部EGRガス量を増加させることができる。また、このときにEGR弁22及びEGRクーラバイパス弁24を開ける(ステップS18)ことにより、ガス温度の低下を抑制して高温のままEGRガスを吸気通路3に戻すとともに吸気通路3に戻すEGRガスの量を増加させることができる。このように内部EGRガス及び外部EGRガスの量を増加させることにより、圧縮端の温度を速やかに上昇させることができる。そのため、エンジン1の始動性を改善できる。また、排気をEGRガスとして吸気通路3に戻すので、白煙の排出を抑制することができる。さらに、EGRクーラバイパス弁24を開け、EGRクーラ21へのEGRガスの流入を抑制することにより、EGRクーラ21への未燃燃料などの流入を抑制できる。そのため、EGRクーラ21への未燃燃料の付着を抑制し、EGRクーラ21の詰まりを抑制できる。   When regeneration is performed in the MAT 8, the opening of the exhaust throttle valve 13 is changed to the fully closed state (step S17), so that the amount of exhaust remaining in the cylinder 2, that is, the internal EGR gas amount can be increased. Further, at this time, by opening the EGR valve 22 and the EGR cooler bypass valve 24 (step S18), the EGR gas is returned to the intake passage 3 while returning the EGR gas to the intake passage 3 while suppressing the lowering of the gas temperature and maintaining the high temperature. The amount of can be increased. Thus, by increasing the amounts of the internal EGR gas and the external EGR gas, the temperature at the compression end can be quickly raised. Therefore, the startability of the engine 1 can be improved. Moreover, since exhaust gas is returned to the intake passage 3 as EGR gas, the emission of white smoke can be suppressed. Furthermore, by opening the EGR cooler bypass valve 24 and suppressing the inflow of EGR gas to the EGR cooler 21, the inflow of unburned fuel or the like to the EGR cooler 21 can be suppressed. Therefore, adhesion of unburned fuel to the EGR cooler 21 can be suppressed, and clogging of the EGR cooler 21 can be suppressed.

なお、図2の制御ルーチンを実行してエンジン1の始動時にターボ過給機8で吸気を過給することによりECU30は本発明の動作制御手段として機能する。また、図2のステップS15〜S19の処理を実行し、バッテリ6の電圧が判定電圧未満の場合にターボ過給機による吸気の過給を制限することにより、ECU30は本発明の過給制限手段として機能する。   The ECU 30 functions as the operation control means of the present invention by executing the control routine of FIG. 2 and supercharging the intake air with the turbocharger 8 when the engine 1 is started. Further, by executing the processing of steps S15 to S19 in FIG. 2 and limiting the supercharging of the intake air by the turbocharger when the voltage of the battery 6 is less than the determination voltage, the ECU 30 controls the supercharging limiting means of the present invention. Function as.

基準判定電圧αbには、始動可能電圧範囲の下限値よりも大きい電圧が設定されてもよい。この場合、バッテリ6の電圧Vbがこの基準判定電圧αbに基づいて設定された判定電圧α未満の場合であっても、バッテリ6によって電動モータ8cを駆動可能である。そこで、この場合は図2のステップS15の処理が肯定判断されても直ぐにMAT8で回生を行わず、バッテリ6の電圧が始動可能電圧範囲の下限値に達するまで、MAT8をバッテリ6の電圧が判定電圧α以上のときに設定される回転数、すなわち図2のステップS20で設定される回転数よりも低い回転数で動作させてもよい。言い換えると、バッテリ6の電圧が判定電圧α未満でもバッテリ6の電圧が始動可能電圧範囲の下限値に達するまで、バッテリ6の電圧が判定電圧α以上のときに行われる吸気の過給よりも制限された状態でMAT8による吸気の過給を行ってもよい。この場合、バッテリ6の電圧が判定電圧α未満でも吸気の過給が行われるので、圧縮端の温度を速やかに上昇させることができる。そのため、エンジン1の始動性を改善できる。なお、バッテリ6の電圧が始動可能電圧範囲の下限値未満に達した場合にはMAT8で回生を行ってバッテリ6を充電する。   A voltage larger than the lower limit value of the startable voltage range may be set as the reference determination voltage αb. In this case, the electric motor 8c can be driven by the battery 6 even when the voltage Vb of the battery 6 is lower than the determination voltage α set based on the reference determination voltage αb. Therefore, in this case, even if the determination in step S15 in FIG. 2 is affirmative, the regeneration of the MAT 8 is not performed immediately, and the voltage of the battery 6 is determined until the voltage of the battery 6 reaches the lower limit value of the startable voltage range. Operation may be performed at a rotational speed set when the voltage is equal to or higher than the voltage α, that is, a rotational speed lower than the rotational speed set in step S20 of FIG. In other words, even if the voltage of the battery 6 is less than the determination voltage α, the supercharging of intake air performed when the voltage of the battery 6 is equal to or higher than the determination voltage α is limited until the voltage of the battery 6 reaches the lower limit value of the startable voltage range. In this state, the intake air may be supercharged by MAT8. In this case, since the intake air is supercharged even when the voltage of the battery 6 is lower than the determination voltage α, the temperature of the compression end can be quickly raised. Therefore, the startability of the engine 1 can be improved. When the voltage of the battery 6 reaches less than the lower limit value of the startable voltage range, regeneration is performed by the MAT 8 to charge the battery 6.

また、このように基準判定電圧αbに始動可能電圧範囲の下限値よりも大きい電圧が設定された場合で、かつ吸気の過給よりもEGRガスの増加を優先させる場合は、電動モータ8cを停止させてもよい。すなわち、電動モータ8cによるMAT8の駆動を禁止する。この場合、タービン8bが排気流れの抵抗となるので、排気が流れ難くなる。そのため、内部EGRガスの量を増加させたり、EGR通路20を介して吸気通路3に戻される外部EGRガスの量を増加させることができる。   Further, when the voltage larger than the lower limit value of the startable voltage range is set as the reference determination voltage αb as described above, and when priority is given to the increase in EGR gas over the supercharging of the intake air, the electric motor 8c is stopped. You may let them. That is, the driving of the MAT 8 by the electric motor 8c is prohibited. In this case, the turbine 8b becomes an exhaust flow resistance, so that the exhaust gas hardly flows. Therefore, the amount of internal EGR gas can be increased, or the amount of external EGR gas returned to the intake passage 3 via the EGR passage 20 can be increased.

内部EGRガス及び外部EGRガスを調整する手段は、上述した手段に限定されない。MAT8がタービン8bの入口部分の流路断面積を変更可能な可変ノズルを備えている場合は、エンジン1の始動時にタービン8bの入口部分の流路断面積が減少するようにこの可変ノズルを閉じてもよい。この場合も排気絞り弁13を閉じた場合と同様に気筒2内に残留する内部EGRガスの量を増加させたり、EGR通路20を介して吸気通路3に高温のEGRガスを戻すことができる。また、エンジン1が排気弁の閉弁時期を変更可能な可変動弁機構を有している場合は、エンジン1の始動時に気筒2内からの排気の排出が抑制されるように排気弁の閉弁時期を早めて内部EGRガスの量を増加させてもよい。   The means for adjusting the internal EGR gas and the external EGR gas is not limited to the above-described means. When the MAT 8 is provided with a variable nozzle capable of changing the flow passage cross-sectional area of the inlet portion of the turbine 8b, the variable nozzle is closed so that the flow passage cross-sectional area of the inlet portion of the turbine 8b is reduced when the engine 1 is started. May be. In this case as well, the amount of internal EGR gas remaining in the cylinder 2 can be increased or the high-temperature EGR gas can be returned to the intake passage 3 via the EGR passage 20 in the same manner as when the exhaust throttle valve 13 is closed. When the engine 1 has a variable valve mechanism that can change the closing timing of the exhaust valve, the exhaust valve is closed so that exhaust emission from the cylinder 2 is suppressed when the engine 1 is started. The amount of internal EGR gas may be increased by advancing the valve timing.

図5は、MAT動作制御ルーチンの変形例を示している。なお、図5において図2と同一の処理には同一の参照符号を付し、説明を省略する。図5の制御ルーチンも図2の制御ルーチンと同様にエンジン1が運転中か否かに拘わりなくECU30の動作中は所定の周期で繰り返し実行される。また、図5の制御ルーチンもECU30が実行する他の制御ルーチンと並列に実行される。   FIG. 5 shows a modification of the MAT operation control routine. In FIG. 5, the same processes as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Similar to the control routine of FIG. 2, the control routine of FIG. 5 is repeatedly executed at a predetermined cycle during the operation of the ECU 30, regardless of whether or not the engine 1 is in operation. 5 is also executed in parallel with other control routines executed by the ECU 30.

図5の制御ルーチンにおいてECU30はステップS11で始動要求が有ったか否か判定する。始動要求が有ったと判断した場合はステップS31に進み、ECU30はエンジン1の冷却水温thwを取得する。次のステップS13においてECU30はスタータ信号がオンか否か判定する。スタータ信号がオンと判断した場合はステップS32に進み、ECU30は冷却水温thwが所定の判定温度β未満か否か判定する。上述したように、エンジン1の温度が低いほどフリクションが増加するので、始動モータ5に要求される出力が増加する。そこで、判定温度βには、例えば電動モータ8cを動作させつつ始動モータ5を動作させたときの始動モータ5の出力によってエンジン1を確実、かつ速やかに始動させることが可能なエンジン1の温度範囲の下限値に対応する冷却水温が設定される。このような冷却水温は例えば実験などにより求めて設定する。   In the control routine of FIG. 5, the ECU 30 determines whether or not a start request has been made in step S11. If it is determined that there is a start request, the process proceeds to step S31, and the ECU 30 acquires the coolant temperature thw of the engine 1. In the next step S13, the ECU 30 determines whether or not the starter signal is on. When it is determined that the starter signal is on, the process proceeds to step S32, where the ECU 30 determines whether or not the coolant temperature thw is lower than a predetermined determination temperature β. As described above, since the friction increases as the temperature of the engine 1 decreases, the output required for the starter motor 5 increases. Therefore, the determination temperature β is, for example, the temperature range of the engine 1 in which the engine 1 can be reliably and quickly started by the output of the start motor 5 when the start motor 5 is operated while the electric motor 8c is operated. The cooling water temperature corresponding to the lower limit value is set. Such a cooling water temperature is obtained and set by, for example, experiments.

冷却水温thaが判定温度β未満であると判断した場合はステップS16に進み、以下図2の制御ルーチンと同様に処理を進める。一方、冷却水温thaが判定温度β以上であると判断した場合はステップS20に進み、ECU30はMAT8による吸気の過給を行う。続くステップS33においてECU30は、MAT過給時間が判定時間T以上か否か判定する。MAT過給時間が判定時間T未満と判断した場合はステップS13に戻る。一方、MAT過給時間が判定時間T以上と判断した場合はステップS22に進み、以下図2の制御ルーチンと同様に処理を進める。   If it is determined that the cooling water temperature tha is lower than the determination temperature β, the process proceeds to step S16, and the process proceeds in the same manner as in the control routine of FIG. On the other hand, when it is determined that the cooling water temperature tha is equal to or higher than the determination temperature β, the process proceeds to step S20, and the ECU 30 supercharges intake air by the MAT 8. In subsequent step S33, the ECU 30 determines whether or not the MAT supercharging time is equal to or longer than the determination time T. If it is determined that the MAT supercharging time is less than the determination time T, the process returns to step S13. On the other hand, if it is determined that the MAT supercharging time is equal to or greater than the determination time T, the process proceeds to step S22, and the process proceeds in the same manner as the control routine of FIG.

図5の制御ルーチンでは、エンジン1の温度と相関する冷却水温thwが判定温度β未満の場合、エンジン1の始動性が悪化すると判断してMAT8にて回生を行うので、始動モータ5に供給可能な電力を増加させることができる。そのため、始動モータ5にエンジン1の始動に必要な電力を確実に供給してエンジン1の始動性の悪化を防止できる。一方、冷却水温thwが判定温度β以上の場合は電動モータ8cを動作させてMAT8による吸気の過給を行うので、エンジン1の始動性を改善できる。   In the control routine of FIG. 5, when the coolant temperature thw correlated with the temperature of the engine 1 is less than the determination temperature β, it is determined that the startability of the engine 1 is deteriorated and regeneration is performed at the MAT 8, so that it can be supplied to the starter motor 5. Power can be increased. Therefore, it is possible to reliably supply power necessary for starting the engine 1 to the starting motor 5 to prevent the startability of the engine 1 from deteriorating. On the other hand, when the cooling water temperature thw is equal to or higher than the determination temperature β, the electric motor 8c is operated and the intake air is supercharged by the MAT 8, so that the startability of the engine 1 can be improved.

冷却水温thwが判定温度β未満の場合、すなわちステップS15が肯定判断された場合でも、バッテリ6の充電状態が良好であれば、冷却水温thwが判定温度β以上のときよりも低い回転数で電動モータ8cを動作させてMAT8で吸気を過給してもよい。この場合、電動モータ8cの回転数を低下させることによって電動モータ8cで消費される電力を低減できるので、始動モータ5に供給可能な電力を増加させることができる。そのため、MAT8で吸気を過給しつつ始動モータ5にエンジン1の始動に必要な電力を確実に供給することができる。なお、エンジン1の始動時に、吸気の過給よりもEGRガスの増加を優先する場合は、電動モータ8cによるMAT8の駆動を禁止してもよい。この場合は、MAT8で排気の流れを阻害することにより、内部EGRガス量及び外部EGRガス量を増加させることができる。   Even when the cooling water temperature thw is lower than the determination temperature β, that is, when the determination in step S15 is affirmative, if the charging state of the battery 6 is good, the motor is driven at a lower rotational speed than when the cooling water temperature thw is equal to or higher than the determination temperature β. The motor 8c may be operated to supercharge intake air with MAT8. In this case, since the electric power consumed by the electric motor 8c can be reduced by reducing the rotation speed of the electric motor 8c, the electric power that can be supplied to the starter motor 5 can be increased. Therefore, it is possible to reliably supply the electric power necessary for starting the engine 1 to the starting motor 5 while supercharging the intake air with the MAT 8. When starting the engine 1 and prioritizing the increase in EGR gas over the supercharging of the intake air, the driving of the MAT 8 by the electric motor 8c may be prohibited. In this case, the internal EGR gas amount and the external EGR gas amount can be increased by inhibiting the flow of exhaust gas with the MAT 8.

図5の制御ルーチンにおいても、エンジン1が可変動弁機構を有している場合は、排気弁の閉弁時期を早めてもよい。また、MAT8が可変ノズルを有している場合は、流路断面積を減少させるべく可変ノズルを閉じても良い。これらの制御を行うことにより、内部EGRガス量及び外部EGRガス量を増加させることができる。   Also in the control routine of FIG. 5, when the engine 1 has a variable valve mechanism, the closing timing of the exhaust valve may be advanced. When the MAT 8 has a variable nozzle, the variable nozzle may be closed to reduce the flow path cross-sectional area. By performing these controls, the internal EGR gas amount and the external EGR gas amount can be increased.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明の制御装置が適用される内燃機関はディーゼルエンジンに限定されず、ガソリンその他の燃料を利用する各種の内燃機関に適用してよい。また、本発明の制御装置が組み込まれるエンジンは、始動時にバッテリの電力を消費してエンジンを予熱する予熱装置を備えていてもよい。このような予熱装置は、例えばグロープラグ、及び吸気を加熱する吸気ヒータなどである。このようなエンジンでは、予熱装置によってもバッテリの電力が消費されるので、本発明によってMATで消費される電力を抑制したり、MATで回生してバッテリの電圧低下を抑制することによりエンジンの始動性の悪化を抑制できる。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, the internal combustion engine to which the control device of the present invention is applied is not limited to a diesel engine, and may be applied to various internal combustion engines using gasoline or other fuels. An engine in which the control device of the present invention is incorporated may include a preheating device that consumes battery power at the time of starting to preheat the engine. Such a preheating device is, for example, a glow plug and an intake heater that heats intake air. In such an engine, the battery power is also consumed by the preheating device. Therefore, the power consumption in the MAT is suppressed according to the present invention, or the engine is started by regenerating in the MAT and suppressing the voltage drop of the battery. Sexual deterioration can be suppressed.

本発明の一形態に係る制御装置が組み込まれた内燃機関を示す図。The figure which shows the internal combustion engine in which the control apparatus which concerns on one form of this invention was integrated. ECUが実行するMAT動作制御ルーチンを示すフローチャート。The flowchart which shows the MAT operation | movement control routine which ECU performs. エンジンの冷却水温と冷却水温補正係数との関係の一例を示す図。The figure which shows an example of the relationship between the cooling water temperature of an engine, and a cooling water temperature correction coefficient. 吸気温度と吸気温度補正係数との関係の一例を示す図。The figure which shows an example of the relationship between intake temperature and an intake temperature correction coefficient. MAT動作制御ルーチンの変形例を示すフローチャート。The flowchart which shows the modification of a MAT operation | movement control routine.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
2 気筒
3 吸気通路
4 排気通路
5 始動モータ
6 バッテリ
8 ターボ過給機
8a コンプレッサ
8b タービン
8c 電動モータ
13 排気絞り弁
20 EGR通路(EGR手段)
21 EGRクーラ(EGR手段)
22 EGR弁(EGR手段)
23 EGRバイパス通路(EGR手段)
24 EGRクーラバイパス弁(流路切替弁、EGR手段)
30 エンジンコントロールユニット(動作制御手段、過給制限手段、判定電圧補正手段)
31 電圧センサ(電圧取得手段)
32 冷却水温センサ(機関温度取得手段)
33 吸気温センサ(吸気温度取得手段)
1 engine (internal combustion engine)
2 cylinder 3 intake passage 4 exhaust passage 5 start motor 6 battery 8 turbocharger 8a compressor 8b turbine 8c electric motor 13 exhaust throttle valve 20 EGR passage (EGR means)
21 EGR cooler (EGR means)
22 EGR valve (EGR means)
23 EGR bypass passage (EGR means)
24 EGR cooler bypass valve (flow path switching valve, EGR means)
30 Engine control unit (operation control means, supercharging restriction means, determination voltage correction means)
31 Voltage sensor (voltage acquisition means)
32 Cooling water temperature sensor (engine temperature acquisition means)
33 Intake air temperature sensor (intake air temperature acquisition means)

Claims (20)

始動モータと、前記始動モータと電気的に接続されたバッテリと、前記始動モータにて始動される内燃機関の吸気通路にコンプレッサが設けられるとともに前記内燃機関の排気通路にタービンが設けられ、かつ前記バッテリと電気的に接続される電動モータにより駆動可能なターボ過給機と、前記内燃機関の始動時に前記始動モータを動作させるとともに前記ターボ過給機により吸入空気が過給されるように前記電動モータの動作を制御する動作制御手段と、を備えた内燃機関の制御装置において、
前記動作制御手段は、前記内燃機関の始動時に前記内燃機関の始動性を悪化させる要因が生じた場合、前記内燃機関の始動時に行われる前記ターボ過給機による吸入空気の過給が制限されるように前記電動モータの動作を制御する過給制限手段を備えていることを特徴とする内燃機関の制御装置。
A starter motor, a battery electrically connected to the starter motor, a compressor provided in an intake passage of the internal combustion engine started by the starter motor, a turbine provided in an exhaust passage of the internal combustion engine, and the A turbocharger that can be driven by an electric motor electrically connected to a battery; and the electric motor so that the starter motor is operated when the internal combustion engine is started, and intake air is supercharged by the turbocharger. In an internal combustion engine control device comprising an operation control means for controlling the operation of a motor,
The operation control means limits supercharging of the intake air by the turbocharger that is performed when the internal combustion engine is started when a factor that deteriorates the startability of the internal combustion engine occurs when the internal combustion engine is started. A control device for an internal combustion engine, comprising supercharging restriction means for controlling the operation of the electric motor as described above.
前記バッテリの電圧を取得する電圧取得手段をさらに備え、
前記過給制限手段は、前記電圧取得手段により取得された前記バッテリの電圧が前記内燃機関のフリクションを考慮して設定した判定電圧未満の場合に前記要因が生じたと判断することを特徴とする請求項1に記載の内燃機関の制御装置。
A voltage acquisition means for acquiring the voltage of the battery;
The supercharging restriction unit determines that the factor has occurred when the voltage of the battery acquired by the voltage acquisition unit is less than a determination voltage set in consideration of friction of the internal combustion engine. Item 2. A control device for an internal combustion engine according to Item 1.
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時における前記バッテリの電圧が前記判定電圧以上の場合よりも前記内燃機関の始動時に前記電動モータの回転数を低下させることを特徴とする請求項2に記載の内燃機関の制御装置。   The supercharging limiting means is configured such that when the battery voltage acquired by the voltage acquisition means at the start of the internal combustion engine is less than the determination voltage, the battery voltage at the start of the internal combustion engine is equal to or higher than the determination voltage. 3. The control device for an internal combustion engine according to claim 2, wherein the rotational speed of the electric motor is reduced when the internal combustion engine is started. 前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記電動モータによる前記ターボ過給機の駆動を禁止することを特徴とする請求項2に記載の内燃機関の制御装置。   The supercharge limiting unit is configured to drive the turbocharger by the electric motor when starting the internal combustion engine when the voltage of the battery acquired by the voltage acquisition unit is less than the determination voltage when starting the internal combustion engine. The control device for an internal combustion engine according to claim 2, wherein the control is prohibited. 前記電動モータは、前記内燃機関の排気エネルギを利用して発電する発電機として機能可能であるとともに発電した電力を前記バッテリに充電可能であり、
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記電動モータを発電機として機能させて前記バッテリの充電を行うことを特徴とする請求項2に記載の内燃機関の制御装置。
The electric motor can function as a generator that generates power using exhaust energy of the internal combustion engine and can charge the battery with generated power.
The supercharging limiting means causes the electric motor to function as a generator at the start of the internal combustion engine when the voltage of the battery acquired by the voltage acquisition means at the start of the internal combustion engine is less than the determination voltage. The control apparatus for an internal combustion engine according to claim 2, wherein the battery is charged.
前記内燃機関の気筒から排出された排気の一部を再度前記気筒内に戻すEGR手段をさらに備え、
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に排気の一部が前記気筒内に戻されるように前記EGR手段の動作を制御することを特徴とする請求項2〜5のいずれか一項に記載の内燃機関の制御装置。
EGR means for returning a part of the exhaust discharged from the cylinder of the internal combustion engine into the cylinder again,
When the battery voltage acquired by the voltage acquisition unit when the internal combustion engine is started is less than the determination voltage, a part of the exhaust gas is returned to the cylinder when the internal combustion engine is started. 6. The control device for an internal combustion engine according to claim 2, wherein the operation of the EGR means is controlled as described above.
前記EGR手段として、前記吸気通路と前記排気通路とを接続するEGR通路と、前記EGR通路を通過する排気の流量を調整するEGR弁と、前記EGR通路の経路中に配置されて排気を冷却するEGRクーラと、前記EGRクーラをバイパスさせて前記排気通路から前記吸気通路に排気を導くバイパス通路と、前記排気通路から前記EGRクーラを介して前記吸気通路に排気が戻される第1の位置と前記排気通路から前記バイパス通路を介して前記吸気通路に排気が戻される第2の位置とに切り替え可能な流路切替弁と、が設けられ、
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記吸気通路に排気が戻されるように前記EGR弁を開け、かつ前記流路切替弁を前記第2の位置に切り替えることを特徴とする請求項6に記載の内燃機関の制御装置。
As the EGR means, an EGR passage that connects the intake passage and the exhaust passage, an EGR valve that adjusts the flow rate of the exhaust gas that passes through the EGR passage, and an EGR passage that cools the exhaust gas. An EGR cooler, a bypass passage that bypasses the EGR cooler and guides exhaust from the exhaust passage to the intake passage, a first position at which exhaust is returned from the exhaust passage to the intake passage via the EGR cooler, and the A flow path switching valve that can be switched from an exhaust passage to a second position where exhaust is returned to the intake passage via the bypass passage,
The supercharging limiting means is configured to return exhaust to the intake passage when the internal combustion engine is started when the voltage of the battery acquired by the voltage acquisition means when the internal combustion engine is started is less than the determination voltage. The control device for an internal combustion engine according to claim 6, wherein an EGR valve is opened and the flow path switching valve is switched to the second position.
前記内燃機関は、前記タービンよりも下流の排気通路に設けられて前記排気通路を流れる排気の流量を調整可能な排気絞り弁を備え、
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記排気通路の排気流量が減少するように前記排気絞り弁を閉じることを特徴とする請求項2〜7のいずれか一項に記載の内燃機関の制御装置。
The internal combustion engine includes an exhaust throttle valve provided in an exhaust passage downstream of the turbine and capable of adjusting a flow rate of exhaust flowing through the exhaust passage,
The supercharging limiting unit is configured to reduce the exhaust flow rate in the exhaust passage when starting the internal combustion engine when the voltage of the battery acquired by the voltage acquiring unit is less than the determination voltage when starting the internal combustion engine. The control device for an internal combustion engine according to any one of claims 2 to 7, wherein the exhaust throttle valve is closed.
前記ターボ過給機は、前記タービンの入口部分の流路断面積を変更可能な可変ノズルを備え、
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記タービンの入口部分の流路断面積を減少させるべく前記可変ノズルを閉じることを特徴とする請求項2〜8のいずれか一項に記載の内燃機関の制御装置。
The turbocharger includes a variable nozzle capable of changing a flow path cross-sectional area of an inlet portion of the turbine,
When the internal combustion engine is started, when the voltage of the battery acquired by the voltage acquisition unit is less than the determination voltage, the supercharging restriction unit calculates a flow path cross-sectional area of the inlet portion of the turbine when the internal combustion engine is started. The control device for an internal combustion engine according to any one of claims 2 to 8, wherein the variable nozzle is closed so as to be decreased.
前記内燃機関の気筒に設けられる排気弁の閉弁時期を変更可能な可変動弁機構を備え、
前記過給制限手段は、前記内燃機関の始動時に前記電圧取得手段により取得された前記バッテリの電圧が前記判定電圧未満の場合、前記内燃機関の始動時に前記排気弁の閉弁時期が早められるように前記可変動弁機構の動作を制御することを特徴とする請求項2〜9のいずれか一項に記載の内燃機関の制御装置。
A variable valve mechanism capable of changing a closing timing of an exhaust valve provided in a cylinder of the internal combustion engine;
The supercharging limiting means may advance the closing timing of the exhaust valve at the start of the internal combustion engine when the battery voltage acquired by the voltage acquisition means at the start of the internal combustion engine is less than the determination voltage. The control device for an internal combustion engine according to any one of claims 2 to 9, wherein operation of the variable valve mechanism is controlled.
前記内燃機関の温度を取得する機関温度取得手段と、吸入空気の温度を取得する吸気温度取得手段と、前記内燃機関の始動時に前記機関温度取得手段が取得した前記内燃機関の温度及び前記吸気温度取得手段が取得した吸入空気の温度のそれぞれに基づいて前記判定電圧を補正する判定電圧補正手段と、をさらに備えていることを特徴とする請求項2〜10のいずれか一項に記載の内燃機関の制御装置。   Engine temperature acquisition means for acquiring the temperature of the internal combustion engine, intake air temperature acquisition means for acquiring the temperature of intake air, temperature of the internal combustion engine and intake air temperature acquired by the engine temperature acquisition means when the internal combustion engine is started 11. The internal combustion engine according to claim 2, further comprising a determination voltage correction unit that corrects the determination voltage based on each of the intake air temperatures acquired by the acquisition unit. Engine control device. 前記内燃機関の温度を取得する機関温度取得手段をさらに備え、
前記過給制限手段は、前記機関温度取得手段により取得された前記内燃機関の温度が所定の判定温度未満の場合に前記要因が生じたと判断することを特徴とする請求項1に記載の内燃機関の制御装置。
Engine temperature acquisition means for acquiring the temperature of the internal combustion engine,
2. The internal combustion engine according to claim 1, wherein the supercharging restriction unit determines that the factor has occurred when the temperature of the internal combustion engine acquired by the engine temperature acquisition unit is lower than a predetermined determination temperature. Control device.
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時における前記内燃機関の温度が前記判定温度以上の場合よりも前記内燃機関の始動時に前記電動モータの回転数を低下させることを特徴とする請求項12に記載の内燃機関の制御装置。   When the internal combustion engine temperature acquired by the engine temperature acquisition unit at the start of the internal combustion engine is lower than the determination temperature, the supercharging restriction unit determines the temperature of the internal combustion engine at the start of the internal combustion engine. 13. The control device for an internal combustion engine according to claim 12, wherein the number of revolutions of the electric motor is reduced when the internal combustion engine is started than when the temperature is higher than a temperature. 前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記電動モータによる前記ターボ過給機の駆動を禁止することを特徴とする請求項12に記載の内燃機関の制御装置。   When the internal combustion engine temperature acquired by the engine temperature acquisition unit at the start of the internal combustion engine is lower than the determination temperature, the turbocharger by the electric motor at the start of the internal combustion engine The control apparatus for an internal combustion engine according to claim 12, wherein driving of the internal combustion engine is prohibited. 前記電動モータは、前記内燃機関の排気エネルギを利用して発電する発電機として機能可能であるとともに発電した電力を前記バッテリに充電可能であり、
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記電動モータを発電機として機能させて前記バッテリの充電を行うことを特徴とする請求項12に記載の内燃機関の制御装置。
The electric motor can function as a generator that generates power using exhaust energy of the internal combustion engine and can charge the battery with generated power.
The supercharging restriction means causes the electric motor to function as a generator at the start of the internal combustion engine when the temperature of the internal combustion engine acquired by the engine temperature acquisition means at the start of the internal combustion engine is lower than the determination temperature. The internal combustion engine control device according to claim 12, wherein the battery is charged.
前記内燃機関の気筒から排出された排気の一部を再度前記気筒内に戻すEGR手段をさらに備え、
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に排気の一部が前記気筒内に戻されるように前記EGR手段の動作を制御することを特徴とする請求項12〜15のいずれか一項に記載の内燃機関の制御装置。
EGR means for returning a part of the exhaust discharged from the cylinder of the internal combustion engine into the cylinder again,
If the temperature of the internal combustion engine acquired by the engine temperature acquisition unit is less than the determination temperature when the internal combustion engine is started, a part of the exhaust gas is placed in the cylinder when the internal combustion engine is started. The control device for an internal combustion engine according to any one of claims 12 to 15, wherein the operation of the EGR means is controlled so as to be returned.
前記EGR手段として、前記吸気通路と前記排気通路とを接続するEGR通路と、前記EGR通路を通過する排気の流量を調整するEGR弁と、前記EGR通路の経路中に配置されて排気を冷却するEGRクーラと、前記EGRクーラをバイパスさせて前記排気通路から前記吸気通路に排気を導くバイパス通路と、前記排気通路から前記EGRクーラを介して前記吸気通路に排気が戻される第1の位置と前記排気通路から前記バイパス通路を介して前記吸気通路に排気が戻される第2の位置とに切り替え可能な流路切替弁と、が設けられ、
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記吸気通路に排気が戻されるように前記EGR弁を開け、かつ前記流路切替弁を前記第2の位置に切り替えることを特徴とする請求項16に記載の内燃機関の制御装置。
As the EGR means, an EGR passage that connects the intake passage and the exhaust passage, an EGR valve that adjusts the flow rate of the exhaust gas that passes through the EGR passage, and an EGR passage that cools the exhaust gas. An EGR cooler, a bypass passage that bypasses the EGR cooler and guides exhaust from the exhaust passage to the intake passage, a first position at which exhaust is returned from the exhaust passage to the intake passage via the EGR cooler, and the A flow path switching valve that can be switched from an exhaust passage to a second position where exhaust is returned to the intake passage via the bypass passage,
When the internal combustion engine temperature acquired by the engine temperature acquisition unit at the start of the internal combustion engine is lower than the determination temperature, the supercharging restriction unit is configured to return exhaust gas to the intake passage at the start of the internal combustion engine. The control device for an internal combustion engine according to claim 16, wherein the EGR valve is opened and the flow path switching valve is switched to the second position.
前記内燃機関は、前記タービンよりも下流の排気通路に設けられて前記排気通路を流れる排気の流量を調整可能な排気絞り弁を備え、
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記排気通路の排気流量が減少するように前記排気絞り弁を閉じることを特徴とする請求項12〜17のいずれか一項に記載の内燃機関の制御装置。
The internal combustion engine includes an exhaust throttle valve provided in an exhaust passage downstream of the turbine and capable of adjusting a flow rate of exhaust flowing through the exhaust passage,
When the internal combustion engine temperature acquired by the engine temperature acquisition unit is less than the determination temperature when the internal combustion engine is started, the supercharging restriction unit decreases the exhaust flow rate of the exhaust passage when the internal combustion engine is started. The control device for an internal combustion engine according to any one of claims 12 to 17, wherein the exhaust throttle valve is closed as described above.
前記ターボ過給機は、前記タービンの入口部分の流路断面積を変更可能な可変ノズルを備え、
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記タービンの入口部分の流路断面積を減少させるべく前記可変ノズルを閉じることを特徴とする請求項12〜18のいずれか一項に記載の内燃機関の制御装置。
The turbocharger includes a variable nozzle capable of changing a flow path cross-sectional area of an inlet portion of the turbine,
When the internal combustion engine temperature acquired by the engine temperature acquisition unit at the start of the internal combustion engine is lower than the determination temperature, the supercharging limiting unit is configured to cut off a flow path at the inlet portion of the turbine at the start of the internal combustion engine. The control device for an internal combustion engine according to any one of claims 12 to 18, wherein the variable nozzle is closed to reduce an area.
前記内燃機関の気筒に設けられる排気弁の閉弁時期を変更可能な可変動弁機構を備え、
前記過給制限手段は、前記内燃機関の始動時に前記機関温度取得手段により取得された前記内燃機関の温度が前記判定温度未満の場合、前記内燃機関の始動時に前記排気弁の閉弁時期が早められるように前記可変動弁機構の動作を制御することを特徴とする請求項12〜19のいずれか一項に記載の内燃機関の制御装置。
A variable valve mechanism capable of changing a closing timing of an exhaust valve provided in a cylinder of the internal combustion engine;
When the internal combustion engine temperature acquired by the engine temperature acquisition unit at the start of the internal combustion engine is lower than the determination temperature, the supercharging restriction unit advances the closing timing of the exhaust valve at the start of the internal combustion engine. The control device for an internal combustion engine according to any one of claims 12 to 19, wherein the operation of the variable valve mechanism is controlled as described above.
JP2006033486A 2006-02-10 2006-02-10 Controller for internal combustion engine Pending JP2007211710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033486A JP2007211710A (en) 2006-02-10 2006-02-10 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033486A JP2007211710A (en) 2006-02-10 2006-02-10 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007211710A true JP2007211710A (en) 2007-08-23

Family

ID=38490368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033486A Pending JP2007211710A (en) 2006-02-10 2006-02-10 Controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007211710A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990892A (en) * 1982-11-16 1984-05-25 松下電器産業株式会社 Freely selected music reproducer
JP2010069923A (en) * 2008-09-16 2010-04-02 Toyota Motor Corp Control device for hybrid vehicle
JP2010180712A (en) * 2009-02-03 2010-08-19 Mazda Motor Corp Engine starting method and device therefor
JP2011163308A (en) * 2010-02-15 2011-08-25 Toyota Motor Corp Device for control of internal combustion engine
GB2490943A (en) * 2011-05-19 2012-11-21 Gm Global Tech Operations Inc Method for operating an internal combustion engine with electrically powered turbo compressor
JP2015511293A (en) * 2012-02-21 2015-04-16 アカーテース パワー,インク. Exhaust management strategy for opposed piston two-stroke engines
WO2015132993A1 (en) * 2014-03-04 2015-09-11 日立オートモティブシステムズ株式会社 Control apparatus for internal combustion engine and control method therefor
JP2018193899A (en) * 2017-05-16 2018-12-06 いすゞ自動車株式会社 Intake/exhaust structure of compressed natural gas engine
CN109505694A (en) * 2017-09-15 2019-03-22 罗伯特·博世有限公司 For controlling the method for being used for the booster at least partly capableing of electricity operation of the motor vehicle with internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990892A (en) * 1982-11-16 1984-05-25 松下電器産業株式会社 Freely selected music reproducer
JP2010069923A (en) * 2008-09-16 2010-04-02 Toyota Motor Corp Control device for hybrid vehicle
JP2010180712A (en) * 2009-02-03 2010-08-19 Mazda Motor Corp Engine starting method and device therefor
JP2011163308A (en) * 2010-02-15 2011-08-25 Toyota Motor Corp Device for control of internal combustion engine
GB2490943A (en) * 2011-05-19 2012-11-21 Gm Global Tech Operations Inc Method for operating an internal combustion engine with electrically powered turbo compressor
GB2490943B (en) * 2011-05-19 2016-09-07 Gm Global Tech Operations Llc A method for operating an internal combustion engine
JP2015511293A (en) * 2012-02-21 2015-04-16 アカーテース パワー,インク. Exhaust management strategy for opposed piston two-stroke engines
WO2015132993A1 (en) * 2014-03-04 2015-09-11 日立オートモティブシステムズ株式会社 Control apparatus for internal combustion engine and control method therefor
JP2015166587A (en) * 2014-03-04 2015-09-24 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
US9976498B2 (en) 2014-03-04 2018-05-22 Hitachi Automotive Systems, Ltd. Control apparatus for internal combustion engine and control method therefor
JP2018193899A (en) * 2017-05-16 2018-12-06 いすゞ自動車株式会社 Intake/exhaust structure of compressed natural gas engine
CN109505694A (en) * 2017-09-15 2019-03-22 罗伯特·博世有限公司 For controlling the method for being used for the booster at least partly capableing of electricity operation of the motor vehicle with internal combustion engine

Similar Documents

Publication Publication Date Title
US9097175B2 (en) Internal combustion engine with supercharger
JP2007211710A (en) Controller for internal combustion engine
US6829888B2 (en) Method for controlling the starting of an internal combustion engine
JP5370243B2 (en) Control device for diesel engine with turbocharger
JP2003239755A (en) Supercharging pressure controller
JP5211997B2 (en) Method and apparatus for controlling direct injection engine with turbocharger
JP3994855B2 (en) Control device for internal combustion engine
US9896994B2 (en) Control apparatus of engine
JP6132092B2 (en) Engine control device
JP6537487B2 (en) Control device for internal combustion engine
EP2075444A1 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP6052584B2 (en) Engine start control device for hybrid vehicle
JP2008069667A (en) Starting method of two-cycle engine
JP2005016459A (en) Controller of internal combustion engine with supercharger
JP2008075565A (en) Control device for internal combustion engine
JP2007278066A (en) Control device for internal combustion engine
JP2005256691A (en) Control device for gasoline engine with variable nozzle mechanism turbocharger
JP2011214417A (en) Starting control device for diesel engine
JP2000265880A (en) Intake control device for internal combustion engine
JP5251558B2 (en) Engine starting method and its starting device
JP3903805B2 (en) Turbocharger
JP6750221B2 (en) Engine controller
JP2006090148A (en) Engine starter
JP2019173578A (en) Engine control device
JP2004197653A (en) Vehicle control device