WO2018201298A1 - 水力空化除磷装置及应用该装置的污水处理系统、方法 - Google Patents
水力空化除磷装置及应用该装置的污水处理系统、方法 Download PDFInfo
- Publication number
- WO2018201298A1 WO2018201298A1 PCT/CN2017/082770 CN2017082770W WO2018201298A1 WO 2018201298 A1 WO2018201298 A1 WO 2018201298A1 CN 2017082770 W CN2017082770 W CN 2017082770W WO 2018201298 A1 WO2018201298 A1 WO 2018201298A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavitation
- tank
- sludge
- stage
- sewage
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
Definitions
- the invention relates to a treatment device for organic sewage, in particular to a hydraulic cavitation dephosphorization device and a sewage treatment system and method using the same.
- Urban sewage treatment usually chooses a biochemical treatment process (such as A 2 /O) for simultaneous nitrogen and phosphorus removal.
- Biological phosphorus removal is the release of phosphorus by microorganisms under anaerobic conditions and the absorption of phosphorus by polyphosphate bacteria under aerobic conditions, so that phosphorus is discharged into the sludge and discharged from the sewage.
- the more fully the phosphorus release from polyphosphate cells the more poly- ⁇ -hydroxybutyrate stored in the body.
- the high-phosphorus sludge that absorbs a large amount of phosphorus in the cells is finally discharged into the system as excess sludge, thereby completing the phosphorus removal process.
- the biological phosphorus removal process such as A 2 O, which is widely used nowadays, mainly utilizes the phosphorus-concentrating effect of polyphosphate bacteria.
- Phosphorus in sewage has many forms, but it is mainly orthophosphate PO 4 3- -P, polyphosphate and organic phosphorus. In the sewage entering the sewage treatment plant, most of the polyphosphate and organic phosphorus are hydrolyzed or mineralized into PO 4 3- -P.
- the remaining organic phosphorus and polyphosphate in the sewage will also be mineralized or hydrolyzed into PO 4 3- -P, which is taken up by the phosphorus accumulating bacteria and removed.
- the polyphosphate bacteria are alternately in an anaerobic state and an aerobic state. In the anaerobic state, the polyphosphate bacteria can absorb the easily biodegradable organic substances such as acetic acid, formic acid, propionic acid and ethanol in the sewage, store them in the body as a nutrient source, and store the polyphosphate in the body as PO 4 .
- the 3-- P form is released to gain energy.
- there are still some problems in the current biological phosphorus removal process there are still some problems in the current biological phosphorus removal process.
- the carbon source in the sewage is insufficient, and the biological phosphorus removal alone cannot meet the requirements. It is generally believed that to ensure the biological phosphorus removal effect, the BOD 5 /TP in the sewage entering the anaerobic section should be controlled to be greater than 20.
- the results show that when the influent BOD 5 /TP ⁇ 20, the effluent TP can only reach 1mg/L, and the influent BOD 5 /TP ⁇ 20 biological phosphorus removal system effluent TP is difficult to reach 1-2mg/L.
- the BOD 5 /TP ⁇ 20 in most urban sewage in China is far from meeting the requirements of biological phosphorus removal for carbon sources.
- the first-class A standard for water quality discharge of urban sewage treatment plants in China stipulates that the concentration of TP in effluent is ⁇ 0.5mg/L. This requires other methods to make up for the deficiency of biological phosphorus removal technology.
- the urban sewage biological phosphorus removal system has the problem that the water quality of the effluent is not up to standard due to insufficient carbon source.
- many sewage treatment plants in China require upgrading. That is to upgrade from the original Level 1 B standard to the Level 1 A standard.
- the object of the present invention is to provide a hydrodynamic cavitation dephosphorization device capable of effectively removing phosphorus in organic sewage and a sewage treatment system and method using the same.
- the present invention provides a hydrodynamic cavitation dephosphorization apparatus comprising: a hydrodynamic cavitation sludge reducer, further comprising iron filings disposed at a discharge nozzle of the hydrodynamic cavitation sludge reducer frame,
- the hydrodynamic cavitation mud reducer comprises at least two stages of cavitation devices connected in series;
- the first stage cavitation device comprises a first cavitation placed in the first cavitation chamber and a pulverizing baffle facing the first cavitation outlet;
- the second stage cavitation device comprises a second cavitation, a jet confinement body and a secondary diffusion tube which are sequentially connected, the jet confinement body is located in a dissolved gas chamber, and the dissolved gas chamber is provided with a dissolved gas adjusting mechanism;
- the iron filing frame is filled with iron scraps for oxidizing reaction with the hydraulic cavitation sludge reducer, and the bottom wall and the side wall of the iron filing frame are provided with mesh holes;
- the phosphorus-containing sewage discharged from the discharge nozzle of the hydrodynamic cavitation reducer enters the iron filing frame, and is oxidized by the iron filings in the iron filing frame, and then placed on the bottom wall and the side wall of the iron filing frame. The mesh is flowing out.
- the hydrodynamic cavitation mud reducer further includes a third stage cavitation device and a fourth stage cavitation device; the second stage cavitation device, the third stage cavitation device and the fourth level cavitation device from top to bottom a vertical configuration; the first stage cavitation device is horizontally disposed and located above the second level cavitation device;
- the first stage cavitation device is connected to the second stage cavitation device by a first support sealing plate; the second stage cavitation device is connected to the third stage cavitation device by a second support sealing plate; The third stage cavitation device is coupled to the fourth stage cavitation device via a third support seal.
- the invention also discloses a sewage treatment system, comprising a grid, a grit chamber, a biological reaction tank and a sludge concentration tank connected in sequence, characterized in that: at the outlet end of the sludge concentration tank and the inlet of the biological reaction tank A hydraulic cavitation dephosphorization device is connected in series to form a sewage circulation system; the inlet end of the hydrodynamic cavitation dephosphorization device is connected to the outlet end of the sludge concentration tank, and the outlet end thereof is connected to the biological reaction cell via a pipeline Entrance end.
- the biological reaction tank comprises an anoxic tank and an aerobic tank connected in sequence, and an outlet end of the aerobic tank is connected to an inlet end of the anoxic tank via a pipeline to constitute a circulation including the anoxic tank and the aerobic tank a circuit; the other outlet end of the aerobic tank is connected to the secondary settling tank and the sludge concentration tank in sequence.
- the biological reaction tank comprises an anaerobic tank, an anoxic tank and an aerobic tank connected in series, and an outlet end of the aerobic tank is connected to the inlet end of the anoxic tank via a pipeline to constitute the anoxic tank and a circulation loop of the oxygen pool; the other outlet end of the aerobic tank is connected to the secondary settling tank and the sludge concentration tank in turn.
- the biological reaction tank comprises an anaerobic tank and an oxidation ditch connected in sequence, the oxidation ditch comprising an anoxic section and an aerobic section; the outlet end of the oxidation ditch is sequentially connected to the secondary settling tank and the sludge thickening tank.
- the bioreactor comprises an anaerobic tank and an SBR reaction tank connected in series, and the outlet end of the SBR reaction tank is connected to the sludge concentration tank.
- the biological reaction tank comprises an anaerobic tank, an anoxic tank and an MBR reaction tank connected in sequence, and an outlet end of the MBR reaction tank is connected to an inlet end of the anoxic tank to constitute the anoxic tank and the MBR reaction tank. a circulation loop; the other outlet end of the MBR reaction tank is connected to the sludge concentration tank.
- the invention also discloses a sewage treatment method using a hydrodynamic cavitation dephosphorization device, characterized in that the method comprises the following steps:
- Step A pretreating the high concentration organic sewage mixture through the grid and the grit chamber to remove the suspended matter in the organic sewage mixture;
- Step B removing the organic pollutants in the pretreated organic sewage mixture by the biological treatment method of the biological reaction pool, utilizing the metabolism of the microorganisms, and concentrating the biologically treated effluent through the sludge concentration tank to reduce The water content of the sludge in the effluent;
- Step C After the sludge mixture treated in step B enters the first cavitation of the hydrodynamic cavitation reducer, a high-speed jet is generated to impinge on the crushing baffle facing the first cavitation, and the sewage is stained. The large granular sludge floc in the mud mixture is broken, which causes the pressure of the mixed liquid in the first-stage cavitation chamber of the hydrodynamic cavitation mud reducer to further increase; the sludge mixture after the first cavitation enters the hydrodynamic cavitation The second cavitation of the mud reduction machine generates dissolved air cavitation under the action of the dissolved gas chamber and the jet restriction body in the second-stage cavitation device; the sludge mixture after the second cavitation passes through the secondary diffusion pipe discharge;
- Step D The oxidizing sludge mixture discharged through the step C is impacted on the iron filing frame to react the oxidized sludge mixture with the iron filings to form high-valent iron ions, and the high-valent iron ions are further combined with the phosphate in the sludge mixture. Precipitation of iron phosphate to achieve phosphorus removal effect;
- Step E The excess sludge treated in step D is returned to the biological reaction tank and biologically treated again to further reduce the amount of organic sludge discharged.
- the method step C further includes: the liquid mixture to be treated containing the sludge is subjected to two-stage cavitation treatment of the first-stage cavitation device and the second-stage cavitation device, and then sequentially enters the downstream third-stage cavitation device.
- the third cavitation in the third cavitation and the fourth cavitation in the fourth-stage cavitation unit are subjected to three-stage and four-stage cavitation treatment, and finally discharged through the outlet pipe.
- the invention Compared with the prior art, the invention has less engineering investment, low operating cost, and can be applied to an existing sewage treatment system, thereby further effectively improving the phosphorus removal effect.
- FIG. 1 is a schematic structural view of a hydrodynamic cavitation dephosphorization apparatus of the present invention
- FIG. 2 is a schematic structural view of a hydrodynamic cavitation sludge reducing machine in the hydrodynamic cavitation dephosphorization apparatus of the present invention
- FIG. 3 is a process flow diagram of a sewage treatment system using the hydraulic cavitation dephosphorization device of the present invention using an A/O biochemical treatment process;
- FIG. 4 is a process flow diagram of a sewage treatment system using the hydraulic cavitation dephosphorization device of the present invention using an A 2 /O biochemical treatment process;
- FIG. 5 is a process flow diagram of a biochemical treatment process using an oxidation ditch in a sewage treatment system to which the hydraulic cavitation dephosphorization device of the present invention is applied;
- FIG. 6 is a process flow diagram of a SBR biochemical treatment process of a sewage treatment system to which the hydraulic cavitation dephosphorization apparatus of the present invention is applied;
- FIG. 7 is a process flow diagram of a sewage treatment system using the hydrodynamic cavitation dephosphorization device of the present invention using a MBR biochemical treatment process;
- Figure 8 is a flow chart of the sewage treatment method of the present invention.
- the hydraulic cavitation dephosphorization apparatus of the present invention comprises: a hydrodynamic cavitation sludge reducing machine 1 and an iron filing placing frame 3 disposed at the discharge port 2 of the hydrodynamic cavitation sludge reducing machine.
- the iron filing frame 3 is covered with iron filings for oxidation reaction with the effluent of the hydrodynamic cavitation reducer 1.
- a mesh hole is formed in the bottom wall surface and the side wall of the iron filing frame 3.
- the phosphorus-containing sewage discharged from the discharge nozzle 2 of the hydrodynamic cavitation reducer 1 enters the iron filing frame 3, and is oxidized by the iron filings in the iron filing frame 3, and then placed on the bottom wall and side of the frame 3 through the iron filings.
- the iron filing frame 3 is preferably a target iron filing frame.
- the inlet of the hydrodynamic cavitation sludge reducing machine 1 is connected with a non-clogging sewage pump, which provides a certain flow and pressure of the sludge mixture into the hydrodynamic cavitation sludge reducing machine 1, and undergoes hydrodynamic cavitation and mud reduction.
- the phosphorus-containing sewage of the machine 1 having a certain flow rate and pressure enters the iron filing frame 3 through the discharge nozzle 2.
- the hydrodynamic cavitation sludge reducer 1 includes at least two stages of cavitation devices connected in series with each other; the first stage cavitation device 100 includes a first space placed in the first stage cavitation chamber 101. And a pulverizing baffle 102 facing the outlet of the first cavitation 103; the second-stage cavitation device 20 includes a second cavitation 21, a jet confinement 25 and a secondary diffusion pipe 26 that are sequentially connected.
- the jet restriction body 25 is located in a dissolved gas chamber 23, and the dissolved gas chamber 23 is provided with a dissolved gas regulating mechanism.
- the first stage cavitation device 100 includes a first-stage cavitation chamber 101, a first cavitation 103 disposed in the first-stage cavitation chamber 101, and is disposed in the first-stage cavitation chamber 101 and facing the first space.
- the pulverizing baffle 102 exits the chemist 103.
- the first cavitation 103 is specifically a first shrink nozzle, the first shrink nozzle is horizontally mounted on the casing of the first stage cavitation device 100, and the outlet end thereof extends into the first stage.
- the cavitation device 100 housing and the first support capsule 104 enclose a first-stage cavitation chamber 101.
- the pulverizing baffle 102 is vertically fixed to the rear side of the first support sealing plate 104.
- the pulverizing baffle 102 is a curved pulverizing baffle that is adapted to the injection angle of the first contraction nozzle outlet.
- a high-speed jet is generated and impinges on the powder.
- the crushing baffle 102 by impacting the pulverizing baffle 102, causes the sludge flocs in the mixture to be first destroyed, so that the subsequent cavitation energy can fully act on the sludge cells, thereby improving the wall breaking efficiency of the cavitation sludge cells. Strengthen the effect of primary cavitation.
- the second cavitation 21 is a second shrink nozzle disposed vertically downward.
- the second cavitation 21 may be disposed in the heating chamber 22, the second The outer wall surface of the shrink nozzle, the first support sealing plate 104, the outer casing of the second stage cavitation unit 20 and the first support plate 223 are formed to form the heating chamber 22, and the heating chamber 22 is provided with a heating ring 221 on the wall surface.
- the heating coil 221 is a stainless steel mica heating coil.
- the heating ring 221 can meet the requirements of the local water temperature working condition on the cavitation and enhance the cavitation efficiency.
- the wall surface of the heating chamber 22 is provided with a heat shield 222.
- the heating chamber 22 is an optional device, and the cavitation effect can be achieved when the heating chamber 22 is not provided. However, after the heating chamber 22 is increased, the efficiency of cavitation can be improved.
- a second support plate 24 is further disposed between the secondary diffusion tube 26 and the outer casing of the second stage cavitation device 20, the first support plate 223 and the second support plate 24 and a vertical wall connecting the two support plates Surrounding to form the dissolved gas chamber 23.
- the dissolved gas regulating mechanism is configured to meet the requirement of the jet flow cavitation cavitation in the second-stage cavitation device 20 for the intake air amount, and specifically includes an intake pipe 273 communicating with the dissolved gas chamber 23, and being installed in the intake pipe An air flow meter 272 on the 273 and an air conditioning valve 271 disposed at the inlet of the intake pipe 273.
- An outlet of the second cavitation 20 extends into the dissolved gas chamber 23, and a jet restriction body 25 is further disposed at the outlet of the second cavitation 20 for smoothing the jet and generating eddy current cavitation.
- the vertical section of the jet restriction body 25 is substantially "V" shaped.
- the outlet of the jet restriction body 25 interfaces with the inlet of the secondary diffusion pipe 26.
- the slurry to be treated After the slurry to be treated enters the first cavitation 103, a high-speed jet impinges on the pulverizing baffle 102 to break up the large granular sludge flocs in the mixed liquid, and then enters the second The cavitation 21, the mixed liquid generates dissolved air cavitation in the second cavitation 21, and the second cavitation mixed liquid is discharged through the secondary diffusion pipe 26.
- the hydrodynamic cavitation sludge reducer 1 further includes a third stage cavitation unit 30 and a fourth stage cavitation unit 40.
- the tertiary cavitation device 30 includes a third cavitation 32 and a tertiary diffusion tube 33 coupled thereto.
- the third cavitation 32 is specifically a third contraction nozzle disposed vertically downward.
- the four stage cavitation unit 40 includes a fourth cavitation 42.
- the fourth cavitation 42 is specifically a fourth shrink nozzle disposed vertically downward, and the fourth shrink nozzle is further provided with a plurality of cavitation nozzles.
- the fourth cavitation 42 projects downward into the fourth cavitation chamber 43.
- the outlet of the four-stage cavitation unit 40 is further provided with an outlet pipe 45 and a drain valve 44.
- the second stage cavitation unit 20, the third stage cavitation unit 30 and the fourth stage cavitation unit 40 are vertically arranged from top to bottom; the first stage cavitation unit 100 is horizontally arranged and located at the second stage cavitation unit 20 on square.
- the first stage cavitation device 100 is connected to the second stage cavitation device 20 by a first support sealing plate 104; the second stage cavitation device 20 is cavitation with the third stage by a second support sealing plate 31 The device 30 is connected; the third stage cavitation device 30 is connected to the fourth stage cavitation unit 40 via a third support closure 41.
- the liquid mixture to be treated containing sludge is subjected to two-stage cavitation treatment of the first-stage cavitation device 100 and the second-stage cavitation device 20, and then enters the third cavitation in the third-stage cavitation device 30 in sequence.
- the fourth cavitation 42 in the unit 32 and the fourth stage cavitation unit 40 performs three-stage and four-stage cavitation processing, and is finally discharged through the outlet pipe 45.
- the bottom of the hydrodynamic cavitation reducer used in the present invention is further provided with a support 46.
- the number of hollowing devices of the hydrodynamic cavitation sludge reducer 1 is set according to actual conditions. For example, when it is necessary to enhance the cavitation effect, the corresponding cavitation device can be added.
- the hydraulic cavitation sludge reducing machine adopted by the invention is a comprehensive hydraulic cavitation practical device.
- the working principle is as follows: the sludge mixture which provides a certain flow and pressure by the non-blocking sewage pump enters the hydrodynamic cavitation mud reducer, and produces a continuous action of four-stage cavitation, which strengthens the treatment degree of the sludge.
- the non-blocking sewage pump enables the sludge mixture to enter the first-stage cavitation at high speed, and realizes the sludge mixing under the combined action of the cavitation cavitation of the first-stage cavitation and the high-speed water flow at the outlet of the first-stage cavitation.
- the continuous three-stage cavitation more fully processes the first-stage cavitation-pretreated muddy water, thereby improving the one-time treatment efficiency of the mud-reducing machine.
- the coupling of the above four-stage cavitation effect causes the organic matter in the sludge water to be fully oxidized and decomposed.
- the cavitation produces a micro-jet with a strong shock wave and occurs in tens of thousands of continuous actions per second, resulting in efficient mechanical shredding and producing a highly chemically active free radical -OH, followed by organic Oxidation reaction of pollutants, oxidative decomposition of most organic pollutants in the mixture into low molecular weight substances, strong hydraulic shear force generated by shock waves and high-speed microjets in the mixture, effectively destroying the sludge structure and making macromolecules
- the carbon bond in the main chain breaks and turns into a short-chain bottom molecular organic substance, causing the intracellular solute to flow out and further decomposed.
- the sewage treatment system of the invention comprises a grid, a grit chamber, a biological reaction tank and a sludge concentration tank connected in sequence, and a hydraulic cavitation dephosphorization device is connected in series between the outlet end of the sludge concentration tank and the inlet of the biological reaction tank To form a sewage circulation system; the inlet end of the hydraulic cavitation dephosphorization device is connected to the outlet end of the sludge concentration tank, and the outlet end thereof is connected to the inlet end of the biological reaction tank via a pipeline.
- the system of the present invention adopts a process flow chart of an A/O biochemical treatment process, wherein the biological reaction cell comprises an anoxic cell and an aerobic cell connected in sequence, and an outlet end of the aerobic cell is connected through a pipeline.
- the inlet end of the anoxic tank constitutes a circulation loop of the anoxic tank and the aerobic tank; the other outlet end of the aerobic tank is connected to the secondary settling tank and the sludge concentration tank in turn.
- the outlet end of the sewage concentrating tank is connected to the inlet end of the hydraulic cavitation mud reducer, and the outlet end of the hydraulic cavitation mud reducer is connected to the inlet end of the anoxic tank.
- the biological reaction pool comprises an anaerobic tank, an anoxic tank and an aerobic tank connected in sequence, and an outlet of the aerobic tank
- the inlet end of the anoxic tank connected to the end of the pipeline constitutes a circulation loop including the anoxic tank and the aerobic tank; and the other outlet end of the aerobic tank is connected to the secondary settling tank and the sludge concentration tank in turn.
- the outlet end of the sludge concentration tank is connected to the inlet end of the hydraulic cavitation mud reducer, and the outlet end of the hydraulic cavitation mud reducer is connected to the inlet end of the anaerobic tank.
- the system of the present invention adopts a process flow chart of an oxidation ditch biochemical treatment process
- the biological reaction cell includes an anaerobic tank and an oxidation ditch which are sequentially connected, and the oxidation ditch includes an anoxic section and an aerobic section;
- the outlet end of the ditch is connected to the secondary settling tank and the sludge thickening tank in sequence.
- the outlet end of the sludge concentration tank is connected to the inlet end of the hydraulic cavitation mud reducer, and the outlet end of the hydraulic cavitation mud reducer is connected to the inlet end of the anaerobic tank.
- the biological reaction tank comprises an anaerobic tank and an SBR reaction tank connected in sequence, and the outlet end of the SBR reaction tank is connected to the sludge concentration tank.
- the outlet end of the sludge concentration tank is connected to the inlet end of the hydraulic cavitation mud reducer, and the outlet end of the hydraulic cavitation mud reducer is connected to the inlet end of the anaerobic tank.
- the system of the present invention adopts a process flow chart of an MBR biochemical treatment process
- the biological reaction cell comprises an anaerobic tank, an anoxic tank and an MBR reaction tank which are sequentially connected, and an outlet end connection of the MBR reaction tank.
- the inlet end of the anoxic tank constitutes a circulation loop including the anoxic tank and the MBR reaction tank; the other outlet end of the MBR reaction tank is connected to the sludge concentration tank.
- the outlet end of the sludge concentration tank is connected to the inlet end of the hydraulic cavitation mud reducer, and the outlet end of the hydraulic cavitation mud reducer is connected to the inlet end of the anaerobic tank.
- the method of the present invention comprises the following steps:
- Step A Pretreating the high concentration organic sewage mixture to remove floating matter and suspended matter in the organic sewage mixture.
- the high concentration organic sewage mixture is pretreated by a grid and a grit chamber which are sequentially connected.
- the grid is composed of a group or array of parallel metal grid bars, plastic gears or metal screens, frames and related devices, and is installed obliquely at the front end of the sewage channel or sewage treatment plant to intercept the coarser organic wastewater mixture.
- Floating objects and suspended solids such as: fiber, broken skin, hair, peel, vegetables, wood chips, cloth strips, plastic products, etc., reduce the scum generated by subsequent treatment, and ensure the normal operation of sewage treatment facilities.
- Sedimentation tank is used to remove inorganic particles that are easy to settle in sewage Suspended solids in water, or in water, while also removing a portion of the organic matter in suspension.
- Step B removing the organic pollutants in the pretreated organic sewage mixture by the biological treatment method of the biological reaction pool, utilizing the metabolism of the microorganisms, and concentrating the biologically treated effluent to reduce the sludge in the effluent Water content.
- Step C After the sludge mixture treated in step B enters the first cavitation 103 of the hydrodynamic cavitation reducer, a high-speed jet is generated to impinge on the pulverizing baffle 102 facing the first cavitation 103.
- the large granular sludge flocs in the sludge mixture are broken, and the pressure of the mixed liquid in the first-stage cavitation chamber 101 of the hydrodynamic cavitation reducer is further increased; the sludge mixture after the first-stage cavitation
- the second cavitation 21 of the hydrodynamic cavitation reducer enters, and the dissolved air cavitation is generated by the combined action of the dissolved gas chamber 23 and the jet confinement body 25 in the second-stage cavitation device 20;
- the mud mixture is discharged through the secondary diffusion pipe 26.
- the sludge mixture after the first-stage cavitation enters the second cavitation 21 of the hydrodynamic cavitation reducer, and the heating ring 221 and the dissolved gas chamber 23 in the second-stage cavitation device 20
- the jet cavitation is generated by the combined action of the jet confinement body 25.
- the step C further includes: the liquid mixture to be treated containing the sludge passes through the two-stage cavitation treatment of the first-stage cavitation device 100 and the second-stage cavitation device 20, and then sequentially enters the downstream third-stage cavitation device.
- the third cavitation 32 in 30 and the fourth cavitation 42 in the fourth stage cavitation unit 40 perform three-stage and four-stage cavitation processing, and are finally discharged through the outlet pipe 45.
- Step D The oxidizing sludge mixture discharged through the step C is impacted on the iron filing frame to react the oxidized sludge mixture with the iron filings to form high-valent iron ions, and the high-valent iron ions are further combined with the phosphate in the sludge mixture.
- the iron phosphate precipitates to achieve the phosphorus removal effect.
- Step E The excess sludge treated in step D is returned to the biological reaction tank for biological treatment again to reduce the amount of organic sludge discharged.
- step B is specifically:
- the organic sewage mixture treated by the anoxic tank enters the aerobic tank to remove the BOD in the organic sewage mixture, and realize the nitrification of ammonia nitrogen and the absorption of phosphorus; and the partial sewage mixture after the aerobic treatment is refluxed To the anoxic pool.
- the BOD is specifically a biological oxygen demand.
- the sewage mixture passing through the aerobic tank enters the secondary settling tank to separate the muddy water, and the suspended solids are separated from the water, and the separated supernatant is discharged as treated purified water, and the separated portion is discharged.
- the sludge mixture enters the sludge concentration tank and is concentrated, and then enters a hydrodynamic cavitation dephosphorization device for cavitation and phosphorus removal treatment, and the excess sludge treated by the hydrodynamic cavitation dephosphorization device is returned to the hypoxia Biological processing continues in the pool.
- step B in the process flow chart of the present invention adopting the A 2 /O biochemical treatment process is specifically as follows:
- the pretreated organic sewage mixture enters the anaerobic tank, and the phosphorus accumulating bacteria in the organic sewage mixture release phosphorus in the anaerobic tank, and at the same time, some organic substances are subjected to ammoniation treatment and then enter the anoxic tank. in;
- the organic sewage mixture treated by the anoxic tank enters the aerobic tank to remove the BOD in the organic sewage mixture, and realize the nitrification of ammonia nitrogen and the absorption of phosphorus; and the partial sewage mixture after the aerobic treatment is refluxed To the anoxic pool.
- the sewage mixture passing through the aerobic tank enters the secondary settling tank to separate the muddy water, and the suspended solids are separated from the water. After the separation, the supernatant liquid is discharged as treated purified water, and the separated part of the sludge mixture enters.
- the sludge concentration tank is concentrated and then enters a hydrodynamic cavitation dephosphorization device for cavitation and phosphorus removal treatment, and the excess sludge treated by the hydrodynamic cavitation dephosphorization device is returned to the anoxic tank to continue the biological process. deal with.
- step B is specifically: the pretreated organic sewage mixture enters the anaerobic tank, and the organic sewage in the anaerobic tank
- the phosphorus accumulating bacteria in the mixture release phosphorus, and at the same time, part of the organic matter is subjected to ammoniation treatment and then enters the oxygen ditch; the organic sewage is treated in the oxygen ditch to realize nitrification of ammonia nitrogen and absorption of phosphorus.
- the sewage mixture passing through the oxidation ditch enters the secondary settling tank to separate the muddy water, and the suspended solids are separated from the water. After the separation, the supernatant liquid is discharged as treated purified water, and the separated part of the sludge mixture enters the After being concentrated in the sludge concentration tank, it is introduced into the hydrodynamic cavitation dephosphorization device for cavitation and phosphorus removal treatment, and the excess sludge treated by the hydrodynamic cavitation dephosphorization device is returned to the anaerobic tank to continue biological treatment. .
- the step B specifically includes: the pretreated organic sewage mixture enters the anaerobic tank, and the organic sewage releases phosphorus in the anaerobic tank. At the same time, part of the organic matter is ammoniated and then enters the SBR reaction tank.
- the microorganisms in the SBR reaction tank use the organic matter in the organic sewage to carry out metabolism, and convert the organic pollutant into CO 2 and H 2 O inorganic substances.
- the supernatant liquid treated by the SBR reaction tank is discharged as purified water after treatment, and the treated partial sludge mixture enters the sludge concentration tank for concentration, and then enters a hydrodynamic cavitation dephosphorization device for cavitation and After the phosphorus removal treatment, the excess sludge treated by the hydrodynamic cavitation dephosphorization apparatus is returned to the anaerobic tank to continue biological treatment.
- the step B specifically includes the following steps:
- the pretreated organic sewage mixture enters the anaerobic tank, wherein the phosphorus accumulating bacteria in the organic sewage release phosphorus in the anaerobic tank, and at the same time, some organic substances are ammoniated and decomposed into the anoxic tank. ;
- the organic sewage mixture treated by the anoxic tank enters the MBR reaction tank to degrade the organic matter in the organic sewage mixture; and the part of the sewage mixture treated by the MBR reaction tank is returned to the anoxic tank. .
- the supernatant liquid treated by the MBR reaction tank is discharged as treated purified water, and the treated partial sludge mixture enters the sludge concentration tank for concentration, and then enters the hydrodynamic cavitation dephosphorization device for cavitation and After the phosphorus removal treatment, the excess sludge treated by the hydrodynamic cavitation dephosphorization apparatus is returned to the anaerobic tank to continue biological treatment.
- the sewage mixture treated by the hydrodynamic cavitation reducer undergoes a cavitation step of the third stage cavitation unit 30 and the fourth stage cavitation unit 40 after two stages of cavitation treatment.
- the cavitation effect is enhanced, the sludge flocs are fragmented and the refractory organic matter is directly decomposed into CO 2 and H 2 O, and the refractory organic matter is broken into small molecules. The chain is then oxidized to fatty acids, thereby increasing the biodegradability of the sewage organics.
- the highly oxidizing water flow generated by the hydrodynamic cavitation reducer impacts the iron filings in the iron oxide placing frame, so that the iron in the iron filings is oxidized into high-priced iron (Fe 2+ , Fe 3+ ), which are high-priced iron ions.
- the iron phosphate precipitate ⁇ Fe 3 (PO 3 ) 2 , FePO 3 ⁇ is removed by combining with the phosphate in the sewage. Thereby achieving the purpose of removing phosphorus from sewage.
- Table 1 The results in Table 1 indicate that the sewage treatment plant adopts chemical phosphorus removal from January to May, and PAFC dephosphorization agent is added.
- the average concentration of TP in the effluent is 0.60 mg/L; the hydrodynamic cavitation phosphorus removal according to the present invention is adopted from June to July.
- the apparatus and the process technology of the present invention do not add PAFC dephosphorization agent, and the average concentration of TP in the effluent is reduced to 0.57 mg/L. It can be seen that the device of the invention can replace the traditional chemical phosphorus removal method to remove phosphorus in the urban sewage, and obtain better phosphorus removal effect, and can significantly reduce the running cost.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Sludge (AREA)
Abstract
一种水力空化除磷装置,包括:水力空化减泥机(1)及设置于水力空化减泥机(1)排出管口(2)的铁屑放置框(3),水力空化减泥机(1)包括相互串接在一起的至少两级空化装置;第一级空化装置(100)包括置于一级空化腔(101)内的第一空化器(103)以及正对第一空化器(103)出口的粉碎挡板(102);第二级空化装置(20)包括顺序连接的第二空化器(21)、射流约束体(25)和二级扩散管(26),射流约束体(25)位于溶气腔(23)内,溶气腔(23)设置有溶气调节机构;铁屑放置框(3)内填满铁屑,该铁屑放置框(3)的底部壁面及侧壁设置网孔。一种应用该装置的污水处理系统和方法。该装置能够应用于现有的污水处理系统中,减少污泥产量的同时进一步提高除磷效果。
Description
本发明涉及一种有机污水的处理装置,尤其涉及一种水力空化除磷装置及应用该装置的污水处理系统、方法。
为了防治日益严重的氮磷污染及水体富营养化问题,我国现行污水排放标准(GB8978-1996)对城市污水处理厂出水中的磷指标提出了严格的要求。这就意味着,城市污水处理工艺都必须考虑除磷的问题。
城市污水处理通常选择同步脱氮除磷的生化处理工艺(如A2/O)。生物除磷是通过微生物在厌氧条件下释放磷以及在好氧条件下通过聚磷菌吸收磷,从而使磷进入污泥中被排出进而从污水中去除磷。在厌氧状态下,聚磷细胞对磷的释放越充分,体内贮存的聚β羟丁酸也越多.进入好氧状态后磷的吸收量也越大。厌氧状态下每释放1mg磷,进入好氧状态后就可吸收2.0~2.4mg磷。细胞内吸收了大量磷的高磷污泥最后以剩余污泥的形式排出系统,从而完成除磷过程。现在广泛采用的A2O等生物除磷工艺主要就是利用了聚磷菌的聚磷作用。污水中的磷有很多存在形式,但主要为正磷酸盐PO4
3--P、聚磷酸盐和有机磷。进入污水处理厂的污水中,绝大部分聚磷酸盐和有机磷被水解或矿化成了PO4
3--P。污水中剩余的有机磷和聚磷酸盐在进入生物处理系统后,也将被矿化或水解成PO4
3--P,被聚磷菌摄取而去除。聚磷菌交替地处于厌氧状态和好氧状态。在厌氧状态下,聚磷菌能吸收污水中的乙酸、甲酸、丙酸及乙醇等极易生物降解的有机物质,贮存在体内作为营养源,同时将体内存贮的聚磷酸盐以PO4
3--P的形式释放出来,以便获得能量。但是目前生物除磷工艺也存在一些问题。例如污水中碳源不足,仅靠生物除磷不能满足要求。一般认为要保证生物除磷效果,应控制进入厌氧段的污水中BOD5/TP大于20。研究结果表明:当进水BOD5/TP≤20时,出水TP只能达到1mg/L,进水BOD5/TP<20的生物除磷系统出水TP难以达到1~2mg/L。然而我国绝大多数城市污水中BOD5/TP≤20,远不能满足生物除磷对碳源的要求。特别是我国城镇污水处理厂的水质排放一级A标准规定出水中TP的浓度≤0.5mg/L.
这就要求采用其他方法弥补生物除磷技术的不足。
城市污水生物除磷系统由于存在着因碳源不足而引起出水水质不达标的问题。为了解决这一问题一般需要从工艺外部采取措施,增加进水中碳源数量,例如取消初沉池减少污水中碳的损失量;设置污泥消化系统,将污泥消化液回流到生化反应池补充碳源。目前我国许多污水处理厂要求升级改造。即从原来的一级B标准升级到一级A标准。这种改造过程除了必须支付高昂的改造费用(有的厂甚至超过建厂所花费用)外,面临的另一困难是难以解决生物处理工艺技术达到一级A标准脱氮除磷所需碳源不足的问题。为了解决这一问题,尽管提出了很多新工艺(如改良A2/O工艺,倒置A2/O工艺等等),但是还不足以解决达标必须需碳源不足问题。不得已有些污水处理厂还采用了外加碳源的补碳方式,如甲醇、醋酸钠等,结果由于运行成本急剧增加,导致这种方式不实际生产所接受。
基于上述生物除磷存在的问题,我国大多数污水处理厂采用了化学除磷的方法。也即对经过生化处理后的污水再加入钙盐、铁盐或铝盐,使污水中的-P与这些盐类中的Ca2+、Fe3+、Al3+分别形成Ca3(PO3)2、FePO3、AlPO3的磷酸盐沉淀,再进入外排的污泥中被除去。化学除磷虽然可以有效弥补生物除磷的不足,但是这种化学除磷只能出去污水中以正磷酸根形式存在的磷,不能除去有机磷或其他形式存在的磷,因此也不是完全凑效。特别是化学除磷通常要加入过量的药剂才能有效,而且工业级的药品中往往含有大量的杂质,有效成分含量低,造成化学污泥量大大增加,明显增加了污水处理厂的污泥产量,也增加了污水处理厂本
发明内容
本发明目的是提供一种能有效去除有机污水中磷的水力空化除磷装置及应用该装置的污水处理系统、方法。
为了实现上述目的,本发明提供了一种水力空化除磷装置,包括:水力空化减泥机,其特征在于还包括设置于所述水力空化减泥机的排出管口的铁屑放置框,
所述水力空化减泥机包括相互串接在一起的至少两级空化装置;
第一级空化装置包括置于一级空化腔内的第一空化器以及正对所述第一空化器出口的粉碎挡板;
第二级空化装置包括顺序连接的第二空化器、射流约束体和二级扩散管,所述射流约束体位于溶气腔内,所述溶气腔设置有溶气调节机构;
所述铁屑放置框内填满用于与所述水力空化减泥机排出物进行氧化反应的铁屑,该铁屑放置框的底部壁面及侧壁设置网孔;
从所述水力空化减泥机的排出管口排出的含磷污水进入所述铁屑放置框,与铁屑放置框内的铁屑进行氧化反应后再经铁屑放置框底部壁面及侧壁的网孔流出。
所述水力空化减泥机还包括第三级空化装置和第四级空化装置;所述第二级空化装置、第三级空化装置和第四级空化装置从上到下竖直配置;所述第一级空化装置水平布置且位于所述第二级空化装置的上方;
所述第一级空化装置通过第一支撑封板与所述第二级空化装置连接;所述第二级空化装置通过第二支撑封板与所述第三级空化装置连接;所述第三级空化装置通过第三支撑封板与所述第四级空化装置连接。
本发明还公开了一种污水处理系统,包括依次连接的格栅、沉砂池、生物反应池和污泥浓缩池,其特征在于:在所述污泥浓缩池出口端和生物反应池的入口之间串接一个水力空化除磷装置以形成一个污水循环系统;所述水力空化除磷装置的入口端连接污泥浓缩池的出口端,其出口端经管路连接所述生物反应池的入口端。
所述生物反应池包括依次连接的缺氧池和好氧池,所述好氧池的一个出口端经管道连接所述缺氧池的入口端构成包括所述缺氧池和好氧池的循环回路;所述好氧池的另一个出口端依次连接二沉池和所述污泥浓缩池。
所述生物反应池包括依次连接的厌氧池、缺氧池和好氧池,所述好氧池的一个出口端经管道连接所述缺氧池的入口端构成包括所述缺氧池和好氧池的循环回路;所述好氧池的另一个出口端依次连接二沉池和所述污泥浓缩池。
所述生物反应池包括依次连接的厌氧池和氧化沟,该氧化沟包括缺氧段和好氧段;所述氧化沟的出口端依次连接二沉池和所述污泥浓缩池。
所述生物反应池包括依次连接的厌氧池和SBR反应池,所述SBR反应池出口端连接所述污泥浓缩池。
所述生物反应池包括依次连接的厌氧池、缺氧池和MBR反应池,所述MBR反应池的一个出口端连接所述缺氧池的入口端构成包括所述缺氧池和MBR反应池的循环回路;所述MBR反应池的另一个出口端连接污泥浓缩池。
本发明还公开了一种采用水力空化除磷装置的污水处理方法,其特征在于包括以下步骤:
步骤A:通过格栅和沉砂池对高浓度有机污水混合物进行预处理,去除有机污水混合物中的悬浮物;
步骤B:通过生物反应池的生物处理方法,利用微生物的代谢作用,去除预处理后的有机污水混合物中的有机污染物质,并通过污泥浓缩池对生物处理后的排出物进行浓缩处理,减少排出物中污泥的含水量;
步骤C:经步骤B处理后的污泥混合液进入水力空化减泥机的第一空化器后产生高速射流撞击在与所述第一空化器正对的粉碎挡板上,使污泥混合液中的大颗粒污泥絮体破碎,导致水力空化减泥机的一级空化腔内的混合液压力进一步增大;经一级空化后的污泥混合液进入水力空化减泥机第二空化器,在第二级空化装置内的溶气腔及射流约束体的共同作用下产生溶气空化;二级空化后的污泥混合液通过二级扩散管排出;
步骤D:经过步骤C排出的氧化性污泥混合物冲击在铁屑放置框上进而使氧化性污泥混合物与铁屑反应形成高价铁离子,高价铁离子进一步与污泥混合物中的磷酸根结合形成磷酸铁沉淀,从而达到除磷效果;
步骤E:经步骤D处理后的剩余污泥返回生物反应池中再次经过生物处理进一步减少有机污泥排出量。
该方法步骤C还包括:含有污泥的待处理混合液经所述第一级空化装置和第二级空化装置的两级空化处理后依次进入下游的所述第三级空化装置内的第三空化器和第四级空化装置内第四空化器进行三级和四级空化处理,最后经出水管排出。
与现有技术相比,本发明工程投资少、运行成本低、能应用于现有的污水处理系统中,进一步有效提高除磷效果。
图1是本发明水力空化除磷装置结构示意图;
图2是本发明水力空化除磷装置中水力空化减泥机的结构示意图;
图3是应用本发明水力空化除磷装置的污水处理系统采用A/O生化处理工艺的工艺流程图;
图4是应用本发明水力空化除磷装置的污水处理系统采用A2/O生化处理工艺的工艺流程图;
图5是应用本发明水力空化除磷装置的污水处理系统采用氧化沟生化处理工艺的工艺流程图;
图6是应用本发明水力空化除磷装置的污水处理系统采用SBR生化处理工艺的工艺流程图;
图7是应用本发明水力空化除磷装置的污水处理系统采用MBR生化处理工艺的工艺流程图;
图8是本发明污水处理方法的流程图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所述,本发明水力空化除磷装置包括:水力空化减泥机1及设置于所述水力空化减泥机排出管口2的铁屑放置框3。铁屑放置框3内布满用于与水力空化减泥机1排出物进行氧化反应的铁屑。该铁屑放置框3的底部壁面及侧壁设置网孔。从水力空化减泥机1的排出管口2排出的含磷污水进入铁屑放置框3,与铁屑放置框3内的铁屑进行氧化反应后再经铁屑放置框3底部壁面及侧壁的网孔流出。所述铁屑放置框3优选为靶式铁屑放置框。所述水力空化减泥机1的入口处连接有无堵塞排污泵,该无堵塞排污泵提供一定流量和压力的污泥混合液进入水力空化减泥机1中,经过水力空化减泥机1的具有一定流量和压力的含磷污水经排出管口2进入铁屑放置框3内。
如图2所示,所述水力空化减泥机1包括相互串接在一起的至少两级空化装置;第一级空化装置100包括置于一级空化腔101内的第一空化器103以及正对所述第一空化器103出口的粉碎挡板102;第二级空化装置20包括顺序连接的第二空化器21、射流约束体25和二级扩散管26,所述射流约束体25位于溶气腔23内,所述溶气腔23设置有溶气调节机构。
所述第一级空化装置100包括一级空化腔101,置于一级空化腔101内的第一空化器103,以及设置于一级空化腔101内并正对第一空化器103出口的粉碎挡板102。所述第一空化器103具体为第一收缩喷管,该第一收缩喷管水平安装在所述第一级空化装置100的壳体上,其出口端伸入由所述第一级空化装置100壳体和第一支撑封板104围成的一级空化腔101内。所述粉碎挡板102竖直固定在所述第一支撑封板104的后侧。优选的,所述粉碎挡板102为弧形粉碎挡板,该弧形粉碎挡板与所述第一收缩喷管出口的喷射角适配。当含有污泥的混合液进入第一空化器103后产生高速射流并撞击粉
碎挡板102,通过撞击粉碎挡板102,使混合物中的污泥絮体先被破坏,便于后续空化能对污泥细胞进行充分作用,以提高空化对污泥细胞的破壁效率,强化一级空化效应。
所述第二空化器21为竖直向下设置的第二收缩喷管,为了增强空化效率,优选地,所述第二空化器21可以设置位于加热腔22中,所述第二收缩喷管外壁面、第一支撑封板104、第二级空化装置20外壳和第一支撑板223包尾形成所述加热腔22,所述加热腔22的壁面设置有加热圈221。优选地,所述加热圈221为不锈钢云母加热圈。通过加热圈221可以满足当地水温工况对空化器的要求进而增强空化效率。所述加热腔22的壁面设置有隔热板222。所述加热腔22为可选择装置,在没有设置加热腔22时也能够实现空化效果,但是增加加热腔22后,能提高空化的效率。所述二级扩散管26与第二级空化装置20外壳之间还设置有第二支撑板24,所述第一支撑板223与所述第二支撑板24以及连接两支撑板的竖壁包围形成所述溶气腔23。所述溶气调节机构用于满足第二级空化装置20中射流溶气空化对于进气量的要求,具体包括与所述溶气腔23连通的进气管273,安装在所述进气管273上的空气流量计272以及设置在进气管273入口处的调气阀271。所述第二空化器20的出口伸入所述溶气腔23中,所述第二空化器20的出口处还设置有射流约束体25,用于使射流流畅并产生涡流空化。所述射流约束体25的竖切面大致呈“V”型。所述射流约束体25出口与所述二级扩散管26的入口对接。
含有污泥的待处理混合液进入所述第一空化器103后形成高速射流撞击在所述粉碎挡板102上,使混合液中的大颗粒污泥絮体破碎,然后进入所述第二空化器21,混合液在所述第二空化器21内产生溶气空化,二级空化的混合液再经所述二级扩散管26排出。
水力空化减泥机1还包括第三级空化装置30和第四级空化装置40。所述三级空化装置30包括第三空化器32以及与其连接的三级扩散管33。所述第三空化器32具体为竖直向下设置的第三收缩喷管。所述四级空化装置40包括第四空化器42。第四空化器42具体为竖直向下设置的第四收缩喷管,该第四收缩喷管上还设置有多个空化喷嘴。第四空化器42向下伸入第四空化腔43中。所述四级空化装置40底部还设置有出水管45以及泄水阀44。
第二级空化装置20、第三级空化装置30和第四级空化装置40从上到下竖直配置;第一级空化装置100水平布置且位于所述第二级空化装置20的上
方。
第一级空化装置100通过第一支撑封板104与所述第二级空化装置20连接;所述第二级空化装置20通过第二支撑封板31与所述第三级空化装置30连接;所述第三级空化装置30通过第三支撑封板41与所述第四级空化装置40连接。
含有污泥的待处理混合液经所述第一级空化装置100和第二级空化装置20的两级空化处理后依次进入所述第三级空化装置30内的第三空化器32和第四级空化装置40内第四空化器42进行三级和四级空化处理,最后经出水管45排出。本发明采用的水力空化减泥机底部还设置有支座46。
水力空化减泥机1中空化装置的数量根据实际情况设置,例如在需要增强空化效果时,可以增加相应的空化装置。
本发明采用的水力空化减泥机为综合水力空化实用设备。工作原理如下:由无堵塞排污泵提供一定流量和压力的污泥混合液进入水力空化减泥机中,产生四级空化的连续作用,强化了对污泥的处理程度。无堵塞排污泵使污泥混合液高速进入一级空化器,在一级空化器空化作用及一级空化器出口高速水流撞击弧形粉碎挡板的综合作用下实现对污泥混合液的第一次预处理,以达到大颗粒污泥絮体破碎化,并为第二级空化效应提供足够的压力及流量配比。接下来连续的三级空化对一级空化预处理过的泥水进行更充分地处理,以此提高减泥机对泥水的一次性通过处理效率。
上述四级空化效应的耦合作用,使污泥水中的有机物质得到充分的氧化分解。同时空化产生时伴随强烈的冲击波的微射流,并以每秒数万次连续作用发生着,带来高效机械切碎效应,并产生具有高化学活性的自由基-OH,随后与溶液中有机污染物发生氧化反应,将混合液中大多数有机污染物氧化分解成为低分子量物质,冲击波和高速微射流在混合液中产生的强大水力剪切力,对污泥结构进行有效破坏,使大分子主链上的碳键断裂,转变为短链底分子有机物,使细胞内溶质流出,并进一步被分解掉。
本发明污水处理系统,包括依次连接的格栅、沉砂池、生物反应池和污泥浓缩池,在污泥浓缩池出口端和生物反应池的入口之间串接一个水力空化除磷装置以形成一个污水循环系统;所述水力空化除磷装置的入口端连接污泥浓缩池的出口端,其出口端经管路连接所述生物反应池的入口端。
如图3所示,本发明系统采用A/O生化处理工艺的工艺流程图中,生物反应池包括依次连接的缺氧池和好氧池,所述好氧池的一个出口端经管道连
接所述缺氧池的入口端构成所述缺氧池和好氧池的循环回路;所述好氧池的另一个出口端依次连接二沉池和污泥浓缩池。该污水浓缩池出口端连接所述水力空化减泥机入口端,所述水力空化减泥机出口端连接所述缺氧池入口端。
如图4所示,本发明系统采用A2/O生化处理工艺的工艺流程图中,生物反应池包括依次连接的厌氧池、缺氧池和好氧池,所述好氧池的一个出口端经管道连接所述缺氧池的入口端构成包括所述缺氧池和好氧池的循环回路;所述好氧池的另一个出口端依次连接二沉池和所述污泥浓缩池。该污泥浓缩池出口端连接所述水力空化减泥机入口端,所述水力空化减泥机出口端连接所述厌氧池入口端。
如图5所示,本发明系统采用氧化沟生化处理工艺的工艺流程图中,生物反应池包括依次连接的厌氧池和氧化沟,该氧化沟包括缺氧段和好氧段;所述氧化沟的出口端依次连接二沉池和污泥浓缩池。该污泥浓缩池出口端连接所述水力空化减泥机入口端,所述水力空化减泥机出口端连接所述厌氧池入口端。
如图6所示,本发明系统采用SBR生化处理工艺的工艺流程图中,生物反应池包括依次连接的厌氧池和SBR反应池,所述SBR反应池出口端连接所述污泥浓缩池。该污泥浓缩池出口端连接所述水力空化减泥机入口端,所述水力空化减泥机出口端连接所述厌氧池入口端。
如图7所示,本发明系统采用MBR生化处理工艺的工艺流程图中,生物反应池包括依次连接的厌氧池、缺氧池和MBR反应池,所述MBR反应池的一个出口端连接所述缺氧池的入口端构成包括所述缺氧池和MBR反应池的循环回路;所述MBR反应池的另一个出口端连接污泥浓缩池。该污泥浓缩池出口端连接所述水力空化减泥机入口端,所述水力空化减泥机出口端连接所述厌氧池入口端。
如图8所示,本发明方法包括以下步骤:
步骤A:对高浓度有机污水混合物进行预处理,去除有机污水混合物中的漂浮物和悬浮物。步骤A中通过依次连接的格栅、沉砂池对高浓度有机污水混合物进行预处理。所述格栅是由一组或数组平行的金属栅条、塑料齿轮或金属筛网、框架及相关装置组成,倾斜安装在污水渠道或污水处理厂的前端,用来截留有机污水混合物中较粗大漂浮物和悬浮物,如:纤维、碎皮、毛发、果皮、蔬菜、木片、布条、塑料制品等,减少后续处理产生的浮渣,保证污水处理设施的正常运行。沉淀池用于去除污水中易沉降的无机性颗粒
物、或水中悬浮固体,同时也去除一部分呈悬浮状态的有机物。
步骤B:通过生物反应池的生物处理方法,利用微生物的代谢作用,去除预处理后的有机污水混合物中的有机污染物质,并对生物处理后的排出物进行浓缩处理,减少排出物中污泥的含水量。
步骤C:经步骤B处理后的污泥混合液进入水力空化减泥机的第一空化器103后产生高速射流撞击在与所述第一空化器103正对的粉碎挡板102上,使污泥混合液中的大颗粒污泥絮体破碎,导致水力空化减泥机的一级空化腔101内的混合液压力进一步增大;经一级空化后的污泥混合液进入水力空化减泥机第二空化器21,在第二级空化装置20内的溶气腔23及射流约束体25的共同作用下产生溶气空化;二级空化后的污泥混合液通过二级扩散管26排出。所述步骤C中优选为经一级空化后的污泥混合液进入水力空化减泥机第二空化器21,在第二级空化装置20内的加热圈221、溶气腔23及射流约束体25的共同作用下产生溶气空化。
步骤C还包括:含有污泥的待处理混合液经所述第一级空化装置100和第二级空化装置20的两级空化处理后依次进入下游的所述第三级空化装置30内的第三空化器32和第四级空化装置40内第四空化器42进行三级和四级空化处理,最后经出水管45排出。
步骤D:经过步骤C排出的氧化性污泥混合物冲击在铁屑放置框上进而使氧化性污泥混合物与铁屑反应形成高价铁离子,高价铁离子进一步与污泥混合物中的磷酸根结合形成磷酸铁沉淀,从而达到除磷效果。
步骤E:经步骤D处理后的剩余污泥返回生物反应池中再次经过生物处理进而减少有机污泥排出量。
如图3所示,本发明采用A/O生化处理工艺的工艺流程图中,步骤B具体为:
B1:预处理后的有机污水混合物以及从好氧池回流的混合液进入所述缺氧池中进行脱氮处理;
B2:经过缺氧池处理后的有机污水混合物进入好氧池中进而去除有机污水混合物中的BOD、并实现氨氮的硝化和磷的吸收;经过所述好氧池处理后的部分污水混合液回流至所述缺氧池中。所述BOD具体为生物需氧量。
经过所述好氧池的污水混合液进入所述二沉池中进行泥水分离,将悬浮固体从水中分离出来,分离后上清液作为处理后的净化水排放,分离后的部
分污泥混合物进入所述污泥浓缩池中进行浓缩后进入水力空化除磷装置中进行空化及除磷处理,经过水力空化除磷装置处理后的剩余污泥回流至所述缺氧池中继续进行生物处理。
如图4所示,本发明采用A2/O生化处理工艺的工艺流程图中步骤B具体为:
B0:预处理后的有机污水混合物进入所述厌氧池中,在所述厌氧池中有机污水混合物中的聚磷菌释放磷,同时对部分有机物进行氨化处理后进入所述缺氧池中;
B1:预处理后的有机污水混合物以及从好氧池回流的混合液进入所述缺氧池中进行脱氮处理;
B2:经过缺氧池处理后的有机污水混合物进入好氧池中进而去除有机污水混合物中的BOD、并实现氨氮的硝化和磷的吸收;经过所述好氧池处理后的部分污水混合液回流至所述缺氧池中。
经过所述好氧池的污水混合液进入所述二沉池中进行泥水分离,将悬浮固体从水中分离出来,分离后上清液作为处理后的净化水排放,分离后的部分污泥混合物进入所述污泥浓缩池中进行浓缩后进入水力空化除磷装置中进行空化及除磷处理,经过水力空化除磷装置处理后的剩余污泥回流至所述缺氧池中继续进行生物处理。
如图5所示,本发明系统采用氧化沟生化处理工艺的工艺流程图中,步骤B具体为:预处理后的有机污水混合物进入所述厌氧池中,在所述厌氧池中有机污水混合物中的聚磷菌释放磷,同时对部分有机物进行氨化处理后进入所述氧气沟中;有机污水在所述氧气沟中进行处理实现氨氮的硝化和磷的吸收。
经过所述氧化沟的污水混合液进入所述二沉池中进行泥水分离,将悬浮固体从水中分离出来,分离后上清液作为处理后的净化水排放,分离后的部分污泥混合物进入所述污泥浓缩池中进行浓缩后进入水力空化除磷装置中进行空化及除磷处理,经过水力空化除磷装置处理后的剩余污泥回流至所述厌氧池中继续进行生物处理。
如图6所示,本发明采用SBR生化处理工艺的工艺流程图中,步骤B具体包括:预处理后的有机污水混合物进入所述厌氧池中,在所述厌氧池中有机污水释放磷,同时对部分有机物进行氨化处理后进入SBR反应池中,SBR
反应池中的微生物利用有机污水中的有机物进行新陈代谢,将有机污染物转化为CO2、H2O无机物。
经过所述SBR反应池处理后的上清液作为处理后的净化水排放,处理后的部分污泥混合物进入所述污泥浓缩池中进行浓缩后进入水力空化除磷装置中进行空化及除磷处理,经过水力空化除磷装置处理后的剩余污泥回流至所述厌氧池中继续进行生物处理。
如图7所示,本发明采用MBR生化处理工艺的工艺流程图中,步骤B具体包括如下步骤:
B01:预处理后的有机污水混合物进入所述厌氧池中,在所述厌氧池中有机污水中的聚磷菌释放磷,同时对部分有机物进行氨化分解后进入所述缺氧池中;
B02:预处理后的有机污水混合物以及MBR反应池回流的混合液进入所述缺氧池中进行脱氮处理;
B03:经过所述缺氧池处理后的有机污水混合物进入MBR反应池中对有机污水混合物中的有机物进行降解;经过所述MBR反应池处理后的部分污水混合液回流至所述缺氧池中。
经过所述MBR反应池处理后的上清液作为处理后的净化水排放,处理后的部分污泥混合物进入所述污泥浓缩池中进行浓缩后进入水力空化除磷装置中进行空化及除磷处理,经过水力空化除磷装置处理后的剩余污泥回流至所述厌氧池中继续进行生物处理。
本发明方法中通过水力空化减泥机处理的污水混合液经过两级空化处理后,还要经过第三级空化装置30和第四级空化装置40的空化步骤。经过上述四级空化的连续作用,强化了空化效应,使污泥絮体破碎化并使其中的难降解有机物直接分解成CO2、H2O,难降解有机物大分子链断裂为小分子链,然后被氧化成脂肪酸,从而提高污水有机物的可生化性。此外,水力空化减泥机产生的高氧化性水流冲击氧化铁屑放置框中的铁屑,使铁屑中的铁被氧化成高价铁(Fe2+、Fe3+),这些高价铁离子再与污水中的磷酸根相结合生成磷酸铁沉淀{Fe3(PO3)2、FePO3}被去除。从而达到从污水中去除磷的目的。
本发明方法的效果如下:
2015年6月1日,本发明装置安装在深圳盐田污水处理厂,已取得良好
的除磷效果。实际使用效果见表1.
表1结果表明:该污水处理厂从1-5月份采用化学除磷,投加PAFC除磷剂,出水中TP平均浓度为0.60mg/L;6月-7月份采用本发明水力空化除磷装置及本发明工艺技术,不投加PAFC除磷剂,出水中TP平均浓度减低到0.57mg/L。由此可见本发明装置可以替代传统的化学除磷方法除去城市污水中的磷,并获得更好的除磷效果,而且可明显降低运行成本。
表1、深圳某污水厂2015年1-7月进出水TP平均值及化学除磷(PAFC)效果对比表:
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种水力空化除磷装置,包括:水力空化减泥机(1),其特征在于还包括设置于所述水力空化减泥机(1)的排出管口(2)的铁屑放置框(3),所述水力空化减泥机(1)包括相互串接在一起的至少两级空化装置;第一级空化装置(100)包括置于一级空化腔(101)内的第一空化器(103)以及正对所述第一空化器(103)出口的粉碎挡板(102);第二级空化装置(20)包括顺序连接的第二空化器(21)、射流约束体(25)和二级扩散管(26),所述射流约束体(25)位于溶气腔(23)内,所述溶气腔(23)设置有溶气调节机构;所述铁屑放置框(3)内填满用于与所述水力空化减泥机排出物进行氧化反应的铁屑,该铁屑放置框(3)的底部壁面及侧壁设置网孔;从所述水力空化减泥机(1)的排出管口(2)排出的含磷污水进入所述铁屑放置框(3),与铁屑放置框(3)内的铁屑进行氧化反应后再经铁屑放置框(3)底部壁面及侧壁的网孔流出。
- 如权利要求1所述的水力空化除磷装置,其特征在于:所述水力空化减泥机还包括第三级空化装置(30)和第四级空化装置(40);所述第二级空化装置(20)、第三级空化装置(30)和第四级空化装置(40)从上到下竖直配置;所述第一级空化装置(100)水平布置且位于所述第二级空化装置(20)的上方;所述第一级空化装置(100)通过第一支撑封板(104)与所述第二级空化装置(20)连接;所述第二级空化装置(20)通过第二支撑封板(31)与所述第三级空化装置(30)连接;所述第三级空化装置(30)通过第三支撑封板(41)与所述第四级空化装置(40)连接。
- 一种污水处理系统,包括依次连接的格栅、沉砂池、生物反应池和污泥浓缩池,其特征在于:在所述污泥浓缩池出口端和生物反应池的入口之间串接一个如权利要求1至3任一项权利要求所述的水力空化除磷装置以形成一个污水循环系统;所述水力空化除磷装置的入口端连接污泥浓缩池的出口端,其出口端经管路连接所述生物反应池的入口端。
- 如权利要求3所述的污水处理系统,其特征在于:所述生物反应池包 括依次连接的缺氧池和好氧池,所述好氧池的一个出口端经管道连接所述缺氧池的入口端构成包括所述缺氧池和好氧池的循环回路;所述好氧池的另一个出口端依次连接二沉池和所述污泥浓缩池。
- 如权利要求3所述的污水处理系统,其特征在于:所述生物反应池包括依次连接的厌氧池、缺氧池和好氧池,所述好氧池的一个出口端经管道连接所述缺氧池的入口端构成包括所述缺氧池和好氧池的循环回路;所述好氧池的另一个出口端依次连接二沉池和所述污泥浓缩池。
- 如权利要求3所述的污水处理系统,其特征在于:所述生物反应池包括依次连接的厌氧池和氧化沟,该氧化沟包括缺氧段和好氧段;所述氧化沟的出口端依次连接二沉池和所述污泥浓缩池。
- 如权利要求3所述的污水处理系统,其特征在于:所述生物反应池包括依次连接的厌氧池和SBR反应池,所述SBR反应池出口端连接所述污泥浓缩池。
- 如权利要求3所述的污水处理系统,其特征在于:所述生物反应池包括依次连接的厌氧池、缺氧池和MBR反应池,所述MBR反应池的一个出口端连接所述缺氧池的入口端构成包括所述缺氧池和MBR反应池的循环回路;所述MBR反应池的另一个出口端连接污泥浓缩池。
- 一种采用如权利要求1所述的水力空化除磷装置的污水处理方法,其特征在于包括以下步骤:步骤A:通过格栅和沉砂池对高浓度有机污水混合物进行预处理,去除有机污水混合物中的悬浮物;步骤B:通过生物反应池的生物处理方法,利用微生物的代谢作用,去除预处理后的有机污水混合物中的有机污染物质,并通过污泥浓缩池对生物处理后的排出物进行浓缩处理,减少排出物中污泥的含水量;步骤C:经步骤B处理后的污泥混合液进入水力空化减泥机的第一空化器(103)后产生高速射流撞击在与所述第一空化器(103)正对的粉碎挡板(102)上,使污泥混合液中的大颗粒污泥絮体破碎,导致水力空化减泥机的一级空化腔(101)内的混合液压力进一步增大;经一级空化后的污泥混合液进入水力空化减泥机第二空化器(21),在第二级空化装置(20)内的溶气腔(23)及射流约束体(25)的共同作用下产生溶气空化;二级空化后的污泥混合液通过二级扩散管(26)排出;步骤D:经过步骤C排出的氧化性污泥混合物冲击在铁屑放置框上进而使氧化性污泥混合物与铁屑反应形成高价铁离子,高价铁离子进一步与污泥混合物中的磷酸根结合形成磷酸铁沉淀,从而达到除磷效果;步骤E:经步骤D处理后的剩余污泥返回生物反应池中再次经过生物处理进一步减少有机污泥排出量。
- 如权利要求9所述的污水处理方法,其特征在于:该方法步骤C还包括:含有污泥的待处理混合液经所述第一级空化装置(100)和第二级空化装置(20)的两级空化处理后依次进入下游的所述第三级空化装置(30)内的第三空化器(32)和第四级空化装置(40)内第四空化器(42)进行三级和四级空化处理,最后经出水管(45)排出。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/082770 WO2018201298A1 (zh) | 2017-05-02 | 2017-05-02 | 水力空化除磷装置及应用该装置的污水处理系统、方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/082770 WO2018201298A1 (zh) | 2017-05-02 | 2017-05-02 | 水力空化除磷装置及应用该装置的污水处理系统、方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018201298A1 true WO2018201298A1 (zh) | 2018-11-08 |
Family
ID=64015945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/082770 WO2018201298A1 (zh) | 2017-05-02 | 2017-05-02 | 水力空化除磷装置及应用该装置的污水处理系统、方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018201298A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101585599A (zh) * | 2008-05-20 | 2009-11-25 | 海斯博特(北京)科技有限公司 | 旋流式活性污泥污水处理设备 |
CN101591088A (zh) * | 2008-05-26 | 2009-12-02 | 海斯博特(北京)科技有限公司 | 射流管预曝气氧化沟污水处理系统 |
CN102229463A (zh) * | 2011-05-18 | 2011-11-02 | 北京市环境保护科学研究院 | 利用超声波强化污泥水解获取碳源的系统及方法 |
WO2013025390A1 (en) * | 2011-08-17 | 2013-02-21 | Amiran Mohsen C | Process for treating lake sediment for conversion to beneficial soil products |
WO2015084621A1 (en) * | 2013-12-05 | 2015-06-11 | Arisdyne Systems, Inc. | Methods for treating biosolids sludge with cavitation |
CN106630370A (zh) * | 2015-11-04 | 2017-05-10 | 东莞源控环保科技有限公司 | 水力空化除磷装置及应用该装置的污水处理系统、方法 |
-
2017
- 2017-05-02 WO PCT/CN2017/082770 patent/WO2018201298A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101585599A (zh) * | 2008-05-20 | 2009-11-25 | 海斯博特(北京)科技有限公司 | 旋流式活性污泥污水处理设备 |
CN101591088A (zh) * | 2008-05-26 | 2009-12-02 | 海斯博特(北京)科技有限公司 | 射流管预曝气氧化沟污水处理系统 |
CN102229463A (zh) * | 2011-05-18 | 2011-11-02 | 北京市环境保护科学研究院 | 利用超声波强化污泥水解获取碳源的系统及方法 |
WO2013025390A1 (en) * | 2011-08-17 | 2013-02-21 | Amiran Mohsen C | Process for treating lake sediment for conversion to beneficial soil products |
WO2015084621A1 (en) * | 2013-12-05 | 2015-06-11 | Arisdyne Systems, Inc. | Methods for treating biosolids sludge with cavitation |
CN106630370A (zh) * | 2015-11-04 | 2017-05-10 | 东莞源控环保科技有限公司 | 水力空化除磷装置及应用该装置的污水处理系统、方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106167340B (zh) | 一种aao连续流好氧颗粒污泥脱氮除磷工艺及系统 | |
Ma et al. | Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment | |
CN102060412B (zh) | 提高低碳源污水生物除磷脱氮效率的装置及其处理方法 | |
CN102452770A (zh) | 一种生化与高级氧化耦合的污水处理工艺 | |
CN108046516B (zh) | 一种用于强化城镇污水处理的oco活性污泥改进工艺及装置 | |
WO2015081658A1 (zh) | 污泥处理系统及其方法 | |
WO2018201304A1 (zh) | 一种有效实现有机污泥减量的污水处理系统及方法 | |
US20150096343A1 (en) | Methods and systems for biodegradable waste flow treatment using a transport fluid nozzle | |
CN103373798A (zh) | 一种处理污泥的多级生物淋滤反应器工艺及设备 | |
CN105254002A (zh) | 三级双内循环生物污泥反应器 | |
CN108455786A (zh) | 一种污泥消化液微藻厌氧氨氧化耦合产能的方法 | |
CN106630372A (zh) | 一种城市污水脱氮处理系统及方法 | |
CN106630370B (zh) | 水力空化除磷装置及应用该装置的污水处理系统、方法 | |
CN110550815A (zh) | 一种深度处理老龄垃圾渗滤液的装置及方法 | |
CN108101332B (zh) | 一种与卡鲁赛尔氧化沟耦合超声臭氧复合污泥减量方法及其设备 | |
CN106630373A (zh) | 一种有效实现有机污泥减量的污水处理系统及方法 | |
CN110143724B (zh) | 一种高浓印染污水处理的工艺 | |
CN103663868A (zh) | 结合空化氧化法与活性污泥法的联合污水处理系统和方法 | |
WO2018201298A1 (zh) | 水力空化除磷装置及应用该装置的污水处理系统、方法 | |
CN207002529U (zh) | 吡唑酮生产废水处理装置 | |
CN214528484U (zh) | 一种低碳氮比高氨氮废水的常温处理系统 | |
CN212222726U (zh) | 一种垃圾渗滤液处理系统 | |
CN100412000C (zh) | 一种热电厂灰渣水处理方法 | |
CN210237393U (zh) | 一种盐酸青藤碱生产污水处理系统 | |
WO2018201302A1 (zh) | 一种城市污水脱氮处理系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17908655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17908655 Country of ref document: EP Kind code of ref document: A1 |