WO2018100953A1 - 電動アクチュエータ用回転駆動源および電動アクチュエータ - Google Patents
電動アクチュエータ用回転駆動源および電動アクチュエータ Download PDFInfo
- Publication number
- WO2018100953A1 WO2018100953A1 PCT/JP2017/039256 JP2017039256W WO2018100953A1 WO 2018100953 A1 WO2018100953 A1 WO 2018100953A1 JP 2017039256 W JP2017039256 W JP 2017039256W WO 2018100953 A1 WO2018100953 A1 WO 2018100953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive source
- electric actuator
- output shaft
- rotor
- axial direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D7/00—Slip couplings, e.g. slipping on overload, for absorbing shock
- F16D7/02—Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H13/00—Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
- F16H13/06—Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
- F16H13/08—Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/18—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
- F16H25/20—Screw mechanisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H35/00—Gearings or mechanisms with other special functional features
- F16H35/10—Arrangements or devices for absorbing overload or preventing damage by overload
Definitions
- the present invention relates to a rotary drive source for an electric actuator and an electric actuator.
- An electric motor device (electric actuator) using a brushless DC motor generally includes a motor unit having a stator and a rotor, a rotation sensor for detecting the position of a magnetic pole of the rotor, and the like (Patent Document 1). That is, the motor unit of the electric motor device detects the position of the magnetic pole of the rotor with a rotation sensor, and based on the detected position, a portion (tooth portion) where the coil of the stator core is wound in the controller unit having a control function Is driven to generate a driving force by attracting and repelling magnetic force generated between the rotor and the stator core.
- a target member (pulsar ring) is provided on the rotation side, and a Hall IC or the like constituting the rotation sensor is disposed on the fixed side facing the pulsar ring.
- the pulsar ring is provided with a support ring made of a torus, and a magnetized portion in which N and S poles of magnetic poles are alternately arranged along the circumferential direction on one end face of the support ring. ing.
- the Hall IC is disposed so as to face and oppose the magnetized portion.
- the target member (pulsar ring) is disposed such that its magnetized portion faces the axial direction, and the target member and the Hall IC are disposed at a predetermined interval along the axial direction. For this reason, the length in the axial direction of the electric motor device (electric actuator) is large, and disposing such a target member and the Hall IC hinders downsizing in the axial direction.
- the present invention provides a rotation drive source for an electric actuator and an electric actuator that can be made compact in the axial direction and can perform stable rotation control.
- the rotational drive source for an electric actuator includes a motor unit having a stator and a rotor, and a drive source output shaft that is disposed on the inner diameter side of the rotor and outputs the rotation of the rotor.
- a position detecting structure for the electric actuator wherein the position detecting structure includes a magnetized portion in which N and S poles are alternately arranged along the circumferential direction on the inner peripheral surface side.
- a rotation-side pulsar ring, and a fixed-side detection sensor that opposes the magnetized portion of the pulsar ring in the radial direction.
- the pulsar ring of the position detection structure is connected to one axial end of the stator coil. It is overlapped in the axial direction on the inner diameter side of the part.
- the magnetized portion of the pulsar ring and the adjacent counter coil can be arranged along the radial direction. For this reason, it is possible to prevent the axial length from being increased due to the provision of the position detection structure, compared with the case where the magnetized portion and the detection sensor close to the magnetized portion are disposed along the axial direction. Can do.
- the pulsar ring is composed of a support ring having a short cylindrical main body portion and the magnetized portion provided on the inner diameter surface of the main body portion of the support ring.
- the sensor can be set to have a hall sensor as a sensor. By setting in this way, the position detection structure can be stably arranged.
- it can be set such that at least the axial half of the support ring overlaps with one axial end of the stator coil in the axial direction.
- the rotary motion type electric actuator can be configured by connecting a speed reducer to the drive source output shaft of the rotational drive source described above and connecting a final output shaft to the output side of the speed reducer.
- the linear motion type electric actuator can be configured by connecting a reduction gear to the drive source output shaft of the rotary drive source described above and connecting a motion conversion mechanism to the output side of the reduction gear.
- the present invention it is possible to reduce the size of the rotational drive source for the electric actuator and the electric actuator, and it is possible to perform stable rotation control.
- FIG. 2 is a cross-sectional view of the electric actuator taken along the line BB in FIG. 1.
- FIG. 2 is a cross-sectional view of the electric actuator taken along the line CC in FIG. 1.
- It is an expanded sectional view of the area
- It is an expanded sectional view of the area
- It is an expanded sectional view of the area
- It is a front view of the pulsar ring used for the electric actuator which concerns on 1st Embodiment.
- FIG. 9 is a cross-sectional view showing an electric actuator according to a second embodiment of the present invention, cut in a direction different from FIG. 8. It is an end view of the motor part of the electric actuator which concerns on the 2nd Embodiment of this invention.
- FIG. 11 is a cross-sectional view taken along line EE in FIG. 10.
- FIG. 12 is a transverse sectional view taken along the line FF in FIG. 11. It is a perspective view of the motor part of the electric actuator which concerns on the 2nd Embodiment of this invention.
- It is a front view of the pulsar ring used for the electric actuator which concerns on 2nd Embodiment.
- FIG. 1 is a longitudinal sectional view showing a rotary motion type electric actuator as a first embodiment of the electric actuator.
- 2 is a cross-sectional view taken along line BB in FIG. 1
- FIG. 3 is a cross-sectional view taken along line CC in FIG.
- This rotary motion type electric actuator can be used, for example, for driving a robot arm or for electric power steering in a vehicle such as an automobile.
- an electric actuator includes a rotary drive source 1, a speed reducer 2 disposed on one axial side of the rotary drive source 1, and connected to the output side of the rotary drive source 1.
- the final output shaft 3 connected to the output side of the speed reducer 2 is a main component.
- Rotational drive source 1 includes a motor unit 5, a drive source output shaft 6, and a torque limiter 7. 1 and 2, the motor unit 5 includes an electric motor including a stator 51 fixed to the casing 8 and a rotor 52 disposed so as to face the inner side in the radial direction of the stator 51 with a gap. Consists of a motor. In this embodiment, a radial gap type is illustrated as an example of the electric motor.
- the stator 51 includes a stator core 51a formed of a plurality of electromagnetic steel plates laminated in the axial direction, a bobbin 51b made of an insulating material attached to the stator core 51a, and a stator coil 51c wound around the bobbin 51b.
- the rotor 52 includes an annular rotor core 52a, a plurality of magnets 52b attached to the outer periphery of the rotor core 52a, and an annular rotor inner 52c fixed to the inner periphery of the rotor core 52a.
- the rotor core 52a is formed of, for example, a plurality of electromagnetic steel plates stacked in the axial direction.
- the axial length of the rotor inner 52c is longer than the axial length of the rotor core 52a, and the rotor inner 52c protrudes on both axial sides of the rotor core 52a.
- Bearings 53 and 54 arranged on both sides in the axial direction of the rotor core 52a are fixed to the outer peripheral surfaces of both ends in the axial direction of the rotor inner 52c, and the rotor inner 52c is rotatably supported by the casing 8 by the bearings 53 and 54.
- a rolling bearing capable of supporting both a radial load and a thrust load for example, a deep groove ball bearing can be used.
- annular recess 521 having an inner diameter larger than that of the other part is formed on the inner peripheral surface of the rotor inner 52c. As shown in FIG. 1, the annular recess 521 is formed, for example, at an end portion on the other axial side of the rotor inner 52 c (opposite side from the reduction gear 2 side). A female serration 522 extending in the axial direction is formed on the inner peripheral surface of the annular recess 521.
- the drive source output shaft 6 is formed in a hollow cylindrical shape having both ends opened.
- the rotary drive source 1 has a structure as a hollow motor.
- the outer peripheral surface of the drive source output shaft 6 is fitted to the inner peripheral surface (excluding the annular recess 521) of the rotor inner 52c with a clearance fit. Therefore, the drive source output shaft 6 can rotate independently of the rotor inner 52c.
- a male serration 6 a extending in the axial direction is formed on the outer peripheral surface of the end portion on the other axial side of the drive source output shaft 6.
- An annular gap is formed between the inner peripheral surface of the annular recess 521 of the rotor inner 52c and the outer peripheral surface of the drive source output shaft 6 facing this.
- the torque limiter 7 is disposed in the annular gap.
- the torque limiter 7 transmits the rotational power output from the motor unit 5 to the drive source output shaft 6.
- the torque limiter 7 interrupts torque transmission when an overload is applied, and the motor unit 5 and the drive source output shaft 6 are relative to each other. Rotation is allowed.
- the torque limiter 7 having an arbitrary configuration can be used.
- a case where a multi-plate clutch which is a kind of a friction clutch is used is illustrated.
- FIG. 4 is an enlarged cross-sectional view of the region X in FIG.
- the multi-plate clutch as the torque limiter 7 is disposed between the pair of first friction plates 71 and 71 and the pair of first friction plates 71 and 71 that are spaced apart in the axial direction.
- the second friction plate 72, an elastic member 73 such as a wave spring that press-contacts the first friction plate 71 and the second friction plate 72, and a pressing plate 74 are provided.
- the pressing plate 74 is positioned in the axial direction by a retaining ring 75 fitted in an annular groove on the inner peripheral surface of the rotor inner 52 c, and applies a predetermined pressing force (axial load) to the elastic member 73.
- a female serration 522 extending in the axial direction is formed on the inner peripheral surface of the annular recess 521 provided in the rotor inner 52c, and the first friction plate 71 and the pressing plate 74 are fitted to the female serration 522.
- a male serration 6a extending in the axial direction is formed on the outer peripheral surface of the drive source output shaft 6, and a second friction plate 72 is fitted to the male serration 6a. A frictional force is generated between the first friction plate 71 and the second friction plate 72 by the biasing force of the elastic member 73.
- the casing 8 is divided at one place or a plurality of places in the axial direction for the convenience of assembly.
- the casing 8 is divided into a bottomed cylindrical bottom portion 81, a cylindrical portion 82 that is open at both ends, and a lid portion 83.
- a lid portion 83 is disposed on one axial side of the cylindrical portion 82, and a bottom portion 81 is disposed on the other axial side of the cylindrical portion 82.
- the bottom part 81, the cylinder part 82, and the cover part 83 are integrated using fastening means, such as a volt
- the bottom portion 81 includes a cylindrical barrel portion 81a and a lid portion 81b that closes the opening portion of the barrel portion 81a on the side opposite to the final output shaft.
- the planetary speed reducer 2 includes a sun roller 21, an outer ring 22, a plurality of planetary rollers 23, and a carrier 24.
- the sun roller 21 in this embodiment, an end portion on one side in the axial direction of the drive source output shaft 6 is used.
- an outer ring of a rolling bearing 25 (for example, a deep groove ball bearing) is used.
- the inner ring of each rolling bearing 25 is press-fitted and fixed to the hollow shaft 26, and each hollow shaft 25 is supported by the carrier 24 so as to be able to rotate.
- the carrier 24 is rotatably supported with respect to the lid portion 83 of the casing 8 by a rolling bearing 27 (for example, a deep groove ball bearing) fixed to the outer peripheral surface thereof.
- FIG. 5 is an enlarged cross-sectional view of the region Y in FIG.
- the outer ring 22 integrally includes a main body portion 22a having a U-shaped cross section and flange portions 22b protruding on both sides in the axial direction of the main body portion 22a.
- the outer ring 22 accommodated in the inner periphery of the cylindrical portion 82 has a flange portion 22b on one axial side. Projecting from the end face of the cylindrical portion 82.
- a ring-shaped adjusting member 28 is disposed between the flange portion 22 b on the other axial side and the cylindrical portion 82.
- the final output shaft 3 is fixed to the inner peripheral surface of the carrier 24 on the output side of the speed reducer 2 by means such as press fitting.
- the end portion on the other axial side of the final output shaft 3 is supported by the rolling bearing 31 so as to be rotatable with respect to the drive source output shaft 6.
- the torque limiter 7 is disposed in the torque transmission path between the motor unit 5 and the drive source output shaft 6.
- torque generated in the motor unit 5 is transmitted to the final output shaft 3 via the torque limiter 7, the drive source output shaft 6, and the speed reducer 2.
- the drive target connected to the final output shaft 3 is rotationally driven.
- slippage occurs between the rotor inner 52c and the drive source output shaft 6 to interrupt the torque transmission path. Therefore, it is possible to prevent an excessive load from acting on the speed reducer 2 even in a situation where the motor unit 5 continues to rotate due to inertia. Therefore, damage to the speed reducer 2 can be prevented.
- even if the rotational torque on the motor side becomes extremely large for some reason it is possible to prevent an excessive load from acting on the speed reducer 2 or the like.
- the torque limiter 7 is disposed between the inner peripheral surface of the rotor 52 (the inner peripheral surface of the rotor inner 52c) and the outer peripheral surface of the drive source output shaft 6 facing this. Therefore, compared with the case where the torque limiter 7 is disposed at the position adjacent to the motor unit 5 in the axial direction, the axial dimension of the rotary drive source 1 and further the electric actuator can be reduced.
- the torque limiter 7 (including the retaining ring 75) is preferably disposed between the two bearings 53 and 54 that support the rotor inner 52c. More specifically, the torque limiter 7 is preferably disposed between the outer end faces P of the both bearings 53 and 54 (end faces that do not face the end faces of the mating bearings).
- the motor portion of this electric actuator has a position detection structure 150 for rotation control on the side opposite to the final output shaft.
- the position detection structure 150 includes a pulsar ring 151 (151 ⁇ / b> A) and a hall sensor (in this case, a hall IC 152 ⁇ / b> A) as the position detection sensor 152.
- the Hall sensor is, for example, a semiconductor that detects the direction of a magnetic field and outputs a pulse signal corresponding to the direction.
- the Hall IC is a magnetic sensor in which a Hall element and a signal conversion circuit are incorporated in one package.
- the Hall element is an element that detects a magnetic field using the Hall effect.
- the pulsar ring 151A includes a support ring 153 (153A) and a magnetized portion (magnetic encoder) 154 (154A). That is, the support ring 153 (153A) is composed of a short cylindrical main body 153a and a flat ring-shaped inner flange 153b provided at the opening on the side opposite to the final output shaft of the main body 153a. A magnetized portion (magnetic encoder) 154 (154A) is formed on the inner peripheral surface of the main body 153a of 153A.
- the support ring 153 in this case includes a small diameter portion 155 on the inner flange portion side, a large diameter portion 156 on the opposite inner flange portion side, and a tapered portion 157 that connects the small diameter portion 155 and the large diameter portion 156.
- the magnetized portion (magnetic encoder) 154A is provided on the inner peripheral surface of the large diameter portion 156.
- the support ring 153A is formed by pressing a ferromagnetic steel plate, for example, a ferritic stainless steel plate (JIS standard SUS430 system or the like) or a rust-proof cold-rolled steel sheet (JIS standard SPCC system or the like). It is formed. Further, the magnetized portion (magnetic encoder) 154A is made by mixing ferromagnetic powder made of ferrite or the like into an elastomer made of rubber or the like, so that the magnetic poles N and S are alternately arranged at predetermined equal intervals (equal pitch) in the circumferential direction. It is magnetized to become.
- a ferromagnetic steel plate for example, a ferritic stainless steel plate (JIS standard SUS430 system or the like) or a rust-proof cold-rolled steel sheet (JIS standard SPCC system or the like). It is formed.
- the magnetized portion (magnetic encoder) 154A is made by mixing ferromagnetic powder made of ferrite or the like into
- the pulsar ring 151 (151A) is formed on the circumferential notch 158 of the rotor 52 in which the bearing 54 on the counter-final output shaft side is housed.
- the small diameter part 155 is inserted or press-fitted. For this reason, the pulsar ring 151 (151A) rotates integrally with the rotor 52.
- a circuit board 160 is attached to the lid 81b of the bottom 81, and three Hall ICs 152A arranged at a predetermined equal pitch are connected to the circuit board 160 along the circumferential direction.
- the Hall IC 152A is in close proximity to the magnetized portion (magnetic encoder) 154 of the pulsar ring 151A.
- this position detection structure 150 the position of the magnetic pole of the rotor 52 is detected by a rotation sensor (detection sensor), and the controller core (not shown) having a control function is used for the stator core 51a based on the detected position.
- the driving force is generated by the attractive / repulsive force of the magnetic force generated between the rotor 52 and the stator core 51a while controlling the portion (tooth portion) around which the coil 51c is wound to be excited at an optimal timing. is there.
- the pulsar ring 151 (151A) of the position detection structure 150 overlaps in the axial direction on the inner diameter side of one axial end of the coil 51c of the stator 51. That is, on the inner diameter side of the support ring 153 (153A) of the pulsar ring 151 (151A), three Hall ICs 152A as the detection sensors are arranged at a predetermined pitch along the circumferential direction, and at least the support ring 153
- the axial half portion (in this case, the small diameter portion 155 of the support ring 153) overlaps one axial end of the coil of the stator in the axial direction.
- the magnetized portion 154 (154A) of the pulsar ring 151 (151A) and the Hall IC 152A facing and close to the magnetized portion 154 can be arranged along the radial direction.
- the axial direction length by providing the position detection structure 150 becomes larger than the case where the magnetized part 154 (154A) and the Hall IC 152A close to the magnetized part 154 are disposed along the axial direction.
- the axial length can be reliably shortened, and the position detection structure 150 can be stably disposed.
- FIGS. 8 and 9 are sectional views of a linear motion type electric actuator as a second embodiment of the present invention.
- This linear motion type electric actuator can be used, for example, in an electric brake equipped in a vehicle such as an automobile.
- the configuration from the motor unit 5 to the speed reducer 2 is common to the first embodiment.
- the second embodiment is different from the first embodiment in that a motion conversion mechanism 9 is used instead of the final output shaft 3.
- the motion conversion mechanism 9 is constituted by a ball screw 91, for example.
- the ball screw 91 includes a ball screw nut 92, a ball screw shaft 93, a large number of balls 94, and a top (not shown) as a circulation member as main components.
- a spiral groove is formed on the inner peripheral surface of the ball screw nut 92, and a spiral groove is formed on the outer peripheral surface of the ball screw shaft 93.
- a ball 94 is loaded between the spiral grooves.
- a carrier 24 on the output side of the speed reducer 2 is fixed to the outer peripheral surface of the ball screw nut 92 by means such as press fitting.
- a hollow cylindrical guide member 95 fixed to the bottom 81 of the casing 8 is disposed on the inner diameter side of the hollow drive source output shaft 6.
- a guide groove (not shown) extending in the axial direction is formed on the inner periphery of the guide member 95.
- a protrusion protruding in the radial direction is provided on the ball screw shaft 93 by, for example, pressing a pin into a hole 93a provided at the other axial end of the ball screw shaft 93, and this protrusion is used as a guide member.
- the ball screw shaft 93 can be prevented from rotating.
- the casing 8 in the second embodiment includes a bottom portion 81, a cylindrical portion 82, a lid portion 83, and a pressurizing portion 84.
- the configurations and functions of the bottom 81 and the cylinder 82 are the same as those of the bottom 81 and the cylinder 82 described in the first embodiment.
- the pressurizing part 84 is sandwiched between the cylinder part 82 and the lid part 83.
- the bottom 81, the cylinder 82, the lid 83, and the pressurizing part 84 are joined together by the bolt member 86 so that the end surface of the pressurizing part 84 is in pressure contact with the end surface of the cylindrical part 82.
- the outer ring 22 pressed by the pressing portion 84 is elastically deformed toward the inner diameter side. Therefore, traction is given to the traction drive type planetary speed reducer 2.
- the ball screw nut 92 is rotatably supported with respect to the lid portion 83 of the casing 8 by a double row rolling bearing 96 (for example, a double row deep groove ball bearing) fixed to the outer peripheral surface thereof.
- This rolling bearing 96 can support an axial load acting on the ball screw shaft 93. Further, the ball screw nut 92 can be supported at both ends to prevent the ball screw nut 92 from being inclined.
- the torque of the motor unit 5 is transmitted to the ball screw nut 92 via the torque limiter 7, the drive source output shaft 6, and the speed reducer 2. Accordingly, by driving the motor unit 5 in the forward / reverse direction, the ball screw nut 92 can be rotated in the forward / reverse direction, and the ball screw shaft 93 can be moved back and forth (linear motion) in the axial direction.
- the torque limiter 7 is arranged in the torque transmission path on the downstream side of the motor unit 5, so that the ball screw shaft 93 comes into contact with the obstacle. Even in a situation where the extension is restricted, the torque transmission path can be blocked by causing a slip between the rotor inner 52c and the drive source output shaft 6. Accordingly, it is possible to prevent an excessive load from acting on the speed reducer 2 and the ball screw 91 and to prevent the speed reducer 2 and the ball screw 91 from being damaged.
- the torque limiter 7 is disposed in the gap between the inner peripheral surface of the rotor 52 (rotor inner 52c) of the motor unit 5 and the outer peripheral surface of the drive source output shaft 6 facing the motor limiter 5, the motor unit 5 Compared with the case where the torque limiter 7 is arranged at the adjacent position in the axial direction, the size in the axial direction of the electric actuator can be reduced, and the electric actuator can be downsized.
- the motor section of the electric actuator includes a position detection structure 150 having a pulsar ring 151 (151B) and a Hall IC 152A as the position detection sensor 152, as shown in FIGS. Prepare.
- the pulsar ring 151 (151B) includes a support ring 153 (153B) and a magnetized portion (magnetic encoder) as shown in FIGS. 14A and 14B.
- 154 (154B) the support ring 153 (153B) includes a short cylindrical main body portion 153a and a flat ring-shaped inner flange portion 153b provided in an opening on the side opposite to the final output shaft of the main body portion 153a.
- a magnetized portion (magnetic encoder) 154 (154B) is formed on the inner peripheral surface of the main body portion 153a.
- the main body portion 153a is a straight cylindrical surface having no stepped portions on the outer peripheral surface and the inner peripheral surface.
- a magnetized portion (magnetic encoder) 154B is provided on the inner peripheral surface of the main body portion 153a on the side opposite to the inner flange.
- the material of the support ring 153B is the same as that of the support ring 153A
- the material of the magnetized portion (magnetic encoder) 154B is the same as the material of the magnetized portion (magnetic encoder) 154B
- the circumferential direction is alternated.
- the magnetic poles N and S are magnetized so as to have a predetermined equal interval (equal pitch) in the circumferential direction.
- the pulsar ring 151B also has an inner flange of the support ring 153B in the circumferential cutout portion 158 of the rotor 52 in which the bearing 54 on the side opposite to the final output shaft is housed. The part side is inserted or press-fitted. For this reason, the pulsar ring 151 (151B) rotates integrally with the rotor.
- the circuit board 160 is attached to the lid 81b of the bottom 81, and three Hall ICs 152A arranged at a predetermined equal pitch are connected to the circuit board 160 along the circumferential direction. .
- the Hall IC 152A is in close proximity to the magnetized portion (magnetic encoder) 154 of the pulsar ring 151.
- the pulsar ring 151B overlaps in the axial direction on the inner diameter side of one axial end of the coil 51c of the stator 51. That is, on the inner diameter side of the support ring 153B of the pulsar ring 151B, the three Hall ICs 152A as the detection sensors are arranged at a predetermined pitch along the circumferential direction, and at least the axial half portion of the support ring 153B That is, it overlaps with one axial end of the coil 51c of the stator 51 in the axial direction.
- the magnetized portion 154B of the pulsar ring 151B and the detection sensor (Hall IC 152A) that faces and opposes the magnetized portion 154B can be disposed along the radial direction.
- the axial direction length by providing the position detection structure 150 is larger than the case where it arrange
- the axial length can be reliably shortened, and the position detection structure 150 can be stably disposed.
- the screw shaft 93 of the ball screw 91 is accommodated by effectively utilizing the internal space formed on the inner peripheral surface of the drive source output shaft (hollow output shaft) 6, and the entire shaft Directional dimensions are also downsized. Further, a rotation prevention mechanism M is provided on the other axial side of the screw shaft 93 by effectively using the internal space.
- the anti-rotation mechanism M of the screw shaft 93 includes a guide member 95, a pin 96 fitted in a hole penetrating in the radial direction of the screw shaft 93, and a guide collar 97 rotatably fitted on the pin 96.
- the guide member 95 is fixed to the bottom 81 of the casing 8, and the cylindrical portion 95 a of the guide member 95 is disposed between the inner peripheral surface of the hollow output shaft 6 and the outer peripheral surface of the screw shaft 93.
- a guide groove 95b is provided inside the cylindrical portion 95a, and a guide collar 97 is fitted therein.
- the guide collar 95 is made of a resin material such as PPS and enables smooth rotation. As a result, when the nut 92 rotates, the screw shaft 93 smoothly advances and retracts in the left-right direction in FIGS.
- the outer peripheral surface of the guide collar 97 is cylindrical, and the guide surface of the guide groove 95b in which the guide collar 97 is guided is exemplified by two parallel surfaces.
- the present invention is not limited to this.
- a guide surface composed of two V-shaped surfaces and a cylindrical guide surface may be used, and the outer peripheral surface of the guide collar 97 may have a shape corresponding to each guide surface.
- the guide collar 95 is exemplified by a resin material, it is not limited to this and may be made of metal. Further, the guide collar 97 may be omitted, and the pin 96 may be directly engaged with the guide groove 95b.
- the hollow rotor inner 52c and the nut 92 are disposed at positions that do not overlap in the axial direction, and the screw shaft 93
- the non-rotating mechanism M is provided on the radially inner side of the hollow rotor inner 52c, it is possible to reduce the size of the direct acting electric actuator, in particular, to reduce the size in the radial direction, and to improve the mountability.
- the ball screw shaft 93 in the linear motion type electric actuator as in the second embodiment, a space for the ball screw shaft 93 to move forward and backward is required. Therefore, when the motor unit 5 and the torque limiter 7 are arranged at adjacent positions in the axial direction. The ball screw shaft 93 that moves forward and backward may interfere with the torque limiter 7. In order to avoid this, the ball screw shaft 93 must be eccentrically arranged with respect to the shaft centers of the motor unit 5 and the torque limiter 7, and the size of the electric actuator increases.
- the torque limiter 7 is arranged so as to overlap the rotor inner 52c and the drive source output shaft 6 in the radial direction, and the hollow drive source output shaft 6 is used.
- the rotary drive source 1 has a hollow structure, and a space for accommodating the ball screw shaft 93 is provided on the inner diameter side of the drive source output shaft 6. Therefore, the ball screw shaft 93 can be arranged coaxially with the motor unit 5 and further with the torque limiter 7, so that the linear motion type electric actuator can be miniaturized.
- the electric actuator of the first embodiment (rotary motion type) shown in FIG. 1
- the electric actuator of the second embodiment linear motion type shown in FIGS.
- the speed reducer 2 has a substantially common configuration. Therefore, the rotary drive source 1 and the speed reducer 2 can be shared by both types of electric actuators. That is, in the electric actuator of the first embodiment, the ball screw shaft 93 is used on the inner periphery of the drive source output shaft 6 by using the ball screw 91 without using the final output shaft 3. The electric actuator of the embodiment can be obtained. Thus, by sharing the rotary drive source 1 and the speed reducer 2, the cost of the electric actuator can be reduced. In addition, it is possible to strengthen the product development capabilities by making a series of rotary and linear motion electric actuators.
- the motor unit 5 and the motion conversion mechanism 9 are coaxially arranged, but the nut 92 of the ball screw 91 is provided with respect to the hollow rotor inner 52c and the hollow output shaft 6. Since the structure does not overlap in the radial direction, the inner diameter D1 of the hollow rotor inner 52c, and further the inner diameter D2 of the hollow output shaft 6 can be made smaller than the outer diameter D3 of the nut 92 of the ball screw 91. Thereby, a small electric motor 29 can be used, and the direct-acting electric actuator can be reduced in size, particularly in the radial direction.
- a traction drive type planetary reduction gear is illustrated as the reduction gear 2. This is adopted in view of low backlash and low noise.
- the configuration of the speed reducer 2 is arbitrary, and a planetary gear speed reducer using a gear can be used as the speed reducer 2 when the need for the above-described advantages is scarce.
- a speed reducer having a configuration other than the planetary speed reducer can also be used.
- the case where the outer ring 22 is deformed to the inner diameter side when the lid 83 is attached has been described, but a mechanism for imparting traction may be arbitrarily adopted. it can. For example, by pressing the outer ring 22 into the inner peripheral surface of the casing 8 with a predetermined tightening allowance, the outer ring 22 can be reduced in diameter toward the inner diameter side to impart traction to the speed reducer 2.
- the torque limiter 7 was arrange
- positioning position of the torque limiter 7 is not specifically limited,
- the torque limiter 7 can be disposed on the inner peripheral surface of the end portion on the one axial side of the rotor inner 52c.
- a radial gap type electric motor is exemplified as the motor unit 5, but a motor having an arbitrary configuration can be adopted.
- an axial gap type electric motor including a stator fixed to a casing and a rotor arranged so as to face the inner side in the axial direction of the stator with a gap may be used.
- the pulsar ring 151 of the position detection structure 150 is used as the stator 51.
- the coil 51c was overlapped in the axial direction on the inner diameter side of the axial end of one of the coils 51c (in FIG. 1, the anti-final output shaft side, in FIGS. 8 and 9).
- the pulsar ring 151 of the position detection structure 150 is moved in the axial direction on the inner diameter side of the axial end of the other coil 51c of the stator 51 (the final output shaft side in FIG. 1 and the motion conversion mechanism side in FIGS. 8 and 9). You may make it overlap.
- the entire pulsar ring 151 is not overlapped with the coil 51c of the stator 51, but the entire pulsar ring 151 may be overlapped.
- the number of Hall ICs constituting the detection sensor is not limited to three. Even if the position detection structure of the electric actuator of the first embodiment is replaced with the position detection structure of the electric actuator of the second embodiment, the position detection structure of the electric actuator of the second embodiment is You may replace with the position detection structure of the electric actuator of embodiment.
- the electric actuator can be a rotary motion type that is optimal for driving a robot arm or an electric power steering in a vehicle such as an automobile, or a linear motion type that is optimal for an electric brake equipped in a vehicle such as an automobile.
- Rotation drive source 2 Reducer (Planet reducer) 3 Final output shaft 5 Motor unit 6 Drive source output shaft (hollow output shaft) 9 Motion Conversion Mechanism 51 Stator 51c Stator Coil 52 Rotor 150 Position Detection Structures 151, 151A, 151B Pulsar Ring 152 Position Detection Sensors 153, 153A, 153B Support Rings 154.154A, 154B Magnetized Part Hall Sensor (Hall IC) 152A
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Friction Gearing (AREA)
- Transmission Devices (AREA)
Abstract
位置検出構造は、内周面側にN・S極が交互に周方向に沿って配設される着磁部を有する回転側のパルサーリングと、このパルサーリングの着磁部に径方向に近接対峙する固定側の検出用センサとを備える。位置検出構造のパルサーリングを、ステータのコイルの一方の軸方向端部の内径側において軸方向でオーバーラップさせた。
Description
本発明は、電動アクチュエータ用回転駆動源および電動アクチュエータに関する。
ブラシレスDCモータを用いた電動モータ装置(電動アクチュエータ)は、一般には、ステータおよびロータを有するモータ部と、ロータの磁極の位置を検出する回転センサ等を備えたものである(特許文献1)。すなわち、電動モータ装置のモータ部は、ロータの磁極の位置を回転センサで検出し、この検出された位置に基づき、制御機能を有するコントローラ部において、ステータコアのコイルが巻かれた部位(ティース部)が最適なタイミングで励磁させるように制御しながら、ロータとステータコアとの間に生じる磁力の吸引・反発力によって、駆動力を発生させるものである。
一般的には、回転側にターゲット部材(パルサーリング)に設けるとともに、このパルサーリングに対向して、回転センサを構成するホールIC等を固定側に配設することになる。そして、パルサーリングは、円環体からなる支持環と、この支持環のいずれか一方の端面に、周方向に沿って磁極のN・S極が交互に配設される着磁部が設けられている。そして、この着磁部に近接対峙するようにホールICが配設される。
ターゲット部材(パルサーリング)は、その着磁部が軸方向を向くように配設され、ターゲット部材と、ホールICとは軸方向に沿って所定間隔で配設されることになる。このため、電動モータ装置(電動アクチュエータ)として軸方向の長さが大となって、このようなターゲット部材とホールICを配置することが軸方向のコンパクト化の妨げとなっていた。
そこで、本発明は、上記課題に鑑みて、軸方向のコンパクト化を図ることが可能で、しかも、安定した回転制御を行うことが可能な電動アクチュエータ用回転駆動源および電動アクチュエータを提供する。
本発明の電動アクチュエータ用回転駆動源は、ステータおよびロータを有するモータ部と、前記ロータの内径側に配置され、ロータの回転を出力する駆動源出力軸とを備え、前記モータ部は、回転制御のための位置検出構造とを有する電動アクチュエータ用回転駆動源であって、前記位置検出構造は、内周面側にN・S極が交互に周方向に沿って配設される着磁部を有する回転側のパルサーリングと、このパルサーリングの着磁部に径方向に近接対峙する固定側の検出用センサとを備え、この位置検出構造のパルサーリングを、ステータのコイルの一方の軸方向端部の内径側において軸方向でオーバーラップさせたものである。
本発明の電動アクチュエータ用回転駆動源によれば、ステータのコイルの一方の軸方向端部の内径側において軸方向でオーバーラップさせたものであるので、パルサーリングの着磁部とこれに近接対峙する検出用センサとを径方向に沿って配置することができる。このため、着磁部とこれに近接対峙する検出用センサとを軸方向に沿って配設する場合よりも、位置検出構造を設けたことによる軸方向長さが大となることを防止することができる。
前記パルサーリングは、短円筒形状の本体部を有する支持環と、この支持環の本体部の内径面に設けられる前記着磁部とからなり、パルサーリングの支持環の内径側に、前記検出用センサとしてのホールセンサが配設されたものに設定できる。このように設定することによって、位置検出構造を安定して配置することができる。
また、少なくとも支持環の軸方向半分部位がステータのコイルの一方の軸方向端部に軸方向でオーバーラップするように設定できる。このように設定することによって、確実に軸方向長さの短縮化を図ることができる。
回転運動型電動アクチュエータは、以上に述べた回転駆動源の駆動源出力軸に減速機を接続し、減速機の出力側に最終出力軸を接続することで構成することができる。
また、直線運動型電動アクチュエータは、以上に述べた回転駆動源の駆動源出力軸に減速機を接続し、減速機の出力側に運動変換機構を接続することで構成することができる。
本発明によれば、電動アクチュエータ用回転駆動源、さらには電動アクチュエータの小型化を図ることができ、しかも、安定した回転制御を行うことが可能である。
本発明にかかる、電動アクチュエータ用回転駆動源および当該回転駆動源を備える電動アクチュエータの実施形態を図面に基づいて詳述する。
図1は、電動アクチュエータの第1の実施形態として、回転運動型の電動アクチュエータを示す縦断面図である。図2は、図1中のB-B線断面図であり、図3は図1中のC-C線断面図である。この回転運動型の電動アクチュエータは、例えばロボットアームの駆動や、自動車等の車両における電動パワーステアリング等に使用することができる。
図1に示すように、本発明にかかる電動アクチュエータは、回転駆動源1と、回転駆動源1の軸方向一方側に配置され、かつ回転駆動源1の出力側に接続された減速機2と、減速機2の出力側に接続された最終出力軸3とを主要な構成要素とする。以上の各構成要素のうち、先ず回転駆動源1の構造を説明する。
回転駆動源1は、モータ部5と、駆動源出力軸6と、トルクリミッタ7とを具備する。このうち、モータ部5は、図1および図2に示すように、ケーシング8に固定されたステータ51と、ステータ51の半径方向内側に隙間をもって対向するように配置されたロータ52とを備える電動モータで構成される。本実施形態では、電動モータの一例として、ラジアルギャップ型を例示している。
ステータ51は、軸方向に積層した複数の電磁鋼板で形成されたステータコア51aと、ステータコア51aに装着された絶縁材料からなるボビン51bと、ボビン51bに巻回されたステータコイル51cとを有する。
ロータ52は、環状のロータコア52aと、ロータコア52aの外周に取り付けられた複数のマグネット52bと、ロータコア52aの内周に固定された環状のロータインナ52cとで構成される。ロータコア52aは、例えば軸方向に積層した複数の電磁鋼板で形成される。ロータインナ52cの軸方向長さはロータコア52aの軸方向長さよりも長く、ロータコア52aの軸方向両側にロータインナ52cが突出している。ロータインナ52cの軸方向両端部の外周面には、ロータコア52aの軸方向両側に配置した軸受53,54が固定されており、この軸受53,54によってロータインナ52cがケーシング8に対して回転自在に支持されている。軸受53,54としては、ラジアル荷重とスラスト荷重の双方を支持できる転がり軸受、例えば深溝玉軸受を使用することができる。
ロータインナ52cの内周面には、内径寸法を他所よりも大きくした環状凹部521が形成される。この環状凹部521は、図1に示すように、例えばロータインナ52cの軸方向他方側(減速機2側とは反対側)の端部に形成される。環状凹部521の内周面には、軸方向に延びる雌セレーション522が形成されている。
図1に示すように、駆動源出力軸6は、両端を開口した中空の円筒状に形成される。このように駆動源出力軸6を中空にすることで、回転駆動源1は中空モータとしての構造を有することになる。駆動源出力軸6の外周面は、ロータインナ52cの内周面(環状凹部521を除く)に対して隙間嵌めで嵌合されている。そのため、駆動源出力軸6は、ロータインナ52cから独立して回転することができる。駆動源出力軸6の軸方向他方側の端部の外周面には、軸方向に延びる雄セレーション6aが形成されている。
ロータインナ52cの環状凹部521の内周面と、これに対向する駆動源出力軸6の外周面との間に、環状隙間が形成される。本実施形態では、この環状隙間にトルクリミッタ7が配置されている。
トルクリミッタ7は、モータ部5から出力された回転動力を駆動源出力軸6に伝達する一方で、過負荷が作用した時にトルク伝達を遮断し、モータ部5と駆動源出力軸6との相対回転を許容するものである。この機能を有する限り任意の構成のトルクリミッタ7を使用することができる。本実施形態では、トルクリミッタ7の一例として、摩擦式クラッチの一種である多板クラッチを使用した場合を例示している。
図4は、図1中の領域Xを拡大して示す断面図である。図4に示すように、トルクリミッタ7としての多板クラッチは、軸方向に離間して配置された一対の第1摩擦板71,71と、一対の第1摩擦板71,71の間に配置された第2摩擦板72と、第1摩擦板71と第2摩擦板72を圧接させた波形ばね等の弾性部材73と、押圧板74とを備える。押圧板74は、ロータインナ52cの内周面の環状溝に嵌合された止め輪75により軸方向で位置決めされ、所定の押圧力(軸方向荷重)を弾性部材73に付与する。
ロータインナ52cに設けられた環状凹部521の内周面には、軸方向に延びる雌セレーション522が形成されており、この雌セレーション522に第1摩擦板71および押圧板74が嵌合されている。また、駆動源出力軸6の外周面には、軸方向に延びる雄セレーション6aが形成されており、この雄セレーション6aに第2摩擦板72が嵌合されている。そして、弾性部材73の付勢力により、第1摩擦板71と第2摩擦板72間に摩擦力が発生する。
モータ部5と駆動源出力軸6の間に作用するトルクが両摩擦板71,72間に作用する摩擦力以下であるときは、両摩擦板71,72が一体回転するため、モータ部5の回転動力が両摩擦板71,72を介して駆動源出力軸6に伝達される。これにより、駆動源出力軸6に接続される減速機2、さらにはこの減速機2の出力側に接続される最終出力軸3が駆動される。一方、モータ部5と駆動源出力軸6の間に作用するトルクが両摩擦板71,72間に作用する摩擦力を上回ると、一方の摩擦板が他方の摩擦板に対して滑るため、モータ部5と駆動源出力軸6との間でのトルク伝達が遮断される。これにより、駆動源出力軸6とロータインナ52cの相対回転が許容される。
ケーシング8は、組み立ての都合上、軸方向の一箇所もしくは複数箇所で分割される。本実施形態では、ケーシング8を、有底円筒状の底部81と、両端を開口した筒部82と、蓋部83とに分割している。筒部82の軸方向一方側に蓋部83が配置され、筒部82の軸方向他方側に底部81が配置される。底部81、筒部82、および蓋部83は、ボルト等の締結手段を用いて一体化される。ロータインナ52cを支持する軸受53,54のうち、軸方向一方側の軸受53は筒部82の内周面に固定され、軸方向他方側の軸受54は底部81の内周面に固定される。なお、底部81は、円筒状の胴部81aと、この胴部81aの反最終出力軸側の開口部を塞ぐ蓋部81bとからなる。
次に、電動アクチュエータの主要構成要素である減速機2の構成を説明する。本実施形態では、減速機2として、トラクションドライブ式の遊星減速機を使用している。この遊星減速機2は、太陽ローラ21と、外側リング22と、複数の遊星ローラ23と、キャリア24とを具備している。太陽ローラ21として、本実施形態では、駆動源出力軸6の軸方向一方側の端部を使用している。また、遊星ローラ23として、転がり軸受25(例えば深溝玉軸受)の外輪を使用している。各転がり軸受25の内輪は中空軸26に圧入固定され、各中空軸25はキャリア24によって自転可能に支持されている。キャリア24は、その外周面に固定した転がり軸受27(例えば深溝玉軸受)により、ケーシング8の蓋部83に対して回転自在に支持されている。
図5は、図1中の領域Yを拡大して示す断面図である。図5に示すように、外側リング22は、断面U字状の本体部22aと、本体部22aの軸方向両側に突出するフランジ部22bとを一体に有する。ケーシング8の筒部82と蓋部83を結合する前の状態では、図中に実線で示すように、筒部82の内周に収容された外側リング22は、軸方向一方側のフランジ部22bを筒部82の端面よりも突出させている。その後、蓋部83を筒部82の端面に当接するまで押し込んでボルト等を用いて両者を結合すると、蓋部83に押圧された外側リング22が二点鎖線で示すように弾性変形し、本体部22aが内径側に膨らむ(図4は、弾性変形の程度を誇張して描いている)。この外側リング22の弾性変形により、外側リング22と遊星ローラ23の接触部、さらには遊星ローラ23と太陽ローラ21の接触部にトラクション(予圧)が付与される。
外側リング22のうち、軸方向他方側のフランジ部22bと筒部82の間には、リング状の調整部材28が配置される。蓋部83の組み付け前の状態で、筒部82の端面からの外側リング22のフランジ部22bの突出量tが規定範囲内となる適正厚さの調整部材28を選択して使用することで(マッチング)、外側リング22の変形程度を均一化して、減速機2の内部に付与するトラクションを均一化することができる。
減速機2の出力側となるキャリア24の内周面には、最終出力軸3が圧入等の手段で固定される。最終出力軸3の軸方向他方側の端部は、転がり軸受31により駆動源出力軸6に対して回転自在に支持される。
以上に説明した第一実施形態の電動アクチュエータでは、モータ部5と駆動源出力軸6との間のトルク伝達経路中にトルクリミッタ7が配置されている。通常時は、モータ部5で生じたトルクがトルクリミッタ7、駆動源出力軸6、および減速機2を介して最終出力軸3に伝達される。これにより、最終出力軸3に接続された駆動対象が回転駆動される。これに対し、例えば駆動対象が障害物と衝突等して、最終出力軸3の回転がロックされた場合でも、ロータインナ52cと駆動源出力軸6との間に滑りが生じてトルク伝達経路が遮断されるため、モータ部5が慣性によりそのまま回り続けようとしている状況下でも減速機2に過大な負荷が作用することを防止することができる。従って、減速機2の破損を防止することができる。これとは逆に、何らかの理由でモータ側の回転トルクが極端に大きくなった場合にも、減速機2等への過大負荷の作用を防止することができる。
また、本発明では、トルクリミッタ7がロータ52の内周面(ロータインナ52cの内周面)と、これに対向する駆動源出力軸6の外周面との間に配置されている。そのため、モータ部5の軸方向隣接位置にトルクリミッタ7を配置する場合に比べ、回転駆動源1、さらには電動アクチュエータの軸方向寸法を小さくすることができる。以上の効果を効果的に得るため、トルクリミッタ7(止め輪75も含む)は、ロータインナ52cを支持する二つの軸受53,54の間に配置するのが好ましい。より詳細には、両軸受53,54の各外端面P(相手側の軸受の端面と対向しない端面)の間にトルクリミッタ7を配置するのが好ましい。
ところで、この電動アクチュエータのモータ部は、回転制御のための位置検出構造150を反最終出力軸側に有する。位置検出構造150は、図6に示すように、パルサーリング151(151A)と、位置検出センサ152としてのホールセンサ(この場合、ホールIC152A)とを備えたものである。ここで、ホールセンサとは、例えば、磁界の向きを検出しそれに応じたパルス信号を出力する半導体である。また、ホールICとは、ホール素子と信号変換回路を1つのパッケージに組み込んだ磁気センサであり、ホール素子とは、ホール効果を利用して磁界を検出する素子である。
パルサーリング151Aは、図7A及び図7Bに示すように、支持環153(153A)と、着磁部(磁気エンコーダ)154(154A)とからなる。すなわち、支持環153(153A)は、短円筒形状の本体部153aと、この本体部153aの反最終出力軸側の開口部に設けられる平板リング状の内鍔部153bとからなり、この支持環153Aの本体部153aの内周面に着磁部(磁気エンコーダ)154(154A)が形成される。この場合の支持環153(153A)は、内鍔部側の小径部155と、反内鍔部側の大径部156と、この小径部155と大径部156とを連結するテーパ部157とからなり、大径部156の内周面に着磁部(磁気エンコーダ)154Aが設けられる。
支持環153Aは、強磁性体の鋼板、例えば、フェライト系のステンレス鋼板(JIS規格のSUS430系等)や防錆処理された冷間圧延鋼板(JIS規格のSPCC系等)をプレス加工等にて形成されたものである。また、着磁部(磁気エンコーダ)154Aは、ゴム等からなるエラストマにフェライト等からなる強磁性粉を混入させ、周方向交互に磁極N・Sが周方向に所定の等間隔(等ピッチ)となるように着磁したものである。
このパルサーリング151(151A)は、図1、図2、及び図6に示すように、反最終出力軸側の軸受54が収納状となるロータ52の周方向切欠部158に、支持環153Aの小径部155が嵌入乃至圧入される。このため、パルサーリング151(151A)は、ロータ52と一体に回転する。
また、底部81の蓋部81bには、回路基板160が付設され、この回路基板160に周方向に沿って、所定の等ピッチで配設される3個のホールIC152Aが接続されている。このホールIC152Aは、パルサーリング151Aの着磁部(磁気エンコーダ)154に近接対峙する。
このため、この位置検出構造150では、ロータ52の磁極の位置を回転センサ(検出用センサ)で検出し、この検出された位置に基づき、制御機能を有するコントローラ部(図示省略)において、ステータコア51aのコイル51cが巻かれた部位(ティース部)が最適なタイミングで励磁させるように制御しながら、ロータ52とステータコア51aとの間に生じる磁力の吸引・反発力によって、駆動力を発生させるものである。
この位置検出構造150のパルサーリング151(151A)が、ステータ51のコイル51cの一方の軸方向端部の内径側において軸方向でオーバーラップすることになる。すなわち、パルサーリング151(151A)の支持環153(153A)の内径側に、前記検出用センサとしての3個のホールIC152Aが周方向に沿って所定ピッチで配設されており、少なくとも支持環の軸方向半分部位(この場合、支持環153の小径部155)がステータのコイルの一方の軸方向端部に軸方向でオーバーラップしていることになる。
このように、この第1の実施形態では、パルサーリング151(151A)の着磁部154(154A)とこれに近接対峙するホールIC152Aとを径方向に沿って配置することができる。このため、着磁部154(154A)とこれに近接対峙するホールIC152Aとを軸方向に沿って配設する場合よりも、位置検出構造150を設けたことによる軸方向長さが大となることを防止することができ、確実に軸方向長さの短縮化を図ることができ、しかも、位置検出構造150を安定して配置することができる。
図8及び図9に、本発明の第2の実施形態として、直線運動型の電動アクチュエータの断面図を示す。この直線運動型の電動アクチュエータは、例えば自動車等の車両に装備される電動ブレーキ等に使用することができる。この第2の実施形態の電動アクチュエータでは、モータ部5から減速機2に至るまでの構成は、第一実施形態と共通する。第2の実施形態は、最終出力軸3に代えて運動変換機構9を使用した点が第一実施形態と異なる。
運動変換機構9は、例えばボールねじ91で構成される。ボールねじ91は、ボールねじナット92、ボールねじ軸93、多数のボール94、および循環部材としてのこま(図示省略)を主な構成要素とする。ボールねじナット92の内周面に螺旋状溝が形成され、ボールねじ軸93の外周面に螺旋状溝が形成されている。両螺旋状溝の間にボール94が装填される。ボールねじナット92の外周面には、減速機2の出力側となるキャリア24が圧入等の手段で固定されている。
中空をなす駆動源出力軸6の内径側には、ケーシング8の底部81に固定された中空筒状のガイド部材95が配置される。ガイド部材95の内周には、軸方向に延びる図示しないガイド溝が形成されている。詳細な図示は省略するが、ボールねじ軸93の軸方向他端部に設けた孔93aにピンを圧入する等してボールねじ軸93に半径方向に突出する突起を設け、この突起をガイド部材95のガイド溝に嵌合させることにより、ボールねじ軸93の回り止めを行うことができる。
第2実施形態に於けるケーシング8は、底部81,筒部82,蓋部83,および加圧部84で構成される。底部81および筒部82の構成や機能は、第一実施形態で説明した底部81および筒部82と共通している。加圧部84は、筒部82と蓋部83の間に挟まれている。第一実施形態と同様に、底部81、筒部82,蓋部83,および加圧部84をボルト部材86で一体に結合することで、加圧部84の端面が筒部82の端面に圧接し、加圧部84に押圧された外側リング22が内径側に弾性変形する。そのため、トラクションドライブ式の遊星減速機2にトラクションが付与される。
ボールねじナット92は、その外周面に固定した複列の転がり軸受96(例えば複列深溝玉軸受)により、ケーシング8の蓋部83に対して回転自在に支持される。この転がり軸受96により、ボールねじ軸93に作用するアキシャル荷重を支持することが可能となる。また、ボールねじナット92を両持ち構造にして、ボールねじナット92の傾きを防止することができる。
この第2の実施形態では、モータ部5のトルクが、トルクリミッタ7、駆動源出力軸6、減速機2を介してボールねじナット92に伝達される。従って、モータ部5を正逆方向に駆動することで、ボールねじナット92を正逆方向に回転させて、ボールねじ軸93を軸方向に進退移動(直線運動)させることができる。
この第2の実施形態でも第一実施形態と同様に、モータ部5よりも下流側のトルク伝達経路にトルクリミッタ7を配置しているため、ボールねじ軸93が障害物と当接する等してその伸長が規制されるような状況になっても、ロータインナ52cと駆動源出力軸6の間で滑りを生じさせてトルク伝達経路を遮断することができる。従って、減速機2やボールねじ91に過大な負荷が作用することを防止し、減速機2やボールねじ91の破損を防止することができる。
また、トルクリミッタ7が、モータ部5のロータ52(ロータインナ52c)の内周面と、これに対向する駆動源出力軸6の外周面との間の隙間に配置されているため、モータ部5の軸方向隣接位置にトルクリミッタ7を配置する場合に比べ、電動アクチュエータの軸方向寸法を小さくして電動アクチュエータの小型化を図ることができる。
この第2の実施形態においても、電動アクチュエータのモータ部は、図10~図13に示すように、パルサーリング151(151B)と、位置検出センサ152としてのホールIC152Aとを有する位置検出構造150を備える。
このパルサーリング151(151B)は、前記図7A及び図7Bに示したパルサーリング151(151A)と同様、図14A及び図14Bに示すように、支持環153(153B)と着磁部(磁気エンコーダ)154(154B)とからなる。すなわち、支持環153(153B)は、短円筒形状の本体部153aと、この本体部153aの反最終出力軸側の開口部に設けられる平板リング状の内鍔部153bとからなり、支持環153の本体部153aの内周面に着磁部(磁気エンコーダ)154(154B)が形成される。この場合の本体部153aは、外周面及び内周面は段差部を有さないストレートの円筒面である。本体部153aの反内鍔部側の内周面に着磁部(磁気エンコーダ)154Bが設けられる。
この場合の支持環153Bの材質としては、前記支持環153Aと同様とされ、着磁部(磁気エンコーダ)154Bの材質も、着磁部(磁気エンコーダ)154Bの材質と同様とされ、周方向交互に磁極N・Sが周方向に所定の等間隔(等ピッチ)となるように着磁したものである。
このパルサーリング151Bも、図8、図9、及び図11等に示すように、反最終出力軸側の軸受54が収納状となるロータ52の周方向切欠部158に、支持環153Bの内鍔部側が嵌入乃至圧入される。このため、パルサーリング151(151B)は、ロータと一体に回転する。
この場合も、底部81の蓋部81bには、回路基板160が付設され、この回路基板160に周方向に沿って、所定の等ピッチで配設される3個のホールIC152Aが接続されている。このホールIC152Aは、パルサーリング151の着磁部(磁気エンコーダ)154に近接対峙する。
従って、パルサーリング151Bが、ステータ51のコイル51cの一方の軸方向端部の内径側において軸方向でオーバーラップすることになる。すなわち、パルサーリング151Bの支持環153Bの内径側に、前記検出用センサとしての3個のホールIC152Aが周方向に沿って所定ピッチで配設されており、少なくとも支持環153Bの軸方向半分部位がステータ51のコイル51cの一方の軸方向端部に軸方向でオーバーラップしていることになる。
このため、前記第1の実施形態と同様、パルサーリング151Bの着磁部154Bとこれに近接対峙する検出用センサ(ホールIC152A)とを径方向に沿って配置することができる。このため、着磁部154B部とこれに近接対峙する検出用センサ(ホールIC152A)と軸方向に沿って配設する場合よりも、位置検出構造150を設けたことによる軸方向長さが大となることを防止することができ、確実に軸方向長さの短縮化を図ることができ、しかも、位置検出構造150を安定して配置することができる。
さらに、この第2の実施形態では、駆動源出力軸(中空出力軸)6の内周面に形成される内部スペースを有効利用して、ボールねじ91のねじ軸93が収容され、全体の軸方向寸法も小型化されている。さらに、上記内部スペースを有効利用して、ねじ軸93の軸方向他方側に回り止め機構Mが設けられている。
ねじ軸93の回り止め機構Mは、ガイド部材95と、ねじ軸93の半径方向に貫通する孔に嵌め込まれたピン96とこのピン96に回転自在に外嵌されたガイドカラー97とからなる。ガイド部材95はケーシング8の底部81に固定され、ガイド部材95の円筒部95aは、中空出力軸6の内周面とねじ軸93の外周面との間に配置されている。円筒部95aの内側にガイド溝95bが設けられ、ガイドカラー97が嵌め込まれている。ガイドカラー95は、PPS等の樹脂材料からなり、滑らかな回転を可能にする。これにより、ナット92が回転すると、ねじ軸93が図8、図9の左右方向にスムーズに進退する。
本実施形態では、ガイドカラー97の外周面を円筒状とし、ガイドカラー97が案内されるガイド溝95bの案内面を、平行な2つ面から構成したものを例示したが、これに限られず、V字状に角度を付けた2つの面からなる案内面や、円筒状の案内面とし、ガイドカラー97の外周面をそれぞれの案内面に対応する形状にしてもよい。
また、ガイドカラー95が樹脂材料からなるものを例示したが、これに限られず、金属製としてもよい。さらに、ガイドカラー97を省略し、ピン96が直接ガイド溝95bに係合する構造にしてもよい。
以上説明したように、モータ部5と運動変換機構9が同軸上に配置された直動式電動アクチュエータにおいて、中空のロータインナ52cとナット92を軸方向に重ならない位置に配置すると共に、ねじ軸93の回り止め機構Mを中空のロータインナ52cの半径方向内側に設けた構成により、直動式電動アクチュエータの小型化、特に半径方向寸法の小型化を図り、搭載性を向上させることができる。
特に第2の実施形態のような直線運動型の電動アクチュエータでは、ボールねじ軸93が進退移動するスペースが必要となるため、モータ部5とトルクリミッタ7とを軸方向隣接位置に配置した場合には、進退移動するボールねじ軸93とトルクリミッタ7とが干渉するおそれがある。これを回避するには、ボールねじ軸93をモータ部5およびトルクリミッタ7の軸心に対して偏芯させて配置せざるを得ず、電動アクチュエータが大型化する。
これに対し、第2の実施形態では、トルクリミッタ7を、ロータインナ52cと駆動源出力軸6に対して半径方向で重畳させる形で配置することに加えて、中空の駆動源出力軸6を用いて回転駆動源1を中空構造とし、駆動源出力軸6の内径側にボールねじ軸93を収容するスペースを設けている。従って、ボールねじ軸93をモータ部5、さらにはトルクリミッタ7と同軸に配置することができ、そのために直線運動型の電動アクチュエータを小型化することができる。
また、図1に示す第1の実施形態(回転運動型)の電動アクチュエータと、図8と図9に示す第2の実施形態(直線運動型)の電動アクチュエータを対比すると、回転駆動源1および減速機2は実質的に共通した構成を有する。そのため、回転駆動源1および減速機2を両タイプの電動アクチュエータで共用化することができる。すなわち、第一実施形態の電動アクチュエータにおいて、最終出力軸3を使用せずに、ボールねじ91を使用して、ボールねじ軸93を駆動源出力軸6の内周に配置することにより、第2の実施形態の電動アクチュエータを得ることができる。このように回転駆動源1および減速機2を共用化することで、電動アクチュエータの低コスト化を図ることができる。また、回転運動型と直線運動型の電動アクチュエータをシリーズ化し、商品展開力を強化することもできる。
図8及び図9に示す直動式電動アクチュエータは、モータ部5と運動変換機構9が同軸上に配置されているが、中空ロータインナ52cと中空出力軸6に対してボールねじ91のナット92が半径方向に重畳する構造ではないので、中空ロータインナ52cの内径D1、さらには中空出力軸6の内径D2をボールねじ91のナット92の外径D3より小さくすることができる。これにより、小型の電動モータ29を使用することができ、直動式電動アクチュエータの小型化、特に半径方向寸法を小型化することができる。
以上の実施形態の説明では、減速機2としてトラクションドライブ式の遊星減速機を例示している。これはバックラッシが少なく、低騒音であることに鑑みて採用したものである。減速機2の構成は任意であり、上記の利点に対する必要性が乏しい場合には、減速機2として、ギヤを用いた遊星ギヤ減速機を使用することもできる。もちろん遊星減速機以外の構成を有する減速機も使用することができる。
また、トラクションドライブ式の遊星減速機2にトラクションを与える手法として、蓋部83の取り付け時に外側リング22を内径側に変形させる場合を説明したが、トラクションを付与する機構は任意に採用することができる。例えば外側リング22をケーシング8の内周面に所定の締め代で圧入することにより、外側リング22を内径側に縮径させて減速機2にトラクションを付与することもできる。
また、以上の実施形態では、ロータインナ52cの軸方向他方側の端部の内周面にトルクリミッタ7を配置する場合を説明したが、トルクリミッタ7の配設位置は特に限定されず、ロータインナ52cの内周面と駆動源出力軸6の外周面との間の隙間内で任意の位置に配置することができる。例えばロータインナ52cの軸方向一方側の端部の内周面にトルクリミッタ7を配置することもできる。
また、以上の説明では、モータ部5としてラジアルギャップ型の電動モータを例示したが、任意の構成のモータを採用することができる。例えば、ケーシングに固定されたステータと、ステータの軸方向内側に隙間をもって対向するように配置されたロータとを備えるアキシャルギャップ型の電動モータであってもよい。
以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、前記実施形態では、位置検出構造150のパルサーリング151を、ステータ51のコイル51cの一方(図1では、反最終出力軸側、図8及び図9では反運動変換機構側)の軸方向端部の内径側において軸方向でオーバーラップさせたものであったが、位置検出構造150のパルサーリング151を、ステータ51のコイル51cの他方(図1では、最終出力軸側、図8及び図9では運動変換機構側)の軸方向端部の内径側において軸方向でオーバーラップさせるようにしてもよい。
また、各実施形態では、パルサーリング151の全体をステータ51のコイル51cにオーバーラップさせていないが、パルサーリング151の全体をオーバーラップさせるようにしてもよい。なお、検出用センサを構成するホールICの数としては3個に限るものではない。また、第1の実施形態の電動アクチュエータの位置検出構造を、第2の実施形態の電動アクチュエータの位置検出構造に置き換えても、第2の実施形態の電動アクチュエータの位置検出構造を、第1の実施形態の電動アクチュエータの位置検出構造に置き換えてもよい。
電動アクチュエータとして、ロボットアームの駆動や自動車等の車両における電動パワーステアリング等に最適となる回転運動型としたり、自動車等の車両に装備される電動ブレーキ等に最適となる直線運動型としたりできる。
1 回転駆動源
2 減速機(遊星減速機)
3 最終出力軸
5 モータ部
6 駆動源出力軸(中空出力軸)
9 運動変換機構
51 ステータ
51c ステータコイル
52 ロータ
150 位置検出構造
151、151A、151B パルサーリング
152 位置検出センサ
153、153A、153B 支持環
154.154A、154B 着磁部
ホールセンサ(ホールIC) 152A
2 減速機(遊星減速機)
3 最終出力軸
5 モータ部
6 駆動源出力軸(中空出力軸)
9 運動変換機構
51 ステータ
51c ステータコイル
52 ロータ
150 位置検出構造
151、151A、151B パルサーリング
152 位置検出センサ
153、153A、153B 支持環
154.154A、154B 着磁部
ホールセンサ(ホールIC) 152A
Claims (5)
- ステータおよびロータを有するモータ部と、前記ロータの内径側に配置され、ロータの回転を出力する駆動源出力軸とを備え、前記モータ部は、回転制御のための位置検出構造とを有する電動アクチュエータ用回転駆動源であって、
前記位置検出構造は、内周面側にN・S極が交互に周方向に沿って配設される着磁部を有する回転側のパルサーリングと、このパルサーリングの着磁部に径方向に近接対峙する固定側の検出用センサとを備え、この位置検出構造のパルサーリングを、ステータのコイルの一方の軸方向端部の内径側において軸方向でオーバーラップさせたことを特徴とする電動アクチュエータ用回転駆動源。 - 前記パルサーリングは、短円筒形状の本体部を有する支持環と、この支持環の本体部の内径面に設けられる前記着磁部とからなり、パルサーリングの支持環の内径側に、前記検出用センサとしてのホールセンサが配設されていることを特徴とする請求項1に記載の電動アクチュエータ用回転駆動源。
- 少なくとも支持環の軸方向半分部位がステータのコイルの一方の軸方向端部に軸方向でオーバーラップしていることを特徴とする請求項2に記載の電動アクチュエータ用回転駆動源。
- 請求項1~請求項3のいずれか1項に記載した回転駆動源の駆動源出力軸に減速機を接続し、減速機の出力側に最終出力軸を接続したことを特徴とする電動アクチュエータ。
- 請求項1~請求項3のいずれか1項に記載した回転駆動源の駆動源出力軸に減速機を接続し、減速機の出力側に運動変換機構を接続したことを特徴とする電動アクチュエータ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016233432A JP6815852B2 (ja) | 2016-11-30 | 2016-11-30 | 電動アクチュエータ用回転駆動源および電動アクチュエータ |
JP2016-233432 | 2016-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018100953A1 true WO2018100953A1 (ja) | 2018-06-07 |
Family
ID=62242081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039256 WO2018100953A1 (ja) | 2016-11-30 | 2017-10-31 | 電動アクチュエータ用回転駆動源および電動アクチュエータ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6815852B2 (ja) |
WO (1) | WO2018100953A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109941369A (zh) * | 2019-03-07 | 2019-06-28 | 杭州宇树科技有限公司 | 一种机器人集成关节单元及应用其的足式机器人 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3524258A1 (en) | 2011-06-22 | 2019-08-14 | Apellis Pharmaceuticals, Inc. | Methods of treating chronic disorders with complement inhibitors |
JP7255099B2 (ja) * | 2018-07-09 | 2023-04-11 | 株式会社デンソー | モータ |
CN109591045A (zh) * | 2018-12-20 | 2019-04-09 | 杭州宇树科技有限公司 | 一种高集成度高性能机器人关节单元 |
JP7465104B2 (ja) * | 2020-02-12 | 2024-04-10 | ジヤトコ株式会社 | 装置 |
JP7412205B2 (ja) * | 2020-02-12 | 2024-01-12 | ジヤトコ株式会社 | 装置 |
JP2024007149A (ja) * | 2022-07-05 | 2024-01-18 | 株式会社アイシン福井 | トルクリミッタ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62195534U (ja) * | 1986-06-03 | 1987-12-12 | ||
CN104505978A (zh) * | 2014-04-29 | 2015-04-08 | 西北工业大学 | 一种螺母驱动型行星滚柱丝杠副作动器 |
JP2016093009A (ja) * | 2014-11-06 | 2016-05-23 | アスモ株式会社 | モータ |
-
2016
- 2016-11-30 JP JP2016233432A patent/JP6815852B2/ja not_active Expired - Fee Related
-
2017
- 2017-10-31 WO PCT/JP2017/039256 patent/WO2018100953A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62195534U (ja) * | 1986-06-03 | 1987-12-12 | ||
CN104505978A (zh) * | 2014-04-29 | 2015-04-08 | 西北工业大学 | 一种螺母驱动型行星滚柱丝杠副作动器 |
JP2016093009A (ja) * | 2014-11-06 | 2016-05-23 | アスモ株式会社 | モータ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109941369A (zh) * | 2019-03-07 | 2019-06-28 | 杭州宇树科技有限公司 | 一种机器人集成关节单元及应用其的足式机器人 |
US20220143846A1 (en) * | 2019-03-07 | 2022-05-12 | Hangzhou Yushu Technology Co., Ltd. | Robot integrated joint unit and legged robot applying same |
Also Published As
Publication number | Publication date |
---|---|
JP2018093590A (ja) | 2018-06-14 |
JP6815852B2 (ja) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018100953A1 (ja) | 電動アクチュエータ用回転駆動源および電動アクチュエータ | |
US11808308B2 (en) | Clutch device | |
US11796012B2 (en) | Clutch device | |
US11808306B2 (en) | Clutch device | |
CN114144596A (zh) | 离合器装置 | |
CN114144592A (zh) | 离合器装置 | |
JP2020012554A (ja) | クラッチ装置 | |
EP3135944A1 (en) | Driving force transmission device | |
EP3851694A1 (en) | Electric motor with reverse input cutoff clutch | |
JP2018100744A (ja) | 電動アクチュエータ用回転駆動源および電動アクチュエータ | |
WO2018096939A1 (ja) | 電動アクチュエータ | |
JP7563164B2 (ja) | 回転式アクチュエータ | |
EP2581619A2 (en) | Electromagnetic clutch | |
JP2023020471A (ja) | クラッチアクチュエータ | |
WO2023276714A1 (ja) | クラッチアクチュエータ | |
WO2023276717A1 (ja) | クラッチアクチュエータ | |
WO2018074499A1 (ja) | 無段変速機のシーブ駆動装置 | |
JP2018074833A (ja) | 電動アクチュエータ用回転駆動源および電動アクチュエータ | |
WO2023276715A1 (ja) | クラッチアクチュエータ | |
JP7559711B2 (ja) | ギヤードモータ、および、それを用いたクラッチアクチュエータ | |
WO2023276720A1 (ja) | クラッチアクチュエータ | |
WO2023276719A1 (ja) | クラッチアクチュエータ | |
JP2018080776A (ja) | 電動アクチュエータ | |
WO2018088143A1 (ja) | 電動アクチュエータ | |
WO2018088244A1 (ja) | 直動式電動アクチュエータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877081 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877081 Country of ref document: EP Kind code of ref document: A1 |