Nothing Special   »   [go: up one dir, main page]

WO2018198529A1 - 有機エレクトロルミネッセンス素子、光センサおよび生体センサ - Google Patents

有機エレクトロルミネッセンス素子、光センサおよび生体センサ Download PDF

Info

Publication number
WO2018198529A1
WO2018198529A1 PCT/JP2018/007696 JP2018007696W WO2018198529A1 WO 2018198529 A1 WO2018198529 A1 WO 2018198529A1 JP 2018007696 W JP2018007696 W JP 2018007696W WO 2018198529 A1 WO2018198529 A1 WO 2018198529A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
light
light emitting
emitting layer
Prior art date
Application number
PCT/JP2018/007696
Other languages
English (en)
French (fr)
Inventor
俊樹 宮坂
中山 知是
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019515129A priority Critical patent/JP7336381B2/ja
Priority to US16/608,751 priority patent/US20210126206A1/en
Publication of WO2018198529A1 publication Critical patent/WO2018198529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1016Devices sensitive to infrared, visible or ultraviolet radiation comprising transparent or semitransparent devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/161Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors
    • H01L31/162Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors the light source being a semiconductor device with at least one potential-jump barrier or surface barrier, e.g. a light emitting diode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic electroluminescence element, and an optical sensor and a biosensor using the same.
  • organic electroluminescence A phenomenon in which voltage is applied to an organic substance to emit light is called organic electroluminescence (hereinafter also referred to as “organic EL”), and an element that generates organic EL is called an organic EL element.
  • the organic EL element is also referred to as a single-layer or multilayer light-emitting layer containing an organic light-emitting substance (“organic EL layer”, “organic thin film layer”, “organic light-emitting substance-containing layer”, “organic light-emitting layer”, etc.) A) between the anode and the cathode.
  • the organic EL element When a voltage is applied to the organic EL element, electrons are injected from the cathode into the light emitting layer and holes are injected from the anode, and these are recombined in the light emitting layer to generate excitons.
  • the organic EL element emits light by utilizing light emission (fluorescence / phosphorescence) from the excitons generated in this way.
  • the organic thin film solar cell When the light emitting layer of the organic EL element receives light from the outside, light energy can be converted into electric power (photoelectric conversion) by a reverse reaction of light emission.
  • the organic thin film solar cell also exhibits the above-described function of performing photoelectric conversion (photoelectric conversion function) in the light absorption layer (photoelectric conversion layer) in the thin film layer, and converts light energy into electric power.
  • Patent Document 1 discloses such an organic thin film solar cell.
  • This Patent Document 1 describes an organic thin-film solar cell having a heterojunction structure of an exciton generation layer (EHL) and an exciton dissociation layer (ESL).
  • EHL is composed of two or more materials A and B, and the energy level is S1 (A)> S1 (B)> T1 (B)> T1 (A).
  • the material B causes at least 20% or more intersystem crossing (ISC).
  • S1 (A) is the lowest singlet state of excitons of material A
  • S1 (B) is the lowest singlet state of excitons of material B
  • T1 (B) is the lowest triplet of excitons of material B.
  • the term state, T1 (A) represents the lowest triplet state of the excitons of material A.
  • Patent Document 1 relates to the energy transition inside the EHL when receiving light, as S1 (A) ⁇ S1 (B) ⁇ T1 (B) ⁇ T1 (A).
  • the energy level and structure are such that excitons move.
  • Patent Document 1 describes that the material A is a main light receiving material and the concentration of the material A is 30% or more. Furthermore, Patent Document 1 describes that the material B is fullerene or a metal complex.
  • the organic thin film solar cell exhibits a photoelectric conversion function
  • Patent Document 1 when the technique related to the photoelectric conversion function described in Patent Document 1 is applied to an organic EL element as it is to emit light, light is hardly emitted due to the energy level, and thermal deactivation occurs. Heat generated by heat deactivation may damage the organic material of the organic EL element.
  • an organic EL element to which the technology relating to the photoelectric conversion function described in Patent Document 1 is applied as it is is used as a light receiving element such as a biosensor
  • the light that can be received by the light receiving element has a wide wavelength band like sunlight. It is not necessarily light, and it is possible that the intensity of light is not sufficient. For this reason, there is a possibility that the current value (photocurrent value) when light is received may be low or the electromotive force cannot be generated. Furthermore, if the selection and composition of the material in the light emitting layer (photoelectric conversion layer) are not appropriate, the current value (dark current value) when light is not received may increase.
  • the ratio between the photocurrent value and the dark current value obtained by photoelectric conversion is reduced, and therefore, when such an organic EL element is used as a light receiving element such as a biological sensor, the performance is lowered.
  • the ratio between the photocurrent value and the dark current value is generally equivalent to what is called a signal-to-noise ratio (S / N ratio, SNR).
  • the present invention has been made in view of the above circumstances, and has a light emission and photoelectric conversion function, and the ratio between the photocurrent value and the dark current value obtained by photoelectric conversion is reduced while reducing the heat generated during light emission. It is an object of the present invention to provide a high organic electroluminescence element, and an optical sensor and a biosensor using the same.
  • the above-mentioned problem according to the present invention is solved by the following means.
  • (1) It has a transparent substrate, a transparent electrode, an organic functional layer, and a counter electrode, and the organic functional layer has at least one light emitting layer having a light absorption function, and the light emitting layer is made of a plurality of materials.
  • the energy gap of the absorbing material having the highest absorbance in the wavelength region of visible light or more is the largest in the light emitting layer, and the abundance of the absorbing material in the light emitting layer is 50.
  • An organic electroluminescence device having a volume% or less.
  • organic electroluminescent element according to any one of (1) to (7), wherein the organic functional layer has at least one carrier transport layer adjacent to the light emitting layer.
  • an organic electroluminescence device having a light emission and photoelectric conversion function, and having a high ratio of a photocurrent value and a dark current value obtained by photoelectric conversion while reducing heat generated during light emission. It is possible to provide an optical sensor and a biosensor using the sensor.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of the organic EL element according to this embodiment.
  • the organic EL element 1 according to this embodiment includes a transparent base material 2, a transparent electrode 3, an organic functional layer 4, and a counter electrode 5, and the organic functional layer 4 described above is at least One light emitting layer 41 is provided.
  • the transparent electrode 3, the organic functional layer 4, and the counter electrode 5 on the transparent substrate 2 are sealed with a sealing material.
  • each structure of the organic EL element 1 will be described.
  • the transparent substrate 2 is a base on which the transparent electrode 3, the organic functional layer 4, and the counter electrode 5 are formed.
  • the transparent substrate 2 is formed of a light-transmitting substrate material such as glass, quartz, or a transparent resin film.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • the surface of these glass materials may be subjected to physical treatment such as polishing as necessary from the viewpoint of adhesion to the transparent electrode 3, durability, and smoothness, and is made of an inorganic or organic material.
  • a film or a hybrid film obtained by combining these films, that is, a mixed film of an inorganic substance and an organic substance may be formed.
  • transparent resin films examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyethylene polypropylene
  • cellophane cellulose diacetate
  • TAC cellulose triacetate
  • TAC cellulose acetate butyrate
  • cellulose acetate propionate examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate.
  • CAP cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, poly Cyclones such as luphones, polyetherimides, polyetherketoneimides, polyamides, fluororesins, nylons, polymethylmethacrylates, acrylics, polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade name, manufactured by Mitsui Chemicals) Examples of the film include olefin-based resins.
  • a resin film (also referred to as a gas barrier film) on which such a coating and a hybrid coating are formed has a water vapor permeability (25 ⁇ 0.5 ° C., measured by a method according to JIS-K-7129-1992).
  • the relative humidity 90 ⁇ 2% RH is preferably 0.01 g / (m 2 ⁇ 24 hours) or less.
  • such a gas barrier film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 hours ⁇ atm) or less, and a water vapor permeability. Is preferably 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less.
  • any material may be used as long as it has a function of suppressing the intrusion of the organic EL element 1 such as moisture or oxygen, which may deteriorate, for example, silicon oxide, silicon dioxide, silicon nitride. , Polysilazane, polyvinylidene chloride, polyethylene and the like.
  • the transparent substrate 2 can be optionally provided with a bleed-out prevention layer, a hard coat layer, etc. as required, particularly in the case of a transparent resin film.
  • the method for forming the gas barrier film that is, the method for forming the above-described film or hybrid film on the transparent substrate 2, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, A cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but JP-A-2004-68143 discloses Those described by the atmospheric pressure plasma polymerization method are particularly preferred.
  • the transparent substrate 2 preferably has an average transmittance of light having a wavelength of 450 to 800 nm of 70% or more, more preferably 80% or more, and further preferably 85% or more.
  • the average light transmittance of the transparent substrate 2 is low, the average light transmittance of the entire organic EL element 1 is lowered.
  • the average absorptance of light with a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance of the transparent base material 2 is a value measured by making measurement light incident from an angle inclined by 5 ° with respect to the front surface of the transparent base material 2.
  • Average transmittance and average reflectance can be measured with a spectrophotometer.
  • the refractive index of the transparent substrate 2 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70.
  • the refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2.
  • the refractive index of the transparent substrate 2 is the refractive index of light having a wavelength of 510 nm and can be measured with an ellipsometer.
  • the thickness of the transparent substrate 2 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the strength of the transparent base material 2 is high, so that damage when elements are formed on the transparent base material 2 is suppressed, and the transparent base material 2 is not too thick. Therefore, there is no possibility that the light transmittance of the transparent substrate 2 is lowered.
  • the transparent base material 2 has flexibility.
  • the transparent base material 2 having flexibility can be formed with a thickness having flexibility using, for example, the above-described resin film.
  • a thin film glass having a thickness of 10 to 200 ⁇ m can be used as the transparent base material 2 having flexibility.
  • Such a thin film glass can be formed of non-alkali glass, for example.
  • a thin film glass having a thickness of 50 to 120 ⁇ m is preferable because it is difficult to break and roll conveyance is easy.
  • a glass film described in JP 2010-132532 A can be preferably used.
  • the transparent electrode 3 is used as an anode and the counter electrode 5 is used as a cathode, but the present invention is not limited to this. That is, the transparent electrode 3 can be used as the cathode and the counter electrode 5 can be used as the anode by forming the constituent materials of the electrodes described later with each other. In addition, when the constituent materials of the electrodes are interchanged so that the transparent electrode 3 serves as a cathode and the counter electrode 5 serves as an anode, the construction order (stacking order) of the organic functional layers 4 described later is also switched accordingly.
  • the transparent electrode 3 is an electrode film that supplies (injects) holes to the light emitting layer 41.
  • a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an organic conductive compound or a mixture thereof is preferably used.
  • Specific examples of such an electrode substance include metals such as Ag and Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • the anode can be formed into a thin film by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape can be formed by a photolithography method.
  • a pattern having a desired shape can be formed by using a pattern mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a material that can be applied such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it can be, for example, in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • a base layer serving as a base for the anode is preferably formed between the transparent substrate 2 and the anode.
  • the underlayer may be a layer containing a substance that interacts with Ag, and may contain an inorganic material or an organic material.
  • the underlayer contains an inorganic material
  • a high surface energy material having a higher sublimation heat enthalpy than silver as a substance that interacts with silver.
  • examples of such a high surface energy material include Al, Ti, Au, Pt, Pd, In, Mo, and Cu.
  • the base layer is preferably composed of a compound having a Lewis base, that is, a compound containing an atom having an unshared electron pair.
  • a compound having a Lewis base include a compound having an element selected from nitrogen and sulfur, that is, a nitrogen-containing compound or a sulfur-containing compound.
  • the underlayer is a layer formed using at least one of a nitrogen-containing compound and a sulfur-containing compound, and may each contain a plurality of types of compounds. Further, the compound constituting the underlayer may be a compound containing both nitrogen and sulfur.
  • the nitrogen-containing compound constituting the underlayer may be a compound containing a nitrogen atom (N), but is particularly preferably an organic compound containing a nitrogen atom having an unshared electron pair.
  • the sulfur-containing compound constituting the underlayer may be a compound containing a sulfur atom (S), but is particularly preferably an organic compound containing a sulfur atom having an unshared electron pair.
  • the base layer does not need to have a layer thickness required as an electrode.
  • the foundation layer may have a layer thickness suitable for the arrangement state of the anode.
  • the base layer may have a configuration in which the above-described layer containing an inorganic material and a layer containing an organic material layer are stacked.
  • the base layer preferably has a structure in which a layer containing an inorganic material and a layer containing an organic material are arranged in this order from the anode side.
  • the counter electrode 5 is an electrode film that supplies (injects) electrons to the light emitting layer 41.
  • a material having a small work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an organic conductive compound
  • a mixture thereof as an electrode material.
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness can be, for example, in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the cathode can be transparent as well as the anode. In this way, light emission brightness and design are improved.
  • the organic functional layer 4 is formed between the anode and the cathode and has at least one light emitting layer 41.
  • the organic functional layer 4 may be the light emitting layer 41 itself, or may be composed of various functional layers having functions of transporting, injecting, and blocking carriers (holes and electrons) to the light emitting layer 41. .
  • the light emitting layer 41 may be a single layer, or may be a multilayer having different emission colors or the same multilayer.
  • FIG. 4 An example of the configuration of the organic functional layer 4 is shown in the following [1] to [8].
  • the layers described above are usually provided on the anode side, and are provided on the cathode side in the order described below.
  • the light emitting layer 41 is composed of a plurality of materials, and the energy gap (Eg) of the absorbing material having the highest absorbance in the wavelength region of visible light or more is selected from the plurality of materials. It ’s the biggest of them. Therefore, exciton dissociation when receiving light is rapidly performed due to the energy levels of a plurality of materials used for the light emitting layer 41. Therefore, the photoelectric exchange efficiency is increased and the photocurrent value is improved. Therefore, the organic EL element 1 having the light emitting layer 41 can increase the ratio (S / N ratio) between the photocurrent value and the dark current value.
  • the wavelength region of visible light or more refers to a region having a wavelength region of approximately 360 nm or more, and includes an infrared region having a wavelength region of 750 nm or more.
  • the said wavelength range in this embodiment exceeds 400 nm, it is more preferable that it exceeds 420 nm, and it is further more preferable that it exceeds 450 nm.
  • the abundance of the absorbing material having the highest absorbance in the light emitting layer 41 in the wavelength region above the visible light is 50% by volume or less.
  • examples of the plurality of materials constituting the light emitting layer 41 include a light emitting material that generates an organic EL, and other matrix materials.
  • the absorbing material having the highest absorbance in the wavelength region above visible light is a luminescent material. That is, in this embodiment, it can also be said that the abundance of the light emitting material in the light emitting layer 41 is 50% by volume or less. By doing in this way, photoelectric conversion can be performed efficiently and the current (photocurrent) when light is received can be increased.
  • the abundance of the absorbing material having the highest absorbance in the light emitting layer 41 in the wavelength region above the visible light is preferably 30% by volume or less, and 20% by volume or less. More preferred.
  • the abundance of the absorbing material having the highest absorbance in the light emitting layer 41 in the wavelength region above the visible light exceeds 50% by volume, the efficiency of photoelectric conversion is deteriorated and the photocurrent is lowered.
  • the reason why the above-described effect can be obtained by setting the abundance of the absorbing material having the highest absorbance in the wavelength region of visible light or more to 50% by volume or less is not clear, but is presumed to be as follows. . That is, in a general organic thin-film solar cell, from the viewpoint of increasing the photoelectric conversion amount, the amount of the absorbing material (light emitting material) is increased and the amount of the matrix material is decreased. It is considered that power generation by the organic thin-film solar cell is achieved by excitons generated by light absorption moving to an interface with an adjacent material and exciton dissociation at the interface. Since the material generally used in the organic thin film solar cell has high carrier mobility, it is considered that the material functions even if the abundance of the absorbing material is increased.
  • the absorbing material used in the organic EL element 1 has a photoelectric conversion function, it is basically a light emitting material suitable for organic EL light emission.
  • the abundance in the light emitting layer 41 is also reduced to 50 volume% or less. Therefore, in this embodiment, it is thought that the exciton dissociation in the light emitting layer 41 (absorption layer) is performed in a mode different from the case of the organic thin film solar cell.
  • the carrier mobility of a light emitting material suitable for organic EL light emission is very low and the light emission efficiency is high, so that the excitons generated by light absorption recombine before dissociation and disappear (emit light). It is thought that it will end.
  • the relationship between the absorbing material and the matrix material is specified, and a matrix material having a smaller Eg than that of the absorbing material (light emitting material) is used. It is considered that exciton dissociation can be performed smoothly in the layer). In addition, it is considered that reducing the abundance of the absorbing material also facilitates exciton dissociation to prevent recombination and contribute to an increase in photoelectric conversion efficiency.
  • the abundance (volume%) of the absorptive material in the light emitting layer 41 can be identified by analyzing using TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and HPLC (High Performance Liquid Chromatography).
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • HPLC High Performance Liquid Chromatography
  • the above-described absorbing material emits light by fluorescence. That is, the absorbing material is preferably a fluorescent compound.
  • a fluorescent compound When a fluorescent compound is used, strong absorption and emission in the visible light region can be obtained.
  • a singlet singlet transition
  • a triplet triplet
  • Fluorescent compounds include, for example, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. , Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like, but are not limited thereto. In the present embodiment, the following compounds can be suitably used as the fluorescent compound.
  • Japanese Patent Application No. 2008-516648 Japanese Patent No. 5267123
  • Japanese Patent Application Laid-Open No. 2014-138006 Japanese Patent Application Laid-Open No. 2012-216801
  • Japanese Patent Application Laid-Open No. 2010-56190 Japanese Patent Application Laid-Open No. 2008-81704.
  • Fluorescent compounds described in JP-A No. 2007-224171, JP-A No. 2016-213469, JP 2013-529244 A, and the like can also be used.
  • a known host material or guest material also referred to as a dopant material. Can be appropriately selected from transportable materials.
  • the host material plays a role of transporting electrons and holes in the light emitting layer 41.
  • the host material for example, compounds H1 to H79 described in paragraphs 0163 to 0178 of JP2013-4245A can be used.
  • the compounds described in JP-A Nos. 2002-299060, 2002-302516, 2002-305083, 2002-305084, 2002-308837 and the like can also be used.
  • the guest material in the present embodiment is a compound in which light emission from an excited triplet is observed, that is, a phosphorescent compound, and plays a role of emitting light in the light emitting layer 41.
  • the phosphorescent compound refers to a compound that emits phosphorescence at room temperature (25 ° C.) and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is It is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when a phosphorescent compound is used in the present embodiment, the phosphorescence quantum yield (0.01 or more) is obtained in any solvent. It only has to be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds, particularly Ir complexes. That is, in this embodiment, it is preferable that at least one material among the plurality of materials constituting the light emitting layer 41 is an Ir complex. When an Ir complex is used as the material constituting the light emitting layer 41, the light emission efficiency (phosphorescence quantum yield) can be improved more reliably.
  • At least one light emitting layer 41 may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 41 is the thickness direction of the light emitting layer 41. You may have changed.
  • the content of the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 41.
  • Examples of phosphorescent compounds applicable to the present embodiment include those represented by general formula (4), general formula (5), or general formula (6) described in paragraphs 0185 to 0244 of JP2013-4245A.
  • Preferred examples include the compounds represented and their exemplified compounds.
  • Ir-46 to Ir-50 are shown below.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer 41.
  • the light emitting layer 41 can be set by arbitrarily selecting the wavelength of light to be received by appropriately selecting the type of absorbing material (light emitting material) constituting the light emitting layer 41 (wavelength selectivity). Have). Therefore, the organic EL element 1 can receive light in an arbitrary wavelength region and perform photoelectric conversion.
  • An injection layer (not shown) is provided between the electrode and the light-emitting layer 41, that is, between the transparent electrode 3 and the light-emitting layer 41, or between the counter electrode 5 and the light-emitting layer 41 for the purpose of lowering the driving voltage and improving the light emission luminance. Can be provided.
  • the injection layer is described in detail in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their forefront of industrialization” (issued on November 30, 1998 by NTT). There are a hole injection layer and an electron injection layer.
  • the injection layer can be provided as necessary. If it is a hole injection layer, it can be provided between the anode and the light emitting layer 41 or the hole transport layer 42 (see FIG. 2). If it is an electron injection layer, the cathode and the light emitting layer 41 or the electron transport layer 43 are provided. (See FIG. 2).
  • JP-A-9-45479 JP-A-9-260062, JP-A-8-288069 and the like.
  • a phthalocyanine layer typified by copper phthalocyanine
  • an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • metals represented by strontium, aluminum, etc. examples thereof include an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer in this embodiment is preferably an extremely thin film, and the layer thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
  • FIG. 2 is a schematic diagram illustrating the overall configuration of a preferable aspect of the organic EL element according to the present embodiment.
  • the organic functional layer 4 has at least one carrier transport layer adjacent to the light emitting layer 41.
  • the carrier transport layer refers to a layer that transports carriers (holes and electrons) to the light emitting layer 41. That is, the organic functional layer 4 has at least one of the hole transport layer 42 and the electron transport layer 43 adjacent to the light emitting layer 41 as shown in FIG. 2 illustrates an example in which both the hole transport layer 42 and the electron transport layer 43 are provided.
  • the reason why the photocurrent is further improved and the dark current is suppressed by using the carrier transport layer is presumed to be as follows.
  • the improvement in the photocurrent is related to the low carrier mobility of the light emitting layer 41. That is, it is considered that the carrier mobility layer compensates for the low mobility of the light-emitting layer 41 to improve the current mobility in the entire device.
  • the light emitting layer 41 is often made of a material having a relatively small Eg among the materials of the organic functional layer 4, whereas the carrier transporting layer has a relatively large Eg. Therefore, it is presumed that the leakage current at the time of voltage application between the materials of the light emitting layer 41 and the carrier transport layer can be suppressed, and the dark current becomes small.
  • an organic thin-film solar cell is an apparatus for producing electric power
  • generally an absorbing material having a high carrier mobility is preferably used, and it is not necessary to use a material that serves only for carrier transport.
  • the dark current value is measured by applying a bias voltage. Since the organic thin film solar cell is a device for generating electric power, a bias voltage that uses electric power is not applied. Therefore, in the organic thin film solar cell, dark current due to application of a bias voltage does not occur in the first place. Furthermore, since no bias voltage is applied to organic thin-film solar cells, dark current is not important and has not been studied or studied.
  • the hole transport layer 42 is made of a hole transport material having a function of transporting holes. In a broad sense, a hole injection layer (not shown) and an electron blocking layer (not shown) are also formed on the hole transport layer 42. included.
  • the hole transport layer 42 can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • the hole transport material has one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives.
  • hole transport material those described above can be used, but it is preferable to use porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole transport material (and hole injection material).
  • a hole transport material JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p.
  • a so-called p-type hole transport material as described in 139 can also be used.
  • a light emitting element with higher efficiency it is preferable to use the materials described therein.
  • the hole transport layer 42 is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
  • the layer thickness of the hole transport layer 42 is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 42 may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer 43 is made of an electron transport material having a function of transporting electrons.
  • the electron transport layer 43 includes an electron injection layer (not shown) and a hole blocking layer (not shown).
  • the electron transport layer 43 can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light-emitting layer 41 in the single-layer structure electron transport layer 43 and the multi-layer structure electron transport layer 43, injection is performed from the cathode. It is only necessary to have a function of transmitting the generated electrons to the light emitting layer 41.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • Distyrylpyrazine derivatives can also be used as electron transport materials.
  • An inorganic semiconductor such as n-type Si or n-type SiC can also be used as an electron transport material.
  • the electron transport layer 43 can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. .
  • the layer thickness of the electron transport layer 43 is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 43 may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer 43 can be doped with impurities to enhance electron transport characteristics. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 43 preferably contains potassium, a potassium compound, or the like.
  • the potassium compound for example, potassium fluoride can be used. As described above, when the electron transport property of the electron transport layer 43 is increased, an element with lower power consumption can be manufactured.
  • Examples of the electron transport material include compound Nos. Described in JP-A-2016-219126. 1-No. 48 nitrogen-containing compounds, nitrogen-containing compounds represented by general formulas (1) to (8a), and nitrogen-containing compounds 1 to 166 can be used.
  • Examples of the electron transport material include sulfur-containing compounds represented by general formulas (9) to (12) described in JP-A-2016-219126, 1-1 to 1-9, and 2-1 ⁇ 2-11, 3-1 to 3-23 and 4-1 sulfur-containing compounds can be used.
  • the LUMO (Lowest Unoccupied Molecular Orbital) of the electron transport layer 43 and the LUMO of the matrix material of the light emitting layer 41 have a relationship of LUMO absolute value of the electron transport layer 43> LUMO absolute value of the matrix material. Is preferred. In this way, the dissociated electrons can move from the matrix material to the electron transport material without a barrier, and the electrons can be moved smoothly. As a result, the photoelectric conversion efficiency can be improved as a whole organic EL.
  • the blocking layer (not shown) is a layer for blocking the transport of carriers (holes, electrons) and can be provided as necessary.
  • the blocking layer includes a hole blocking layer and an electron blocking layer.
  • the blocking layer is, for example, pages 237 of JP-A-11-204258, JP-A-11-204359, and “Organic EL device and its forefront of industrialization” (issued by NTT Corporation on November 30, 1998). Those described in the above can be applied.
  • the hole blocking layer has the function of an electron transport layer in a broad sense.
  • the hole blocking layer can be made of a material that can function as an electron level barrier against holes while having a function of transporting electrons.
  • the hole blocking layer can improve the recombination probability of electrons and holes by blocking holes while transporting electrons.
  • the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 41.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer may be made of a material that can function as an electron level barrier against electrons while having a function of transporting holes.
  • the electron blocking layer can improve the recombination probability of electrons and holes by blocking electrons while transporting holes.
  • the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer as needed.
  • the thicknesses of the hole blocking layer and the electron blocking layer are preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the hole blocking layer and the electron blocking layer can be formed by the same method as described in the transport layer.
  • the sealing material (not shown) only needs to cover the transparent electrode 3, the organic functional layer 4, the counter electrode 5, and the like, and may or may not have optical transparency.
  • the sealing material may be a member that fixes a plate-like or film-like member to the transparent substrate 2 with an adhesive (not shown), or may be a sealing film.
  • the plate-shaped sealing material examples include, but are not limited to, a glass substrate and a polymer substrate. Further, the thickness of the substrate can be reduced using the material of these substrates, and a film-like sealing material can be obtained.
  • the glass substrate can be formed of, for example, soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz, or the like.
  • the polymer substrate can be formed of, for example, polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone, or the like.
  • the organic EL elements 1 and 10 can be thinned, a polymer substrate or a film-like polymer substrate obtained by thinning this can be preferably used as the sealing material.
  • the film-like polymer substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured in (1) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the sealing material may be a flat plate shape or a concave plate shape.
  • the concave sealing material can be obtained by subjecting a flat sealing material to sandblasting or chemical etching.
  • a material made of a metal material can be used as the metal material.
  • the metal material for example, any one metal selected from the group consisting of iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum, or any one selected from the aforementioned group
  • the main component here means a component with the largest content.
  • the adhesive for fixing the plate-shaped sealing material as described above to the transparent base material 2 seals the organic functional layer 4 and the like sandwiched between the sealing material and the transparent base material 2. It is used as a sealing agent.
  • Specific examples of such adhesives include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curable adhesives such as 2-cyanoacrylates. An agent can be mentioned.
  • examples of such an adhesive include epoxy-based heat and chemical curing types (two-component mixing).
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • polyisobutylene resin, polybutene resin, or the like can also be used as an adhesive.
  • the organic material which comprises the organic EL elements 1 and 10 may deteriorate by heat processing.
  • the organic functional layer 4 may be altered by heat treatment.
  • the adhesive is preferably one that can be adhesively cured between room temperature and 80 ° C. Further, a desiccant may be dispersed in the adhesive.
  • adhesive to the bonding portion between the sealing material and the transparent substrate 2 may be performed using a commercially available dispenser, or may be printed like screen printing.
  • This adhesive may be provided only at the periphery of the encapsulant, or may be filled without any gap between the encapsulant and the transparent substrate 2 as long as the material has sufficient light transmittance after curing. Good.
  • an inert gas such as nitrogen or argon, a fluorinated hydrocarbon or silicon oil is used in the space. It is preferable to inject the active liquid. Moreover, this space can also be made into a vacuum. Moreover, a hygroscopic compound can also be enclosed in this space.
  • hygroscopic compound examples include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, sulfuric acid). Magnesium, cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, , Barium perchlorate, magnesium perchlorate, etc.) can be used.
  • An anhydrous salt is preferably used for sulfates, metal halides and perchloric acids.
  • the sealing film When a sealing film is used as the sealing material, the sealing film completely covers the transparent electrode 3, the organic functional layer 4, and the counter electrode 5 in the organic EL elements 1 and 10, and the transparent electrode in the organic EL elements 1 and 10. 3 and the terminal part of the counter electrode 5 can be provided in an exposed state.
  • Such a sealing film can also be formed using an inorganic material or an organic material.
  • a material having a function of suppressing entry of a substance that causes deterioration of the organic functional layer 4 such as moisture or oxygen is used as such a material.
  • an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride is used.
  • a laminated structure may be formed using a film made of an organic material in addition to a film made of these inorganic materials.
  • the method for forming the sealing film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the sealing material as described above is provided in a state in which the terminal portions of the transparent electrode 3 and the counter electrode 5 in the organic EL elements 1 and 10 are exposed and the transparent electrode 3, the organic functional layer 4 and the counter electrode 5 are covered. Moreover, an electrode may be provided in the sealing material so that the terminal portions of the transparent electrode 3 and the counter electrode 5 of the organic EL elements 1 and 10 are electrically connected to the electrode of the sealing material.
  • the organic thin film solar cell employs a structure that uses a large amount of an absorbing material and absorbs light in a wide range within a wavelength band included in sunlight. Thereby, the organic thin-film solar cell receives sunlight and generates a large electromotive force. That is, an important factor in the organic thin film solar cell is high conversion efficiency (magnitude of electromotive force).
  • the organic EL elements 1 and 10 have the abundance of the absorption material (light emitting material) having the highest absorbance in the wavelength region of visible light or more among the plurality of materials constituting the light emitting layer 41. It is limited to 50% by volume or less. Therefore, although the electromotive force obtained is smaller than that of the organic thin film solar cell, it is important to make the ratio of the photocurrent value and the dark current value (S / N ratio) higher than the obtained electromotive force. Different from organic thin film solar cells. In addition, the organic EL elements 1 and 10 reduce the abundance of the absorbing material (light emitting material), thereby reducing the exciton interaction, and reducing the exciton deactivation and quenching. This is different from organic thin-film solar cells in that heat generation can be suppressed.
  • the organic EL elements 1 and 10 take advantage of the characteristic that light is received in a specific narrow wavelength range to obtain electricity and the characteristic that the dark current value is low, which will be described later (see FIG. 3). Or the optical sensor 200 (see FIG. 4).
  • the organic EL element 1 can increase the S / N ratio between the photocurrent value and the dark current value.
  • the organic EL element 10 has the carrier transport layer adjacent to the light emitting layer, the dark current value becomes low and the S / N ratio can be made higher. Such an effect cannot be obtained with an organic thin film solar cell.
  • a thin film made of an anode electrode material is formed on the transparent substrate 2 by a technique such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 to 200 nm, to produce an anode.
  • a technique such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 to 200 nm, to produce an anode.
  • an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer as the organic functional layer 4 is formed thereon.
  • the method of thinning the organic compound thin film includes a vacuum deposition method, a wet process (spin coating method, casting method, ink jet method, printing method, LB method (Langmuir-Blodget method), spray method, Printing method, slot type coater method), vacuum evaporation method, spin coating method, ink jet method, printing method, slot type because it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
  • the coater method is particularly preferred.
  • the deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a vacuum degree of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a deposition rate of 0.01. It is desirable to select appropriately within the range of ⁇ 50 nm / second, substrate temperature ⁇ 50 to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • a thin film made of an electrode material for the cathode is formed on the organic functional layer 4 by a technique such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • this organic EL element In the production of this organic EL element, it is preferable to consistently produce from the hole injection layer to the cathode by one evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • the cathode it is also possible to reverse the manufacturing order to form the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order from the transparent substrate 2.
  • a DC voltage is applied to the multicolor organic EL element thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • Heat treatment such as heat annealing for the purpose of stabilizing or improving performance may be performed.
  • the heating temperature of the heat treatment is preferably higher than the viewpoint of increasing the efficiency of the manufacturing process, and is preferably 70 ° C. or higher, more preferably 80 ° C. or lower. Note that the heating temperature of the heat treatment is less than the glass transition point Tg of all organic compounds forming the organic functional layer such as the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer. Is more preferable.
  • FIG. 3 is a perspective view illustrating the configuration of the photosensor according to the present embodiment.
  • the optical sensor 100 according to the present embodiment uses the organic EL element 1 or the organic EL element 10 described above (may be described as “organic EL elements 1, 10” in the following description). It was.
  • the organic EL elements 1 and 10 are attached to a predetermined attachment position of the substrate 101.
  • the optical sensor 100 uses the photoelectric conversion function of the organic EL elements 1 and 10 to cause the organic EL elements 1 and 10 to function as light receiving elements.
  • the organic EL elements 1 and 10 of the optical sensor 100 generate electricity by absorbing light in a wavelength region that is greater than or equal to visible light by the absorbing material in the light emitting layer 41, and detect the intensity of the light.
  • the organic EL elements 1 and 10 are configured so that exciton dissociation is rapidly performed when light is received because of the energy levels of a plurality of materials used in the light emitting layer 41. Exchange efficiency increases and the photocurrent value improves.
  • the optical sensor 100 since the optical sensor 100 has an absorptive material having the highest absorbance in the wavelength region of visible light or higher, the volume of absorption material is 50% by volume or less, photoelectric conversion can be efficiently performed, and the photocurrent is increased. Yes. Therefore, the photosensor 100 has a high ratio (S / N ratio) between the photocurrent value and the dark current value.
  • the organic EL elements 1 and 10 can emit light by applying a voltage.
  • the organic EL elements 1 and 10 of the optical sensor 100 have the absorptive material having the highest absorbance in the wavelength region of the visible light or more, and the exciton interaction is reduced. Since excitons are less deactivated and extinguished, luminous efficiency is increased and heat generation is suppressed.
  • the design can be improved.
  • the substrate 101 of the optical sensor 100 As the substrate 101 of the optical sensor 100, a known substrate that is generally used as a substrate of the optical sensor can be arbitrarily used. Attachment of the organic EL elements 1 and 10 to the substrate 101 can be performed in the same manner as that generally performed as an optical sensor.
  • FIG. 4 is a perspective view illustrating the configuration of an optical sensor in which a light emitter and a light receiver (photosensor) according to this embodiment are integrated.
  • the optical sensor 200 according to the present embodiment includes a light emitter 201 and the organic EL elements 1 and 10 described above as light receivers on the same substrate 101.
  • the substrate 101 of the optical sensor 200 a known substrate can be arbitrarily used as in the optical sensor 100.
  • This optical sensor 200 uses the photoelectric conversion function of the organic EL elements 1 and 10 to cause the organic EL elements 1 and 10 to function as light receiving elements in the same manner as the optical sensor 100 described above. That is, the organic EL elements 1 and 10 of the optical sensor 200 generate electricity by absorbing light in a wavelength region that is greater than or equal to visible light by the absorbing material in the light emitting layer 41, and detect the intensity of the light. At this time, the optical sensor 200 has a high ratio (S / N ratio) between the photocurrent value and the dark current value for the same reason as described in the optical sensor 100. Therefore, the optical sensor 200 can accurately detect the light emitted from the light emitting body 201 toward the living body and reflected without being absorbed by the living body by the organic EL elements 1 and 10.
  • the light emitter 201 is preferably an organic EL element. Moreover, in this embodiment, it is preferable that the organic EL element used as the light-emitting body 201 emits green light. Green light emission refers to light emission having a wavelength region of 495 to 570 nm. In this way, for example, the green light emitted from the light emitter 201 toward the living body is reflected by the hemoglobin and can be detected by the organic EL elements 1 and 10.
  • the pulse can be measured.
  • the organic EL can be made to emit light by applying a voltage.
  • the abundance of the absorbing material having the highest absorbance in the wavelength region above the visible light is 50% by volume or less, so that the exciton interaction is reduced. Therefore, the exciton is less deactivated and quenched, so that the light emission efficiency is increased and heat generation can be suppressed.
  • the light emitter 201 of the optical sensor 200 is an organic EL element
  • the light emitter 201 and the organic EL elements 1 and 10 can have the same configuration or different configurations. This can be set arbitrarily.
  • an organic EL element can be manufactured by simultaneously forming a film on the same substrate, manufacturing is easy and cost reduction can be achieved.
  • the light-emitting body 201 organic EL element which can light-emit in the wavelength range match
  • the optical sensor 200 with higher performance can be obtained. Can be implemented.
  • the optical sensor 200 integrates the light emitter 201 and the light receiver (organic EL elements 1 and 10), it is possible to make the device compact in total.
  • the light sensor 200 has the light emitting body 201 and the organic EL elements 1 and 10 formed on the same substrate. However, the light emitting body 201 and the organic EL elements 1 and 10 are formed on different substrates ( (Not shown).
  • FIG. 5 is a perspective view illustrating the configuration of the biosensor according to the present embodiment.
  • the biosensor 300 according to the present embodiment uses at least one of the optical sensor 100 and the optical sensor 200 described above (FIG. 5 shows a state in which the optical sensor 200 is used. Shown).
  • a known optical sensor that receives light by irradiating light and reflecting or transmitting light to the object can be adopted. Examples of such an optical sensor include a pulse wave sensor.
  • the biological sensor 300 uses at least one of the optical sensor 100 and the optical sensor 200, that is, uses the organic EL elements 1 and 10, so that as described above, the biological sensor 300 is more than visible light.
  • the light in the wavelength region is absorbed by the absorbing material in the light emitting layer 41 to generate electricity, and the intensity of the light can be detected.
  • the biosensor 300 is configured so that exciton dissociation is rapidly performed when light is received because of the energy levels of a plurality of materials used in the light emitting layer 41 of the organic EL elements 1 and 10. The exchange efficiency is increased and the photocurrent value is improved.
  • the biosensor 300 since the organic EL elements 1 and 10 used have an absorptive material having the highest absorbance in the above-described wavelength region of 50% by volume or less, photoelectric conversion is efficiently performed. It can be performed well and the photocurrent is increased. Therefore, the biosensor 300 has a high ratio (S / N ratio) between the photocurrent value and the dark current value.
  • this biosensor 300 uses the organic EL elements 1 and 10, the organic EL elements 1 and 10 can emit light by applying a voltage.
  • the abundance of the absorbing material having the highest absorbance in the wavelength region above the visible light is 50% by volume or less, so that the exciton interaction is reduced. . Therefore, the exciton is not deactivated and quenched, so that the light emission efficiency is increased and heat generation can be suppressed.
  • Hybrid hard coat material OPSTAR Z7535 was applied so that the layer thickness after coating and drying was 4 ⁇ m, then dried conditions: dried at 80 ° C. for 3 minutes, cured conditions: 1.0 J / cm 2 , in air atmosphere Then, curing was performed using a high-pressure mercury lamp to form a bleed-out prevention layer.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation was applied to the opposite surface of the PET film so that the layer thickness after application and drying was 4 ⁇ m, and then drying conditions; 80 After drying at 3 ° C. for 3 minutes, curing was carried out using a high-pressure mercury lamp in an air atmosphere at 1.0 J / cm 2 to form a flat layer.
  • the maximum cross-sectional height Rt (p) of the obtained flat layer was 16 nm as the surface roughness specified by JIS B 0601.
  • the surface roughness was measured using an atomic force microscope (AFM) SPI3800N DFM manufactured by SII.
  • the measurement range for one time was 10 ⁇ m ⁇ 10 ⁇ m, the measurement location was changed, and the measurement was performed three times.
  • the average of the Rt values obtained in each measurement was taken as the measurement value.
  • the total thickness of the PET film on which the bleed-out preventing layer and the flat layer were formed as described above was 133 ⁇ m.
  • a first gas barrier layer was applied to the surface of the flat layer of the PET film by using a coating solution of an inorganic precursor compound under reduced pressure to form a dry layer thickness of 150 nm.
  • the coating solution containing the inorganic precursor compound contains a non-catalytic perhydropolysilazane 20% by mass dibutyl ether solution (Aquamica NN120-20 manufactured by AZ Electronic Materials Co., Ltd.) and 5% by mass of the solid content of the amine catalyst.
  • Perhydropolysilazane 20% by weight dibutyl ether solution (Aquamica NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) was mixed and used to adjust the amine catalyst to 1% by weight of solid content, and then further with dibutyl ether. A 5% by weight dibutyl ether solution was prepared by dilution. The coating solution was applied to the surface of the flat layer of the PET film, and then dried under conditions of a drying temperature of 80 ° C., a drying time of 300 seconds, and a dew point of 5 ° C. in a dry atmosphere.
  • the PET film was gradually cooled to 25 ° C., and the coating surface was subjected to modification treatment by irradiation with vacuum ultraviolet rays under the following modification treatment conditions using the following vacuum ultraviolet irradiation device.
  • a Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm was used as a light source of the vacuum ultraviolet irradiation apparatus.
  • the PET film on which the gas barrier layer was formed was dried in the same manner as described above, and further subjected to the second modification treatment under the same conditions to form a gas barrier layer having a dry layer thickness of 150 nm.
  • a second gas barrier layer was formed on the first gas barrier layer to produce a PET film having the gas barrier layer. In this way, a transparent substrate was produced.
  • the transparent substrate produced above was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • a resistance heating boat made of molybdenum or tungsten was filled with a constituent material of each layer constituting the organic EL element by an amount optimal for layer formation.
  • These base material holders and resistance heating boats were attached to the first vacuum chamber of the vacuum deposition apparatus.
  • silver was put into a resistance heating boat made of molybdenum or tungsten and attached to the second vacuum chamber.
  • the first vacuum chamber and the second vacuum chamber were depressurized to 4.0 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a resistance heating boat containing the compound 14 which is a nitrogen-containing compound.
  • the film was deposited on a transparent substrate at a rate of 1 to 0.2 nm / second to form an underlayer having a layer thickness of 25 nm.
  • a conductive layer (anode) was formed by a vacuum deposition method using resistance heating. Specifically, the transparent base material on which the underlayer is formed is transferred to the second vacuum tank while being kept in a vacuum state, heated by energizing a resistance heating boat containing silver, and silver is deposited at a deposition rate of 0.1 to It vapor-deposited on the base layer at 0.2 nm / second, and formed the electroconductive layer with a layer thickness of 10 nm. Moreover, when vapor-depositing silver, the mask was used and the electroconductive layer was formed in pattern shape. In this way, a transparent electrode composed of the base layer and the conductive layer was formed.
  • the transparent substrate on which the transparent electrode is formed is transferred to the first vacuum chamber while being kept in a vacuum state, and then heated by energizing a resistance heating boat containing F4TCNQ and ⁇ -NPD.
  • a hole injection layer having a thickness of 40 nm is co-deposited on the transparent electrode at a deposition rate of 0.1 nm / second so that the content of F4TCNQ is 4% by volume and the content of ⁇ -NPD is 96% by volume. Formed.
  • the resistance heating boat containing rubrene (absorbing material (light emitting material)) and pentacene (matrix material) is energized and heated, and the content of rubrene in the formed layer is 50% by volume, and the content of pentacene.
  • rubrene absorbing material (light emitting material)
  • pentacene matrix material
  • the resistance heating boat containing lithium fluoride (LiF) is energized and heated, and lithium fluoride is deposited on the light emitting layer at a deposition rate of 0.05 nm / second to form an electron injection layer having a thickness of 1 nm. did.
  • the surface of the aluminum foil side of the 50 ⁇ m thick polyethylene terephthalate film on which the aluminum foil having a thickness of 100 ⁇ m was laminated was colored with carbon black to prepare a sealing material.
  • the solution of the prepared adhesive composition is applied to the aluminum foil side of the sealing member so that the thickness of the adhesive layer formed after drying is 20 ⁇ m, and is dried at 120 ° C. for 2 minutes for adhesion. A layer was formed.
  • a release treatment surface of a polyethylene terephthalate film having a release treatment of 38 ⁇ m in thickness as a release sheet was attached to the formed adhesive layer surface to produce a sealing member.
  • the sealing member produced by the method described above was prepared in a size of 40 mm ⁇ 50 mm, the release sheet was removed under a nitrogen atmosphere, and dried on a hot plate heated to 120 ° C. for 10 minutes. Then, after confirming that it fell to room temperature, it laminated
  • the transparent substrate on which the transparent electrode is formed is transferred to the first vacuum chamber while being kept in a vacuum state, and then heated by energizing a resistance heating boat containing F4TCNQ and ⁇ -NPD.
  • a hole injection layer having a layer thickness of 15 nm is co-evaporated on the transparent electrode at a deposition rate of 0.1 nm / second so that the content of F4TCNQ is 4% by volume and the content of ⁇ -NPD is 96% by volume. Formed.
  • the resistance heating boat containing ⁇ -NPD is energized and heated, and ⁇ -NPD is deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 45 nm. did.
  • the resistance heating boat containing rubrene (absorbing material (light emitting material)) and pentacene (matrix material) is energized and heated, and the content of rubrene in the formed layer is 50% by volume, and the content of pentacene.
  • rubrene absorbing material (light emitting material)
  • pentacene matrix material
  • Measurement device R6243 manufactured by ADC Corporation Measurement conditions: Applied voltage to each organic EL element: -3V -Irradiation light source: Green LED manufactured by Panasonic (model number LNJ647W8CRA) [No. Used for organic EL elements according to 1-5, 7-9, 11] Irradiation light source: Blue LED manufactured by Panasonic (model number LNJ947W8CRA) [No.
  • Irradiation amount Green LED 1.3mW, Blue LED 1.6mW Evaluation method: At the time of photocurrent evaluation, the LED and the produced organic EL element were placed facing each other at an interval of 1 mm in the dark room, and the current value was measured by irradiating light from the LED toward the organic EL element. . At the time of dark current evaluation, the current value was measured without driving the LED in the dark room.
  • Measurement equipment TH9100MV manufactured by Nippon Avionics Co., Ltd. Measurement conditions: Applied voltage to each organic EL element: Applied at +5 V, and evaluated the temperature (° C.) 30 minutes after the start of application. The emissivity of TH9100MV at the time of measurement was set to 1.00.
  • the evaluation results are shown in Table 1 together with the configurations of the light emitting layer and the carrier layer.
  • rubrene absorbs light in the wavelength region of 500 to 650 nm, and the highest absorbance is in this range.
  • DCM absorbs light in the wavelength region of 400 to 550 nm, and the wavelength region showing the highest absorbance is in this range.
  • Coumarin 6 absorbs light in the wavelength region of 380 to 480 nm, and the wavelength region showing the highest absorbance is in this range.
  • Pentacene absorbs light in the wavelength region of 300 to 400 nm, and the wavelength region exhibiting the highest absorbance is in this range.
  • Ir (piq) 3 absorbs light in the wavelength region of 250 to 400 nm, and the wavelength region exhibiting the highest absorbance is in this range.
  • Ir (ppy) 3 absorbs light in the wavelength region of 320 to 450 nm, and the wavelength region exhibiting the highest absorbance is in this range.
  • Alq 3 absorbs light in the wavelength region of 300 to 420 nm, and the wavelength region exhibiting the highest absorbance is in this range.
  • the ratio between the photocurrent value and the dark current value was low. Specifically, no. In the organic EL elements according to 8 and 11, since the abundance of the absorbing material (light emitting material) in the light emitting layer exceeded 50% by volume, the ratio between the photocurrent value and the dark current value was low. In addition, No. The organic EL device according to No. 11 also had a high temperature rise during light emission. No. In the organic EL elements according to 9 and 10, the Eg of the absorbing material having the highest absorbance in the wavelength region of visible light or higher was not the largest among the light emitting layers (the Eg of the matrix material was more than the Eg of the light emitting material). The ratio of the photocurrent value to the dark current value was low.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

発光および光電変換機能を備え、発光の際に発生する熱を低減しつつ、光電変換して得られる光電流値と暗電流値の比率が高い有機EL素子、光センサ、生体センサを提供する。本発明に係る有機EL素子(1)は、透明基材(2)、透明電極(3)、有機機能層(4)、対向電極(5)を有して成り、前記有機機能層(4)が、光吸収機能を持つ発光層(41)を少なくとも一つ有し、前記発光層(41)は複数の材料で構成されており、前記複数の材料のうち、可視光以上の波長領域で最も吸光度の高い吸収材料のエネルギーギャップが前記発光層(41)の中で最も大きく、前記発光層(41)における前記吸収材料の存在量を50体積%以下としている。

Description

有機エレクトロルミネッセンス素子、光センサおよび生体センサ
 本発明は、有機エレクトロルミネッセンス素子と、これを用いた光センサおよび生体センサに関する。
 有機物質に電圧を印加して発光する現象を有機エレクトロルミネッセンス(以下、「有機EL」ともいう)といい、有機ELを発生させる素子を有機EL素子という。有機EL素子は、有機発光物質が含有された単層または多層の発光層(「有機EL層」、「有機薄膜層」、「有機発光物質含有層」、「有機発光層」などとも呼称されている)を陽極と陰極の間に有する構造となっている。有機EL素子は、電圧が印加されると、発光層に陰極から電子が注入されると共に、陽極から正孔が注入され、これらが発光層で再結合して励起子が生じる。有機EL素子はこのようにして生じた励起子からの光の放出(蛍光・リン光)を利用して発光する。
 なお、前記した有機EL素子の前記発光層は外部から光を受けると、発光の逆反応で光エネルギーを電力に変換(光電変換)することができる。
 有機薄膜太陽電池も薄膜層中の光吸収層(光電変換層)で前記した光電変換を行う機能(光電変換機能)を発揮し、光エネルギーを電力に変換する。
 このような有機薄膜太陽電池に関して、例えば、特許文献1が開示されている。この特許文献1には、励起子生成層(EHL)と励起子解離層(ESL)のヘテロ接合型構成となる有機薄膜太陽電池が記載されている。この特許文献1には、EHLは二つ以上の材料A、Bで構成されており、エネルギー準位がS1(A)>S1(B)>T1(B)>T1(A)となることや、材料Bは項間交差(intersystem crossing;ISC)を少なくとも20%以上起こすことなどが記載されている。なお、S1(A)は材料Aの励起子の最も低い一重項状態、S1(B)は材料Bの励起子の最も低い一重項状態、T1(B)は材料Bの励起子の最も低い三重項状態、T1(A)は材料Aの励起子の最も低い三重項状態を表している。
 つまり、特許文献1に記載されている有機薄膜太陽電池は、光を受光した際のEHL内部でのエネルギー遷移に関して、S1(A)→S1(B)→T1(B)→T1(A)と励起子が移動するようなエネルギー準位や構造としている。
 また、特許文献1には、材料Aが主受光材料であり、材料Aの濃度は30%以上であると記載されている。さらに、特許文献1には、材料Bはフラーレンまたは金属錯体であると記載されている。
米国特許出願公開第2009/0235971号明細書
 前記したように、有機薄膜太陽電池は光電変換機能を発揮するものであるから、特許文献1に記載された光電変換機能に関する技術を適用して有機薄膜太陽電池の光電変換機能を向上させることが可能である。
 しかしながら、特許文献1に記載された光電変換機能に関する技術をそのまま有機EL素子に適用して発光させた場合、エネルギー準位の関係で発光が殆ど行われず、熱失活が起こる。熱失活によって発生する熱は、有機EL素子の有機材料にダメージを与える可能性がある。
 また、特許文献1に記載された光電変換機能に関する技術をそのまま適用した有機EL素子を生体センサなどの受光素子として用いた場合、当該受光素子で受光できる光が太陽光のように波長帯の広い光であるとは限らず、また、光の強さも十分でないことが考えられる。そのため、光を受光しているときの電流値(光電流値)が低くなったり、起電できなかったりする可能性がある。さらに、発光層(光電変換層)中の材料の選定や組成が適切でないと、光を受光していないときの電流値(暗電流値)が高くなる可能性がある。いずれの場合も光電変換して得られる光電流値と暗電流値の比率が低下するため、そのような有機EL素子を生体センサなどの受光素子として用いると性能が低くなってしまう。なお、光電流値と暗電流値の比率は、一般的に、信号対雑音比(S/N比、SNR)などと呼ばれているものと同意義である。
 本発明は前記状況に鑑みてなされたものであり、発光および光電変換機能を備え、発光の際に発生する熱を低減しつつ、光電変換して得られる光電流値と暗電流値の比率が高い有機エレクトロルミネッセンス素子と、これを用いた光センサおよび生体センサとを提供することを課題とする。
 本発明に係る前記課題は以下の手段により解決される。
(1)透明基材、透明電極、有機機能層、対向電極を有して成り、前記有機機能層が、光吸収機能を持つ発光層を少なくとも一つ有し、前記発光層は複数の材料で構成されており、前記複数の材料のうち、可視光以上の波長領域で最も吸光度の高い吸収材料のエネルギーギャップが前記発光層の中で最も大きく、前記発光層における前記吸収材料の存在量が50体積%以下である有機エレクトロルミネッセンス素子。
(2)前記吸収材料が蛍光による発光を行う前記(1)に記載の有機エレクトロルミネッセンス素子。
(3)前記複数の材料のうちの少なくとも一つの材料がIr錯体である前記(1)または前記(2)に記載の有機エレクトロルミネッセンス素子。
(4)前記発光層における前記吸収材料の存在量が30体積%未満である前記(1)から前記(3)のいずれか1項に記載の有機エレクトロルミネッセンス素子。
(5)波長選択性を有する前記(1)から前記(4)のいずれか1項に記載の有機エレクトロルミネッセンス素子。
(6)前記透明基材がフレキシブル性を有する前記(1)から前記(5)のいずれか1項に記載の有機エレクトロルミネッセンス素子。
(7)前記透明電極にAgを用いている前記(1)から前記(6)のいずれか1項に記載の有機エレクトロルミネッセンス素子。
(8)前記有機機能層が、少なくとも1つ以上のキャリア輸送層を前記発光層と隣接させて有する前記(1)から前記(7)のいずれか1項に記載の有機エレクトロルミネッセンス素子。
(9)前記(1)から前記(8)のいずれか1項に記載の有機エレクトロルミネッセンス素子を用いた光センサ。
(10)発光体と、前記(1)に記載の有機エレクトロルミネッセンス素子と、を同一基板上に有する光センサ。
(11)前記発光体が有機エレクトロルミネッセンス素子である前記(10)に記載の光センサ。
(12)前記発光体である前記有機エレクトロルミネッセンス素子が緑色発光をする前記(11)に記載の光センサ。
(13)前記(9)から前記(12)のいずれか1項に記載の光センサを用いた生体センサ。
 本発明によれば、発光および光電変換機能を備え、発光の際に発生する熱を低減しつつ、光電変換して得られる光電流値と暗電流値の比率が高い有機エレクトロルミネッセンス素子と、これを用いた光センサおよび生体センサとを提供することができる。
本実施形態に係る有機EL素子の全体構成を説明する概略図である。 本実施形態に係る有機EL素子の好ましい態様の全体構成を説明する概略図である。 本実施形態に係る光センサの構成を説明する斜視図である。 本実施形態に係る発光体と受光体を一体化した光センサの構成を説明する斜視図である。 本実施形態に係る生体センサの構成を説明する斜視図である。
(有機EL素子)
 以下、適宜図面を参照して本発明に係る有機EL素子の一実施形態について詳細に説明する。
 図1は、本実施形態に係る有機EL素子の全体構成を説明する概略図である。
 図1に示すように、本実施形態に係る有機EL素子1は、透明基材2、透明電極3、有機機能層4、対向電極5を有して成り、前記した有機機能層4は、少なくとも一つの発光層41を有している。
 なお、図示はしないが、透明基材2上の透明電極3、有機機能層4および対向電極5は、封止材で封止されている。
 以下、有機EL素子1の各構成について説明する。
(透明基材)
 透明基材2は、透明電極3、有機機能層4、対向電極5を形成する土台となるものである。透明基材2は、例えば、ガラス、石英、透明樹脂フィルムなどの光透過性を有する基板材料で形成される。
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラスなどが挙げられる。これらのガラス材料の表面には、透明電極3との密着性、耐久性および平滑性の観点から、必要に応じて研磨等の物理的処理が施されていてもよいし、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜、つまり、無機物と有機物の混合膜が形成されていてもよい。
 透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレートなどのセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、ポリアリレート類、アートン(商品名JSR社製)やアペル(商品名三井化学社製)などのシクロオレフィン系樹脂などのフィルムが挙げられる。
 透明樹脂フィルムの表面には、ガラスについて述べたのと同様の観点から、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜およびハイブリッド被膜を形成した樹脂フィルム(ガスバリア性フィルムということもある。)は、JIS-K-7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下であることが好ましい。また、このようなガスバリア性フィルムは、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24時間・atm)以下、水蒸気透過度が1×10-5g/(m・24時間)以下であることが好ましい。
 前記した被膜やハイブリッド被膜を形成する材料としては、水分や酸素などの有機EL素子1の劣化をもたらすものの侵入を抑制する機能を有するものであればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素、ポリシラザン、ポリ塩化ビニリデン、ポリエチレンなどを挙げることができる。さらに、前記した被膜やハイブリッド被膜の脆弱性を改良するために、これら無機材料からなる層(無機層)と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 透明基材2は、特に、透明樹脂フィルムの場合には、必要に応じて任意にブリードアウト防止層やハードコート層などを設けることができる。
 ガスバリア性フィルムの形成方法、つまり、透明基材2への前記した被膜やハイブリッド被膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。
 透明基材2は、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基材2の光の平均透過率が低いと、有機EL素子1全体の光の平均透過率が低下する。また、透明基材2の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。
 透明基材2の平均透過率は、透明基材2の正面に対して、5°傾けた角度から測定光を入射させて測定した値である。一方、平均吸収率は、平均透過率と同様の方法で透明基材2の平均反射率を測定し、[平均吸収率=100-(平均透過率+平均反射率)]として算出される値である。平均透過率および平均反射率は分光光度計で測定できる。
 透明基材2の屈折率は好ましくは1.40~1.95であり、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基材2の屈折率は、通常、透明基材2の材質によって定まる。透明基材2の屈折率は、波長510nmの光の屈折率であり、エリプソメーターで測定できる。
 透明基材2の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基材2の厚さがこの範囲であると、透明基材2の強度が高いので透明基材2上に素子を形成する際の破損が抑制されると共に、透明基材2が厚すぎないので透明基材2の光透過性が低下するおそれもない。
 また、透明基材2は、フレキシブル性を有していることが好ましい。フレキシブル性を有する透明基材2は、例えば、前記した樹脂フィルムを用いてフレキシブル性を有する厚さで形成することができる。
 また、フレキシブル性を有する透明基材2として、例えば、厚さが10~200μmの薄膜ガラスを用いることができる。このような薄膜ガラスは、例えば、無アルカリガラスで形成することができる。このような薄膜ガラスは、厚さが50~120μmであると、破損し難く、ロール搬送も容易であるので好ましい。このような薄膜ガラスとしては、例えば、特開2010-132532号公報に記載されているガラスフィルムを好適に用いることができる。
(透明電極)
 以下の説明では、透明電極3を陽極とし、対向電極5を陰極として説明するが、これに限定されない。つまり、後記する電極の構成材料を相互に入れ替えて形成することで透明電極3を陰極とし、対向電極5を陽極とすることもできる。なお、電極の構成材料を相互に入れ替えて透明電極3を陰極とし、対向電極5を陽極とした場合、これに合わせて後述する有機機能層4の構成順序(積層順序)も入れ替わる。
 透明電極3(陽極)は、発光層41に正孔を供給(注入)する電極膜である。陽極は、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、有機導電性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAgやAuなどの金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnOなどの導電性透明材料が挙げられる。陽極はこれらの電極物質を蒸着やスパッタリング等の方法によって薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成することができる。また、パターン精度をあまり必要としない場合は、前記した電極物質の蒸着やスパッタリング時に所望の形状のパターンマスクを用いることで所望の形状のパターンに形成することができる。さらに、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることもできる。陽極のシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、例えば、10~1000nm、好ましくは10~200nmの範囲とすることができる。
(下地層)
 陽極として厚さが5~30nmの薄膜Agを用いる場合は、透明基材2と陽極との間に、陽極の下地となる下地層(図示せず)が形成されていることが好ましい。透明基材2と陽極(薄膜Ag)との間に下地層が形成されていると、導電性が向上する。
 下地層は、Agと相互作用する物質を含有した層であればよく、無機材料を含有していてもよいし、有機材料を含有していてもよい。
 下地層が無機材料を含有する場合、銀と相互作用する物質として、銀よりも昇華熱エンタルピーが大きい高表面エネルギー材料を含むことが好ましい。このような高表面エネルギー材料としては、例えば、Al、Ti、Au、Pt、Pd、In、Mo、Cuなどが挙げられる。
 下地層が有機材料を含有する場合、ルイス塩基を有する化合物、すなわち非共有電子対を持っている原子を含む化合物を用いて構成されていることが好ましい。このようなルイス塩基を有する化合物としては、窒素および硫黄から選ばれる元素を有する化合物、すなわち、窒素含有化合物または硫黄含有化合物が例示される。
 一例として、下地層は、窒素含有化合物および硫黄含有化合物のうちの少なくとも一方を用いて構成された層であり、それぞれ複数種類の化合物を含有していてもよい。また、下地層を構成する化合物は、窒素と硫黄の両方を含有した化合物であってもよい。
 下地層を構成する窒素含有化合物は、窒素原子(N)を含んだ化合物であればよいが、特に非共有電子対を有する窒素原子を含む有機化合物であることが好ましい。また、下地層を構成する硫黄含有化合物は、硫黄原子(S)を含んだ化合物であればよいが、特に非共有電子対を有する硫黄原子を含む有機化合物であることが好ましい。
 なお、下地層は、導電性を有する材料で構成されている場合であっても、主たる電極となることはない。このため下地層は、電極として必要な層厚を備えている必要はない。下地層は、下地層が形成された陽極が用いられる有機EL素子1中において、陽極の配置状態に適した層厚を有していればよい。
 また、下地層は、上述した無機材料を含有する層と有機材料層を含有する層とを積層した構成であってもよい。この場合、下地層は、陽極側から順に、無機材料を含有する層と有機材料を含有する層とを配置した構成とすることが好ましい。
(対向電極5)
 対向電極5(陰極)は、発光層41に電子を供給(注入)する電極膜である。陰極は、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、有機導電性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性や酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好適である。陰極はこれらの電極物質を蒸着やスパッタリングなどの方法によって薄膜を形成させることにより、作製することができる。また、陰極のシート抵抗は数百Ω/□以下が好ましく、膜厚は、例えば、10nm~5μm、好ましくは50nm~200nmの範囲とすることができる。
 なお、陰極も陽極と同様に透明とすることができる。このようにすると、発光輝度やデザイン性が向上する。
(有機機能層4)
 有機機能層4は、陽極と陰極の間に形成されており、発光層41を少なくとも一つ有している。有機機能層4は、発光層41そのものであってもよいし、発光層41にキャリア(正孔及び電子)を輸送、注入、阻止する機能などを有する各種の機能層で構成されていてもよい。発光層41は単層であってもよいし、発光色が異なるまたは同一の多層であってもよい。
 有機機能層4の構成の一例を下記〔1〕~〔8〕に示す。なお、〔1〕~〔8〕において、通常は、先に記載された層が陽極側に設けられ、以下、記載されている順に陰極側に設けられる。
〔1〕発光層
〔2〕発光層/電子輸送層
〔3〕正孔輸送層/発光層/電子輸送層
〔4〕正孔輸送層/発光層/正孔阻止層/電子輸送層
〔5〕正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(陰極バッファー層)
〔6〕正孔注入層(陽極バッファー層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層
〔7〕正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層
〔8〕正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層
(発光層)
 発光層41は、陽極から直接、または陽極から正孔輸送層などを介して注入される正孔と、陰極から直接、または陰極から電子輸送層などを介して注入される電子とが再結合することによって発光する機能(発光機能)を有する。また、発光層41は、その逆反応として、特定の波長範囲の光を受光することによって正孔と電子とを解離して電子を得、起電流を生じる光電変換機能を有している。つまり、この発光層41は、後述するように、優れた光電変換機能を有する発光層(=吸収層)である。
 そして、本実施形態では、発光層41を複数の材料で構成すると共に、当該複数の材料のうち、可視光以上の波長領域で最も吸光度の高い吸収材料のエネルギーギャップ(Eg)を発光層41の中で最も大きいこととしている。そのため、発光層41に用いられている複数の材料のエネルギー準位の関係で、光を受光した際の励起子解離が速やかに行われる。そのため、光電交換効率が増大し、光電流値が向上する。従って、この発光層41を有する有機EL素子1は、光電流値と暗電流値の比率(S/N比)を高くできる。これに対し、可視光以上の波長領域で最も吸光度の高い吸収材料のEgが発光層41の中で最も大きくない場合、光を受光した際の励起子解離が速やかに行われないので、光電流値が向上しない。なお、可視光以上の波長領域とは、波長領域がおおよそ360nm以上の領域をいい、波長領域が750nm以上の赤外線領域を含む。なお、本実施形態における前記波長領域は、400nmを超えていることが好ましく、420nmを超えていることがより好ましく、450nmを超えていることがさらに好ましい。
 さらに、本実施形態では、発光層41における前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下としている。ここで、発光層41を構成する複数の材料としては、有機ELを生じさせる発光材料と、それ以外のマトリクス材料が挙げられる。前記した可視光以上の波長領域で最も吸光度の高い吸収材料は、発光材料である。つまり、本実施形態では、発光層41における発光材料の存在量を50体積%以下としていると言うこともできる。このようにすることによって、光電変換を効率良く行うことができ、光を受光しているときの電流(光電流)を高めることができる。また、吸収材料(発光材料)の存在量を少なくすることで、励起子相互作用が小さくなり、励起子が失活して消光することが少なくなるので発光効率が上がり、発熱を抑えられる。従って、有機機能層4の構成材料および透明基材2に熱ダメージを与え難い。これらの効果をより高める観点から、発光層41における前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量は30体積%以下とするのが好ましく、20体積%以下とするのがより好ましい。これに対し、発光層41における前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量が50体積%を超えると、かえって光電変換の効率が悪くなり、光電流が低くなる。
 可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下とすることによって前記した効果が得られる理由は定かではないが、以下のようなものであると推察している。
 すなわち、一般的な有機薄膜太陽電池は、光電変換量を多くする観点から、吸収材料(発光材料)の存在量を多くし、マトリクス材料の存在量を少なくしている。有機薄膜太陽電池による発電は、光吸収によって発生した励起子が隣接する材料との界面に移動し、当該界面で励起子解離が行われることによって成されると考えられている。有機薄膜太陽電池で一般的に用いられている材料はキャリア移動度が高いため、吸収材料の存在量を多くしても機能すると考えられる。
 しかしながら、本実施形態に係る有機EL素子1で用いる吸収材料は光電変換機能を有してはいるが、基本的には有機ELの発光に適した発光材料である。また、発光層41における存在量も50体積%以下と少なくしている。そのため、本実施形態では、発光層41(吸収層)内の励起子解離が有機薄膜太陽電池の場合と異なった態様で行われていると考えられる。
 例えば、有機ELの発光に適した発光材料のキャリア移動度は非常に低く、また、発光効率が高いため、光吸収により発生した励起子が解離する前に再結合し、消滅(発光)してしまうと考えられる。この点、本実施形態では、吸収材料とマトリックス材料の関係を特定し、吸収材料(発光材料)と比較してEgの小さいマトリックス材料を用いるので、エネルギー準位の関係で、発光層41(吸収層)内で励起子解離をスムーズに行うことが可能になったと考えられる。また、吸収材料の存在量を少なくしていることも励起子解離をスムーズに行って再結合を防ぎ、光電変換効率の増大に寄与していると考えられる。
 前記した吸光度は、吸光度を測定する材料の希薄溶媒、または測定する材料を透明基板上に蒸着法等で成膜した薄膜を用意し、分光光度計を用いて、可視光領域(可視光以上の波長領域)の反射率と透過率を測定し、吸収率(吸光度)を下記式で算出することによって得ることができる。分光光度計は市販されているものであればどのようなものも用いることができるが、例えば、日立ハイテク社製U-3900を好適に用いることができる。
  吸収率=100[%]-(反射率+透過率)
 発光層41における前記した吸収材料の存在量(体積%)は、TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry)とHPLC(High Performance Liquid Chromatography)を用いて分析することで同定できる。
 前記した吸収材料は、蛍光による発光を行うものであることが好ましい。すなわち、吸収材料は、蛍光発光性化合物であることが好ましい。蛍光発光性化合物を用いると、可視光領域に強い吸収と発光を得ることができる。また、一般的に、Singlet(一重項遷移)はTriplet(三重項遷移)より吸収係数が大きいため、受光量を増大させることができる。
 蛍光発光性化合物としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素や希土類錯体系蛍光体などが挙げられるが、これらに限定されない。本実施形態では、蛍光発光性化合物として下記の化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000001
 また、本実施形態では、特願2008-516648(特許第5267123号公報)、特開2014-138006号公報、特開2012-216801号公報、特開2010-56190号公報、特開2008-81704号公報、特開2007-224171号公報、特開2016-213469号公報、特表2013-529244号公報などに記載されている蛍光発光性化合物を用いることもできる。
 発光層41に含まれる前記した複数の材料のうちの少なくとも一つの材料、すなわちマトリクス材料は、前記した吸収材料とのEgの関係を満たしていれば、公知のホスト材料、ゲスト材料(ドーパント材料とも呼ばれている)、輸送性材料から適宜選択して用いることができる。
 ホスト材料は、発光層41において電子や正孔の電荷輸送を行う役割を担っている。ホスト材料としては、例えば、特開2013-4245号公報の段落0163~0178に記載の化合物H1~H79を用いることができる。
 また、本実施形態では、ホスト材料として、例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報などに記載されている化合物を用いることもできる。
 本実施形態におけるゲスト材料は、励起三重項からの発光が観測される化合物、すなわち、リン光発光性化合物であり、発光層41において発光する役割を担っている。
 リン光発光性化合物とは、室温(25℃)でリン光発光する化合物をいい、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本実施形態においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいてリン光量子収率(0.01以上)が達成されればよい。
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物であり、特にIr錯体である。つまり、本実施形態においては、発光層41を構成する複数の材料のうちの少なくとも一つの材料がIr錯体であることが好ましい。発光層41を構成する材料にIr錯体を用いると、より確実に発光効率(リン光量子収率)を向上させることができる。
 本実施形態においては、少なくとも一つの発光層41に2種以上のリン光発光性化合物を含有していてもよく、発光層41におけるリン光発光性化合物の濃度比が発光層41の層厚方向で変化していてもよい。
 リン光発光性化合物の含有量は、好ましくは発光層41の総量に対し0.1体積%以上30体積%未満である。
 本実施形態に適用可能なリン光発光性化合物としては、例えば、特開2013-4245号公報の段落0185~0244に記載の一般式(4)、一般式(5)または一般式(6)で表される化合物、および、その例示化合物を好ましく挙げることができる。また、その他の例示化合物として、例えば、Ir-46~Ir-50を以下に示す。
Figure JPOXMLDOC01-appb-C000002
 また、リン光発光性化合物は、発光層41に使用される公知のものの中から適宜選択して用いることができる。
 前記のリン光発光性化合物は、例えば、Organic Letters誌、vol.3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
 以上に述べたように、発光層41は、これを構成する吸収材料(発光材料)の種類を適宜選択することで受光する光の波長を任意に選択して設定することができる(波長選択性を有する)。よって、有機EL素子1は任意の波長領域の光を受光して光電変換を行うことができる。
(注入層(正孔注入層、電子注入層))
 注入層(図示せず)は、駆動電圧低下や発光輝度向上を目的として、電極と発光層41の間、つまり、透明電極3と発光層41の間や対向電極5と発光層41の間に設けることができる。注入層は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層と電子注入層とがある。
 注入層は、必要に応じて設けることができる。正孔注入層であれば、陽極と発光層41または正孔輸送層42(図2参照)との間に設けることができ、電子注入層であれば、陰極と発光層41または電子輸送層43(図2参照)との間に設けることができる。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報などにもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェンなどの導電性高分子を用いた高分子層などが挙げられる。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報などにもその詳細が記載されており、具体例として、ストロンチウムやアルミニウムなどに代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層などが挙げられる。本実施形態における電子注入層は極薄い膜であることが好ましく、素材にもよるがその層厚は1nm~10μmの範囲が好ましい。
(キャリア輸送層(正孔輸送層、電子輸送層))
 図2は、本実施形態に係る有機EL素子の好ましい態様の全体構成を説明する概略図である。
 図2に示すように、好ましい態様に係る有機EL素子10は、有機機能層4が、少なくとも1つ以上のキャリア輸送層を発光層41と隣接させて有している。キャリア輸送層とは、キャリア(正孔及び電子)を発光層41に輸送する層をいう。つまり、有機機能層4は、図2に示すように、正孔輸送層42および電子輸送層43のうちの少なくとも一方を発光層41と隣接させて有している。なお、図2は、正孔輸送層42および電子輸送層43の両方を有している例を図示している。このようにすると、発光効率が向上し、発光時の発熱が抑制される。また、光電変換効率が向上する(光電流値が向上する)と共に、暗電流が抑制される。従って、光電流値と暗電流値のS/N比を向上させることができる。正孔輸送層42および電子輸送層43はどちらか一方を有していればこれらの効果が得られるが、両方を有しているとこれらの効果はさらに向上するので、両方を有していることがより好ましい態様であるといえる。
 キャリア輸送層を用いることで光電流がより向上し、暗電流が抑制される理由は、次のようなものであると推察される。まず、光電流の向上には、発光層41のキャリア移動度の小ささが関係していると考えられる。つまり、発光層41の移動度の低さをキャリア輸送層が補うことで素子全体での電流移動度を向上させることに繋がっていると考えられる。また、暗電流が抑制されることについては、発光層41は有機機能層4の材料の中で比較的Egの小さい材料が用いられることが多いのに対し、キャリア輸送層はEgが比較的大きいため、発光層41とキャリア輸送層の材料間の電圧印加時の漏れ電流を抑えることができ、暗電流が小さくなると推察される。
 なお、有機薄膜太陽電池は電力を作るための装置であるので、一般的にキャリア移動度の高い吸収材料が好んで使用され、キャリア輸送のみを役割とする材料を使用する必要はない。
 また、暗電流値はバイアス電圧を印加することにより測定される。有機薄膜太陽電池は電力を作るための装置であるので、電力を使用してしまうバイアス電圧を印加することはない。そのため、有機薄膜太陽電池ではバイアス電圧を印加することによる暗電流はそもそも発生しない。さらに、有機薄膜太陽電池ではバイアス電圧の印加を行わないため、暗電流は重要ではなく、検討・研究されていなかった。
(正孔輸送層)
 正孔輸送層42は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層(図示せず)、電子阻止層(図示せず)も正孔輸送層42に含まれる。正孔輸送層42は単層構造または複数層の積層構造として設けることができる。
 正孔輸送材料は、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。
 正孔輸送材料としては、前記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物およびスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(α-NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。
 さらに、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型Si、p型SiCなどの無機化合物も正孔輸送材料(および正孔注入材料)として使用することができる。
 また、正孔輸送材料として、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本実施形態においては、より高効率の発光素子が得られることから、これらに記載されている材料を用いることが好ましい。
 正孔輸送層42は、前記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法などの公知の方法で薄膜化することにより形成することができる。正孔輸送層42の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層42は、前記材料の1種または2種以上からなる一層構造であってもよい。
 また、正孔輸送材料に不純物をドープして正孔輸送特性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。このように正孔輸送層の正孔輸送特性を高くすると、より低消費電力の素子を作製することができる。
(電子輸送層)
 電子輸送層43は、電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層(図示せず)、正孔阻止層(図示せず)も電子輸送層43に含まれる。電子輸送層43は単層構造または複数層の積層構造として設けることができる。
 単層構造の電子輸送層43、および複数層の積層構造の電子輸送層43において発光層41に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる。)としては、陰極から注入された電子を発光層41に伝達する機能を有していればよい。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体およびオキサジアゾール誘導体などが挙げられる。さらに、前記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)など、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基などで置換されているものも電子輸送材料として好ましく用いることができる。また、ジスチリルピラジン誘導体も電子輸送材料として用いることができる。また、n型Si、n型SiCなどの無機半導体も電子輸送材料として用いることができる。
 電子輸送層43は、前記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法などの公知の方法で薄膜化することにより形成することができる。電子輸送層43の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層43は、前記材料の1種または2種以上からなる一層構造であってもよい。
 また、電子輸送層43に不純物をドープし、電子輸送特性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。さらに、電子輸送層43には、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウムなどを用いることができる。このように電子輸送層43の電子輸送特性を高くすると、より低消費電力の素子を作製することができる。
 また、電子輸送材料としては、例えば、特開2016-219126号公報に記載の化合物No.1~No.48の窒素含有化合物、一般式(1)~(8a)で表される窒素含有化合物、および化合物1~166の窒素含有化合物を用いることができる。
 また、電子輸送材料としては、例えば、特開2016-219126号公報に記載の一般式(9)~一般式(12)で表される硫黄含有化合物、1-1~1-9、2-1~2-11、3-1~3-23および4-1の硫黄含有化合物を用いることができる。
 ここで、電子輸送層43のLUMO(Lowest Unoccupied Molecular Orbital;最低空軌道)と発光層41のマトリクス材料のLUMOは、電子輸送層43のLUMO絶対値>マトリクス材料のLUMO絶対値という関係であることが好ましい。このようにすると、解離した電子が障壁なくマトリクス材料から電子輸送材料へと移動でき、電子の異動がスムーズに行われ、その結果、有機EL全体として光電変換効率を向上させることができる。
(阻止層(正孔阻止層、電子阻止層))
 阻止層(図示せず)は、キャリア(正孔、電子)の輸送を阻止するための層であり、必要に応じて設けることができる。阻止層には、正孔阻止層と電子阻止層とがある。阻止層は、例えば、特開平11-204258号公報、同11-204359号公報、および「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁などに記載されているものを適用できる。
 正孔阻止層は、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ、正孔に対して、電子準位的に障壁になりうる材料からなりうる。正孔阻止層は、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、上述した電子輸送層の構成を必要に応じて正孔阻止層として用いることができる。正孔阻止層は、発光層41に隣接して設けられていることが好ましい。
 電子阻止層は、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子に対して、電子準位的に障壁になりうる材料からなりうる。電子阻止層は、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、上述した正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。正孔阻止層および電子阻止層の層厚はいずれも好ましくは3~100nmであり、さらに好ましくは5~30nmである。
 正孔阻止層および電子阻止層は、輸送層で述べたのと同様の手法で形成することができる。
(封止材)
 封止材(図示せず)は、透明電極3、有機機能層4および対向電極5などを覆うものであればよく、光透過性を有していてもよいし、有していなくてもよい。また、封止材は、板状やフィルム状の部材を接着剤(図示せず)で透明基材2に固定するものであってもよいし、封止膜であってもよい。
 板状の封止材としては、例えば、ガラス基板、ポリマー基板が挙げられるが、これらに限定されない。また、これらの基板の材料を用いて厚さを薄くし、フィルム状の封止材とすることができる。
 ガラス基板は、例えば、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などで形成することができる。
 ポリマー基板は、例えば、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォンなどで形成することができる。
 なお、有機EL素子1、10を薄膜化できることから、封止材としてはポリマー基板やこれを薄くしたフィルム状のポリマー基板を好ましく使用することができる。
 フィルム状のポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が1×10-3g/(m・24h)以下のものであることが好ましい。
 また、封止材は、平板状であってもよいし、凹板状であってもよい。凹板状の封止材は、平板状の封止材に対してサンドブラスト加工や化学エッチング加工などを施すことによって得ることができる。
 また、板状の封止材の他の例として、金属材料で構成されたものを用いることができる。金属材料としては、例えば、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれるいずれか一種の金属または前記した群から選ばれるいずれか一種を主成分とする合金からなるものが挙げられる。なお、ここでいう主成分とは、最も含有量が多い成分であることをいう。このような金属材料は、薄型のフィルム状にして封止材として用いることにより、有機EL素子1、10の厚さを薄くすることができる。
 また、以上のような板状の封止材を透明基材2に固定するための接着剤は、封止材と透明基材2との間に挟持された有機機能層4などを封止するためのシール剤として用いられる。このような接着剤として、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーなどの反応性ビニル基を有する光硬化および熱硬化型接着剤、2-シアノアクリル酸エステルなどの湿気硬化型接着剤を挙げることができる。
 また、このような接着剤として、エポキシ系などの熱および化学硬化型(二液混合)であるものを挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。さらに、接着剤として、ポリイソブチレン系樹脂やポリブテン樹脂なども用いることができる。
 なお、有機EL素子1、10を構成する有機材料は熱処理で劣化する場合がある。あるいは有機機能層4が熱処理で変質する場合がある。このため、接着剤は、室温から80℃の間で接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。
 封止材と透明基材2の接着部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。この接着剤は、封止材の周縁のみに設けられてもよいし、硬化後に十分な光透過性を有する材料であれば、封止材と透明基材2の間に隙間なく充填されてもよい。
 また、板状の封止材と透明基材2と接着剤との間にスペースが形成される場合、このスペースに窒素、アルゴンなどの不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、このスペースを真空とすることもできる。また、このスペースに吸湿性化合物を封入することもできる。
 吸湿性化合物(乾燥剤)としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウムなど)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルトなど)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウムなど)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウムなど)などを用いることができる。なお、硫酸塩、金属ハロゲン化物および過塩素酸類においては無水塩が好適に用いられる。
 封止材として封止膜を用いる場合、封止膜は、有機EL素子1、10における透明電極3、有機機能層4および対向電極5を完全に覆い、かつ有機EL素子1、10における透明電極3および対向電極5の端子部分を露出させた状態となるように設けることができる。
 このような封止膜は、無機材料や有機材料を用いて構成することもできる。特に、水分や酸素などの有機機能層4の劣化をもたらす物質の侵入を抑制する機能を有する材料で構成することが好ましい。このような材料として、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機材料が用いられる。また、封止膜の脆弱性を改良するために、これらの無機材料からなる膜とともに、有機材料からなる膜を用いて積層構造としてもよい。
 封止膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができる。
 以上のような封止材は、有機EL素子1、10における透明電極3および対向電極5の端子部分を露出させると共に透明電極3、有機機能層4および対向電極5を覆う状態で設けられている。また、封止材に電極を設け、有機EL素子1、10の透明電極3および対向電極5の端子部分と、封止材の電極とを導通させるように構成されていてもよい。
(有機薄膜太陽電池との相違)
 以上に述べた本実施形態に係る有機EL素子1、10と、光電変換機能を持つ有機薄膜太陽電池との相違について以下に説明する。
 有機薄膜太陽電池は、吸収材料を多く用いると共に、太陽光に含まれる波長帯の内の広い範囲の光を吸収する構成を採用している。これにより、有機薄膜太陽電池は、太陽光を受光して大きな起電力を発生させている。つまり、有機薄膜太陽電池における重要な要素は、変換効率の高さ(起電力の大きさ)である。
 これに対し、本実施形態に係る有機EL素子1、10は、発光層41を構成する複数の材料のうち、可視光以上の波長領域で最も吸光度の高い吸収材料(発光材料)の存在量を50体積%以下に制限している。そのため、得られる起電力は有機薄膜太陽電池と比較すると小さくなるが、得られる起電力よりも光電流値と暗電流値の比率(S/N比)を高くすることを重視している点で有機薄膜太陽電池と相違する。また、有機EL素子1、10は、吸収材料(発光材料)の存在量を少なくすることで励起子相互作用が小さくなり、励起子が失活して消光することが少なくなるので発光効率が上がり、発熱を抑えられる点で有機薄膜太陽電池と相違している。
 本実施形態に係る有機EL素子1、10は、特定の狭い波長範囲の光を受光して電気を得るという特性や暗電流値が低いという特性を活かし、後述する光センサ100(図3参照)や光センサ200(図4参照)に好適に用いることができる。
 一般的な光センサ(受光体)では、受光した際の光電流値と暗電流値のS/N比が悪化すると精密な測定が困難になるため、前記S/N比が重要になる。前述したように、有機EL素子1は、光電変換効率が向上(光電流値が向上)しているので、光電流値と暗電流値のS/N比を高くできる。また、有機EL素子10は、キャリア輸送層を発光層と隣接させて有しているので、暗電流値が低くなり、S/N比をより高くすることができる。有機薄膜太陽電池ではこのような効果を得ることはできない。
(有機EL素子の製造方法)
 本実施形態に係る有機EL素子の製造方法の一例として層構造が、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の製造方法について説明する。
 まず、透明基材2上に陽極用の電極物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように蒸着やスパッタリングなどの手法で形成させ、陽極を作製する。
 次に、この上に有機機能層4である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の有機化合物薄膜を形成させる。
 この有機化合物薄膜の薄膜化の方法としては、前記したように、真空蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法、LB法(ラングミュア-ブロジェット法)、スプレー法、印刷法、スロット型コータ法)などが挙げられるが、均質な膜が得られ易く、かつピンホールが生成し難いなどの点から、真空蒸着法、スピンコート法、インクジェット法、印刷法、スロット型コータ法が特に好ましい。
 なお、層毎に異なる製膜法を適用してもよい。製膜に真空蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 有機機能層4を形成後、その上に陰極用の電極物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの手法で形成させて陰極を設けることにより、所望の有機EL素子を製造することができる。
 この有機EL素子の製造は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うなどするのが好ましい。
 また製造順序を逆にして、透明基材2から陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に形成することも可能である。このようにして得られた多色の有機EL素子に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると、発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 有機EL素子の製造工程の一部やその後の事後処理として、例えば、熱硬化接着剤を用いた固体封止や、熱硬化接着剤を使用して有機EL素子をタイリングした応用製品の製造、性能安定化や向上を目的とした加熱アニールなどの加熱処理を実行してもよい。
 当該加熱処理の加熱温度は、製造工程の効率化の観点より高い方がよく、70℃以上であるのが好ましいが、80℃以下であるのがより好ましい。なお、当該加熱処理の加熱温度は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などの有機機能層を形成するすべての有機化合物のガラス転移点Tg未満とするのがさらに好ましい。
(光センサ)
 次に、図3を参照して、本実施形態に係る光センサ(受光体)について説明する。
 図3は、本実施形態に係る光センサの構成を説明する斜視図である。
 図3に示すように、本実施形態に係る光センサ100は、前記した有機EL素子1または有機EL素子10(以下の説明において「有機EL素子1、10」と記載することがある)を用いたものである。有機EL素子1、10は、基板101の所定の取付位置に取り付けられている。
 この光センサ100は、有機EL素子1、10の光電変換機能を利用し、有機EL素子1、10を受光素子として機能させる。つまり、光センサ100の有機EL素子1、10は、可視光以上の波長領域の光を発光層41中の吸収材料が吸収することで電気を発生させ、光の強さを検出する。なお、前記したように有機EL素子1、10は、発光層41に用いられている複数の材料のエネルギー準位の関係で、光を受光した際の励起子解離が速やかに行われるため、光電交換効率が増大し、光電流値が向上する。また、光センサ100は、前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下としているので、光電変換を効率良く行うことができ、光電流が高められている。従って、この光センサ100は、光電流値と暗電流値の比率(S/N比)が高い。
 また、この光センサ100は、有機EL素子1、10を用いているので、電圧を印加することによって有機EL素子1、10を発光させることができる。このとき、光センサ100の有機EL素子1、10は、前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下としているので、励起子相互作用が小さくなり、励起子が失活して消光することが少なくなるので発光効率が上がり、発熱を抑えられる。また、有機EL素子1、10を発光させるとデザイン性を向上させることができる。
 光センサ100の基板101は、光センサの基板として一般的に用いられている公知の基板を任意に用いることができる。有機EL素子1、10の基板101への取付けは、光センサとして一般的に行われているものと同様にして行うことができる。
 また、図4は、本実施形態に係る発光体と受光体(光センサ)を一体化した光センサの構成を説明する斜視図である。
 図4に示すように、本実施形態に係る光センサ200は、発光体201と、受光体として、前記した有機EL素子1、10と、を同一基板101上に有する。なお、光センサ200の基板101は、光センサ100と同様、公知の基板を任意に用いることができる。
 この光センサ200は、前記した光センサ100と同様、有機EL素子1、10の光電変換機能を利用し、有機EL素子1、10を受光素子として機能させる。つまり、光センサ200の有機EL素子1、10は、可視光以上の波長領域の光を発光層41中の吸収材料が吸収することで電気を発生させ、光の強さを検出する。このとき、光センサ200は、光センサ100で述べたのと同じ理由で光電流値と暗電流値の比率(S/N比)が高い。従って、この光センサ200は、発光体201から生体に向けて照射され、生体に吸収されないで反射してきた光を有機EL素子1、10で精度良く検出することができる。
 前記した発光体201は、可視光以上の波長領域の光を発光できるものであれば任意のものを用いることができる。
 なお、本実施形態においては、駆動電力が低く、発光輝度も十分に高いことから、発光体201は、有機EL素子であるのが好ましい。また、本実施形態においては、発光体201として用いられる有機EL素子が緑色発光するものであることが好ましい。緑色発光とは、波長領域が495~570nmである発光をいう。このようにすると、例えば、発光体201から生体に向けて照射された緑色の光がヘモグロビンにあたって反射し、有機EL素子1、10で検出することができる。つまり、このようにすると、例えば、血管の収縮時にヘモグロビンにあたって反射する光の量が増え、血管の拡張時にはヘモグロビンにあたって反射する光の量が減る(つまり、血管の容積変化に伴って光の吸収量が変化する)ことから、脈拍を計測することができる。
 この光センサ200も光センサ100、有機EL素子1、10を用いているので、電圧を印加することによって有機ELを発光させることができる。このとき、光センサ100の有機EL素子1、10は、前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下としているので、励起子相互作用が小さくなる。そのため、励起子が失活して消光することが少なくなるので発光効率が上がり、発熱を抑えられる。
 光センサ200の発光体201を有機EL素子とした場合は、発光体201と有機EL素子1、10を同じ構成とすることもできるし、異なる構成とすることもできる。これは任意に設定することが可能である。同じ構成である場合は、同一基板上に同時に製膜して有機EL素子を製造できるため、製造が容易でコストダウンを図ることができる。また、異なる構成である場合は、有機EL素子1、10の吸収特性に合わせた波長領域の発光が可能な発光体201(有機EL素子)とすることができるので、より高性能な光センサ200を具現できる。
 また、光センサ200は、発光体201と受光体(有機EL素子1、10)を一体化しているので、装置としてトータルでコンパクト化することが可能である。
 なお、前記した態様では、光センサ200は、発光体201と有機EL素子1、10を同一基板上に形成していたが、発光体201と、有機EL素子1、10とをそれぞれ異なる基板(図示せず)上に有していてもよい。
(生体センサ)
 次に、図5を参照して、本実施形態に係る生体センサについて説明する。
 図5は、本実施形態に係る生体センサの構成を説明する斜視図である。
 図5に示すように、本実施形態に係る生体センサ300は、前記した光センサ100および光センサ200のうちの少なくとも一方を用いたものである(図5では光センサ200を用いた様子を図示している)。この生体センサ300における光センサ100、200以外の構成は、例えば、光を照射して、対象物に光を反射または透過して、受光する光学式センサとして公知のものを採用することができる。なお、このような光学式センサとしては、例えば、脈波センサなどを挙げることができる。
 本実施形態に係る生体センサ300は、光センサ100および光センサ200のうちの少なくとも一方を用いている、つまり、有機EL素子1、10を用いているので、前記したように、可視光以上の波長領域の光を発光層41中の吸収材料が吸収することで電気を発生させ、光の強さを検出できる。また、生体センサ300は、有機EL素子1、10の発光層41に用いられている複数の材料のエネルギー準位の関係で、光を受光した際の励起子解離が速やかに行われるため、光電交換効率が増大し、光電流値が向上している。さらに、この生体センサ300は、用いている有機EL素子1、10が、前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下としているので、光電変換を効率良く行うことができ、光電流が高められている。従って、この生体センサ300は、光電流値と暗電流値の比率(S/N比)が高い。
 また、この生体センサ300は、有機EL素子1、10を用いているので、電圧を印加することによって有機EL素子1、10を発光させることができる。このとき、この生体センサ300の有機EL素子1、10は、前記した可視光以上の波長領域で最も吸光度の高い吸収材料の存在量を50体積%以下としているので、励起子相互作用が小さくなる。そのため、励起子が失活して消光することが少なくなるので発光効率が上がり、発熱を抑えることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 本実施例において用いられる各化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000003
《No.1に係る有機EL素子の作製》
(フレキシブル基材の形成)
 透明なフレキシブル基材である市販のポリエチレンテレフタレートフィルム(PETフィルム)基材(厚さ125μm)を選択し、当該基材上に、特開2012-116101号公報の実施例1を参考にして、ガスバリア層を形成した。
 具体的には、両面に易接着加工された幅500mm、厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を、塗布・乾燥後の層厚が4μmになるように塗布した後、乾燥条件;80℃、3分で乾燥後、硬化条件;1.0J/cm、空気雰囲気下、高圧水銀ランプ使用で硬化を行い、ブリードアウト防止層を形成した。
 続けて、前記PETフィルムの反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7501を、塗布・乾燥後の層厚が4μmになるように塗布した後、乾燥条件;80℃、3分で乾燥後、硬化条件;1.0J/cm、空気雰囲気下、高圧水銀ランプ使用で硬化を行い、平坦層を形成した。
 得られた平坦層の最大断面高さRt(p)は、JIS B 0601で規定される表面粗さで16nmであった。
 なお、表面粗さは、SII社製の原子間力顕微鏡(Atomic Force Microscope;AFM)SPI3800N DFMを用いて測定した。1回の測定範囲は10μm×10μmとし、測定箇所を変えて3回の測定を行い、それぞれの測定で得られたRtの値を平均したものを測定値とした。
 前記のようにしてブリードアウト防止層および平坦層を形成したPETフィルムの総厚は、133μmであった。
 次いで、前記PETフィルムの平坦層表面に、無機前駆体化合物を含有する塗布液を減圧押し出し方式のコータを用いて、乾燥層厚が150nmとなるように、1層目のガスバリア層を塗布した。
 無機前駆体化合物を含有する塗布液は、無触媒のパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NN120-20)と、アミン触媒を固形分の5質量%含有するパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NAX120-20)と、を混合して用い、アミン触媒を固形分の1質量%に調整した後、さらに、ジブチルエーテルで希釈することにより5質量%ジブチルエーテル溶液として作製した。
 前記塗布液をPETフィルムの平坦層表面に塗布した後、乾燥温度80℃、乾燥時間300秒、乾燥雰囲気の露点5℃の条件下で乾燥させた。
 乾燥後、前記PETフィルムを25℃まで徐冷し、下記真空紫外線照射装置を用いて下記改質処理条件にて、塗布面に真空紫外線照射による改質処理を行った。真空紫外線照射装置の光源としては、172nmの真空紫外線を照射する二重管構造を有するXeエキシマーランプを用いた。
〈真空紫外線照射装置〉
 エム・ディ・コム社製エキシマー照射装置MODEL:MECL-M-1-200、波長172nm、ランプ封入ガス Xe
〈改質処理条件〉
 エキシマー光強度:3J/cm(172nm)
 ステージ加熱温度:100℃
 照射装置内の酸素濃度:1000ppm
 改質処理後、ガスバリア層を形成したPETフィルムを、前記と同様にして乾燥させ、さらに、同条件にて2回目の改質処理を行い、乾燥層厚150nmのガスバリア層を形成した。
 次いで、1層目のガスバリア層と同様にして、1層目のガスバリア層上に2層目のガスバリア層を形成し、ガスバリア層を有するPETフィルムを作製した。
 このようにして、透明基材を作製した。
(透明電極の形成)
 市販の真空蒸着装置の基材ホルダーに前記で作製した透明基材を固定した。また、モリブデンまたはタングステン製の抵抗加熱ボートに、有機EL素子を構成する各層の構成材料を層形成に最適な量だけ充填した。これらの基材ホルダーおよび抵抗加熱ボートを真空蒸着装置の第1真空槽に取り付けた。また、モリブデンまたはタングステン製の抵抗加熱ボートに銀を入れ、第2真空槽に取り付けた。
 次いで、第1真空槽および第2真空槽を4.0×10-4Paまで減圧後、窒素含有化合物である化合物14の入った抵抗加熱ボートに通電して加熱し、化合物14を蒸着速度0.1~0.2nm/秒で透明基材上に蒸着し、層厚25nmの下地層を形成した。
 次に、抵抗加熱を用いた真空蒸着法により導電性層(陽極)を形成した。具体的には、下地層を形成した透明基材を、真空状態に保ったまま第2真空槽に移し、銀の入った抵抗加熱ボートに通電して加熱し、銀を蒸着速度0.1~0.2nm/秒で下地層上に蒸着し、層厚10nmの導電性層を形成した。また、銀を蒸着する際にマスクを使用し、導電性層をパターン状に形成した。
 このようにして下地層と導電性層とからなる透明電極を形成した。
(正孔注入層の形成)
 次に、透明電極を形成した透明基材を、真空状態に保ったまま第1真空槽に移した後、F4TCNQおよびα-NPDの入った抵抗加熱ボートに通電して加熱し、形成される層中のF4TCNQの含有量が4体積%、α-NPDの含有量が96体積%となるように、蒸着速度0.1nm/秒で透明電極上に共蒸着し、層厚40nmの正孔注入層を形成した。
(発光層の形成)
 次に、ルブレン(吸収材料(発光材料))およびペンタセン(マトリクス材料)の入った抵抗加熱ボートに通電して加熱し、形成される層中のルブレンの含有量が50体積%、ペンタセンの含有量が50体積%となるように、蒸着速度0.1nm/秒で正孔注入層上に共蒸着し、層厚80nmの発光層を形成した。
(電子注入層の形成)
 次に、フッ化リチウム(LiF)の入った抵抗加熱ボートに通電して加熱し、フッ化リチウムを蒸着速度0.05nm/秒で発光層上に蒸着し、層厚1nmの電子注入層を形成した。
(陰極の形成)
 そして、蒸着法によりアルミニウム(Al)を蒸着して、厚さ100nmの陰極を形成した。
(封止)
 ポリイソブチレン系樹脂として「オパノールB50(BASF社製、Mw:34万)」100質量部、ポリブテン樹脂として「日石ポリブテン グレードHV-1900(新日本石油社製、Mw:1900)」30質量部、ヒンダードアミン系光安定剤として「TINUVIN765(BASF社製、3級のヒンダードアミン基を有する)」0.5質量部、ヒンダードフェノール系酸化防止剤として「IRGANOX1010(BASF社製、ヒンダードフェノール基のβ位が二つともターシャリーブチル基を有する)」0.5質量部、および環状オレフィン系重合体として「Eastotac H-100L Resin(イーストマンケミカル.Co.製)」50質量部をトルエンに溶解し、固形分濃度約25質量%の接着剤組成物を調製した。
 次に、厚さ100μmのアルミニウム箔が張り合わされた厚さ50μmのポリエチレンテレフタレートフィルムのアルミニウム箔側の面をカーボンブラックで着色し、封止材を作製した。次に、調製した前記接着剤組成物の溶液を乾燥後に形成される接着層の層厚が20μmとなるように封止部材のアルミニウム箔側に塗工し、120℃で2分間乾燥させて接着層を形成した。次に、形成した接着層面に対して、剥離シートとして厚さ38μmの剥離処理をしたポリエチレンテレフタレートフィルムの剥離処理面を貼付し、封止部材を作製した。
 上述の方法で作製した封止部材を40mm×50mmのサイズで準備して窒素雰囲気下で剥離シートを除去し、120℃に加熱したホットプレート上で10分間乾燥した。その後、室温まで低下するのを確認してから、前記形成した陰極を完全に覆う形でラミネートし、90℃で10分加熱して封止した。
 このようにしてNo.1に係る有機EL素子を作製した。
《No.2に係る有機EL素子の作製》
 前記No.1に係る有機EL素子の作製と同様の方法で透明基材上に透明電極を形成した。
(正孔注入層の形成)
 次に、透明電極を形成した透明基材を、真空状態に保ったまま第1真空槽に移した後、F4TCNQおよびα-NPDの入った抵抗加熱ボートに通電して加熱し、形成される層中のF4TCNQの含有量が4体積%、α-NPDの含有量が96体積%となるように、蒸着速度0.1nm/秒で透明電極上に共蒸着し、層厚15nmの正孔注入層を形成した。
(正孔輸送層の形成)
 次に、α-NPDの入った抵抗加熱ボートに通電して加熱し、α-NPDを蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚45nmの正孔輸送層を形成した。
(発光層の形成)
 次に、ルブレン(吸収材料(発光材料))およびペンタセン(マトリクス材料)の入った抵抗加熱ボートに通電して加熱し、形成される層中のルブレンの含有量が50体積%、ペンタセンの含有量が50体積%となるように、蒸着速度0.1nm/秒で正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。
(電子輸送層の形成)
 次に、Alqの入った抵抗加熱ボートに通電して加熱し、Alqを蒸着速度0.1nm/秒で発光層上に蒸着し、層厚30nmの電子輸送層を形成した。
(電子注入層の形成)
 次に、フッ化リチウムの入った抵抗加熱ボートに通電して加熱し、フッ化リチウムを蒸着速度0.05nm/秒で電子輸送層上に蒸着し、層厚1nmの電子注入層を形成した。
 その後、陰極の形成および封止をNo.1に係る有機EL素子と同様の方法で行い、No.2に係る有機EL素子を作製した。
《No.3~11に係る有機EL素子の作製》
 No.3~11に係る有機EL素子は、発光層の構成材料および濃度を表1に示したように変更し、No.2に係る有機EL素子と同様の方法で作製した。なお、No.11に係る有機EL素子はマトリクス材料を用いていないので、表1中のマトリクス材料の種類、Egおよび存在量を「-」で示している。
《No.1~11に係る有機EL素子の評価》
 作製したNo.1~11に係る有機EL素子について、マイナスの電圧を印加した際の暗闇での電流値(暗電流)および光を照射した際の電流値(光電流)を測定した。その結果を表1に示す。また、各有機EL素子について、プラスの電圧を印加して発光させた際の上昇温度の評価も行った。
(1)作製した有機EL素子の光電流・暗電流の測定および光電流値と暗電流値の比率
 作製したNo.1~11に係る有機EL素子について、以下の条件で光電流と暗電流を測定した。そして、得られた光電流値と暗電流値から、光電流値と暗電流値の比率を算出した。なお、光電流値と暗電流値の比率が100以上であるものを合格、100未満であるものを不合格とした。
・測定装置:株式会社エーディーシー社製 R6243
・測定条件:各有機EL素子に対する印加電圧:-3V
・照射光源:Panasonic社製緑色LED(型番LNJ647W8CRA)[No.1~5、7~9、11に係る有機EL素子に対して使用]
・照射光源:Panasonic社製青色LED(型番LNJ947W8CRA)[No.6、10に係る有機EL素子に対して使用]
・照射量:緑色LED 1.3mW、青色LED 1.6mW
・評価方法:光電流評価時は、暗室内でLEDと、作製した有機EL素子とを1mmの間隔で対向に設置し、LEDから有機EL素子に向けて光を照射して電流値を測定した。暗電流評価時は、暗室内でLEDを駆動せずに電流値を測定した。
(2)発光時の上昇温度の測定
 作製したNo.1~11に係る有機EL素子について、発光時の上昇温度の評価を行った。発光時の上昇温度(ΔT)が+10.0℃以下であるものを合格、+10.0℃を超えるものを不合格とした。
・測定器具:日本アビオニクス社製 TH9100MV
・測定条件:各有機EL素子に対する印加電圧:+5Vで印加し、印加開始から30分後の温度(℃)を評価した。なお、測定時のTH9100MVの放射率は1.00に設定した。
 前記各評価結果を発光層およびキャリア層の構成とともに表1に示した。
 なお、表1に示す吸収材料(発光材料)について、ルブレンは500~650nmの波長領域で光を吸収し、最も高い吸光度はこの範囲にある。
 また、DCMは400~550nmの波長領域で光を吸収し、最も高い吸光度を示す波長領域はこの範囲にある。
 クマリン6は380~480nmの波長領域で光を吸収し、最も高い吸光度を示す波長領域はこの範囲にある。
 ペンタセンは300~400nmの波長領域で光を吸収し、最も高い吸光度を示す波長領域はこの範囲にある。
 Ir(piq)は250~400nmの波長領域で光を吸収し、最も高い吸光度を示す波長領域はこの範囲にある。
 Ir(ppy)は320~450nmの波長領域で光を吸収し、最も高い吸光度を示す波長領域はこの範囲にある。
 Alqは300~420nmの波長領域で光を吸収し、最も高い吸光度を示す波長領域はこの範囲にある。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、No.1~7に係る有機EL素子は、本発明の要件を満たしていたので、光電流値と暗電流値の比率が高く、発光時の上昇温度も抑えられた。
 なお、No.2~7に係る有機EL素子は、正孔輸送層および電子輸送層を有していたので、これらの評価がNo.1に係る有機EL素子よりも優れていた。
 これに対し、No.8~11に係る有機EL素子は、本発明の要件を満たしていなかったので、光電流値と暗電流値の比率が低くなった。
 具体的に、No.8、11に係る有機EL素子は、発光層における吸収材料(発光材料)の存在量が50体積%を超えていたので、光電流値と暗電流値の比率が低くなった。
 なお、No.11に係る有機EL素子は、発光時の上昇温度も高くなった。
 No.9、10に係る有機EL素子は、可視光以上の波長領域で最も吸光度の高い吸収材料のEgが前記発光層の中で最も大きくなかった(発光材料のEgよりもマトリクス材料のEgの方が大きかった)ので、光電流値と暗電流値の比率が低くなった。
 1、10 有機EL素子(有機エレクトロルミネッセンス素子)
 2   透明基材
 3   透明電極
 4   有機機能層
 41  発光層
 42  正孔輸送層
 43  電子輸送層
 5   対向電極
 100 光センサ
 101 基板
 200 生体センサ
 201 発光体

Claims (13)

  1.  透明基材、透明電極、有機機能層、対向電極を有して成り、
     前記有機機能層が、光吸収機能を持つ発光層を少なくとも一つ有し、
     前記発光層は複数の材料で構成されており、
     前記複数の材料のうち、可視光以上の波長領域で最も吸光度の高い吸収材料のエネルギーギャップが前記発光層の中で最も大きく、
     前記発光層における前記吸収材料の存在量が50体積%以下である有機エレクトロルミネッセンス素子。
  2.  前記吸収材料が蛍光による発光を行う請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記複数の材料のうちの少なくとも一つの材料がIr錯体である請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  前記発光層における前記吸収材料の存在量が30体積%未満である請求項1から請求項3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  5.  波長選択性を有する請求項1から請求項4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  6.  前記透明基材がフレキシブル性を有する請求項1から請求項5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  7.  前記透明電極にAgを用いている請求項1から請求項6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  前記有機機能層が、少なくとも1つ以上のキャリア輸送層を前記発光層と隣接させて有する請求項1から請求項7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項8のいずれか1項に記載の有機エレクトロルミネッセンス素子を用いた光センサ。
  10.  発光体と、請求項1に記載の有機エレクトロルミネッセンス素子と、を同一基板上に有する光センサ。
  11.  前記発光体が有機エレクトロルミネッセンス素子である請求項10に記載の光センサ。
  12.  前記発光体である前記有機エレクトロルミネッセンス素子が緑色発光をする請求項11に記載の光センサ。
  13.  請求項9から請求項12のいずれか1項に記載の光センサを用いた生体センサ。
PCT/JP2018/007696 2017-04-28 2018-03-01 有機エレクトロルミネッセンス素子、光センサおよび生体センサ WO2018198529A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019515129A JP7336381B2 (ja) 2017-04-28 2018-03-01 受光・発光素子、光センサおよび生体センサ
US16/608,751 US20210126206A1 (en) 2017-04-28 2018-03-01 Organic electroluminescence element, optical sensor, and biometric sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-090686 2017-04-28
JP2017090686 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198529A1 true WO2018198529A1 (ja) 2018-11-01

Family

ID=63920264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007696 WO2018198529A1 (ja) 2017-04-28 2018-03-01 有機エレクトロルミネッセンス素子、光センサおよび生体センサ

Country Status (3)

Country Link
US (1) US20210126206A1 (ja)
JP (1) JP7336381B2 (ja)
WO (1) WO2018198529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134089A (ja) * 2018-01-31 2019-08-08 セイコーエプソン株式会社 光電センサー、光電センサーモジュール及び生体情報測定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855974A (ja) * 1994-08-12 1996-02-27 Tdk Corp 完全密着型イメージセンサ及び有機エレクトロルミネセンス素子
JP2002507825A (ja) * 1998-03-13 2002-03-12 ケンブリッジ ディスプレイ テクノロジー リミテッド エレクトロルミネッセンス素子
JP2007329176A (ja) * 2006-06-06 2007-12-20 Univ Nihon 有機エレクトロルミネッセンス素子
JP2010541148A (ja) * 2007-09-28 2010-12-24 ケンブリッジ ディスプレイ テクノロジー リミテッド 光電子デバイス
US20160345846A1 (en) * 2015-06-01 2016-12-01 Arizona Board Of Regents On Behalf Of Arizona State University Wearable Biomedical Devices Manufactured with Flexible Flat Panel Display Technology
JP2016214512A (ja) * 2015-05-19 2016-12-22 株式会社東芝 センサ
JP2017033849A (ja) * 2015-08-05 2017-02-09 コニカミノルタ株式会社 有機電界発光素子、有機電界発光素子の製造方法、および照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084347A (en) * 1998-03-27 2000-07-04 Motorola, Inc. Multicolored organic electroluminescent display
CN110970466B (zh) * 2018-09-28 2023-12-26 乐金显示有限公司 包括光接收装置的显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855974A (ja) * 1994-08-12 1996-02-27 Tdk Corp 完全密着型イメージセンサ及び有機エレクトロルミネセンス素子
JP2002507825A (ja) * 1998-03-13 2002-03-12 ケンブリッジ ディスプレイ テクノロジー リミテッド エレクトロルミネッセンス素子
JP2007329176A (ja) * 2006-06-06 2007-12-20 Univ Nihon 有機エレクトロルミネッセンス素子
JP2010541148A (ja) * 2007-09-28 2010-12-24 ケンブリッジ ディスプレイ テクノロジー リミテッド 光電子デバイス
JP2016214512A (ja) * 2015-05-19 2016-12-22 株式会社東芝 センサ
US20160345846A1 (en) * 2015-06-01 2016-12-01 Arizona Board Of Regents On Behalf Of Arizona State University Wearable Biomedical Devices Manufactured with Flexible Flat Panel Display Technology
JP2017033849A (ja) * 2015-08-05 2017-02-09 コニカミノルタ株式会社 有機電界発光素子、有機電界発光素子の製造方法、および照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134089A (ja) * 2018-01-31 2019-08-08 セイコーエプソン株式会社 光電センサー、光電センサーモジュール及び生体情報測定装置
JP7035576B2 (ja) 2018-01-31 2022-03-15 セイコーエプソン株式会社 光電センサー、光電センサーモジュール及び生体情報測定装置

Also Published As

Publication number Publication date
JP7336381B2 (ja) 2023-08-31
JPWO2018198529A1 (ja) 2020-03-05
US20210126206A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
JP5413459B2 (ja) 白色発光有機エレクトロルミネッセンス素子
JP2009135183A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20170082447A (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 소자의 제조 방법, 표시 장치 및 조명 장치
WO2013073302A1 (ja) 有機エレクトロルミネッセンス素子、及び、面状発光体
US20100171101A1 (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, lighting device, and display device
JP5186757B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5888095B2 (ja) 有機エレクトロルミネッセンス素子
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5181920B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5879737B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2016091793A (ja) 有機エレクトロルミネッセンスデバイス及びその製造方法
WO2009116414A1 (ja) 有機エレクトロルミネッセンス素子
JP6340911B2 (ja) 有機電界発光素子および有機電界発光素子の製造方法
JP7336381B2 (ja) 受光・発光素子、光センサおよび生体センサ
JPWO2012063656A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2007012510A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6409771B2 (ja) 有機エレクトロルミネッセンス素子、及びその製造方法
JP6519139B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5472107B2 (ja) 有機エレクトロルミネセンス素子の製造方法
WO2018116923A1 (ja) 透明電極及び電子デバイス
WO2013176069A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JPWO2006092964A1 (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス照明装置
JP6252590B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
WO2014109265A1 (ja) 透明電極、及び、電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791442

Country of ref document: EP

Kind code of ref document: A1