Nothing Special   »   [go: up one dir, main page]

WO2018028243A1 - 活性炭脱硫脱硝系统的喷氨量控制方法和装置 - Google Patents

活性炭脱硫脱硝系统的喷氨量控制方法和装置 Download PDF

Info

Publication number
WO2018028243A1
WO2018028243A1 PCT/CN2017/081613 CN2017081613W WO2018028243A1 WO 2018028243 A1 WO2018028243 A1 WO 2018028243A1 CN 2017081613 W CN2017081613 W CN 2017081613W WO 2018028243 A1 WO2018028243 A1 WO 2018028243A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
value
target value
flue gas
formula
Prior art date
Application number
PCT/CN2017/081613
Other languages
English (en)
French (fr)
Inventor
邱立运
曾小信
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Priority to RU2018103752A priority Critical patent/RU2678076C1/ru
Priority to BR112018002042-7A priority patent/BR112018002042B1/pt
Priority to KR1020187002712A priority patent/KR102030943B1/ko
Priority to MYPI2018700045A priority patent/MY183614A/en
Publication of WO2018028243A1 publication Critical patent/WO2018028243A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas

Definitions

  • the invention relates to the technical field of control, in particular to a method and a device for controlling the amount of ammonia sprayed in a desulfurization and denitration system of activated carbon.
  • SO 2 and NOX nitrogen oxides
  • SO 2 and NOX nitrogen oxides
  • the activated carbon adsorption tower is used to adsorb pollutants including sulfur oxides, nitrogen oxides and dioxins in the sintering flue gas, and the analytical tower is used for thermal regeneration of activated carbon.
  • Activated carbon desulfurization has the advantages of high desulfurization rate, simultaneous denitrification, deodorization, dust removal and no waste water residue. It is a promising method for flue gas purification. Usually, a certain amount of ammonia gas is sprayed into the adsorption tower to chemically react ammonia gas with nitrogen oxides at a certain temperature to generate nitrogen gas and water, thereby achieving the purpose of denitration.
  • ammonia injection rate should not only meet the target value of system denitrification, but also prevent ammonia from escaping from the flue gas outlet due to excessive ammonia injection, which does not meet the national environmental protection standards. Therefore, we need to control the ammonia injection amount of the system reasonably.
  • the operator In the prior art, the operator generally manually adjusts the amount of ammonia sprayed by the activated carbon desulfurization and denitration system according to his own experience, specifically for the operator to manually modify the target value of the ammonia injection amount manually until the desulfurization and denitration effect reaches the requirement. So far, the reliability is poor, and it is difficult for the system to obtain the optimal ammonia injection amount, which can not achieve the desired desulfurization and denitration effect. That is, excessive ammonia injection will waste ammonia gas, increase operating cost, and even bring in air to cause secondary pollution. If the amount of ammonia is not enough, the required desulfurization and denitration effect cannot be achieved.
  • the present invention provides a method and a device for controlling the amount of ammonia sprayed in a desulfurization and denitration system of activated carbon, which can achieve a desired value of ammonia injection, so that the desulfurization and denitration effect meets the requirements (national environmental protection standards), and at the same time Save business operating costs.
  • the present invention provides the following technical solutions:
  • a method for controlling ammonia injection amount of activated carbon desulfurization and denitration system comprising:
  • inlet flue gas state data includes SO 2 concentration, NOx concentration, and humidity of the inlet flue gas
  • outlet flue gas state data includes an SO 2 concentration of the outlet flue gas
  • the inlet flue gas state data the outlet flue gas state data, the value of the inlet flue gas flow after temperature and pressure compensation, the ammonia dilution air flow rate and preset parameters, according to a preset first calculation model, Calculating a first ammonia amount correction value
  • the preset parameters include a denitration target value, an outlet flue gas leakage ammonia target value, an NH 3 correction coefficient, a correction coefficient of the first ammonia injection target value, and a number of adsorption towers;
  • the first ammonia amount target value corresponding to the first ammonia amount correction value is calculated according to the preset second calculation model.
  • the method further includes:
  • the value according to the inlet flue gas state data, the outlet flue gas state data, the inlet flue gas flow rate after temperature and pressure compensation, the ammonia dilution air flow rate, and preset parameters are preset according to The first calculation model calculates the first ammonia amount correction value, including:
  • NOX in F11 ⁇ Humidity ⁇ NOX11
  • NOX in represents the volume of the inlet NOx unit hour
  • F11 represents the value of the inlet flue gas flow after temperature and pressure compensation
  • Humidity represents the humidity of the inlet flue gas
  • NOX11 represents the NOX concentration of the inlet flue gas
  • OFF_GAS indicates the ammonia dilution air flow rate
  • F12 indicates the outlet flue gas flow rate
  • SO 2in represents the volume of the inlet SO 2 unit hours, and SO 2 11 represents the SO 2 concentration of the inlet flue gas;
  • SO 2out represents the volume of the outlet SO 2 unit hours
  • SO 2 12 represents the SO 2 concentration of the outlet flue gas
  • SO 2eff represents the desulfurization rate of the activated carbon desulfurization and denitration system
  • NH3 SO2 SO 2 represents a variable corresponding to the intermediate injection of ammonia
  • NH3_K off correction coefficient represents SO NH 3 in the flue gas inlet 2;
  • the seventh formula is
  • NH3 NOX is the intermediate ammonia variable corresponding to NOX
  • NOX in is the volume of the inlet NOX unit hour
  • NOX_SV is the denitration target value
  • NH 3cal_corrected_value 2 ⁇ (NH3 SO2 + NH3 NOX ) + NH 3 _L
  • NH3 cal_corrected_value represents the first ammonia amount correction value
  • NH 3 —L represents the outlet smoke leakage ammonia target value
  • the calculating the first ammonia amount target value corresponding to the first ammonia amount correction value according to the preset second calculation model comprises:
  • the NH 3cal_value represents the target value of the first ammonia injection amount, which is a target value of the ammonia injection amount of the single adsorption tower, and the value of the NH 3 correction_value includes the first ammonia amount correction value, and K NH3 represents the The correction coefficient of the first ammonia amount target value, and n represents the number of the adsorption towers.
  • the method before calculating the first ammonia amount target value corresponding to the first ammonia amount correction value according to the preset second calculation model, the method further includes:
  • the method before calculating the first ammonia amount target value corresponding to the first ammonia amount correction value according to the preset second calculation model, the method further includes:
  • the method further includes:
  • a ten formula calculating the second ammonia amount target value, updating the first ammonia amount target value, so that the updated first ammonia amount target value is equal to the second ammonia amount target value;
  • NH 3 set_value_1 represents the second ammonia injection target value
  • K p1 represents a correction coefficient of the second ammonia injection target value preset by the user
  • NH3 NOX represents the ammonia injection intermediate variable corresponding to NOX
  • n represents the adsorption. The number of towers.
  • the method further includes:
  • NH 3 set_value_2 represents the third ammonia amount target value
  • K p2 represents a correction coefficient of the third ammonia amount target value
  • An ammonia injection amount control device for an activated carbon desulfurization and denitration system comprising:
  • a first obtaining module configured to acquire inlet flue gas state data, export flue gas state data, a value of the inlet flue gas flow after temperature and pressure compensation, and an ammonia dilution air flow;
  • the inlet flue gas state data includes an SO of the inlet flue gas 2 concentration, NOx concentration and humidity;
  • the outlet flue gas state data includes an SO 2 concentration of the outlet flue gas;
  • a first calculating module configured to: according to the inlet flue gas state data, the outlet flue gas state data, the value of the inlet flue gas flow after temperature and pressure compensation, the ammonia dilution air flow rate, and preset parameters, according to Presetting a first calculation model, and calculating a first ammonia amount correction value;
  • the preset parameters include a denitration target value, an exit smoke leakage ammonia target value, an NH 3 correction coefficient, a first ammonia injection target value correction coefficient, and The number of adsorption towers;
  • a second calculating module configured to calculate a first ammonia amount target value corresponding to the first ammonia amount correction value according to the preset second calculation model.
  • the method further includes:
  • the adjustment module is configured to calculate a difference between the target value of the first ammonia injection amount and the actual value of the ammonia injection amount, and adjust the opening degree of the ammonia flow regulating valve according to the difference until the difference is less than a preset threshold;
  • the actual value of ammonia injection is detected by an ammonia flow meter.
  • the first calculation module comprises:
  • a first calculating unit configured to calculate, by the first formula, an amount of volume of the inlet NOx unit hour; wherein the first formula is
  • NOX in F11 ⁇ Humidity ⁇ NOX11
  • NOX in represents the volume of the inlet NOx unit hour
  • F11 represents the value of the inlet flue gas flow after temperature and pressure compensation
  • Humidity represents the humidity of the inlet flue gas
  • NOX11 represents the NOX concentration of the inlet flue gas
  • a second calculating unit configured to calculate an outlet flue gas flow rate by the second formula; wherein the second public As
  • OFF_GAS indicates the ammonia dilution air flow rate
  • F12 indicates the outlet flue gas flow rate
  • a third calculating unit configured to calculate, by the third formula, a volume amount of the inlet SO 2 unit hours; wherein the third formula is
  • SO 2in represents the volume of the inlet SO 2 unit hours, and SO 2 11 represents the SO 2 concentration of the inlet flue gas;
  • a fourth calculating unit configured to calculate, by the fourth formula, an amount of volume of the outlet SO 2 unit hours; wherein the fourth formula is
  • SO 2out represents the volume of the outlet SO 2 unit hours
  • SO 2 12 represents the SO 2 concentration of the outlet flue gas
  • a fifth calculating unit configured to calculate a desulfurization rate of the activated carbon desulfurization and denitration system by a fifth formula; wherein the fifth formula is
  • SO 2eff represents the desulfurization rate of the activated carbon desulfurization and denitration system
  • a sixth calculating unit configured to calculate, by a sixth formula, an ammonia injection intermediate variable corresponding to SO 2 , wherein the sixth formula is
  • NH3 SO2 SO 2 represents a variable corresponding to the intermediate injection of ammonia
  • NH3_K off correction coefficient represents SO NH 3 in the flue gas inlet 2;
  • a seventh calculating unit configured to calculate an ammonia injection intermediate variable corresponding to the NOX by the seventh formula, wherein the seventh formula is
  • NH 3NOX is the intermediate ammonia variable corresponding to NOX
  • NOX in represents the volume of the inlet NOX unit hour
  • NOX_SV is the denitration target value
  • An eighth calculating unit configured to calculate, by the eighth formula, the first ammonia amount correction value; wherein the eighth formula is
  • NH 3cal_corrected_value 2 ⁇ (NH 3SO2 + NH 3NOX) + NH 3 _L
  • NH 3cal_corrected_value represents the first ammonia amount correction value
  • NH 3 —L represents the outlet smoke leakage ammonia target value
  • the second calculating module comprises:
  • a ninth calculating unit configured to calculate, by the ninth formula, a first ammonia amount target value corresponding to the first ammonia amount correction value; the ninth formula is
  • the NH 3cal_value represents the target value of the first ammonia injection amount, which is a target value of the ammonia injection amount of the single adsorption tower, and the value of the NH 3 correction_value includes the first ammonia amount correction value, and K NH3 represents the The correction coefficient of the first ammonia amount target value, and n represents the number of the adsorption towers.
  • the method further includes:
  • a first update module configured to determine whether the first ammonia amount correction value exceeds a first preset range, and whether each variable participating in the preset first calculation model exceeds a number corresponding to the variable a preset range; if the first ammonia amount correction value exceeds the first preset range, and/or each variable participating in the preset first calculation model exceeds the variable corresponding to the variable
  • the second preset range is updated, and the first ammonia amount correction value is updated, so that the updated first ammonia amount correction value is equal to a second ammonia amount correction value preset by the user.
  • the method further includes:
  • a second updating module configured to acquire a third ammonia amount correction value input by the user, and update the first ammonia amount correction value, so that the updated first ammonia amount correction value is equal to the third ammonia injection amount The amount of correction.
  • the method further includes:
  • a third update module configured to determine whether the first ammonia amount target value exceeds a third preset range, and whether each variable participating in the preset second calculation model exceeds a number corresponding to the variable a predetermined range; if the first ammonia amount target value exceeds a third preset range, and/or each variable participating in the preset second calculation model exceeds a fourth pre-corresponding to the variable a range, the tenth formula, calculating the second ammonia amount target value, updating the first ammonia amount target value, and The new first ammonia injection target value is equal to the second ammonia injection target value; the tenth formula is
  • NH 3 set_value_1 represents the second ammonia injection target value
  • K p1 represents a correction coefficient of the second ammonia injection target value preset by the user
  • NH3 NOX represents the ammonia injection intermediate variable corresponding to NOX
  • n represents the adsorption. The number of towers.
  • the method further includes:
  • a fourth update module configured to acquire a correction coefficient of a third ammonia injection target value input by the user; and calculate, by the eleventh formula, the third ammonia injection target value, and update the first ammonia injection target value, And causing the updated first ammonia amount target value to be equal to the third ammonia amount target value; the eleventh formula is
  • NH 3 set_value_2 represents the third ammonia amount target value
  • K p2 represents a correction coefficient of the third ammonia amount target value
  • the present invention provides a method and a device for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system compared with the prior art.
  • the technical solution provided by the present invention is based on the inlet flue gas state data (including the SO2 concentration of the inlet flue gas, the NOx concentration and the humidity), the outlet flue gas state data (including the SO2 concentration of the outlet flue gas), the inlet The value of the flue gas flow after the temperature and pressure compensation, the ammonia dilution air flow rate and the preset parameters (including the denitration target value, the export flue gas leakage ammonia target value, the NH 3 correction coefficient, the first ammonia injection target value correction coefficient) And the number of adsorption towers, calculating a first ammonia amount correction value according to a preset first calculation model, and then calculating a first spray corresponding to the first ammonia amount correction value according to a preset second calculation model
  • the target value of the ammonia amount is such that
  • the ammonia injection amount can be achieved to a desired value, so that the desulfurization and denitration effect meets the requirements (national environmental protection standards), and at the same time, the excessive ammonia injection amount can be avoided, thereby effectively saving the operation cost of the enterprise.
  • ammonia injection amount control method and device for the activated carbon desulfurization and denitration system do not need It is necessary for the on-site operator to repeatedly adjust the target value of the ammonia injection amount, and the degree of automation is high, thereby making it more flexible and convenient.
  • FIG. 1 is a structural view of a prior art activated carbon desulfurization and denitration system
  • FIG. 2 is a flow chart of a method for controlling ammonia injection amount of an activated carbon desulfurization and denitration system according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of an ammonia injection amount control device for an activated carbon desulfurization and denitration system according to an embodiment of the present invention.
  • FIG. 1 is a structural diagram of a prior art activated carbon desulfurization and denitration system. As shown in Figure 1, the following is the first introduction to the activated carbon process, and then the ammonia injection workflow is introduced:
  • the activated carbon desulfurization and denitration system is a multi-adsorption tower system.
  • the sintering flue gas is pressurized by the booster fan and sent to the adsorption towers A to D.
  • the SO 2 in the flue gas is activated by the activated carbon in the absorption tower.
  • Adsorbed and catalytically oxidized to H 2 SO 4 while nitrogen oxides react with the injected ammonia gas in the adsorption column to form ammonium nitrate salt, and denitrification reaction between nitrogen oxides and ammonia gas to form nitrogen and water, and the reaction is formed.
  • Both the sulfuric acid and the ammonium nitrate salt are adsorbed by the activated carbon, and the saturated activated carbon is discharged into the hopper of the No. 2 activated carbon conveyor through the discharge round roller and the star type discharge ash valve, and then the material is conveyed to the analytical tower TO2 through the No. 2 conveyor. .
  • the hot air circulating fan CO2 and the heater EO2 are used to heat the nitrogen to 450 ° C, and sent to the analytical tower for indirect heating of the saturated saturated activated carbon.
  • the heated activated carbon releases a high concentration of SO 2 , which is rich in high concentration of SO 2 .
  • the gas is fed into the sulfuric acid system through a pipe to produce a high concentration sulfuric acid product.
  • the activated carbon is discharged to the activated carbon vibrating screen V02 through the star-type ash discharging valve 102C, and the coarse-grained activated carbon is filtered out to the No. 1 activated carbon conveyor through the vibrating screen V02, and the coarse-grain activated carbon is again passed through the No. 1 conveyor. It is input into the adsorption tower for recycling A to D, and the fine granular activated carbon and dust are discharged into the activated carbon sieve.
  • the original flue gas and the purified flue gas are all detected by the CEMS (Continuous Emission Monitoring System) to detect SO 2 , NOX, dust, Parameters such as oxygen content.
  • CEMS Continuous Emission Monitoring System
  • the activated carbon desulfurization and denitration system must inject a certain amount of ammonia gas into the adsorption tower, and the ammonia gas reacts with nitrogen oxides to generate nitrogen and water.
  • the ammonia gas reacts with nitrogen oxides to generate nitrogen and water.
  • Fig. 1 first open the valve of the ammonia gas tank, adjust the ammonia injection amount through the ammonia flow regulating valve FCV, and the ammonia flow meter FIT can display the ammonia flow rate in real time in the local and central control room, and the ammonia gas passes through the ammonia.
  • the gas mixer is mixed with the hot air blown by the ammonia dilution fan to make the NH 3 concentration lower than the lower explosion limit, and the diluted ammonia gas is added to the flue at the inlet of the adsorption tower, and is uniformly injected by the ammonia spray grid.
  • the ammonia dilution blower can increase the ammonia gas by a sufficient amount of dilution air.
  • the main reason for ammonia dilution is that the ammonia concentration of the ammonia gas pipeline exceeds a certain value, which is likely to cause an explosion accident; the second is to fully mix the ammonia gas and the sintering flue gas to increase the denitration rate.
  • FIG. 2 is a flowchart of a method for controlling ammonia injection amount in an activated carbon desulfurization and denitration system according to an embodiment of the present invention.
  • the method for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system provided by the embodiment of the present invention is applied to a controller.
  • the controller is a PLC (Programmable Logic Controller), as shown in FIG. 2 .
  • the method includes:
  • Step S201 obtaining the inlet flue gas state data, the outlet flue gas state data, the value of the inlet flue gas flow after the temperature and pressure compensation, and the ammonia dilution air flow rate;
  • the inlet flue gas state data includes an SO 2 concentration of the inlet flue gas, a NOx concentration, and a humidity; and the outlet flue gas state data includes an SO 2 concentration of the outlet flue gas.
  • the inlet flue gas state data and the outlet flue gas state data are detected by a CEMS system; the value of the inlet flue gas flow after temperature and pressure compensation is detected by an inlet flue gas flow meter; and the ammonia diluted air flow rate is obtained. It was detected by an ammonia dilution air flow meter.
  • Step S202 according to the inlet flue gas state data, the outlet flue gas state data, the inlet flue gas flow rate after the temperature and pressure compensation value, the ammonia dilution air flow rate and the preset parameter, according to the preset first Calculating a model to calculate a first ammonia amount correction value;
  • the preset parameters include a denitration target value, an exit flue gas leakage target value, an NH 3 correction coefficient, a correction coefficient of the first ammonia injection target value, and a number of (systematic) adsorption towers, the preset The parameters are set by the user in advance in the HMI (Human Machine Interface) of the system.
  • HMI Human Machine Interface
  • the step 102 includes:
  • NOX in F11 ⁇ Humidity ⁇ NOX11 (1)
  • NOX in represents the volume of the inlet NOx unit hour
  • F11 represents the value of the inlet flue gas flow after temperature and pressure compensation
  • Humidity represents the humidity of the inlet flue gas
  • NOX11 represents the NOX concentration of the inlet flue gas
  • OFF_GAS indicates the ammonia dilution air flow rate
  • F12 indicates the outlet flue gas flow rate
  • SO 2in represents the volume of the inlet SO 2 unit hours, and SO 2 11 represents the SO 2 concentration of the inlet flue gas;
  • SO 2out represents the volume of the outlet SO 2 unit hours
  • SO 2 12 represents the SO 2 concentration of the outlet flue gas
  • SO 2eff represents the desulfurization rate of the activated carbon desulfurization and denitration system
  • NH3 SO2 SO 2 represents a variable corresponding to the intermediate injection of ammonia
  • NH3_K off correction coefficient represents SO NH 3 in the flue gas inlet 2;
  • the seventh formula is
  • NH 3NOX is the intermediate ammonia variable corresponding to NOX
  • NOX in represents the volume of the inlet NOX unit hour
  • NOX_SV is the denitration target value
  • NH 3cal_corrected_value 2 ⁇ (NH 3SO2 + NH 3NOX) + NH 3 _L (8)
  • NH 3cal_corrected_value represents the first ammonia amount correction value
  • NH 3 —L represents the outlet smoke leakage ammonia target value
  • the preset first calculation model is a calculation model including the calculation process of the above formulas (1) to (8).
  • Step S203 calculating a first ammonia amount target value corresponding to the first ammonia amount correction value according to a preset second calculation model
  • the step S203 includes:
  • the NH 3cal_value represents the target value of the first ammonia injection amount, which is a target value of the ammonia injection amount of the single adsorption tower, and the value of the NH 3 correction_value includes the first ammonia amount correction value, and K NH3 represents the The correction coefficient of the first ammonia amount target value, and n represents the number of the adsorption towers.
  • the preset second calculation model is a calculation model including the calculation process of the above formula (9).
  • the units of each parameter adopt the international standard unit, that is, the basic unit of the international unit system.
  • the technical solution provided by the embodiment of the present invention is based on the inlet flue gas state data (including the SO2 concentration of the inlet flue gas, the NOx concentration and the humidity), the export flue gas state data (including the SO2 concentration of the outlet flue gas), The value of the inlet flue gas flow after temperature and pressure compensation, the ammonia dilution air flow rate and preset parameters (including the denitration target value, the export flue gas leakage ammonia target value, the NH 3 correction coefficient, and the first ammonia injection target value) Correcting coefficient and number of adsorption towers), calculating a first ammonia amount correction value according to a preset first calculation model, and then calculating a number corresponding to the first ammonia amount correction value according to a preset second calculation model a target value of the ammonia injection amount, so that the target value of the first ammonia injection amount corresponds to the state of the current activated carbon desulfurization and denitration system, that is, the target value of the first ammonia
  • the ammonia injection amount can be achieved to a desired value, so that the desulfurization and denitration effect meets the requirements (national environmental protection standards), and at the same time, the excessive ammonia injection amount can be avoided, thereby effectively saving the enterprise operation. cost.
  • the technical solution provided by the embodiment of the invention does not require the on-site operator to repeatedly adjust the target value of the ammonia injection amount, and the degree of automation is high, thereby being more flexible and convenient.
  • the method for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention, before the step S203, further includes:
  • the first preset range is a range of values that is preset by the user to indicate that the first ammonia amount correction value meets the requirements.
  • the value range is determined by the user when the system is in normal operation to achieve a desired desulfurization and denitration effect (calculated), the first ammonia amount correction value, the inlet flue gas amount range, the inlet and outlet flue gas concentration data ranges, and the like.
  • Set a range of ammonia correction values Specifically, each variable participating in the calculation of the preset first calculation model corresponds to one of the second preset ranges, and the second preset range is a normal value interval of the variable.
  • the first ammonia amount correction value exceeds the first preset range, and/or each variable participating in the preset first calculation model exceeds the second preset corresponding to the variable a range, the first ammonia amount correction value is updated, and the updated first ammonia amount correction value is equal to a second ammonia amount correction value preset by a user;
  • the second preset range indicates that the first ammonia amount correction value is an abnormal value that does not meet the requirement, and therefore is not available. At this time, the first ammonia amount correction value needs to be updated, so that the updated The ammonia injection amount correction value is equal to the user's preset second ammonia amount correction value. It should be noted that the second ammonia amount correction value is a preferred value belonging to the first preset range.
  • the value of the first ammonia amount correction value can be modified into a second spray that meets the requirements preset by the user. Ammonia correction value, and then perform subsequent calculations to achieve timely and automatic resolution of the first spray If the ammonia amount correction value is abnormal, the deviation of the first ammonia injection target value obtained by the subsequent calculation is avoided, so that the abnormality of the subsequent actual ammonia injection amount can be avoided.
  • the method for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention, before the step S203, further includes:
  • the user may input the more reasonable the first method obtained by applying the technical solution provided by the first embodiment of the present invention.
  • a correction amount of ammonia spray amount that is, the conventional calculation of the first ammonia amount correction value which is more reasonable in the past is performed, and the actual ammonia injection amount can be made ideal
  • this embodiment is recorded as the third ammonia amount correction value.
  • the third ammonia amount correction value is used as the first ammonia amount correction value to perform subsequent calculation, thereby realizing manual intervention to solve the abnormal situation of the actual ammonia injection amount in time.
  • the method for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention, before the step S204, further includes:
  • the third preset range is a range of values that is preset by the user to indicate that the first ammonia amount target value meets the requirements.
  • each variable participating in the calculation of the preset second calculation model corresponds to one of the fourth preset ranges, and the fourth preset range is a normal value interval of the variable.
  • a ten formula calculating the second ammonia amount target value, updating the first ammonia amount target value, so that the updated first ammonia amount target value is equal to the second ammonia amount target value;
  • NH 3 set_value_1 represents the second ammonia injection target value
  • K p1 represents a correction coefficient of the second ammonia injection target value preset by the user
  • NH3 NOX represents the ammonia injection intermediate variable corresponding to NOX
  • n represents the adsorption. The number of towers.
  • the K p1 is set by the user according to the target value of the first ammonia injection amount when the desulfurization and denitration effect of the previous system is actually ideal.
  • the first ammonia injection target value exceeds a third preset range, and/or each variable participating in the preset second calculation model exceeds a fourth preset range corresponding to the variable , the first ammonia injection target value is an abnormal value that does not meet the requirement, and therefore is not available.
  • the correction coefficient of the target value of the second ammonia injection amount preset by the user is required to be calculated by the tenth formula.
  • the method for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention, before the step S204, further includes:
  • NH 3 set_value_2 represents the third ammonia amount target value
  • K p2 represents a correction coefficient of the third ammonia amount target value
  • the correction coefficient of the third ammonia injection target value input by the user may be acquired, and the third spray
  • the correction coefficient of the ammonia amount target value is a value determined by the prior art application of the technical solution provided by the first embodiment of the present invention in the case where the actual ammonia injection amount is ideal, and then the third ammonia injection amount is directly calculated according to the formula (11).
  • the third ammonia amount target value is used as the first ammonia amount target value, It is sufficient to solve the abnormal situation in which the target value of the first ammonia injection amount is abnormal, that is, the situation that the actual ammonia injection amount abnormality can be solved in time by manual intervention.
  • the technical solution provided by any embodiment of the present invention further includes:
  • the actual value of the ammonia injection amount is detected by an ammonia flow meter.
  • calculating a difference between the target value of the first ammonia injection amount and the actual value of the ammonia injection amount, adjusting an opening degree of the ammonia flow regulating valve according to the difference, until the difference is less than a preset threshold, and implementing a closed loop Control, compared with the open-loop control scheme in the prior art, can achieve more accurate ammonia injection control, and the final ammonia injection amount is more accurate and reasonable.
  • the present invention discloses an ammonia injection amount control device for the activated carbon desulfurization and denitration system.
  • FIG. 3 is a structural diagram of an ammonia injection amount control device for an activated carbon desulfurization and denitration system according to an embodiment of the present invention.
  • the ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by the embodiment of the present invention is applied to a controller.
  • the controller is a PLC.
  • the device includes:
  • the first obtaining module 301 is configured to acquire the inlet flue gas state data, the outlet flue gas state data, the temperature of the inlet flue gas flow after the temperature and pressure compensation, and the ammonia dilution air flow rate;
  • the inlet flue gas state data includes the inlet flue gas.
  • the outlet flue gas state data includes an SO 2 concentration of the outlet flue gas;
  • the first calculating module 302 is configured to: according to the inlet flue gas state data, the outlet flue gas state data, the value of the inlet flue gas flow after temperature and pressure compensation, the ammonia dilution air flow rate, and preset parameters, Calculating the first ammonia amount correction value according to the preset first calculation model;
  • the preset parameters include a denitration target value, an exit smoke leakage ammonia target value, an NH 3 correction coefficient, and a first ammonia injection target value correction coefficient And the number of adsorption towers;
  • the second calculating module 303 is configured to calculate a first ammonia amount target value corresponding to the first ammonia amount correction value according to the preset second calculation model.
  • the ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by the embodiment of the invention can make the ammonia injection amount reach a desired value, so that the desulfurization and denitration effect meets the requirements (national environmental protection standard), and at the same time, the ammonia injection amount can be avoided. So as to effectively save business operating costs.
  • ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by the embodiment of the invention does not require the on-site operator to repeatedly adjust the target value of the ammonia injection amount, and the automation degree is high, thereby being more flexible and convenient.
  • the first calculating module 302 includes:
  • a first calculating unit configured to calculate, by the first formula, an amount of volume of the inlet NOx unit hour; wherein the first formula is
  • NOX in F11 ⁇ Humidity ⁇ NOX11 (1)
  • NOX in represents the volume of the inlet smoke NOx unit hour
  • F11 represents the value of the inlet flue gas flow after temperature and pressure compensation
  • Humidity represents the inlet flue gas humidity
  • NOX11 represents the NOX concentration of the inlet flue gas
  • a second calculating unit configured to calculate an outlet flue gas flow rate by the second formula; wherein the second formula is
  • OFF_GAS indicates the ammonia dilution air flow rate
  • F12 indicates the outlet flue gas flow rate
  • a third calculating unit configured to calculate, by the third formula, a volume amount of the inlet SO 2 unit hours; wherein the third formula is
  • SO 2in represents the volume of the inlet SO 2 unit hours, and SO 2 11 represents the SO 2 concentration of the inlet flue gas;
  • a fourth calculating unit configured to calculate, by the fourth formula, an amount of volume of the outlet SO 2 unit hours; wherein the fourth formula is
  • SO 2out represents the volume of the outlet SO 2 unit hours
  • SO 2 12 represents the SO 2 concentration of the outlet flue gas
  • a fifth calculating unit configured to calculate a desulfurization rate of the activated carbon desulfurization and denitration system by a fifth formula; wherein the fifth formula is
  • SO 2eff represents the desulfurization rate of the activated carbon desulfurization and denitration system
  • a sixth calculating unit configured to calculate, by a sixth formula, an ammonia injection intermediate variable corresponding to SO 2 , wherein the sixth formula is
  • NH3 SO2 SO 2 represents a variable corresponding to the intermediate injection of ammonia
  • NH3_K off correction coefficient represents SO NH 3 in the flue gas inlet 2;
  • a seventh calculating unit configured to calculate an ammonia injection intermediate variable corresponding to the NOX by the seventh formula, wherein the seventh formula is
  • NH 3NOX is the intermediate ammonia variable corresponding to NOX
  • NOX in represents the volume of the inlet NOX unit hour
  • NOX_SV is the denitration target value
  • An eighth calculating unit configured to calculate, by the eighth formula, the first ammonia amount correction value; wherein the eighth formula is
  • NH 3cal_corrected_value 2 ⁇ (NH 3SO2 + NH 3NOX) + NH 3 _L (8)
  • NH 3cal_corrected_value represents the first ammonia amount correction value
  • NH 3 —L represents the outlet smoke leakage ammonia target value
  • the second calculating module 303 includes:
  • a ninth calculating unit configured to calculate, by the ninth formula, a first ammonia amount target value corresponding to the first ammonia amount correction value; the ninth formula is
  • the NH 3cal_value represents the target value of the first ammonia injection amount, which is a target value of the ammonia injection amount of the single adsorption tower, and the value of the NH 3 correction_value includes the first ammonia amount correction value, and K NH3 represents the The correction coefficient of the first ammonia amount target value, and n represents the number of the adsorption towers.
  • the ammonia injection amount control of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention
  • the device also includes:
  • a first update module configured to determine whether the first ammonia amount correction value exceeds a first preset range, and whether each variable participating in the preset first calculation model exceeds a number corresponding to the variable a preset range; if the first ammonia amount correction value exceeds the first preset range, and/or each variable participating in the preset first calculation model exceeds the variable corresponding to the variable
  • the second preset range is updated, and the first ammonia amount correction value is updated, so that the updated first ammonia amount correction value is equal to a second ammonia amount correction value preset by the user.
  • the ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention further includes:
  • a second updating module configured to acquire a third ammonia amount correction value input by the user, and update the first ammonia amount correction value, so that the updated first ammonia amount correction value is equal to the third ammonia injection amount The amount of correction.
  • the ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention further includes:
  • a third update module configured to determine whether the first ammonia amount target value exceeds a third preset range, and whether each variable participating in the preset second calculation model exceeds a number corresponding to the variable a predetermined range; if the first ammonia amount target value exceeds a third preset range, and/or each variable participating in the preset second calculation model exceeds a fourth pre-corresponding to the variable a range, the tenth formula, calculating the second ammonia amount target value, updating the first ammonia amount target value, so that the updated first ammonia amount target value is equal to the second ammonia spray A target value; the tenth formula is
  • NH 3 set_value_1 represents the second ammonia injection target value
  • K p1 represents a correction coefficient of the second ammonia injection target value preset by the user
  • NH3 NOX represents the ammonia injection intermediate variable corresponding to NOX
  • n represents the adsorption. The number of towers.
  • the ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention further includes:
  • a fourth update module configured to acquire a correction coefficient of a third ammonia amount target value input by the user;
  • An eleventh formula calculating the third ammonia amount target value, updating the first ammonia amount target value, so that the updated first ammonia amount target value is equal to the third ammonia amount target value; The eleventh formula is
  • NH 3 set_value_2 represents the third ammonia amount target value
  • K p2 represents a correction coefficient of the third ammonia amount target value
  • the ammonia injection amount control device of the activated carbon desulfurization and denitration system provided by another embodiment of the present invention further includes:
  • the adjustment module is configured to calculate a difference between the target value of the first ammonia injection amount and the actual value of the ammonia injection amount, and adjust the opening degree of the ammonia flow regulating valve according to the difference until the difference is less than a preset threshold;
  • the actual value of ammonia injection is detected by an ammonia flow meter.
  • the present invention provides a method and a device for controlling the ammonia injection amount of the activated carbon desulfurization and denitration system compared with the prior art.
  • the technical solution provided by the present invention is based on the inlet flue gas state data (including the SO2 concentration of the inlet flue gas, the NOx concentration and the humidity), the outlet flue gas state data (including the SO2 concentration of the outlet flue gas), the inlet The value of the flue gas flow after the temperature and pressure compensation, the ammonia dilution air flow rate and the preset parameters (including the denitration target value, the export flue gas leakage ammonia target value, the NH 3 correction coefficient, the first ammonia injection target value correction coefficient) And the number of adsorption towers, calculating a first ammonia amount correction value according to a preset first calculation model, and then calculating a first spray corresponding to the first ammonia amount correction value according to a preset second calculation model
  • the target value of the ammonia amount is such that
  • the ammonia injection amount can be achieved to a desired value, so that the desulfurization and denitration effect meets the requirements (national environmental protection standards), and at the same time, the excessive ammonia injection amount can be avoided, thereby effectively saving the operation cost of the enterprise.
  • ammonia injection amount control method and device for the activated carbon desulfurization and denitration system do not need It is necessary for the on-site operator to repeatedly adjust the target value of the ammonia injection amount, and the degree of automation is high, thereby making it more flexible and convenient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种活性炭脱硫脱硝系统的喷氨量控制方法和装置。方法包括:获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;依据入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值、氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;按照预设第二计算模型,计算与第一喷氨量修正值相对应的第一喷氨量目标值。还包括活性炭脱硫脱硝系统的喷氨量控制装置。

Description

活性炭脱硫脱硝系统的喷氨量控制方法和装置
本申请要求于2016年8月8日提交中国专利局、申请号为201610641484.7、发明名称为“活性炭脱硫脱硝系统的喷氨量控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及控制技术领域,尤其涉及一种活性炭脱硫脱硝系统的喷氨量控制方法和装置。
背景技术
目前烧结工序烟气产生的SO2和NOX(氮氧化物)占钢铁企业排放总量的绝大部分,为了达到国家对烟气SO2和NOX的排放标准,必须对烧结烟气进行脱硫、脱硝处理。对于钢铁工业的烧结机烟气而言,采用活性炭吸附塔和解析塔的脱硫、脱硝装置和工艺是比较理想的。
活性炭吸附塔用于吸附烧结烟气中包括硫氧化物、氮氧化物和二恶英在内的污染物,而解析塔用于活性炭的热再生。活性炭法脱硫具有脱硫率高、可同时实现脱硝、脱二噁英、除尘以及不产生废水废渣等优点,是极有前景的烟气净化方法。通常,在吸附塔内喷入一定量的氨气,使氨气与氮氧化物在一定的温度下进行化学反应,产生氮气和水,从而达到脱硝的目的。喷氨量的选取既要达到系统脱硝目标值,又不能喷氨过多引起烟气出口的氨逃逸从而不符合国家的环保标准,因此,我们需要对系统喷氨量进行合理控制。
现有技术中,一般都是操作人员根据自身经验手动调节(活性炭脱硫脱硝系统的)喷氨量的大小,具体为操作人员凭经验手动多次修改喷氨量目标值,直到脱硫脱硝效果达到要求为止,可靠性较差,系统很难获取到最佳喷氨量导致无法达到理想的脱硫脱硝效果,即喷氨量过多会浪费氨气,增加运行成本,甚至带入空气引起二次污染,而喷氨量不够则无法达到要求的脱硫脱硝效果。
发明内容
有鉴于此,本发明提供了一种活性炭脱硫脱硝系统的喷氨量控制方法和装置,能够使喷氨量达到较为理想的值,从而使脱硫脱硝效果符合要求(国家环保标准),同时又能够节省企业运营成本。
为实现上述目的,本发明提供如下技术方案:
一种活性炭脱硫脱硝系统的喷氨量控制方法,包括:
获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;所述入口烟气状态数据包括入口烟气的SO2浓度、NOX浓度和湿度;所述出口烟气状态数据包括出口烟气的SO2浓度;
依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;所述预设参数包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量;
按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值。
优选的,还包括:
计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值;所述喷氨量实际值由氨流量计检测得到。
优选的,所述依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值,包括:
由第一公式,计算入口NOX单位小时的体积量;其中,所述第一公式为,
NOXin=F11×Humidity×NOX11
其中,NOXin表示入口NOX单位小时的体积量,F11表示入口烟气流量经温压补偿后的值,Humidity表示入口烟气的湿度,NOX11表示入口烟气的NOX浓度;
由第二公式,计算出口烟气流量;其中,所述第二公式为,
F12=F11+OFF_GAS
其中,OFF_GAS表示氨稀释空气流量,F12表示出口烟气流量;
由第三公式,计算入口SO2单位小时的体积量;其中,所述第三公式为,
SO2in=F11×Humidity×SO211
其中,SO2in表示入口SO2单位小时的体积量,SO211表示入口烟气的SO2浓度;
由第四公式,计算出口SO2单位小时的体积量;其中,所述第四公式为,
SO2out=F12×Humidity×SO212
其中,SO2out表示出口SO2单位小时的体积量,SO212表示出口烟气的SO2浓度;
由第五公式,计算所述活性炭脱硫脱硝系统的脱硫率;其中,所述第五公式为,
Figure PCTCN2017081613-appb-000001
其中,SO2eff表示所述活性炭脱硫脱硝系统的脱硫率;
由第六公式计算SO2对应的喷氨中间变量,由第七公式计算NOX对应的喷氨中间变量,其中,所述第六公式为,
Figure PCTCN2017081613-appb-000002
其中,NH3SO2表示SO2对应的喷氨中间变量,NH3_K表示脱去入口烟气中SO2的NH3的修正系数;
所述第七公式为,
Figure PCTCN2017081613-appb-000003
其中,NH3NOX为NOX对应的喷氨中间变量,NOXin表示入口NOX单位小时的体积量,NOX_SV为脱硝目标值;
由第八公式,计算所述第一喷氨量修正值;其中,所述第八公式为,
NH3cal_corrected_value=2×(NH3SO2+NH3NOX)+NH3_L
其中,NH3cal_corrected_value表示所述第一喷氨量修正值,NH3_L表示出口烟气漏氨目标值。
优选的,所述按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值,包括:
由第九公式,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值;所述第九公式为,
Figure PCTCN2017081613-appb-000004
其中,NH3cal_value表示所述第一喷氨量目标值,为单台所述吸附塔喷氨量的目标值,NH3correct_value的取值包括所述第一喷氨量修正值,KNH3表示所述第一喷氨量目标值的修正系数,n表示所述吸附塔的数量。
优选的,所述按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值之前,还包括:
判断所述第一喷氨量修正值是否超出第一预设范围,以及参与所述预设第一计算模型计算的每一变量是否超出与所述变量相对应的第二预设范围;
若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值。
优选的,所述按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值之前,还包括:
获取用户输入的第三喷氨量修正值,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于所述第三喷氨量修正值。
优选的,还包括:
判断所述第一喷氨量目标值是否超出第三预设范围,以及参与所述预设第二计算模型计算的每一变量是否超出与所述变量相对应的第四预设范围;
若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,由第十公式,计算所述第二喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第二喷氨量目标值;所述第十公式为,
Figure PCTCN2017081613-appb-000005
其中,NH3set_value_1表示所述第二喷氨量目标值,Kp1表示用户预先设定的第二喷氨量目标值的修正系数,NH3NOX表示NOX对应的喷氨中间变量,n表示所述吸附塔的数量。
优选的,还包括:
获取用户输入的第三喷氨量目标值的修正系数;
由第十一公式,计算所述第三喷氨量目标值,更新所述第一喷氨量目标值, 使更新后的所述第一喷氨量目标值等于所述第三喷氨量目标值;所述第十一公式为,
Figure PCTCN2017081613-appb-000006
其中,NH3set_value_2表示所述第三喷氨量目标值,Kp2表示所述第三喷氨量目标值的修正系数。
一种活性炭脱硫脱硝系统的喷氨量控制装置,包括:
第一获取模块,用于获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;所述入口烟气状态数据包括入口烟气的SO2浓度、NOX浓度和湿度;所述出口烟气状态数据包括出口烟气的SO2浓度;
第一计算模块,用于依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;所述预设参数包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量;
第二计算模块,用于按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值。
优选的,还包括:
调节模块,用于计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值;所述喷氨量实际值由氨流量计检测得到。
优选的,所述第一计算模块包括:
第一计算单元,用于由第一公式,计算入口NOX单位小时的体积量;其中,所述第一公式为,
NOXin=F11×Humidity×NOX11
其中,NOXin表示入口NOX单位小时的体积量,F11表示入口烟气流量经温压补偿后的值,Humidity表示入口烟气的湿度,NOX11表示入口烟气的NOX浓度;
第二计算单元,用于由第二公式,计算出口烟气流量;其中,所述第二公 式为,
F12=F11+OFF_GAS
其中,OFF_GAS表示氨稀释空气流量,F12表示出口烟气流量;
第三计算单元,用于由第三公式,计算入口SO2单位小时的体积量;其中,所述第三公式为,
SO2in=F11×Humidity×SO211
其中,SO2in表示入口SO2单位小时的体积量,SO211表示入口烟气的SO2浓度;
第四计算单元,用于由第四公式,计算出口SO2单位小时的体积量;其中,所述第四公式为,
SO2out=F12×Humidity×SO212
其中,SO2out表示出口SO2单位小时的体积量,SO212表示出口烟气的SO2浓度;
第五计算单元,用于由第五公式,计算所述活性炭脱硫脱硝系统的脱硫率;其中,所述第五公式为,
Figure PCTCN2017081613-appb-000007
其中,SO2eff表示所述活性炭脱硫脱硝系统的脱硫率;
第六计算单元,用于由第六公式计算SO2对应的喷氨中间变量,其中,所述第六公式为,
Figure PCTCN2017081613-appb-000008
其中,NH3SO2表示SO2对应的喷氨中间变量,NH3_K表示脱去入口烟气中SO2的NH3的修正系数;
第七计算单元,用于由第七公式计算NOX对应的喷氨中间变量,其中,所述第七公式为,
Figure PCTCN2017081613-appb-000009
其中,NH3NOX为NOX对应的喷氨中间变量,NOXin表示入口NOX单位小时的体积量,NOX_SV为脱硝目标值;
第八计算单元,用于由第八公式,计算所述第一喷氨量修正值;其中,所述第八公式为,
NH3cal_corrected_value=2×(NH3SO2+NH3NOX)+NH3_L
其中,NH3cal_corrected_value表示所述第一喷氨量修正值,NH3_L表示出口烟气漏氨目标值。
优选的,所述第二计算模块包括:
第九计算单元,用于由第九公式,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值;所述第九公式为,
Figure PCTCN2017081613-appb-000010
其中,NH3cal_value表示所述第一喷氨量目标值,为单台所述吸附塔喷氨量的目标值,NH3correct_value的取值包括所述第一喷氨量修正值,KNH3表示所述第一喷氨量目标值的修正系数,n表示所述吸附塔的数量。
优选的,还包括:
第一更新模块,用于判断所述第一喷氨量修正值是否超出第一预设范围,以及参与所述预设第一计算模型计算的每一变量是否超出与所述变量相对应的第二预设范围;若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值。
优选的,还包括:
第二更新模块,用于获取用户输入的第三喷氨量修正值,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于所述第三喷氨量修正值。
优选的,还包括:
第三更新模块,用于判断所述第一喷氨量目标值是否超出第三预设范围,以及参与所述预设第二计算模型计算的每一变量是否超出与所述变量相对应的第四预设范围;若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,由第十公式,计算所述第二喷氨量目标值,更新所述第一喷氨量目标值,使更 新后的所述第一喷氨量目标值等于所述第二喷氨量目标值;所述第十公式为,
Figure PCTCN2017081613-appb-000011
其中,NH3set_value_1表示所述第二喷氨量目标值,Kp1表示用户预先设定的第二喷氨量目标值的修正系数,NH3NOX表示NOX对应的喷氨中间变量,n表示所述吸附塔的数量。
优选的,还包括:
第四更新模块,用于获取用户输入的第三喷氨量目标值的修正系数;由第十一公式,计算所述第三喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第三喷氨量目标值;所述第十一公式为,
Figure PCTCN2017081613-appb-000012
其中,NH3set_value_2表示所述第三喷氨量目标值,Kp2表示所述第三喷氨量目标值的修正系数。
经由上述的技术方案可知,与现有技术相比,本发明提供了一种活性炭脱硫脱硝系统的喷氨量控制方法和装置。本发明提供的技术方案,依据所述入口烟气状态数据(包括入口烟气的SO2浓度、NOX浓度和湿度)、所述出口烟气状态数据(包括出口烟气的SO2浓度)、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数(包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量),按照预设第一计算模型,计算第一喷氨量修正值,然后按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值,使所述第一喷氨量目标值与当前活性炭脱硫脱硝系统的状态相对应,即所述第一喷氨量目标值是基于当前活性炭脱硫脱硝系统的烟气数据(入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值、氨稀释空气流量和预设参数)计算得到的喷氨量目标值,因此,相对于现有技术中现场操作人员凭经验手动直接设定的喷氨量目标值要准确很多,不再需要操作人员凭经验手动多次修改喷氨量目标值。因此,应用本发明提供的技术方案,能够使喷氨量达到较为理想的值,从而使脱硫脱硝效果符合要求(国家环保标准),同时能够避免喷氨量过多,从而有效节省企业运营成本。
另外,本发明提供的活性炭脱硫脱硝系统的喷氨量控制方法和装置,不需 要现场操作人员反复调节喷氨量目标值,自动化程度高,从而更加灵活和方便。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术中活性炭脱硫脱硝系统的结构图;
图2为本发明实施例提供的一种活性炭脱硫脱硝系统的喷氨量控制方法的流程图;
图3为本发明实施例提供的一种活性炭脱硫脱硝系统的喷氨量控制装置的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在对本发明实施例的技术方案进行阐述之前,首先对现有技术中的活性炭脱硫脱硝系统做简要介绍。
请参阅图1,图1为现有技术中活性炭脱硫脱硝系统的结构图。如图1所示,下面首先对活性炭工艺流程进行介绍,然后再对喷氨工作流程进行介绍:
(1)活性炭工艺流程介绍
如图1所示,活性炭脱硫脱硝系统是多吸附塔系统,除尘后的烧结烟气经过增压风机增压后送入到吸附塔A~D,烟气中的SO2在吸收塔内被活性炭吸附并且被催化氧化为H2SO4,同时氮氧化物与喷入的氨气在吸附塔内反应生成硝酸铵盐,以及氮氧化物与氨气发生脱硝反应,生成氮气和水,反应生成的硫酸与硝酸铵盐均被活性炭吸附,吸附饱和的活性炭通过排料圆辊及星型卸灰阀,排放到2号活性炭输送机的料斗内,然后通过2号输送机把料输送到解析 塔TO2。
通过热风循环风机CO2和加热器EO2把氮气加热到450℃,送入到解析塔,对吸附饱和的活性炭进行间接加热,加热后的活性炭释放出高浓度的SO2,富含高浓度的SO2气体通过管道送入到制硫酸系统,可以生产出高浓度硫酸产品。经过加热解析后的活性炭通过星型卸灰阀102C,卸到活性炭振动筛V02上,通过振动筛V02,筛选出粗颗粒活性炭排放到1号活性炭输送机上,通过1号输送机把粗颗粒活性炭再次输入到吸附塔里A~D循环使用,细颗粒活性炭和粉尘外排到活性炭筛斗里。
如图1所示,原烟气和净化烟气(通过吸附塔脱硫脱硝后出口的烟气)都通过CEMS(Continuous Emission Monitoring System,烟气自动监控系统)检测其中的SO2,NOX,粉尘,含氧量等参数。
(2)喷氨工作流程介绍
活性炭脱硫脱硝系统要达到脱硝的目的,必须在吸附塔喷入一定量的氨气,氨气与氮氧化物发生化学反应,生成氮气和水。如图1所示,首先打开氨气罐的阀门,通过氨流量调节阀FCV来调节喷氨量的大小,氨流量计FIT可以在本地和中控室实时显示氨流量的大小,氨气通过“氨气混合器”与氨稀释风机鼓入的热风混合,使NH3浓度低于爆炸下限,稀释后的氨气在吸附塔入口处加入烟道,由喷氨格栅均匀喷入。
通过氨稀释风机能够给氨气提高足够量的稀释空气。氨稀释的主要原因一是氨气管路的氨气浓度超过一定值,容易引起爆炸事故;二是为了氨气与烧结烟气充分混合,提高脱硝率。
具体的,活性炭脱硫脱硝系统中的脱硫和脱硝化学反应如下:
①脱硫反应
a.化学吸附
SO2+O2→SO3
SO3+n H2O→H2SO4+(n-1)H2O
b.向硫酸盐转化(靠NH3/SO2)
H2SO4+NH3→NH4HSO4
NH4HSO4+NH3→(NH4)2SO4
②脱硝反应
NO+NH3+1/2O2→N2+3/2H2O
下面对本发明实施例的技术方案进行详细阐述:
实施例一
请参阅图2,图2为本发明实施例提供的一种活性炭脱硫脱硝系统的喷氨量控制方法的流程图。本发明实施例提供的活性炭脱硫脱硝系统的喷氨量控制方法,应用于控制器,可选的,所述控制器为PLC(Programmable Logic Controller,可编程逻辑控制器),如图2所示,该方法包括:
步骤S201,获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;
具体的,所述入口烟气状态数据包括入口烟气的SO2浓度、NOX浓度和湿度;所述出口烟气状态数据包括出口烟气的SO2浓度。
具体的,所述入口烟气状态数据、出口烟气状态数据由CEMS系统检测得到;所述入口烟气流量经温压补偿后的值由入口烟气流量计检测得到;所述氨稀释空气流量由氨稀释空气流量计检测得到。
步骤S202,依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;
具体的,所述预设参数包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和(系统的)吸附塔的数量,所述预设参数由用户预先在系统的HMI(Human Machine Interface,人机界面)中设置。
可选的,所述步骤102包括:
由第一公式,计算入口NOX单位小时的体积量;其中,所述第一公式为,
NOXin=F11×Humidity×NOX11         (1)
其中,NOXin表示入口NOX单位小时的体积量,F11表示入口烟气流量经温压补偿后的值,Humidity表示入口烟气的湿度,NOX11表示入口烟气的NOX浓度;
由第二公式,计算出口烟气流量;其中,所述第二公式为,
F12=F11+OFF_GAS                 (2)
其中,OFF_GAS表示氨稀释空气流量,F12表示出口烟气流量;
由第三公式,计算入口SO2单位小时的体积量;其中,所述第三公式为,
SO2in=F11×Humidity×SO211           (3)
其中,SO2in表示入口SO2单位小时的体积量,SO211表示入口烟气的SO2浓度;
由第四公式,计算出口SO2单位小时的体积量;其中,所述第四公式为,
SO2out=F12×Humidity×SO212         (4)
其中,SO2out表示出口SO2单位小时的体积量,SO212表示出口烟气的SO2浓度;
由第五公式,计算所述活性炭脱硫脱硝系统的脱硫率;其中,所述第五公式为,
Figure PCTCN2017081613-appb-000013
其中,SO2eff表示所述活性炭脱硫脱硝系统的脱硫率;
由第六公式计算SO2对应的喷氨中间变量,由第七公式计算NOX对应的喷氨中间变量,其中,所述第六公式为,
Figure PCTCN2017081613-appb-000014
其中,NH3SO2表示SO2对应的喷氨中间变量,NH3_K表示脱去入口烟气中SO2的NH3的修正系数;
所述第七公式为,
Figure PCTCN2017081613-appb-000015
其中,NH3NOX为NOX对应的喷氨中间变量,NOXin表示入口NOX单位小时的体积量,NOX_SV为脱硝目标值;
由第八公式,计算所述第一喷氨量修正值;其中,所述第八公式为,
NH3cal_corrected_value=2×(NH3SO2+NH3NOX)+NH3_L     (8)
其中,NH3cal_corrected_value表示所述第一喷氨量修正值,NH3_L表示出口烟气漏氨目标值。
也就是说,所述预设第一计算模型为包括上述(1)~(8)式计算过程的计算模型。
步骤S203,按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值;
具体的,所述步骤S203包括:
由第九公式,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值;所述第九公式为,
Figure PCTCN2017081613-appb-000016
其中,NH3cal_value表示所述第一喷氨量目标值,为单台所述吸附塔喷氨量的目标值,NH3correct_value的取值包括所述第一喷氨量修正值,KNH3表示所述第一喷氨量目标值的修正系数,n表示所述吸附塔的数量。
也就是说,所述预设第二计算模型为包括上述(9)式计算过程的计算模型。
需要说明的是,本发明实施例提供的技术方案,各参量的单位均采用国际标准单位,即国际单位制基本单位。
本发明实施例提供的技术方案,依据所述入口烟气状态数据(包括入口烟气的SO2浓度、NOX浓度和湿度)、所述出口烟气状态数据(包括出口烟气的SO2浓度)、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数(包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量),按照预设第一计算模型,计算第一喷氨量修正值,然后按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值,使所述第一喷氨量目标值与当前活性炭脱硫脱硝系统的状态相对应,即所述第一喷氨量目标值是基于当前活性炭脱硫脱硝系统的烟气数据(入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值、氨稀释空气流量和预设参数)计算得到的喷氨量目标值,因此,相对于现有技术中现场操作人员凭经验手动直接设定的喷氨量目标值要准确很多,不再需要操作人员凭经验手动多次修改喷氨量目标值。因此,应用本发明实施例提供的技术方案,能够使喷氨量达到较为理想的值,从而使脱硫脱硝效果符合 要求(国家环保标准),同时能够避免喷氨量过多,从而有效节省企业运营成本。
另外,本发明实施例提供的技术方案,不需要现场操作人员反复调节喷氨量目标值,自动化程度高,从而更加灵活和方便。
实施例二
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制方法,所述步骤S203之前,还包括:
判断所述第一喷氨量修正值是否超出第一预设范围,以及参与所述预设第一计算模型计算的每一变量是否超出与所述变量相对应的第二预设范围;
具体的,所述第一预设范围是由用户预先设定的一个表征所述第一喷氨量修正值符合要求的数值范围。该数值范围由用户参考系统正常运行达到比较理想的脱硫脱硝效果时(计算得到)的所述第一喷氨量修正值以及入口烟气量范围、入口和出口烟气的浓度数据范围等,所设定的一个喷氨量修正值范围。具体的,参与所述预设第一计算模型计算的每一变量各自对应一个所述第二预设范围,所述第二预设范围是所述变量的正常取值区间。
若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值;
具体的,若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,则说明所述第一喷氨量修正值为不符合要求的异常数值,因此不可用,此时,需要更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值。需要说明的是,所述第二喷氨量修正值是属于所述第一预设范围的优选数值。
因此,本实施例提供的技术方案,若发现所述第一喷氨量修正值异常,能够及时将所述第一喷氨量修正值的数值修改为用户预先设定的符合要求的第二喷氨量修正值,然后再执行后续计算,从而实现及时和自动解决所述第一喷 氨量修正值出现异常的情况,避免后续计算得到的所述第一喷氨量目标值出现偏差,从而能够避免后续实际喷氨量出现异常。
实施例三
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制方法,所述步骤S203之前,还包括:
获取用户输入的第三喷氨量修正值,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于所述第三喷氨量修正值。
具体的,如果执行本发明实施例一或实施例二提供的技术方案后,发现实际喷氨量异常,那么用户可以输入之前应用本发明实施例一提供的技术方案得到的较为合理的所述第一喷氨量修正值(即以往应用该较为合理的所述第一喷氨量修正值进行后续计算,能够使实际喷氨量比较理想),本实施例记为第三喷氨量修正值,以第三喷氨量修正值作为所述第一喷氨量修正值来执行后续计算,从而实现人工干预及时解决实际喷氨量异常的情况。
实施例四
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制方法,所述步骤S204之前,还包括:
判断所述第一喷氨量目标值是否超出第三预设范围,以及参与所述预设第二计算模型计算的每一变量是否超出与所述变量相对应的第四预设范围;
具体的,所述第三预设范围是由用户预先设定的一个表征所述第一喷氨量目标值符合要求的数值范围。具体的,参与所述预设第二计算模型计算的每一变量各自对应一个所述第四预设范围,所述第四预设范围是所述变量的正常取值区间。
若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,由第十公式,计算所述第二喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第二喷氨量目标值;所述第十公式为,
Figure PCTCN2017081613-appb-000017
其中,NH3set_value_1表示所述第二喷氨量目标值,Kp1表示用户预先设定的第二喷氨量目标值的修正系数,NH3NOX表示NOX对应的喷氨中间变量,n表示所述吸附塔的数量。
具体的,所述Kp1由用户根据之前系统实际运行过程中脱硫脱硝效果比较理想时的第一喷氨量目标值来设定。
具体的,若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,则说明所述第一喷氨量目标值为不符合要求的异常数值,因此不可用,此时,需要以第十公式结合用户预先设定的第二喷氨量目标值的修正系数,计算符合要求(位于所述第三预设范围内)的所述第二喷氨量目标值,然后更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于符合要求的所述第二喷氨量目标值,从而实现及时和自动解决所述第一喷氨量目标值出现异常的情况,能够避免后续实际喷氨量出现异常。
实施例五
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制方法,所述步骤S204之前,还包括:
获取用户输入的第三喷氨量目标值的修正系数;
由第十一公式,计算所述第三喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第三喷氨量目标值;所述第十一公式为,
Figure PCTCN2017081613-appb-000018
其中,NH3set_value_2表示所述第三喷氨量目标值,Kp2表示所述第三喷氨量目标值的修正系数。
具体的,如果执行本发明上述任一实施例提供的技术方案后,仍发现实际喷氨量异常,那么可以获取用户输入的所述第三喷氨量目标值的修正系数,所述第三喷氨量目标值的修正系数是由之前应用本发明实施例一提供的技术方案在实际喷氨量比较理想的情况下所确定的数值,然后直接按照(11)式计算所述第三喷氨量目标值,以第三喷氨量目标值作为所述第一喷氨量目标值,能 够解决所述第一喷氨量目标值出现异常的情况,即能够实现人工干预及时解决实际喷氨量异常的情况。
可选的,本发明任一实施例提供的技术方案,还包括:
计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值;
具体的,所述喷氨量实际值由氨流量计检测得到。
具体的,计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值,实现了闭环控制,相对于现有技术中的开环控制方案,能够实现更加精确的喷氨量控制,并使最终的喷氨量更加准确合理。
为了更加全面地阐述本发明提供的技术方案,对应于本发明实施例提供的活性炭脱硫脱硝系统的喷氨量控制方法,本发明公开一种活性炭脱硫脱硝系统的喷氨量控制装置。
请参阅图3,图3为本发明实施例提供的一种活性炭脱硫脱硝系统的喷氨量控制装置的结构图。本发明实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,应用于控制器,可选的,所述控制器为PLC,如图3所示,该装置包括:
第一获取模块301,用于获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;所述入口烟气状态数据包括入口烟气的SO2浓度、NOX浓度和湿度;所述出口烟气状态数据包括出口烟气的SO2浓度;
第一计算模块302,用于依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;所述预设参数包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量;
第二计算模块303,用于按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值。
应用本发明实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,能够使喷氨量达到较为理想的值,从而使脱硫脱硝效果符合要求(国家环保标准),同时能够避免喷氨量过多,从而有效节省企业运营成本。
另外,本发明实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,不需要现场操作人员反复调节喷氨量目标值,自动化程度高,从而更加灵活和方便。
具体的,所述第一计算模块302包括:
第一计算单元,用于由第一公式,计算入口NOX单位小时的体积量;其中,所述第一公式为,
NOXin=F11×Humidity×NOX11         (1)
其中,NOXin表示入口烟气NOX单位小时的体积量,F11表示入口烟气流量经温压补偿后的值,Humidity表示入口烟气的湿度,NOX11表示入口烟气的NOX浓度;
第二计算单元,用于由第二公式,计算出口烟气流量;其中,所述第二公式为,
F12=F11+OFF_GAS            (2)
其中,OFF_GAS表示氨稀释空气流量,F12表示出口烟气流量;
第三计算单元,用于由第三公式,计算入口SO2单位小时的体积量;其中,所述第三公式为,
SO2in=F11×Humidity×SO211          (3)
其中,SO2in表示入口SO2单位小时的体积量,SO211表示入口烟气的SO2浓度;
第四计算单元,用于由第四公式,计算出口SO2单位小时的体积量;其中,所述第四公式为,
SO2out=F12×Humidity×SO212        (4)
其中,SO2out表示出口SO2单位小时的体积量,SO212表示出口烟气的SO2浓度;
第五计算单元,用于由第五公式,计算所述活性炭脱硫脱硝系统的脱硫率;其中,所述第五公式为,
Figure PCTCN2017081613-appb-000019
其中,SO2eff表示所述活性炭脱硫脱硝系统的脱硫率;
第六计算单元,用于由第六公式计算SO2对应的喷氨中间变量,其中,所述第六公式为,
Figure PCTCN2017081613-appb-000020
其中,NH3SO2表示SO2对应的喷氨中间变量,NH3_K表示脱去入口烟气中SO2的NH3的修正系数;
第七计算单元,用于由第七公式计算NOX对应的喷氨中间变量,其中,所述第七公式为,
Figure PCTCN2017081613-appb-000021
其中,NH3NOX为NOX对应的喷氨中间变量,NOXin表示入口NOX单位小时的体积量,NOX_SV为脱硝目标值;
第八计算单元,用于由第八公式,计算所述第一喷氨量修正值;其中,所述第八公式为,
NH3cal_corrected_value=2×(NH3SO2+NH3NOX)+NH3_L      (8)
其中,NH3cal_corrected_value表示所述第一喷氨量修正值,NH3_L表示出口烟气漏氨目标值。
具体的,所述第二计算模块303包括:
第九计算单元,用于由第九公式,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值;所述第九公式为,
Figure PCTCN2017081613-appb-000022
其中,NH3cal_value表示所述第一喷氨量目标值,为单台所述吸附塔喷氨量的目标值,NH3correct_value的取值包括所述第一喷氨量修正值,KNH3表示所述第一喷氨量目标值的修正系数,n表示所述吸附塔的数量。
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制 装置,还包括:
第一更新模块,用于判断所述第一喷氨量修正值是否超出第一预设范围,以及参与所述预设第一计算模型计算的每一变量是否超出与所述变量相对应的第二预设范围;若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值。
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,还包括:
第二更新模块,用于获取用户输入的第三喷氨量修正值,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于所述第三喷氨量修正值。
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,还包括:
第三更新模块,用于判断所述第一喷氨量目标值是否超出第三预设范围,以及参与所述预设第二计算模型计算的每一变量是否超出与所述变量相对应的第四预设范围;若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,由第十公式,计算所述第二喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第二喷氨量目标值;所述第十公式为,
Figure PCTCN2017081613-appb-000023
其中,NH3set_value_1表示所述第二喷氨量目标值,Kp1表示用户预先设定的第二喷氨量目标值的修正系数,NH3NOX表示NOX对应的喷氨中间变量,n表示所述吸附塔的数量。
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,还包括:
第四更新模块,用于获取用户输入的第三喷氨量目标值的修正系数;由第 十一公式,计算所述第三喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第三喷氨量目标值;所述第十一公式为,
Figure PCTCN2017081613-appb-000024
其中,NH3set_value_2表示所述第三喷氨量目标值,Kp2表示所述第三喷氨量目标值的修正系数。
可选的,本发明另外一个实施例提供的活性炭脱硫脱硝系统的喷氨量控制装置,还包括:
调节模块,用于计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值;所述喷氨量实际值由氨流量计检测得到。
经由上述的技术方案可知,与现有技术相比,本发明提供了一种活性炭脱硫脱硝系统的喷氨量控制方法和装置。本发明提供的技术方案,依据所述入口烟气状态数据(包括入口烟气的SO2浓度、NOX浓度和湿度)、所述出口烟气状态数据(包括出口烟气的SO2浓度)、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数(包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量),按照预设第一计算模型,计算第一喷氨量修正值,然后按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值,使所述第一喷氨量目标值与当前活性炭脱硫脱硝系统的状态相对应,即所述第一喷氨量目标值是基于当前活性炭脱硫脱硝系统的烟气数据(入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值、氨稀释空气流量和预设参数)计算得到的喷氨量目标值,因此,相对于现有技术中现场操作人员凭经验手动直接设定的喷氨量目标值要准确很多,不再需要操作人员凭经验手动多次修改喷氨量目标值。因此,应用本发明提供的技术方案,能够使喷氨量达到较为理想的值,从而使脱硫脱硝效果符合要求(国家环保标准),同时能够避免喷氨量过多,从而有效节省企业运营成本。
另外,本发明提供的活性炭脱硫脱硝系统的喷氨量控制方法和装置,不需 要现场操作人员反复调节喷氨量目标值,自动化程度高,从而更加灵活和方便。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种活性炭脱硫脱硝系统的喷氨量控制方法,其特征在于,包括:
    获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;所述入口烟气状态数据包括入口烟气的SO2浓度、NOX浓度和湿度;所述出口烟气状态数据包括出口烟气的SO2浓度;
    依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;所述预设参数包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量;
    按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值;所述喷氨量实际值由氨流量计检测得到。
  3. 根据权利要求1所述的方法,其特征在于,所述依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值,包括:
    由第一公式,计算入口NOX单位小时的体积量;其中,所述第一公式为,NOXin=F11×Humidity×NOX11
    其中,NOXin表示入口NOX单位小时的体积量,F11表示入口烟气流量经温压补偿后的值,Humidity表示入口烟气的湿度,NOX11表示入口烟气的NOX浓度;
    由第二公式,计算出口烟气流量;其中,所述第二公式为,
    F12=F11+OFF_GAS
    其中,OFF_GAS表示氨稀释空气流量,F12表示出口烟气流量;
    由第三公式,计算入口SO2单位小时的体积量;其中,所述第三公式为, SO2in=F11×Humidity×SO211
    其中,SO2in表示入口SO2单位小时的体积量,SO211表示入口烟气的SO2浓度;
    由第四公式,计算出口SO2单位小时的体积量;其中,所述第四公式为,SO2out=F12×Humidity×SO212
    其中,SO2out表示出口SO2单位小时的体积量,SO212表示出口烟气的SO2浓度;
    由第五公式,计算所述活性炭脱硫脱硝系统的脱硫率;其中,所述第五公式为,
    Figure PCTCN2017081613-appb-100001
    其中,SO2eff表示所述活性炭脱硫脱硝系统的脱硫率;
    由第六公式计算SO2对应的喷氨中间变量,由第七公式计算NOX对应的喷氨中间变量,其中,所述第六公式为,
    Figure PCTCN2017081613-appb-100002
    其中,NH3SO2表示SO2对应的喷氨中间变量,NH3_K表示脱去入口烟气中SO2的NH3的修正系数;
    所述第七公式为,
    Figure PCTCN2017081613-appb-100003
    其中,NH3NOX为NOX对应的喷氨中间变量,NOXin表示入口NOX单位小时的体积量,NOX_SV为脱硝目标值;
    由第八公式,计算所述第一喷氨量修正值;其中,所述第八公式为,
    NH3cal_corrected_value=2×(NH3SO2+NH3NOX)+NH3_L
    其中,NH3cal_corrected_value表示所述第一喷氨量修正值,NH3_L表示出口烟气漏氨目标值。
  4. 根据权利要求1所述的方法,其特征在于,所述按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值,包括:
    由第九公式,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值; 所述第九公式为,
    Figure PCTCN2017081613-appb-100004
    其中,NH3cal_value表示所述第一喷氨量目标值,为单台所述吸附塔喷氨量的目标值,NH3correct_value的取值包括所述第一喷氨量修正值,KNH3表示所述第一喷氨量目标值的修正系数,n表示所述吸附塔的数量。
  5. 根据权利要求1所述的方法,其特征在于,所述按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值之前,还包括:
    判断所述第一喷氨量修正值是否超出第一预设范围,以及参与所述预设第一计算模型计算的每一变量是否超出与所述变量相对应的第二预设范围;
    若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值。
  6. 根据权利要求1或5所述的方法,其特征在于,所述按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值之前,还包括:
    获取用户输入的第三喷氨量修正值,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于所述第三喷氨量修正值。
  7. 根据权利要求1或5所述的方法,其特征在于,还包括:
    判断所述第一喷氨量目标值是否超出第三预设范围,以及参与所述预设第二计算模型计算的每一变量是否超出与所述变量相对应的第四预设范围;
    若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,由第十公式,计算所述第二喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第二喷氨量目标值;所述第十公式为,
    Figure PCTCN2017081613-appb-100005
    其中,NH3set_value_1表示所述第二喷氨量目标值,Kp1表示用户预先设定的第二喷氨量目标值的修正系数,NH3NOX表示NOX对应的喷氨中间变量,n表示 所述吸附塔的数量。
  8. 根据权利要求1所述的方法,其特征在于,还包括:
    获取用户输入的第三喷氨量目标值的修正系数;
    由第十一公式,计算所述第三喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第三喷氨量目标值;所述第十一公式为,
    Figure PCTCN2017081613-appb-100006
    其中,NH3set_value_2表示所述第三喷氨量目标值,Kp2表示所述第三喷氨量目标值的修正系数。
  9. 一种活性炭脱硫脱硝系统的喷氨量控制装置,其特征在于,包括:
    第一获取模块,用于获取入口烟气状态数据、出口烟气状态数据、入口烟气流量经温压补偿后的值和氨稀释空气流量;所述入口烟气状态数据包括入口烟气的SO2浓度、NOX浓度和湿度;所述出口烟气状态数据包括出口烟气的SO2浓度;
    第一计算模块,用于依据所述入口烟气状态数据、所述出口烟气状态数据、所述入口烟气流量经温压补偿后的值、所述氨稀释空气流量和预设参数,按照预设第一计算模型,计算第一喷氨量修正值;所述预设参数包括脱硝目标值、出口烟气漏氨目标值、NH3修正系数、第一喷氨量目标值的修正系数和吸附塔的数量;
    第二计算模块,用于按照预设第二计算模型,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值。
  10. 根据权利要求9所述的装置,其特征在于,还包括:
    调节模块,用于计算所述第一喷氨量目标值与喷氨量实际值的差值,依据所述差值调节氨流量调节阀的开度,直至所述差值小于预设阈值;所述喷氨量实际值由氨流量计检测得到。
  11. 根据权利要求9所述的装置,其特征在于,所述第一计算模块包括:
    第一计算单元,用于由第一公式,计算入口NOX单位小时的体积量;其中,所述第一公式为,
    NOXin=F11×Humidity×NOX11
    其中,NOXin表示入口NOX单位小时的体积量,F11表示入口烟气流量经温压补偿后的值,Humidity表示入口烟气的湿度,NOX11表示入口烟气的NOX浓度;
    第二计算单元,用于由第二公式,计算出口烟气流量;其中,所述第二公式为,
    F12=F11+OFF_GAS
    其中,OFF_GAS表示氨稀释空气流量,F12表示出口烟气流量;
    第三计算单元,用于由第三公式,计算入口SO2单位小时的体积量;其中,所述第三公式为,
    SO2in=F11×Humidity×SO211
    其中,SO2in表示入口SO2单位小时的体积量,SO211表示入口烟气的SO2浓度;
    第四计算单元,用于由第四公式,计算出口SO2单位小时的体积量;其中,所述第四公式为,
    SO2out=F12×Humidity×SO212
    其中,SO2out表示出口SO2单位小时的体积量,SO212表示出口烟气的SO2浓度;
    第五计算单元,用于由第五公式,计算所述活性炭脱硫脱硝系统的脱硫率;其中,所述第五公式为,
    Figure PCTCN2017081613-appb-100007
    其中,SO2eff表示所述活性炭脱硫脱硝系统的脱硫率;
    第六计算单元,用于由第六公式计算SO2对应的喷氨中间变量,其中,所述第六公式为,
    Figure PCTCN2017081613-appb-100008
    其中,NH3SO2表示SO2对应的喷氨中间变量,NH3_K表示脱去入口烟气中SO2的NH3的修正系数;
    第七计算单元,用于由第七公式计算NOX对应的喷氨中间变量,其中, 所述第七公式为,
    Figure PCTCN2017081613-appb-100009
    其中,NH3NOX为NOX对应的喷氨中间变量,NOXin表示入口NOX单位小时的体积量,NOX_SV为脱硝目标值;
    第八计算单元,用于由第八公式,计算所述第一喷氨量修正值;其中,所述第八公式为,
    NH3cal_corrected_value=2×(NH3SO2+NH3NOX)+NH3_L
    其中,NH3cal_corrected_value表示所述第一喷氨量修正值,NH3_L表示出口烟气漏氨目标值。
  12. 根据权利要求9所述的装置,其特征在于,所述第二计算模块包括:
    第九计算单元,用于由第九公式,计算与所述第一喷氨量修正值相对应的第一喷氨量目标值;所述第九公式为,
    Figure PCTCN2017081613-appb-100010
    其中,NH3cal_value表示所述第一喷氨量目标值,为单台所述吸附塔喷氨量的目标值,NH3correct_value的取值包括所述第一喷氨量修正值,KNH3表示所述第一喷氨量目标值的修正系数,n表示所述吸附塔的数量。
  13. 根据权利要求9所述的装置,其特征在于,还包括:
    第一更新模块,用于判断所述第一喷氨量修正值是否超出第一预设范围,以及参与所述预设第一计算模型计算的每一变量是否超出与所述变量相对应的第二预设范围;若所述第一喷氨量修正值超出所述第一预设范围,和/或参与所述预设第一计算模型计算的每一变量超出与所述变量相对应的所述第二预设范围,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于用户预先设定的第二喷氨量修正值。
  14. 根据权利要求9或13所述的装置,其特征在于,还包括:
    第二更新模块,用于获取用户输入的第三喷氨量修正值,更新所述第一喷氨量修正值,使更新后的所述第一喷氨量修正值等于所述第三喷氨量修正值。
  15. 根据权利要求9或13所述的装置,其特征在于,还包括:
    第三更新模块,用于判断所述第一喷氨量目标值是否超出第三预设范围, 以及参与所述预设第二计算模型计算的每一变量是否超出与所述变量相对应的第四预设范围;若所述第一喷氨量目标值超出第三预设范围,和/或参与所述预设第二计算模型计算的每一变量超出与所述变量相对应的第四预设范围,由第十公式,计算所述第二喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第二喷氨量目标值;所述第十公式为,
    Figure PCTCN2017081613-appb-100011
    其中,NH3set_value_1表示所述第二喷氨量目标值,Kp1表示用户预先设定的第二喷氨量目标值的修正系数,NH3NOX表示NOX对应的喷氨中间变量,n表示所述吸附塔的数量。
  16. 根据权利要求9所述的装置,其特征在于,还包括:
    第四更新模块,用于获取用户输入的第三喷氨量目标值的修正系数;由第十一公式,计算所述第三喷氨量目标值,更新所述第一喷氨量目标值,使更新后的所述第一喷氨量目标值等于所述第三喷氨量目标值;所述第十一公式为,
    Figure PCTCN2017081613-appb-100012
    其中,NH3set_value_2表示所述第三喷氨量目标值,Kp2表示所述第三喷氨量目标值的修正系数。
PCT/CN2017/081613 2016-08-08 2017-04-24 活性炭脱硫脱硝系统的喷氨量控制方法和装置 WO2018028243A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2018103752A RU2678076C1 (ru) 2016-08-08 2017-04-24 Способ и устройство для регулирования количества инжектируемого аммиака в системе для десульфурации и денитрификации активированным углем
BR112018002042-7A BR112018002042B1 (pt) 2016-08-08 2017-04-24 Método e dispositivo para controlar uma quantidade de injeção de amônia de sistema de dessulfurização de carbono ativado e desnitrificação
KR1020187002712A KR102030943B1 (ko) 2016-08-08 2017-04-24 활성 탄소 탈황 및 탈질 설비의 암모니아 주입량 제어 방법 및 장치
MYPI2018700045A MY183614A (en) 2016-08-08 2017-04-24 Method and device for controlling ammonia injection amount of activated carbon desulfurization and denitrification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610641484.7 2016-08-08
CN201610641484.7A CN107694300B (zh) 2016-08-08 2016-08-08 活性炭脱硫脱硝系统的喷氨量控制方法和装置

Publications (1)

Publication Number Publication Date
WO2018028243A1 true WO2018028243A1 (zh) 2018-02-15

Family

ID=61162628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081613 WO2018028243A1 (zh) 2016-08-08 2017-04-24 活性炭脱硫脱硝系统的喷氨量控制方法和装置

Country Status (6)

Country Link
KR (1) KR102030943B1 (zh)
CN (1) CN107694300B (zh)
BR (1) BR112018002042B1 (zh)
MY (1) MY183614A (zh)
RU (1) RU2678076C1 (zh)
WO (1) WO2018028243A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371872A (zh) * 2018-04-08 2018-08-07 中冶长天国际工程有限责任公司 高效脱硝的脱硫脱硝装置
CN110404390A (zh) * 2019-07-12 2019-11-05 华电电力科学研究院有限公司 一种控制氨逃逸率的scr脱硝装置及其工作方法
CN110479061A (zh) * 2019-08-22 2019-11-22 深圳东方锅炉控制有限公司 基于炉膛温度场信息的sncr控制系统和方法
CN112370934A (zh) * 2020-10-28 2021-02-19 江苏安琪尔废气净化有限公司 一种有机废气活性炭浓缩耦合rto矿化系统和工艺
CN112461995A (zh) * 2020-11-03 2021-03-09 西安热工研究院有限公司 一种预测火电厂氨逃逸的方法
CN112933913A (zh) * 2021-02-08 2021-06-11 国家能源集团国源电力有限公司 喷氨控制方法、装置及煤燃烧系统
CN113791007A (zh) * 2021-09-15 2021-12-14 张家港宏昌钢板有限公司 一种脱硫脱硝系统活性炭循环速度的测定方法
CN113856457A (zh) * 2021-09-27 2021-12-31 京能(锡林郭勒)发电有限公司 一种用于低热值褐煤的NOx排放控制系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573102A (zh) * 2018-04-12 2018-09-25 国网天津市电力公司电力科学研究院 一种scr脱硝装置漏风率计算方法
CN108607325B (zh) * 2018-05-10 2020-12-04 中冶长天国际工程有限责任公司 一种多吸附塔并联烟气净化处理系统及其控制方法
CN108607322B (zh) * 2018-05-10 2020-12-04 中冶长天国际工程有限责任公司 一种多工况烟气集中独立净化处理系统及其控制方法
CN110160041B (zh) * 2019-05-31 2020-08-28 国家能源投资集团有限责任公司 Cfb锅炉污染物耦合控制方法及cfb锅炉污染物耦合控制系统
CN110960983B (zh) * 2019-10-24 2024-10-29 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 网格法优化分区控制方法及分区得到的脱硝喷氨子系统
CN113398757B (zh) * 2021-06-24 2022-05-17 南方电网电力科技股份有限公司 一种极简的喷氨控制方法及装置
CN115025600B (zh) * 2022-06-06 2023-09-22 张家港宏昌钢板有限公司 确定活性焦一体化脱硫脱硝系统的喷氨量的方法
CN115374632B (zh) * 2022-08-19 2024-01-26 南方电网电力科技股份有限公司 一种sncr脱硝系统中出口烟气的计算方法和相关装置
CN116185087A (zh) * 2023-05-04 2023-05-30 科大智能物联技术股份有限公司 一种基于机器学习的闭环脱氨控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751054A (en) * 1985-07-16 1988-06-14 Babcock - Hitachi Kabushiki Kaisha Apparatus for removing NOx from a gas
US5628186A (en) * 1993-05-07 1997-05-13 Siemens Aktiengesellschaft Method and apparatus for controlled introduction of a reducing agent into a nitrogen oxide-containing exhaust gas
CN102000482A (zh) * 2010-11-15 2011-04-06 无锡科立泰科技有限公司 氮氧化物去除控制系统和方法
CN102759931A (zh) * 2012-08-03 2012-10-31 北京华能新锐控制技术有限公司 烟气脱硝的控制方法和装置
CN103032360A (zh) * 2012-12-27 2013-04-10 中冶长天国际工程有限责任公司 一种脱硫系统的控制方法及装置
KR101320086B1 (ko) * 2011-10-28 2013-10-18 현대제철 주식회사 배가스 정화 장치
CN104588214A (zh) * 2014-12-15 2015-05-06 中冶长天国际工程有限责任公司 电除尘器出口流量获取方法及装置、除尘量获取方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502953B1 (ko) * 2003-10-25 2005-07-21 범아정밀(주) 요소수를 이용한 배기가스탈질시스템과 그 시스템을이용한 배기가스탈질방법
KR20120000772A (ko) * 2010-06-28 2012-01-04 현대제철 주식회사 소결배가스 정제방법
PL2844372T3 (pl) * 2012-06-27 2017-04-28 Siemens Aktiengesellschaft Urządzenie do oczyszczania spalin i sposób redukcji tlenków azotu ze spalin elektrowni napędzanych źródłami kopalnymi
CN103728994B (zh) * 2013-12-30 2016-08-17 北京工业大学 一种水泥厂scr脱硝效率监测控制方法
CN104801180B (zh) * 2015-04-21 2017-04-05 中电投河南电力有限公司技术信息中心 一种喷氨量控制方法与系统
CN105045089A (zh) * 2015-06-19 2015-11-11 大唐华银电力股份有限公司金竹山火力发电分公司 一种基于出口NOx含量控制的锅炉脱硝控制方法及系统
CN105137760B (zh) * 2015-09-25 2017-11-07 华能平凉发电有限责任公司 一种脱硝喷氨自动控制方法及系统
CN105597537B (zh) * 2015-10-26 2018-09-14 烟台龙源电力技术股份有限公司 基于预测控制技术的脱硝控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751054A (en) * 1985-07-16 1988-06-14 Babcock - Hitachi Kabushiki Kaisha Apparatus for removing NOx from a gas
US5628186A (en) * 1993-05-07 1997-05-13 Siemens Aktiengesellschaft Method and apparatus for controlled introduction of a reducing agent into a nitrogen oxide-containing exhaust gas
CN102000482A (zh) * 2010-11-15 2011-04-06 无锡科立泰科技有限公司 氮氧化物去除控制系统和方法
KR101320086B1 (ko) * 2011-10-28 2013-10-18 현대제철 주식회사 배가스 정화 장치
CN102759931A (zh) * 2012-08-03 2012-10-31 北京华能新锐控制技术有限公司 烟气脱硝的控制方法和装置
CN103032360A (zh) * 2012-12-27 2013-04-10 中冶长天国际工程有限责任公司 一种脱硫系统的控制方法及装置
CN104588214A (zh) * 2014-12-15 2015-05-06 中冶长天国际工程有限责任公司 电除尘器出口流量获取方法及装置、除尘量获取方法及装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371872A (zh) * 2018-04-08 2018-08-07 中冶长天国际工程有限责任公司 高效脱硝的脱硫脱硝装置
CN108371872B (zh) * 2018-04-08 2023-07-25 中冶长天国际工程有限责任公司 高效脱硝的脱硫脱硝装置
CN110404390A (zh) * 2019-07-12 2019-11-05 华电电力科学研究院有限公司 一种控制氨逃逸率的scr脱硝装置及其工作方法
CN110479061A (zh) * 2019-08-22 2019-11-22 深圳东方锅炉控制有限公司 基于炉膛温度场信息的sncr控制系统和方法
CN110479061B (zh) * 2019-08-22 2022-07-22 深圳东方锅炉控制有限公司 基于炉膛温度场信息的sncr控制系统和方法
CN112370934A (zh) * 2020-10-28 2021-02-19 江苏安琪尔废气净化有限公司 一种有机废气活性炭浓缩耦合rto矿化系统和工艺
CN112461995A (zh) * 2020-11-03 2021-03-09 西安热工研究院有限公司 一种预测火电厂氨逃逸的方法
CN112933913A (zh) * 2021-02-08 2021-06-11 国家能源集团国源电力有限公司 喷氨控制方法、装置及煤燃烧系统
CN112933913B (zh) * 2021-02-08 2022-08-30 国家能源集团国源电力有限公司 喷氨控制方法、装置及煤燃烧系统
CN113791007A (zh) * 2021-09-15 2021-12-14 张家港宏昌钢板有限公司 一种脱硫脱硝系统活性炭循环速度的测定方法
CN113856457A (zh) * 2021-09-27 2021-12-31 京能(锡林郭勒)发电有限公司 一种用于低热值褐煤的NOx排放控制系统
CN113856457B (zh) * 2021-09-27 2024-04-02 京能(锡林郭勒)发电有限公司 一种用于低热值褐煤的NOx排放控制系统

Also Published As

Publication number Publication date
KR20180116206A (ko) 2018-10-24
CN107694300A (zh) 2018-02-16
BR112018002042A2 (pt) 2019-02-12
BR112018002042B1 (pt) 2023-04-11
KR102030943B1 (ko) 2019-10-10
RU2678076C1 (ru) 2019-01-22
MY183614A (en) 2021-03-03
CN107694300B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2018028243A1 (zh) 活性炭脱硫脱硝系统的喷氨量控制方法和装置
CN105327612A (zh) 一种烟气低温联合脱硫脱硝工艺方法
CN104314650A (zh) 一种scr前馈控制方法和装置
CN116392938B (zh) 一种废气脱硝反应工艺
CN107789967B (zh) 一种烧结烟气低温脱硝装置及其实现方法
CN106237821A (zh) 一种石灰窑脱硝系统
CN106621738A (zh) 一种降低脱硝逃逸氨控制方法
CN111665711A (zh) 一种sncr脱硝喷氨量智能控制系统和方法
US7462235B2 (en) System and method for decomposing ammonia from fly ash
CN105854537B (zh) 一种工业炉窑预脱除三氧化硫和脱硝装置及方法
CN109647155B (zh) 活性炭脱硫脱硝系统的喷氨量控制方法和装置
US8557207B2 (en) Method and apparatus for reducing the quantity of pollutant in waste gases
EP4292980A1 (en) Apparatus for producing dilute sulfuric acid and method for producing dilute sulfuric acid
CN104880535A (zh) 一种逃逸氨浓度监测方法
CN104360007A (zh) 一种新型scr催化剂测试装置
Huang et al. Aerosol formation by heterogeneous reactions in ammonia-based WFGD systems
EP2374524A1 (en) System used in incinerator for reducing NOx
CN203803353U (zh) 一种活性焦法多污染物协同处理的模拟试验装置
CN110026082A (zh) 一种臭氧在氨气前注入辅助scr的窑炉烟气脱硝装置及方法
CN212391715U (zh) 一种sncr脱硝喷氨量智能控制系统
CN203447975U (zh) 一种sncr脱硝装置
CN203494364U (zh) 制备硫酸的设备
CN209451861U (zh) 一种防结垢活性炭解析塔
CN105727744A (zh) 带温度控制的scr脱硝反应系统
CN114159971B (zh) 一种基于scr法氮氧化物超低排放的前馈自动控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187002712

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018103752

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002042

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112018002042

Country of ref document: BR

Free format text: COMO FORAM SOLICITADOS 2 SERVICOS (PROCURACAO E DOCUMENTOS DE PRIORIDADE) ATRAVES DA PETICAO 870180018769 E, DE ACORDO COM A RESOLUCAO NO189/2017 DEVEM SER PAGAS RETRIBUICOES ESPECIFICAS PARA CADA UM DOS SERVICOS SOLICITADOS, SE FAZ NECESSARIA A COMPLEMENTACAO DO PAGAMENTO.

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018002042

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180130

122 Ep: pct application non-entry in european phase

Ref document number: 17838375

Country of ref document: EP

Kind code of ref document: A1