Nothing Special   »   [go: up one dir, main page]

WO2018012887A1 - 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018012887A1
WO2018012887A1 PCT/KR2017/007482 KR2017007482W WO2018012887A1 WO 2018012887 A1 WO2018012887 A1 WO 2018012887A1 KR 2017007482 W KR2017007482 W KR 2017007482W WO 2018012887 A1 WO2018012887 A1 WO 2018012887A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmission
terminal
uplink
beam pattern
Prior art date
Application number
PCT/KR2017/007482
Other languages
English (en)
French (fr)
Inventor
서한별
이영대
김기준
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/317,522 priority Critical patent/US10873946B2/en
Priority to KR1020197001038A priority patent/KR102201764B1/ko
Priority to JP2019501621A priority patent/JP6697630B2/ja
Publication of WO2018012887A1 publication Critical patent/WO2018012887A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals

Definitions

  • the present invention relates to a next generation wireless communication system, and more particularly, to a signal transmission method using multiple beams and a device therefor in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission service to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the corresponding time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the following is a method for transmitting a signal using multiple beams and a device therefor in a wireless communication system.
  • a method for transmitting an uplink signal to a base station by a terminal includes: receiving information about a reception beam pattern of the base station defined in units of transmission time intervals (TTIs) from the base station; Determining an uplink transmission beam pattern defined in the TTI unit by using the information on the reception beam pattern of the base station; And sequentially transmitting the uplink signal to the base station in the TTI unit according to the uplink transmission beam pattern.
  • TTIs transmission time intervals
  • a terminal in a wireless communication system which is an aspect of the present invention, a wireless communication module; And connected with the wireless communication module, receives information about a reception beam pattern of the base station defined in transmission time interval (TTI) units from a base station, and uses the information on the reception beam pattern of the base station in the TTI unit. And a processor for determining a defined uplink transmission beam pattern and sequentially transmitting the uplink signal to the base station in the TTI unit according to the uplink transmission beam pattern.
  • TTI transmission time interval
  • two or more reference signals to which different transmission beams are applied from the base station may be sequentially received on two or more TTIs, and the reception beam pattern of the base station may be confirmed using the different transmission beams.
  • the terminal checks the reception beam pattern of the base station it is assumed that the downlink channel and the uplink channel are the same.
  • the terminal stops the sequential repetitive transmission.
  • the uplink signal that is sequentially transmitted repeatedly includes the same data.
  • a terminal in a wireless communication system, can transmit an uplink signal more efficiently by using multiple beams in a situation in which channel environment measurement is difficult.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 is a diagram for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • 5 is a diagram illustrating a structure of a downlink radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 7 shows examples of a connection scheme of a TXRU and an antenna element.
  • FIG. 8 is a flowchart illustrating an example in which a terminal transmits an uplink signal to a base station according to an embodiment of the present invention.
  • FIG. 9 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission Time Interval which is a unit time at which data is transmitted, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted on the PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
  • the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating a downlink channel state, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • mmW millimeter wave
  • the wavelength is shortened, so that a plurality of antenna elements can be installed in the same area.
  • the wavelength is 1 cm, and a total of 64 (8x8) antenna elements in a 2D (dimension) array form at 0.5 lambda intervals can be installed in a panel of 4 by 4 cm. Therefore, recent trends in the mmW field have attempted to increase the coverage or increase the throughput by increasing the beamforming gain using a plurality of antenna elements.
  • TXRU Transceiver Unit
  • independent beamforming is possible for each frequency resource.
  • TXRU Transceiver Unit
  • the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
  • Hybrid beamforming with B TXRUs which is less than Q antenna elements, can be considered as an intermediate form between digital beamforming and analog beamforming.
  • the beam directions that can be simultaneously transmitted are limited to B or less.
  • FIG. 7 shows examples of a connection scheme of a TXRU and an antenna element.
  • FIG. 7 (a) shows how a TXRU is connected to a sub-array.
  • the antenna element is connected to only one TXRU.
  • FIG. 7B shows how the TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • W denotes a phase vector multiplied by an analog phase shifter. That is, the direction of analog beamforming is determined by W.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1-to-1 or 1-to-multi.
  • the transmitting end ie, the base station
  • the receiving end ie, the UE
  • the transmitting end ie, the base station
  • the receiving end ie, the UE
  • such an operation may not be possible, or excessive overhead may be incurred to enable it.
  • the beams optimal for the individual receivers are different and thus it is impossible to select one optimal beam.
  • the transmitting end or the receiving end moves at a high speed, a lot of signaling overhead is required to track the optimal beam since it changes at a very high speed.
  • an operation of selecting a plurality of beams that the transmitter and the receiver determine to be relatively good and repeatedly transmitting the same data to each beam may be effective.
  • one beam may be used at one time point.
  • such an operation may transmit one data over several time points, for example, over several TTIs, but may be used at each transmission time point. Operate to change the beam.
  • the base station may inform the terminal in advance of the pattern of the beam through which the same data is transmitted through a scheduling message. Upon receiving this, the terminal first determines whether the corresponding data is the data that it needs to receive through a scheduling message, and then selects only at the time when the corresponding data is transmitted by using a beam that seems optimal to the user in the current state. Attempt to receive data. Through this process, it is possible to prevent the terminal from attempting to receive data at the time of using the beam that is not optimal for itself, and solve the problem of increasing the power consumption even though the reception success probability is low. In particular, this method is meaningful in that the base station provides the terminal with information about the precoder for the downlink transmission in addition to the beam for the current downlink transmission, that is, the precoder.
  • the terminal may be defined to attempt to receive one data several times with a certain number of beams.
  • the terminal may operate so that the base station attempts to receive all of the M beams having a good reception quality among N beams transmitting the same data.
  • the terminal receives in all beams having a certain quality level (for example, Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ) measured at a reference signal using the corresponding beam) or more.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the base station may set the number of beams or the quality of reception that the terminal should attempt to receive.
  • the terminal may receive data in a predetermined number of beams as described above, and if the specific data is successfully received before attempting reception in all of the predetermined number of beams, another terminal which has not yet attempted to transmit the same data is transmitted. The beam can be stopped and power consumption can be reduced.
  • one scheduling message may schedule several beam patterns transmitting one packet, but one scheduling message is assigned to multiple packets in order to reduce the overhead of the scheduling message and reduce the power consumed to receive the scheduling message. It is also possible to schedule the beam pattern for. In the latter case, the transmission interval of the scheduling message becomes relatively long, and the terminal may move in a state where the terminal receives the scheduling message once, and thus the beam may be optimally changed. In this case, the terminal should change its operation to attempt data reception in the transmission using the changed optimal beam even while moving.
  • the terminal should be able to predict what quality of the base station transmission of which beam at a particular time point. This may be possible by measuring the RS transmitted by each terminal in each beam. Specifically, the following method is possible.
  • the base station transmits a measurement-RS (MRS) periodically or aperiodically, but transmits an MRS having a different position and / or a sequence of time / frequency resources using different beams.
  • MRS measurement-RS
  • the UE can estimate which beam is received with what quality.
  • the signaling of the beam pattern in the scheduling message may be in a form of informing which MRS and the same beamforming to be used at any point in time.
  • the terminal first measures the DM-RS transmitted for demodulation of actual data on the resource specified in the scheduling message. Then, the quality at the time of using the same beam in the transmission of the base station can be determined. In this case, the signaling of the beam pattern in the scheduling message simply informs the set of time points at which the same beamforming is used, and may be in a form in which the terminal expects different beamforming to be applied in different sets.
  • This method at least initially, has a disadvantage in that power consumption increases because the UE must perform DM-RS measurement on all beams transmitted by the base station. However, the base station can select a more flexible beam regardless of the MRS. have.
  • a plurality of base stations may perform an operation of increasing reception power at the terminal by transmitting the same data together on the same resource.
  • This is referred to as single frequency network (SFN) transmission.
  • the terminal may attempt to receive by selecting an optimal one among a combination of beams selected by a base station participating in SFN transmission.
  • the base station can inform the scheduling message at which time point which base station performs SFN while using the same beamforming as which MRS.
  • the terminal may measure the MRS of each base station and use the information of the scheduling message to estimate the reception quality of each base station transmission combined at each time point. For example, the received RSRP for SFN transmission can be estimated as the sum of RSRPs of respective base station MRSs.
  • the operation of transmitting the same data in a plurality of beams is effective when the network does not know the exact location or channel information of the terminal. Based on this feature, the operation of the present invention can be utilized as a fallback operation when a specific terminal has a problem in communication with a base station.
  • the UE determines that a problem occurs in communication with a base station to which it is connected (or communication using a beam configured for communication with the base station), for example, RSRP or RSRQ is below a certain level, or a control channel
  • RSRP or RSRQ is below a certain level
  • a control channel In case that the reception success rate of the terminal is predicted to be below a certain level or the like, or if the case persists for a predetermined time / number of times, the terminal does not receive only transmission of the corresponding base station / corresponding beam, but various beams and / or base stations
  • the transmitting signal may also operate to attempt to receive.
  • the base station transmits a signal to a specific terminal but there is no response continuously (for example, when transmitting downlink data but not receiving HARQ-ACK or transmitting uplink grant but not receiving uplink data)
  • the base station may attempt to communicate with the corresponding terminal using various beams, and may also attempt transmission from neighboring base stations.
  • the terminal receives an uplink grant from the base station for uplink transmission, and the uplink grant includes a scheduling message for uplink transmission. Therefore, if it is determined that it is difficult to select an optimal beam in communication with the terminal, the base station may schedule a plurality of beams to be used for a single data transmission. In particular, in a case where analog beamforming is applied, It can be scheduled to use different beams at different times.
  • the HARQ operation is performed in a single HARQ process even if transmitted in different beams at different points in time.
  • the single HARQ process may include an operation of canceling an operation of transmitting the same data to another beam by an uplink grant when the base station successfully receives data transmission at a specific point in time. can do.
  • the base station may directly designate an uplink transmission beam (in other words, a precoding matrix) to be used by the terminal, but if the base station is difficult to set it, the base station may operate to set the terminal directly. have. For example, if the UE can grasp the information that the base station is trying to receive using the reception beam corresponding to the beam used for transmission beamforming of a specific MRS through the reception process of the MRS, the optimal transmission beamforming to use You can decide what to do. In particular, this may be more useful when the downlink channel and the uplink channel can be assumed to be the same as in the TDD system.
  • an uplink transmission beam in other words, a precoding matrix
  • the base station informs the terminal that the reception beam to be used when it attempts to receive at each time point is the same as the transmission beam of a specific MRS, and the terminal receives the reception beam as a reception beam corresponding to the transmission beam of the MRS at that time. And attempt to transmit with a transmission beam that is optimal when the attempt is made (ie, corresponding to the receive beam).
  • This optimal transmission beam may be set to a transmission beam corresponding to the reception beam in which the reception power becomes maximum when receiving the corresponding MRS.
  • the base station may instruct the terminal to repeatedly transmit the same data at various time points using the same beam, and then operate to change reception beams at each time point.
  • reception beams at each time point since a valid reception signal cannot be obtained when the reception beam at the first time point is not set correctly, reception should be successful only by reception at the second time point. Therefore, even if the terminal transmits the same data, it is preferable to operate so as not to change the RV of the channel coding for each transmission time point. For example, if the base station attempts to improve coverage through two repetitive receptions in each reception beam while attempting to receive the four types of reception beams, the pattern transmitted by the terminal may appear as shown in Table 1 below.
  • the UE first repeatedly transmits the first RV (RV X in Table 1), and the base station attempts to receive the beam while changing beams. After that, when the second RV is repeatedly transmitted, the base station also receives beams again. This allows two RVs transmitted in the same reception beam to be relatively separated in time, so that diversity gain in the time domain can be obtained better.
  • the base station recognizes that the signal can be strongly received by a specific beam during the RV X reception process, the base station fixes the reception beam with the specific beam during the reception of the RV Y or uses the beams similar to the specific beam. It can also be fixed and adjusted.
  • FIG. 8 is a flowchart illustrating an example in which a terminal transmits an uplink signal to a base station according to an embodiment of the present invention.
  • the terminal sequentially receives two or more reference signals to which different transmission beams are applied from the base station in step 801 on two or more TTIs, and then, in step 803, the base station uses the different transmission beams of the base station.
  • the receive beam pattern In particular, in this case, it is assumed that the downlink channel and the uplink channel are the same.
  • the terminal determines the uplink transmission beam pattern defined in the TTI unit by using the information on the reception beam pattern of the base station in step 805.
  • the terminal sequentially transmits the uplink signal to the base station in the TTI unit according to the uplink transmission beam pattern. As described above, when the acknowledgment of the uplink signal is received from the base station during the sequential repetitive transmission, the sequential repetitive transmission may be stopped.
  • FIG. 9 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 900 includes a processor 910, a memory 920, an RF module 930, a display module 940, and a user interface module 950.
  • the communication device 900 is shown for convenience of description and some modules may be omitted. In addition, the communication device 900 may further include necessary modules. In addition, some modules in the communication device 900 may be divided into more granular modules.
  • the processor 910 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 910 may refer to the contents described with reference to FIGS. 1 to 8.
  • the memory 920 is connected to the processor 910 and stores an operating system, an application, program code, data, and the like.
  • the RF module 930 is connected to the processor 910 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 930 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 940 is connected to the processor 910 and displays various information.
  • the display module 940 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 950 is connected to the processor 910 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • next generation wireless communication system as described above, a method for transmitting and receiving a signal through a sidelink and an apparatus therefor have been described with reference to an example applied to a 3GPP LTE system.
  • the present invention may be applied to various wireless communication systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 기지국으로 상향링크 신호를 송신하는 방법이 개시된다. 구체적으로, 상기 방법은, 상기 기지국으로부터 TTI (transmission time interval) 단위로 정의되는 상기 기지국의 수신 빔 패턴에 관한 정보를 수신하는 단계; 상기 기지국의 수신 빔 패턴에 관한 정보를 이용하여, 상기 TTI 단위로 정의되는 상향링크 송신 빔 패턴을 결정하는 단계; 상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
본 발명은 차세대 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 송신할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 송신 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 송신하여 해당 단말에게 데이터가 송신될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 송신하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 송신을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 기지국으로 상향링크 신호를 송신하는 방법은, 상기 기지국으로부터 TTI (transmission time interval) 단위로 정의되는 상기 기지국의 수신 빔 패턴에 관한 정보를 수신하는 단계; 상기 기지국의 수신 빔 패턴에 관한 정보를 이용하여, 상기 TTI 단위로 정의되는 상향링크 송신 빔 패턴을 결정하는 단계; 상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신하는 단계를 포함하는 것을 특징으로 한다.
한편, 본 발명의 일 양상인 무선 통신 시스템에서의 단말은, 무선 통신 모듈; 및 상기 무선 통신 모듈과 연결되어, 기지국으로부터 TTI (transmission time interval) 단위로 정의되는 상기 기지국의 수신 빔 패턴에 관한 정보를 수신하고, 상기 기지국의 수신 빔 패턴에 관한 정보를 이용하여 상기 TTI 단위로 정의되는 상향링크 송신 빔 패턴을 결정하며, 상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신하는 프로세서를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 기지국으로부터 서로 다른 송신 빔들이 적용된 둘 이상의 참조 신호들을 둘 이상의 TTI 상에서 순차적으로 수신하고, 상기 서로 다른 송신 빔들을 이용하여 상기 기지국의 수신 빔 패턴을 확인할 수 있다. 이 경우, 상기 단말이 상기 기지국의 수신 빔 패턴을 확인 시, 하향링크 채널과 상향링크 채널이 동일하다고 가정하는 것을 특징으로 한다.
상기 순차적 반복 송신 도중 상기 기지국으로부터 상기 상향링크 신호에 대한 긍정 응답을 수신한 경우, 상기 단말은 상기 순차적 반복 송신을 중단하는 것을 특징으로 한다.
추가적으로, 상기 순차적 반복 송신되는 상기 상향링크 신호는 동일한 데이터를 포함하는 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 단말은 채널 환경 측정이 어려운 상황에서 다중 빔을 이용하여 보다 효율적으로 상향링크 신호를 송신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7은 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 8은 본 발명의 실시예에 따라 단말이 기지국으로 상향링크 신호를 송신하는 예를 설명하는 순서도이다.
도 9는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 송신되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 송신에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 송신되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 송신 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 송신된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 송신 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 송신되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 송신된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 송신 형식 정보(예, 송신 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 송신되는 데이터에 관한 정보가 특정 서브프레임을 통해 송신된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 송신되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
한편, Millimeter Wave (mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 엘리먼트의 설치가 가능하다. 구체적으로, 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2D (dimension) 배열 형태인 총 64(8x8)의 안테나 엘리먼트 설치가 가능하다. 그러므로 mmW 분야에서의 최근 동향에서는 다수개의 안테나 엘리먼트를 사용하여 BF (beamforming) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)의 증대를 시도하고 있다.
이 경우에 안테나 엘리먼트 별로 송신 파워 및 위상 조절이 가능하도록 TXRU (Transceiver Unit)을 구비한다면, 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 안테나 엘리먼트 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 엘리먼트를 맵핑하고 아날로그 위상 천이기 (analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점을 갖는다.
디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 엘리먼트보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍을 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 엘리먼트의 연결 방식에 따라서 차이는 있지만, 동시에 송신할 수 있는 빔 방향은 B개 이하로 제한되게 된다.
도 7은 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 7의 (a)은 TXRU가 서브-어레이(sub-array)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 하나의 TXRU에만 연결된다. 이와 달리 도 7의 (b)는 TXRU가 모든 안테나 엘리먼트에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 모든 TXRU에 연결된다. 도 7에서 W는 아날로그 위상 천이기에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 맵핑은 1-to-1 또는 1-to-多 일 수 있다.
한편, 송신단 (즉, 기지국)과 수신단 (즉, UE)이 정확한 채널 정보를 알고 있다면, 해당 채널 정보를 바탕으로 최적의 빔을 선택하고, 해당 빔으로 데이터를 전송하는 것이 최적의 동작이 될 것이다. 그러나, 통신 환경에 따라서 이러한 동작은 불가능하거나, 가능케 하기 위해 과도한 오버헤드가 발생할 수 있다.
구체적으로, 단일 송신단이 동일 데이터를 복수의 수신단에게 전송하는 멀티캐스트나 브로드캐스트의 경우에는 개별 수신단에게 최적인 빔은 상이하기 때문에 하나의 최적의 빔을 선택하는 것이 불가능하다. 혹은, 비록 수신단이 하나만 있다고 하더라도, 송신단이나 수신단이 빠른 속도로 이동하는 경우에는, 최적의 빔이 매우 빠른 속도로 변화하기 때문에 이를 추적하기 위해서는 많은 시그널링 오버헤드가 필요하게 된다. 이러한 문제가 있는 경우에는 송신단과 수신단이 상대적으로 양호할 것으로 판단하는 빔을 복수 개 선택하고, 동일한 데이터를 각각의 빔으로 반복 전송하는 동작이 효과적일 수 있다. 특히, 아날로그 빔포밍이 적용되는 경우에는 한 시점에서는 하나의 빔을 사용할 수 있으므로, 이런 동작은 하나의 데이터를 여러 시점들에 걸쳐서 예를 들어, 여러 TTI에 걸쳐서 전송하되, 각 전송 시점에서 사용하는 빔을 변경하도록 동작할 수 있다.
<제 1 실시예>
이하에서는, 하향링크에서 기지국이 단일 데이터를 상이한 빔으로 반복 전송하는 구체적인 동작을 설명한다.
기지국은 스케줄링 메시지를 통해서 동일 데이터가 전송되는 빔의 패턴을 미리 단말에게 알릴 수 있다. 이를 수신한 단말은 먼저 스케줄링 메시지를 통하여 해당 데이터가 자신이 수신할 필요가 있는 데이터인지를 여부를 우선적으로 파악한 후, 현재 상태에서 자신에게 최적으로 보이는 빔을 사용하여 해당 데이터가 전송되는 시점에서만 선택적으로 데이터 수신을 시도한다. 이 과정을 통해서 단말이 자신에게 최적이 아닌 빔을 사용하는 시점에서 데이터 수신을 시도하는 경우를 방지할 수 있으며, 수신 성공 확률이 낮음에도 불구하고 전력 소모만 증가시키는 문제점을 해결할 수 있다. 특히, 이러한 방법은 기지국이 단말에게 현재의 하향링크 전송에 대한 빔, 즉 프리코더에 더하여, 미래의 하향링크 전송에 대한 프리코더에 대한 정보를 제공한다는 점에서 의미가 있다.
만일, 단말이 자신에게 최적인 빔이 사용되는 시점에서 수신을 시도했지만 수신이 실패한 경우, 동일 데이터를 전송하는 다른 특정 시점에서 사용하는 빔 역시 일정 수준의 품질을 기대할 수 있다면, 해당 시점 (예를 들어 두 번째로 좋은 빔을 사용하는 시점)에서도 수신을 시도함으로써 약간의 전력 소모 증가를 통한 수신 성능 향상을 시도할 수 있다. 이를 일반화하여, 단말은 하나의 데이터를 일정한 횟수의 빔으로 여러 번 수신 시도하도록 규정될 수 있다. 구체적으로 단말은 기지국이 동일 데이터를 전송하는 N개의 빔 중 수신 품질이 좋을 것으로 판단되는 M개의 빔에서 모두 수신 시도하도록 동작할 수 있다. 혹은 단말은 일정 품질 수준(예를 들어 해당 빔을 사용하는 참조 신호 (reference signal)에서 측정된 RSRP (Reference Signal Received Power)나 RSRQ (Reference Signal Received Quality)가 일정 수준) 이상이 되는 모든 빔에서 수신 시도하도록 규정될 수 있다.
상술한 동작에서 단말이 수신 시도해야 하는 빔의 개수나 수신 품질의 기준은 기지국이 설정할 수 있다. 물론 단말은 이와 같이 사전에 정해진 개수의 빔에서 데이터를 수신할 수 있으며, 상기 사전에 정해진 개수의 모든 빔에서 수신 시도하기 전에 특정 데이터 수신에 성공한다면 동일 데이터를 전송하는 아직 수신 시도를 하지 않은 다른 빔에 대해서는 수신을 중단하고 전력 소모를 줄일 수 있다.
이 동작에 있어서 한 번의 스케줄링 메시지는 하나의 패킷을 전송하는 여러 빔 패턴을 스케줄링 할 수도 있지만, 스케줄링 메시지의 오버헤드를 줄이고 스케줄링 메시지 수신에 소모되는 전력을 줄이기 위해서 한 번의 스케줄링 메시지가 복수의 패킷에 대한 빔 패턴을 스케줄링 할 수도 있다. 후자의 경우 스케줄링 메시지의 전송 간격이 상대적으로 길어지게 되며, 단말이 1회의 스케줄링 메시지를 받은 상태에서 이동하여 최적이 빔이 달라질 수 있다. 이러한 경우, 단말은 이동 중 일지라도 변경된 최적의 빔을 사용하는 전송에서 데이터 수신을 시도하도록 자신의 동작을 변경해야 한다.
이상에서 설명한 동작을 수행하기 위해서, 단말은 특정 시점에서 어떤 빔의 기지국 전송이 어떤 품질로 수신될 것인지를 예측할 수 있어야 한다. 이는 단말이 각 빔으로 전송하는 RS를 측정함으로써 가능할 수 있는데, 구체적으로 아래의 방법이 가능하다.
- 빔-특정한 측정 (measurement) 용도의 RS (MRS)를 사용하는 방법
기지국은 주기적 혹은 비주기적으로 MRS (measurement-RS)를 전송하되, 상이한 빔을 이용하여 시간/주파수 자원의 위치, 그리고 또는 RS 시퀀스가 상이한 MRS를 전송한다. 단말은 MRS를 수신함으로써 어떤 빔이 어떤 품질로 수신될 지를 추정할 수 있게 된다. 이 경우, 상기 스케줄링 메시지에서 빔 패턴에 대한 시그널링은, 어느 시점에서 어떤 MRS와 동일한 빔포밍이 사용될 것인지를 알려주는 형태가 될 수 있다. 이 방법은, MRS는 단말의 위치 이동에 대한 빔 변환의 동작이 어차피 측정되어야 한다는 측면에서, 데이터 수신에 최적인 빔을 결정하는 측정에 추가적인 전력 소모가 없다는 장점이 있다.
- 데이터 전송에 사용된 DM-RS (demodulation reference signal)를 사용하는 방법
단말은 먼저 스케줄링 메시지에서 지정한 자원 상에서 실제 데이터의 복조를 위해 전송되는 DM-RS를 측정한다. 그러면 향후 기지국의 전송에서 동일한 빔을 사용할 시점에서의 품질을 파악할 수 있게 된다. 이 경우, 상기 스케줄링 메시지에서 빔 패턴에 대한 시그널링은, 단순히 동일한 빔포밍이 사용되는 시점들의 집합을 알려주고, 상이한 집합에서는 상이한 빔포밍이 인가될 것을 단말이 기대하는 형태일 수 있다. 이 방법은, 최소한 초기에는 단말이 기지국이 전송하는 모든 빔에 대한 DM-RS 측정을 수행해야 하기 때문에 전력 소모가 늘어나는 단점이 있지만, 기지국이 MRS와 무관하게 보다 유연한 빔의 선택이 가능하다는 장점이 있다.
한편, 특정한 경우에는 복수의 기지국이 동일한 데이터를 동일 자원에 함께 전송함으로써 단말에서의 수신 전력을 높이는 동작을 수행할 수 있다. 이를 SFN (single frequency network) 전송이라 지칭한다. 본 발명의 동작이 SFN 전송을 수행하는 네트워크에 적용될 경우, 단말은 SFN 전송에 참여하는 기지국이 선택한 빔의 조합 중에서 최적인 것을 선택하여 수신을 시도할 수 있다. 특히, 빔-특정한 MRS를 사용하는 경우에는 기지국은 스케줄링 메시지를 통하여 각 시점에서 어떤 기지국이 어떤 MRS와 동일한 빔포밍을 사용하면서 SFN을 수행할 지를 알려줄 수 있다. 단말은 각 기지국의 MRS를 측정하고 여기에 스케줄링 메시지의 정보를 활용하여, 각 시점에서 각 기지국 전송이 결합되어 나타날 수신 품질을 추정할 수 있게 된다. 예를 들어, SFN 전송에 대한 수신 RSRP는 각 기지국 MRS의 RSRP의 합으로 추정 가능하다.
상술한 바와 같이 동일 데이터를 복수의 빔으로 전송하는 동작은 네트워크가 단말의 정확한 위치나 채널 정보를 파악하지 못하는 경우에 효과적이다. 이러한 특징에 기반한다면, 본 발명의 동작을, 특정 단말이 기지국과의 통신에 문제가 발생한 경우에 폴-백 (fallback) 동작으로서 활용할 수 있다.
구체적으로, 단말은 자신이 연결된 기지국과의 통신 (혹은 기지국과의 통신에 사용하도록 설정된 빔을 이용한 통신)에 문제가 발생한 것을 파악한 경우, 예를 들어 RSRP나 RSRQ가 일정 수준 이하가 되거나, 제어 채널의 수신 성공률이 일정 수준 이하가 될 것으로 예측 되는 등의 경우, 혹은 그러한 경우가 일정 시간/횟수 동안 지속되는 경우, 단말은 해당 기지국/해당 빔의 전송만을 수신하는 것이 아니라 다양한 빔 그리고/또는 기지국이 전송하는 신호 역시 수신 시도하도록 동작할 수 있다.
또한, 기지국은 특정 단말에게 신호를 전송했지만 지속적으로 응답이 없는 경우 (예를 들어 하향링크 데이터를 전송하였으나 HARQ-ACK이 수신되지 않거나, 상향링크 그랜트를 전송하였으나 상향링크 데이터가 수신되지 않는 경우), 해당 단말과의 통신에 문제가 생긴 것으로 판단하고 다양한 빔을 사용하여 해당 단말로의 통신을 시도할 수 있으며, 나아가서 주변 기지국으로부터의 전송 또한 시도할 수 있다.
이를 위해서는 사전에 이러한 폴-백의 경우에 어떠한 형태로 네트워크가 전송을 시도할 것인지를 사전에 규정해야 하며, 추가적으로 어떠한 기지국이 어떠한 빔을 이용하여 어떠한 시점/자원에서 전송을 시도할 지를 설정할 수 있다. 단말은 폴-백 동작에 돌입하게 되면 이러한 설정에 따라서 각 시점/자원에서 정해진 기지국의 정해진 빔에 대해 수신 동작을 시도하게 된다. 물론 여러 기지국으로부터의 SFN 전송도 폴-백 용도로 가능하다.
<제 2 실시예>
이하에서는 상향링크에서 단말이 단일 데이터를 상이한 빔으로 반복 전송하는 구체적인 동작을 설명한다.
상향링크 전송을 위해서 단말은 기지국으로부터 상향링크 그랜트를 받게 되고, 이 상향링크 그랜트에는 상향링크 전송에 대한 스케줄링 메시지가 포함된다. 따라서, 기지국은 상기 단말과의 통신에 있어서 최적의 빔 하나를 선택하는 것이 어렵다고 판단되면, 단일 데이터 송신에 복수의 빔을 사용하도록 스케줄링할 수 있으며, 특히 아날로그 빔포밍이 적용되는 경우와 같은 상황에서는 상이한 시점에서 상이한 빔을 사용하도록 스케줄링할 수 있다.
특징적으로, 상이한 빔으로 전송되는 데이터 전송은 실제 최적인 단일한 빔만으로도 수신이 가능해야 하기 때문에, 비록 다른 시점에서 다른 빔으로 전송된다고 하더라도 HARQ 동작은 단일한 HARQ 프로세스에서 수행되며, RV (redundancy version) 역시 복수에 빔에서 동일하게 적용되어야 한다. 여기서 단일한 HARQ 프로세스에서 수행된다고 함은, 특정 시점에서의 데이터 전송을 기지국이 수신 성공할 경우에 단말은 동일 데이터를 다른 빔으로 전송하는 동작을 이전에 상향링크 그랜트로 수신했다고 하더라도 취소하는 동작을 포함할 수 있다.
상향링크 동작을 위한 스케줄링에서 기지국은 단말이 사용할 상향링크 송신 빔 (다른 의미로, 프리코딩 행렬)을 직접 지정해줄 수도 있지만, 기지국이 이를 설정하기가 어려운 경우에는 단말로 하여금 직접 설정하도록 동작할 수 있다. 일 예로, 단말이 MRS의 수신 과정을 통하여 기지국이 특정 MRS의 송신 빔포밍에 사용된 빔에 대응하는 수신 빔을 이용하여 수신 시도하고 있다는 정보를 파악할 수 있다면, 자신이 사용할 최적의 송신 빔포밍이 무엇일지를 결정할 수 있다. 특히, 이는 TDD 시스템과 같이 하향링크 채널과 상향링크 채널이 동일하다고 가정할 수 있는 경우 보다 유용할 수 있다.
따라서, 기지국은 자신이 각 시점에서 수신 시도할 때 사용할 수신 빔이 특정 MRS의 송신 빔과 동일하다는 정보를 단말에게 알려주고, 단말은 해당 시점에서는 기지국이 해당 MRS의 송신 빔에 대응하는 수신 빔으로 수신 시도할 때 최적이 되는 (즉, 상기 수신 빔에 대응하는) 송신 빔으로 송신을 시도하도록 동작할 수 있다. 이런 최적이 되는 송신 빔은, 해당 MRS를 수신할 때 수신 전력이 최대가 되는 수신 빔에 대응하는 송신 빔으로 설정될 수 있다.
추가적으로, 기지국은 단말에게 동일한 빔을 사용하여 동일 데이터를 여러 시점에 반복 전송하도록 지시하고, 이후 각 시점에서 수신 빔을 바꾸어 가며 수신을 시도하도록 동작할 수도 있다. 이 경우 첫 번째 시점에서의 수신 빔이 정확하게 설정되지 않은 경우에는 유효한 수신 신호를 획득할 수가 없기 때문에, 두 번째 시점에서의 수신만으로도 수신 성공이 가능해야 한다. 따라서, 비록 단말이 동일 데이터를 전송하더라도 송신 시점 별로 채널 코딩의 RV을 바꾸지 않고 유지하도록 동작하는 것이 바람직하다. 가령 기지국이 네 종류의 수신 빔으로 수신을 시도하면서 각 수신 빔에서 2번의 반복 수신을 통하여 커버리지 향상을 시도하는 경우, 단말이 전송하는 패턴은 아래 표 1과 같이 나타날 수 있다.
시점 0 1 2 3 4 5 6 7
수신 빔 A B C D A B C D
RV X X X X Y Y Y Y
상기 표 1을 참고하면, 단말은 첫 번째 RV (표 1에서 RV X)을 우선 반복하여 전송하고 기지국이 빔을 바꾸어 가며 수신을 시도한다. 그 이후에 두 번째 RV을 다시 반복 전송할 때 기지국 역시 다시 빔을 바꾸어 가며 수신하게 된다. 이를 통해 동일 수신 빔으로 전송되는 두 RV이 시간에서 상대적으로 떨어지게 되어서 시간 도메인에서의 다이버시티 이득을 보다 양호하게 획득할 수 있게 된다. 물론 기지국은 RV X의 수신 과정에서 특정 빔으로 강하게 신호를 수신할 수 있다는 것을 파악하게 되면, RV Y의 수신 과정에서는 해당 특정 빔으로 수신 빔을 고정하거나 혹은 해당 특정 빔과 유사한 빔들로 수신 빔을 고정 및 조절할 수도 있다.
도 8은 본 발명의 실시예에 따라 단말이 기지국으로 상향링크 신호를 송신하는 예를 설명하는 순서도이다.
도 8을 참조하면, 단말은 단계 801에서 우선 기지국으로부터 서로 다른 송신 빔들이 적용된 둘 이상의 참조 신호들을 둘 이상의 TTI 상에서 순차적으로 수신하고, 이후, 단계 803에서 상기 서로 다른 송신 빔들을 이용하여 상기 기지국의 수신 빔 패턴을 확인한다. 특히, 이 경우 하향링크 채널과 상향링크 채널이 동일하다고 가정된다.
다음으로, 단말은, 단계 805에서 상기 기지국의 수신 빔 패턴에 관한 정보를 이용하여, 상기 TTI 단위로 정의되는 상향링크 송신 빔 패턴을 결정한다. 또한, 단계 807에서 단말은 상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신한다. 상술한 바와 같이, 상기 순차적 반복 송신 도중 상기 기지국으로부터 상기 상향링크 신호에 대한 긍정 응답을 수신한 경우, 상기 순차적 반복 송신을 중단할 수 있다.
도 9는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 9를 참조하면, 통신 장치(900)는 프로세서(910), 메모리(920), RF 모듈(930), 디스플레이 모듈(940) 및 사용자 인터페이스 모듈(950)을 포함한다.
통신 장치(900)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(900)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(900)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(910)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(910)의 자세한 동작은 도 1 내지 도 8에 기재된 내용을 참조할 수 있다.
메모리(920)는 프로세서(910)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(930)은 프로세서(910)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(930)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(940)은 프로세서(910)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(940)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(950)은 프로세서(910)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 기지국으로 상향링크 신호를 송신하는 방법에 있어서,
    상기 기지국으로부터 TTI (transmission time interval) 단위로 정의되는 상기 기지국의 수신 빔 패턴에 관한 정보를 수신하는 단계;
    상기 기지국의 수신 빔 패턴에 관한 정보를 이용하여, 상기 TTI 단위로 정의되는 상향링크 송신 빔 패턴을 결정하는 단계;
    상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신하는 단계를 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  2. 제 1 항에 있어서,
    상기 기지국의 수신 빔 패턴에 관한 정보를 수신하는 단계는,
    상기 기지국으로부터 서로 다른 송신 빔들이 적용된 둘 이상의 참조 신호들을 둘 이상의 TTI 상에서 순차적으로 수신하는 단계; 및
    상기 서로 다른 송신 빔들을 이용하여 상기 기지국의 수신 빔 패턴을 확인하는 단계를 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  3. 제 2 항에 있어서,
    상기 기지국의 수신 빔 패턴을 확인하는 단계는,
    하향링크 채널과 상향링크 채널이 동일하다고 가정하는 단계를 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  4. 제 1 항에 있어서,
    상기 순차적 반복 송신되는 상기 상향링크 신호는,
    동일한 데이터를 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  5. 제 1 항에 있어서,
    상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신하는 단계는,
    상기 순차적 반복 송신 도중 상기 기지국으로부터 상기 상향링크 신호에 대한 긍정 응답을 수신한 경우, 상기 순차적 반복 송신을 중단하는 단계를 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  6. 무선 통신 시스템에서의 단말로서,
    무선 통신 모듈; 및
    상기 무선 통신 모듈과 연결되어, 기지국으로부터 TTI (transmission time interval) 단위로 정의되는 상기 기지국의 수신 빔 패턴에 관한 정보를 수신하고, 상기 기지국의 수신 빔 패턴에 관한 정보를 이용하여 상기 TTI 단위로 정의되는 상향링크 송신 빔 패턴을 결정하며, 상기 기지국으로 상기 상향링크 신호를 상기 상향링크 송신 빔 패턴에 따라 상기 TTI 단위로 순차적 반복 송신하는 프로세서를 포함하는 것을 특징으로 하는,
    단말.
  7. 제 6 항에 있어서,
    상기 프로세서는,
    상기 기지국으로부터 서로 다른 송신 빔들이 적용된 둘 이상의 참조 신호들을 둘 이상의 TTI 상에서 순차적으로 수신하고, 상기 서로 다른 송신 빔들을 이용하여 상기 기지국의 수신 빔 패턴을 확인하는 것을 특징으로 하는,
    단말.
  8. 제 7 항에 있어서,
    상기 프로세서는,
    상기 기지국의 수신 빔 패턴을 확인 시, 하향링크 채널과 상향링크 채널이 동일하다고 가정하는 것을 특징으로 하는,
    단말.
  9. 제 6 항에 있어서,
    상기 순차적 반복 송신되는 상기 상향링크 신호는,
    동일한 데이터를 포함하는 것을 특징으로 하는,
    단말.
  10. 제 6 항에 있어서,
    상기 프로세서는,
    상기 순차적 반복 송신 도중 상기 기지국으로부터 상기 상향링크 신호에 대한 긍정 응답을 수신한 경우, 상기 순차적 반복 송신을 중단하는 것을 특징으로 하는,
    단말.
PCT/KR2017/007482 2016-07-13 2017-07-12 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치 WO2018012887A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/317,522 US10873946B2 (en) 2016-07-13 2017-07-12 Method for transmitting signal by using multi-beam in wireless communication system, and apparatus therefor
KR1020197001038A KR102201764B1 (ko) 2016-07-13 2017-07-12 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
JP2019501621A JP6697630B2 (ja) 2016-07-13 2017-07-12 無線通信システムにおいて多重ビームを用いた信号送信方法及びそのための装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662362022P 2016-07-13 2016-07-13
US62/362,022 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018012887A1 true WO2018012887A1 (ko) 2018-01-18

Family

ID=60952662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007482 WO2018012887A1 (ko) 2016-07-13 2017-07-12 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10873946B2 (ko)
JP (1) JP6697630B2 (ko)
KR (1) KR102201764B1 (ko)
WO (1) WO2018012887A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172683A1 (ko) * 2018-03-07 2019-09-12 삼성전자 주식회사 무선 통신 시스템에서 시스템 정보를 획득하기 위한 장치 및 방법
CN110809323A (zh) * 2018-08-06 2020-02-18 华硕电脑股份有限公司 无线通信系统中处理多个装置间传送的方法和设备
JP2022502876A (ja) * 2018-08-08 2022-01-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ機器および通信方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3520478A1 (en) * 2016-09-30 2019-08-07 Telefonaktiebolaget LM Ericsson (PUBL) Wireless device, radio network nodes and methods performed therein
CN108633006B (zh) * 2017-03-17 2021-03-19 电信科学技术研究院 一种上行发送波束确定方法和装置
CN111183593B (zh) 2017-10-02 2022-10-18 联想(新加坡)私人有限公司 上行链路功率控制
US10756784B2 (en) * 2018-04-03 2020-08-25 Qualcomm Incorporated Feedback of beam repetition and diversity mode
US20220070894A1 (en) * 2018-12-30 2022-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling request for radio access networks with beamforming
US11616536B2 (en) * 2019-05-03 2023-03-28 Qualcomm Incorporated Time division multiplexed multiple default beams
US11477760B2 (en) * 2019-12-19 2022-10-18 Qualcomm Incorporated Frequency diversity techniques for single frequency networks
US20210203397A1 (en) * 2020-02-13 2021-07-01 Intel Corporation Systems and methods for multiple-beam uplink transmission
CN114070515B (zh) * 2020-08-06 2024-08-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072244A1 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co. Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
US20140307654A1 (en) * 2013-04-15 2014-10-16 Samsung Electronics Co., Ltd. Scheduling method and apparatus for beamforming in mobile communication system
WO2015157565A1 (en) * 2014-04-09 2015-10-15 Interdigital Patent Holdings, Inc. Mmw physical layer downlink channel scheduling and control signaling
US20160105872A1 (en) * 2014-10-14 2016-04-14 Asustek Computer Inc. Method and apparatus for beam tracking in a wireless communication system
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206574A (ja) 2009-03-04 2010-09-16 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
CN102082745B (zh) * 2010-04-19 2013-10-16 电信科学技术研究院 天线校准信息的上报、天线校准因子的确定方法及设备
AU2012284692B2 (en) 2011-07-21 2016-06-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving information for random access in wireless communication system
KR101800221B1 (ko) 2011-08-11 2017-11-22 삼성전자주식회사 무선통신 시스템에서 빔 추적 방법 및 장치
KR102289945B1 (ko) * 2014-12-16 2021-08-17 한국전자통신연구원 초고주파 대역의 이동 통신 시스템에서의 빔 스케줄링 방법 및 그 장치
WO2017123060A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
KR102397351B1 (ko) * 2016-06-15 2022-05-13 콘비다 와이어리스, 엘엘씨 차세대 네트워크들에서의 랜덤 액세스 절차들

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072244A1 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co. Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
US20140307654A1 (en) * 2013-04-15 2014-10-16 Samsung Electronics Co., Ltd. Scheduling method and apparatus for beamforming in mobile communication system
WO2015157565A1 (en) * 2014-04-09 2015-10-15 Interdigital Patent Holdings, Inc. Mmw physical layer downlink channel scheduling and control signaling
US20160105872A1 (en) * 2014-10-14 2016-04-14 Asustek Computer Inc. Method and apparatus for beam tracking in a wireless communication system
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172683A1 (ko) * 2018-03-07 2019-09-12 삼성전자 주식회사 무선 통신 시스템에서 시스템 정보를 획득하기 위한 장치 및 방법
US11444681B2 (en) 2018-03-07 2022-09-13 Samsung Electronics Co., Ltd. Device and method for acquiring system information by decoding signals in wireless communication system
US11870469B2 (en) 2018-03-07 2024-01-09 Samsung Electronics Co., Ltd. Device and method for acquiring system information by decoding signals in wireless communication system
CN110809323A (zh) * 2018-08-06 2020-02-18 华硕电脑股份有限公司 无线通信系统中处理多个装置间传送的方法和设备
US11611972B2 (en) 2018-08-06 2023-03-21 Asustek Computer Inc. Method and apparatus of handling multiple device-to-device transmissions in a wireless communication system
CN110809323B (zh) * 2018-08-06 2023-06-16 华硕电脑股份有限公司 无线通信系统中处理多个装置间传送的方法和设备
JP2022502876A (ja) * 2018-08-08 2022-01-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ機器および通信方法
JP7258057B2 (ja) 2018-08-08 2023-04-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ ユーザ機器および通信方法

Also Published As

Publication number Publication date
JP2019527958A (ja) 2019-10-03
US10873946B2 (en) 2020-12-22
KR102201764B1 (ko) 2021-01-12
JP6697630B2 (ja) 2020-05-20
KR20190011805A (ko) 2019-02-07
US20190246388A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2018080184A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 센싱 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2017119771A1 (ko) 무선 통신 시스템에서 다중 채널을 이용한 에러 복구 방법 및 이를 위한 장치
KR102074291B1 (ko) 동기화 신호 전송 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2018186671A1 (ko) 차세대 통신 시스템에서 방송 데이터를 위한 dm-rs 송신 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2012150793A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2017191964A2 (ko) 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치
WO2012141490A2 (ko) 무선 통신 시스템에서 셀 간 간섭을 완화하기 위한 신호 송수신 방법 및 이를 위한 장치
WO2018174555A1 (ko) 차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치
WO2018174510A1 (ko) 차세대 통신 시스템에서 코드워드와 레이어를 맵핑하는 방법 및 이를 위한 장치
WO2013141508A1 (ko) 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치
WO2018143595A1 (ko) 분산 안테나 통신 시스템에서 기지국과 차량 단말 간 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001038

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019501621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827957

Country of ref document: EP

Kind code of ref document: A1