WO2018006530A1 - 含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件 - Google Patents
含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件 Download PDFInfo
- Publication number
- WO2018006530A1 WO2018006530A1 PCT/CN2016/106228 CN2016106228W WO2018006530A1 WO 2018006530 A1 WO2018006530 A1 WO 2018006530A1 CN 2016106228 W CN2016106228 W CN 2016106228W WO 2018006530 A1 WO2018006530 A1 WO 2018006530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- conjugated polymer
- chlorobenzothiadiazole
- molar ratio
- structural formula
- Prior art date
Links
- 0 C*(C)C(*C(C(C(C(C(c1ccc(-c2cc3c(**)c([n]c(*(C)C)c4)c4c(*)c3[n]2)[n]1)=C1)=*C)=C(C)CI)=C1N)=C1)=C1N Chemical compound C*(C)C(*C(C(C(C(C(c1ccc(-c2cc3c(**)c([n]c(*(C)C)c4)c4c(*)c3[n]2)[n]1)=C1)=*C)=C(C)CI)=C1N)=C1)=C1N 0.000 description 5
- PJHPOQSSOJRZNO-UHFFFAOYSA-O CCCC(C(C1[SH+]CCC1)=CC(Cl)=C1Br)C1=N Chemical compound CCCC(C(C1[SH+]CCC1)=CC(Cl)=C1Br)C1=N PJHPOQSSOJRZNO-UHFFFAOYSA-O 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
Definitions
- the invention relates to the field of organic solar cells, in particular to a conjugated polymer containing chlorobenzothiadiazole, a preparation method thereof and an organic solar cell device.
- Organic solar cells is an important development direction of second-generation thin-film solar cells. It has the following main advantages: (1) Wide range of raw materials, light weight, low preparation cost, easy adjustment of function and structure, flexibility and Good film formation; (2) Low temperature operation, the device can be fabricated by simple solution processing method, can realize large-scale production by printing or printing, and effectively reduce production cost; (3) Easy to realize large-area flexible device manufacturing .
- the efficiency and stability of organic polymer solar cells are promising to achieve breakthroughs. If the energy conversion efficiency is increased to a level higher than 10% (large-area flexible device efficiency is 8%), large-scale commercial production of organic polymer solar cells can be achieved.
- a conjugated polymer containing chlorobenzothiadiazole having the following structural formula:
- Ar is selected from In one of -OR 1 and -SR 1 , R 1 is an alkyl group having 1 to 20 carbon atoms, R 2 is an alkyl group having 1 to 20 carbon atoms, and n is an integer of 1 to 50.
- R 1 is an alkyl group having 1 to 16 carbon atoms
- R 2 is an alkyl group having 1 to 12 carbon atoms
- n is an integer of 1 to 30.
- R 1 is an alkyl group having 12 or 16 carbon atoms
- R 2 is an alkyl group having 8 or 12 carbon atoms
- n is an integer of 15, 17, 27 or 28.
- Ar is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- a preparation method of a conjugated polymer containing chlorobenzothiadiazole comprising the following steps:
- n-butyl lithium and structural formula Compound A is mixed in tetrahydrofuran, and then heated to room temperature for 1 to 3 hours to obtain a reaction liquid.
- the reaction liquid is cooled to -78 ° C to -60 ° C, and then trimethyltin chloride is added, and at room temperature.
- the structural formula is Compound B, wherein Ar is selected from And one of -OR 1 and -SR 1 , wherein R 1 is an alkyl group having 1 to 20 carbon atoms, Me is a methyl group, and a molar ratio of said n-butyl lithium to said compound A is 2.25:1 to 2.05. : 1, the molar ratio of the trimethyltin chloride to the compound A is from 2.5:1 to 2.25:1;
- the 5-chloro-o-phenylenediamine, pyridine and thionyl chloride are refluxed in a first organic solvent to obtain a structural formula.
- Compound C wherein the molar ratio of the pyridine to the 5-chloro-o-phenylenediamine is from 5:1 to 3:1, and the molar ratio of the thionyl chloride to the 5-chloro-o-phenylenediamine It is 1:1.5 to 1:3;
- the compound C and hydrogen bromide are refluxed for 1 to 3 hours, then liquid bromine is added, and the reflux reaction is continued to obtain a structural formula.
- the compound D wherein the molar ratio of the hydrogen bromide to the compound C is 40:1 to 35:1, and the molar ratio of the liquid bromine to the compound C is 25:1 to 20:1;
- the D and structural formula of the compound are Compound E and the first catalyst are reacted in a mixed solution of toluene and N,N-dimethylformamide at 100 ° C to 120 ° C to obtain a structural formula of Compound F, wherein the molar ratio of the compound D to the compound E is from 1.05:1 to 1:1;
- the compound F and the structural formula are Compound G, and a second catalyst are reacted in a mixed solution of toluene and N,N-dimethylformamide at 100 ° C to 120 ° C to obtain a structural formula of The compound H, wherein R 2 is an alkyl group having 1 to 20 carbon atoms, and the molar ratio of the compound G to the compound F is 1.25:1 to 1.1:1;
- the compound H is reacted with N-bromosuccinimide in a second solvent at room temperature to obtain a structural formula of The compound I, wherein the molar ratio of the N-bromosuccinimide to the compound H is from 2.5:1 to 2.2:1;
- n is an integer of 1 to 50.
- the first catalyst and the second catalyst are both palladium catalysts.
- the third catalyst is tris(dibenzylideneacetone)dipalladium or palladium acetate; the molar ratio of the third catalyst to the compound B is from 1:25 to 1:100.
- the third catalyst is tris(dibenzylideneacetone)dipalladium and 2-dicyclohexylphosphine-2',6'-dimethoxy in a molar ratio of 1:4 to 1:8. a bisphenyl mixture; a molar ratio of the third catalyst to the compound B is from 1:25 to 1:100.
- the first organic solvent is chloroform or dichloromethane.
- the second organic solvent is tetrahydrofuran, N,N-dimethylformamide or chloroform.
- the third solvent is chlorobenzene, toluene or dichlorobenzene.
- the step of separating and purifying the conjugated polymer containing chlorobenzothiadiazole is further included:
- the reaction solution obtained by the Stille coupling reaction is added to methanol for precipitation, followed by filtration to obtain a filtrate, and the filtrate is sequentially extracted with methanol, acetone and n-hexane, and then extracted with dichloromethane and chloroform in that order.
- the chloroform solution was collected and spun dry to obtain a powder, which was vacuum dried to obtain the chlorobenzothiadiazole-containing polymer.
- An organic solar cell device comprising the activation layer, the electron donor material of the activation layer being a chlorobenzothiadiazole-containing polymer having the following structural formula:
- Ar is selected from In one of -OR 1 and -SR 1 , R 1 is an alkyl group having 1 to 20 carbon atoms, R 2 is an alkyl group having 1 to 20 carbon atoms, and n is an integer of 1 to 50.
- the conjugated polymer containing chlorobenzothiadiazole is composed of benzodithiophene (BDT) and chlorine-substituted benzothiadiazole, it has a strong donor-acceptor structure, which is beneficial to reducing the energy of the material.
- the band gap is used to expand the solar absorption range and improve the photoelectric conversion efficiency, that is, the conjugated polymer containing chlorobenzothiadiazole has high energy conversion efficiency.
- FIG. 1 is a flow chart showing a method for preparing a chlorinated benzothiadiazole-containing conjugated polymer according to an embodiment
- Ar is selected from In one of -OR 1 and -SR 1 , R 1 is an alkyl group having 1 to 20 carbon atoms, R 2 is an alkyl group having 1 to 20 carbon atoms, and n is an integer of 1 to 50.
- the conjugated polymer containing chlorobenzothiadiazole is composed of benzodithiophene (BDT) and chlorine-substituted benzothiadiazole, it has a strong donor-acceptor structure, which is beneficial to reducing the energy of the material.
- the band gap is used to expand the solar absorption range and improve the photoelectric conversion efficiency, that is, the conjugated polymer containing chlorobenzothiadiazole has high energy conversion efficiency.
- a method for preparing a chlorinated benzothiadiazole-containing conjugated polymer is as described above.
- a method for preparing a conjugated polymer containing chlorobenzothiadiazole comprises the following steps (where Me is a methyl group):
- Step S110 under the condition of -78 ° C, the n-butyl lithium and the structural formula are Compound A is mixed in tetrahydrofuran, and further heated to room temperature for 1 to 3 hours to obtain a reaction liquid, and the reaction liquid is cooled to -78 ° C to -60 ° C, and then trimethyltin chloride (Me 3 SnCl) is added, and Reaction at room temperature, the structural formula is Compound B.
- Me 3 SnCl trimethyltin chloride
- Ar is selected from One of -OR 1 and -SR 1 .
- the molar ratio of n-butyllithium to compound A is from 2.25:1 to 2.05:1; and the molar ratio of trimethyltin chloride to compound A is from 2.5:1 to 2.25:1.
- Step S120 refluxing 5-chloro-o-phenylenediamine, pyridine and thionyl chloride in a first organic solvent to obtain a structural formula Compound C.
- the first organic solvent is chloroform or dichloromethane; the molar ratio of pyridine to 5-chloro-o-phenylenediamine is 5:1 to 3:1; and the molar ratio of dichlorosulfoxide to 5-chloro-o-phenylenediamine The ratio is 1:1.5 to 1:3.
- Step S130 refluxing the compound C and hydrogen bromide for 1 to 3 hours, then adding liquid bromine, and continuing the reflux reaction to obtain a structural formula.
- Compound D
- the molar ratio of hydrogen bromide to compound C is from 40:1 to 35:1; and the molar ratio of liquid bromine to compound C is from 25:1 to 20:1.
- Step S140 under the condition of shielding gas, the compound D and the structural formula are Compound E and the first catalyst are reacted in a mixed solution of toluene and N,N-dimethylformamide at 100 ° C to 120 ° C to obtain a structural formula of Compound F.
- the first catalyst is a palladium catalyst such as bistriphenylphosphine palladium (II) chloride or tetrakistriphenylphosphine palladium;
- the protective gas is nitrogen or argon; toluene and N,N-dimethyl
- the volume ratio of toluene to N,N-dimethylformamide in the mixed solution of the carboxamide is from 4:1 to 10:1; the molar ratio of the compound D to the compound E is from 1.05:1 to 1:1.
- Step S150 under the condition of shielding gas, the compound F and the structural formula are Compound G and a second catalyst are reacted in a mixed solution of toluene and N,N-dimethylformamide at 100 to 120 ° C to obtain a structural formula of Compound H.
- R 2 is an alkyl group having 1 to 20 carbon atoms; a protective gas is nitrogen or argon; and the second catalyst is a palladium catalyst such as bistriphenylphosphine palladium (II) chloride or tetrakistriphenylphosphine palladium;
- the volume ratio of toluene to N,N-dimethylformamide in a mixed solution of toluene and N,N-dimethylformamide is from 4:1 to 10:1; the molar ratio of compound G to compound F The ratio is from 1.25:1 to 1.1:1.
- Step S160 reacting compound H with N-bromosuccinimide in a second solvent at room temperature to obtain a structural formula Compound I.
- the second organic solvent is tetrahydrofuran, DMF or chloroform; the molar ratio of N-bromosuccinimide to compound H is from 2.5:1 to 2.2:1.
- Step S170 Performing Stille coupling reaction of Compound B and Compound I under a third catalyst condition in a third organic solvent at 130-145 ° C under aerobic conditions at a molar ratio of 1:1 to 1:1.2
- a conjugated polymer containing chlorobenzothiadiazole having the following structural formula:
- n is an integer of from 1 to 50; the third catalyst is tris(dibenzylideneacetone)dipalladium or palladium acetate; and the molar ratio of the third catalyst to the compound B is from 1:25 to 1:100.
- the third catalyst is a mixture of tris(dibenzylideneacetone)dipalladium and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl in a molar ratio of 1:4; at this time, the third catalyst
- the molar ratio to compound B is from 1:4 to 1:8; the third solvent is chlorobenzene, toluene or dichlorobenzene.
- the reaction solution obtained after the Stille coupling reaction was added to methanol for precipitation, followed by filtration to obtain a filtrate, and the filtrate was extracted with methanol, acetone and n-hexane in that order, and then extracted with dichloromethane and chloroform, and collected.
- the chloroform solution was spin-dried to obtain a powder, which was vacuum dried to obtain a chlorobenzothiadiazole-containing polymer.
- the above chlorobenzothiadiazole-containing polymer has a simple preparation method and is easy to industrially produce.
- An organic solar cell device comprising an activation layer, wherein the electron donor material of the activation layer is a chlorobenzothiadiazole-containing polymer having the following structural formula:
- Ar is selected from In one of -OR 1 and -SR 1 , R 1 is an alkyl group having 1 to 20 carbon atoms, R 2 is an alkyl group having 1 to 20 carbon atoms, and n is an integer of 1 to 50.
- the conjugated polymer containing chlorobenzothiadiazole is composed of benzodithiophene (BDT) and chlorine-substituted benzothiadiazole, it has a strong donor-acceptor structure, which is beneficial to reducing the energy of the material.
- the band gap is used to expand the solar absorption range and improve the photoelectric conversion efficiency, so that the organic solar cell device has higher energy conversion efficiency.
- the mixed solution of the ratio of 4:1) was reacted at 120 ° C for two days, and cooled to room temperature to obtain a reaction liquid.
- the reaction solution was quenched by adding a saturated NaCl solution, and extracted twice with dichloromethane to obtain an organic
- the phase was washed twice with water and dried over anhydrous Na 2 SO 4 , using a silica gel column (wherein the eluent was a mixture of petroleum ether and ethyl acetate, the ratio of petroleum ether to ethyl acetate was 20:1)
- Separation and purification gave 3.74 g of a yellow solid compound F (yield: 73.8%).
- the detection data of compound F is as follows:
- the polymer was precipitated with 200 mL of methanol, filtered through a wire vesicle, and extracted with methanol, acetone, n-hexane, dichloromethane and chloroform. The chloroform was concentrated and precipitated in methanol. 131.1 mg of a conjugated polymer containing chlorobenzothiadiazole was obtained under vacuum drying. Among them, the detection data of the conjugated polymer containing chlorobenzothiadiazole is as follows:
- the polymer was precipitated with 200 mL of methanol, filtered through a wire vesicle, and extracted with methanol, acetone, n-hexane, dichloromethane and chloroform. The chloroform was concentrated and precipitated in methanol. 131.1 mg of a conjugated polymer containing chlorobenzothiadiazole was obtained under vacuum drying. Among them, the detection data of the conjugated polymer containing chlorobenzothiadiazole is as follows:
- the mixed solution of the ratio of 4:1) was reacted at 120 ° C for two days, and cooled to room temperature to obtain a reaction liquid.
- the reaction solution was quenched by adding a saturated NaCl solution, and extracted twice with dichloromethane to obtain organic
- the phase was washed twice with water and dried over anhydrous Na 2 SO 4 , using a silica gel column (wherein the eluent was a mixture of petroleum ether and ethyl acetate, the ratio of petroleum ether to ethyl acetate was 20:1)
- Separation and purification gave 3.74 g of a yellow solid compound F (yield: 73.8%).
- the detection data of compound F is as follows:
- the polymer was precipitated with 200 mL of methanol, filtered through a wire vesicle, and extracted with methanol, acetone, n-hexane, dichloromethane and chloroform. The chloroform was concentrated and precipitated in methanol. 131.1 mg of a conjugated polymer containing chlorobenzothiadiazole was obtained under vacuum drying. Among them, the detection data of the conjugated polymer containing chlorobenzothiadiazole is as follows:
- the mixed solution of the ratio of 4:1) was reacted at 120 ° C for two days, and cooled to room temperature to obtain a reaction liquid.
- the reaction solution was quenched by adding a saturated NaCl solution, and extracted twice with dichloromethane to obtain an organic
- the phase was washed twice with water and dried over anhydrous Na 2 SO 4 , using a silica gel column (wherein the eluent was a mixture of petroleum ether and ethyl acetate, the ratio of petroleum ether to ethyl acetate was 20:1)
- Separation and purification gave 3.74 g of a yellow solid compound F (yield: 73.8%).
- the detection data of compound F is as follows:
- the polymer was precipitated with 200 mL of methanol, filtered through a wire vesicle, and extracted with methanol, acetone, n-hexane, dichloromethane and chloroform. The chloroform was concentrated and precipitated in methanol. 131.1 mg of a conjugated polymer containing chlorobenzothiadiazole was obtained under vacuum drying. Among them, the detection data of the conjugated polymer containing chlorobenzothiadiazole is as follows:
- the conjugated polymer containing chlorobenzothiadiazole prepared in Example 1, Example 2, Example 3 and Example 4 was used as a material of the active layer to prepare an organic solar cell device, and each organic solar cell was used.
- the device comprises a glass substrate which is sequentially laminated, an indium oxide glass anode, a ZnO intermediate auxiliary layer, a PC 71 BM active layer polymer, and a material of the cathode is a MoO 3 and an Ag metal electrode. After the ITO glass was ultrasonically cleaned, it was treated with oxygen plasma, and the sheet resistance of the ITO glass was 10 ⁇ /sq.
- ZnO was spin-coated on ITO glass, and the conjugated polymers containing chlorobenzothiadiazole of Examples 1 to 4 were all combined with PC 71 BM([6,6]-phenyl-carbon 71-butyric acid).
- the methyl ester was spin-coated with chlorobenzene as a solvent in a weight ratio of polymer to PC 71 BM of 1:1.5 as an active layer of a polymer solar cell, and spin-coated on the ZnO layer to form an active layer.
- the MoO 3 and Ag metal electrodes were steamed. The battery characteristics were measured under irradiation of 100 mW per square centimeter of AM 1.5 simulated sunlight.
- Organic solar cell device 1 Organic solar cell device 2
- organic solar cell device 3 organic solar cell device 4.
- the current-voltage characteristics of the organic solar cell device were tested using a Keithley 236 current-voltage source-measurement system.
- Figure 2 shows the current-voltage characteristics of the organic solar cell device 1, the organic solar cell device 2, the organic solar cell device 3, and the organic solar cell device 4.
- Figure. As can be seen from Fig. 2, the obtained battery device has an open circuit voltage of 0.76 V, a short circuit current of 16.75 mA cm -2 , a fill factor of 69.71%, and an energy conversion efficiency of 8.91%.
- the organic solar cell device When the organic solar cell device is used, light passes through the substrate glass and the anode ITO under illumination, and the conductive hole-type electroluminescent material in the active layer absorbs light energy and generates excitons, which are then transferred to the electrons.
- the donor/acceptor material At the cross section of the donor/acceptor material, and transferring electrons to an electron acceptor material, such as PCBM, the charge is separated to form free carriers, ie free electrons and holes.
- free electrons are transported to the cathode along the electron acceptor material and collected by the cathode.
- the free holes are transported along the electron donor to the anode and collected by the anode, thereby forming photocurrent and photovoltage for photoelectric conversion, and when externally connected to the load, Power is supplied.
- the conduction hole type electroluminescent material can utilize the light energy more fully because of its wide spectral response range, thereby obtaining higher Photoelectric conversion efficiency increases the power generation capability of solar cell devices.
- the organic material can also reduce the quality of the solar cell device, and can be fabricated by spin coating techniques, etc., and is convenient for mass production.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
一种含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件。该含氯代苯并噻二唑的共轭聚合物,具有结构式(1),其中,Ar选自结构式(A)、(B)、(C)、(D)、(E)、(F)、-OR1及-SR1中的一种,R1为碳原子为1~20的烷基,R2为碳原子为1~20的烷基,n为1~50的整数。上述含氯代苯并噻二唑的共轭聚合物具有较高的能量转换效率。
Description
本发明涉及有机太阳能电池领域,尤其涉及一种含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件。
有机太阳能电池(OSC)是第二代薄膜太阳能电池的一个重要发展方向,它具有以下几个主要优点:(1)原料来源广泛,质量轻,制备成本低,功能和结构易于调节,柔韧性及成膜性好;(2)可低温操作,其器件可以通过简单的溶液加工方法制作,能够通过印刷或者打印等方法实现大规模生产,有效降低制作成本;(3)易于实现大面积柔性器件制造。通过在分子结构上对有机材料进行设计与合成,同时对有机光伏器件结构进行优化,能够使有机聚合物太阳能电池的效率和稳定性很有希望获得突破性进展。如果将其能量转换效率提高到10%(大面积柔性器件效率达到8%)以上的水平,就可以实现有机聚合太阳能电池的大规模商业化生产。
但是,到目前为止,有机太阳能电池的光电转换效率比无机太阳能电池还是低很多。中国是全球主要的能量消耗和太阳能生产大国,为解决能源问题,开发与应用OSC技术成为了新型能源研究重点。研究人员一直在努力寻求改善和提高聚合物太阳电池性能的方法,材料是最重要的因素之一。
发明内容
基于此,有必要提供一种能量转换效率较高的含氯代苯并噻二唑的共轭聚合物。
此外,还提供一种含氯代苯并噻二唑的共轭聚合物的制备方法及聚合物太阳能电池。
一种含氯代苯并噻二唑的共轭聚合物,具有如下结构式:
在其中一个实施例中,R1为碳原子为1~16的烷基,R2为碳原子为1~12的烷基,n为1~30的整数。
在其中一个实施例中,R1为碳原子为12或16的烷基,R2为碳原子为8或12的烷基,n为15、17、27或28的整数。
一种含氯代苯并噻二唑的共轭聚合物的制备方法,包括如下步骤:
在保护性气体和-78℃的条件下,将正丁基锂与结构式为的化合物A在四氢呋喃中混合,再升温至室温反应1~3小时,得到反应液,将所述反应液降温至-78℃~-60℃,再加入三甲基氯化锡,并在室温下反应,得到结构式为的化合物B,其中,Ar选自
-OR1及-SR1中的一种,R1为碳原子为1~20的烷基,Me为甲基,所述正丁基锂与所述化合物A的摩尔比为2.25∶1~2.05∶1,所述三甲基氯化锡与所述化合物A的摩尔比为2.5∶1~2.25∶1;
将5-氯邻苯二胺、吡啶和二氯亚砜在第一有机溶剂中进行回流反应,得到结构式为的化合物C,其中,所述吡啶与所述5-氯邻苯二胺的摩尔比为5∶1~3∶1,所述二氯亚砜与所述5-氯邻苯二胺的摩尔比为1∶1.5~1∶3;
将所述化合物C和溴化氢进行回流反应1~3小时,然后加入液溴,继续进行回流反应,得到结构式为的化合物D,其中,所述溴化氢与所述化合物C的摩尔比为40∶1~35∶1,所述液溴与所述化合物C的摩尔比为25∶1~20∶1;
在保护气体的条件下,将所述化合物的D、结构式为化合物E和第一催化剂在甲苯和N,N-二甲基甲酰胺的混合溶液在100℃~120℃下反应,得到结构式为的化合物F,其中,所述化合物D与所述化合物E的摩尔比为1.05∶1~1∶1;
在保护气体的条件下,将所述化合物F、结构式为的化合物G,和第二催化剂在甲苯和N,N-二甲基甲酰胺的混合溶液在100℃~120℃反应,得到结构式为
的化合物H,其中,R2为碳原子为1~20的烷基,所述化合物G与所述化合物F的摩尔比为1.25∶1~1.1∶1;
在无氧条件下,按照摩尔比为1∶1~1∶1.2将所述化合物B和所述化合物I在第三催化剂的条件下在第三有机溶剂中于130~145℃进行Stille耦合反应,得到具有如下结构式的含氯代苯并噻二唑的共轭聚合物:
其中,n为1~50的整数。
在其中一个实施例中,所述第一催化剂和所述第二催化剂均为钯催化剂。
在其中一个实施例中,所述第三催化剂为三(二亚苄基丙酮)二钯或醋酸钯;所述第三催化剂与所述化合物B的摩尔比为1∶25~1∶100。
在其中一个实施例中,所述第三催化剂为摩尔比为1∶4~1∶8的三(二亚苄基丙酮)二钯与2-双环己基膦-2′,6′-二甲氧基联苯混合物;所述第三催化剂与所述化合物B的摩尔比为1∶25~1∶100。
在其中一个实施例中,所述第一有机溶剂为三氯甲烷或二氯甲烷。
在其中一个实施例中,所述第二有机溶剂为四氢呋喃、N,N-二甲基甲酰胺或三氯甲烷。
在其中一个实施例中,所述第三溶剂为氯苯、甲苯或二氯苯。
在其中一个实施例中,还包括所述含氯代苯并噻二唑的共轭聚合物的分离纯化步骤:
将所述Stille耦合反应后得到的反应液中加入甲醇中进行沉析,接着进行过滤得到滤液,将所述滤液依次用甲醇、丙酮和正己烷抽提,再依次用二氯甲烷和氯仿抽提,收集氯仿溶液并旋干得到粉末,真空干燥后得到所述含氯代苯并噻二唑的聚合物。
一种有机太阳能电池器件,包括所述活化层,所述活化层的电子给体材料为具有如下结构式的含氯代苯并噻二唑的聚合物:
由于上述含氯代苯并噻二唑的共轭聚合物由苯并二噻吩(BDT)和氯取代苯并噻二唑构成,具有很强的给体-受体结构,有利于降低材料的能带隙,从而扩大太阳光吸收范围,提高光电转化效率,即使得上述含氯代苯并噻二唑的共轭聚合物具有较高的能量转换效率。
图1为一实施方式的含氯代苯并噻二唑的共轭聚合物的制备方法的流程图;
图2为实施例5的有机太阳能电池器件的电流-电压特性图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
一实施方式的含氯代苯并噻二唑的共轭聚合物,具有如下结构式:
由于上述含氯代苯并噻二唑的共轭聚合物由苯并二噻吩(BDT)和氯取代苯并噻二唑构成,具有很强的给体-受体结构,有利于降低材料的能带隙,从而扩大太阳光吸收范围,提高光电转化效率,即使得上述含氯代苯并噻二唑的共轭聚合物具有较高的能量转换效率。
如图1所示,一实施方式的含氯代苯并噻二唑的共轭聚合物的制备方法,为上述
含氯代苯并噻二唑的共轭聚合物的一种制备方法。该方法包括如下步骤(其中,Me为甲基):
步骤S110:在-78℃的条件下,将正丁基锂与结构式为的化合物A在四氢呋喃中混合,再升温至室温反应1~3小时,得到反应液,将反应液降温至-78℃~-60℃,再加入三甲基氯化锡(Me3SnCl),并在室温下反应,得到结构式为的化合物B。
其中,正丁基锂与化合物A的摩尔比为2.25∶1~2.05∶1;三甲基氯化锡与化合物A的摩尔比为2.5∶1~2.25∶1。
其中,第一有机溶剂为三氯甲烷或二氯甲烷;吡啶与5-氯邻苯二胺的摩尔比为5∶1~3∶1;二氯亚砜与5-氯邻苯二胺的摩尔比为1∶1.5~1∶3。
其中,溴化氢与化合物C的摩尔比为40∶1~35∶1;液溴与化合物C的摩尔比为25∶1~20∶1。
其中,步骤S140中,第一催化剂为双三苯基膦二氯化钯(II)或四三苯基磷钯等钯催化剂;保护性气体为氮气或氩气;甲苯和N,N-二甲基甲酰胺的混合溶液中甲苯和N,N-二甲基甲酰胺的体积比为4∶1~10∶1;化合物D与化合物E的摩尔比为1.05∶1~1∶1。
其中,R2为碳原子为1~20的烷基;保护性气体为氮气或氩气;第二催化剂为双三苯基膦二氯化钯(II)或四三苯基磷钯等钯催化剂;步骤S150中,甲苯和N,N-二甲基甲酰胺的混合溶液中甲苯和N,N-二甲基甲酰胺的体积比为4∶1~10∶1;化合物G与化合物F的摩尔比为1.25∶1~1.1∶1。
其中,第二有机溶剂为四氢呋喃、DMF或三氯甲烷;N-溴代丁二酰亚胺与化合物H的摩尔比为2.5∶1~2.2∶1。
步骤S170:在无氧条件下,按照摩尔比为1∶1~1∶1.2将化合物B和化合物I在第三催化剂的条件下在第三有机溶剂中于130~145℃进行Stille耦合反应,得到具有如下结构式的含氯代苯并噻二唑的共轭聚合物:
其中,n为1~50的整数;第三催化剂为三(二亚苄基丙酮)二钯或醋酸钯;第三催化剂与化合物B的摩尔比为1∶25~1∶100。或者,第三催化剂为摩尔比为1∶4的三(二亚苄基丙酮)二钯与2-双环己基膦-2′,6′-二甲氧基联苯混合物;此时,第三催化剂与化合物B的摩尔比为1∶4~1∶8;第三溶剂为氯苯、甲苯或二氯苯。
其中,还包括含氯代苯并噻二唑的共轭聚合物的分离纯化步骤:
将Stille耦合反应后得到的反应液中加入甲醇中进行沉析,接着进行过滤得到滤液,将所述滤液依次用甲醇、丙酮和正己烷抽提,再依次用二氯甲烷和氯仿抽提,收集氯仿溶液并旋干得到粉末、真空干燥后得到含氯代苯并噻二唑的聚合物。
上述含氯代苯并噻二唑的聚合物的制备方法简单,易于工业化生产。
一实施方式的有机太阳能电池器件,包括活化层,活化层的电子给体材料为具有如下结构式的含氯代苯并噻二唑的聚合物:
由于上述含氯代苯并噻二唑的共轭聚合物由苯并二噻吩(BDT)和氯取代苯并噻二唑构成,具有很强的给体-受体结构,有利于降低材料的能带隙,从而扩大太阳光吸收范围,提高光电转化效率,使得有机太阳能电池器件具有较高的能量转换效率。
以下为具体实施例部分:
实施例1
本实施例的含氯代苯并噻二唑的共轭聚合物的制备过程如下:
(1)制备化合物4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩双三甲基锡:在氩气保护下,将4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩(化合物A,6.47g(8.06mmol)加入50mL四氢呋喃(THF)中,得到4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液;在-78℃的条件下,将11.1mL正丁基锂(n-BuLi,20.15mmol)滴入4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液中,缓慢升至室温后,反应3h后,然后在-78℃的条件下加入20.16mL三甲基氯化锡(Me3SnCl,20.15mmol),室温下搅拌过夜,得到的反应液用分液漏斗过滤,在滤液中加入300mL的正己烷,并用蒸馏水水洗五次,MgSO4干燥,旋干,得到8.82g的化合物B。其中,化合物B的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.7(s,2H),7.33(d,2H,J=3.6Hz),6.91(d,2H,J=4Hz),2.88(d,4H,J=4Hz),1.75(s,2H),1.36(m,62H),0.90(m,20H),0.42(m,19H)。
其中,化合物B的合成路线如下:
(2)在1000mL双口瓶中,加入化合物5-氯-1,2-邻苯二胺(7.12g,50mmol)、500mL的CHCl3和12.1mL的吡啶(200mmol),搅拌半小时直到5-氯-1,2-邻苯二胺完全溶解,得到混合液,再缓慢滴加7.3g的二氯亚砜(25mmol),搅拌加热至67℃回流反应5小时,接着冷却至室温,溶液用CHCl3萃取三次,再用无水Na2SO4干燥,过滤、旋蒸除掉溶剂,用硅胶色谱柱分离提纯,得到7.59g白色固体化合物C,产率为89.1%。其中,化合物C的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.06(s,1H),7.97(d,1H,J=8Hz),7.58(d,1H,J=4Hz).13C NMR(100MHz,CDCl3)δ:153.4,151.5,136.8,133.4,113.8,113.6。
化合物C的反应如下:
(3)将4.16g化合物C(24.4mmol)和10.0mL HBr(976mmol)加入到250mL两口烧瓶中,在剧烈搅拌的条件下加热到67℃回流反应3小时,得到反应液,缓慢往反应液中滴加27mL Br2(488mmol)后,将反应液在128℃下回流反应3.5天,然后用饱和Na2SO3溶液和饱和NaHCO3溶液依次清洗,再用CHCl3萃取三次,每次CHCl3的用量
为100毫升,接着用无水Na2SO4干燥,减压除去溶剂,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到7.59g白色固体化合物D,产率为98.5%。其中,5-氯-4,7-二溴苯并噻二唑的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.97(s,1H).13C NMR(100MHz,CDCl3)δ:153.4,151.3,136.7,133.6,113.9,113.6。
化合物D的反应路线如下:
(4)将5.03g的化合物D(15.31mmol)、5.71g的2-三丁基甲锡烷基噻吩(化合物E,15.31mmol)和2.2g的Pd(PPh3)4(1.92mmol)加到250mL圆底烧瓶中,接着向圆底烧瓶充放三次氩气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为4∶1)的混合溶液,并在120℃下反应两天,冷却至室温,得到反应液,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到3.74g黄色固体化合物F,产率为73.8%。其中,化合物F的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.13(d,1H,J=4Hz),7.94(s,1H),7.56(d,1H,J=4Hz),1.43(t,1H,J=6Hz).13C NMR(100MHz,CDCl3)δ:153.4,149.9,137.0,136.9,128.8,128.2,126.7,126.5,111.8。
化合物F的合成路线为:
(5)将化合物F(0.44g,1.35mmol)、化合物G 4-三丁基甲锡-3-十二烷基噻吩(1.20g,1.69mmol)和Pd(PPh3)4(0.195g,0.17mmol)加到100.0mL圆底烧瓶中,接着向圆底烧瓶充放三次氩气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为4∶1)的混合溶液,并在120℃下反应两天,冷却至室温,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.387g的化合物H,产率为57.1%。其中,化合物H的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.16(m,1H),7.99(s,1H),7.64(d,1H,J=4Hz),7.54(d,1H,J=4Hz),7.25(d,1H,J=4Hz),7.21(d,1H,J=4Hz),1.43(t,1H,J=6Hz),2.74(t,2H,J=6Hz),1.73(m,2H),1.29(m,18H),0.89(t,3H,J=8Hz).13C NMR(100MHz,CDCl3)δ:155.0,150.9,142.9,137.8,134.1,133.6,132.5,128.5,128.1,127.8,126.0,124.2,122.9,31.9,30.5,29.7,29.6,29.5,29.4,22.7,14.1。
化合物H的合成路线如下:
(6)将化合物H(0.36g,0.72mmol)、N-溴代丁二酰亚胺(1.584mmol)和50mL四氢呋喃加入单口烧瓶中,在室温下搅拌反应过夜,得到的反应液用减压蒸馏除掉溶剂,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.41g红色固体化合物I,产率为86.5%。其中,化合物I的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.88(s,1H),7.82(d,1H,J=4Hz),7.63(s,1H),7.19(d,1H,J=4Hz),2.68(t,2H,J=8Hz),1.69(m,2H),1.41(m,20H),0.90(m,18H),0.90(t,3H,J=6Hz).13C NMR(100MHz,CDCl3)δ:154.4,150.6,141.9,138.8,134.0,133.4,132.4,130.8,128.2,127.5,125.4,123.4,116.1,112.9,31.9,29.7,29.6,29.4,29.3,22.7,14.1。
化合物I的合成路线如下:
(7)在25mL圆底烧瓶中加入118.7mg化合物B(0.1051mmol)、69.5mg化合物I(0.1051mmol)、3.85mg三(二亚苄基丙酮)二钯(Pd2dba3)(0.0011mmol)和5.12mg P(o-tol)3(0.0168mmol)。真空-抽换气三次反应瓶。接着用注射器往瓶子里注射加入7.88mL甲苯。氩气保护下,聚合反应在130℃下反应18小时。冷却后,用200mL甲醇沉降出聚合物,索式囊泡过滤,并依次用甲醇、丙酮、正己烷、二氯甲烷和三氯甲烷抽提,将三氯甲烷浓缩并在甲醇中沉降,最后产物在真空干燥下得到131.1mg含氯代苯并噻二唑的共轭聚合物。其中,含氯代苯并噻二唑的共轭聚合物的检测数据如下:
1H NMR(400MHz,CDCl3):δ8.00(b,1H),7.87(b,2H),7.71(b,2H),7.31(b,2H),6.88(b,2H),2.84(b,4H),1.71(b,4H),1.33(b,60H),0.78(b,10H)。质均分子量(Mw)为113.8kg mol-1,数均分子量(Mn)为36.69kg mol-1,分子量分散指数(Mw/Mn)为3.10,n为28。
含氯代苯并噻二唑的共轭聚合物的合成路线如下:
实施例2
本实施例的含氯代苯并噻二唑的共轭聚合物的制备过程如下:
(1)制备化合物4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩双三甲基锡:氩气保护下,将6.47g 4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩(化合物A,8.06mmol)加入50mL四氢呋喃(THF)中,得到4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液;在-78℃的条件下,将11.1mL正丁基锂(n-BuLi,18.135mmol)滴入4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液中,缓慢升至室温后,反应3h后,然后在-60℃的条件下加入三甲基氯化锡(18.135mmol),室温下搅拌过夜,得到的反应液用分液漏斗过滤,在滤液中加入300mL的正己烷,并用蒸馏水水洗五次,MgSO4干燥,旋干,得到8.82g的化合物B。其中,化合物B的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.7(s,2H),7.33(d,2H,J=3.6Hz),6.91(d,2H,J=4Hz),2.88(d,4H,J=4Hz),1.75(s,2H),1.36(m,62H),0.90(m,20H),0.42(m,19H)。
其中,化合物B的合成路线如下:
(2)在1000mL双口瓶中,加入化合物5-氯-1,2-邻苯二胺(7.12g,50mmol)、500mL的三氯甲烷和12.1mL的吡啶(250mmol),搅拌半小时直到5-氯-1,2-邻苯二胺完全溶解,得到混合液,再缓慢滴加二氯化亚砜(33.34mmol),搅拌加热至67℃回流反应5小时,接着冷却至室温,溶液用CHCl3萃取三次,再用无水Na2SO4干燥,过滤、旋蒸除掉溶剂,用硅胶色谱柱分离提纯,得到7.59g白色固体化合物C,产率为89.1%。其中,化合物C的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.06(s,1H),7.97(d,1H,J=8Hz),7.58(d,1H,J=4Hz).13C NMR(100MHz,CDCl3)δ:153.4,151.5,136.8,133.4,113.8,113.6。
化合物C的反应如下:
(3)将4.16g化合物C(24.4mmol)和10.0mL HBr(854mmol)加入到250mL两口烧瓶中,在剧烈搅拌的条件下加热到67℃回流反应1小时,得到反应液,缓慢往反应液中滴加27mL Br2(610mmol)后,将反应液在128℃下回流反应3.5天,然后用饱和Na2SO3溶液和饱和NaHCO3溶液依次清洗,再用CHCl3萃取三次,每次CHCl3的用量为100毫升,接着用无水Na2SO4干燥,减压除去溶剂,用硅胶色谱柱(其中,淋洗剂
为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到7.59g白色固体化合物D,产率为98.5%。其中,5-氯-4,7-二溴苯并噻二唑的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.97(s,1H).13C NMR(100MHz,CDCl3)δ:153.4,151.3,136.7,133.6,113.9,113.6。
化合物D的反应路线如下:
(4)将5.03g的化合物D(15.31mmol)、5.71g的2-三丁基甲锡烷基噻吩(化合物E,16.1mmol)和2.2g的Pd(PPh3)4(1.92mmol)加到250mL圆底烧瓶中,接着向圆底烧瓶充放三次氮气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为10∶1)的混合溶液,并在100℃下反应两天,冷却至室温,得到反应液,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到3.74g黄色固体化合物F,产率为73.8%。其中,化合物F的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.13(d,1H,J=4Hz),7.94(s,1H),7.56(d,1H,J=4Hz),1.43(t,1H,J=6Hz).13C NMR(100MHz,CDCl3)δ:153.4,149.9,137.0,136.9,128.8,128.2,126.7,126.5,111.8。
化合物F的合成路线为:
(5)将化合物F(0.445g,1.35mmol)、化合物G 4-三丁基甲锡-3-异辛基噻吩(0.72g,1.485mmol)和Pd(PPh3)4(0.281g,0.243mmol)加到100.0mL圆底烧瓶中,接着向圆底烧瓶充放三次氮气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为10∶1)的混合溶液,并在120℃下反应两天,冷却至室温,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.65g的化合物H,产率为61.9%。其中,化合物H的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.15(m,1H),7.98(s,1H),7.63(s,1H),7.54(d,1H,J=4Hz),7.25(d,1H,J=4Hz),7.19(d,1H,J=4Hz),2.67(t,1H,J=8Hz),1.65(d,2H,J=4Hz),1.34(m,12H),0.94(m,6H).13C NMR(100MHz,CDCl3)δ:155.0,150.9,141.6,137.7,133.9,133.6,133.0,128.4,128.1,127.8,126.2,124.3,123.8,118.7,40.4,34.7,32.5,28.8,25.8,23.1,14.1,11.1。
化合物H的合成路线如下:
(6)将化合物H(0.322,0.72mmol)、N-溴代丁二酰亚胺(0.318g,1.8mmol)和50mL四氢呋喃加入单口烧瓶中,在室温下搅拌反应过夜,得到的反应液用减压蒸馏除掉溶剂,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.50g红色固体化合物I,产率为98%。其中,化合物I的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.89(s,1H),7.82(d,1H,J=4Hz),7.61(s,1H),7.19(d,1H,J=4Hz),2.63(t,2H,J=8Hz),1.72(t,2H,J=6Hz),1.38(m,8H),0.93(m,6H).13C NMR(100MHz,CDCl3)δ:155.0,150.9,141.6,137.7,133.9,133.6,133.0,128.4,
128.1,127.8,126.2,124.3,123.8,118.7,40.4,34.7,32.5,28.8,25.8,23.1,14.1,11.1。
化合物I的合成路线如下:
(7)在25mL圆底烧瓶中加入118.7mg化合物B(0.0.0876mmol)、69.5mg化合物I(0.1051mmol)、3.85mg Pd2dba3(0.004mmol)和5.12mg P(o-tol)3(0.0168mmol)。真空-抽换气三次反应瓶。接着用注射器往瓶子里注射加入7.88mL氯苯。氩气保护下,聚合反应在145℃下反应18小时。冷却后,用200mL甲醇沉降出聚合物,索式囊泡过滤,并依次用甲醇、丙酮、正己烷、二氯甲烷和三氯甲烷抽提,将三氯甲烷浓缩并在甲醇中沉降,最后产物在真空干燥下得到131.1mg含氯代苯并噻二唑的共轭聚合物。其中,含氯代苯并噻二唑的共轭聚合物的检测数据如下:
1H NMR(400MHz,CDCl3):δ8.02(b,1H),7.90(b,1H),7.73(b,2H),7.31(b,2H),6.88(b,2H),2.86(b,4H),2.60(b,1H),1.74(b,3H),1.34(b,52H),0.81(b,14H)。质均分子量(Mw)为58.57kg mol-1,数均分子量(Mn)为21.79kg mol-1,分子量分散指数(Mw/Mn)为2.69,n为17。
含氯代苯并噻二唑的共轭聚合物的合成路线如下:
实施例3
本实施例的含氯代苯并噻二唑的共轭聚合物的制备过程如下:
(1)制备化合物4,8-二(5-(2-丁基辛基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩双三甲基锡:在氩气保护下,将3.51g 4,8-二(5-(2-丁基辛基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩(化合物A,5.07mmol)加入50mL四氢呋喃(THF)中,得到4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液;在-78℃的条件下,将6.98mL正丁基锂(n-BuLi,11.661mmol)滴入4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液中,缓慢升至室温后,反应3h后,然后在-78℃的条件下加入11.661mL三甲基氯化锡(Me3SnCl,11.661mmol),室温下搅拌过夜,得到的反应液用分液漏斗过滤,在滤液中加入300mL的正己烷,并用蒸馏水水洗五次,MgSO4干燥,旋干,得到4.25g的化合物B。其中,化合物B的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.7(s,2H),7.33(d,2H,J=3.6Hz),6.91(d,2H,J=4Hz),2.88(d,4H,J=4Hz),1.76(s,2H),1.36(m,35H),0.95(m,14H),0.42(m,16H)。
其中,化合物B的合成路线如下:
(2)在1000mL双口瓶中,加入化合物5-氯-1,2-邻苯二胺(7.12g,50mmol)、500mL的CHCl3和12.1mL的吡啶(150mmol),搅拌半小时直到5-氯-1,2-邻苯二胺完全溶解,得到混合液,再缓慢滴加7.3g的二氯亚砜(16.67mmol),搅拌加热至67℃回流反应5小时,接着冷却至室温,溶液用CHCl3萃取三次,再用无水Na2SO4干燥,过滤、旋蒸除掉溶剂,用硅胶色谱柱分离提纯,得到7.59g白色固体化合物C,产率为89.1%。其中,化合物C的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.06(s,1H),7.97(d,1H,J=8Hz),7.58(d,1H,J=4
Hz).13C NMR(100MHz,CDCl3)δ:153.4,151.5,136.8,133.4,113.8,113.6。
化合物C的反应如下:
(3)将4.16g化合物C(24.4mmol)和10.0mLHBr(927.2mmol)加入到250mL两口烧瓶中,在剧烈搅拌的条件下加热到67℃回流反应3小时,得到反应液,缓慢往反应液中滴加27mL Br2(536.8mmol)后,将反应液在128℃下回流反应3.5天,然后用饱和Na2SO3溶液和饱和NaHCO3溶液依次清洗,再用CHCl3萃取三次,每次CHCl3的用量为100毫升,接着用无水Na2SO4干燥,减压出去溶剂,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到7.59g白色固体化合物D,产率为98.5%。其中,5-氯-4,7-二溴苯并噻二唑的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.97(s,1H).13C NMR(100MHz,CDCl3)δ:153.4,151.3,136.7,133.6,113.9,113.6。
化合物D的反应路线如下:
(4)将5.03g的化合物D(15.31mmol)、5.71g的2-三丁基甲锡烷基噻吩(化合物E,15.31mmol)和2.2g的Pd(PPh3)4(1.92mmol)加到250mL圆底烧瓶中,接着向圆底烧瓶充放三次氩气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为4∶1)的混合溶液,并在120℃下反应两天,
冷却至室温,得到反应液,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到3.74g黄色固体化合物F,产率为73.8%。其中,化合物F的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.13(d,1H,J=4Hz),7.94(s,1H),7.56(d,1H,J=4Hz),1.43(t,1H,J=6Hz).13C NMR(100MHz,CDCl3)δ:153.4,149.9,137.0,136.9,128.8,128.2,126.7,126.5,111.8。
化合物F的合成路线为:
(5)将化合物F(0.64g,1.94mmol)、化合物G 4-三丁基甲锡-3-异辛基噻吩(1.18g,2.431mmol)和Pd(PPh3)4(0.281g,0.243mmol)加到100.0mL圆底烧瓶中,接着向圆底烧瓶充放三次氮气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为4∶1)的混合溶液,并在120℃下反应两天,冷却至室温,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.65g的化合物H,产率为61.9%。其中,化合物H的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.15(m,1H),7.98(s,1H),7.63(s,1H),7.54(d,1H,J=4Hz),7.25(d,1H,J=4Hz),7.19(d,1H,J=4Hz),2.67(t,1H,J=8Hz),1.65(d,2H,J=4Hz),1.34(m,12H),0.94(m,6H).13C NMR(100MHz,CDCl3)δ:155.0,150.9,141.6,137.7,133.9,133.6,133.0,128.4,128.1,127.8,126.2,124.3,123.8,118.7,40.4,34.7,32.5,28.8,25.8,23.1,14.1,11.1。
化合物H的合成路线如下:
(6)将化合物H(0.36g,0.72mmol)、N-溴代丁二酰亚胺(0.28g,1.57mmol)和50mL四氢呋喃加入单口烧瓶中,在室温下搅拌反应过夜,得到的反应液用减压蒸馏除掉溶剂,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.41g红色固体化合物I,产率为86.5%。其中,化合物I的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.89(s,1H),7.82(d,1H,J=4Hz),7.61(s,1H),7.19(d,1H,J=4Hz),2.63(t,2H,J=8Hz),1.72(t,2H,J=6Hz),1.38(m,8H),0.93(m,6H).13C NMR(100MHz,CDCl3)δ:155.0,150.9,141.6,137.7,133.9,133.6,133.0,128.4,128.1,127.8,126.2,124.3,123.8,118.7,40.4,34.7,32.5,28.8,25.8,23.1,14.1,11.1.
化合物I的合成路线如下:
(7)在25mL圆底烧瓶中加入118.7mg化合物B(0.1051mmol)、69.5mg化合物I(0.1051mmol)、3.85mg Pd2dba3(0.004mmol)和5.12mg P(o-tol)3(0.0168mmol)。真空-抽换气三次反应瓶。接着用注射器往瓶子里注射加入7.88mL氯苯。氩气保护下,聚合反应在130℃下反应18小时。冷却后,用200mL甲醇沉降出聚合物,索式囊泡过滤,并依次用甲醇,丙酮、正己烷、二氯甲烷和三氯甲烷抽提,将三氯甲烷浓缩并在甲醇中沉降,最后产物在真空干燥下得到131.1mg含氯代苯并噻二唑的共轭聚合物。其中,含氯代苯并噻二唑的共轭聚合物的检测数据如下:
1H NMR(400MHz,CDCl3):δ8.00(b,1H),7.87(b,1H),7.70(b,2H),7.29(b,2H),7.29(b,2H),2.82(b,4H),2.65(b,1H),1.69(b,3H),1.24(b,43H),0.80(b,14H)。质均分子量(Mw)为38.94kg mol-1,数均分子量(Mn)为17.50kg mol-1,分子量分散指数(Mw/Mn)为2.23,n为15。
含氯代苯并噻二唑的共轭聚合物的合成路线如下:
实施例4
本实施例的含氯代苯并噻二唑的共轭聚合物的制备过程如下:
(1)制备化合物4,8-二(5-(2-丁基辛基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩双三甲基锡:氩气保护下,将3.51g 4,8-二(5-(2-丁基辛基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩(化合物A,5.07mmol)加入50mL四氢呋喃(THF)中,得到4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液;在-78℃的条件下,将6.98mL正丁基锂(n-BuLi)滴入4,8-二(5-(2-己基葵基)噻吩-基)苯并[1,2-b:4,5-b′]二噻吩的四氢呋喃溶液中,缓慢升至室温后,反应3h后,然后在-78℃的条件下加入12.69mL Me3SnCl,室温下搅拌过夜,得到的反应液用分液漏斗过滤,在滤液中加入300mL的正己烷,并用蒸馏水水洗五次,MgSO4干燥,旋干,得到4.25g的化合物B。其中,化合物B的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.7(s,2H),7.33(d,2H,J=3.6Hz),6.91(d,2H,J=4Hz),2.88(d,4H,J=4Hz),1.76(s,2H),1.36(m,35H),0.95(m,14H),0.42(m,16H)。
其中,化合物B的合成路线如下:
(2)在1000mL双口瓶中,加入的化合物5-氯-1,2-邻苯二胺(7.12g,50mmol)、500mL的CHCl3和12.1mL的吡啶(150mmol),搅拌半小时直到5-氯-1,2-邻苯二胺完全溶解,得到混合液,再缓慢滴加7.3g的SOCl2,搅拌加热至67℃回流反应5小时,接着冷却至室温,溶液用CHCl3萃取三次,再用无水Na2SO4干燥,过滤、旋蒸除掉溶剂,用硅胶色谱柱分离提纯,得到7.59g白色固体化合物C,产率为89.1%。其中,化合物C的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.06(s,1H),7.97(d,1H,J=8Hz),7.58(d,1H,J=4Hz).13C NMR(100MHz,CDCl3)δ:153.4,151.5,136.8,133.4,113.8,113.6。
化合物C的反应如下:
(3)将4.16g化合物C(24.4mmol)和10.0mLHBr(878.4mmol)加入到250mL两口烧瓶中,在剧烈搅拌的条件下加热到67℃回流反应3小时,得到反应液,缓慢往反应液中滴加27mL Br2(516.2mmol)后,将反应液在128℃下回流反应3.5天,然后用饱和Na2SO3溶液和饱和NaHCO3溶液依次清洗,再用CHCl3萃取三次,每次CHCl3的用量为100毫升,接着用无水Na2SO4干燥,减压除去溶剂,用硅胶色谱柱(其中,淋洗剂
为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到7.59g白色固体化合物D,产率为98.5%。其中,5-氯-4,7-二溴苯并噻二唑的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.97(s,1H).13C NMR(100MHz,CDCl3)δ:153.4,151.3,136.7,133.6,113.9,113.6。
化合物D的反应路线如下:
(4)将5.03g的化合物D(15.31mmol)、5.71g的2-三丁基甲锡烷基噻吩(化合物E,15.31mmol)和2.2g的Pd(PPh3)4(1.92mmol)加到250mL圆底烧瓶中,接着向圆底烧瓶充放三次氩气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为4∶1)的混合溶液,并在120℃下反应两天,冷却至室温,得到反应液,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到3.74g黄色固体化合物F,产率为73.8%。其中,化合物F的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.13(d,1H,J=4Hz),7.94(s,1H),7.56(d,1H,J=4Hz),1.43(t,1H,J=6Hz).13C NMR(100MHz,CDCl3)δ:153.4,149.9,137.0,136.9,128.8,128.2,126.7,126.5,111.8。
化合物F的合成路线为:
(5)将化合物F(0.44g,1.35mmol)、化合物G 4-三丁基甲锡-3-十二烷基噻吩(1.20g,1.69mmol)和Pd(PPh3)4(0.195g,0.17mmol)加到100.0mL圆底烧瓶中,接着向圆底烧瓶充放三次氩气,然后迅速通过注射器往里加入200mL甲苯和N,N-二甲基甲酰胺(其中,甲苯和N,N-二甲基甲酰胺的体积比为4∶1)的混合溶液,并在120℃下反应两天,冷却至室温,在反应液中加入饱和NaCl溶液淬灭反应,用二氯甲烷萃取两次,得到的有机相用水洗两次,再用无水Na2SO4干燥,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.387g的化合物H,产率为57.1%。其中,化合物H的检测数据如下:
1H NMR(400MHz,CDCl3)δ:8.16(m,1H),7.99(s,1H),7.64(d,1H,J=4Hz),7.54(d,1H,J=4Hz),7.25(d,1H,J=4Hz),7.21(d,1H,J=4Hz),1.43(t,1H,J=6Hz),2.74(t,2H,J=6Hz),1.73(m,2H),1.29(m,18H),0.89(t,3H,J=8Hz).13C NMR(100MHz,CDCl3)δ:155.0,150.9,142.9,137.8,134.1,133.6,132.5,128.5,128.1,127.8,126.0,124.2,122.9,31.9,30.5,29.7,29.6,29.5,29.4,22.7,14.1。
化合物H的合成路线如下:
(6)将化合物H(0.36g,0.72mmol)、N-溴代丁二酰亚胺(0.28g,1.57mmol)和50mL四氢呋喃加入单口烧瓶中,在室温下搅拌反应过夜,得到的反应液用减压蒸馏除掉溶剂,用硅胶色谱柱(其中,淋洗剂为石油醚和乙酸乙酯的混合物,石油醚和乙酸乙酯的体积比为20∶1)分离提纯,得到0.41g红色固体化合物I,产率为86.5%。其中,化合物I的检测数据如下:
1H NMR(400MHz,CDCl3)δ:7.88(s,1H),7.82(d,1H,J=4Hz),7.63(s,1H),7.19(d,1H,J=4Hz),2.68(t,2H,J=8Hz),1.69(m,2H),1.41(m,20H),0.90(m,18H),0.90(t,3H,J=6Hz).13C NMR(100MHz,CDCl3)δ:154.4,150.6,141.9,138.8,134.0,133.4,132.4,130.8,128.2,127.5,125.4,123.4,116.1,112.9,31.9,29.7,29.6,29.4,29.3,22.7,
14.1。
化合物I的合成路线如下:
(6)在25mL圆底烧瓶中加入118.7mg化合物B(0.1051mmol)、69.5mg化合物I(0.1051mmol)、3.85mg Pd2dba3(0.004mmol)和5.12mg P(o-tol)3(0.0168mmol)。真空-抽换气三次反应瓶。接着用注射器往瓶子里注射加入7.88mL氯苯。氩气保护下,聚合反应在130℃下反应18小时。冷却后,用200mL甲醇沉降出聚合物,索式囊泡过滤,并依次用甲醇、丙酮、正己烷、二氯甲烷和三氯甲烷抽提,将三氯甲烷浓缩并在甲醇中沉降,最后产物在真空干燥下得到131.1mg含氯代苯并噻二唑的共轭聚合物。其中,含氯代苯并噻二唑的共轭聚合物的检测数据如下:
1H NMR(400MHz,CDCl3):δ8.00(b,1H),7.87(b,1H),7.68(b,2H),7.29(b,2H),6.87(b,2H),2.95(b,4H),1.71(b,3H),1.33(b,48H),0.85(b,12H)。质均分子量(Mw)为88.49kg mol-1,数均分子量(Mn)为32.85kg mol-1,分子量分散指数(Mw/Mn)为2.69,n为27。
含氯代苯并噻二唑的共轭聚合物的合成路线如下:
实施例5
分别将实施例1、实施例2、实施例3和实施例4制备得到的含氯代苯并噻二唑的共轭聚合物作为活性层的材质制备有机太阳能电池器件,且每个有机太阳能电池器件包括依次叠层的玻璃基底、氧化铟玻璃阳极、ZnO中间辅助层、PC71BM活性层聚合物、阴极的材料为MoO3和Ag金属电极。ITO玻璃经过超声波清洗后,用氧气等离子体处理,ITO玻璃的方块电阻为10Ω/sq。在ITO玻璃上旋涂ZnO,将实施例1~实施例4的含氯代苯并噻二唑的共轭聚合物均与PC71BM([6,6]-苯基-碳71-丁酸甲酯)用氯苯为溶剂,按聚合物与PC71BM重量比为1∶1.5混合旋涂作为聚合物太阳电池的活性层,旋涂在ZnO层上形成活性层。最后蒸上MoO3和Ag金属电极。在100毫瓦每平方厘米的AM1.5模拟太阳光的照射下测量其电池特性。所有制备过程均在提供氮气惰性氛围的手套箱内进行,得到有机太阳能电池器件,则采用实施例1~4的含氯代苯并噻二唑的共轭聚合物的有机太阳能电池器件依次记作:有机太阳能电池器件1、有机太阳能电池器件2、有机太阳能电池器件3和有机太阳能电池器件4。
采用Keithley236电流电压源-测量体统测试有机太阳能电池器件的电流-电压特性,图2为有机太阳能电池器件1、有机太阳能电池器件2、有机太阳能电池器件3和有机太阳能电池器件4的电流-电压特性图。从图2中可以看出,所得电池器件的开路电压0.76V,短路电流16.75mA cm-2,填充因子69.71%,能量转换效率8.91%。
该有机太阳能电池器件使用时,在光照下,光透过衬底玻璃和阳极ITO,活性层中的传导空穴型电致发光材料吸收光能,并产生激子,这些激子再转移到电子给体/受体材料的截面处,并将电子转移给电子受体材料,如PCBM,实现电荷的分离,从而形成自由载流子,即自由的电子和空穴。这些自由电子沿电子受体材料向阴极传递并被阴极所收集,自由空穴沿电子给体向阳极传递并被阳极收集,从而形成光电流和光电压,实现光电转换,外接负载时,可对其进行供电。在此过程中,传导空穴型电致发光材料由于其具有很宽的光谱响应范围,能够更充分地利用光能,以获得更高的
光电转换效率,增加太阳能电池器件的产电能力。且这种有机材料还能减轻太阳能电池器件的质量,并通过旋涂等技术即可制作,便于大批量制备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (13)
- 根据权利要求1所述的含氯代苯并噻二唑的共轭聚合物,其特征在于,R1为碳原子为1~16的烷基,R2为碳原子为1~12的烷基,n为1~30的整数。
- 根据权利要求2所述的含氯代苯并噻二唑的共轭聚合物,其特征在于,R1为碳原子为12或16的烷基,R2为碳原子为8或12的烷基,n为15、17、27或28的整数。
- 一种含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,包括如下步骤:在保护性气体和-78℃的条件下,将正丁基锂与结构式为的化合物A在四氢呋喃中混合,再升温至室温反应1~3小时,得到反应液,将所述反应液降温至-78℃~-60℃,再加入三甲基氯化锡,并在室温下反应,得到结构 式为的化合物B,其中,Ar选自 -OR1及-SR1中的一种,R1为碳原子为1~20的烷基,Me为甲基,所述正丁基锂与所述化合物A的摩尔比为2.25∶1~2.05∶1,所述三甲基氯化锡与所述化合物A的摩尔比为2.5∶1~2.25∶1;将5-氯邻苯二胺、吡啶和二氯亚砜在第一有机溶剂中进行回流反应,得到结构式为的化合物C,其中,所述吡啶与所述5-氯邻苯二胺的摩尔比为5∶1~3∶1,所述二氯亚砜与所述5-氯邻苯二胺的摩尔比为1∶1.5~1∶3;将所述化合物C和溴化氢进行回流反应1~3小时,然后加入液溴,继续进行回流反应,得到结构式为的化合物D,其中,所述溴化氢与所述化合物C的摩尔比为40∶1~35∶1,所述液溴与所述化合物C的摩尔比为25∶1~20∶1;在保护气体的条件下,将所述化合物的D、结构式为化合物E和第一催化剂在甲苯和N,N-二甲基甲酰胺的混合溶液在100℃~120℃下反应,得到结构式为的化合物F,其中,所述化合物D与所述化合物E的摩尔比为1.05∶1~1∶1;在保护气体的条件下,将所述化合物F、结构式为的化合物G,和第二催化剂在甲苯和N,N-二甲基甲酰胺的混合溶液在100℃~120℃反应,得到结构式为的化合物H,其中,R2为碳原子为1~20的烷基,所述化合物G与所述化合物F的摩尔比为1.25∶1~1.1∶1;在无氧条件下,按照摩尔比为1∶1~1∶1.2将所述化合物B和所述化合物I在第三催化剂的条件下在第三有机溶剂中于130~145℃进行Stille耦合反应,得到具有如下结构式的含氯代苯并噻二唑的共轭聚合物:其中,n为1~50的整数。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,所述第一催化剂和所述第二催化剂均为钯催化剂。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,所述第三催化剂为三(二亚苄基丙酮)二钯或醋酸钯;所述第三催化剂 与所述化合物B的摩尔比为1∶25~1∶100。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,所述第三催化剂为摩尔比为1∶4~1∶8的三(二亚苄基丙酮)二钯与2-双环己基膦-2′,6′-二甲氧基联苯混合物;所述第三催化剂与所述化合物B的摩尔比为1∶25~1∶100。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,所述第一有机溶剂为三氯甲烷或二氯甲烷。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,所述第二有机溶剂为四氢呋喃、N,N-二甲基甲酰胺或三氯甲烷。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,所述第三溶剂为氯苯、甲苯或二氯苯。
- 根据权利要求5所述的含氯代苯并噻二唑的共轭聚合物的制备方法,其特征在于,还包括所述含氯代苯并噻二唑的共轭聚合物的分离纯化步骤:将所述Stille耦合反应后得到的反应液中加入甲醇中进行沉析,接着进行过滤得到滤液,将所述滤液依次用甲醇、丙酮和正己烷抽提,再依次用二氯甲烷和氯仿抽提,收集氯仿溶液并旋干得到粉末,真空干燥后得到所述含氯代苯并噻二唑的聚合物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610531714.4A CN107586379A (zh) | 2016-07-07 | 2016-07-07 | 含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件 |
CN201610531714.4 | 2016-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018006530A1 true WO2018006530A1 (zh) | 2018-01-11 |
Family
ID=60901668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/106228 WO2018006530A1 (zh) | 2016-07-07 | 2016-11-17 | 含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107586379A (zh) |
WO (1) | WO2018006530A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114479017A (zh) * | 2021-12-23 | 2022-05-13 | 青海大学 | 一种有机硼-噻吩共轭聚合物及其制备方法和应用 |
CN114478500A (zh) * | 2022-01-13 | 2022-05-13 | 浙江大学 | 香豆素类双光子引发剂及其合成方法和应用 |
CN114591348A (zh) * | 2020-12-07 | 2022-06-07 | 天津理工大学 | 一种苯并噻吩并多取代吡咯的合成方法 |
CN114891188A (zh) * | 2022-04-14 | 2022-08-12 | 香港理工大学深圳研究院 | 含有氮氧自由基与二茂铁基团的共轭有机金属聚合物及制备方法与应用、复合热电薄膜 |
CN114920909A (zh) * | 2022-06-06 | 2022-08-19 | 青海大学 | 一种芳基硼-蒽醌基共轭聚合物及其制备方法和应用 |
CN115304747A (zh) * | 2022-08-19 | 2022-11-08 | 南京理工大学 | 膦酸烷基链修饰的共轭微多孔聚合物、制备方法及其应用 |
CN115612068A (zh) * | 2022-09-30 | 2023-01-17 | 武汉工程大学 | 一类卤代噻唑类宽带隙聚合物及其在光电器件中的应用 |
CN115838471A (zh) * | 2023-01-05 | 2023-03-24 | 福州大学 | 三唑氮基聚合物的制备及其在光催化反应中的应用 |
CN113174032B (zh) * | 2021-04-07 | 2023-11-07 | 香港科技大学深圳研究院 | 氟代稠环苯并噻二唑聚合物受体材料、制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102164926A (zh) * | 2008-09-29 | 2011-08-24 | 加利福尼亚大学董事会 | 用于光电器件的活性材料 |
CN103265687A (zh) * | 2013-05-29 | 2013-08-28 | 吉林大学 | 含有大体积支化烷氧基侧链的聚合物材料、制备方法及应用 |
CN103965445A (zh) * | 2013-01-31 | 2014-08-06 | 海洋王照明科技股份有限公司 | 含二噻吩苯并噻二唑单元的聚合物及其制备方法和太阳能电池器件 |
WO2015100441A1 (en) * | 2013-12-26 | 2015-07-02 | Raynergy Tek Incorporation | Conjugated polymers and devices incorporating the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI511997B (zh) * | 2009-05-21 | 2015-12-11 | Raynergy Tek Inc | 共軛聚合物及其於光電子裝置的用途 |
EP2897183B1 (en) * | 2010-10-22 | 2020-04-29 | Raynergy Tek Inc. | Conjugated polymers and their use in optoelectronic devices |
US8835598B2 (en) * | 2012-03-22 | 2014-09-16 | Polyera Corporation | Conjugated polymers and their use in optoelectronic devices |
US8883958B2 (en) * | 2012-03-22 | 2014-11-11 | Raynergy Tek Inc. | Conjugated polymers and their use in optoelectronic devices |
CN103848977A (zh) * | 2012-11-29 | 2014-06-11 | 海洋王照明科技股份有限公司 | 含二噻吩苯并噻二唑单元的聚合物及其制备方法和太阳能电池器件 |
US9178160B1 (en) * | 2013-10-21 | 2015-11-03 | Northwestern University | Fused thiophene-based conjugated polymers and their use in optoelectronic devices |
-
2016
- 2016-07-07 CN CN201610531714.4A patent/CN107586379A/zh active Pending
- 2016-11-17 WO PCT/CN2016/106228 patent/WO2018006530A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102164926A (zh) * | 2008-09-29 | 2011-08-24 | 加利福尼亚大学董事会 | 用于光电器件的活性材料 |
CN103965445A (zh) * | 2013-01-31 | 2014-08-06 | 海洋王照明科技股份有限公司 | 含二噻吩苯并噻二唑单元的聚合物及其制备方法和太阳能电池器件 |
CN103265687A (zh) * | 2013-05-29 | 2013-08-28 | 吉林大学 | 含有大体积支化烷氧基侧链的聚合物材料、制备方法及应用 |
WO2015100441A1 (en) * | 2013-12-26 | 2015-07-02 | Raynergy Tek Incorporation | Conjugated polymers and devices incorporating the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591348A (zh) * | 2020-12-07 | 2022-06-07 | 天津理工大学 | 一种苯并噻吩并多取代吡咯的合成方法 |
CN113174032B (zh) * | 2021-04-07 | 2023-11-07 | 香港科技大学深圳研究院 | 氟代稠环苯并噻二唑聚合物受体材料、制备方法 |
CN114479017A (zh) * | 2021-12-23 | 2022-05-13 | 青海大学 | 一种有机硼-噻吩共轭聚合物及其制备方法和应用 |
CN114478500A (zh) * | 2022-01-13 | 2022-05-13 | 浙江大学 | 香豆素类双光子引发剂及其合成方法和应用 |
CN114478500B (zh) * | 2022-01-13 | 2024-03-29 | 浙江大学 | 香豆素类双光子引发剂及其合成方法和应用 |
CN114891188A (zh) * | 2022-04-14 | 2022-08-12 | 香港理工大学深圳研究院 | 含有氮氧自由基与二茂铁基团的共轭有机金属聚合物及制备方法与应用、复合热电薄膜 |
CN114891188B (zh) * | 2022-04-14 | 2023-12-15 | 香港理工大学深圳研究院 | 含有氮氧自由基与二茂铁基团的共轭有机金属聚合物及制备方法与应用、复合热电薄膜 |
CN114920909A (zh) * | 2022-06-06 | 2022-08-19 | 青海大学 | 一种芳基硼-蒽醌基共轭聚合物及其制备方法和应用 |
CN115304747A (zh) * | 2022-08-19 | 2022-11-08 | 南京理工大学 | 膦酸烷基链修饰的共轭微多孔聚合物、制备方法及其应用 |
CN115304747B (zh) * | 2022-08-19 | 2024-04-05 | 南京理工大学 | 膦酸烷基链修饰的共轭微多孔聚合物、制备方法及其应用 |
CN115612068A (zh) * | 2022-09-30 | 2023-01-17 | 武汉工程大学 | 一类卤代噻唑类宽带隙聚合物及其在光电器件中的应用 |
CN115838471A (zh) * | 2023-01-05 | 2023-03-24 | 福州大学 | 三唑氮基聚合物的制备及其在光催化反应中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107586379A (zh) | 2018-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018006530A1 (zh) | 含氯代苯并噻二唑的共轭聚合物及其制备方法和有机太阳能电池器件 | |
CN113174032B (zh) | 氟代稠环苯并噻二唑聚合物受体材料、制备方法 | |
EP2615095A1 (en) | Benzodithiophene organic semiconductive material, preparation method and use thereof | |
JP5546070B2 (ja) | フルオレニルポルフィリン−アントラセンを含むコポリマー、その製造方法およびその応用 | |
CN101787020A (zh) | 一种可溶液加工的有机共轭分子及在太阳能电池中的应用 | |
CN110776621B (zh) | 一类含基于喹啉的稠环单元的D-π-A型聚合物及其制备方法与应用 | |
WO2011091609A1 (zh) | 含杂环醌型噻吩有机光电材料、其制备方法和应用 | |
CN109517142B (zh) | 基于三茚并五元芳杂环的星型d-a结构共轭分子及其制备方法和应用 | |
CN109912621B (zh) | 一种不对称的萘核小分子受体材料及其制备方法和应用 | |
EP2551271B1 (en) | Copolymer containing fluorenylporphyrin-benzene, preparation method and use thereof | |
CN113929880B (zh) | 一类酯基噻唑类宽带隙聚合物及其在光电器件中的应用 | |
JP5612757B2 (ja) | フルオレン類共重合体及びその製造方法並びにその使用 | |
CN109956955B (zh) | 基于苯并三(环戊二烯并双五元芳杂环)的星型d-a结构共轭分子及其制备方法和应用 | |
CN104119504A (zh) | 含吡咯吲哚并二噻吩-二噻吩并苯并噻二唑共轭聚合物材料及其制备方法和应用 | |
CN112390813B (zh) | 非富勒烯电子受体材料与有机光伏电池 | |
CN110964040B (zh) | 基于苯并氧族二唑的受体材料及其制备方法和应用 | |
CN102276801A (zh) | 噻吩并噻吩醌型有机光电材料、其制备方法和应用 | |
JP5667693B2 (ja) | キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用 | |
JP5443655B2 (ja) | チエノチアジアゾール単位を含むポルフィリン共重合体、該共重合体の製造方法及びその応用 | |
CN103848969B (zh) | 一种含噻唑并噻唑-二苯并噻吩苯并二噻吩聚合物及其制备与应用 | |
CN110256459A (zh) | 一种含烷基苯共轭侧链的有机小分子及其制备方法和应用 | |
CN115521444B (zh) | 一类异构型聚合物给体材料及其制备方法和在光伏领域中的应用 | |
CN103848968B (zh) | 一种含噻吩并吡咯二酮-二苯并噻吩苯并二噻吩聚合物及其制备与应用 | |
WO2011147071A1 (zh) | 一种醌型硅芴类有机半导体材料及其制备方法和应用 | |
CN111217991B (zh) | 一种d-a型共轭聚合物及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16908034 Country of ref document: EP Kind code of ref document: A1 |