Nothing Special   »   [go: up one dir, main page]

WO2018068206A1 - 一种光收发组件 - Google Patents

一种光收发组件 Download PDF

Info

Publication number
WO2018068206A1
WO2018068206A1 PCT/CN2016/101809 CN2016101809W WO2018068206A1 WO 2018068206 A1 WO2018068206 A1 WO 2018068206A1 CN 2016101809 W CN2016101809 W CN 2016101809W WO 2018068206 A1 WO2018068206 A1 WO 2018068206A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
light
wdm
receiver
optical
Prior art date
Application number
PCT/CN2016/101809
Other languages
English (en)
French (fr)
Inventor
徐之光
文玥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197012942A priority Critical patent/KR102305062B1/ko
Priority to JP2019540475A priority patent/JP6818899B2/ja
Priority to EP16918543.6A priority patent/EP3514591B1/en
Priority to PCT/CN2016/101809 priority patent/WO2018068206A1/zh
Priority to CN201680087305.8A priority patent/CN109416446B/zh
Publication of WO2018068206A1 publication Critical patent/WO2018068206A1/zh
Priority to US16/381,096 priority patent/US10855375B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer

Definitions

  • the present invention relates to the field of optical fiber communication technologies, and in particular, to an optical transceiver assembly.
  • a passive optical network (English: Passive optical network, PON for short) system includes an optical line terminal (English: Optical Line Terminal, OLT for short), one for branching/coupling or multiplexing/ Demultiplexed optical distribution network (English: Optical Distribution Network, ODN for short) and multiple optical network units (English: Optical Network Unit, ONU).
  • An OLT is separately connected to a plurality of ONUs through the ODN.
  • the optical transceiver component is a key component in the OLT in the passive optical network system for transmitting and receiving optical signals.
  • Gigabit PON Gigabit PON, GPON for short
  • 10 Gigabit PON International: 10Gigabit PON, referred to as: XGPON
  • the downstream bandwidth of GPON is 2.5Gbp
  • the uplink is 1.25Gbps
  • the downlink bandwidth of XGPON is 10Gbp
  • the uplink is 2.5Gbps
  • the downstream wavelength of GPON is 1490nm
  • the upstream wavelength is 1310nm
  • the downstream wavelength of XGPON is 1577nm
  • the upstream wavelength is 1270nm. Therefore, by adding a wavelength division multiplexer (WDM) to the OLT, XGPON and GPON coexist.
  • WDM wavelength division multiplexer
  • the optical component structure of the existing arrangement is as shown in FIG. 1.
  • the optical component includes: XGPON transmitter (Tx), XGPON receiver (Rx), GPON Tx, and GPON Rx.
  • XGPON Tx, XGPON Rx, GPON Tx and GPON Rx are independent devices, which are assembled with WDM1, WDM2 and WDM3.
  • each Tx and Rx are independent packages, and the layout is not concentrated, thus resulting in a relatively large size of the optical component.
  • the embodiment of the invention provides an optical transceiver assembly for solving the problem that the optical component layout in the prior art is not concentrated and the optical component is large in size.
  • An embodiment of the present invention provides an optical transceiver component, including:
  • the first cavity includes at least two light receivers, the at least two light receivers respectively for receiving light of different wavelengths;
  • the second cavity includes at least two light emitters, the at least two light emitters respectively for emitting light of different wavelengths; the wavelength of light received by the at least two light receivers Different from the wavelength of light emitted by the at least two light emitters;
  • Each of the optical receivers and each of the optical transmitters respectively correspond to different wavelength division multiplexers WDM;
  • the WDM corresponding to the optical receiver is configured to separate the light of the wavelength that the corresponding optical receiver can receive from the light emitted by the optical fiber, transmit the light to the corresponding optical receiver, and reflect the other wavelengths;
  • the WDM corresponding to the light emitter is configured to transmit light of a wavelength emitted by the corresponding light emitter and reflect light of other wavelengths emitted from the optical fiber;
  • a light reflecting member for totally reflecting light transmitted or reflected by the WDM is provided.
  • the light emitting component may be a total reflection mirror.
  • the transmitter and the receiver are respectively placed in two different cavities, so that the structure of the optical component is more compact, and mutual crosstalk between the transmitted signal and the received signal is avoided.
  • the first cavity and the second cavity in the embodiment of the present invention may be a hermetically sealed cavity. Thereby avoiding mutual crosstalk between the transmitted signal and the received signal.
  • the optical transceiver component may further include:
  • a lens corresponding to the light receiver is disposed in the first cavity, and is configured to transmit light emitted by the WDM corresponding to the light receiver to the light receiver; and the light emitter A corresponding lens is disposed in the second cavity and configured to transmit light emitted by the light emitter to a corresponding WDM of the light receiver.
  • the light emitted by the light emitter is transmitted through a corresponding lens of the light emitter and transmitted through the corresponding one of the WDMs to reach the optical fiber; or the light emitted by the light emitter passes through the light emitter After the corresponding lens is transmitted and transmitted through a corresponding WDM, it is reflected by at least one WDM and the light reflecting component of the other WDM to reach the optical fiber;
  • the light received by the optical receiver is transmitted by the optical fiber, transmitted through a corresponding WDM of the optical receiver, and transmitted through a lens corresponding to the optical receiver; or After being transmitted, after being reflected by the at least one WDM and the light emitting component, a WDM corresponding to the optical receiver is transmitted and transmitted through a corresponding lens of the optical receiver.
  • the first cavity and the second cavity are connected by a common cavity wall.
  • the common cavity wall is a metal plate or a ceramic plate.
  • first cavity and the second cavity are connected by a common cavity wall
  • a part of the cavity wall of the first cavity adjacent to the WDM side corresponding to the light receiver is a light-transmitting plate
  • the light-transmitting plate in the first cavity is configured to transmit light transmitted by the corresponding WDM of the light receiver to the light receiver
  • a part of the cavity wall adjacent to the WDM side corresponding to the light emitter is a light transmissive plate, and the light transmissive plate in the second cavity is used to send the light emitter The incoming light is transmitted to the corresponding WDM of the light emitter.
  • the first cavity is disposed on a cavity wall away from a WDM side corresponding to the light receiver a ceramic having a metal pin disposed in the ceramic in the first cavity, the metal pin entering the first cavity through a via hole in the ceramic, and connected to one end of the wire disposed in the first cavity The other end of the wire in the first cavity is connected to the light receiver;
  • a ceramic is disposed on a wall of the cavity away from a corresponding WDM side of the light emitter, and a metal pin is disposed on the ceramic in the first cavity, and the metal pin passes a via hole in the ceramic enters the second cavity and is adjacent to one end of the wire disposed in the second cavity The other end of the wire in the second cavity is connected to the light emitter.
  • the ceramic plate as a common cavity wall of the first cavity and the second cavity is integrated with the ceramic on the first cavity and the ceramic on the second cavity.
  • the ceramic is integrally formed and relatively easy to fix.
  • first cavity and the second cavity are connected by a common cavity wall, all of the WDM and the light reflecting component are disposed outside the first cavity and the second cavity .
  • the first cavity, all the WDMs, and the light reflecting components are disposed in the second cavity;
  • a part of the cavity wall adjacent to the WDM side corresponding to the light receiver is a light transmissive plate, and the light transmissive plate in the first cavity is used to correspond the light receiver Light emitted by the WDM is transmitted to the light receiver;
  • a portion of the cavity wall on a side close to the light reflecting member is a light transmitting plate, and a light transmitting plate in the second cavity is used to transmit light emitted from the optical fiber To the WDM, or light for transmitting or reflecting the WDM is transmitted to the optical fiber.
  • the first cavity, all of the WDMs, and the light reflecting members are disposed in the second cavity, optionally, in the second cavity, away from the side of the light reflecting component a ceramic body is disposed on the wall of the cavity, the ceramic comprising a first portion and a second portion;
  • the first portion is provided with a metal pin; the metal pin on the first portion enters the second cavity through a via hole in the first portion, and is connected to one end of the wire disposed in the second cavity, The other end of the wire in the second cavity is connected to the light emitter;
  • the second portion serves as a partial cavity wall of the first cavity away from the WDM side corresponding to the light receiver; the second portion is provided with a metal pin, and the second portion is a metal pin enters the first cavity through a via on the second portion and is connected to one end of the wire disposed in the first cavity, and the other end of the wire in the first cavity
  • the optical receiver is connected.
  • the second cavity may be disposed on the ceramic extending on the first cavity, so that the wire with the metal pin may pass through the lower surface of a certain layer of ceramic, and then enter the second cavity through the via hole through the ceramic.
  • the upper surface of the ceramic is then connected to the light emitter.
  • the second cavity, all of the WDMs, and the light reflecting component are disposed in the first cavity;
  • a portion of the cavity wall on a side of the second cavity adjacent to the light emitter is a light transmissive plate, and a light transmissive plate on the second cavity is used to send the light emitter The incoming light is transmitted to the corresponding WDM of the light emitter;
  • a portion of the cavity wall on a side close to the light reflecting member is a light transmitting plate, and a light transmitting plate on the first cavity is used to transmit light emitted from the optical fiber. Light to or from the WDM is transmitted to the fiber.
  • the WDM corresponding to the optical receiver is away from the first cavity a ceramic body is disposed on a cavity wall of one side, and the ceramic on the first cavity includes a first portion and a second portion;
  • the first portion is provided with a metal pin; the metal pin on the first portion enters the first cavity through a via hole in the first portion, and is connected to one end of a wire disposed in the first cavity, The other end of the wire in the first cavity is connected to the light receiver;
  • the second portion serves as a partial cavity wall on the second cavity away from the corresponding WDM side of the light emitter; the second portion is provided with a metal pin, and the second portion is a metal pin enters the second cavity through a via on the second portion and is connected to one end of the wire disposed in the second cavity, and the other end of the wire in the second cavity The light emitter is connected.
  • the first cavity may be disposed on the ceramic extending on the second cavity, so that the wire with the metal pin may pass through the lower surface of a certain layer of ceramic, and then enter the first cavity through the via hole on the ceramic.
  • the upper surface of the ceramic is then connected to the receiver. Thereby avoiding the electrical signal of the first cavity Leaks into the second cavity, causing interference to the second cavity.
  • a semiconductor cooler can be placed on one side of the light emitter.
  • FIG. 1 is a schematic structural view of an optical transceiver assembly provided by the prior art
  • FIG. 2 is a schematic structural diagram of a PON system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another PON system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another PON system according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an optical transceiver component according to an embodiment of the present disclosure.
  • 6A is a second schematic diagram of an optical transceiver component according to an embodiment of the present invention.
  • FIG. 7 is a third schematic diagram of an optical transceiver component according to an embodiment of the present invention.
  • FIG. 8 is a fourth schematic diagram of an optical transceiver component according to an embodiment of the present invention.
  • FIG. 9 is a fifth schematic diagram of an optical transceiver component according to an embodiment of the present invention.
  • FIG. 9A is a schematic view of the ceramic 93 of FIG. 9 according to an embodiment of the present invention.
  • Figure 10 is a partial schematic view of Figure 9 according to an embodiment of the present invention.
  • FIG. 10A is a partial schematic view of FIG. 9 according to an embodiment of the present invention.
  • FIG. 11 is a sixth schematic diagram of an optical transceiver component according to an embodiment of the present invention.
  • FIG. 11A is a schematic view of the ceramic 94 of FIG. 9 according to an embodiment of the present invention.
  • Figure 12 is a partial schematic view of Figure 11 according to an embodiment of the present invention.
  • FIG. 12A is a partial schematic view of FIG. 11 according to an embodiment of the present invention.
  • the optical transceiver component provided by the embodiment of the invention is applied to a PON system, and can be specifically applied to a system in which a GPON and an XGPON coexist.
  • Figure 2 shows the architecture of the PON system.
  • the PON system includes: one OLT, one ODN, and multiple ONUs.
  • An OLT is separately connected to a plurality of ONUs through the ODN.
  • FIG. 3 is a schematic diagram of a system architecture in which GPON and XGPON coexist.
  • the WDM passive device is added to the OLT.
  • the XGPON OLT and the GPON OLT are connected to the branch ports of the WDM.
  • the common ports of the WDM are connected to the ODN, and the ONUs whose bandwidth needs to be upgraded are replaced with the XGPON ONUs. Since the downlink rate in the XGPON system is 10 Gbps, which is higher than the downlink rate of the GPON, the average bandwidth of the XGPON users is greater than that of the GPON.
  • This GPON and XGPON coexistence upgrade solution does not require changes to the ODN, with minimal impact on the system.
  • each port in the OLT supports GPON and XGPON functions. Both the GPON ONU and the XGPON ONU can communicate with this port, thus eliminating the need for an external WDM device.
  • the optical transceiver includes GPON and XGPON optical transceiver components (English: Optical Sub Assembly, Abbreviation: OSA), and related drive and control circuits, single-chip microcomputer (English: Micro Controller Unit, MCU for short), avalanche photodiode (English: Avalanche Photo Diode, abbreviation: APD) bias circuit (APD bias), laser driver (English: Laser Diode Driver for short: LDD), limiting amplifier (English: Limiting Amplifier, referred to as: LA), thermoelectric cooler (English: thermoelectric coolers, referred to as: TEC) controller (TEC Controller).
  • OSA Optical Sub Assembly, Abbreviation: OSA
  • APD avalanche photodiode
  • APD Avalanche Photo Diode
  • APD bias avalanche Photo Diode
  • APD bias avalanche Photo Diode
  • APD bias avalanche Photo Diode
  • APD bias avalanche Photo Diode
  • an embodiment of the present invention provides an optical transceiver component for solving the existing technology.
  • FIG. 6 is a schematic diagram of an optical transceiver component according to an embodiment of the present invention.
  • the optical transceiver assembly includes two cavities, a first cavity 11 and a second cavity 12.
  • the first cavity 11 includes at least two light receivers, and the at least two light receivers are respectively configured to receive light of different wavelengths.
  • the second cavity 12 includes at least two light emitters, the at least two light emitters respectively for emitting light of different wavelengths; the wavelength of the light received by the at least two light receivers is The wavelengths of the light emitted by the at least two light emitters are different.
  • the first cavity 11 and the second cavity 12 in the embodiment of the present invention may be a hermetically sealed cavity.
  • two optical receivers and two light emitters are included in the optical transceiver assembly as an example for description.
  • the two optical receivers are an XGPON receiver 21 and a GPON receiver 22, respectively.
  • the two light emitters are a GPON transmitter 31 and an XGPON transmitter 32, respectively.
  • the optical transceiver assembly further includes at least four WDMs, that is, each of the optical receivers and each of the optical transmitters respectively correspond to different WDMs.
  • the WDM corresponding to the optical receiver is configured to separate, from the light emitted by the optical fiber, light of a wavelength that the corresponding optical receiver can receive, and transmit the light to the corresponding optical receiver, and reflect other wavelengths;
  • the WDM corresponding to the emitter is used to transmit light of a wavelength emitted by the corresponding light emitter and to reflect light of other wavelengths emitted from the fiber.
  • the XGPON receiver 21 corresponds to the WDM 41
  • the GPON receiver 22 corresponds to the WDM 42
  • the GPON transmitter 31 corresponds to the WDM 44
  • the XGPON transmitter 32 corresponds to the WDM 44.
  • the optical transceiver assembly further includes a light reflecting member 51 for totally reflecting the light transmitted or reflected by the WDM.
  • At least four WDMs are combined with the light reflecting component 51 to implement a wavelength division multiplexing function, that is, multiplexing the plurality of wavelengths of light emitted by the at least two light emitters into the optical fiber, and transmitting the plurality of wavelengths of the optical fiber.
  • the light is demultiplexed to the at least two optical receivers.
  • the transmitter and the receiver are respectively placed in two different cavities, so that the structure of the optical component is more compact, and the transmission signal is avoided.
  • Mutual crosstalk between received signals are provided by the embodiment of the invention.
  • a lens corresponding to each of the light receivers and each of the light emitters may be further included in the optical transceiver assembly; wherein a lens corresponding to the light receiver is disposed in the first cavity 11 And transmitting light emitted by the WDM corresponding to the light receiver to the light receiver; a lens corresponding to the light emitter is disposed in the second cavity 12, and is configured to Light emitted by the light emitter is transmitted to a corresponding WDM of the light receiver.
  • the XGPON receiver 21 corresponds to the lens 61
  • the GPON receiver 22 corresponds to the lens 62
  • the GPON transmitter 31 corresponds to the lens 63
  • the XGPON transmitter 32 corresponds to the lens 64.
  • the light that needs to be sent from the optical fiber to the XGPON receiver 21 is reflected by the WDM 44 to reach the light reflecting member 51, and then reflected by the light reflecting member 51 to the WDM 43 and then reflected by the WDM 43 to the light reflecting member 51.
  • the reflecting member 51 is reflected to the WDM 42 and then reflected by the WDM 42 to the light reflecting member 51, and then transmitted to the WDM 41 through the light reflecting member 51, and then transmitted through the WDM 41 and transmitted by the lens 61 to reach the XGPON receiver 21.
  • the light that needs to be sent from the optical fiber to the GPON receiver 22 is reflected by the WDM 44 to reach the light reflecting member 51, and then reflected by the light reflecting member 51 to the WDM 43, and then reflected by the WDM 43 to the light reflecting member 51, and then reflected by the light.
  • Component 51 is reflected to WDM 42 and then transmitted by WDM 42 and transmitted by lens 62 to GPON receiver 22.
  • the light emitted from the GPON transmitter 31 passes through the lens 63 and the WDM 43 and reaches the light reflecting member 51, and is reflected by the light reflecting member 51 and the WDM 44 in order to reach the optical fiber.
  • light emitted from the XGPON transmitter 32 passes through the lens 64 and the transmission of the WDM 44 to the fiber.
  • the embodiment of the present invention does not limit the specific arrangement manner of all the WDMs and the light-emitting components 51 in the optical transceiver assembly, as long as the optical path transmission can be realized.
  • the XGPON receiver 21, the GPON receiver 22, the GPON transmitter 31, and the XGPON transmitter 32 may be disposed on different optical axes parallel to each other, respectively.
  • the different optical axes are all on the same plane.
  • the optical axis on which the XGPON receiver 21 is located starts from the XGPON receiver 21, and is sequentially provided with a lens 61 and a WDM 41;
  • the optical axis on which the receiver 22 is located starts from the GPON receiver 22, and is sequentially provided with a lens 62 and a WDM 42;
  • the optical axis on which the GPON transmitter 31 is located starts from the GPON transmitter 31, and is sequentially provided with a lens 63 and a WDM 43;
  • the XGPON transmitter The optical axis on which 32 is located starts from the XGPON transmitter 32, and lenses 64 and WDMs 44 are sequentially disposed.
  • the light reflecting member 51 is passed through three adjacent optical axes; the other optical axis other than the three optical axes is coaxial with the optical fiber.
  • Figure 6 shows the optical axis of the XGPON transmitter 32 coaxial with the fiber.
  • the material of the light reflecting member 51 is not limited in the embodiment of the present invention.
  • the light reflecting member 51 may be a total reflection mirror.
  • the light reflecting member 51 may also be constituted by three total reflection mirrors, and of course, may be composed of two total reflection mirrors, and it is only necessary to ensure that the light reflection members 51 are passed through the adjacent three optical axes.
  • the optical transceiver assembly may further include a ferrule 71, as shown in FIG.
  • the ferrule 71 is for connection to an optical fiber.
  • the WDM 41 to the WDM 44 may be disposed on a line which is L from the light reflecting member 51 and parallel to the light reflecting member 51, the straight line having an angle ⁇ with any optical axis, the ⁇ and the L Relevant and related to the distance between any two adjacent optical axes.
  • the distance between any two optical axes cannot be less than the maximum size of the light emitter, light receiver, lens, and WDM.
  • the embodiment of the present invention does not limit the relative positions of the light emitter and the light receiver in the optical transceiver assembly.
  • the light receiver in FIG. 6 is above the light emitter. In principle, the light emitter may also be above the light receiver. As shown in Figure 6A.
  • the subsequent description in the embodiments of the present invention has been described above by taking an optical receiver above the optical transmitter.
  • all the WDMs and the light reflecting members 51 may be disposed outside the first cavity 11 and the second cavity 12, and all the WDMs and the light reflecting members 51 may be disposed in the first cavity 11 and the second. In the third cavity outside the cavity 12. All of the WDM and light reflecting members 51 may also be disposed within the first cavity 11 or within the second cavity 12.
  • the first cavity 11 and the second cavity 12 are connected by a common cavity wall.
  • the public The cavity wall can be a metal plate or a ceramic plate.
  • a part of the cavity wall on the side of the WDM (WDM41 or WDM42) corresponding to any one of the light receivers is a light-transmitting plate 81, and the light-transmitting plate 81 in the first cavity 11 Transmitting, by the WDM corresponding to any one of the optical receivers, the light transmitted to the corresponding optical receiver;
  • a part of the cavity wall on the side of the WDM (WDM43 or WDM44) corresponding to any one of the light emitters is a light transmissive plate 82, and the light transmissive plate 82 in the second cavity 12 Used to transmit light from any one of the light emitters to the corresponding WDM.
  • a ceramic 91 is disposed on a wall of the cavity away from the WDM side corresponding to the light receiver, and the ceramic pin 91 of the first cavity 11 is provided with a metal pin 101.
  • the metal pin 101 enters the first cavity 11 through a via hole in the ceramic 91, and is connected to one end of the wire disposed in the first cavity 11, and the other end of the wire in the first cavity 11 Connected to the optical receiver.
  • a ceramic 92 is disposed on a wall of the cavity away from the WDM side corresponding to the light emitter, and a ceramic pin 102 is disposed on the ceramic 92 of the second cavity 12,
  • the metal pin 102 enters the second cavity 12 through a via hole in the ceramic 92, and is connected to one end of the wire disposed in the second cavity 12, and the wire in the second cavity 12 The other end is connected to the light emitter.
  • the common cavity wall of the first cavity 11 and the second cavity 12 is made of metal, and is integrated with the first cavity 11 and the second cavity 12 .
  • the ceramic plate 103 as a common cavity wall of the first cavity 11 and the second cavity 12, and the ceramic 91 on the first cavity 11 and the ceramic on the second cavity 12
  • the 92 is integrated into the ceramic 9a, as shown in FIG.
  • the first cavity 11, all the WDMs, and the light reflecting members 51 are disposed in the second cavity 12;
  • the wall is a light-transmitting plate 83, that is, in the first cavity, a part of the cavity wall on the side close to the WDM 41 and the WDM 42 is a light-transmitting plate 83; the light-transmitting plate 83 in the first cavity 11 is used for
  • the light emitted by the optical receiver corresponding to the WDM is transmitted to the optical receiver, that is, the transparent plate 83 is used to transmit the light from the WDM 41 to the XGPON receiver 21, and transmit the light from the WDM 42 to the GPON receiver. twenty two.
  • a portion of the cavity wall on a side close to the light reflecting member 51 is a light transmitting plate 84, and a light transmitting plate 84 in the second cavity 12 is used to use the optical fiber.
  • the emitted light is transmitted to the WDM, or is used to transmit light transmitted or reflected by the WDM to the optical fiber.
  • the light transmissive plate 84 is used to transmit the light transmitted by the WDM 44 to the ferrule 71, or to transmit the light reflected from the WDM 44 to the ferrule 71, or to transmit the light emitted from the optical fiber through the ferrule. WDM44.
  • a ceramic 93 is disposed on a cavity wall side away from the light reflecting member 51, and the ceramic 93 includes a first portion 111 and a second portion 112 as shown in Fig. 9A.
  • the first portion 111 is provided with a metal pin 103; the metal pin 103 on the first portion 111 enters the first cavity 11 through a via hole in the first portion 111, and One end of the wire disposed in the first cavity 11 is connected, and the other end of the wire in the first cavity 11 is connected to the light receiver.
  • the second portion 112 serves as a partial cavity wall of the second cavity 12 away from the WDM side corresponding to the light emitter; the second portion 112 is provided with a metal pin 104, the first portion The metal pin 104 on the second portion 112 enters the second cavity 12 through a via on the second portion 112 and is connected to one end of the wire disposed in the second cavity 12, the second cavity The other end of the wire within body 12 is coupled to the light emitter.
  • the first cavity 11 may be disposed on the ceramic 93 extending on the second cavity 12, so that the wire with the metal pin 103 may pass through a layer of the ceramic 93.
  • the lower surface is then passed through the vias in the ceramic 93 into the upper surface of the ceramic 93 in the first cavity and then connected to the XGPON receiver 21 and the GPON receiver 22.
  • the second cavity 12 all of the WDMs, and the light reflecting member 51 are disposed in the first cavity Within body 11;
  • a portion of the cavity wall on the second cavity 12 adjacent to the corresponding WDM side of the light emitter is a light transmissive plate 85, and the light transmissive plate 85 on the second cavity 12 is used to
  • the light emitted from the light emitter is transmitted to the corresponding WDM of the light emitter; in FIG. 11, a part of the cavity wall of the second cavity 12 on the side close to the WDM43 and the WDM 44 is a light-transmitting plate 85, and the light-transmitting plate 85 is used.
  • the light emitted by the GPON transmitter 31 is transmitted to the WDM 43 and the light emitted by the XGPON transmitter 32 is transmitted to the WDM 44.
  • a portion of the cavity wall on a side close to the light reflecting member is a light transmitting plate 86, and a light transmitting plate 86 on the first cavity 11 is used to send the optical fiber
  • the incoming light is transmitted to the WDM or transmitted from the WDM to the optical fiber.
  • the light transmissive plate 86 is used to transmit the light transmitted by the WDM 44 to the ferrule 71, or to transmit the light reflected from the WDM 44 to the ferrule 71, or to transmit the light emitted from the optical fiber through the ferrule. WDM44.
  • a ceramic 94 is disposed on a cavity wall on a side away from the WDM corresponding to the light receiver, and the ceramic 94 on the first cavity 11 includes a first portion 113 and a second portion. Section 114.
  • the first portion 113 is provided with a metal pin 105; the metal pin 105 on the first portion enters the first cavity 11 through a via hole in the first portion 113, and is disposed in the first cavity 11 One end of the inner wire is connected, and the other end of the wire in the first cavity 11 is connected to the light receiver;
  • the second portion 114 serves as a partial cavity wall on the second cavity 12 away from the WDM side corresponding to the light emitter; the second portion is provided with a metal pin 106, the second A portion of the metal pin 106 enters the second cavity 12 through a via on the second portion 114 and is connected to one end of the wire disposed in the second cavity 12, the second cavity 12 The other end of the wire is connected to the light emitter.
  • the second cavity 12 may be disposed on the ceramic 94 extending on the first cavity 11, so that the wire with the metal pin 106 may pass through a layer of the ceramic 94.
  • the lower surface then enters the upper surface of the ceramic 94 in the second cavity through the vias in the ceramic 94
  • the face is then connected to the GPON transmitter 31 and the XGPON transmitter 32. Since the GPON transmitter 31 has a high temperature requirement, one side of the GPON transmitter 31 can be attached to the semiconductor refrigerator.
  • the semiconductor cooler can be a TEC.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

一种光收发组件,用以解决光组件尺寸大的问题。该光收发组件,包括:第一腔体,所述第一腔体内包括至少两个光接收器,所述至少两个光接收器分别用于接收不同波长的光;第二腔体,所述第二腔体内包括至少两个光发射器,所述至少两个光发射器分别用于发射不同波长的光;每个光接收器和每个光发射器分别对应不同的WDM;其中,所述光接收器对应的WDM用于从光纤发出的光中分离出对应的光接收器能够接收的波长的光,并透射到对应的光接收器,以及将其他波长反射;所述光发射器对应的WDM用于将对应的光发射器发射的波长的光透射,并将从所述光纤发出的其他波长的光反射;光反射部件,用于将WDM透射或反射过来的光进行全反射。

Description

一种光收发组件 技术领域
本发明涉及光纤通信技术领域,尤其涉及一种光收发组件。
背景技术
目前,一个无源光网络(英文:Passive optical Network,简称:PON)系统包括一个位于中心局的光线路终端(英文:Optical Line Terminal,简称:OLT),一个用于分支/耦合或者复用/解复用的光分配网(英文:Optical Distribution Network,简称:ODN)以及多个光网络单元(英文:Optical Network Unit,简称:ONU)。一个OLT通过所述ODN与多个ONU分别连接。其中,光收发组件是无源光网络系统中OLT中的关键器件,用来发送和接收光信号。
随着用户对带宽需求的不断增长,无源光网络的不断发展,产生了吉比特无缘光网络(英文:Gigabit PON,简称:GPON)以及10吉比特无缘光网络(英文:10Gigabit PON,简称:XGPON)。其中,GPON的下行带宽是2.5Gbp,上行1.25Gbps,XGPON的下行带宽是10Gbp,上行2.5Gbps;GPON的下行波长是1490nm,上行波长是1310nm;XGPON下行波长是1577nm,上行波长是1270nm。因此通过在OLT端增加波分复用器(英文:wavelength Division Multiplexing,简称:WDM)的方式使得XGPON和GPON共存。
在XGPON和GPON共存的情况下,现有设置的光组件结构如图1所示,光组件中包括:XGPON发射器(Tx)、XGPON接收器(Rx)、GPON Tx、以及GPON Rx。其中XGPON Tx、XGPON Rx、GPON Tx以及GPON Rx都是独立的器件,再与WDM1,WDM2,WDM3组装到一起。其中,图1所示光组件结构中,每个Tx和Rx都是独立封装,布局不集中,因此导致光组件的尺寸比较大。
发明内容
本发明实施例提供了一种光收发组件,用以解决现有技术中存在的光组件布局不集中且光组件尺寸大的问题。
本发明实施例提供了一种光收发组件,包括:
第一腔体,所述第一腔体内包括至少两个光接收器,所述至少两个光接收器分别用于接收不同波长的光;
第二腔体,所述第二腔体内包括至少两个光发射器,所述至少两个光发射器分别用于发射不同波长的光;所述至少两个光接收器所接收的光的波长与所述至少两个光发射器所发射的光的波长不同;
每个光接收器和每个光发射器分别对应不同的波分复用器WDM;
其中,所述光接收器对应的WDM用于从光纤发出的光中分离出对应的光接收器能够接收的波长的光,并透射到对应的光接收器,以及将其他波长反射;
所述光发射器对应的WDM用于将对应的光发射器发射的波长的光透射,并将从所述光纤发出的其他波长的光反射;
光反射部件,用于将WDM透射或反射过来的光进行全反射。
光发射部件可以是全反射镜。
通过本发明实施例提供的光收发组件,将发射器和接收器分别集中放置在两个不同的腔体内,使得光组件的结构更加紧凑,同时避免了发射信号与接收信号之间的相互串扰。
本发明实施例中的第一腔体以及第二腔体可以为气密封装的腔体。从而避免发射信号与接收信号之间的相互串扰。
可选地,光收发组件还可以包括:
每个光接收器以及每个光发射器分别对应的透镜;
其中,与所述光接收器对应的透镜设置于所述第一腔体内,且用于将所述光接收器对应的WDM发来的光透射给所述光接收器;与所述光发射器对应的透镜设置于所述第二腔体内,且用于将所述光发射器发射的光透射给所述光接收器对应的WDM。
所述光发射器发射的光,经过所述光发射器对应的透镜透射后,并经过所述对应的一个WDM透射后到达光纤;或者所述光发射器发射的光,经过所述光发射器对应的透镜透射后,并经过对应的一个WDM透射后,再经过其他WDM中至少一个WDM以及光反射部件的反射后到达光纤;
所述光接收器接收到的光是由所述光纤发射后,经过所述光接收器对应的一个WDM透射,并经过所述光接收器对应的透镜透射后到达的;或者是由所述光纤发射后,经过至少一个WDM以及所述光发射部件反射后,经过所述光接收器对应的一个WDM透射,并经过所述光接收器对应的透镜透射后到达的。
在一种可能的设计中,所述第一腔体和所述第二腔体由公共的腔体壁连接。
可选地,所述公共的腔体壁为金属板或陶瓷板。
所述第一腔体和所述第二腔体由公共的腔体壁连接的情况下,所述第一腔体中,在靠近所述光接收器对应的WDM一侧的部分腔体壁为透光板,所述第一腔体中的透光板用于将所述光接收器对应的WDM透射来的光,透射到所述光接收器;
所述第二腔体中,在靠近所述光发射器对应的WDM一侧的部分腔体壁为透光板,所述第二腔体中的透光板用于将所述光发射器发来的光,透射到所述光发射器对应的WDM。
所述第一腔体和所述第二腔体由公共的腔体壁连接的情况下,所述第一腔体中,在远离所述光接收器对应的WDM一侧的腔体壁上设置有陶瓷,所述第一腔体中陶瓷上设置有金属管脚,所述金属管脚通过陶瓷上的过孔进入到所述第一腔体,并与设置在第一腔体内导线的一端相连,第一腔体内的所述导线的另一端与所述光接收器连接;
所述第二腔体中,在远离所述光发射器对应的WDM一侧的腔体壁上设置有陶瓷,所述第一腔体中陶瓷上设置有金属管脚,所述金属管脚通过陶瓷上的过孔进入到所述第二腔体,并与设置在第二腔体内的所述导线的一端相 连,所述第二腔体内的导线的另一端与所述光发射器连接。
通过上述设计,可以避免第一腔体的电信号与第二腔体的电信号的互相干扰。
可选地,作为所述第一腔体与所述第二腔体的公共的腔体壁的所述陶瓷板,与第一腔体上的陶瓷以及第二腔体上的陶瓷连为一体。
通过上述设计,陶瓷是一体成型的,比较容易固定。
所述第一腔体和所述第二腔体由公共的腔体壁连接的情况下,所有的WDM和以及所述光反射部件均设置于所述第一腔体和所述第二腔体外。
在另一种可能的设计中,所述第一腔体、所有的WDM,以及所述光反射部件均设置于所述第二腔体内;
所述第一腔体中,在靠近所述光接收器对应的WDM一侧的部分腔体壁为透光板,所述第一腔体中的透光板用于将所述光接收器对应WDM发来的光透射给所述光接收器;
所述第二腔体中,在靠近所述光反射部件的一侧的部分腔体壁为透光板,所述第二腔体中的透光板用于将所述光纤发来的光透射到WDM,或者用于将WDM透射或者反射来的光透射给所述光纤。
所述第一腔体、所有的WDM,以及所述光反射部件均设置于所述第二腔体内情况下,可选地,所述第二腔体中,在远离所述光反射部件一侧的腔体壁上设置有陶瓷,所述陶瓷包括第一部分和第二部分;
所述第一部分上设置有金属管脚;所述第一部分上的金属管脚通过第一部分上的过孔进入到所述第二腔体,并与设置在第二腔体内的导线的一端相连,所述第二腔体内的所述导线的另一端与所述光发射器连接;
所述第二部分作为所述第一腔体中的远离所述光接收器对应的WDM一侧的部分腔体壁;所述第二部分上设置有金属管脚,所述第二部分上的金属管脚通过第二部分上的过孔进入到所述第一腔体,并与设置在所述第一腔体内导线的一端相连,所述第一腔体内的所述导线的另一端与所述光接收器连接。
所述第二腔体可以设置于第一腔体上延伸的陶瓷上,从而与金属管脚的导线可以通过陶瓷某一层的下表面,然后在通过陶瓷上的过孔进入到第二腔体内的陶瓷的上表面,然后与光发射器相连。从而能够避免第二腔体的电信号泄露到第一腔体中,而对第一腔体的信号产生干扰。
在又一种可能的设计中,所述第二腔体、所有的WDM,以及所述光反射部件设置于第一腔体内;
所述第二腔体上,在靠近所述光发射器对应的WDM一侧的部分腔体壁为透光板,所述第二腔体上的透光板用于将所述光发射器发来的光透射给所述光发射器对应的WDM;
所述第一腔体上,在靠近所述光反射部件的一侧的部分腔体壁为透光板,所述第一腔体上的透光板用于将所述光纤发来的光透射到WDM或者将WDM发来的光透射到所述光纤。
在所述第二腔体、所有的WDM,以及所述光反射部件设置于第一腔体内的情况下,可选地,所述第一腔体上,在远离所述光接收器对应的WDM的一侧的腔体壁上设置有陶瓷,所述第一腔体上的陶瓷包括第一部分和第二部分;
所述第一部分上设置有金属管脚;所述第一部分上的金属管脚通过第一部分上的过孔进入到所述第一腔体,并与设置在第一腔体内的导线的一端相连,所述第一腔体内的所述导线的另一端与所述光接收器连接;
所述第二部分作为所述第二腔体上的远离所述光发射器对应的WDM一侧的部分腔体壁;所述第二部分上设置有金属管脚,所述第二部分上的金属管脚通过第二部分上的过孔进入到所述第二腔体,并与设置在所述第二腔体内导线的一端相连,所述第二腔体内的所述导线的另一端与所述光发射器连接。
所述第一腔体可以设置于第二腔体上延伸的陶瓷上,从而与金属管脚的导线可以通过陶瓷某一层的下表面,然后再通过陶瓷上的过孔进入到第一腔体内的陶瓷的上表面,然后与接收器相连。从而能够避免第一腔体的电信号 泄露到第二腔体中,而对第二腔体产生干扰。
在一种可能的设计中,可以在所述光发射器的一侧贴装半导体制冷器。
附图说明
图1为现有技术提供的光收发组件结构示意图;
图2为本发明实施例提供的一种PON系统架构示意图;
图3为本发明实施例提供的另一种PON系统架构示意图;
图4为本发明实施例提供的又一种PON系统架构示意图;
图5为本发明实施例提供的光模块示意图;
图6为本发明实施例提供的光收发组件示意图之一;
图6A为本发明实施例提供的光收发组件示意图之二;
图7为本发明实施例提供的光收发组件示意图之三;
图8为本发明实施例提供的光收发组件示意图之四;
图9为本发明实施例提供的光收发组件示意图之五;
图9A为本发明实施例提供的图9中陶瓷93的示意图;
图10为本发明实施例提供的图9的局部示意图之一;
图10A为本发明实施例提供的图9的局部示意图之二;
图11为本发明实施例提供的光收发组件示意图之六;
图11A为本发明实施例提供的图9中陶瓷94的示意图;
图12本发明实施例提供的图11的局部示意图之一;
图12A为本发明实施例提供的图11的局部示意图之二。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的 范围。
发明实施例提供的光收发组件应用于PON系统中,具体可以应用于GPON与XGPON共存的系统中。如图2所示为PON系统的架构图。PON系统中包括:一个OLT、一个ODN以及多个ONU。一个OLT通过所述ODN与多个ONU分别连接。
如图3所示为GPON与XGPON共存的系统架构示意图。在OLT端增加WDM无源器件,XGPON OLT和GPON OLT分别连接WDM的分支端口,WDM的公共端口连接ODN,另外将带宽需要升级的ONU,更换为XGPON ONU。由于XGPON系统中的下行速率是10Gbps,高于GPON的下行速率,所以XGPON用户的平均带宽要大于GPON。这种GPON与XGPON共存的升级方案不需要改动ODN,对系统的影响最小。
基于上述升级,则在局端的机房中为增加的WDM器件安排放置空间,一个机房中会有很多GPON和XGPON端口,升级所需的WDM器件数量很多,所需要的空间很大。在机柜或者机房空间紧张的时候,可以考虑使用GPON和XGPON功能集成的单板。如图4所示,OLT中的每一个端口都支持GPON和XGPON的功能,不论是GPON ONU还是XGPON ONU都可以与这个端口通信,这样就不需要使用外置的WDM器件。
在图4所示的系统中,OLT需要使用GPON和XGPON功能都支持的光模块,光模块的结构如图5所示:光模块内包括GPON和XGPON的光收发组件(英文:Optical Sub Assembly,简称:OSA),以及相关的驱动和控制电路,单片机(英文:Micro Controller Unit,简称:MCU),雪崩光电二极管(英文:Avalanche Photo Diode,简称:APD)偏置电路(APD bias),激光器驱动器(英文:Laser Diode Driver简称:LDD),限幅放大器(英文:Limiting Amplifier,简称:LA),热电制冷器(英文:thermoelectric coolers,简称:TEC)控制器(TEC Controller)等。其中最关键的是光收发组件,决定了光模块甚至整个系统的性能。
基于此,本发明实施例提供一种光收发组件,用以解决现有技术中存在 的光组件布局不集中且光组件尺寸大的问题。
如图6所示为本发明实施例提供的光收发组件的示意图,图6仅是一种示例,并不对器件结构以及数量作具体限定。光收发组件包括两个腔体,第一腔体11和第二腔体12。所述第一腔体11内包括至少两个光接收器,所述至少两个光接收器分别用于接收不同波长的光。所述第二腔体12内包括至少两个光发射器,所述至少两个光发射器分别用于发射不同波长的光;所述至少两个光接收器所接收的光的波长与所述至少两个光发射器所发射的光的波长不同。
本发明实施例中的第一腔体11以及第二腔体12可以为气密封装的腔体。
本发明实施例中以光收发组件中包括两个光接收器以及两个光发射器为例进行说明。两个光接收器分别为XGPON接收器21和GPON接收器22。两个光发射器分别为GPON发射器31和XGPON发射器32。
该光收发组件中还包括至少四个WDM,即每个光接收器和每个光发射器分别对应不同的WDM。
其中,所述光接收器对应的WDM用于从光纤发出的光中分离出对应的光接收器能够接收的波长的光,并透射到对应的光接收器,以及将其他波长反射;所述光发射器对应的WDM用于将对应的光发射器发射的波长的光透射,并将从所述光纤发出的其他波长的光反射。图6中,XGPON接收器21对应WDM41,GPON接收器22对应WDM42,GPON发射器31对应WDM43和XGPON发射器32对应WDM44。
该光收发组件中还包括光反射部件51,该光反射部件51,用于将WDM透射或反射过来的光进行全反射。
具体的,至少四个WDM与光反射部件51结合用来实现波分复用功能,即将所述至少两个光发射器发射的多个波长的光复用到光纤,并将光纤发出的多个波长的光解复用到所述至少两个光接收器。
通过本发明实施例提供的光收发组件,将发射器和接收器分别集中放置在两个不同的腔体内,使得光组件的结构更加紧凑,同时避免了发射信号与 接收信号之间的相互串扰。
可选地,在光收发组件中还可以包括每个光接收器以及每个光发射器分别对应的透镜;其中,与所述光接收器对应的透镜设置于所述第一腔体11内,且用于将所述光接收器对应的WDM发来的光透射给所述光接收器;与所述光发射器对应的透镜设置于所述第二腔体12内,且用于将所述光发射器发射的光透射给所述光接收器对应的WDM。图6中,XGPON接收器21对应透镜61,GPON接收器22对应透镜62,GPON发射器31对应透镜63和XGPON发射器32对应透镜64。
图6中,从光纤发出的需要发送给XGPON接收器21的光,通过WDM44反射到达光反射部件51,再由光反射部件51反射给WDM43,然后由WDM43反射给光反射部件51,再由光反射部件51反射到WDM42,然后由WDM42反射到光反射部件51,再经过光反射部件51反射给WDM41的透射,然后经过WDM41的透射以及透镜61的透射后到达XGPON接收器21。
同理,从光纤发出的需要发送给GPON接收器22的光,通过WDM44反射到达光反射部件51,再由光反射部件51反射给WDM43,然后由WDM43反射给光反射部件51,再由光反射部件51反射到WDM42,然后由WDM42的透射以及透镜62的透射后到达GPON接收器22。
从GPON发射器31发出的光通过透镜63以及WDM43的透射后到达光反射部件51,在依次经过光反射部件51以及WDM44的反射后到达光纤。
同理,从XGPON发射器32发出的光通过透镜64以及WDM44的透射后到达光纤。
本发明实施例不限定光收发组件中所有WDM以及光发射部件51的具体设置方式,只要能够实现上述光路传输即可。
为了实现上述光路传输,可选地,XGPON接收器21、GPON接收器22、GPON发射器31以及XGPON发射器32可以分别设置在相互平行的不同光轴上。优选地,不同的光轴均处于在同一平面上。XGPON接收器21所在的光轴上从XGPON接收器21开始,依次设置有透镜61、WDM41;GPON接 收器22所在的光轴上从GPON接收器22开始,依次设置有透镜62、WDM42;GPON发射器31所在的光轴上从GPON发射器31开始,依次设置有透镜63、WDM43;XGPON发射器32所在的光轴上从XGPON发射器32开始,依次设置有透镜64、WDM44。
光反射部件51被相邻的3个光轴穿过;除所述3个光轴外的另一个光轴与所述光纤共轴。图6所示为XGPON发射器32所在的光轴与光纤共轴。本发明实施例不限定光反射部件51的材质。比如:光反射部件51可以为一块全反射镜。光反射部件51还可以由3块全反射镜构成,当然还可以由两块全反射镜构成,只需保证光反射部件51被相邻的3个光轴穿过。
可选地,光收发组件中还可以包括插芯71,如图6所示。所述插芯71用于与光纤连接。
优选地,可以将WDM41至WDM44设置在距离所述光反射部件51为L且与所述光反射部件51平行的直线上,所述直线与任一光轴呈夹角θ,所述θ与所述L有关以及与所述任意相邻的两个光轴之间的距离有关。当然任意两个光轴的距离不能小于光发射器、光接收器、透镜以及WDM中的最大尺寸。
本发明实施例不限定光收发组件中光发射器和光接收器的相对位置,图6中光接收器在光发射器的上方,从原理上讲,光发射器在光接收器的上方也可以,如图6A所示。本发明实施例中后续描述均已光接收器在光发射器的上方为例进行说明。
本发明实施例中,所有的WDM以及光反射部件51可以设置第一腔体11以及第二腔体12外,还可以将所有的WDM以及光反射部件51设置在第一腔体11以及第二腔体12外的第三腔体中。所有的WDM以及光反射部件51还可以设置在第一腔体11内或者设置于第二腔体12内。
下面针对所有的WDM以及光反射部件51设置在第一腔体11以及第二腔体12外的情况进行具体说明,如图7所示。
所述第一腔体11和所述第二腔体12由公共的腔体壁连接。所述公共的 腔体壁可以为金属板或者为陶瓷板。
所述第一腔体11中,在靠近任意一个光接收器对应的WDM(WDM41或WDM42)一侧的部分腔体壁为透光板81,所述第一腔体11中的透光板81用于将任意一个光接收器对应的WDM透射来的光,透射到对应的光接收器;
所述第二腔体12中,在靠近任意一个光发射器对应的WDM(WDM43或WDM44)一侧的部分腔体壁为透光板82,所述第二腔体12中的透光板82用于将任意一个光发射器发来的光,透射到对应的WDM。
所述第一腔体11中,在远离所述光接收器对应的WDM一侧的腔体壁上设置有陶瓷91,所述第一腔体11中陶瓷91上设置有金属管脚101,所述金属管脚101通过陶瓷91上的过孔进入到所述第一腔体11,并与设置在第一腔体11内导线的一端相连,第一腔体11内的所述导线的另一端与所述光接收器连接。
所述第二腔体12中,在远离所述光发射器对应的WDM一侧的腔体壁上设置有陶瓷92,所述第二腔体12中陶瓷92上设置有金属管脚102,所述金属管脚102通过陶瓷92上的过孔进入到所述第二腔体12,并与设置在第二腔体12内的所述导线的一端相连,所述第二腔体12内的导线的另一端与所述光发射器连接。
可选地,作为所述第一腔体11与所述第二腔体12的公共的腔体壁为金属,与第一腔体11以及第二腔体12连为一体。
可选地,作为所述第一腔体11与所述第二腔体12的公共的腔体壁的陶瓷板103,与第一腔体11上的陶瓷91以及第二腔体12上的陶瓷92连为一体为陶瓷9a,如图8所示。
下面针对所有的WDM以及光反射部件51设置在第二腔体12内的情况进行具体说明,如图9所示。
所述第一腔体11、所有的WDM,以及所述光反射部件51均设置于所述第二腔体12内;
所述第一腔体11中,在靠近所述光接收器对应的WDM一侧的部分腔体 壁为透光板83,即第一腔体中,在靠近WDM41和WDM42的一侧的部分腔体壁为透光板83;所述第一腔体11中的透光板83用于将所述光接收器对应WDM发来的光透射给所述光接收器,即透光板83用于将WDM41发来的光透射给XGPON接收器21,以及将WDM42发来的光透射给GPON接收器22。
所述第二腔体12中,在靠近所述光反射部件51的一侧的部分腔体壁为透光板84,所述第二腔体12中的透光板84用于将所述光纤发来的光透射到WDM,或者用于将WDM透射或者反射来的光透射给所述光纤。在图9中,透光板84用于将WDM44透射的光透射给插芯71,或者用于将WDM44反射来的光透射给插芯71,或者用于将光纤发出的光通过插芯透射到达WDM44。
所述第二腔体12中,在远离所述光反射部件51一侧的腔体壁上设置有陶瓷93,所述陶瓷93包括第一部分111和第二部分112,如图9A所示。
如图9所示,所述第一部分111上设置有金属管脚103;所述第一部分111上的金属管脚103通过第一部分111上的过孔进入到所述第一腔体11,并与设置在第一腔体11内的导线的一端相连,所述第一腔体11内的所述导线的另一端与所述光接收器连接。
所述第二部分112作为所述第二腔体12中的远离所述光发射器对应的WDM一侧的部分腔体壁;所述第二部分112上设置有金属管脚104,所述第二部分112上的金属管脚104通过第二部分112上的过孔进入到所述第二腔体12,并与设置在所述第二腔体12内导线的一端相连,所述第二腔体12内的所述导线的另一端与所述光发射器连接。
可选地,如图10、图10A所示,所述第一腔体11可以设置于第二腔体12上延伸的陶瓷93上,从而与金属管脚103的导线可以通过陶瓷93某一层的下表面,然后再通过陶瓷93上的过孔进入到第一腔体内的陶瓷93的上表面,然后与XGPON接收器21以及GPON接收器22相连。
下面针对所有的WDM以及光反射部件51设置在第一腔体11内的情况进行具体说明,如图11所示。
所述第二腔体12、所有的WDM,以及所述光反射部件51设置于第一腔 体11内;
所述第二腔体12上,在靠近所述光发射器对应的WDM一侧的部分腔体壁为透光板85,所述第二腔体12上的透光板85用于将所述光发射器发来的光透射给所述光发射器对应的WDM;图11中,第二腔体12上靠近WDM43和WDM44一侧的部分腔体壁为透光板85,透光板85用于将GPON发射器31发射的光透射到WDM43上,并将XGPON发射器32发射的光透射到WDM44上。
所述第一腔体11上,在靠近所述光反射部件的一侧的部分腔体壁为透光板86,所述第一腔体11上的透光板86用于将所述光纤发来的光透射到WDM或者将WDM发来的光透射到所述光纤。在图11中,透光板86用于将WDM44透射的光透射给插芯71,或者用于将WDM44反射来的光透射给插芯71,或者用于将光纤发出的光通过插芯透射到达WDM44。
所述第一腔体11上,在远离所述光接收器对应的WDM的一侧的腔体壁上设置有陶瓷94,所述第一腔体11上的陶瓷94包括第一部分113和第二部分114。
所述第一部分113上设置有金属管脚105;所述第一部分上的金属管脚105通过第一部分113上的过孔进入到所述第一腔体11,并与设置在第一腔体11内的导线的一端相连,所述第一腔体11内的所述导线的另一端与所述光接收器连接;
所述第二部分114作为所述第二腔体12上的远离所述光发射器对应的WDM一侧的部分腔体壁;所述第二部分上设置有金属管脚106,所述第二部分上的金属管脚106通过第二部分114上的过孔进入到所述第二腔体12,并与设置在所述第二腔体12内导线的一端相连,所述第二腔体12内的所述导线的另一端与所述光发射器连接。
可选地,如图12、图12A所示,所述第二腔体12可以设置于第一腔体11上延伸的陶瓷94上,从而与金属管脚106的导线可以通过陶瓷94某一层的下表面,然后在通过陶瓷94上的过孔进入到第二腔体内的陶瓷94的上表 面,然后与GPON发射器31以及XGPON发射器32相连。由于GPON发射器31对温度要求较高,因此可以将所述GPON发射器31的一侧贴装有半导体制冷器。半导体制冷器可以是TEC。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种光收发组件,其特征在于,包括:
    第一腔体,所述第一腔体内包括至少两个光接收器,所述至少两个光接收器分别用于接收不同波长的光;
    第二腔体,所述第二腔体内包括至少两个光发射器,所述至少两个光发射器分别用于发射不同波长的光;所述至少两个光接收器所接收的光的波长与所述至少两个光发射器所发射的光的波长不同;
    每个光接收器和每个光发射器分别对应不同的波分复用器WDM;
    其中,所述光接收器对应的WDM用于从光纤发出的光中分离出对应的光接收器能够接收的波长的光,并透射到对应的光接收器,以及将其他波长反射;
    所述光发射器对应的WDM用于将对应的光发射器发射的波长的光透射,并将从所述光纤发出的其他波长的光反射;
    光反射部件,用于将WDM透射或反射过来的光进行全反射。
  2. 如权利要求1所述的光收发组件,其特征在于,还包括:
    每个光接收器以及每个光发射器分别对应的透镜;
    其中,与所述光接收器对应的透镜设置于所述第一腔体内,且用于将所述光接收器对应的WDM发来的光透射给所述光接收器;与所述光发射器对应的透镜设置于所述第二腔体内,且用于将所述光发射器发射的光透射给所述光接收器对应的WDM。
  3. 如权利要求1或2所述的光收发组件,其特征在于,所述第一腔体和所述第二腔体由公共的腔体壁连接。
  4. 如权利要求3所述的光收发组件,其特征在于,所述公共的腔体壁为金属板或陶瓷板。
  5. 如权利要求3或4所述的光收发组件,其特征在于,所述第一腔体中,在靠近所述光接收器对应的WDM一侧的部分腔体壁为透光板,所述第一腔 体中的透光板用于将所述光接收器对应的WDM透射来的光,透射到所述光接收器;
    所述第二腔体中,在靠近所述光发射器对应的WDM一侧的部分腔体壁为透光板,所述第二腔体中的透光板用于将所述光发射器发来的光,透射到所述光发射器对应的WDM。
  6. 如权利要求3至5任一项所述的光收发组件,其特征在于,所述第一腔体中,在远离所述光接收器对应的WDM一侧的腔体壁上设置有陶瓷,所述第一腔体中陶瓷上设置有金属管脚,所述金属管脚通过陶瓷上的过孔进入到所述第一腔体,并与设置在第一腔体内导线的一端相连,第一腔体内的所述导线的另一端与所述光接收器连接;
    所述第二腔体中,在远离所述光发射器对应的WDM一侧的腔体壁上设置有陶瓷,所述第一腔体中陶瓷上设置有金属管脚,所述金属管脚通过陶瓷上的过孔进入到所述第二腔体,并与设置在第二腔体内的所述导线的一端相连,所述第二腔体内的导线的另一端与所述光发射器连接。
  7. 如权利要求6所述的光收发组件,其特征在于,作为所述第一腔体与所述第二腔体的公共的腔体壁的所述陶瓷板,与第一腔体上的陶瓷以及第二腔体上的陶瓷连为一体。
  8. 如权利要求3至7任一项所述的光收发组件,其特征在于,所有的WDM和以及所述光反射部件均设置于所述第一腔体和所述第二腔体外。
  9. 如权利要求1或2所述的光收发组件,其特征在于,所述第一腔体、所有的WDM,以及所述光反射部件均设置于所述第二腔体内;
    所述第一腔体中,在靠近所述光接收器对应的WDM一侧的部分腔体壁为透光板,所述第一腔体中的透光板用于将所述光接收器对应WDM发来的光透射给所述光接收器;
    所述第二腔体中,在靠近所述光反射部件的一侧的部分腔体壁为透光板,所述第二腔体中的透光板用于将所述光纤发来的光透射到WDM,或者用于将WDM透射或者反射来的光透射给所述光纤。
  10. 如权利要求9所述的光收发组件,其特征在于,所述第二腔体中,在远离所述光反射部件一侧的腔体壁上设置有陶瓷,所述陶瓷包括第一部分和第二部分;
    所述第一部分上设置有金属管脚;所述第一部分上的金属管脚通过第一部分上的过孔进入到所述第二腔体,并与设置在第二腔体内的导线的一端相连,所述第二腔体内的所述导线的另一端与所述光发射器连接;
    所述第二部分作为所述第一腔体中的远离所述光接收器对应的WDM一侧的部分腔体壁;所述第二部分上设置有金属管脚,所述第二部分上的金属管脚通过第二部分上的过孔进入到所述第一腔体,并与设置在所述第一腔体内导线的一端相连,所述第一腔体内的所述导线的另一端与所述光接收器连接。
  11. 如权利要求1或2所述的光收发组件,其特征在于,所述第二腔体、所有的WDM,以及所述光反射部件设置于第一腔体内;
    所述第二腔体上,在靠近所述光发射器对应的WDM一侧的部分腔体壁为透光板,所述第二腔体上的透光板用于将所述光发射器发来的光透射给所述光发射器对应的WDM;
    所述第一腔体上,在靠近所述光反射部件的一侧的部分腔体壁为透光板,所述第一腔体上的透光板用于将所述光纤发来的光透射到WDM或者将WDM发来的光透射到所述光纤。
  12. 如权利要求11所述的光收发组件,其特征在于,所述第一腔体上,在远离所述光接收器对应的WDM的一侧的腔体壁上设置有陶瓷,所述第一腔体上的陶瓷包括第一部分和第二部分;
    所述第一部分上设置有金属管脚;所述第一部分上的金属管脚通过第一部分上的过孔进入到所述第一腔体,并与设置在第一腔体内的导线的一端相连,所述第一腔体内的所述导线的另一端与所述光接收器连接;
    所述第二部分作为所述第二腔体上的远离所述光发射器对应的WDM一侧的部分腔体壁;所述第二部分上设置有金属管脚,所述第二部分上的金属 管脚通过第二部分上的过孔进入到所述第二腔体,并与设置在所述第二腔体内导线的一端相连,所述第二腔体内的所述导线的另一端与所述光发射器连接。
  13. 如权利要求1至12任一项所述的光收发组件,其特征在于,所述光发射器的一侧贴装有半导体制冷器。
PCT/CN2016/101809 2016-10-11 2016-10-11 一种光收发组件 WO2018068206A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197012942A KR102305062B1 (ko) 2016-10-11 2016-10-11 광 트랜시버 조립체
JP2019540475A JP6818899B2 (ja) 2016-10-11 2016-10-11 光トランシーバアセンブリ
EP16918543.6A EP3514591B1 (en) 2016-10-11 2016-10-11 Light transceiving assembly
PCT/CN2016/101809 WO2018068206A1 (zh) 2016-10-11 2016-10-11 一种光收发组件
CN201680087305.8A CN109416446B (zh) 2016-10-11 2016-10-11 一种光收发组件
US16/381,096 US10855375B2 (en) 2016-10-11 2019-04-11 Optical transceiver assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101809 WO2018068206A1 (zh) 2016-10-11 2016-10-11 一种光收发组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/381,096 Continuation US10855375B2 (en) 2016-10-11 2019-04-11 Optical transceiver assembly

Publications (1)

Publication Number Publication Date
WO2018068206A1 true WO2018068206A1 (zh) 2018-04-19

Family

ID=61904983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101809 WO2018068206A1 (zh) 2016-10-11 2016-10-11 一种光收发组件

Country Status (6)

Country Link
US (1) US10855375B2 (zh)
EP (1) EP3514591B1 (zh)
JP (1) JP6818899B2 (zh)
KR (1) KR102305062B1 (zh)
CN (1) CN109416446B (zh)
WO (1) WO2018068206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800810A4 (en) * 2018-08-27 2021-07-21 Huawei Technologies Co., Ltd. COMPONENTS FOR LIGHT RECEPTION AND COMBINED TRANSMISSION RECEIVING, COMBINED OPTICAL MODULE, COMMUNICATION DEVICE AND PON SYSTEM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN221746344U (zh) * 2022-01-20 2024-09-20 光红建圣股份有限公司 光学模组
CN115001583B (zh) * 2022-05-24 2023-04-28 成都亿芯源半导体科技有限公司 基于xgpon搭配dfb激光器的10g速率olt端收发一体芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202334536U (zh) * 2011-12-07 2012-07-11 华为技术有限公司 光收发组件和采用该光收发组件的无源光网络系统及设备
US20140219660A1 (en) * 2011-09-08 2014-08-07 Ofs Fitel, Llc Arrangement for deploying co-existing gpon and xgpon optical communication systems
CN104914519A (zh) * 2015-05-22 2015-09-16 武汉联特科技有限公司 一种40g光收发组件
CN105247400A (zh) * 2013-05-14 2016-01-13 祥茂光电科技股份有限公司 紧凑型多信道光收发器模块
CN105637784A (zh) * 2013-09-30 2016-06-01 阿尔卡特朗讯 用于无源光学波分复用网络的光学线路终端

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463214B1 (de) * 1990-06-27 1995-09-13 Siemens Aktiengesellschaft Sende- und Empfangsmodul für eine bidirektionale optische Nachrichten- und Signalübertragung
IT1283373B1 (it) * 1996-07-31 1998-04-17 Pirelli Cavi S P A Ora Pirelli Sistema di telecomunicazione ottica multicanale bidirezionale
US6201908B1 (en) * 1999-07-02 2001-03-13 Blaze Network Products, Inc. Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
KR100349598B1 (ko) * 2000-02-03 2002-08-23 삼성전자 주식회사 실리콘 광벤치를 이용한 스몰 폼 팩터 광송수신 집적 모듈
US6563976B1 (en) * 2000-05-09 2003-05-13 Blaze Network Products, Inc. Cost-effective wavelength division multiplexer and demultiplexer
JP4711029B2 (ja) * 2000-12-04 2011-06-29 住友電気工業株式会社 光通信装置
US7171081B1 (en) * 2002-03-14 2007-01-30 Lightech Fiberoptics, Inc. Plug-in coupler to convert the transceiver (transmitter/receiver, tx/rx) transmission into a bi-directional fiber
US20040005115A1 (en) * 2002-07-02 2004-01-08 Luo Xin Simon Optoelectronic add/drop multiplexer
US6969204B2 (en) * 2002-11-26 2005-11-29 Hymite A/S Optical package with an integrated lens and optical assemblies incorporating the package
US7088518B2 (en) * 2002-12-03 2006-08-08 Finisar Corporation Bidirectional optical device
JP2004200279A (ja) * 2002-12-17 2004-07-15 Renesas Technology Corp 光電子装置
JP4376014B2 (ja) * 2003-07-01 2009-12-02 富士通株式会社 光伝送装置
US7349602B2 (en) * 2004-10-08 2008-03-25 Agilent Technologies, Inc. Wavelength division multiplexer architecture
US7639946B2 (en) * 2006-01-06 2009-12-29 Fujitsu Limited Distribution node for an optical network
JP2010175875A (ja) * 2009-01-30 2010-08-12 Opnext Japan Inc 光モジュール及び光モジュールの光線方向調整方法
US8532489B2 (en) * 2009-03-04 2013-09-10 Futurewei Technologies, Inc. Multi-fiber ten gigabit passive optical network optical line terminal for optical distribution network coexistence with gigabit passive optical network
EP2312352B1 (en) 2009-09-07 2018-04-18 Electronics and Telecommunications Research Institute Multi-wavelength optical transmitting and receiving modules
KR101362406B1 (ko) * 2009-09-07 2014-02-13 한국전자통신연구원 다파장 광 송신 및 수신 모듈
JP2012063460A (ja) * 2010-09-14 2012-03-29 Sumitomo Electric Ind Ltd 光送受信モジュール
JP2012238646A (ja) * 2011-05-10 2012-12-06 Sumitomo Electric Ind Ltd 光データリンク
WO2011110126A2 (zh) * 2011-04-22 2011-09-15 华为技术有限公司 自注入光收发模块和波分复用无源光网络系统
CN102301739B (zh) * 2011-07-14 2013-11-06 华为技术有限公司 光信号复用的方法和光复用器
US8596886B2 (en) 2011-09-07 2013-12-03 The Boeing Company Hermetic small form factor optical device packaging for plastic optical fiber networks
TWM428490U (en) * 2011-09-27 2012-05-01 Lingsen Precision Ind Ltd Optical module packaging unit
JP2013140258A (ja) * 2012-01-05 2013-07-18 Ntt Electornics Corp 光モジュール
JP2013142815A (ja) * 2012-01-11 2013-07-22 Sumitomo Electric Ind Ltd 拡張回路搭載領域を有する光トランシーバ
US20130287407A1 (en) * 2012-04-27 2013-10-31 Sifotonics Technologies Co., Ltd. Hybrid Multichannel or WDM Integrated Transceiver
CN102684794A (zh) * 2012-06-06 2012-09-19 苏州旭创科技有限公司 应用于高速并行长距离传输的新型波分复用解复用光组件
JP2014095843A (ja) 2012-11-12 2014-05-22 Sumitomo Electric Ind Ltd 光合分波器およびその製造方法ならびに光通信モジュール
US9106338B2 (en) * 2013-02-11 2015-08-11 Avego Technologies General Ip (Singapore) Pte. Ltd. Dual-wavelength bidirectional optical communication system and method for communicating optical signals
US9323013B2 (en) * 2013-04-19 2016-04-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Bidirectional optical communications module having an optics system that reduces optical losses and increases tolerance to optical misalignment
EP3036571A4 (en) * 2013-08-21 2017-03-22 Hewlett-Packard Enterprise Development LP Device including mirrors and filters to operate as a multiplexer or de-multiplexer
CN203385904U (zh) * 2013-08-23 2014-01-08 福州高意通讯有限公司 一种bosa模块封装壳体及bosa模块
CN104734800B (zh) * 2013-12-24 2017-11-24 华为技术有限公司 一种光复用器及发射光器件
CN105122681A (zh) * 2013-12-31 2015-12-02 华为技术有限公司 一种光发射器及发射方法、光接收器及接收方法
WO2015112169A1 (en) * 2014-01-25 2015-07-30 Hewlett-Packard Development Company, L.P. Bidirectional optical multiplexing employing a high contrast grating
WO2015148604A1 (en) * 2014-03-25 2015-10-01 Massachusetts Institute Of Technology Space-time modulated active 3d imager
EP3386120B1 (en) * 2014-05-12 2021-12-29 Huawei Technologies Co., Ltd. Optical network unit onu registration method, apparatus, and system
CN204009151U (zh) * 2014-07-17 2014-12-10 武汉电信器件有限公司 一种采用罐型封装的微型无源光网络单纤双向光器件
US9419718B2 (en) * 2014-08-18 2016-08-16 Cisco Technology, Inc. Aligning optical components in a multichannel receiver or transmitter platform
WO2016164038A1 (en) * 2015-04-10 2016-10-13 Hewlett Packard Enterprise Development Lp Optical zig-zags
US9564569B1 (en) * 2015-07-10 2017-02-07 Maxim Integrated Products, Inc. Hermetic solution for thermal and optical sensor-in-package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219660A1 (en) * 2011-09-08 2014-08-07 Ofs Fitel, Llc Arrangement for deploying co-existing gpon and xgpon optical communication systems
CN202334536U (zh) * 2011-12-07 2012-07-11 华为技术有限公司 光收发组件和采用该光收发组件的无源光网络系统及设备
CN105247400A (zh) * 2013-05-14 2016-01-13 祥茂光电科技股份有限公司 紧凑型多信道光收发器模块
CN105637784A (zh) * 2013-09-30 2016-06-01 阿尔卡特朗讯 用于无源光学波分复用网络的光学线路终端
CN104914519A (zh) * 2015-05-22 2015-09-16 武汉联特科技有限公司 一种40g光收发组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514591A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800810A4 (en) * 2018-08-27 2021-07-21 Huawei Technologies Co., Ltd. COMPONENTS FOR LIGHT RECEPTION AND COMBINED TRANSMISSION RECEIVING, COMBINED OPTICAL MODULE, COMMUNICATION DEVICE AND PON SYSTEM

Also Published As

Publication number Publication date
JP6818899B2 (ja) 2021-01-27
CN109416446B (zh) 2020-09-25
KR102305062B1 (ko) 2021-09-24
KR20190057379A (ko) 2019-05-28
EP3514591B1 (en) 2021-12-29
JP2019535043A (ja) 2019-12-05
US10855375B2 (en) 2020-12-01
EP3514591A4 (en) 2019-11-27
CN109416446A (zh) 2019-03-01
US20190238233A1 (en) 2019-08-01
EP3514591A1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
CN102971974B (zh) 单纤双向光模块及无源光网络系统
US7941052B2 (en) Bi-directional parallel optical link
US9039303B2 (en) Compact multi-channel optical transceiver module
JP2021508853A (ja) 受光機光サブアセンブリ、コンボ双方向光サブアセンブリ、コンボ光モジュール、olt及びponシステム
CN107360481B (zh) 光组件和光线路终端
WO2019105113A1 (zh) 光收发器件
US8805191B2 (en) Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths
WO2022037511A1 (zh) 光源模块和光通信设备
JP2018151641A (ja) 双方向光送受信モジュール、双方向光トランシーバモジュール、光通信システム
US10763987B2 (en) Transceiver with multi-wavelength coexistence
US9432122B2 (en) Optical networking unit (ONU) packaging
US20210149129A1 (en) Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
US10855375B2 (en) Optical transceiver assembly
US10128970B2 (en) Bandwidth adjustable optical module and system
US20230275672A1 (en) Electronic device and method for tuning wavelenth in optical network
KR102471480B1 (ko) 광학 컴포넌트, 광학 모듈, 및 통신 디바이스
WO2016160898A1 (en) Improved coupling of photodetector array to optical demultiplexer outputs with index matched material
US20170195079A1 (en) Optical transceiver assembly including thermal dual arrayed waveguide grating
CN103780310A (zh) 一种用于olt的 sfp光收发一体模块
WO2013078679A1 (zh) 光收发模块、无源光网络系统和设备
CN220154691U (zh) 一种光组件、光模块、通信设备及光网络
CN217521404U (zh) 一种Combo PON OLT端光收发器件
CN118276246A (zh) 一种光接收组件、光模块、olt及pon系统
KR20070020926A (ko) 광 서큘레이터를 이용한 수동형 광 코어 공유 방법 및시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016918543

Country of ref document: EP

Effective date: 20190415

ENP Entry into the national phase

Ref document number: 20197012942

Country of ref document: KR

Kind code of ref document: A