WO2018061459A1 - Wireless battery system - Google Patents
Wireless battery system Download PDFInfo
- Publication number
- WO2018061459A1 WO2018061459A1 PCT/JP2017/027613 JP2017027613W WO2018061459A1 WO 2018061459 A1 WO2018061459 A1 WO 2018061459A1 JP 2017027613 W JP2017027613 W JP 2017027613W WO 2018061459 A1 WO2018061459 A1 WO 2018061459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- cell
- battery
- cell controller
- radio wave
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a wireless battery system.
- Fig. 1 shows the general configuration of a storage battery module mounted on a hybrid electric vehicle or an electric vehicle.
- the storage battery module 1000 includes a battery cell group 10, a plurality of cell controllers 100, and a battery controller 200.
- the battery cell group 10 is connected to a cell controller 100, and the cell controller 100 measures the state of the battery cell group 10.
- the plurality of cell controllers 100 are connected to the battery controller 200, and the battery controller 200 acquires the states of the plurality of battery cell groups 10 from the plurality of cell controllers 100.
- the battery controller 200 calculates a state of charge (SOC: State of Charge) and a state of battery deterioration (SOH: State of Health) from the acquired state of the battery cell group 10.
- SOC State of Charge
- SOH State of Health
- Patent Document 1 the cell controller and the battery controller are changed from wired to wireless to reduce the wiring cost, the insulation cost for high voltage countermeasures, and the assembly cost.
- Patent Document 2 describes a wireless communication protocol between a battery controller and a cell controller as a power storage management system and a recovery process at the time of a communication error.
- time division communication is used as a wireless communication method between a battery controller and a plurality of cell controllers, and the battery controller periodically receives data from a plurality of cell controllers.
- the data read time of a plurality of cell controllers is fixed for a predetermined period, and the reading time can be increased or varied by temporarily turning off the battery controller and cell controller and resetting the time division communication. It took time and effort.
- a wireless communication system is provided.
- a plurality of cell controllers having a first cell controller connected to the first battery group and a second cell controller connected to the second battery group, the first cell controller and the second cell
- a battery controller that is wirelessly connected to the controller, a predetermined time slot is assigned to the first cell controller and the second cell controller, and the second cell controller is connected to the battery from the first cell controller.
- the second cell controller is detected independently of the time slot assigned to the second cell controller after the first transmission radio wave to the controller is detected and the first cell radio wave is not detected by the second cell controller.
- a wireless battery system that transmits the second transmitted radio wave to the battery controller.
- each cell controller can transmit the data of each cell controller to the battery controller at an appropriate timing. Can provide a system. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
- It is a block diagram of the vehicle-mounted storage battery module. 1 is a configuration diagram of a wireless battery system according to an embodiment of the present invention. It is a wireless communication timing diagram between the battery controller and cell controller which concerns on one Embodiment of this invention. It is a circuit block diagram of the cell controller which concerns on one Embodiment of this invention. It is a circuit block diagram of the battery controller which concerns on one Embodiment of this invention. It is a radio
- the plurality of cell controllers detect a transmission radio wave from the cell controller before being transmitted to the battery controller, and transmit Data of the cell controller is transmitted to the cell controller after the radio wave is not detected.
- FIG. 2 shows a configuration diagram of a wireless battery system according to an embodiment of the present invention.
- one battery controller 200 and a plurality of cell controllers 100 construct a network and perform communication using a wireless packet between the battery controller 200 and the plurality of cell controllers 100.
- FIG. 3 is a wireless communication timing diagram between the battery controller and the cell controller of the present invention.
- the communication between the battery controller 200 and the cell controller 100 is time-division communication.
- each cell controller 100 After transmitting the synchronization signal from the battery controller 200 to the cell controller 100, each cell controller 100 is connected to the battery in a predetermined communication slot. Data of each cell controller 100 is transmitted to the controller 200.
- this communication slot time ⁇ (delta) t is variable.
- the cell controller 100-1 first cell controller
- the cell controller 100-2 second cell controller
- the cell controller 100-n is in slot n in turn.
- data of the cell controller 100 is transmitted to the battery controller 200.
- Each cell controller 100 is assigned a predetermined time slot.
- FIG. 4 shows a circuit configuration diagram of the cell controller.
- Each cell controller 100 is attached to a battery cell group 10 including one or a plurality of battery cells, and measures the state (voltage, current, temperature, etc.) of the battery cell group 10.
- the cell controller 100 one or a plurality of sensors 20 that measure the state (voltage, current, temperature, etc.) of the battery cell group 10, a processing unit 30 that acquires and processes the state information of the battery cell group 10, and a radio circuit 40 And an antenna 50 for inputting and outputting radio waves.
- the processing unit 30 includes a power supply circuit 31 that receives power from the battery cell group 10 to generate an operating voltage, an A / D conversion circuit 32 that converts an analog value measured by the sensor 20 into digital data, and an A / D conversion circuit.
- the CPU 33 outputs the data converted by 32 to the radio circuit 40, the memory 34 for storing individual identification information (unique ID) and the like, and the clock generator 35.
- the clock generator 35 can oscillate by switching between a high-speed clock of about several MHz and a low-speed clock of about several tens of kHz. Further, based on data from the radio circuit 40, the CPU 33 turns on / off the radio circuit 40 and some of the circuits in the CPU 33, switches the clock frequency of the clock generator 35, reads / writes to the memory 34, and a battery controller. Instructions from 200 can be executed.
- FIG. 5 shows a circuit configuration diagram of the battery controller.
- the battery controller 200 includes a wireless circuit 210, a CPU 220, a power supply circuit 230 including a battery, a memory 240, and an antenna 250.
- the power supply circuit 230 has a built-in battery in FIG. 5, but power may be supplied from the outside.
- the transmission / reception timing of the battery controller 200 and the cell controller 100 will be described with reference to FIG.
- the battery controller 200 transmits a synchronization signal to each cell controller 100 in order to receive data from each cell controller 100.
- the cell controller 100 Upon receiving this synchronization signal, the cell controller 100 recognizes the initial communication slot time set by the battery controller 200 and the cell controller 100 in advance, and each cell controller 100 stores the data in each cell controller 100 into the battery controller 200.
- the communication slot to be transmitted to is determined.
- the cell controller 100-1 When the cell controller 100-1 receives the synchronization signal from the battery controller 200, the cell controller 100-1 immediately transmits data (first transmission radio wave) to the battery controller 200 in the slot 1. As a result, the synchronization signal from the battery controller 200 transmitted to the cell controller 100-1 indicates the head of the communication slot, and the shift in timing for transmitting data from each cell controller 100 to the battery controller 200 can be reduced.
- the cell controller 100-2 receives the synchronization signal from the battery controller 200, the cell controller 100-2 switches to passive reception with low power consumption instead of the reception amplifier, and receives data transmission from the cell controller 100-1 to the battery controller 200. After confirming the end of data transmission from the cell controller 100-1 to the battery controller 200, the data (second transmission radio wave) is transmitted to the battery controller 200. By switching the cell controller 100-2 to passive reception, it is possible to operate with low power consumption.
- the communication slot time is shortened accordingly and the slot 2 is started. Further, when the data transmission time from the cell controller 100-1 to the battery controller 200 is equal to or longer than the initial communication slot time ⁇ (delta) t, the communication slot time becomes longer and the slot 2 starts. This is shown in FIG.
- FIG. 6 is a wireless communication timing diagram of the battery controller and the cell controller.
- the cell controller 100-2 detects the first transmission radio wave from the cell controller 100-1 to the battery controller 200, and after the cell controller 100-2 does not detect the first transmission radio wave, The second transmission radio wave of the second cell controller 100-2 is transmitted to the battery controller 200 independently of (or irrespective of) the time slot assigned to the cell controller 100-2.
- each cell controller 100 sends the data of each cell controller 100 to the battery controller 200 at an appropriate timing.
- the time required for the battery controller 200 to read the plurality of cell controllers 100 can be varied and the speed can be increased.
- FIG. 6A is a timing chart when the data transmission time from each cell controller 100 to the battery controller 200 is shorter than the initial setting ⁇ (delta) t.
- FIG. 5 is a timing chart when the data transmission time from the battery controller 200 to the battery controller 200 is longer than the initial setting ⁇ (delta) t.
- the timing (t2) predetermined time slot of the slot 2 set initially is set.
- Data (second transmission radio wave) is transmitted to the battery controller 200.
- the cell controller 100-2 can transmit the state of the battery cell such as the voltage of the battery cell to the battery controller 200 even when the first transmission radio wave is not detected.
- the cell controller 100-3 when the cell controller 100-3 receives the synchronization signal from the battery controller 200, the cell controller 100-3 switches to passive reception with low power consumption, and the cell controller 100-2 transmits the signal to the battery controller 200. After receiving the data transmission and confirming the end of the data transmission from the cell controller 100-2 to the battery controller 200, the cell controller 100-3 transmits the data to the battery controller 200. At this time, similarly to the cell controller 100-2, if the data transmission from the cell controller 100-2 to the battery controller 200 can be received, the cell The controller 100-3 transmits data to the battery controller 200. When data transmission from the cell controller 100-2 to the battery controller 200 cannot be received, the cell controller 100-3 transmits data to the battery controller 200 at the initially set slot 3 timing (t3).
- the battery controller 200 receives the data transmission of all the cell controllers 100 (cell controller 100-1 to cell controller 100-n), receives the data from the last cell controller 100-n, or passes a predetermined time. Later, the synchronization signal is transmitted again to all the cell controllers 100 to prompt data transmission from each cell controller 100 to the battery controller 200. This is repeated periodically. Thereby, the battery controller 200 can periodically transmit a synchronization signal from the battery controller 200 to each cell controller 100 regardless of the response status from the cell controller 100, and the interruption of communication can be suppressed.
- each cell controller 100 After transmitting data to the battery controller 200, each cell controller 100 estimates the reception timing of the synchronization signal from the next battery controller 200, sets a reception timer to receive the synchronization signal at that timing, Transition to power consumption sleep mode. In other words, for example, the cell controller 100-1 estimates the timing of the synchronization signal transmitted from the battery controller 200 to the cell controller 100-1 based on the data transmission timing of the cell controller 100-1, and receives the synchronization signal. .
- the initial setting is made. Is set to receive the synchronization signal of the battery controller 200 at the timing. As described above, each cell controller 100 can receive without missing the synchronization signal of the battery controller 200 and can continue communication.
- Each cell controller 100 receives the synchronization signal from the battery controller 200 in view of the fact that the battery controller 200 is not installed in the vicinity of each cell controller 100, and is similar to the receiving circuit configuration in normal wireless communication. As described above, the signal is received by the configuration of the LNA 400 (low noise amplifier) and the mixer 410.
- FIG. 8 is a block diagram of the receiving circuit of the cell controller.
- each cell controller 100 receives a transmission radio wave of an adjacent cell controller 100
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
A wireless battery system in which predetermined time slots are assigned to a first cell controller and a second cell controller, wherein the second cell controller detects a first transmission radio wave travelling from the first cell controller to a battery controller, and after the first transmission radio wave is no longer detected by the second cell controller, a second transmission radio wave from the second cell controller is transmitted to the battery controller independently of the time slots assigned to the second cell controller.
Description
本発明は、無線電池システムに関する。
The present invention relates to a wireless battery system.
ハイブリッド電気自動車や電気自動車の動力用電源に代表される大型二次電池システムは、高出力、大容量であることが必要である為、それを構成する蓄電池モジュール内は、複数の電池(セル)を直並列接続して構成される。また、二次電池であるリチウムイオン二次電池は、高電圧充電の防止や過放電による性能低下の防止などの適切な二次電池の使いこなしが必要となる。この為、ハイブリッド電気自動車や電気自動車に搭載される蓄電池モジュールには、電池の状態である電圧、電流、温度などを検出する機能を持っている。
Large secondary battery systems represented by power sources for hybrid electric vehicles and electric vehicles need to have high output and large capacity, so the storage battery module that composes them has multiple batteries (cells). Are connected in series and parallel. In addition, a lithium ion secondary battery that is a secondary battery requires appropriate use of a secondary battery such as prevention of high-voltage charging and deterioration of performance due to overdischarge. For this reason, the storage battery module mounted on a hybrid electric vehicle or an electric vehicle has a function of detecting voltage, current, temperature, and the like, which are battery states.
図1にハイブリッド電気自動車や電気自動車に搭載される蓄電池モジュールの一般的な構成を示す。蓄電池モジュール1000は、電池セル群10、複数のセルコントローラ100、バッテリコントローラ200を有する。図1に示すように、電池セル群10はセルコントローラ100と接続され、セルコントローラ100は、電池セル群10の状態を計測する。また、複数のセルコントローラ100はバッテリコントローラ200に接続され、バッテリコントローラ200は複数のセルコントローラ100から複数の電池セル群10の状態を取得する。さらに、バッテリコントローラ200は、取得した電池セル群10の状態から充電状態(SOC:State of Charge)や電池劣化状態(SOH:State of Health)を演算する。図1では、バッテリコントローラ200とセルコントローラ100は有線通信である。
Fig. 1 shows the general configuration of a storage battery module mounted on a hybrid electric vehicle or an electric vehicle. The storage battery module 1000 includes a battery cell group 10, a plurality of cell controllers 100, and a battery controller 200. As shown in FIG. 1, the battery cell group 10 is connected to a cell controller 100, and the cell controller 100 measures the state of the battery cell group 10. The plurality of cell controllers 100 are connected to the battery controller 200, and the battery controller 200 acquires the states of the plurality of battery cell groups 10 from the plurality of cell controllers 100. Furthermore, the battery controller 200 calculates a state of charge (SOC: State of Charge) and a state of battery deterioration (SOH: State of Health) from the acquired state of the battery cell group 10. In FIG. 1, the battery controller 200 and the cell controller 100 are wired communication.
特許文献1では、セルコントローラとバッテリコントローラ間を有線から無線にして、配線コストや高電圧対策の為の絶縁コスト及び組立てコストを低減できるとある。また、特許文献2では、蓄電管理システムとしてバッテリコントローラ、セルコントローラ間の無線通信プロトコルや通信エラー時の回復処理についての記載がある。
According to Patent Document 1, the cell controller and the battery controller are changed from wired to wireless to reduce the wiring cost, the insulation cost for high voltage countermeasures, and the assembly cost. Patent Document 2 describes a wireless communication protocol between a battery controller and a cell controller as a power storage management system and a recovery process at the time of a communication error.
特許文献2では、バッテリコントローラと複数のセルコントローラとの無線通信方式として時分割通信を使用しており、バッテリコントローラは周期的に複数のセルコントローラのデータを受信していた。この場合、所定の周期の為、複数のセルコントローラのデータ読取り時間は固定となり、読取り時間の高速化や可変は、バッテリコントローラおよびセルコントローラを一旦電源オフして時分割通信の再設定をするなど手間がかかっていた。
In Patent Document 2, time division communication is used as a wireless communication method between a battery controller and a plurality of cell controllers, and the battery controller periodically receives data from a plurality of cell controllers. In this case, the data read time of a plurality of cell controllers is fixed for a predetermined period, and the reading time can be increased or varied by temporarily turning off the battery controller and cell controller and resetting the time division communication. It took time and effort.
本発明の目的は、バッテリコントローラが複数のセルコントローラとの通信中において、個々のセルコントローラのデータが可変した時でも、各セルコントローラが適切なタイミングで各セルコントローラのデータをバッテリコントローラに送信できる無線通信システムを提供するものである。
It is an object of the present invention to allow each cell controller to transmit data of each cell controller to the battery controller at an appropriate timing even when the data of each cell controller changes during communication with a plurality of cell controllers. A wireless communication system is provided.
上記課題を解決するための本発明の特徴は、例えば以下の通りである。
The features of the present invention for solving the above problems are as follows, for example.
第一の電池群に接続された第一のセルコントローラと、第二の電池群に接続された第二のセルコントローラと、を有する複数のセルコントローラと、第一のセルコントローラおよび第二のセルコントローラと無線で接続されるバッテリコントローラと、を備え、 第一のセルコントローラおよび第二のセルコントローラには所定のタイムスロットが割り当てられており、 第二のセルコントローラは、第一セルコントローラからバッテリコントローラへの第一の送信電波を検知し、 第二のセルコントローラによる第一の送信電波の未検知後に、第二のセルコントローラに割り当てられたタイムスロットとは独立して、第二のセルコントローラの第二の送信電波をバッテリコントローラに送信する無線電池システム。
A plurality of cell controllers having a first cell controller connected to the first battery group and a second cell controller connected to the second battery group, the first cell controller and the second cell A battery controller that is wirelessly connected to the controller, a predetermined time slot is assigned to the first cell controller and the second cell controller, and the second cell controller is connected to the battery from the first cell controller. The second cell controller is detected independently of the time slot assigned to the second cell controller after the first transmission radio wave to the controller is detected and the first cell radio wave is not detected by the second cell controller. A wireless battery system that transmits the second transmitted radio wave to the battery controller.
本発明により、バッテリコントローラが複数のセルコントローラとの通信中において、個々のセルコントローラのデータが可変した時でも、各セルコントローラが適切なタイミングで各セルコントローラのデータをバッテリコントローラに送信できる無線通信システムを提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
According to the present invention, even when the battery controller communicates with a plurality of cell controllers, even when the data of each cell controller changes, each cell controller can transmit the data of each cell controller to the battery controller at an appropriate timing. Can provide a system. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
本実施例は、バッテリコントローラと複数のセルコントローラとが無線で通信する無線電池システムにおいて、複数のセルコントローラは、自己が送信する前のセルコントローラからバッテリコントローラへの送信電波を検出し、その送信電波の未検知後にセルコントローラのデータをセルコントローラに送信するものである。
In this embodiment, in a wireless battery system in which a battery controller and a plurality of cell controllers communicate with each other wirelessly, the plurality of cell controllers detect a transmission radio wave from the cell controller before being transmitted to the battery controller, and transmit Data of the cell controller is transmitted to the cell controller after the radio wave is not detected.
本発明の一実施形態に係る無線電池システムの構成図を図2に示す。基本構成は、1つのバッテリコントローラ200と複数のセルコントローラ100がネットワークを構築して、バッテリコントローラ200と複数のセルコントローラ100との間で無線パケットを用いた通信を行う。
FIG. 2 shows a configuration diagram of a wireless battery system according to an embodiment of the present invention. In the basic configuration, one battery controller 200 and a plurality of cell controllers 100 construct a network and perform communication using a wireless packet between the battery controller 200 and the plurality of cell controllers 100.
図3は、本発明のバッテリコントローラおよびセルコントローラ間の無線通信タイミング図である。バッテリコントローラ200とセルコントローラ100との通信は、図3に示すように時分割通信で、バッテリコントローラ200からの同期信号をセルコントローラ100に送信した後に、各セルコントローラ100は所定の通信スロットでバッテリコントローラ200に各セルコントローラ100のデータを送信する。但し、この通信スロット時間Δ(デルタ)tは可変である。図3では、セルコントローラ100―1(第一のセルコントローラ)がスロット1で、セルコントローラ100―2(第二のセルコントローラ)はスロット2で、セルコントローラ100―nがスロットnで順番に各セルコントローラ100のデータをバッテリコントローラ200に送信する例である。各セルコントローラ100には所定のタイムスロットが割り当てられている。
FIG. 3 is a wireless communication timing diagram between the battery controller and the cell controller of the present invention. As shown in FIG. 3, the communication between the battery controller 200 and the cell controller 100 is time-division communication. After transmitting the synchronization signal from the battery controller 200 to the cell controller 100, each cell controller 100 is connected to the battery in a predetermined communication slot. Data of each cell controller 100 is transmitted to the controller 200. However, this communication slot time Δ (delta) t is variable. In FIG. 3, the cell controller 100-1 (first cell controller) is in slot 1, the cell controller 100-2 (second cell controller) is in slot 2, and the cell controller 100-n is in slot n in turn. In this example, data of the cell controller 100 is transmitted to the battery controller 200. Each cell controller 100 is assigned a predetermined time slot.
図4に、セルコントローラの回路構成図を示す。各セルコントローラ100は、1または複数の電池セルから成る電池セル群10に取り付けられ、電池セル群10の状態(電圧、電流、温度など)を計測する。セルコントローラ100内は、電池セル群10の状態(電圧、電流、温度など)を計測する1つまたは複数のセンサー20、電池セル群10の状態情報を取得し処理する処理部30、無線回路40および電波を入出力するアンテナ50、から構成される。
FIG. 4 shows a circuit configuration diagram of the cell controller. Each cell controller 100 is attached to a battery cell group 10 including one or a plurality of battery cells, and measures the state (voltage, current, temperature, etc.) of the battery cell group 10. In the cell controller 100, one or a plurality of sensors 20 that measure the state (voltage, current, temperature, etc.) of the battery cell group 10, a processing unit 30 that acquires and processes the state information of the battery cell group 10, and a radio circuit 40 And an antenna 50 for inputting and outputting radio waves.
処理部30は、電池セル群10から電源をもらって動作電圧を生成する電源回路31と、センサー20によって計測されたアナログ値をデジタルデータに変換するA/D変換回路32と、A/D変換回路32によって変換されたデータを無線回路40に出力するCPU33と、個体識別情報(固有ID)などを記憶するメモリ34と、クロック発生器35から構成される。
The processing unit 30 includes a power supply circuit 31 that receives power from the battery cell group 10 to generate an operating voltage, an A / D conversion circuit 32 that converts an analog value measured by the sensor 20 into digital data, and an A / D conversion circuit. The CPU 33 outputs the data converted by 32 to the radio circuit 40, the memory 34 for storing individual identification information (unique ID) and the like, and the clock generator 35.
クロック発生器35は、数MHz程度の高速クロックと数十kHz程度の低速クロックを切替えて発振することができる。また、CPU33は、無線回路40からのデータに基づき、無線回路40及びCPU33内の一部の回路のオン/オフ、クロック発生器35のクロック周波数の切り替え、メモリ34へのリード/ライト、バッテリコントローラ200からの指示を実行することができる。
The clock generator 35 can oscillate by switching between a high-speed clock of about several MHz and a low-speed clock of about several tens of kHz. Further, based on data from the radio circuit 40, the CPU 33 turns on / off the radio circuit 40 and some of the circuits in the CPU 33, switches the clock frequency of the clock generator 35, reads / writes to the memory 34, and a battery controller. Instructions from 200 can be executed.
図5に、バッテリコントローラの回路構成図を示す。バッテリコントローラ200は、無線回路210、CPU220、電池を含む電源回路230、メモリ240、アンテナ250、から構成される。電源回路230については、図5では電池を内蔵しているが、外部から電源を供給しても構わない。
FIG. 5 shows a circuit configuration diagram of the battery controller. The battery controller 200 includes a wireless circuit 210, a CPU 220, a power supply circuit 230 including a battery, a memory 240, and an antenna 250. The power supply circuit 230 has a built-in battery in FIG. 5, but power may be supplied from the outside.
図3を用いてバッテリコントローラ200、セルコントローラ100の送受信タイミングを説明する。バッテリコントローラ200は各セルコントローラ100からのデータを受信する為に、各セルコントローラ100に同期信号を送信する。セルコントローラ100は、この同期信号を受信すると、予めバッテリコントローラ200、セルコントローラ100で設定されている初期の通信スロット時間を認識し、各セルコントローラ100が各セルコントローラ100内のデータをバッテリコントローラ200に送信すべき通信スロットが確定する。
The transmission / reception timing of the battery controller 200 and the cell controller 100 will be described with reference to FIG. The battery controller 200 transmits a synchronization signal to each cell controller 100 in order to receive data from each cell controller 100. Upon receiving this synchronization signal, the cell controller 100 recognizes the initial communication slot time set by the battery controller 200 and the cell controller 100 in advance, and each cell controller 100 stores the data in each cell controller 100 into the battery controller 200. The communication slot to be transmitted to is determined.
セルコントローラ100―1は、バッテリコントローラ200からの同期信号を受信すると、スロット1で即座にデータ(第一の送信電波)をバッテリコントローラ200に送信する。これにより、セルコントローラ100―1に送信するバッテリコントローラ200からの同期信号が、通信スロットの先頭を示すことになり、各セルコントローラ100からバッテリコントローラ200へデータを送信するタイミングのずれを低減できる。セルコントローラ100―2は、バッテリコントローラ200からの同期信号を受信すると、受信アンプではなく、低消費電力で受信するパッシブ受信に切替えて、セルコントローラ100―1からバッテリコントローラ200へのデータ送信を受信し、セルコントローラ100―1からバッテリコントローラ200へのデータ送信の終了を確認した後、データ(第二の送信電波)をバッテリコントローラ200に送信する。セルコントローラ100―2をパッシブ受信に切替えることにより、低消費電力で動作できる。
When the cell controller 100-1 receives the synchronization signal from the battery controller 200, the cell controller 100-1 immediately transmits data (first transmission radio wave) to the battery controller 200 in the slot 1. As a result, the synchronization signal from the battery controller 200 transmitted to the cell controller 100-1 indicates the head of the communication slot, and the shift in timing for transmitting data from each cell controller 100 to the battery controller 200 can be reduced. When the cell controller 100-2 receives the synchronization signal from the battery controller 200, the cell controller 100-2 switches to passive reception with low power consumption instead of the reception amplifier, and receives data transmission from the cell controller 100-1 to the battery controller 200. After confirming the end of data transmission from the cell controller 100-1 to the battery controller 200, the data (second transmission radio wave) is transmitted to the battery controller 200. By switching the cell controller 100-2 to passive reception, it is possible to operate with low power consumption.
この時、セルコントローラ100―1からバッテリコントローラ200へのデータ送信時間が、初期の通信スロット時間Δ(デルタ)t未満の時は、通信スロット時間がその分短くなり、スロット2がスタートする。また、セルコントローラ100―1からバッテリコントローラ200へのデータ送信時間が、初期の通信スロット時間Δ(デルタ)t以上の時は、通信スロット時間がその分長くなり、スロット2がスタートする。その様子を図6に示す。
At this time, when the data transmission time from the cell controller 100-1 to the battery controller 200 is less than the initial communication slot time Δ (delta) t, the communication slot time is shortened accordingly and the slot 2 is started. Further, when the data transmission time from the cell controller 100-1 to the battery controller 200 is equal to or longer than the initial communication slot time Δ (delta) t, the communication slot time becomes longer and the slot 2 starts. This is shown in FIG.
図6は、バッテリコントローラおよびセルコントローラの無線通信タイミング図である。図6では、セルコントローラ100―2は、セルコントローラ100―1からバッテリコントローラ200への第一の送信電波を検知し、セルコントローラ100―2による第一の送信電波の未検知後に、第二のセルコントローラ100―2に割り当てられたタイムスロットとは独立して(関係なく)、第二のセルコントローラ100―2の第二の送信電波をバッテリコントローラ200に送信している。これにより、バッテリコントローラ200が複数のセルコントローラ100との通信中において、各セルコントローラ100のデータが可変した時でも、各セルコントローラ100が適切なタイミングで各セルコントローラ100のデータをバッテリコントローラ200に送信でき、バッテリコントローラ200が複数のセルコントローラ100を読取る時間の可変化や高速化が可能となる。
FIG. 6 is a wireless communication timing diagram of the battery controller and the cell controller. In FIG. 6, the cell controller 100-2 detects the first transmission radio wave from the cell controller 100-1 to the battery controller 200, and after the cell controller 100-2 does not detect the first transmission radio wave, The second transmission radio wave of the second cell controller 100-2 is transmitted to the battery controller 200 independently of (or irrespective of) the time slot assigned to the cell controller 100-2. Thus, even when the battery controller 200 is communicating with a plurality of cell controllers 100 and the data of each cell controller 100 is variable, each cell controller 100 sends the data of each cell controller 100 to the battery controller 200 at an appropriate timing. The time required for the battery controller 200 to read the plurality of cell controllers 100 can be varied and the speed can be increased.
図6(a)では、各セルコントローラ100からバッテリコントローラ200へのデータ送信時間が初期設定のΔ(デルタ)tよりも短い時のタイミング図であり、図6(b)は、各セルコントローラ100からバッテリコントローラ200へのデータ送信時間が初期設定のΔ(デルタ)tよりも長い時のタイミング図である。しかし、セルコントローラ100―2がセルコントローラ100―1からバッテリコントローラ200へのデータ送信を受信(検知)できなかった時には、初期に設定されたスロット2のタイミング(t2)(所定のタイムスロット)でバッテリコントローラ200にデータ(第二の送信電波)を送信する。これにより、セルコントローラ100―2は、第一の送信電波を検知できなかった時にでも、電池セルの電圧などの電池セルの状態をバッテリコントローラ200へ送信できる。
6A is a timing chart when the data transmission time from each cell controller 100 to the battery controller 200 is shorter than the initial setting Δ (delta) t. FIG. 5 is a timing chart when the data transmission time from the battery controller 200 to the battery controller 200 is longer than the initial setting Δ (delta) t. FIG. However, when the cell controller 100-2 cannot receive (detect) the data transmission from the cell controller 100-1 to the battery controller 200, the timing (t2) (predetermined time slot) of the slot 2 set initially is set. Data (second transmission radio wave) is transmitted to the battery controller 200. Thereby, the cell controller 100-2 can transmit the state of the battery cell such as the voltage of the battery cell to the battery controller 200 even when the first transmission radio wave is not detected.
セルコントローラ100―3は、セルコントローラ100―2と同様に、バッテリコントローラ200からの同期信号を受信すると、低消費電力で受信するパッシブ受信に切替えて、セルコントローラ100―2からバッテリコントローラ200へのデータ送信を受信し、セルコントローラ100―2からバッテリコントローラ200へのデータ送信が終了を確認した後、セルコントローラ100―3はバッテリコントローラ200にデータを送信する。この時、セルコントローラ100―2と同様に、セルコントローラ100―2からバッテリコントローラ200へのデータ送信を受信できた場合には、セルコントローラ100―2からバッテリコントローラ200へのデータ送信終了後に、セルコントローラ100―3はバッテリコントローラ200にデータ送信する。セルコントローラ100―2からバッテリコントローラ200へのデータ送信を受信できなかった時には、セルコントローラ100―3は初期に設定されたスロット3タイミング(t3)でバッテリコントローラ200にデータ送信する。
Similarly to the cell controller 100-2, when the cell controller 100-3 receives the synchronization signal from the battery controller 200, the cell controller 100-3 switches to passive reception with low power consumption, and the cell controller 100-2 transmits the signal to the battery controller 200. After receiving the data transmission and confirming the end of the data transmission from the cell controller 100-2 to the battery controller 200, the cell controller 100-3 transmits the data to the battery controller 200. At this time, similarly to the cell controller 100-2, if the data transmission from the cell controller 100-2 to the battery controller 200 can be received, the cell The controller 100-3 transmits data to the battery controller 200. When data transmission from the cell controller 100-2 to the battery controller 200 cannot be received, the cell controller 100-3 transmits data to the battery controller 200 at the initially set slot 3 timing (t3).
バッテリコントローラ200は、全てのセルコントローラ100(セルコントローラ100―1~セルコントローラ100―n)のデータ送信を受信後、または最後のセルコントローラ100-nからのデータを受信後、または所定の時間経過後に、ふたたび同期信号を全てのセルコントローラ100に送信し、各セルコントローラ100からバッテリコントローラ200へのデータ送信を促す。これを周期的に繰り返す。これにより、バッテリコントローラ200がセルコントローラ100からの応答状況によらず、周期的に同期信号をバッテリコントローラ200から各セルコントローラ100に送信でき、通信の中断を抑制できる。
The battery controller 200 receives the data transmission of all the cell controllers 100 (cell controller 100-1 to cell controller 100-n), receives the data from the last cell controller 100-n, or passes a predetermined time. Later, the synchronization signal is transmitted again to all the cell controllers 100 to prompt data transmission from each cell controller 100 to the battery controller 200. This is repeated periodically. Thereby, the battery controller 200 can periodically transmit a synchronization signal from the battery controller 200 to each cell controller 100 regardless of the response status from the cell controller 100, and the interruption of communication can be suppressed.
各セルコントローラ100は、バッテリコントローラ200にデータを送信した後は、次のバッテリコントローラ200からの同期信号の受信タイミングを推定し、そのタイミングで同期信号を受信するように受信タイマを設定し、低消費電力スリープモードに遷移する。換言すれば、例えば、セルコントローラ100-1は、セルコントローラ100-1のデータ送信タイミングに基づき、バッテリコントローラ200がセルコントローラ100-1に送信する同期信号のタイミングを推定し、同期信号を受信する。
After transmitting data to the battery controller 200, each cell controller 100 estimates the reception timing of the synchronization signal from the next battery controller 200, sets a reception timer to receive the synchronization signal at that timing, Transition to power consumption sleep mode. In other words, for example, the cell controller 100-1 estimates the timing of the synchronization signal transmitted from the battery controller 200 to the cell controller 100-1 based on the data transmission timing of the cell controller 100-1, and receives the synchronization signal. .
ここで、各セルコントローラ100がバッテリコントローラ200にデータを送信した後、次のバッテリコントローラ200からの同期信号の受信タイミング(T)の推定式を(式1)にタイミング図を図7に示す。(式1)において、tLは各セルコントローラ100からバッテリコントローラ200へのデータ送信時間、nは通信スロット数またはセルコントローラ100の数、kは各セルコントローラ100の送信スロット番号、αはマージン、ある。
T = tL×(n - k)- α ・・・・・(式1) Here, after eachcell controller 100 transmits data to the battery controller 200, an estimation formula of the reception timing (T) of the synchronization signal from the next battery controller 200 is shown in (Formula 1), and a timing diagram is shown in FIG. In (Expression 1), t L is a data transmission time from each cell controller 100 to the battery controller 200, n is the number of communication slots or the number of cell controllers 100, k is a transmission slot number of each cell controller 100, α is a margin, is there.
T = t L × (n−k) −α (Equation 1)
T = tL×(n - k)- α ・・・・・(式1) Here, after each
T = t L × (n−k) −α (Equation 1)
セルコントローラ100―1の場合、送信スロット番号は1なので、(式1)から次のバッテリコントローラ200からの同期信号の受信タイミングTは、T=tL×(n-1)-αとなる。
In the case of the cell controller 100-1, since the transmission slot number is 1, the reception timing T of the synchronization signal from the next battery controller 200 from (Equation 1) is T = t L × (n−1) −α.
セルコントローラ100―3の場合は、送信スロット番号は3なので、(式1)から次のバッテリコントローラ200からの同期信号の受信タイミングTは、T=tL×(n-3)-αとなる。但し、各セルコントローラ100は、隣接するセルコントローラ100の送信を受信できなかった時(セルコントローラ100―2が、セルコントローラ100ー―1の送信を受信できなかった時など)には、初期設定のタイミングでバッテリコントローラ200の同期信号を受信するように設定する。以上により、各セルコントローラ100は、バッテリコントローラ200の同期信号を見逃さずに受信でき、通信を継続できる。
In the case of the cell controller 100-3, since the transmission slot number is 3, the reception timing T of the synchronization signal from the next battery controller 200 from (Equation 1) is T = t L × (n−3) −α. . However, when each cell controller 100 cannot receive the transmission of the neighboring cell controller 100 (for example, when the cell controller 100-2 cannot receive the transmission of the cell controller 100-1), the initial setting is made. Is set to receive the synchronization signal of the battery controller 200 at the timing. As described above, each cell controller 100 can receive without missing the synchronization signal of the battery controller 200 and can continue communication.
次に、各セルコントローラ100の受信の方法について説明する。各セルコントローラ100は、バッテリコントローラ200からの同期信号の受信については、バッテリコントローラ200が各セルコントローラ100の近接に設置されない事を踏まえて、通常の無線通信時の受信回路構成と同様の図8のような、LNA400(ローノイズアンプ)およびミキサ410の構成にて受信する。図8は、セルコントローラの受信回路構成図である。
Next, the reception method of each cell controller 100 will be described. Each cell controller 100 receives the synchronization signal from the battery controller 200 in view of the fact that the battery controller 200 is not installed in the vicinity of each cell controller 100, and is similar to the receiving circuit configuration in normal wireless communication. As described above, the signal is received by the configuration of the LNA 400 (low noise amplifier) and the mixer 410. FIG. 8 is a block diagram of the receiving circuit of the cell controller.
各セルコントローラ100が隣接するセルコントローラ100の送信電波を受信するパッシブ受信においては、増幅器(アンプ)を使用せず図8のようなダイオード300とコンデンサ310で受信強度を検出する方法がある。また、このダイオード300とコンデンサ310の回路で、セルコントローラ100の振幅変調波を検出することも可能である。
In passive reception in which each cell controller 100 receives a transmission radio wave of an adjacent cell controller 100, there is a method of detecting reception intensity with a diode 300 and a capacitor 310 as shown in FIG. 8 without using an amplifier (amplifier). Further, it is possible to detect the amplitude-modulated wave of the cell controller 100 with the circuit of the diode 300 and the capacitor 310.
10 電池セル群
20 センサー
30 処理部
31 電源回路
32 A/D変換器
33 CPU
34 メモリ
35 クロック発生器
40 無線回路
50 アンテナ
100 セルコントローラ
100-1 セルコントローラ
100-2 セルコントローラ
100-3 セルコントローラ
100-n セルコントローラ
200 バッテリコントローラ
210 無線回路
220 CPU
230 電源回路
240 メモリ
250 アンテナ
300 ダイオード
310 コンデンサ
400 LNA
410 ミキサ
1000 蓄電池モジュール DESCRIPTION OFSYMBOLS 10 Battery cell group 20 Sensor 30 Processing part 31 Power supply circuit 32 A / D converter 33 CPU
34Memory 35 Clock generator 40 Radio circuit 50 Antenna 100 Cell controller 100-1 Cell controller 100-2 Cell controller 100-3 Cell controller 100-n Cell controller 200 Battery controller 210 Radio circuit 220 CPU
230Power supply circuit 240 Memory 250 Antenna 300 Diode 310 Capacitor 400 LNA
410Mixer 1000 Battery module
20 センサー
30 処理部
31 電源回路
32 A/D変換器
33 CPU
34 メモリ
35 クロック発生器
40 無線回路
50 アンテナ
100 セルコントローラ
100-1 セルコントローラ
100-2 セルコントローラ
100-3 セルコントローラ
100-n セルコントローラ
200 バッテリコントローラ
210 無線回路
220 CPU
230 電源回路
240 メモリ
250 アンテナ
300 ダイオード
310 コンデンサ
400 LNA
410 ミキサ
1000 蓄電池モジュール DESCRIPTION OF
34
230
410
Claims (7)
- 第一の電池群に接続された第一のセルコントローラと、第二の電池群に接続された第二のセルコントローラと、を有する複数のセルコントローラと、
前記第一のセルコントローラおよび前記第二のセルコントローラと無線で接続されるバッテリコントローラと、を備え、
前記第一のセルコントローラおよび前記第二のセルコントローラには所定のタイムスロットが割り当てられており、
前記第二のセルコントローラは、前記第一セルコントローラから前記バッテリコントローラへの第一の送信電波を検知し、
前記第二のセルコントローラによる前記第一の送信電波の未検知後に、前記第二のセルコントローラに割り当てられたタイムスロットとは独立して、前記第二のセルコントローラの第二の送信電波を前記バッテリコントローラに送信する無線電池システム。 A plurality of cell controllers having a first cell controller connected to the first battery group and a second cell controller connected to the second battery group;
A battery controller wirelessly connected to the first cell controller and the second cell controller;
A predetermined time slot is assigned to the first cell controller and the second cell controller,
The second cell controller detects a first transmission radio wave from the first cell controller to the battery controller,
After the non-detection of the first transmission radio wave by the second cell controller, the second transmission radio wave of the second cell controller is independent of the time slot allocated to the second cell controller. A wireless battery system that transmits to the battery controller. - 請求項1の無線電池システムにおいて、
前記第一のセルコントローラは、前記バッテリコントローラからの同期信号を受信後、所定のタイムスロットで前記バッテリコントローラに前記第一の送信電波を送信する無線電池システム。 The wireless battery system according to claim 1, wherein
The first cell controller is a wireless battery system that transmits the first transmission radio wave to the battery controller in a predetermined time slot after receiving a synchronization signal from the battery controller. - 請求項1の無線電池システムにおいて、
前記第二のセルコントローラは、パッシブ受信で前記第一の送信電波を検知する無線電池システム。 The wireless battery system according to claim 1, wherein
The second cell controller is a wireless battery system that detects the first transmission radio wave by passive reception. - 請求項1の無線電池システムにおいて、
前記第二のセルコントローラは、前記第一の送信電波を検知できなかった時には、所定のタイムスロットで第二の送信電波を前記バッテリコントローラに送信する無線電池システム。 The wireless battery system according to claim 1, wherein
When the second cell controller cannot detect the first transmission radio wave, the second cell controller transmits a second transmission radio wave to the battery controller in a predetermined time slot. - 請求項1の無線電池システムにおいて、
前記第一のセルコントローラは、前記第一の送信電波の送信タイミングに基づき、前記バッテリコントローラが前記第一のセルコントローラに送信する同期信号のタイミングを推定し、前記同期信号を受信する無線電池システム。 The wireless battery system according to claim 1, wherein
The first cell controller estimates the timing of a synchronization signal transmitted from the battery controller to the first cell controller based on the transmission timing of the first transmission radio wave, and receives the synchronization signal. . - 請求項1の無線電池システムにおいて、
前記バッテリコントローラは、前記複数のセルコントローラ中の所定のセルコントローラからの送信電波を受信した時に、前記複数のセルコントローラに同期信号を送信する無線電池システム。 The wireless battery system according to claim 1, wherein
The battery controller is a wireless battery system that transmits a synchronization signal to the plurality of cell controllers when receiving a transmission radio wave from a predetermined cell controller in the plurality of cell controllers. - 請求項1の無線電池システムにおいて、
前記バッテリコントローラは、前記複数のセルコントローラ中の所定のセルコントローラからの送信電波を所定のタイムスロット時間経過後も受信できなかった時に、前記複数のセルコントローラに同期信号を送信する無線電池システム。 The wireless battery system according to claim 1, wherein
The wireless battery system, wherein the battery controller transmits a synchronization signal to the plurality of cell controllers when the transmission radio wave from the predetermined cell controller in the plurality of cell controllers cannot be received even after a predetermined time slot time elapses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018541958A JP6808742B2 (en) | 2016-09-30 | 2017-07-31 | Wireless battery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-192534 | 2016-09-30 | ||
JP2016192534 | 2016-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018061459A1 true WO2018061459A1 (en) | 2018-04-05 |
Family
ID=61762680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027613 WO2018061459A1 (en) | 2016-09-30 | 2017-07-31 | Wireless battery system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6808742B2 (en) |
WO (1) | WO2018061459A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021513186A (en) * | 2018-11-21 | 2021-05-20 | エルジー・ケム・リミテッド | Wireless control system, wireless control method and battery pack |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013538548A (en) * | 2010-08-23 | 2013-10-10 | オムニレクトリック インコーポレイテッド | Wireless power transmission system |
WO2015107687A1 (en) * | 2014-01-20 | 2015-07-23 | 日立オートモティブシステムズ株式会社 | Power supply control system, power supply control apparatus, and power supply control method |
JP2016096623A (en) * | 2014-11-13 | 2016-05-26 | 株式会社日立製作所 | Radio battery system, and cell controller and battery controller used for the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6636500B2 (en) * | 1999-07-27 | 2003-10-21 | Lucent Technologies Inc. | Medium allocation method |
JP2001202258A (en) * | 2000-01-20 | 2001-07-27 | Yaskawa Electric Corp | Rear time processor |
JP4857325B2 (en) * | 2008-10-31 | 2012-01-18 | パナソニック株式会社 | Task switching device, method and program |
WO2015121979A1 (en) * | 2014-02-14 | 2015-08-20 | 株式会社日立製作所 | Battery control system, and battery system |
-
2017
- 2017-07-31 WO PCT/JP2017/027613 patent/WO2018061459A1/en active Application Filing
- 2017-07-31 JP JP2018541958A patent/JP6808742B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013538548A (en) * | 2010-08-23 | 2013-10-10 | オムニレクトリック インコーポレイテッド | Wireless power transmission system |
WO2015107687A1 (en) * | 2014-01-20 | 2015-07-23 | 日立オートモティブシステムズ株式会社 | Power supply control system, power supply control apparatus, and power supply control method |
JP2016096623A (en) * | 2014-11-13 | 2016-05-26 | 株式会社日立製作所 | Radio battery system, and cell controller and battery controller used for the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021513186A (en) * | 2018-11-21 | 2021-05-20 | エルジー・ケム・リミテッド | Wireless control system, wireless control method and battery pack |
JP7004078B2 (en) | 2018-11-21 | 2022-01-21 | エルジー・ケム・リミテッド | Wireless control system, wireless control method and battery pack |
US11356824B2 (en) | 2018-11-21 | 2022-06-07 | Lg Energy Solution, Ltd. | Wireless control system, wireless control method, and battery pack |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018061459A1 (en) | 2019-07-25 |
JP6808742B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6392088B2 (en) | Wireless battery system and cell controller and battery controller used therefor | |
JP6093448B2 (en) | Battery control system | |
EP3624297B1 (en) | Battery management system | |
US20220417792A1 (en) | Minimizing over the air data transmission for wireless battery monitoring systems | |
JP6847981B2 (en) | Wireless battery system | |
WO2018061459A1 (en) | Wireless battery system | |
JP7228704B2 (en) | Storage battery device | |
JP2013109628A (en) | Id provision system and id provision method | |
JP7307115B2 (en) | battery control system | |
KR102132315B1 (en) | Wireless communication system | |
JP6432473B2 (en) | Battery controller | |
JP6897484B2 (en) | Battery communication system and battery communication method | |
CN115066869B (en) | Vehicle-mounted ECU, program, and information processing method | |
JP7543981B2 (en) | Wireless communication system | |
JP2011072161A (en) | Power device | |
US20220377815A1 (en) | Wireless communication system | |
JP7519867B2 (en) | Battery Monitoring System | |
JP7508694B2 (en) | Battery Storage System | |
US20240077539A1 (en) | Battery monitoring system, controller, monitoring device, non-transitory computer readable medium and method for monitoring battery | |
JP7031478B2 (en) | Wireless communication system | |
WO2013027311A1 (en) | Battery block and power supply system | |
JP2011205246A (en) | Communications equipment and communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17855417 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018541958 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17855417 Country of ref document: EP Kind code of ref document: A1 |