Nothing Special   »   [go: up one dir, main page]

WO2018061211A1 - エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体 - Google Patents

エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体 Download PDF

Info

Publication number
WO2018061211A1
WO2018061211A1 PCT/JP2016/079165 JP2016079165W WO2018061211A1 WO 2018061211 A1 WO2018061211 A1 WO 2018061211A1 JP 2016079165 W JP2016079165 W JP 2016079165W WO 2018061211 A1 WO2018061211 A1 WO 2018061211A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
group
solvent
examples
coating
Prior art date
Application number
PCT/JP2016/079165
Other languages
English (en)
French (fr)
Inventor
寛之 泉
竜也 牧野
智彦 小竹
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/079165 priority Critical patent/WO2018061211A1/ja
Priority to CN201680089677.4A priority patent/CN109790318A/zh
Priority to KR1020197011883A priority patent/KR20190065325A/ko
Priority to US16/337,950 priority patent/US20200025324A1/en
Priority to JP2018541858A priority patent/JPWO2018061211A1/ja
Publication of WO2018061211A1 publication Critical patent/WO2018061211A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/12Gel
    • B32B2266/126Aerogel, i.e. a supercritically dried gel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density

Definitions

  • the present invention relates to an airgel composite manufacturing method, an airgel composite, and an insulator.
  • Airgel is known as a low thermal conductivity material. Since the airgel has a fine porous structure, movement of gas including air is suppressed inside, and low heat conduction is achieved.
  • a heat insulating member utilizing such characteristics of airgel a heat insulating sheet including a sheet-like aerogel has been developed (for example, Patent Document 1 below).
  • the airgel may be referred to as an aggregate of nano-sized fine particles, and in use, there is a problem (powder falling) that dust is generated by the fine particles detached from the airgel surface.
  • the airgel skeleton itself is fragile and lacks sufficient durability.
  • Patent Document 1 an airgel sheet is sandwiched between resin-coated glass fiber fabrics or the like to mainly deal with the problem of dust generation, and is used for heat insulation as a laminate.
  • This invention is made
  • the present invention provides a method for producing an airgel composite, comprising the steps of impregnating an airgel with a coating liquid containing a coating material and a solvent, and removing the solvent from the impregnated coating liquid.
  • the airgel composite obtained by such a method has excellent toughness.
  • the viscosity of the coating liquid at 25 ° C. may be 35 mPa ⁇ s or less. Thereby, a good coating can be formed.
  • the coating material can contain a thermosetting resin. Thereby, a good coating can be formed.
  • the airgel is at least one selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of the silicon compound having a hydrolyzable functional group. It may be a dried product of a wet gel which is a condensate of sol containing Such an airgel has heat insulation and flexibility, and is excellent in workability.
  • the present invention also provides an airgel composite having an airgel and a coating that covers at least a part of the surface of the airgel particles forming a void inside the airgel.
  • Such an airgel composite has excellent toughness.
  • the density of the airgel composite can be 0.30 to 1.15 g / cm 3 . Thereby, the toughness and heat insulation of an airgel composite improve more.
  • the airgel composite may have a transmittance for light having a wavelength of 700 nm of 15% or less. Thereby, the heat insulation of an airgel composite improves more.
  • the present invention further provides an insulator to be provided with the above-described airgel composite for an object to be insulated. Since it is a to-be-insulated body using an airgel composite having excellent toughness, excellent low thermal conductivity is not easily lost.
  • a method for producing an airgel composite having excellent toughness, an airgel composite, and an insulator can be provided.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
  • FIG. 1 is a cross-sectional view schematically showing the heat insulating body of the present embodiment.
  • the airgel composite 2 is formed on the heat insulation target object 1 as a heat insulation layer.
  • the airgel composite 2 has an airgel 2a and a coating 2b that covers at least a part of the surface of the airgel particles that form voids inside the airgel 2a.
  • the airgel 2a has a three-dimensionally fine mesh skeleton composed of airgel particles, and a large number of voids exist in the skeleton. That is, in the airgel composite 2, at least a part of the surface of the skeleton (the airgel 2a formed by the airgel particles) is covered with the coating 2b while the three-dimensional network skeleton is maintained.
  • the airgel composite 2 can be provided on at least a part (part or whole) of the heat insulating object 1.
  • the object to be heat-insulated 10 may be such that the object to be insulated 1 and the airgel composite 2 are directly and integrally joined, and the object to be insulated 1 and the airgel composite 2 are joined via another layer such as a primer layer. May be.
  • the insulator 10 may further include a barrier layer (not shown) on the airgel composite 2.
  • the material constituting the heat insulation object examples include metals, ceramics, glass, resins, and composite materials thereof. That is, the heat insulation target object can contain at least 1 type selected from the group which consists of a metal, ceramics, glass, and resin.
  • a form of the heat insulating object a block shape, a sheet shape, a powder shape, a spherical shape, a fiber shape, or the like can be adopted depending on the purpose or material to be used.
  • Examples of the metal include a single metal, a metal alloy, and a metal on which an oxide film is formed.
  • the metal element include iron, copper, nickel, aluminum, zinc, titanium, chromium, cobalt, tin, gold, and silver. From the viewpoint of excellent corrosion resistance to materials used in the sol generation step described later, simple metals such as titanium, gold, and silver, iron and aluminum on which an oxide film is formed, and the like can be used.
  • the ceramic examples include oxides such as alumina, titania, zirconia, and magnesia, nitrides such as silicon nitride and aluminum nitride, carbides such as silicon carbide and boron carbide, and mixtures thereof.
  • Examples of the glass include quartz glass, soda glass, and borosilicate glass.
  • the resin examples include polyvinyl chloride, polyvinyl alcohol, polystyrene, polyethylene, polypropylene, polyacetal, polymethyl methacrylate, polycarbonate, polyamide, and polyurethane.
  • the surface roughness Ra of the heat insulating object 1 may be 100 nm or more, or 500 nm or more.
  • the holes of the porous structure are communication holes, and the total volume of the holes is 50 of the total volume of the heat insulating object.
  • An aspect of ⁇ 99% by volume can be employed.
  • the surface roughness Ra can be measured as follows. That is, based on JIS B0601, the arithmetic average roughness of the surface can be measured using an optical surface roughness meter (manufactured by Veeco Metrology Group, Wyko NT9100).
  • airgel composite (Airgel composite) ⁇ Definition of airgel
  • dry gel obtained by using supercritical drying method for wet gel is airgel
  • dry gel obtained by drying under atmospheric pressure is xerogel
  • drying obtained by freeze-drying Although the gel is referred to as a cryogel, in the present embodiment, the obtained low-density dried gel is referred to as “aerogel” regardless of the drying method of the wet gel. That is, in this embodiment, “aerogel” is a gel in a broad sense, “Gel composed of a microporous solid in which the dispersed phase is a gas”. "Means.
  • the airgel 2a has a network-like fine structure inside, and has a cluster structure in which airgel particles of about 2 to 20 nm (particles constituting the airgel) are combined. There are pores (voids) of less than 100 nm between the skeletons formed by the clusters. Thereby, the airgel 2a has a three-dimensionally fine porous structure.
  • the airgel 2a which concerns on this embodiment is a silica airgel which has a silica as a main component, for example.
  • the silica airgel include so-called organic-inorganic hybrid silica airgel into which an organic group (such as a methyl group) or an organic chain is introduced.
  • Airgel is obtained from various silicon compounds as raw materials.
  • the airgel is selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group.
  • Examples include a dried product of a wet gel that is a condensate of a sol containing at least one (obtained by drying a wet gel formed from the sol).
  • the condensate may be obtained by a condensation reaction of a hydrolysis product obtained by hydrolysis of a silicon compound having a hydrolyzable functional group, and is not a functional group obtained by hydrolysis.
  • the silicon compound only needs to have at least one of a hydrolyzable functional group and a condensable functional group, and may have both a hydrolyzable functional group and a condensable functional group.
  • the silicon compound can include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the silicon compound is composed of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the polysiloxane compound having a hydrolyzable functional group. At least one selected from the group (hereinafter sometimes referred to as “polysiloxane compound group”) may be contained.
  • hydrolyzable functional group examples include an alkoxy group.
  • condensable functional groups include hydroxyl groups, silanol groups, carboxyl groups, phenolic hydroxyl groups, and the like.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • a polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group (hydrolyzable functional group and condensable functional group) different from the hydrolyzable functional group and the condensable functional group. You may further have a functional group which does not correspond to a functional group.
  • Examples of the reactive group include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group.
  • the epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group.
  • These polysiloxane compounds having a functional group and a reactive group may be used alone or in combination of two or more.
  • examples of groups that improve the flexibility of the airgel include alkoxy groups, silanol groups, hydroxyalkyl groups, etc.
  • alkoxy groups and hydroxyalkyl groups are sols. The compatibility can be further improved.
  • the number of carbon atoms of the alkoxy group and hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel is further improved. It may be 2 to 4 from the viewpoint.
  • Examples of the polysiloxane compound having a hydroxyalkyl group include those having a structure represented by the following general formula (A).
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represents an alkyl group or an aryl group
  • n represents an integer of 1 to 50
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1a s may be the same or different, and similarly, two R 2a s may be the same or different.
  • two or more R 3a s may be the same or different, and similarly two or more R 4a s may be the same or different.
  • R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and examples of the hydroxyalkyl group include a hydroxyethyl group, a hydroxypropyl group, and the like.
  • R 2a includes an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • R 3a and R 4a each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group and the like.
  • n can be 2 to 30, but may be 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (A) a commercially available product can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all of them) , Manufactured by Shin-Etsu Chemical Co., Ltd.), compounds such as XF42-B0970, Fluid OFOH 702-4% (all manufactured by Momentive).
  • Examples of the polysiloxane compound having an alkoxy group include those having a structure represented by the following general formula (B).
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represents an alkoxy group
  • R 4b and R 5b each independently represents an alkyl group or an aryl group.
  • M represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1b s may be the same or different, and two R 2b s may be the same or different.
  • R 3b may be the same or different.
  • m is an integer of 2 or more
  • two or more R 4b s may be the same or different, and similarly two or more R 5b s are the same. Or different.
  • examples of R 1b include an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like. , Methyl group, methoxy group, ethoxy group and the like.
  • R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and examples of the alkoxy group include a methoxy group and an ethoxy group.
  • R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group and the like.
  • m can be 2 to 30, but may be 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in, for example, JP-A Nos. 2000-26609 and 2012-233110. Can do.
  • the polysiloxane compound having an alkoxy group may exist as a hydrolysis product in the sol, and the polysiloxane compound having an alkoxy group and the hydrolysis product are mixed. You may do it.
  • the polysiloxane compound having an alkoxy group all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • polysiloxane compounds having hydrolyzable functional groups or condensable functional groups and the hydrolysis products of polysiloxane compounds having hydrolyzable functional groups may be used alone or in combination of two or more. May be used.
  • the silicon compound may contain a silicon compound other than the polysiloxane compound. That is, the sol of this embodiment includes a hydrolyzable functional group or a silicon compound having a condensable functional group (excluding a polysiloxane compound) and a hydrolysis product of a silicon compound having a hydrolyzable functional group. At least one selected from the group consisting of (hereinafter, sometimes referred to as “silicon compound group”). The number of silicon atoms in the molecule of the silicon compound can be 1 or 2.
  • the silicon compound having a hydrolyzable functional group is not particularly limited, and examples thereof include alkyl silicon alkoxides. Among alkyl silicon alkoxides, those having 3 or less hydrolyzable functional groups can further improve water resistance. Examples of such alkyl silicon alkoxides include monoalkyltrialkoxysilanes, monoalkyldialkoxysilanes, dialkyldialkoxysilanes, monoalkylmonoalkoxysilanes, dialkylmonoalkoxysilanes, and trialkylmonoalkoxysilanes. Examples thereof include methyltrimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxysilane.
  • the silicon compound having a condensable functional group is not particularly limited.
  • silane tetraol, methyl silane triol, dimethyl silane diol, phenyl silane triol, phenyl methyl silane diol, diphenyl silane diol, n-propyl silane triol examples include hexyl silane triol, octyl silane triol, decyl silane triol, and trifluoropropyl silane triol.
  • the silicon compound having a hydrolyzable functional group or a condensable functional group may further have the above-described reactive group different from the hydrolyzable functional group and the condensable functional group.
  • the number of hydrolyzable functional groups is 3 or less, and as a silicon compound having a reactive group, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-amino Propyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like can also be used.
  • vinylsilane triol 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
  • bistrimethoxysilylmethane bistrimethoxysilylethane
  • bistrimethoxysilylhexane ethyltrimethoxysilane
  • vinyltrimethoxysilane etc.
  • hydrolyzable functional groups or condensable functional silicon compounds, and hydrolyzed products of hydrolyzable functional silicon compounds may be used alone or in admixture of two or more. May be.
  • the total content of the polysiloxane compound group and the silicon compound group can be 5 parts by mass or more with respect to 100 parts by mass of the sol, and may be 10 parts by mass or more.
  • the total content can be 50 parts by mass or less, or 30 parts by mass or less, with respect to 100 parts by mass of the total amount of sol. That is, the total content of the polysiloxane compound group and the silicon compound group can be 5 to 50 parts by mass with respect to 100 parts by mass of the sol, but may be 10 to 30 parts by mass.
  • the airgel of this embodiment may contain silica particles. That is, the sol that provides the airgel may further contain silica particles, and the airgel of the present embodiment may be a dried product of a wet gel that is a condensate of the sol containing silica particles.
  • the silica particles can be used without particular limitation, and examples thereof include amorphous silica particles.
  • examples of the amorphous silica particles include fused silica particles, fumed silica particles, and colloidal silica particles.
  • colloidal silica particles have high monodispersity and are easy to suppress aggregation in the sol.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a cage shape, and an association type. Among these, by using spherical particles as silica particles, it becomes easy to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles can easily be imparted with an appropriate strength to the airgel, and an airgel excellent in shrinkage resistance during drying can be easily obtained. It may be 10 nm or more.
  • the average primary particle diameter of the silica particles can be 500 nm or less, and may be 300 nm or less because it is easy to suppress the solid heat conduction of the silica particles and it is easy to obtain an airgel excellent in heat insulation. 250 nm or less.
  • the average primary particle diameter of the silica particles can be 1 to 500 nm, can be 5 to 300 nm, and can be 10 to 250 nm.
  • the average primary particle diameter of the silica particles can be measured by observation using a scanning electron microscope (hereinafter abbreviated as “SEM”).
  • the content of the silica particles contained in the sol is 1 mass relative to 100 mass parts of the total amount of the sol. It may be 4 parts by mass or more. Since it becomes easy to suppress the solid heat conduction of the silica particles and it becomes easy to obtain an airgel excellent in heat insulation, the content of the silica particles contained in the sol can be 20 parts by mass or less, and 15 parts by mass or less. It may be 12 parts by mass or less, 10 parts by mass or less, or 8 parts by mass or less.
  • the content of the silica particles can be 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the sol, and may be 4 to 15 parts by mass or 4 to 12 parts by mass. It may be 4 to 10 parts by mass, or 4 to 8 parts by mass.
  • the airgel of the present embodiment can contain polysiloxane having a main chain including a siloxane bond (Si—O—Si).
  • the airgel can have the following M unit, D unit, T unit or Q unit as a structural unit.
  • R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) bonded to a silicon atom.
  • the M unit is a unit composed of a monovalent group in which a silicon atom is bonded to one oxygen atom.
  • the D unit is a unit composed of a divalent group in which a silicon atom is bonded to two oxygen atoms.
  • the T unit is a unit composed of a trivalent group in which a silicon atom is bonded to three oxygen atoms.
  • the Q unit is a unit composed of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
  • Examples of the airgel of the present embodiment include those having the structure shown below. When an airgel has these structures, it becomes easy to express the outstanding heat conductivity and compression elastic modulus.
  • the airgel may have any of the following structures.
  • the airgel of this embodiment can have a structure represented by the following general formula (1).
  • the airgel of this embodiment can have a structure represented by the following general formula (1a) as a structure including the structure represented by the general formula (1).
  • the structures represented by the general formula (1) and the general formula (1a) can be introduced into the skeleton of the airgel.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1 s may be the same or different, and similarly, two or more R 2 s may be the same or different.
  • two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
  • the airgel has a low thermal conductivity and is flexible.
  • R 1 and R 2 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like. Examples thereof include a methyl group.
  • R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include ethylene group, propylene Groups and the like.
  • p may be 2 to 30, and may be 5 to 20.
  • the airgel of the present embodiment may be an airgel having a ladder type structure including a column part and a bridge part, and the airgel represented by the following general formula (2).
  • a ladder structure having a bridge portion represented by the general formula (2) can be introduced into the skeleton of the airgel.
  • the “ladder structure” has two struts and bridges connecting the struts (having a so-called “ladder” form). It is.
  • the airgel skeleton may have a ladder structure, but the airgel may partially have a ladder structure.
  • R 5 and R 6 each independently represents an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different, and similarly two or more R 6 s are each the same. Or different.
  • the airgel has a structure derived from a conventional ladder-type silsesquioxane (that is, has a structure represented by the following general formula (X)). It becomes the airgel which has the outstanding softness
  • Silsesquioxane is a polysiloxane having a composition formula: (RSiO 1.5 ) n and can have various skeleton structures such as a cage type, a ladder type, and a random type.
  • the structure of the bridging portion is —O— (having the T unit as a structural unit).
  • the structure of the bridge portion is a structure (polysiloxane structure) represented by the general formula (2).
  • the airgel of the present embodiment may further have a structure derived from silsesquioxane in addition to the structures represented by the general formulas (1) to (3).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder structure has the following general formula ( The ladder type structure represented by 3) is mentioned.
  • R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group or an aryl group
  • a and c each independently represent an integer of 1 to 3000
  • b represents 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different
  • similarly two or more R 6 s are each the same. Or different.
  • when a is an integer of 2 or more, two or more R 7 s may be the same or different.
  • when c is an integer of 2 or more, 2 The above R 8 may be the same or different.
  • R 5, R 6, R 7 and R 8 (provided that, R 7 and R 8 in Formula (3) only ) Each independently includes an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group.
  • a and c can be independently 6 to 2000, but may be 10 to 1000.
  • b may be 2 to 30, but may be 5 to 20.
  • the airgel of this embodiment can have a structure represented by the following general formula (4).
  • the airgel of the present embodiment contains silica particles and can have a structure represented by the following general formula (4).
  • R 9 represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • the airgel of the present embodiment can have a structure represented by the following general formula (5).
  • the airgel of the present embodiment contains silica particles and can have a structure represented by the following general formula (5).
  • R 10 and R 11 each independently represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • the airgel of this embodiment can have a structure represented by the following general formula (6).
  • the airgel of the present embodiment contains silica particles and can have a structure represented by the following general formula (6).
  • R 12 represents an alkylene group.
  • examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms, and examples of the alkylene group include an ethylene group and a hexylene group.
  • thermosetting resin is mentioned as a material (coating material) which forms coating.
  • thermosetting resin include silicone resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane resin, and the like.
  • a silicone resin, an epoxy resin, a phenol resin, or the like can be used as a coating material.
  • the silicone resin is not particularly limited, and various silicone resins such as oil-based silicone, elastomer-based silicone, resin-based silicone, and silane-based silicone can be used. Specific examples include amino-modified siloxane, epoxy-modified siloxane, phenol-modified siloxane, methacrylate-modified siloxane, alkoxy-modified siloxane, carbinol-modified siloxane, vinyl-modified siloxane, and thiol-modified siloxane. For product names, RSN-0409, RSN-0431, RSN-0804, RSN-0805, RSN-0806, RSN-0808, RSN-0840, etc.
  • silicone resin curing agents include acids, bases, and metal catalysts.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, propionic acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia, dimethylamine, aniline, amine-modified siloxane, etc.
  • metal catalysts such as zinc naphthenate, zinc octylate, manganese naphthenate, cobalt naphthenate and cobalt octylate. These may be used alone or in combination of two or more.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, and triphenylmethane.
  • polyfunctional epoxy resins such as epoxy resin and dicyclopentadiene epoxy resin. These may be used alone or in combination of two or more.
  • epoxy resin curing agents examples include phenol resins, acid anhydrides, amines, imidazoles, and phosphines. These may be used alone or in combination of two or more.
  • phenol resin examples include phenol novolac resin, cresol novolac resin, phenol aralkyl resin, cresol naphthol formaldehyde polycondensate, triphenylmethane type polyfunctional phenol resin, and the like.
  • acid anhydride examples include methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, and ethylene glycol bisanhydro trimellitate.
  • amines examples include dicyandiamide, alicyclic polyamines, aliphatic polyamines, and aniline formaldehyde condensates.
  • imidazoles examples include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano.
  • phosphines include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra (4-methylphenyl) borate, tetraphenylphosphonium (4-fluorophenyl) borate and the like.
  • phenol resin those listed as the curing agent for the epoxy resin can be used. That is, a phenol novolak resin, a cresol novolak resin, a phenol aralkyl resin, a cresol naphthol formaldehyde polycondensate, a triphenylmethane type polyfunctional phenol resin and the like can be mentioned.
  • polysilazane An example of the coating material is polysilazane.
  • the structure of polysilazane can be represented by the following general formula (P).
  • R x , R y , and R z each independently represent hydrogen or an alkyl group, aryl group, alkenyl group, cycloalkyl group, alkoxy group, or the like, which may have a substituent.
  • n can be 2 to 1000.
  • Silicon oxide is obtained by reacting polysilazane with water. Silicon oxide obtained using polysilazane as a raw material has a bond represented by Si—O, a bond represented by Si—N, a bond represented by Si—H, and N— depending on the degree of reaction between polysilazane and water. A bond represented by H or the like may be contained.
  • the polysilazane include organohydrosilazanes such as perhydropolysilazane (perhydropolysilazane) and methylhydropolysilazane, and silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide.
  • Perhydropolysilazane can be used as polysilazane from the viewpoints of heat resistance, availability, and dense coating. The average molecular weight of polysilazane can be about 100 to 50000 g / mol.
  • Density properties airgel composite of airgel composites in view of compatibility of toughening and insulating properties which may be 0.30 g / cm 3 or more, may also be 0.50 g / cm 3 or more, may also be 0.70 g / cm 3 or more, and can be a 1.15 g / cm 3 or less, may also be 1.10 g / cm 3 or less, there at 1.00 g / cm 3 or less May be. That is, the density of the airgel composite can be 0.30 to 1.15 g / cm 3 , but may be 0.50 to 1.10 g / cm 3, and 0.70 to 1.00 g / cm 3. cm 3 may also be used. The density can be measured, for example, by a hydrometer or by measuring a sample length and measuring a weight.
  • the transmittance of the airgel composite with respect to light having a wavelength of 700 nm can be 15% or less from the viewpoint of achieving both toughening and heat insulating properties, but may be 10% or less, or 5% or less. It may be 3% or less.
  • the lower limit of the transmittance is not particularly limited, but can be 0.
  • the transmittance can be measured with a spectrophotometer, a haze meter, or the like.
  • the content of the airgel in the airgel composite can be 30% by mass or more from the viewpoint of expressing suitable heat insulation properties, but may be 40% by mass or more, and 90% by mass or less. However, it may be 80% by mass or less. That is, the content of the airgel can be 30 to 90% by mass, but may be 40 to 80% by mass.
  • the content of the coating in the airgel composite can be set to 1% by mass or more from the viewpoint of suppressing a decrease in heat insulation, but may be 5% by mass or more, and 60% by mass or less. However, it may be 50% by mass or less. That is, the coating content can be 1 to 60% by mass, but may be 5 to 50% by mass.
  • the thickness of the airgel composite may be 1 ⁇ m or more, 10 ⁇ m or more, or 30 ⁇ m or more because it is easy to obtain good heat insulation.
  • the thickness of the airgel composite may be 1000 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less from the viewpoint of shortening the washing and solvent replacement step and the drying step described later. From these viewpoints, the thickness of the airgel composite may be 1 to 1000 ⁇ m, 10 to 200 ⁇ m, or 30 to 100 ⁇ m.
  • the barrier layer is formed for the purpose of improving the brittleness and oil resistance of the airgel composite.
  • Examples of the material for forming the barrier layer include a reaction product of polysilazane and water, and a siloxane compound.
  • polysilazane As the polysilazane, the above-mentioned polysilazane can be used.
  • the siloxane compound is a compound having a siloxane bond (Si—O—Si bond).
  • the siloxane compound include polymers or oligomers having a siloxane bond (Si—O—Si bond).
  • Specific examples of the siloxane-based compound include silicone (silicon resin), a condensate of an organosilicon compound having a hydrolyzable functional group, and a silicone-modified polymer.
  • the organosilicon compound having a hydrolyzable functional group include methyltrimethoxysilane, dimethyldimethoxysilane, and trimethylmethoxysilane.
  • the siloxane compound may be, for example, a condensate of silicone or methyltrimethoxysilane.
  • the barrier layer may further contain a filler, for example.
  • the material constituting the filler include metals and ceramics.
  • the metal include a simple metal, a metal alloy, and a metal on which an oxide film is formed.
  • the metal include iron, copper, nickel, aluminum, zinc, titanium, chromium, cobalt, tin, gold, and silver.
  • the ceramic include oxides such as alumina, titania, zirconia, and magnesia; nitrides such as silicon nitride and aluminum nitride; carbides such as silicon carbide and boron carbide; and mixtures thereof.
  • the material constituting the filler may be, for example, fused silica, fumed silica, colloidal silica, hollow silica, glass, and flaky silica.
  • the glass include quartz glass, soda glass, and borosilicate glass.
  • the content of the barrier layer forming material in the barrier layer may be, for example, 20% by volume or more, or 30% by volume or more based on the total volume of the barrier layer. It may be 40 volume% or more.
  • the content of the barrier layer forming material may be, for example, 80% by volume or less and 70% by volume or less with respect to the total volume of the barrier layer from the viewpoint of improving workability for forming the barrier layer. It may be 60% by volume or less.
  • the content of the filler in the barrier layer is, for example, from the viewpoint of suppressing penetration of the barrier layer composition into the airgel composite and improving heat resistance, 0.1 volume% or more, 1 volume% or more, or 5 volume% or more.
  • the thickness of the barrier layer may be, for example, 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more from the viewpoint of improving brittleness and oil resistance.
  • the thickness of the barrier layer may be, for example, 1000 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less from the viewpoint of improving handleability after the barrier layer is formed.
  • the total thickness of the airgel composite and the barrier layer may be, for example, 2 ⁇ m or more, 15 ⁇ m or more, or 40 ⁇ m or more.
  • the total thickness of the airgel composite and the barrier layer may be, for example, 2000 ⁇ m or less, 400 ⁇ m or less, or 200 ⁇ m or less from the viewpoints of shortening the manufacturing process time and improving handling properties. Also good.
  • the object to be insulated includes, for example, a step of forming an airgel on an object to be insulated (A: airgel forming step), and a step of removing the solvent after impregnating the coating liquid into the airgel (B: coating step).
  • A airgel forming step
  • B coating step
  • C barrier layer formation process
  • the airgel formation process includes, for example, a sol generation process for generating a sol for forming an airgel, and a sol coating film formation in which the obtained sol is applied to a heat insulating object to form a sol coating film.
  • the method mainly includes a step, a wet gel generating step for generating a wet gel from the sol coating film, a step of washing the wet gel (and replacing the solvent as necessary), and a drying step of drying the washed wet gel. it can.
  • the “sol” is a state before the gelation reaction occurs, and in this embodiment, a state in which a silicon compound (and further silica particles as necessary) is dissolved or dispersed in a solvent. .
  • the “wet gel” means a gel solid in a wet state that contains a liquid medium but does not have fluidity.
  • the sol production step is, for example, a step of producing a sol by mixing a silicon compound (if necessary, further silica particles) and a solvent, and performing a hydrolysis reaction.
  • an acid catalyst may be further added to promote the hydrolysis reaction.
  • a surfactant, a thermohydrolyzable compound, and the like can be added.
  • components such as carbon graphite, aluminum compounds, magnesium compounds, silver compounds, and titanium compounds may be added for the purpose of suppressing heat ray radiation.
  • alcohols for example, water or a mixed solution of water and alcohols can be used.
  • alcohols include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol.
  • alcohols having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, 2-propanol and the like. You may use these individually or in mixture of 2 or more types.
  • the amount of alcohols when used as the solvent, may be, for example, 4 to 8 mols or 4 to 6.5 mols with respect to 1 mol of the total amount of silicon compounds. It may be 5-6 moles.
  • the amount of alcohols 4 mol or more it becomes easier to obtain good compatibility, and by making the amount 8 mol or less, it becomes easier to suppress gel shrinkage.
  • the acid catalyst examples include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, and other inorganic acids; acidic phosphoric acid Acidic phosphates such as aluminum, acidic magnesium phosphate and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid Etc. Among these, organic carboxylic acids are mentioned as an acid catalyst which improves the water resistance of the obtained airgel more. Examples of the organic carboxylic acids include acetic acid, but may be formic acid, propionic acid, oxalic acid, malonic acid and the like. You may use these individually or in mixture of 2 or more types.
  • the addition amount of the acid catalyst can be, for example, 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. You may use these individually or in mixture of 2 or more types.
  • nonionic surfactant for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene, and the like can be used.
  • the compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound having a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
  • Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate.
  • Examples of amphoteric surfactants include amino acid surfactants, betaine surfactants, amine oxide surfactants, and the like.
  • Examples of amino acid surfactants include acyl glutamic acid.
  • Examples of betaine surfactants include lauryldimethylaminoacetic acid betaine and stearyldimethylaminoacetic acid betaine.
  • Examples of amine oxide surfactants include lauryl dimethylamine oxide.
  • surfactants are thought to act to reduce phase differences by reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer in the wet gel formation process. It is done.
  • the addition amount of the surfactant depends on the type of the surfactant or the type and amount of the silicon compound. For example, it may be 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound. It may be 5 to 60 parts by mass.
  • thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis, make the reaction solution basic, and promote the sol-gel reaction in the wet gel formation process. Accordingly, the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis.
  • Urea formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N -Acid amides such as methylacetamide and N, N-dimethylacetamide; cyclic nitrogen compounds such as hexamethylenetetramine and the like.
  • urea is particularly easy to obtain the above-mentioned promoting effect.
  • the amount of the thermally hydrolyzable compound added is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel formation step.
  • the amount added may be, for example, 1 to 200 parts by mass or 2 to 150 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound. May be. By making the addition amount 1 mass part or more, it becomes easier to obtain good reactivity, and by making it 200 mass parts or less, it becomes easier to further suppress the precipitation of crystals and the decrease in gel density.
  • the hydrolysis in the sol production step depends on the types and amounts of silicon compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, 10 minutes to 20-60 ° C. in a temperature environment.
  • the reaction may be performed for 24 hours, or in a temperature environment of 50 to 60 ° C. for 5 minutes to 8 hours.
  • the hydrolyzable functional group in a silicon compound is fully hydrolyzed, and the hydrolysis product of a silicon compound can be obtained more reliably.
  • the temperature environment of the sol generation step may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol. .
  • the temperature at this time may be any temperature as long as the hydrolysis of the thermally hydrolyzable compound can be suppressed.
  • the temperature environment in the sol production step may be 0 to 40 ° C. or 10 to 30 ° C.
  • the sol coating film forming step is a step of forming a sol coating film by applying a sol coating liquid containing the sol to an object to be insulated.
  • the sol coating liquid may be an embodiment made of the sol.
  • the sol coating solution may be a solution obtained by gelling (semi-gelling) the sol to the extent that it has fluidity.
  • the sol coating liquid may contain a base catalyst in order to promote gelation, for example.
  • Base catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Basic sodium phosphate salts such as sodium pyrophosphate and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3 -(Diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec Aliphatic amines such as butylamine, propylamine, 3-
  • the dehydration condensation reaction, the dealcoholization condensation reaction, or both of the silicon compound and silica particles in the sol can be promoted, and the sol can be gelled in a shorter time. it can. Thereby, a wet gel with higher strength (rigidity) can be obtained.
  • ammonia has high volatility and hardly remains in the airgel. Therefore, by using ammonia as a base catalyst, an airgel having better water resistance can be obtained.
  • the addition amount of the base catalyst may be, for example, 0.5 to 5 parts by mass or 1 to 4 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
  • the gelation may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the gelation temperature may be, for example, 30 to 90 ° C. or 40 to 80 ° C.
  • the gelation temperature By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time.
  • it becomes easy to suppress volatilization of a solvent (especially alcohol) by making gelation temperature into 90 degrees C or less it can gelatinize, suppressing volume shrinkage.
  • the gelation time varies depending on the gelation temperature, but when silica particles are contained in the sol, the gelation time is shortened compared to sols applied to conventional aerogels. can do.
  • the reason is presumed that the reactive group or silanol group of the silicon compound in the sol forms hydrogen bonds or chemical bonds with the silanol groups of the silica particles.
  • the gelation time may be, for example, 10 to 360 minutes or 20 to 180 minutes.
  • the gelation time is 10 minutes or more, the viscosity of the sol is moderately improved, the coating property to the heat insulation object is improved, and when it is 360 minutes or less, the sol is completely gelled. It is easy to suppress and good adhesiveness with a heat insulation target object is easy to be obtained.
  • sol coating liquid there is no particular limitation on the method of applying the sol coating liquid to the object to be insulated, and examples thereof include dip coating, spray coating, spin coating, and roll coating.
  • generation process is a process of producing
  • the sol coating film is gelled by heating the sol coating film, and then the resulting gel is aged as necessary to generate a wet gel.
  • the gel is aged in the wet gel production process, the components of the wet gel are strongly bound, and as a result, a wet gel with sufficient strength (rigidity) to suppress shrinkage during drying is easily obtained. .
  • the heating temperature and aging temperature in the wet gel production step may be, for example, 30 to 90 ° C. or 40 to 80 ° C.
  • the heating temperature or aging temperature may be, for example, 30 to 90 ° C. or 40 to 80 ° C.
  • a wet gel with higher strength (rigidity) can be obtained, and by setting the heating temperature or aging temperature to 90 ° C. or lower, the solvent (particularly alcohols) Since it becomes easy to suppress volatilization, it can be gelled while suppressing volume shrinkage.
  • the washing and solvent replacement step is a step of washing the wet gel obtained by the wet gel generation step (washing step), and a step of replacing the washing liquid in the wet gel with a solvent suitable for the drying conditions (the drying step described later). It is a process which has (solvent substitution process).
  • the washing and solvent replacement step can be performed in a form in which only the solvent replacement step is performed without performing the step of washing the wet gel, but the impurities such as unreacted substances and by-products in the wet gel are reduced, and more
  • the wet gel may be washed from the viewpoint of enabling the production of a highly pure airgel.
  • the solvent replacement step is not necessarily essential as described later.
  • the wet gel obtained in the wet gel production step is washed.
  • the washing can be repeatedly performed using, for example, water or an organic solvent. At this time, washing efficiency can be improved by heating.
  • organic solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran,
  • organic solvents such as methylene chloride, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid and formic acid can be used. You may use said organic solvent individually or in mixture of 2 or more types.
  • a low surface tension solvent can be used in order to suppress gel shrinkage due to drying.
  • low surface tension solvents generally have very low mutual solubility with water. Therefore, when using a low surface tension solvent in the solvent replacement step, examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a low surface tension solvent. Note that the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step.
  • examples of hydrophilic organic solvents include methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone. Methanol, ethanol, methyl ethyl ketone and the like are excellent in terms of economy.
  • the amount of water or the organic solvent used in the washing step can be an amount that can be washed by sufficiently replacing the solvent in the wet gel.
  • the amount can be, for example, 3 to 10 times the volume of the wet gel.
  • the washing can be repeated, for example, until the moisture content in the wet gel after washing is 10% by mass or less with respect to the mass of silica.
  • the temperature environment in the washing step can be a temperature below the boiling point of the solvent used for washing.
  • the temperature may be about 30 to 60 ° C.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage in the drying step described later.
  • the replacement efficiency can be improved by heating.
  • Specific examples of the solvent for substitution include a low surface tension solvent described later in the drying step when drying is performed under atmospheric pressure at a temperature lower than the critical point of the solvent used for drying.
  • examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, and the like, or a mixture of two or more thereof.
  • Examples of the low surface tension solvent include those having a surface tension at 20 ° C. of 30 mN / m or less. The surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • Examples of the low surface tension solvent include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-ch
  • aliphatic hydrocarbons hexane, heptane, etc.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane
  • it can be used as the organic solvent in the washing step.
  • a solvent having a boiling point at normal pressure of 100 ° C. or less may be used because it is easier to dry in the drying step described later. You may use said solvent individually or in mixture of 2 or more types.
  • the amount of the solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be, for example, 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature not higher than the boiling point of the solvent used for the replacement.
  • the temperature may be about 30 to 60 ° C.
  • the solvent replacement step is not essential when the silica particles are contained in the gel.
  • the inferred mechanism is as follows.
  • silica particles are not contained, it is preferable to replace the wet gel solvent with a predetermined replacement solvent (a low surface tension solvent) in order to suppress shrinkage in the drying step.
  • a predetermined replacement solvent a low surface tension solvent
  • the silica particles function as a support for a three-dimensional network-like skeleton, whereby the skeleton is supported, and it is considered that the shrinkage of the gel in the drying process is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. In this way, although the drying process can be simplified from the washing and solvent replacement process, it is not excluded at all to perform the solvent replacement process.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying, or freeze drying can be used.
  • atmospheric drying or supercritical drying can be used from the viewpoint of easy production of low density airgel.
  • atmospheric pressure drying can be used.
  • the normal pressure means 0.1 MPa (atmospheric pressure).
  • the airgel according to the present embodiment can be obtained, for example, by drying a wet gel that has been washed and (if necessary) solvent-substituted at a temperature below the critical point of the solvent used for drying under atmospheric pressure.
  • the drying temperature varies depending on the type of substituted solvent (the solvent used for washing if solvent substitution is not performed), but especially when drying at a high temperature increases the evaporation rate of the solvent and causes large cracks in the gel.
  • the temperature may be 20 to 150 ° C. or 60 to 120 ° C.
  • the drying time varies depending on the wet gel volume and the drying temperature, but can be, for example, 4 to 120 hours.
  • it is also included in the atmospheric pressure drying that the drying is accelerated by applying a pressure less than the critical point within a range not inhibiting the productivity.
  • pre-drying may be performed before the drying process from the viewpoint of suppressing airgel cracks due to rapid drying.
  • the pre-drying temperature may be, for example, 60 to 180 ° C. or 90 to 150 ° C.
  • the pre-drying time varies depending on the volume of the airgel and the drying temperature, but may be, for example, 1 to 30 minutes.
  • the drying method in the drying step may be, for example, supercritical drying.
  • Supercritical drying can be performed by a known method.
  • the supercritical drying method include a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel.
  • all or part of the solvent contained in the wet gel is obtained by immersing the wet gel in liquefied carbon dioxide, for example, at about 20 to 25 ° C. and about 5 to 20 MPa. And carbon dioxide having a lower critical point than that of the solvent, and then removing carbon dioxide alone or a mixture of carbon dioxide and the solvent.
  • the airgel obtained by such normal pressure drying or supercritical drying may be further dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This makes it easier to obtain an airgel having a low density and having small pores. Additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • the coating process includes, for example, a liquid preparation process for preparing a coating liquid containing a coating material and a solvent, an infiltration process for infiltrating the obtained coating liquid into the airgel, and removing the solvent from the infiltrated coating liquid.
  • a solvent removal step for example, a liquid preparation process for preparing a coating liquid containing a coating material and a solvent, an infiltration process for infiltrating the obtained coating liquid into the airgel, and removing the solvent from the infiltrated coating liquid.
  • a coating solution is prepared by adding a coating material in a solvent.
  • a solvent an organic solvent can be used from the viewpoint of permeability to the airgel.
  • an organic solvent having a low vapor pressure can be used from the viewpoint of easy removal of the solvent in the subsequent step at a low temperature, and an organic solvent having a boiling point of 100 ° C. or less can be used.
  • methanol, ethanol, isopropyl alcohol, 1,4-dioxane, dichloromethane, benzene, cyclohexane, methyl acetate, ethyl acetate, acetone, methyl ethyl ketone, and the like can be used as the organic solvent.
  • the content (solid content) of the coating material in the coating liquid can be 1% by mass or more from the viewpoint of forming a coating having an appropriate thickness, but may be 5% by mass or more. Although it can be made into the mass% or less, it may be 20 mass% or less. That is, the content of the coating material can be 1 to 40% by mass, but may be 5 to 20% by mass.
  • the viscosity of the coating solution can be 35 mPa ⁇ s or less at 25 ° C. from the viewpoint of sufficiently ensuring the permeability to the airgel. From the same viewpoint, the viscosity may be 20 mPa ⁇ s or less, or 10 mPa ⁇ s or less. Although the minimum of the said viscosity is not specifically limited, From a viewpoint of the likelihood of the process of an osmosis
  • the viscosity can be measured with an E-type viscometer, a vibration viscometer or the like.
  • the prepared coating liquid is permeated so as to be sufficiently distributed in the voids inside the airgel.
  • Specific examples include a dipping method in which an airgel is immersed in a coating liquid, and an application method in which the coating liquid is applied to the airgel.
  • the permeation method is not limited and may be any suitable method depending on the size, shape, etc. of the airgel.
  • the coating liquid diluted moderately is used so that a coating liquid osmose
  • this step is not based on the idea of providing a resin layer or the like on the surface of the airgel, but based on the idea that the coating material is infiltrated into the airgel and the skeleton of the airgel is strengthened.
  • the time for allowing the coating liquid to penetrate depends on the viscosity of the coating liquid, the wettability of the airgel, etc., but it cannot be said unconditionally, but can be at least 5 seconds or more, and 10 seconds or more. It may be 30 seconds or more. Although there is no particular problem even if the infiltration time is long, it can be about 1 minute from the viewpoint of work efficiency.
  • a coating method a die coater, a comma coater, a bar coater, a kiss coater, a roll coater or the like can be used as a coating method (coating machine).
  • the coating amount can be 90 to 120% of the airgel volume from the viewpoint of sufficiently filling the airgel voids with the coating liquid. If the coating amount is 90% or more, it is easy to suppress the treatment spots on the airgel, and if it is 120% or less, it is difficult for excess resin to remain on the airgel composite after removing the solvent.
  • the temperature in the infiltration step can be appropriately adjusted so that the coating liquid can easily penetrate into the airgel according to the type of coating material, the content of the coating material in the coating liquid, and the like.
  • the permeation process can be more suitably performed by adjusting the temperature so that the viscosity of the coating liquid when the coating liquid permeates into the airgel is 35 mPa ⁇ s or less.
  • the temperature can be 0 to 80 ° C., for example, 10 to 60 ° C., or 20 to 40 ° C. .
  • solvent removal step In this step, the solvent in the coating solution is removed from the airgel that has penetrated the coating solution. Thereby, in the airgel, the surface of the skeleton formed by the airgel particles is covered with the coating material while the porous structure is maintained.
  • the removal of the solvent depends on the thickness of the airgel, the type of coating material, etc., but cannot be generally stated, but it can be performed at a heating temperature of 50 to 150 ° C. from the viewpoint of easy control of the evaporation rate of the solvent. .
  • the heating temperature may be 60 to 120.
  • the heating time varies depending on the heating temperature, it can be set to 1 to 18 hours from the viewpoint of sufficiently heating the inside of the airgel having heat transfer suppressing property while ensuring the working efficiency. There may be.
  • the heat treatment may be performed in multiple stages from the viewpoint of suppressing the destruction of the airgel due to foaming accompanying the volatilization of the solvent.
  • first-stage heating low-temperature heating
  • second-stage heating high-temperature heating
  • the heating temperature and the heating time may be appropriately set within the above range.
  • barrier layer forming step for example, a composition for forming a barrier layer containing a barrier layer forming material is brought into contact with the airgel composite, and then heated and dried as necessary to obtain an airgel. A barrier layer is formed on the composite. When the other layer is provided on the airgel composite, the barrier layer-forming composition may be brought into contact with the other layer. In addition, unlike the said coating process, this process does not aim at making the composition for barrier layer formation osmose
  • the viscosity of the composition may be at least over 35 mPa ⁇ s at 25 ° C.
  • the content of the barrier layer forming material may be about 40% by mass, or
  • the barrier layer forming composition may have a viscosity of about 10 mPa ⁇ s.
  • the contact method can be appropriately selected depending on the type of the composition for forming the barrier layer, the thickness of the barrier layer, the water repellency of the airgel composite, and the like.
  • Examples of the contact method include dip coating, spray coating, spin coating, roll coating and the like.
  • spray coating can be suitably used from the viewpoint that the penetration of the composition for forming a barrier layer into the airgel is easily suppressed.
  • heat treatment may be performed from the viewpoint of drying and fixing the barrier layer forming composition, and washing or drying may be performed from the viewpoint of removing impurities.
  • the heat-insulated body of the present embodiment described as described above includes an airgel composite that is an airgel whose skeleton is reinforced by a coating material on an object to be heat-insulated. Therefore, the airgel itself has excellent low thermal conductivity, and has toughness that allows the low thermal conductivity to be expressed over a long period of time. Because of such advantages, the airgel composite of the present embodiment is used as a heat insulating material in various environments such as a cryogenic container, a space field, an architectural field, an automobile field, a home appliance field, a semiconductor field, an industrial facility, and the like. Applicable to.
  • sol coating solution 200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed. 40.0 parts by mass of a bifunctional alkoxy-modified polysiloxane compound (hereinafter referred to as “polysiloxane compound A”) represented by the above general formula (B) as a polysiloxane compound and MTMS of 60. 0 parts by mass was added and reacted at 25 ° C. for 2 hours. Thereafter, a sol-gel reaction was performed at 60 ° C. for 2 hours to obtain a sol coating solution.
  • polysiloxane compound A bifunctional alkoxy-modified polysiloxane compound represented by the above general formula (B) as a polysiloxane compound and MTMS of 60.
  • the “polysiloxane compound A” was synthesized as follows. First, 100.0 mass of dimethylpolysiloxane (product name: XC96-723, manufactured by Momentive) having silanol groups at both ends in a 1 L three-necked flask equipped with a stirrer, a thermometer, and a Dimroth condenser. Parts, 181.3 parts by mass of methyltrimethoxysilane and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
  • dimethylpolysiloxane product name: XC96-723, manufactured by Momentive
  • Fumed silica (Nippon Aerosil Co., Ltd., Aerosil (registered trademark) R972) is mixed with AZ NL120A-20 (manufactured by AZ Electronic Materials Manufacturing Co., Ltd., product name) containing perhydropolysilazane, and a barrier layer A forming composition was obtained.
  • content of fumed silica with respect to the whole volume of a barrier layer was 5 volume%.
  • Example 1 The aluminum alloy plate was immersed in a sol coating solution placed in a vat and then taken out and gelled at 60 ° C. for 30 minutes to obtain a structure having a gel layer thickness of 100 ⁇ m. Thereafter, the obtained structure was transferred to a sealed container and aged at 60 ° C. for 12 hours.
  • the aged structure was immersed in 2000 mL of water and washed for 30 minutes. Next, it was immersed in 2000 mL of methanol and washed at 60 ° C. for 30 minutes. Washing with methanol was performed twice more while exchanging with fresh methanol. Next, it was immersed in 2000 mL of methyl ethyl ketone, and solvent substitution was performed at 60 ° C. for 30 minutes. Washing with methyl ethyl ketone was performed twice more while exchanging with new methyl ethyl ketone.
  • the airgel having the structure represented by the above general formulas (2) and (3) is formed on the aluminum alloy plate by drying the washed and solvent-substituted structure at 120 ° C. for 6 hours under normal pressure. Formed.
  • the aluminum alloy plate on which the airgel was formed was taken out after being immersed in a coating solution (resin content: 5% by mass) in a bat for 10 seconds. At this time, the excessive coating solution was wiped off.
  • the temperature of the coating solution when the coating solution was permeated into the airgel was 25 ° C. This was put into a drier and heated at 90 ° C. for 1 hour and then at 150 ° C. for 1 hour to form an airgel composite on the aluminum alloy plate to obtain an evaluation sample.
  • Example 2 An evaluation sample was obtained in the same manner as in Example 1 except that the coating liquid was changed as shown in Table 1.
  • Example 5 In the same manner as in Example 3, an airgel composite was formed on an aluminum alloy plate. Then, after apply
  • Example 1 In the same manner as in Example 1, an airgel was formed on an aluminum alloy plate, and then the coating solution was not permeated and used as an evaluation sample.
  • Comparative Example 2 In the same manner as in Comparative Example 1, an airgel was formed on an aluminum alloy plate. Thereafter, in the same manner as in Example 5, a barrier layer was formed on the airgel to obtain an evaluation sample.
  • the density of the airgel complex was measured.
  • An airgel composite or airgel (thickness 50 ⁇ m) was formed on the aluminum foil according to the above procedure, and the density was measured using this as a measurement sample.
  • the density was measured according to the geometric measurement method of JIS Z 8807.
  • the volume was 5 cm ⁇ 5 cm ⁇ 50 ⁇ m (measured with calipers), the weight was weighed with an electronic balance, and the density of the measurement sample was calculated.
  • the measurement results are shown in Table 2. In the table, Comparative Examples 1 and 2 indicate the density of the airgel.
  • the transmittance of the airgel composite with respect to light having a wavelength of 500 to 700 nm was measured.
  • An airgel composite or airgel (thickness 50 ⁇ m) was formed on the slide glass in accordance with the above procedure, and the transmittance was measured using this as a measurement sample.
  • the transmittance was measured according to JIS K 0115.
  • the measurement results are shown in Table 2.
  • surface is a result of wavelength 700nm, 600nm, 500nm from the left.
  • permeability (%) of the slide glass and the silicone resin was 88, 88, 88, respectively.
  • Comparative Examples 1 and 2 show the airgel transmittance.
  • the airgel composites of the examples had excellent toughness.
  • FIG. 2 is a cross-sectional SEM photograph of the airgel composite obtained in Example 3
  • FIG. 3 is a cross-sectional SEM photograph of the airgel obtained in Comparative Example 1.
  • the former it is understood that the surface of the skeleton (aerogel formed by the airgel particles) is covered with the coating while the three-dimensional network skeleton of the airgel is maintained.
  • the airgel composites of the examples are expected to maintain good heat insulating properties.
  • SYMBOLS 1 Thermal insulation object, 2 ... Airgel composite, 2a ... Aerogel, 2b ... Coating, 10 ... Insulation object.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicon Polymers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明は、エアロゲルに、コーティング材料及び溶媒を含むコーティング液を浸透させる工程と、浸透させたコーティング液から溶媒を除去する工程と、を備える、エアロゲル複合体の製造方法に関する。

Description

エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体
 本発明は、エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体に関する。
 低熱伝導性の材料としてエアロゲルが知られている。エアロゲルは微細多孔質の構造を有することで、内部において空気をはじめとする気体の移動が抑制され、低熱伝導が達成されている。エアロゲルのこのような特性を活かした断熱部材として、シート状のエアロゲルを備える断熱シートが開発されている(例えば、下記特許文献1)。
特開2010-167685号公報
 ところで、エアロゲルはナノサイズの微粒子の集合体と言ってもよく、使用に際しては、エアロゲル表面から脱離した微粒子により発塵する問題(粉落ち)がある。また、エアロゲルの骨格自体が脆くなり易く、十分な耐久力に欠けるという問題がある。これらの問題は、結局のところ断熱部材としての機能の低下を招く。一般に、断熱部材は長期にわたり対象物を断熱する必要があるため、エアロゲルが断熱部材として長期にわたり十分なパフォーマンスを発揮することは難しいのが現状である。
 特許文献1では、主として発塵の問題に対処するべく、エアロゲルシートを、樹脂コートされたガラス繊維製布帛等で挟み込み、積層体として断熱の用に供している。
 しかしながら、特許文献1の技術では、エアロゲル表面から外部への発塵を抑制することはできたとしても、発塵自体を抑制できている訳ではない。また、エアロゲルシート自体の脆さは改善されていないため、外部からの衝撃によりエアロゲルの骨格自体が破壊される虞がある。このように、従来の技術では、エアロゲルの優れた低熱伝導性が容易に失われ得るため、エアロゲルの強靭化が求められている。
 本発明は、上記の事情に鑑みてなされたものであり、優れた靱性を有するエアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体を提供することを目的とする。
 本発明は、エアロゲルに、コーティング材料及び溶媒を含むコーティング液を浸透させる工程と、浸透させたコーティング液から溶媒を除去する工程と、を備える、エアロゲル複合体の製造方法を提供する。このような方法により得られるエアロゲル複合体は優れた靱性を有している。
 本発明において、コーティング液の、25℃における粘度は35mPa・s以下であってもよい。これにより良好なコーティングを形成することができる。
 本発明において、コーティング材料は熱硬化性樹脂を含むことができる。これにより良好なコーティングを形成することができる。
 本発明において、エアロゲルが、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。このようなエアロゲルは、断熱性及び柔軟性を有すると共に、施工性にも優れる。
 本発明はまた、エアロゲルと、エアロゲル内部の空隙を形成するエアロゲル粒子の表面の少なくとも一部を被覆するコーティングと、を有するエアロゲル複合体を提供する。このようなエアロゲル複合体は優れた靱性を有している。
 本発明において、エアロゲル複合体の密度は0.30~1.15g/cmとすることができる。これにより、エアロゲル複合体の靱性及び断熱性がより向上する。
 本発明において、エアロゲル複合体の、波長700nmの光に対する透過率が15%以下であってもよい。これにより、エアロゲル複合体の断熱性がより向上する。
 本発明はさらに、断熱対象物に、上記のエアロゲル複合体を備える被断熱体を提供する。靱性に優れるエアロゲル複合体を用いた被断熱体であるため、優れた低熱伝導性が容易に失われ難い。
 本発明によれば、優れた靱性を有するエアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体を提供することができる。
本実施形態の被断熱体を模式的に示す断面図である。 実施例3で得られたエアロゲル複合体の断面SEM写真である。 比較例1で得られたエアロゲルの断面SEM写真である。
 以下、場合により図面を参照しつつ本開示の好適な実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
<被断熱体>
 本実施形態の被断熱体では、断熱対象物上にエアロゲル複合体が形成されている。図1は、本実施形態の被断熱体を模式的に示す断面図である。図1に示すように、被断熱体10では、断熱対象物1上に断熱層としてエアロゲル複合体2が形成されている。エアロゲル複合体2は、エアロゲル2aと、エアロゲル2a内部の空隙を形成するエアロゲル粒子の表面の少なくとも一部を被覆するコーティング2bと、を有する。エアロゲル2aは、エアロゲル粒子から構成される三次元的に微細な網目状の骨格を有しており、当該骨格には多数の空隙が存在している。すなわち、エアロゲル複合体2においては、当該三次元網目状の骨格が保たれたまま、骨格(エアロゲル粒子により形成されるエアロゲル2a)の表面の少なくとも一部が、コーティング2bで被覆されている。
 エアロゲル複合体2は、断熱対象物1上の少なくとも一部(一部又は全体)に設けることができる。被断熱体10は、断熱対象物1とエアロゲル複合体2とが直接一体的に接合されていてもよく、断熱対象物1とエアロゲル複合体2とがプライマ層等の他の層を介して接合されていてもよい。
 被断熱体10は、エアロゲル複合体2上に、さらにバリア層(図示せず)を備えていてもよい。
(断熱対象物)
 断熱対象物を構成する材料としては、金属、セラミックス、ガラス、樹脂、これらの複合材料等が挙げられる。すなわち、断熱対象物は、金属、セラミックス、ガラス及び樹脂からなる群より選択される少なくとも一種を含むことができる。断熱対象物の形態としては、使用する目的又は材料に応じて、ブロック状、シート状、パウダー状、球状、繊維状等が採用できる。
 上記金属としては、金属の単体、金属の合金、酸化被膜が形成された金属等が挙げられる。金属元素としては、鉄、銅、ニッケル、アルミニウム、亜鉛、チタン、クロム、コバルト、スズ、金、銀等が挙げられる。後述のゾル生成工程で使用する材料への耐食性に優れる観点から、金属として、チタン、金、銀等の単体、酸化被膜が形成された鉄及びアルミニウム等を用いることができる。
 上記セラミックスとしては、アルミナ、チタニア、ジルコニア、マグネシア等の酸化物、窒化ケイ素、窒化アルミニウム等の窒化物、炭化ケイ素、炭化ホウ素等の炭化物、これらの混合物などが挙げられる。
 上記ガラスとしては、石英ガラス、ソーダガラス、ホウケイ酸ガラス等が挙げられる。
 上記樹脂としては、ポリ塩化ビニル、ポリビニルアルコール、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアセタール、ポリメチルメタクリレート、ポリカーボネート、ポリアミド、ポリウレタン等が挙げられる。
 表面粗さが大きい断熱対象物、又は、多孔質構造の断熱対象物を用いることにより、良好なアンカー効果が得られるため、エアロゲル複合体との密着性を更に向上させることができる。断熱対象物1の表面粗さRaは、このような観点から100nm以上であってもよく、500nm以上であってもよい。断熱対象物が多孔質構造である場合、断熱性を更に向上する観点から、多孔質構造が有する孔が連通孔である態様、さらに当該孔の体積の合計が断熱対象物の全体積のうち50~99体積%である態様を採用し得る。なお、表面粗さRaは次のように測定することができる。すなわち、JIS B0601に準拠し、光学式表面粗さ計(Veeco Metrogy Group製、Wyko NT9100)を用いて、表面の算術平均粗さを測定することができる。
(エアロゲル複合体)
・エアロゲルの定義
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。一般的に、エアロゲル2aは、その内部に網目状の微細構造を有しており、2~20nm程度のエアロゲル粒子(エアロゲルを構成する粒子)が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔(空隙)がある。これにより、エアロゲル2aは、三次元的に微細な多孔性の構造が形成されている。なお、本実施形態に係るエアロゲル2aは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。
・エアロゲルの原料
 エアロゲルは、種々のケイ素化合物を原料として得られる。具体的には、エアロゲルとしては、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの)が挙げられる。なお、上記縮合物は、加水分解性の官能基を有するケイ素化合物の加水分解により得られた加水分解生成物の縮合反応により得られてもよく、加水分解により得られた官能基ではない縮合性の官能基を有するケイ素化合物の縮合反応により得られてもよい。ケイ素化合物は、加水分解性の官能基及び縮合性の官能基の少なくとも一方を有していればよく、加水分解性の官能基及び縮合性の官能基の双方を有していてもよい。
 ケイ素化合物は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含むことができる。すなわち、上記のケイ素化合物を含有するゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ポリシロキサン化合物群」という)を含有することができる。
 加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基(加水分解性の官能基に該当する官能基を除く)としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲルの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基はゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲルの柔軟性をより向上する観点から2~4であってもよい。
 ヒドロキシアルキル基を有するポリシロキサン化合物としては、例えば、下記一般式(A)で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、一般式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、一般式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、一般式(A)中、R1aとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としては、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、一般式(A)中、R2aとしては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、プロピレン基等が挙げられる。また、一般式(A)中、R3a及びR4aとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、一般式(A)中、nは2~30とすることができるが、5~20であってもよい。
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。
 アルコキシ基を有するポリシロキサン化合物としては、例えば、下記一般式(B)で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 一般式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、一般式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、一般式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、一般式(B)中、R1bとしては、炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としては、メチル基、メトキシ基、エトキシ基等が挙げられる。また、一般式(B)中、R2b及びR3bとしては、それぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。また、一般式(B)中、R4b及びR5bとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、一般式(B)中、mは2~30とすることができるが、5~20であってもよい。
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、例えば、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物とは混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 これら、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 ケイ素化合物は、ポリシロキサン化合物以外のケイ素化合物を含んでいてもよい。すなわち、本実施形態のゾルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ケイ素化合物群」という)を含有することができる。ケイ素化合物における分子内のケイ素数は1又は2とすることができる。
 加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドの中でも、加水分解性の官能基の数が3個以下のものは耐水性をより向上することができる。このようなアルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン等が挙げられる。
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール、トリフルオロプロピルシラントリオール等が挙げられる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物は、加水分解性の官能基及び縮合性の官能基とは異なる、上述の反応性基を更に有していてもよい。
 加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 また、縮合性の官能基を有し、反応性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。
 また、分子末端の加水分解性の官能基の数が3個以下のケイ素化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン、エチルトリメトキシシラン、ビニルトリメトキシシラン等も用いることができる。
 これら、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物は、単独で、あるいは2種類以上を混合して用いてもよい。
 ポリシロキサン化合物群及びケイ素化合物群の含有量の総和は、ゾルの総量100質量部に対し、5質量部以上とすることができ、10質量部以上であってもよい。当該含有量の総和は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよい。すなわち、ポリシロキサン化合物群及びケイ素化合物群の含有量の総和は、ゾルの総量100質量部に対し、5~50質量部とすることができるが、さらに10~30質量部としてもよい。5質量部以上にすることにより良好な反応性をさらに得易くなり、また、50質量部以下にすることにより良好な相溶性をさらに得易くなる。
 本実施形態のエアロゲルは、シリカ粒子を含有していてもよい。すなわち、エアロゲルを与えるゾルは、シリカ粒子を更に含有していてもよく、本実施形態のエアロゲルは、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。
 シリカ粒子としては、特に制限なく用いることができるが、例えば非晶質シリカ粒子が挙げられる。非晶質シリカ粒子としては、例えば、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子が挙げられる。これらのうち、コロイダルシリカ粒子は、単分散性が高く、ゾル中での凝集を抑制し易い。
 シリカ粒子の形状としては、特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなることから、1nm以上とすることができ、5nm以上であってもよく、10nm以上であってもよい。一方、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなることから、シリカ粒子の平均一次粒子径は、500nm以下とすることができ、300nm以下であってもよく、250nm以下であってもよい。すなわち、シリカ粒子の平均一次粒子径は、1~500nmとすることができ、5~300nmであってもよく、10~250nmであってもよい。なお、シリカ粒子の平均一次粒子径は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いた観察により測定することができる。
 適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなることから、上記ゾルに含まれるシリカ粒子の含有量は、ゾルの総量100質量部に対し、1質量部以上とすることができ、4質量部以上であってもよい。シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなることから、上記ゾルに含まれるシリカ粒子の含有量は、20質量部以下とすることができ、15質量部以下であってもよく、12質量部以下であってもよく、10質量部以下であってもよく、8質量部以下であってもよい。すなわち、シリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部とすることができ、4~15質量部であってもよく、4~12質量部であってもよく、4~10質量部であってもよく、4~8質量部であってもよい。
・エアロゲルの構造
 本実施形態のエアロゲルは、シロキサン結合(Si-O-Si)を含む主鎖を有するポリシロキサンを含有することができる。エアロゲルは、構造単位として、下記M単位、D単位、T単位又はQ単位を有することができる。
Figure JPOXMLDOC01-appb-C000003
 上記式中、Rは、ケイ素原子に結合している原子(水素原子等)又は原子団(アルキル基等)を示す。M単位は、ケイ素原子が1個の酸素原子と結合した一価の基からなる単位である。D単位は、ケイ素原子が2個の酸素原子と結合した二価の基からなる単位である。T単位は、ケイ素原子が3個の酸素原子と結合した三価の基からなる単位である。Q単位は、ケイ素原子が4個の酸素原子と結合した四価の基からなる単位である。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。
 本実施形態のエアロゲルとしては、以下に示す構造等を有するものが挙げられる。エアロゲルがこれらの構造を有することにより、優れた熱伝導率及び圧縮弾性率を発現し易くなる。なお、本実施形態においては、エアロゲルは以下に示す構造をいずれも有していてもよい。
 本実施形態のエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態のエアロゲルは、一般式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。上記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(1)及び一般式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 一般式(1)及び一般式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。一般式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。一般式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記一般式(1)又は一般式(1a)で表される構造をエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルとなる。このような観点から、一般式(1)及び一般式(1a)中、R及びRとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、一般式(1)及び一般式(1a)中、R及びRとしては、それぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、プロピレン基等が挙げられる。一般式(1a)中、pは2~30とすることができ、5~20であってもよい。
 本実施形態のエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有するエアロゲルであり、かつ橋かけ部が下記一般式(2)で表されるエアロゲルであってもよい。エアロゲルの骨格中にこのようなラダー型構造を導入することにより、耐熱性と機械的強度を向上させることができる。上記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)で表される橋かけ部を有するラダー型構造をエアロゲルの骨格中に導入することができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲル骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、一般式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。シルセスキオキサンは、組成式:(RSiO1.5を有するポリシロキサンであり、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。下記一般式(X)に示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-(構造単位として上記T単位を有する)であるが、本態様のエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。ただし、本実施形態のエアロゲルは、一般式(1)~(3)で表される構造に加え、さらにシルセスキオキサンに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000007
 一般式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 一般式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、一般式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、一般式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、一般式(2)及び(3)中、R、R、R及びR(ただし、R及びRは一般式(3)中のみ)としては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、一般式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、さらに10~1000としてもよい。また、一般式(2)及び(3)中、bは、2~30とすることができるが、さらに5~20としてもよい。
 本実施形態のエアロゲルは、下記一般式(4)で表される構造を有することができる。本実施形態のエアロゲルは、シリカ粒子を含有すると共に、下記一般式(4)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000009
 一般式(4)中、Rはアルキル基を示す。ここで、アルキル基としては、炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。
 本実施形態のエアロゲルは、下記一般式(5)で表される構造を有することができる。本実施形態のエアロゲルは、シリカ粒子を含有すると共に、下記一般式(5)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000010
 一般式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては、炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。
 本実施形態のエアロゲルは、下記一般式(6)で表される構造を有することができる。本実施形態のエアロゲルは、シリカ粒子を含有すると共に、下記一般式(6)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000011
 一般式(6)中、R12はアルキレン基を示す。ここで、アルキレン基としては、炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、ヘキシレン基等が挙げられる。
・コーティング
 コーティングを形成する材料(コーティング材料)としては、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、シリコーン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂等が挙げられる。これらのうち、耐熱性と高強度という観点から、コーティング材料としてシリコーン樹脂、エポキシ樹脂、フェノール樹脂等を用いることができる。
 シリコーン樹脂としては特に限定されず、オイル系シリコーン、エラストマー系シリコーン、レジン系シリコーン、シラン系シリコーン等の種々のシリコーン樹脂が挙げられる。具体的には、アミノ変性シロキサン、エポキシ変性シロキサン、フェノール変性シロキサン、メタクリレート変性シロキサン、アルコキシ変性シロキサン、カルビノール変性シロキサン、ビニル変性シロキサン、チオール変性シロキサン等が挙げられる。製品名であれば、RSN-0409、RSN-0431、RSN-0804、RSN-0805、RSN-0806、RSN-0808、RSN-0840等(東レ・ダウコーニング社製)、KF-8010、X-22-161A、KF-105、X-22-163A、X-22-169AS、KF-6001、KF-2200、X-22-164A、X-22-162C、X-22-167C、X-22-173BX等(信越化学工業株式会社製)が挙げられる。なお、種類、分子量、官能基等が異なる2種以上のシリコーン樹脂を、適当な割合で混合したシリコーン樹脂を使用することもできる。
 シリコーン樹脂の硬化剤としては、酸、塩基、金属触媒等が挙げられる。具体的には、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、プロピオン酸等の酸、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア、ジメチルアミン、アニリン、アミン変性シロキサン等の塩基、ナフテン酸亜鉛、オクチル酸亜鉛、ナフテン酸マンガン、ナフテン酸コバルト、オクチル酸コバルト等の金属触媒などが挙げられる。これらは単独で用いても、2種以上を併用してもよい。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の多官能エポキシ樹脂が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
 エポキシ樹脂の硬化剤としては、フェノール樹脂、酸無水物、アミン類、イミダゾール類、ホスフィン類等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
 フェノール樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール樹脂等が挙げられる。
 酸無水物としては、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート等が挙げられる。
 アミン類としては、例えば、ジシアンジアミド、脂環式ポリアミン、脂肪族ポリアミン、アニリンホルムアルデヒド縮合物等が挙げられる。
 イミダゾール類としては、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、エポキシ樹脂とイミダゾール類の付加体等が挙げられる。
 ホスフィン類としては、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート、テトラフェニルホスホニウム(4-フルオロフェニル)ボレート等が挙げられる。
 フェノール樹脂としては、エポキシ樹脂の硬化剤として挙げられたものを使用することができる。すなわち、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール樹脂等が挙げられる。
 コーティング材料としては、また、ポリシラザンが挙げられる。ポリシラザンの構造は下記一般式(P)で示すことができる。
Figure JPOXMLDOC01-appb-C000012
 一般式(P)中、R、R、Rはそれぞれ独立に水素又は置換基を有していてもよいアルキル基、アリール基、アルケニル基、シクロアルキル基、アルコキシ基等を示す。nは2~1000とすることができる。
 ポリシラザンを水と反応させることにより酸化ケイ素が得られる。ポリシラザンを原料として得られる酸化ケイ素には、ポリシラザンと水との反応の程度により、Si-Oで表される結合、Si-Nで表される結合、Si-Hで表される結合及びN-Hで表される結合等を含有し得る。ポリシラザンとしては、パーヒドロポリシラザン(ペルヒドロポリシラザン)、メチルヒドロポリシラザン等のオルガノポリシラザン、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン等が挙げられる。耐熱性、入手容易性、緻密なコーティングを得られる等の観点から、ポリシラザンとしてパーヒドロポリシラザンを用いることができる。ポリシラザンの平均分子量は100~50000g/mol程度とすることができる。
・エアロゲル複合体の物性
 エアロゲル複合体の密度は強靭化と断熱特性の両立という観点から、0.30g/cm以上とすることができるが、0.50g/cm以上であってもよく、0.70g/cm以上であってもよく、また1.15g/cm以下とすることができるが、1.10g/cm以下であってもよく、1.00g/cm以下であってもよい。すなわち、エアロゲル複合体の密度は、0.30~1.15g/cmとすることができるが、0.50~1.10g/cmであってもよく、0.70~1.00g/cmであってもよい。密度は、例えば、比重計により、あるいはサンプル測長及び重量測定をすることにより、測定することができる。
 波長700nmの光に対するエアロゲル複合体の透過率は、強靭化と断熱特性の両立という観点から、15%以下とすることができるが、10%以下であってもよく、5%以下であってもよく、3%以下であってもよい。当該透過率の下限は特に限定されないが、0とすることができる。透過率は、分光光度計、ヘーズメーター等により測定することができる。
 エアロゲル複合体中のエアロゲルの含有量は、好適な断熱性を発現するという観点から、30質量%以上とすることができるが、40質量%以上であってもよく、また90質量%以下とすることができるが、80質量%以下であってもよい。すなわち、エアロゲルの含有量は、30~90質量%とすることができるが、40~80質量%であってもよい。また、エアロゲル複合体中のコーティングの含有量は、断熱性の低下を抑制するという観点から、1質量%以上とすることができるが、5質量%以上であってもよく、また60質量%以下とすることができるが、50質量%以下であってもよい。すなわち、コーティングの含有量は、1~60質量%とすることができるが、5~50質量%であってもよい。
 エアロゲル複合体の厚さは、良好な断熱性を得易くなることから、1μm以上であってもよく、10μm以上であってもよく、30μm以上であってもよい。エアロゲル複合体の厚さは、後述の洗浄及び溶媒置換工程並びに乾燥工程を短縮できる観点から、1000μm以下であってもよく、200μm以下であってもよく、100μm以下であってもよい。これらの観点から、エアロゲル複合体の厚さは、1~1000μmであってもよく、10~200μmであってもよく、30~100μmであってもよい。
(バリア層)
 バリア層は、エアロゲル複合体の脆性改善、耐油性向上等を目的として形成される。バリア層を形成する材料(バリア層形成材料)としては、ポリシラザンと水との反応物、シロキサン系化合物等が挙げられる。
 ポリシラザンとしては上述のポリシラザンを用いることができる。
 シロキサン系化合物は、シロキサン結合(Si-O-Si結合)を有する化合物である。シロキサン系化合物としては、例えば、シロキサン結合(Si-O-Si結合)を有するポリマ又はオリゴマが挙げられる。シロキサン系化合物の具体例は、シリコーン(シリコン樹脂)、加水分解性の官能基を有する有機ケイ素化合物の縮合物、及びシリコーン変性されたポリマを含む。加水分解性の官能基を有する有機ケイ素化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン及びトリメチルメトキシシランが挙げられる。エアロゲル層との接着性、耐熱性等の観点から、シロキサン系化合物は、例えば、シリコーン又はメチルトリメトキシシランの縮合物であってもよい。
 上記バリア層は、例えば、充填材を更に含んでいてもよい。充填材を構成する材料としては、金属、セラミック等が挙げられる。上記金属としては、例えば、金属の単体;金属の合金;酸化被膜が形成された金属等が挙げられる。上記金属としては、鉄、銅、ニッケル、アルミニウム、亜鉛、チタン、クロム、コバルト、スズ、金、銀等が挙げられる。上記セラミックとしては、アルミナ、チタニア、ジルコニア、マグネシア等の酸化物;窒化ケイ素、窒化アルミニウム等の窒化物;炭化ケイ素、炭化ホウ素等の炭化物;これらの混合物などが挙げられる。充填材を構成する材料は、例えば、溶融シリカ、フュームドシリカ、コロイダルシリカ、中空状シリカ、ガラス、及び鱗片状シリカであってもよい。上記ガラスとしては、石英ガラス、ソーダガラス、ホウケイ酸ガラス等が挙げられる。
 バリア層におけるバリア層形成材料の含有量は、緻密なバリア層を得易くする観点から、バリア層の全体積に対して、例えば、20体積%以上であってもよく、30体積%以上であってもよく、40体積%以上であってもよい。バリア層形成材料の含有量は、バリア層形成のための作業性向上の観点から、バリア層の全体積に対して、例えば、80体積%以下であってもよく、70体積%以下であってもよく、60体積%以下であってもよい。バリア層が充填材を含有する場合、バリア層における充填材の含有量は、エアロゲル複合体へのバリア層組成物の浸透抑制及び耐熱性向上の観点から、バリア層の全体積に対して、例えば、0.1体積%以上であってもよく、1体積%以上であってもよく、5体積%以上であってもよい。
 バリア層の厚みは、脆性改善、耐油性向上等の観点から、例えば、1μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよい。バリア層の厚みは、バリア層形成後の取扱性向上の観点から、例えば、1000μm以下であってもよく、200μm以下であってもよく、100μm以下であってもよい。エアロゲル複合体とバリア層との合計の厚みは、より良好な断熱性及び耐油性を得る観点から、例えば、2μm以上であってもよく、15μm以上であってもよく、40μm以上であってもよい。エアロゲル複合体とバリア層との合計の厚みは、製造工程時間の短縮、取扱性向上等の観点から、例えば、2000μm以下であってもよく、400μm以下であってもよく、200μm以下であってもよい。
<被断熱体の製造方法>
 次に、被断熱体の製造方法について説明する。被断熱体は、例えば、断熱対象物にエアロゲルを形成する工程(A:エアロゲル形成工程)と、エアロゲルにコーティング液を浸透させた後溶媒を除去する工程(B:コーティング工程)と、を備える方法により製造できる。なお、被断熱体がバリア層を備える場合は、これらの工程により得られたエアロゲル複合体上にバリア層を形成する工程(C:バリア層形成工程)をさらに実施することができる。
A:エアロゲル形成工程
 エアロゲル形成工程は、例えば、エアロゲルを形成するためのゾルを生成させるゾル生成工程と、得られたゾルを断熱対象物に塗工してゾル塗膜を形成するゾル塗膜形成工程と、ゾル塗膜から湿潤ゲルを生成させる湿潤ゲル生成工程と、湿潤ゲルを洗浄(及び必要に応じ溶媒置換)する工程と、洗浄した湿潤ゲルを乾燥する乾燥工程とを主に備えることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては、ケイ素化合物(必要に応じてさらにシリカ粒子)が溶媒中に溶解若しくは分散している状態をいう。また、「湿潤ゲル」とは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
(ゾル生成工程)
 ゾル生成工程は、例えば、ケイ素化合物(必要に応じてさらにシリカ粒子)と溶媒とを混合し、加水分解反応を行いゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、更に酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、カーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 溶媒としては、例えば、水、又は、水及びアルコール類の混合液を用いることができる。アルコール類としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば、溶媒としてアルコール類を用いる場合、アルコール類の量は、ケイ素化合物の総量1モルに対し、例えば、4~8モルであってもよく、4~6.5であってもよく、4.5~6モルであってもよい。アルコール類の量を4モル以上にすることにより良好な相溶性を更に得易くなり、また、8モル以下にすることによりゲルの収縮を更に抑制し易くなる。
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類などが挙げられる。これらの中でも、得られるエアロゲルの耐水性をより向上する酸触媒としては有機カルボン酸類が挙げられる。当該有機カルボン酸類としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ケイ素化合物の総量100質量部に対し、例えば、0.001~0.1質量部とすることができる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンとのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシド等が挙げられる。
 これらの界面活性剤は、湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられる。
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物の種類並びに量にも左右されるが、例えば、ケイ素化合物の総量100質量部に対し、1~100質量部であってもよく、5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、湿潤ゲル生成工程でのゾルゲル反応を充分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ケイ素化合物の総量100質量部に対して、例えば、1~200質量部であってもよく、2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性を更に得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下を更に抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば、20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が充分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃であってもよく、10~30℃であってもよい。
(ゾル塗膜形成工程)
 ゾル塗膜形成工程は、上記ゾルを含むゾル塗液を断熱対象物に塗工してゾル塗膜を形成する工程である。上記ゾル塗液は、上記ゾルからなる態様であってもよい。また、上記ゾル塗液は、上記ゾルを、流動性を有する程度にゲル化(半ゲル化)させたものであってもよい。ゾル塗液は、例えば、ゲル化を促進させるため、塩基触媒を含んでいてもよい。
 塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類等が挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル中に残存し難いため耐水性を損なわないという点、更には経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物及びシリカ粒子の、脱水縮合反応、脱アルコール縮合反応、又はそれら両者の反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲルを得ることができる。
 塩基触媒の添加量は、ケイ素化合物の総量100質量部に対し、例えば、0.5~5質量部であってもよく、1~4質量部であってもよい。上記添加量を0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 上記ゾルを半ゲル化させる場合、ゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。この場合のゲル化温度は、例えば、30~90℃であってもよく、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 上記ゾルを半ゲル化させる場合のゲル化時間は、ゲル化温度により異なるが、ゾル中にシリカ粒子を含有する場合は、従来のエアロゲルに適用されるゾルと比較して、ゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有する反応性基又はシラノール基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は、例えば、10~360分であってもよく、20~180分であってもよい。ゲル化時間が10分以上であることにより、ゾルの粘度が適度に向上し、断熱対象物への塗工性が向上し、360分以下であることにより、ゾルが完全にゲル化されることを抑制し易く、かつ、断熱対象物との良好な接着性が得られ易い。
 ゾル塗液を断熱対象物に塗工する方法に特に制限はないが、例えば、ディップコート、スプレーコート、スピンコート、ロールコート等が挙げられる。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、例えば、上記ゾル塗膜から湿潤ゲルを生成させる工程である。湿潤ゲル生成工程においては、例えば、上記ゾル塗膜を加熱することにより、ゾル塗膜をゲル化させた後、得られたゲルを必要に応じ熟成させることにより湿潤ゲルを生成させる。湿潤ゲル生成工程は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。湿潤ゲル生成工程おいてゲルを熟成させると、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに充分な強度(剛性)の高い湿潤ゲルが得られ易い。湿潤ゲル生成工程における加熱温度及び熟成温度は、例えば、30~90℃であってもよく、40~80℃であってもよい。加熱温度又は熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、加熱温度又は熟成温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、上記湿潤ゲル生成工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲルの製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。なお、ゲル中にシリカ粒子が含まれている場合には、後述するように溶媒置換工程は必ずしも必須ではない。
 洗浄工程では、上記湿潤ゲル生成工程で得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を充分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して、例えば、3~10倍の量とすることができる。洗浄は、例えば、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができる。例えば、メタノールを用いる場合、30~60℃程度の温度であってもよい。
 溶媒置換工程では、後述する乾燥工程における収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下のものが挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、後述する乾燥工程における乾燥が更に容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を充分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して、例えば、3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができる。例えば、ヘプタンを用いる場合、30~60℃程度の温度であってもよい。
 なお、上述のとおり、ゲル中にシリカ粒子が含まれている場合、溶媒置換工程は必須ではない。推察されるメカニズムとしては次のとおりである。シリカ粒子が含まれていない場合、乾燥工程における収縮を抑制するため、湿潤ゲルの溶媒を所定の置換用溶媒(低表面張力の溶媒)に置き換えることが好ましい。一方で、シリカ粒子が含まれている場合、シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制されると考えられる。したがって、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。なお、このように、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能であるが、溶媒置換工程を行うことを何ら排除するものではない。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄(及び必要に応じ溶媒置換)した湿潤ゲルを乾燥させる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲルを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 本実施形態に係るエアロゲルは、例えば、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、例えば、20~150℃であってもよく、60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、例えば、4~120時間とすることができる。なお、本実施形態において、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 本実施形態に係るエアロゲル形成工程においては、急激な乾燥によるエアロゲルのクラックを抑制する観点から、乾燥工程の前にプレ乾燥を行ってもよい。プレ乾燥温度は、例えば、60~180℃であってもよく、90~150℃であってもよい。プレ乾燥時間は、エアロゲルの容量及び乾燥温度により異なるが、例えば、1~30分であってもよい。
 乾燥工程における乾燥方法は、例えば、超臨界乾燥であってもよい。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲルは、更に常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルを更に得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
B:コーティング工程
 コーティング工程は、例えば、コーティング材料及び溶媒を含むコーティング液を調製する液調製工程と、得られたコーティング液をエアロゲルに浸透させる浸透工程と、浸透させたコーティング液から溶媒を除去する溶媒除去工程と、を備えることができる。
(液調製工程)
 溶媒中にコーティング材料を添加することでコーティング液を調製する。溶媒は、エアロゲルへの浸透性の観点から有機溶媒を用いることができる。有機溶媒としては、後工程における溶媒除去を低温で行い易い観点から、蒸気圧が小さい有機溶媒を用いることができ、特に沸点が100℃以下である有機溶媒を用いることができる。有機溶媒としては、具体的には、メタノール、エタノール、イソプロピルアルコール、1、4-ジオキサン、ジクロロメタン、ベンゼン、シクロヘキサン、酢酸メチル、酢酸エチル、アセトン、メチルエチルケトン等を用いることができる。
 コーティング液中のコーティング材料の含有量(固形分)は、適度な厚みのコーティングを形成するという観点から、1質量%以上とすることができるが、5質量%以上であってもよく、また40質量%以下とすることができるが、20質量%以下であってもよい。すなわち、コーティング材料の含有量は、1~40質量%とすることができるが、5~20質量%であってもよい。
 コーティング液の粘度は、エアロゲルへの浸透性を十分に確保する観点から、25℃において35mPa・s以下とすることができる。同様の観点から、当該粘度は20mPa・s以下であってもよく、10mPa・s以下であってもよい。当該粘度の下限は特に限定されないが、浸透工程のプロセスの尤度という観点から、1mPa・sとすることができる。粘度は、E型粘度計、振動式粘度計等により測定することができる。
(浸透工程)
 本工程では、調製されたコーティング液が、エアロゲル内部の空隙中に十分に行き渡るように浸透させる。具体的には、コーティング液にエアロゲルを浸漬させるディッピング法、エアロゲルにコーティング液を塗布する塗布法等が挙げられる。浸透方法は制限されず、エアロゲルの大きさ、形状等に応じて好適な手法であればよい。本実施形態においては、エアロゲルの深部(例えば断熱対象物と接する側)にまでコーティング液が浸透するように、適度に希釈されたコーティング液を用いている。本工程は特に、エアロゲルの表面に樹脂層等を設けるという思想ではなく、エアロゲルの内部にまでコーティング材料を浸透させてエアロゲルの骨格自体を強化するという思想に基づくものである。これにより粉落ちに加えてエアロゲルの脆さを改善することができるため、断熱信頼性に優れる被断熱体を得ることができる。
 ディッピング法の場合、コーティング液を浸透させる時間は、コーティング液の粘度、エアロゲルの濡れ性等に依存するため一概には言えないが、少なくとも5秒以上とすることができ、10秒以上であってもよく、30秒以上であってもよい。浸透させる時間は長くても特に問題はないが、作業効率の観点から1分程度とすることができる。
 塗布法の場合、塗工方法(塗工機)としては、ダイコーター、コンマコータ、バーコータ、キスコータ、ロールコーター等を利用することができる。また、塗布量は、エアロゲルの空隙をコーティング液で十分に満たす観点から、エアロゲルの体積の90~120%とすることができる。塗布量が90%以上であれば、エアロゲルに対する処理斑を抑制し易く、120%以下であれば、溶媒除去後にエアロゲル複合体上に余分な樹脂が残り難い。
 浸透工程における温度は、コーティング材料の種類、コーティング液中のコーティング材料の含有量等に応じて、コーティング液がエアロゲルに浸透し易いように適宜調整することができる。例えば、コーティング液をエアロゲルに浸透させる際のコーティング液の粘度が35mPa・s以下となるように温度を調整することで、浸透工程をより好適に実施することができる。なお、作業効率と良好な浸透性とを両立する観点から、当該温度は、例えば0~80℃とすることができ、10~60℃であってもよく、20~40℃であってもよい。
(溶媒除去工程)
 本工程では、コーティング液が浸透したエアロゲルから、コーティング液中の溶媒を除去する。これにより、エアロゲルにおいて、多孔性の構造が保たれたまま、エアロゲル粒子により形成される骨格の表面が、コーティング材料により被覆される。
 溶媒の除去は、エアロゲルの厚さ、コーティング材料の種類等に依存するため一概には言えないが、溶媒の蒸発速度をコントロールし易い観点から、50~150℃の加熱温度にて行うことができる。同様の観点から、加熱温度は60~120であってもよい。加熱時間は、加熱温度によって異なるが、作業効率を確保しつつ、伝熱抑制性を有するエアロゲルの内部まで十分に加熱するという観点から、1~18時間とすることができ、1~5時間であってもよい。
 なお、溶媒の揮発に伴う発泡等により、エアロゲルが破壊されることを抑制する観点から、加熱処理は多段階で行ってもよい。例えば、主として溶媒を除去する一段階目加熱(低温加熱)と、主として樹脂を硬化させる二段階目加熱(高温加熱)とを行ってもよい。加熱温度及び加熱時間は、上記範囲内で適宜設定すればよい。
C:バリア層形成工程
 バリア層形成工程においては、例えば、バリア層形成材料を含有するバリア層形成用組成物を、エアロゲル複合体に接触させた後、必要に応じ加熱及び乾燥することにより、エアロゲル複合体上にバリア層を形成させる。エアロゲル複合体上にその他の層が設けられている場合には、バリア層形成用組成物は、その他の層に接触させればよい。なお、本工程は、上記コーティング工程とは異なり、エアロゲル複合体内にバリア層形成用組成物を浸透させることを目的としていない。したがって、上記コーティング液との対比において、例えば、バリア層形成用組成物中におけるバリア層形成材料の含有量(固形分)は、少なくとも40質量%超とすることができ、また、バリア層形成用組成物の粘度は、25℃において少なくとも35mPa・s超とすることができる。なお、バリア層形成用組成物がエアロゲル複合体中に浸透しないような接触方法(例えば、後述のスプレーコート)を採用する場合は、バリア層形成材料の含有量を40質量%程度としても、あるいはバリア層形成用組成物の粘度を10mPa・s程度としてもよい。
 接触方法は、バリア層形成用組成物の種類、バリア層の厚み、又はエアロゲル複合体の撥水性等によって適宜選択することができる。接触方法としては、例えば、ディップコート、スプレーコート、スピンコート、ロールコート等が挙げられる。その中で、エアロゲル内部へのバリア層形成用組成物の浸透が抑制され易い観点から、スプレーコートが好適に利用できる。
 バリア層形成工程では、バリア層形成用組成物を乾燥及び定着させる観点から、加熱処理を施してもよく、不純物を除去する観点から、洗浄又は乾燥を行ってもよい。
 以上のとおり説明した本実施形態の被断熱体は、断熱対象物上に、コーティング材料により骨格が強化されたエアロゲルであるエアロゲル複合体を備えている。そのため、エアロゲル自体の優れた低熱伝導性を有すると共に、当該低熱伝導性を長期にわたり発現することのできる靭性を有している。このような利点から、本実施形態のエアロゲル複合体は、極低温容器、宇宙分野、建築分野、自動車分野、家電分野、半導体分野、産業用設備等、様々な環境下における断熱材としての用途等に適用できる。
 以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
(基材の準備)
 基材として以下のものを準備した。
エアロゲル複合体靱性評価用:アルミニウム合金板:A6061P(竹内金属箔粉工業株式会社製、製品名、寸法:300mm×300mm×0.5mm、アルマイト処理)
エアロゲル複合体密度測定用:アルミニウム箔(厚さ20μm)
エアロゲル複合体透過率測定用:スライドガラス(松浪ガラス工業株式会社製、製品名S1214:厚さ1.3mm)
(ゾル塗液の調製)
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにポリシロキサン化合物として上記一般式(B)で表される、両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を40.0質量部及びケイ素化合物としてMTMSを60.0質量部加え、25℃で2時間反応させた。その後、60℃で2時間かけてゾルゲル反応をさせてゾル塗液を得た。
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1Lの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサン(モメンティブ社製、製品名:XC96-723)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
(コーティング液の調製)
 希釈溶媒MEK(2-ブタノン)76gに、シリコーン樹脂KR-300(信越化学工業株式会社製、樹脂分50質量%)40g及びアミン系硬化剤KBM-603(信越化学工業株式会社製、樹脂分100質量%)4gを加えて混合し、コーティング液中の樹脂含有量が20質量%である熱硬化性樹脂コーティング液を調製した。また、各成分の量を変更することで、コーティング液中の樹脂含有量が5、10又は30質量%であるコーティング液を調製した。なお、各コーティング液の25℃における粘度は、E型粘度計(東機産業株式会社製、RE80H型、ロータ 1°34’×R24)を用い、サンプル量を1.1mL、温度を25℃、回転速度を100rpm、測定時間を1分間として測定した。樹脂含有量が5及び10質量%のコーティング液については、測定範囲外であった(粘度が十分に低かった)ため粘度を測定しなかった。
(バリア層形成用組成物の調製)
 パーヒドロポリシラザンを含有するAZ NL120A-20(AZエレクトロニックマテリアルズマニュファクチャリング株式会社製、製品名)に、フュームドシリカ(日本アエロジル株式会社製、アエロジル(商標登録)R972)を混合し、バリア層形成用組成物を得た。なお、バリア層の全体積に対する、フュームドシリカの含有量を5体積%とした。
(実施例1)
 アルミニウム合金板を、バットに入れたゾル塗液に浸した後に取り出し、60℃で30分ゲル化して、ゲル層の厚さが100μmの構造体を得た。その後、得られた構造体を密閉容器に移し、60℃で12時間熟成した。
 熟成した構造体を水2000mLに浸漬し、30分かけて洗浄を行った。次に、メタノール2000mLに浸漬し、60℃で30分かけて洗浄を行った。メタノールによる洗浄を、新しいメタノールに交換しながら更に2回行った。次に、メチルエチルケトン2000mLに浸漬し、60℃で30分かけて溶媒置換を行った。メチルエチルケトンによる洗浄を新しいメチルエチルケトンに交換しながら更に2回行った。洗浄及び溶媒置換された構造体を、常圧下にて、120℃で6時間乾燥することで、アルミニウム合金板上に、上記一般式(2)及び(3)で表される構造を有するエアロゲルを形成した。
 エアロゲルが形成されたアルミニウム合金板を、バットに入れたコーティング液(樹脂含有量:5質量%)に10秒間浸した後に取り出した。この際、余分に付着したコーティング液を拭き取った。なお、エアロゲルにコーティング液を浸透させた際のコーティング液の温度は25℃であった。これを乾燥機に入れ、90℃で1時間、続いて150℃で1時間加熱することで、アルミニウム合金板上にエアロゲル複合体を形成し、評価サンプルを得た。
(実施例2~4)
 コーティング液を表1に示すように変更したこと以外は、実施例1と同様にして評価サンプルを得た。
(実施例5)
 実施例3と同様にして、アルミニウム合金板上にエアロゲル複合体を形成した。その後、さらにエアロゲル複合体上に、エアーブラシを用いてバリア層形成用組成物を塗布した後、150℃2時間の加熱硬化をすることでバリア層を形成し、評価サンプルとした。エアロゲル複合体とバリア層の合計厚さは120μmであった。
(比較例1)
 実施例1と同様にして、アルミニウム合金板上にエアロゲルを形成し、その後コーティング液は浸透させずに評価サンプルとした。
(比較例2)
 比較例1と同様にして、アルミニウム合金板上にエアロゲルを形成した。その後、さらに実施例5と同様にして、エアロゲル上にバリア層を形成し、評価サンプルとした。
Figure JPOXMLDOC01-appb-T000013
(靱性評価)
 各評価サンプルを10枚重ね、その上から金属製の治具(サイズ10mm×1mm×1mm:1mm×1mmの面がサンプル接触面)を用いて、エアロゲル複合体側から200Nの圧縮力を加えた。その後、評価サンプルに潰れ、割れ等が発生したかを目視にて確認し、以下の基準に従って評価をした。評価結果を表2に示す。
A評価:評価サンプルに潰れも割れも発生しなかった。
B評価:評価サンプルに潰れが発生していた。
C評価:一部の評価サンプルに潰れ又は割れが発生していた。
(密度測定)
 エアロゲル複合体の密度を測定した。アルミニウム箔上に、上記手順に準じてエアロゲル複合体又はエアロゲル(厚さ50μm)を形成し、これを測定サンプルとして密度を測定した。密度の測定はJIS Z 8807の幾何学的測定法に準じて行った。なお、体積は5cm×5cm×50μm(ノギスで測定)とし、重量は電子天秤で秤量し、測定サンプルの密度を算出した。測定結果を表2に示す。なお、表中、比較例1及び2はエアロゲルの密度を示す。
(透過率測定)
 エアロゲル複合体の、波長500~700nmの光に対する透過率を測定した。スライドガラス上に、上記手順に準じてエアロゲル複合体又はエアロゲル(厚さ50μm)を形成し、これを測定サンプルとして透過率を測定した。透過率の測定はJIS K 0115に準じて行った。測定結果を表2に示す。なお、表中の数値は、左から波長700nm、600nm、500nmの結果である。また、スライドガラス及びシリコーン樹脂の透過率(%)は、それぞれ88、88、88であった。なお、表中、比較例1及び2はエアロゲルの透過率を示す。
Figure JPOXMLDOC01-appb-T000014
 実施例のエアロゲル複合体は優れた靱性を有していた。
 なお、図2は、実施例3で得られたエアロゲル複合体の断面SEM写真であり、図3は、比較例1で得られたエアロゲルの断面SEM写真である。前者においては、エアロゲルが有する三次元網目状の骨格が保たれたまま、骨格(エアロゲル粒子により形成されるエアロゲル)の表面が、コーティングで被覆されていることが理解される。このような断面、並びに測定された密度及び透過率に鑑み、実施例のエアロゲル複合体は、良好な断熱性が維持されているものと見込まれる。
 1…断熱対象物、2…エアロゲル複合体、2a…エアロゲル、2b…コーティング、10…被断熱体。

Claims (8)

  1.  エアロゲルに、コーティング材料及び溶媒を含むコーティング液を浸透させる工程と、
     前記浸透させたコーティング液から前記溶媒を除去する工程と、
    を備える、エアロゲル複合体の製造方法。
  2.  前記コーティング液の、25℃における粘度が35mPa・s以下である、請求項1に記載の製造方法。
  3.  前記コーティング材料が熱硬化性樹脂を含む、請求項1又は2に記載の製造方法。
  4.  前記エアロゲルが、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物である、請求項1~3のいずれか一項に記載の製造方法。
  5.  エアロゲルと、
     前記エアロゲル内部の空隙を形成するエアロゲル粒子の表面の少なくとも一部を被覆するコーティングと、
    を有するエアロゲル複合体。
  6.  密度が0.30~1.15g/cmである、請求項5に記載のエアロゲル複合体。
  7.  波長700nmの光に対する透過率が15%以下である、請求項5又は6に記載のエアロゲル複合体。
  8.  断熱対象物に、請求項5~7のいずれか一項に記載のエアロゲル複合体を備える被断熱体。
     
PCT/JP2016/079165 2016-09-30 2016-09-30 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体 WO2018061211A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/079165 WO2018061211A1 (ja) 2016-09-30 2016-09-30 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体
CN201680089677.4A CN109790318A (zh) 2016-09-30 2016-09-30 气凝胶复合体的制造方法、气凝胶复合体和被绝热体
KR1020197011883A KR20190065325A (ko) 2016-09-30 2016-09-30 에어로겔 복합체의 제조 방법, 에어로겔 복합체 및 피단열체
US16/337,950 US20200025324A1 (en) 2016-09-30 2016-09-30 Process for producing aerogel composite, aerogel composite, and heat-insulated object
JP2018541858A JPWO2018061211A1 (ja) 2016-09-30 2016-09-30 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079165 WO2018061211A1 (ja) 2016-09-30 2016-09-30 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体

Publications (1)

Publication Number Publication Date
WO2018061211A1 true WO2018061211A1 (ja) 2018-04-05

Family

ID=61760254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079165 WO2018061211A1 (ja) 2016-09-30 2016-09-30 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体

Country Status (5)

Country Link
US (1) US20200025324A1 (ja)
JP (1) JPWO2018061211A1 (ja)
KR (1) KR20190065325A (ja)
CN (1) CN109790318A (ja)
WO (1) WO2018061211A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251182A1 (ko) * 2019-06-10 2020-12-17 한국생산기술연구원 중공형 필러가 혼합된 복합경화물 및 그 제조방법
JP7526948B2 (ja) 2020-04-17 2024-08-02 パナソニックIpマネジメント株式会社 断熱シート、及び、それを用いた回路基板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677849B1 (ja) * 2019-04-11 2020-04-08 ティエムファクトリ株式会社 エアロゲルおよびエアロゲルの製造方法
JP7105367B2 (ja) 2019-09-03 2022-07-22 エルジー・ケム・リミテッド エアロゲルブランケットの製造装置及び方法
EP4026803A4 (en) * 2019-09-03 2022-10-26 LG Chem, Ltd. AIRGEL LAYER
KR102581268B1 (ko) * 2019-09-03 2023-09-22 주식회사 엘지화학 에어로겔 블랭킷 제조방법
WO2021152853A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 断熱材の製造方法
KR102191257B1 (ko) * 2020-03-23 2020-12-15 주식회사 익스톨 내수성이 우수한 단열 코팅 조성물
DE102020129911A1 (de) 2020-11-12 2022-05-12 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft und Energie, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialforschung und –prüfung (BAM) Grünkörpertrocknungsverfahren nach lichtinduziertem Vernetzen von suspendierten anorganischen Nano-Partikeln
KR102428735B1 (ko) * 2020-12-07 2022-08-04 한국생산기술연구원 중공형 필러 및 섬유강화상이 혼합된 복합경화물 및 이의 제조방법
CN112795048B (zh) * 2021-02-03 2023-04-11 峰特(浙江)新材料有限公司 一种混合气凝胶改性的密胺泡绵及其应用
CN113429704B (zh) * 2021-07-20 2022-05-10 福州大学至诚学院 一种SiO2气凝胶/纤维隔热抑菌复合包装材料及制备方法
CN115228394A (zh) * 2022-06-30 2022-10-25 江苏安珈新材料科技有限公司 一种梯度杂化气凝胶的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073731A (ja) * 2007-09-20 2009-04-09 Samsung Electronics Co Ltd 高分子コーティングされたエアロゲルの製造方法、それにより製造されるエアロゲルおよびそのエアロゲルを含む断熱材
JP2013117024A (ja) * 2011-12-02 2013-06-13 Samsung Electro-Mechanics Co Ltd プリプレグ及びこれを含むプリント回路基板
WO2014132656A1 (ja) * 2013-03-01 2014-09-04 パナソニック株式会社 断熱成形体及びその製造方法
WO2016121757A1 (ja) * 2015-01-27 2016-08-04 日立化成株式会社 エアロゲル積層体及び断熱材
WO2016159196A1 (ja) * 2015-04-02 2016-10-06 日東電工株式会社 多孔質体及び多孔質体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010187A1 (de) * 1995-09-11 1997-03-20 Hoechst Research & Technology Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
JP4369239B2 (ja) * 2002-01-29 2009-11-18 キャボット コーポレイション 耐熱性エーロゲル絶縁複合材料およびその製造方法、エーロゲルバインダー組成物およびその製造方法
JP5354266B2 (ja) 2009-01-23 2013-11-27 井前工業株式会社 断熱シート
DE102009053784A1 (de) * 2009-11-19 2011-05-26 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Herstellung eines porösen SiO2-Xerogels mit charakteristischer Porengröße durch ein Bottom-Up-Verfahren über eine Vorstufe mit organischen Festkörperskelettstützen
JPWO2014024413A1 (ja) * 2012-08-09 2016-07-25 パナソニックIpマネジメント株式会社 断熱材及びその製造方法
US20150368527A1 (en) * 2013-02-28 2015-12-24 Panasonic Intellectual Property Management Co., Ltd. Thermal insulator and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073731A (ja) * 2007-09-20 2009-04-09 Samsung Electronics Co Ltd 高分子コーティングされたエアロゲルの製造方法、それにより製造されるエアロゲルおよびそのエアロゲルを含む断熱材
JP2013117024A (ja) * 2011-12-02 2013-06-13 Samsung Electro-Mechanics Co Ltd プリプレグ及びこれを含むプリント回路基板
WO2014132656A1 (ja) * 2013-03-01 2014-09-04 パナソニック株式会社 断熱成形体及びその製造方法
WO2016121757A1 (ja) * 2015-01-27 2016-08-04 日立化成株式会社 エアロゲル積層体及び断熱材
WO2016159196A1 (ja) * 2015-04-02 2016-10-06 日東電工株式会社 多孔質体及び多孔質体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251182A1 (ko) * 2019-06-10 2020-12-17 한국생산기술연구원 중공형 필러가 혼합된 복합경화물 및 그 제조방법
KR20200141315A (ko) * 2019-06-10 2020-12-18 한국생산기술연구원 중공형 필러가 혼합된 복합경화물 및 그 제조방법
KR102190914B1 (ko) * 2019-06-10 2020-12-28 한국생산기술연구원 중공형 필러가 혼합된 복합경화물 및 그 제조방법
JP7526948B2 (ja) 2020-04-17 2024-08-02 パナソニックIpマネジメント株式会社 断熱シート、及び、それを用いた回路基板

Also Published As

Publication number Publication date
CN109790318A (zh) 2019-05-21
JPWO2018061211A1 (ja) 2019-07-11
US20200025324A1 (en) 2020-01-23
KR20190065325A (ko) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2018061211A1 (ja) エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体
KR102425252B1 (ko) 에어로겔 복합체, 에어로겔 복합체 함유 지지 부재 및 단열재
WO2017164184A1 (ja) ゾル組成物、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2017038649A1 (ja) 被断熱体の製造方法及び被断熱体
WO2017168847A1 (ja) エアロゲル層付き部材
JP7196854B2 (ja) 塗液、塗膜の製造方法及び塗膜
WO2017038646A1 (ja) エアロゲル複合体及び断熱材
JP6288383B2 (ja) 被断熱体の製造方法
TW201922961A (zh) 塗液、塗膜的製造方法及塗膜
TW201915108A (zh) 塗液、塗膜的製造方法及塗膜
JP6269903B2 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
US12110414B2 (en) Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
WO2017170498A1 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP6699292B2 (ja) エアロゲル複合体の製造方法
WO2020084668A1 (ja) エアロゲル複合材料
JP6750626B2 (ja) エアロゲル複合体
JP6693221B2 (ja) エアロゲル複合体の製造方法
WO2019070035A1 (ja) エアロゲル複合体パウダー及び撥水材
TW201938379A (zh) 氣凝膠複合體的製造方法、氣凝膠複合體及被絕熱體
WO2017168845A1 (ja) エアロゲル層付き部材
JP6693222B2 (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
TW201918529A (zh) 塗液、塗膜的製造方法及塗膜
WO2020084670A1 (ja) エアロゲル粒子、分散体及び塗膜
WO2018142530A1 (ja) 構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011883

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16917761

Country of ref document: EP

Kind code of ref document: A1