WO2018059381A1 - 电机油泵总成、转向系统和车辆 - Google Patents
电机油泵总成、转向系统和车辆 Download PDFInfo
- Publication number
- WO2018059381A1 WO2018059381A1 PCT/CN2017/103358 CN2017103358W WO2018059381A1 WO 2018059381 A1 WO2018059381 A1 WO 2018059381A1 CN 2017103358 W CN2017103358 W CN 2017103358W WO 2018059381 A1 WO2018059381 A1 WO 2018059381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil pump
- pump assembly
- motor
- cavity
- oil
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/06—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
- B62D5/062—Details, component parts
- B62D5/064—Pump driven independently from vehicle engine, e.g. electric driven pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/06—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/001—Noise damping
Definitions
- the present disclosure relates to the field of vehicle manufacturing technology, and in particular to a motor oil pump assembly, a steering system having the motor oil pump assembly, and a vehicle having the steering system.
- the motor oil pump assembly is widely used in the steering system of a vehicle.
- the oil pump assembly is immersed in the high pressure oil, and the outer side of the oil pump assembly is a high pressure chamber, which makes it necessary to design a high-strength housing to seal the high-pressure chamber.
- the casting process and the sealing performance of the high-pressure chamber are very high, and the thickness of the casing is large, which does not meet the requirements of lightweight. Further, the vibration noise generated by the oil pump assembly during the working process is relatively large.
- various damping elements are often used to isolate the noise, the structure of the damping element is complicated, occupying a large installation space, and the production cost is high, and the assembly process is high. Complex, there is room for improvement.
- an object of the present disclosure is to provide a motor oil pump assembly having low operating noise and high lightening level.
- Another object of the present disclosure is to provide a steering system having the motor oil pump assembly described above.
- Another object of the present disclosure is to propose a vehicle having the above steering system.
- a motor oil pump assembly includes: a motor assembly; an oil pump assembly supported on an end cover of the motor assembly; an inner sound enclosure, the inner sound enclosure cover being disposed Outside the oil pump assembly, and defining an inner soundproof cavity filled with low pressure oil with the oil pump assembly, the inner soundproof cavity is in communication with the low pressure cavity of the oil pump assembly; preloading the buffer assembly, the preload buffer assembly And being interposed between the upper end cover of the oil pump assembly and the inner soundproof cover, and the pre-tightening buffer assembly is in communication with the high pressure chamber of the oil pump assembly; the safety valve is disposed at the high pressure chamber The pressure is released when the pressure is greater than the predetermined pressure value.
- the low pressure oil is filled between the inner soundproof cover and the oil pump assembly, thereby contributing to the weight reduction of the motor oil pump assembly, and the space occupied by the motor oil pump assembly is small, and the manufacturing Low cost and low noise.
- a steering system according to an embodiment of the second aspect of the present disclosure is provided with the motor oil pump assembly of any of the first aspects.
- a vehicle according to an embodiment of the third aspect of the present disclosure is provided with the steering system of any of the second aspects.
- FIG. 1 is a schematic structural view of a motor oil pump assembly according to a first embodiment of the present disclosure
- FIG. 2 is a schematic structural view of a motor oil pump assembly according to a second embodiment of the present disclosure
- FIG. 3 is a schematic structural view of a motor oil pump assembly according to a third embodiment of the present disclosure.
- FIG. 4 is a schematic structural view of a motor oil pump assembly according to a fourth embodiment of the present disclosure.
- FIG. 5 is a schematic structural view of a motor oil pump assembly according to a fifth embodiment of the present disclosure.
- FIG. 6 is a schematic structural view of a motor oil pump assembly according to a sixth embodiment of the present disclosure.
- FIG. 7 is a schematic structural view of a motor oil pump assembly according to a seventh embodiment of the present disclosure.
- FIG. 8 is a schematic structural view of a motor oil pump assembly according to an eighth embodiment of the present disclosure.
- FIG. 9 is a schematic structural view of a motor oil pump assembly according to a ninth embodiment of the present disclosure.
- FIG. 10 is a schematic structural view of a motor oil pump assembly according to a tenth embodiment of the present disclosure.
- FIG. 11 is a schematic structural view of a motor oil pump assembly according to a eleventh embodiment of the present disclosure.
- FIG. 12 is a schematic structural view of a motor oil pump assembly according to a twelfth embodiment of the present disclosure
- FIG. 13 is a schematic structural view of a motor oil pump assembly according to a thirteenth embodiment of the present disclosure.
- FIG. 14 is a schematic structural view of a motor oil pump assembly according to a fourteenth embodiment of the present disclosure.
- FIG. 15 is a schematic structural view of a motor oil pump assembly according to a fifteenth embodiment of the present disclosure.
- FIG. 16 is a schematic structural view of a motor oil pump assembly according to a sixteenth embodiment of the present disclosure.
- 17 is a schematic structural view of a motor oil pump assembly according to a seventeenth embodiment of the present disclosure.
- FIG. 18 is a schematic structural view of a motor oil pump assembly according to an eighteenth embodiment of the present disclosure.
- FIG. 19 is a schematic structural view of a motor oil pump assembly according to a nineteenth embodiment of the present disclosure.
- FIG. 20 is a schematic structural view of a motor oil pump assembly according to a twentieth embodiment of the present disclosure.
- 21 is a schematic diagram of output pulsation cancellation of a motor oil pump assembly in accordance with an embodiment of the present disclosure
- FIG. 22 is a schematic structural view of a steering system according to an embodiment of the present disclosure.
- FIG. 23 is a schematic structural view of a vehicle according to an embodiment of the present disclosure.
- first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless explicitly defined otherwise.
- the motor oil pump assembly 1000 includes a motor assembly 200, an oil pump assembly 100, an inner sound enclosure 400, and a preload buffer assembly 300.
- the motor assembly 200 is used to provide a driving force for the operation of the oil pump assembly 100.
- the motor shaft 220 of the motor assembly 200 can be coupled to the input shaft 130 of the oil pump assembly 100 via the coupling 230.
- the motor assembly 200 is not limited to directly driving the oil pump assembly 100, and may be coupled to the oil pump assembly 100 through a transmission mechanism such as a gearbox or a speed reducer.
- the oil pump assembly 100 operates under the drive of the motor assembly 200 to convert low pressure oil to a high pressure oil output.
- the oil pump assembly 100 may be an external gear pump, a cycloid gear pump, a vane pump, or a plunger pump.
- the oil pump assembly 100 can be supported on the end cap 210 of the motor assembly 200, such as the lower end cap 120 of the oil pump assembly 100 can be supported on the end cap 210 of the motor assembly 200.
- the inner soundproof cover 400 is disposed outside the oil pump assembly 100.
- the inner soundproof cover 400 and the oil pump assembly 100 define an inner soundproof cavity 401, and the inner soundproof cavity 401 is filled with low pressure oil.
- the inner sound insulation chamber 401 can be in communication with the low pressure chamber 101 (hydraulic oil input chamber) of the oil pump assembly 100.
- the periphery of the oil pump assembly 100 is wrapped by low-pressure oil, and the pressure of the inner sound-insulating chamber 401 is small, which is convenient for sealing.
- the inner sound-proof cover 400 does not function as a high-pressure container, and is not limited by the influence of strength, thereby providing weight reduction.
- the design possibility is that the wall of the inner soundproof cover 400 can be set thin.
- the inner soundproof cover 400 can be made of thin metal to reduce the space and weight of the motor oil pump assembly 1000.
- the vibration noise of the oil pump assembly 100 can be absorbed by the low pressure oil in the inner soundproof cavity 401 and reflected by the inner soundproof cover 400 to reduce the operating noise of the motor oil pump assembly 1000.
- the pre-tightening buffer assembly 300 is secured between the upper end cap 110 of the oil pump assembly 100 and the inner sound enclosure 400. It will be appreciated that the pre-tensioning cushion assembly 300 applies a downward pre-tension to the upper end cap 110 of the oil pump assembly 100 such that The upper end cap 110 of the oil pump assembly 100, the oil pump body (such as bearings, gears, etc.) and the lower end cap 120 are pressed against each other to maintain the tightness of the oil pump assembly 100, and it is not necessary to perform bolt torque locking on the oil pump assembly 100 during assembly.
- the pre-tightening force provided by the pre-tightening buffer assembly 300 only needs to ensure that the oil pump assembly 100 is installed, so that the working friction force of the oil pump assembly 100 can be reduced, the working energy efficiency of the oil pump assembly 100 can be improved, and the mechanical efficiency of the oil pump assembly 100 is higher. .
- the direct contact area of the oil pump assembly 100 with other components is small, with reference to Figures 1-20.
- the oil pump assembly 100 is only in contact with the wrapping area outside the coupling 230 and the interface area of the high pressure oil passage to the steering gear, and is provided with a sealing ring at the inlet and outlet of the oil pump assembly 100.
- the sealing ring is deformed by the pre-tightening force to form a gap oil film between the lower end cover 120 of the oil pump assembly 100 and the end cover 210 of the motor assembly 200.
- the gap oil film and the sealing ring can eliminate the oil pump assembly 100 and
- the secondary low frequency noise generated by the oscillation of the end cap 210, and the high frequency noise generated by the operation of the oil pump assembly 100 can also be reflected or absorbed by the seal ring and the gap oil film.
- the preload buffer assembly 300 is in communication with the high pressure chamber 102 of the oil pump assembly 100. It can be understood that the output of the oil pump assembly 100 pulsates the high pressure oil all the way to the pretensioning buffer assembly 300, and the other path is transmitted to the steering device through the oil outlet passage 1010.
- the pretensioning buffer assembly 300 can communicate with the upper end of the high pressure chamber 102.
- the oil passage 1010 can be coupled to the lower end of the high pressure chamber 102.
- the pre-tightening buffer assembly 300 can reflect the pulsation.
- (a) is a pulsation before reflection
- (a) is a pulsation after reflection.
- (b) The figure shows a schematic diagram of two-way pulsation synthesis.
- the reflected pulsation and the pulsation directly transmitted to the oil outlet channel 1010 form a hydraulic pulsation misalignment, and the two misaligned oil pulsations cancel each other, thereby eliminating or even eliminating the total motor oil pump.
- the output pulse of 1000 is used to achieve active noise reduction of the motor oil pump assembly 1000.
- the low pressure oil is filled between the inner soundproof cover 400 and the oil pump assembly 100, which contributes to the weight reduction of the motor oil pump assembly 1000, and the operating noise of the motor oil pump assembly 1000 is small. .
- the inner sound enclosure 400 can include a top cover 410 and a side wall 420, the top cover 410 can be coupled to the side wall 420, and the side wall 420 can be coupled to the end of the motor assembly 200.
- the cover 210 is connected, and the top cover 410 may be in the form of a plate (including a flat plate and a bent plate), and the side wall 420 may be substantially annular.
- the top cover 410 may be coupled to the side wall 420 by a threaded fastener, and the connection between the top cover 410 and the side wall 420 may be A seal ring is provided, and the side wall 420 can be formed integrally with the end cover 210 of the motor assembly 200, whereby the inner soundproof cover 400 is simple to form and has a small sealing position.
- the top cover 410 may be integrally formed with the side wall 420, and the side wall 420 may be coupled to the end cover 210 of the motor assembly 200 by a threaded fastener.
- the inner soundproof cover 400 is simple to form and has a small sealing position.
- the inner soundproof cover 400 has various structural forms. Only the two structures of the inner soundproof cover 400 are listed above. In the actual application process, the inner soundproof cover 400 of a suitable structural form can be designed according to factors such as the oil path of the oil pump assembly 100. .
- the motor oil pump assembly 1000 may further include an outer soundproof cover 500, which may be disposed outside at least a portion of the inner soundproof cover 400, and the outer soundproof cover An outer soundproof cavity 501 is defined between the 500 and the inner sound enclosure 400.
- the outer soundproof cover 500 can be made of a material having a smooth inner surface and a hole in the middle, so that the outer soundproof cover 500 is noisy The reflection ability is strong and the absorption effect is good.
- the outer sound enclosure 500 can be made of a plastic or metal nylon composite that can be a composite of metal mesh added to the nylon substrate.
- the outer sound-damping cavity 501 can be filled with a variety of materials. In some embodiments, referring to Figures 1-5 and Figures 7-18, the outer sound-damping cavity 501 is used to fill the low pressure oil.
- the inner sound insulating cavity 401 can be in communication with the outer soundproof cavity 501. In one embodiment, low pressure oil can flow between the outer soundproof cavity 501, the inner soundproof cavity 401, and the low pressure cavity 101 of the oil pump assembly 100.
- the communication between the inner soundproof cavity 401 and the outer soundproof cavity 501 includes direct communication and indirect communication.
- a partition 502 may be disposed between the outer soundproof cavity 501 and the inner soundproof cavity 401, and the partition 502 is used to prevent The low pressure oil in the outer soundproof cavity 501 flows directly to the inner soundproof cavity 401, and the outer soundproof cavity 501 and the inner soundproof cavity 401 can be indirectly communicated through the motor cavity 201.
- the outer soundproof cover 500 is disposed outside the inner soundproof cover 400, and the outer soundproof cover 500 and the inner soundproof cover 400 may be filled with a sound absorbing layer 510 for sound absorption.
- the layer 510 can be made of a porous material.
- the sound absorbing layer 510 can be a sound absorbing cotton. According to the frequency of the noise, the relevant sound absorbing cotton parameters can be set to better absorb the excessive noise.
- the outer soundproof cover 500 may be covered with an outer sound absorbing layer 600 to further isolate the working noise of the oil pump assembly 100.
- the outer sound absorbing layer 600 may be made of a porous material, for example, the outer sound absorbing layer 600 may be nylon.
- the inner surface of the nylon part is smooth and the middle is porous, which helps to reflect and absorb noise.
- the lower end cap 120 of the oil pump assembly 100 can be directly supported on the end cap 210 of the motor assembly 200.
- the oil pump assembly 100 can also be suspended.
- the motor oil pump assembly 1000 can further include a buffer gasket 122 that can be clamped to the oil pump.
- the lower end cap 120 of the assembly 100 is between the end cap 210 of the motor assembly 200.
- the cushioning washer 122 is disposed at a position where the oil pump assembly 100 is in contact with the end cover 210, and functions as a buffering and sound absorbing function to prevent the oil pump assembly 100 from directly transmitting the working vibration through the contact portion.
- the cushioning pad 122 can completely isolate the oil pump assembly 100 from the peripheral connection and provide reflection noise.
- at least a portion of the cushioning pad 122 may be made of a porous material, such as at least a portion of the cushioning pad 122 may have a certain flexible and porous structure such that the cushioning pad 122 can absorb some of the frequency noise.
- the cushioning pad 122 may be a single layer structure, for example, the cushioning pad 122 may be a single layer of nylon.
- the cushioning pad 122 may include a plurality of layers, and the two layers on the outer side of the plurality of layers of the cushioning pad 122 are rigid layers including at least one flexible layer in the middle.
- the rigid outer layer is easily connected to the lower end cover 120 of the oil pump assembly 100 and the end cover 210 of the motor assembly 200.
- the support between the oil pump assembly 100 and the motor assembly 200 is stronger, and the flexible layer can play the role of sound absorption and vibration reduction. .
- the connection between any two adjacent layers can be cured to prevent internal dislocation of the damper 122 during operation of the motor oil pump assembly 1000, such as a vulcanized joint for adjacent layers of rubber and metal.
- the cushioning pad 122 may include an upper layer of steel spacers 122a, a middle layer of nylon spacers 122b, and a lower layer of steel spacers 122c.
- the oil outlet passage 1010 of the oil pump assembly 100 may be disposed on the end cover 210 of the motor assembly 200, and the oil outlet passage 1010 communicates with the lower end of the high pressure chamber 102, such as The oil outlet passage 1010 may be connected to the lower end of the high pressure chamber 102 through the lower passage 121, and the lower passage 121 penetrates the lower end cover 120.
- the upper end cover 110 of the oil pump assembly 100 may be provided with an end cover cavity 111.
- the end cover cavity 111 may penetrate the upper end cover 110, and the end cover cavity 111 communicates with the upper end of the high pressure cavity 102 to pre-tighten the buffer assembly. 300 can cooperate with the end cap cavity 111 to isolate the high pressure cavity 102 from the inner layer acoustic cavity 401.
- the lower end surface of the pre-tightening buffer assembly 300 communicates with the upper end of the high-pressure chamber 102 through the end cap cavity 111, the pulsating high-pressure oil is outputted downward through the oil outlet passage 1010, and the other passage is transmitted upward to the pre-tightening buffer assembly 300. And reflected by the pre-tightening buffer assembly 300.
- the reflected pulsation and the pulsation directly transmitted to the oil outlet passage 1010 form a hydraulic pulsation misalignment, and the two misaligned oil pulsations cancel each other, thereby eliminating the motor oil pump assembly 1000.
- the output is pulsed to achieve active noise reduction of the motor oil pump assembly 1000.
- the end cap cavity 111 may be configured as a stepped hole to form a stepped surface, and the pretensioning buffer assembly 300 cooperates with the end cap cavity 111 to isolate the high pressure cavity 102 from the inner layer soundproof cavity 401, and the preloading buffer assembly 300 is pressed under the pressure of the high pressure oil. Abutting against the top cover 410 of the inner soundproof cover 400, the pre-tightening buffer assembly 300 is subjected to the reaction force of the inner soundproof cover 400 to press the oil pump assembly 100, and the step surface of the end cover cavity 111 is subjected to the downward pressure of the high pressure oil to press the upper end.
- the cover 110, the oil pump body (such as bearings, gears, etc.) and the lower end cover 120 are examples of the cover 110.
- the top cover 410 may have a downwardly open recess 411, and the pre-tightening buffer assembly 300 may abut against the top wall of the recess 411, where the top wall finger is in the up and down direction, on the recess 411.
- the wall, the groove 411 can function as a positioning during assembly, and can also prevent the pretensioning cushion assembly 300 from being biased during operation.
- the pretensioning cushion assembly 300 can include a piston 310 and an elastic member 320 that cooperates with the end cap cavity 111 to isolate A piston sealing ring 312 is disposed between the high pressure chamber 102 and the inner soundproof cavity 401, and the piston 310 and the peripheral wall of the end cap cavity 111.
- the pretensioning buffer assembly 300 composed of the piston 310 and the elastic member 320 can be sandwiched between the end cap cavity 111.
- the step surface is between the inner soundproof cover 400.
- the piston 310 may be made of a metal nylon composite material or a metal material, and the elastic member 320 may be a spring.
- the elastic member 320 can be elastically interposed between the piston 310 and the step surface of the end cap cavity 111, and the piston 310 can be stopped against the inner soundproof cover 400.
- the elastic member 320 can exert a downward biasing force on the upper end cover 110 of the oil pump assembly 100 by using the elastic force thereof, so that the upper end cover 110 of the oil pump assembly 100, the oil pump body (such as a bearing, a gear, etc.) and the lower end cover 120 are pressed against each other to The sealing of the oil pump assembly 100 is maintained.
- the end face of the piston 310 facing the inner soundproof cover 400 has a convex portion 311 that abuts against the inner soundproof cover 400.
- the raised portion 311 can stop against the top wall of the recess 411 on the top cover 410, so that the contact area of the piston 310 with the inner soundproof cover 400 can be reduced, and the secondary noise generated between the piston 310 and the inner soundproof cover 400 can be reduced.
- the piston 310 does not form a natural cold weld with the inner soundproof cover 400 due to long-term use.
- the plurality of protrusions 311 may be evenly distributed on the end surface of the piston 310 facing the inner soundproof cover 400, so that the force of the piston 310 is uniform, for example, the plurality of protrusions 311 may be located in the same On the ring.
- the positions of the elastic member 320 and the piston 310 can also be reversed.
- the elastic member 320 can be elastically interposed between the piston 310 and the inner soundproof cover 400, and one end of the piston 310 can be stopped.
- the elastic member 320 can exert a downward biasing force on the upper end cover 110 of the oil pump assembly 100 through the piston 310 by using the elastic force thereof, so that the upper end cover 110 of the oil pump assembly 100, the oil pump body (such as bearings, gears, etc.) and the lower end cover 120 are pressed against each other.
- the recess 411 In order to maintain the tightness of the oil pump assembly 100, and one end of the elastic member 320 can stop against the top wall of the recess 411, the recess 411 also has a limited position on the elastic member 320, and the elastic member 320 can be prevented from being biased.
- the end surface of the piston 310 facing the step surface may have a convex portion 311, and the convex portion 311 stops against the step surface, so that the contact area between the piston 310 and the step surface can be reduced, and the two generated between the piston 310 and the upper end cover 110 are reduced.
- the secondary noise, and the piston 310 does not form a natural cold weld with the step surface due to long-term use.
- the plurality of protrusions 311 may be evenly distributed on the end surface of the piston 310 away from the inner soundproof cover 400, so that the force of the piston 310 is uniform, for example, the plurality of protrusions 311 may be located in the same
- Each of the bosses 311 may have a trapezoidal cross section on the ring.
- the piston 310 can eliminate a part of the pulsation by the expansion and contraction of the elastic member 320, for example, the oil pressure suddenly increases, and the piston 310 can move upward by the oil pressure to compress the elastic member 320.
- the piston seal 312 which is pressed by the piston 310 and the gap oil film between the piston 310 and the peripheral wall of the end cap cavity 111 can also eliminate a part of the pulsation, thereby reducing the output pulsation of the oil pump assembly 100, so that the output oil pressure is more stable and uniform.
- the motor oil pump assembly 1000 may further include a safety valve that may be set to relieve pressure when the pressure of the high pressure chamber 102 is greater than a predetermined pressure value.
- the safety valve may include a pressure relief hole 112 disposed on the peripheral wall of the end cap cavity 111.
- the pressure relief hole 112 communicates with the end cover cavity 111 and the inner layer soundproof cavity 401, and the pressure in the high pressure cavity 102 is not greater than
- the piston 310 blocks the pressure relief hole 112 at a predetermined pressure value, and the piston 310 moves to a position where the pressure relief hole 112 is opened when the pressure of the high pressure chamber 102 is greater than a predetermined pressure value.
- the piston 310 substantially blocks the pressure relief hole 112, and the pressure relief hole 112 is oil film between the piston 310 and the peripheral wall of the end cover chamber 111. Sealing, when the output pressure of the oil pump assembly 100 is abnormal, the pressure of the high pressure chamber 102 is greater than a predetermined pressure value, the pressure of the oil pressure against the piston 310 overcomes the elastic force of the elastic member 320 to move the piston 310 upward, and the piston 310 moves to open the pressure relief hole 112. In the position of the pressure relief hole 112 and the high pressure chamber 102, pressure relief can be achieved. At this time, the piston 310 acts as a valve core to regulate the output flow and pressure of the oil pump assembly 100.
- At least a portion of the oil delivery passage 1010 of the oil pump assembly 100 may be disposed within the inner sound enclosure 400, such as the upper end of the oil outlet passage 1010 and the high pressure chamber 102 (away from One end of the motor assembly 200 is in communication.
- a cushion gasket 122 may be interposed between the lower end cover 120 of the oil pump assembly 100 and the end cover 210 of the motor assembly 200.
- the cushioning washer 122 is disposed at a position where the oil pump assembly 100 is in contact with the end cover 210, and functions as a buffering and sound absorbing function to prevent the oil pump assembly 100 from directly transmitting the working vibration through the contact portion.
- the structure of the damper 122 may be a single layer structure as shown in FIGS. 17 and 20 or a multilayer structure as shown in FIG.
- the inner soundproof cover 400 may be provided with an oil outlet passage 1010, and the oil outlet passage 1010 communicates with the soundproof enclosure cavity 402.
- the oil discharge passage 1010 may be connected to the soundproof enclosure cavity 402 at all times.
- the piston 310 is integrally formed with the upper end cover 110.
- the piston 310 is provided with a piston hole 314 extending through the piston 310.
- the piston hole 314 extends through the upper end cover 110.
- the piston hole 314 is connected to the high pressure chamber 102 and the soundproof cover cavity 402.
- the flow direction of the high pressure oil pumped by the oil pump assembly 100 is: a high pressure chamber 102 - a piston bore 314 - an oil passage 1010.
- the end face of the piston 310 facing the sound enclosure cavity 402 has a raised portion 311 that abuts against the top wall of the sound enclosure cavity 402.
- the contact area between the end surface of the piston 310 and the inner soundproof cover 400 can be reduced by providing the convex portion 311, and the secondary noise generated between the piston 310 and the inner soundproof cover 400 can be reduced, and the piston 310 does not Natural cold welding is formed with the inner soundproof cover 400 due to long-term use.
- the plurality of protrusions 311 may be evenly distributed on the end surface of the piston 310 facing the inner soundproof cover 400, so that the force of the piston 310 is uniform, for example, the plurality of protrusions 311 may be located in the same On the ring, the boss 311 may have a trapezoidal cross section.
- the upper end cap 110 of the oil pump assembly 100 has an end cap cavity 111 that extends through the upper end cap 110 and that communicates with the high pressure chamber 102 of the oil pump assembly 100.
- the inner soundproof cover 400 is provided with a soundproof cover cavity 402.
- the pre-tightening buffer assembly 300 includes a piston 310 and an elastic member 320. The upper portion of the piston 310 cooperates with the soundproof cover cavity 402.
- the lower portion of the piston 310 cooperates with the end cover cavity 111, and the piston
- the upper section of 310 and the sound enclosure cavity 402 A piston sealing ring 312 is disposed between the peripheral wall of the piston 310, and a piston sealing ring 312 is disposed between the lower portion of the piston 310 and the peripheral wall of the end cap cavity 111 to isolate the high pressure cavity 102 and the inner layer soundproof cavity 401 of the oil pump assembly 100, and the elastic member 320 Used to provide preload.
- the piston 310 can be made of a metal nylon composite or a metal material.
- the piston 310 can eliminate a part of the pulsation by the expansion and contraction of the elastic member 320, the piston sealing ring 312 compressed by the piston 310, the gap oil film between the piston 310 and the peripheral wall of the end cap cavity 111, and the piston 310 and the soundproof cover cavity.
- the gap oil film between the peripheral walls of 402 can also eliminate a portion of the pulsation, thereby reducing the output pulsation of the oil pump assembly 100, so that the output oil pressure is more stable and uniform.
- the end cap cavity 111 may be configured as a stepped hole to form a stepped surface
- the elastic member 320 may be elastically sandwiched between the piston 310 and the stepped surface
- the piston 310 is abutted against the top wall of the soundproof cover cavity 402
- the upper section of the piston 310 has a smaller diameter than the piston
- the diameter of the lower section of the 310, the stepped surface between the upper section of the piston 310 and the lower section of the piston 310 is spaced apart from the inner sound enclosure 400 and is located within the inner sound insulation chamber 401 to prevent the piston 310 from colliding with the inner sound enclosure 400.
- An end of the piston 310 and the elastic member 320 is provided with an upper guiding protrusion 315, that is, one end of the piston 310 is provided with an upper guiding protrusion 315, and the end is abutted against the elastic member 320, and the step surface of the end cover cavity 111 A lower guide projection 113 corresponding to the upper guide projection 315 is provided.
- the elastic member may be a spring and sleeved outside the upper guiding protrusion 315 and the lower guiding protrusion 113.
- the upper guiding protrusions 315 may be plural, and the plurality of upper guiding protrusions 315 are evenly distributed on the end surface of the piston 310 facing the end cap cavity 111, for example, the plurality of upper guiding protrusions 315 may be located on the same ring.
- the lower guide protrusions 113 may be plural, and the plurality of lower guide protrusions 113 are evenly distributed on the step surface of the end cap cavity 111.
- the piston 310 stops the inner soundproof cover 400 under the combined action of the pressure of the high pressure oil outputted by the high pressure chamber 102 and the elastic force of the elastic member 320.
- the reaction force of the inner soundproof cover 400 causes the elastic member 320 to press the oil pump assembly 100, and the end cover
- the step surface of the chamber 111 is subjected to the downward pressure of the high pressure oil to press the upper end cap 110, the upper end cap 110 of the oil pump assembly 100, the oil pump body (such as bearings, gears, etc.) and the lower end cap 120 are pressed against each other to hold the oil pump assembly 100. Sealing.
- the motor oil pump assembly 1000 has an oil outlet passage 1010 and an oil delivery branch 1020, wherein the oil outlet passage 1010 communicates with the lower end of the high pressure chamber 102, such as oil.
- the passage 1010 can be connected to the lower end of the high pressure chamber 102 through the lower passage 121 of the lower end cover 120, and the oil discharge branch 1020 is connected to the oil outlet passage 1010 to guide the high pressure oil to the end of the pretensioning buffer assembly 300 away from the upper end cover 110.
- the high pressure oil is output downward through the oil outlet passage 1010 and branched at the oil discharge branch 1020 to be transmitted to the preload buffer assembly 300.
- the preload buffer assembly 300 presses the upper end cover 110 under the action of oil pressure to provide a portion. Preload.
- the inner soundproof cover 400 may be provided with a soundproof cover cavity 402.
- the soundproof cover cavity 402 may be disposed on the top cover 410 of the inner soundproof cover 400.
- the pretensioning buffer assembly 300 may include a piston 310 and an elastic member 320, and the piston 310 and the soundproof cover cavity.
- the piston 310 is engaged with the upper end cover 110 of the oil pump assembly 100, and a piston seal ring 312 may be interposed between the piston 310 and the peripheral wall of the soundproof cover cavity 402.
- the elastic member 320 is elastically interposed between the top wall of the soundproof cover cavity 402 and the piston 310.
- the elastic member 320 is used to provide a preload force for pressing the upper end cover 110.
- the elastic member 320 can be a spring, the soundproof cover cavity 402 and the oil pump.
- the high pressure chamber 102 of the assembly 100 is in communication, and the piston 310 presses the upper end cover 110 under the action of the oil pressure.
- the elastic force of the elastic member 320 and the oil pressure of the high pressure oil drawn from the oil discharge branch 1020 act on the upper end cover 110 to make the oil pump.
- the upper end cap 110 of the assembly 100, the oil pump body (such as bearings, gears, etc.) and the lower end cap 120 are pressed against each other to maintain the sealing of the oil pump assembly 100.
- the oil outlet passage 1010 may be disposed on the end cover 210 of the motor assembly 200, and the oil outlet passage 1010 may communicate with the lower end of the high pressure chamber 102.
- the oil outlet passage 1010 may pass through the lower passage 121 of the lower end cover 120 and the lower end of the high pressure chamber 102.
- the oil delivery branch 1020 is in communication with the oil outlet passage 1010, and the oil delivery branch 1020 is in communication with the soundproof enclosure cavity 402.
- the oil delivery branch 1020 can penetrate into the top wall of the soundproof enclosure cavity 402. Referring to FIG. 7-13, the oil is discharged.
- the branch 1020 can be placed on the inner sound enclosure 400.
- the pulsating high pressure oil is directly outputted through the oil outlet passage 1010, and the other passage is conducted to the piston 310 through the oil discharge branch 1020, and is retroreflected.
- the reflected pulsation and the pulsation directly transmitted to the oil outlet passage 1010 form oil pulsation.
- the misalignment, the two misaligned oil pulsations cancel each other out, so that the output pulsation of the motor oil pump assembly 1000 can be eliminated to achieve active noise reduction of the motor oil pump assembly 1000.
- the piston 310 can eliminate a part of the pulsation by the expansion and contraction of the elastic member 320. For example, the oil pressure suddenly increases, the piston 310 can move downward under the action of the oil pressure, the piston seal ring 312 and the piston 310 and the end cap cavity which are pressed by the piston 310.
- the gap oil film between the peripheral walls of 111 can also eliminate a portion of the pulsation, thereby reducing the output pulsation of the oil pump assembly 100, so that the output oil pressure is more stable and uniform.
- the piston 310 has various structural forms. Referring to FIG. 7, the piston 310 and the upper end cover 110 may be of a split type, and the piston 310 may be made of a metal nylon composite material or a metal material.
- the piston 310 can include an associated piston section 316 and a pressing section 317, and the piston section 316 and the abutting section 317 can be integrally formed.
- the piston section 316 is engaged with the sound enclosure cavity 402, and a piston seal ring 312 may be interposed between the piston section 317 and the peripheral wall of the sound enclosure cavity 402.
- the pressing section 317 abuts the upper end cap 110, and the cross-sectional area of the pressing section 317 can be larger than the cross-sectional area of the piston section 316, so that the pressing section 317 can receive the elastic force of the elastic member 320 and the oil of the piston section 316.
- the pressure is applied more evenly to the various regions of the upper end cap 110, and the oil pump assembly 100 is more tightly mounted.
- the projection of the resisting section 317 on the upper end cap 110 can completely coincide with the upper end cap 110.
- the end surface of the pressing section 317 facing the upper end cover 110 may have an pressing boss 318 against which the pressing boss 318 abuts. This can reduce the contact area between the piston 310 and the upper end cap 110, reduce the secondary noise generated between the piston 310 and the upper end cap 110, and the piston 310 does not form a natural cold weld with the upper end cap 110 due to long-term use.
- the plurality of pressing bosses 318 may be located on a plurality of concentric rings, and the pressing convexity may be Stage 318 can have a trapezoidal cross section.
- the piston 310 is integrally formed with the upper end cap 110 of the oil pump assembly 100, and the piston 310 may be made of a metal nylon composite material or a metal material.
- the structure and assembly process of the motor oil pump assembly 1000 is simpler.
- the pre-tightening buffer assembly 300 can have various structural forms, and the structural forms of the piston 310 and the elastic member 320 are merely one embodiment.
- the pretensioning cushion assembly 300 can be a hydraulic valve, and the upper end cap 110 and/or the inner sound enclosure 400 form a valve seat for the hydraulic valve, the valve seat having a valve cavity therein, and a valve body disposed therein.
- the motor oil pump assembly 1000 includes a motor assembly 200, an oil pump assembly 100, an inner sound enclosure 400, and a preload buffer assembly 300.
- the oil pump assembly 100 is supported on an end cover 210 of the motor assembly 200.
- the upper end cover 110 of the oil pump assembly 100 has an end cover cavity 111.
- the end cover cavity 111 extends through the upper end cover 110, and the end cover cavity 111 communicates with the high pressure chamber 102 of the oil pump assembly 100.
- the inner soundproof cover 400 is disposed outside the oil pump assembly 100, and the inner soundproof cover 400 and the oil pump assembly 100 define an inner soundproof cavity 401, and the inner soundproof cavity 401 is filled with low pressure oil, the inner soundproof cavity 401 and the oil pump assembly 100.
- the low pressure chamber 101 is in communication.
- the pre-tightening buffer assembly 300 includes a valve core 330 and an elastic member 320.
- the elastic member 320 elastically resists between the valve core 330 and the inner soundproof cover 400, so that the valve core 330 blocks the end cap cavity 111, and the elastic member 320 can be a spring. .
- the spool 330 blocks the end cap cavity 111 under the elastic force of the elastic member 320 to separate the high pressure end cap cavity 111 from the low pressure inner layer soundproof cavity 401.
- the elastic member 320 further provides a pre-tightening force of the oil pump assembly 100, and the pressure applied by the valve core 330 to the upper end cover 110 of the oil pump assembly 100 causes the upper end cover 110 of the oil pump assembly 100, the oil pump body (such as bearings, gears, etc.) and the lower end cover. 120 is pressed against each other to maintain the tightness of the oil pump assembly 100, and there is no need to perform a large torque lock on the oil pump assembly 100.
- the preload force provided by the preload buffer assembly 300 only needs to ensure that the oil pump assembly 100 is installed. The working friction of the oil pump assembly 100 can be reduced, the operational efficiency of the oil pump assembly 100 can be improved, and the mechanical efficiency of the oil pump assembly 100 is high.
- the spool 330 can eliminate a part of the pulsation by the expansion and contraction of the elastic member 320, and the pulsating high-pressure oil outputted by the oil pump assembly 100 is divided into two paths, one way is output downward through the oil outlet passage 1010, and the other passage is transmitted upward to the spool 330, and is spooled. 330 reflection.
- the reflected pulsation and the pulsation directly transmitted to the oil outlet passage 1010 form a hydraulic pulsation misalignment, and the two misaligned oil pulsations cancel each other, thereby eliminating the output pulsation of the motor oil pump assembly 1000, thereby realizing the total motor oil pump.
- the active noise reduction of 1000, and the oil pressure of the motor oil pump assembly 1000 output is more stable and uniform.
- the spool 330 blocks the upper end of the high pressure chamber 102, and the oil outlet passage 1010 can communicate with the high pressure chamber 102 through the lower passage 121 of the lower end cover 120 to output high pressure oil.
- the spool 330 may include a seal segment 331, a guide segment 332, and a limit segment 333 that are sequentially connected.
- the inner soundproof cover 400 has a soundproof cover cavity 402 open toward the upper end cover 110.
- the guide section 332 cooperates with the inner peripheral wall of the soundproof cover cavity 402, and the oil film between the guide section 332 and the inner peripheral wall of the soundproof cover cavity 402 can also eliminate a part of the pulsation.
- the elastic member 320 is sleeved outside the limiting portion 333, and the elastic member 320 is stopped between the top wall of the soundproofing chamber 402 and the end surface of the guiding portion 332.
- the limiting portion 333 can serve as a guiding and limiting position.
- the spool 330 may have a tapered sealing surface, and the tapered sealing surface may be provided on the sealing section 331, in other words,
- the spool 330 can be a poppet valve and the upper cap 110 can have a tapered sealing surface that corresponds to the tapered sealing surface of the spool 330.
- the sealing effect of the spool 330 on the end cap cavity 111 is better.
- the oil discharge passage 1010 of the oil pump assembly 100 may be provided with an energy absorbing portion, and the energy absorbing portion may have various structures.
- the energy absorbing portion may be the energy storage chamber 1032 or the gas storage tank or the damping. hole.
- the energy absorbing portion may be an energy storage chamber 1032, and the energy storage chamber 1032 may be disposed on the oil outlet channel 1010.
- the energy storage chamber 1032 may have a larger cross-sectional area than other portions of the oil outlet channel 1010. The cross-sectional area, the energy storage chamber 1032 can function to eliminate oil pulsation and perform fluid silencing.
- the energy storage chamber 1032 may be disposed at a bend of the oil outlet passage 1010.
- the energy storage chamber 1032 may have a circular cross section, and the lower end of the peripheral wall of the energy storage chamber 1032 may be coupled to the lower end of the high pressure chamber 102 of the oil pump assembly 100.
- the upper middle end of the peripheral wall of the energy storage chamber 1032 can be continuously connected to the oil outlet of the motor oil pump assembly 1000. In this way, the buffering effect of the oil reservoir on the pulsation and the elimination of noise are better.
- the energy storage cavity 1032 may be disposed on the high pressure oil passage between the soundproof cover cavity 402 and the high pressure cavity 102, that is, the energy storage cavity 1032 may be located at the oil discharge branch.
- the cross-sectional area of the energy storage chamber 1032 can be greater than the cross-sectional area of other portions of the oil discharge branch 1020.
- the energy storage cavity 1032 can have a circular cross section, and the energy storage cavity 1032 can be disposed in the side wall 420 of the soundproof cover. Referring to FIG. 11, the energy storage cavity 1032 can extend from the end of the side wall 420 away from the top cover 410 to the top cover. 410, such that the volume of the energy storage chamber 1032 is larger, the energy storage chamber 1032 can play the role of eliminating oil pulsation and performing fluid silencing, and the elimination of various frequency noise can be realized by designing the size of the energy storage chamber 1032.
- the high-pressure oil passage of the oil pump assembly 100 is provided with an energy storage chamber 1032. At least one end of the energy storage chamber 1032 is connected with a muffler 1033, and the muffler 1033 can be made of metal material. .
- the two ends of the energy storage chamber 1032 are provided with a muffling cylinder 1033, and the muffler cylinder 1033 can be configured as a cylindrical shape with one end open, wherein the open end of one of the muffler cylinders 1033 is embedded in the end cover 210 of the motor assembly 200, and the muffling cylinder 1033 is open.
- the end is in communication with the oil outlet passage 1010, and the open end of the other muffler cylinder 1033 is embedded in the inner soundproof cover 400, and the open end of the sound tube is in communication with the oil discharge branch 1020.
- the muffler 1033 is provided with a through hole 1034.
- the muffler 1033 may be provided with a plurality of through holes 1034.
- the plurality of through holes 1034 are spaced apart from each other on the peripheral wall of the muffler 1033. At least two of the same muffler 1033 are present.
- the through holes 1034 having different apertures, and the two apertures different through holes 1034 may be spaced apart in the axial direction of the muffler 1033.
- the cooperation of the muffler cylinder 1033 and the energy storage cavity 1032 can eliminate the action of oil pulsation and fluid noise.
- the through hole 1034 of the muffler cylinder 1033 forms a plurality of holes between the muffler cylinder 1033 and the energy storage cavity 1032.
- the different oil distribution paths of the caliber function to disturb the flow, and the through holes 1034 having different apertures can eliminate noise of different frequencies.
- the high pressure oil passage may include an oil discharge passage 1010 and an oil discharge branch 1020.
- the oil discharge passage 1010 communicates with the high pressure chamber 102.
- the oil discharge passage 1010 may be disposed on the end cover 210 of the motor assembly 200, and the oil is discharged.
- Channel 1010 The lower oil passage 10210 communicates with the lower end of the high pressure chamber 102 through the lower passage 121 of the lower end cover 120, and the oil discharge branch 1020 communicates with the oil discharge passage 1010, and the oil discharge branch 1020 communicates with the soundproof cover chamber 402.
- the oil delivery branch 1020 can extend into the top wall of the sound enclosure cavity 402, and the energy storage cavity 1032 can be located on the oil delivery branch 1020.
- the energy storage cavity 1032 and the muffler cylinder 1033 are the oil delivery branch 1020. portion.
- the high pressure oil passage includes an oil discharge passage 1010.
- the oil discharge passage 1010 communicates with the soundproof cover chamber 402.
- the piston 310 is provided with a piston hole 314 extending through the piston 310.
- the piston hole 314 and the high pressure chamber 102 and the soundproof cover chamber 402 are both provided.
- the energy storage chamber 1032 is disposed on the oil outlet passage 1010.
- the energy storage chamber 1032 and the muffler 1033 are part of the oil discharge passage 1010, and in this embodiment, since the high pressure oil is not output through the lower end cover 120, the lower end cover 120 of the oil pump assembly 100 and the motor assembly 200
- the cushioning pads 122 described in the above embodiments may be interposed between the end caps 210 to suspend the oil pump assembly 100.
- the energy absorbing portion can include a hose 1031.
- the hose 1031 can be disposed on the high pressure oil line of the oil pump assembly 100.
- the hose 1031 is disposed on a high pressure oil passage between the sound enclosure cavity 402 and the high pressure chamber 102.
- the hose 1031 can communicate with other oil passages through the first rigid tube 1021 and the second rigid tube 1022.
- One end of the hose 1031 is sleeved outside the first rigid tube 1021, and the other end of the hose 1031 is sleeved on the second hard tube.
- the hose 1031 can be submerged in the low pressure oil, such as in the embodiment where the outer sound insulation chamber 501 is filled with low pressure oil, and the hose 1031 can be located within the outer sound insulation chamber 501.
- the first rigid tube 1021 and the second rigid tube 1022 may be metal tubes, and the hose 1031 may be a rubber tube.
- a spiral groove 1023 may be disposed on the inner peripheral wall of at least one of the first rigid tube 1021 and the second rigid tube 1022.
- the spiral turbulence of the spiral groove 1023 can further reduce the pulsation. .
- the high pressure oil passage may include an oil discharge passage 1010 and an oil discharge branch 1020.
- the oil discharge passage 1010 communicates with the high pressure chamber 102.
- the oil discharge passage 1010 may be disposed on the end cover 210 of the motor assembly 200, and the oil is discharged.
- the passage 1010 is connected to the lower end of the high pressure chamber 102 through the lower passage 121 of the lower end cover 120.
- the oil discharge branch 1020 communicates with the oil discharge passage 1010, and the oil discharge branch 1020 communicates with the soundproof cover chamber 402.
- the oil delivery branch 1020 can extend into the top wall of the soundproof enclosure cavity 402, and the hose 1031 can be disposed on the oil delivery branch 1020.
- the oil delivery branch 1020 includes a first rigid tube 1021 and a second rigid tube 1022, first The hard tube 1021 is in communication with the oil outlet passage 1010, and the second rigid tube 1022 is in communication with the sound enclosure cavity 402.
- the first rigid tube 1021 and the second rigid tube 1022 are connected by a hose 1031.
- the hose 1031 is part of the oil delivery branch 1020.
- the high pressure oil passage includes an oil outlet passage 1010.
- the oil outlet passage 1010 is in communication with the soundproof enclosure cavity 402.
- the piston 310 is provided with a piston hole 314 extending through the piston 310.
- the piston hole 314 and the high pressure chamber 102 and the soundproof cover cavity 402 are both provided.
- the hose 1031 is disposed on the oil outlet passage 1010, and the oil outlet passage 1010 further includes a first rigid tube 1021 and a second rigid tube 1022.
- the hose 1031 is connected between the first rigid tube 1021 and the second rigid tube 1022.
- the hose 1031 is part of the oil outlet passage 1010, and in this embodiment, since the high pressure oil is not output through the lower end cap 120, the lower end cap 120 of the oil pump assembly 100 and the end cap 210 of the motor assembly 200
- the cushioning pads 122 described in the above embodiments may be interposed to suspend the oil pump assembly 100.
- the motor assembly 200 may be liquid-cooled, and the motor cavity 201 of the motor assembly 200 is in communication with the low pressure chamber 101 of the oil pump assembly 100, and the oil suction through the oil pump assembly 100 is negative.
- the pressure action can drive the oil to flow through the motor cavity 201, thereby achieving liquid cooling of the motor assembly 200 during the operation of the motor oil pump assembly 1000.
- the oil inlet of the motor oil pump assembly 1000 can directly communicate with the outer soundproof cavity 501, in order to guide the flow of oil, in some
- a partition 502 may be disposed between the outer soundproof cavity 501 and the inner soundproof cavity 401, so that the flow direction of the oil is: outer soundproof cavity 501-motor Cavity 201 - low pressure chamber 101 - high pressure chamber 102 - oil outlet passage 1010 - steering.
- the oil inlet of the motor oil pump assembly 1000 can also be located at other positions.
- the oil inlet of the motor oil pump assembly 1000 can be disposed at the bottom of the electric control box 260 of the motor assembly 200.
- the heat generated by the electronic control part of the motor assembly 200 is severe, and the oil can enter the motor cavity 201 through the oil inlet of the bottom of the electric control box 260, and the oil first cools the electronic control part of the motor assembly 200 through the oil pump.
- the oil inside can cool the stator 250, and the oil passes through the cooling oil passage to reach the oil suction port of the oil pump assembly 100.
- the rotor 240 of the motor assembly 200 can be immersed in the low-pressure oil, so that the oil can act to delay the rotation of the rotor 240 to buffer the problem of rapid acceleration or rapid deceleration of the rotor 240 and excessive inertia modulus, thereby preventing the motor assembly 200 from being damaged.
- the impact on the steering oil passage during the dumping is better, the steering feel is better, the steering wheel is not easy to shake, and the rotor 240 can form an annular agitation to the upper and lower electronically controlled heat dissipation oil layer 263 and the motor low-pressure lubrication heat dissipation oil layer 264, and strengthen the electronic control portion and the stator 250. Cooling effect.
- the energy storage structure may be added in the oil passage, and the rotation speed of the motor assembly 200 may be controlled by electronic control, for example, at a high speed.
- a uniform acceleration algorithm is applied to the rotational speed of the motor assembly 200 to reduce the rotational speed to reduce the load on the motor assembly 200 and the oil pump assembly 100 during the rapid decrease in rotational speed.
- the motor oil pump assembly 1000 of the embodiment of the present disclosure may be used in a steering system.
- the motor shaft 220 of the motor assembly 200 is coupled to the input shaft 130 of the oil pump assembly 100.
- the rotational speed n of the motor shaft 220 is controlled according to at least the vehicle speed v and the steering angle w of the steering wheel.
- the rotational speed n of the motor shaft 220 can determine the oil pressure and flow output of the oil pump assembly 100, thereby controlling the wheel The rotation.
- the rotational speed n of the motor shaft 220 is controlled to satisfy: n3 ⁇ n ⁇ n4.
- w1 ⁇ 5°, 950 rpm ⁇ n3 ⁇ 1050 rpm, 1150 rpm ⁇ n4 ⁇ 1250 rpm.
- w1 0°
- n1 1000 rpm
- n2 1200 rpm.
- the vehicle is under idle condition, the steering wheel is basically not working, the vehicle speed is zero, the CAN communication line of the motor assembly 200 has no input signal, and the motor assembly 200 drives the oil pump assembly 100 to operate at a low idle condition, and the motor shaft 220 has the lowest rotational speed to ensure
- the heat dissipation requirement of the motor assembly 200 is that the motor oil pump assembly 1000 has the lowest noise.
- the rotational speed n of the motor shaft 220 is controlled to satisfy: n5 ⁇ n ⁇ n6.
- n5 1500 rpm
- n6 1600 rpm.
- the motor assembly 200 drives the oil pump assembly 100, and the idle speed works, and the rotational speed of the motor shaft 220 is slightly increased to ensure the steering demand of the whole vehicle, and because Road noise has been generated during the operation of the vehicle, and the noise increased by the speed does not exceed or overlap the vehicle noise.
- the rotational speed n of the motor shaft 220 is negatively correlated with the vehicle speed v, and the rotational speed n of the motor shaft 220 is positively correlated with the rotational angle w of the steering wheel.
- the vehicle runs at a high speed, for example, v1 ⁇ 60km/h, and generally performs emergency avoidance measures. At this time, it is necessary to control the flow of the steering to prevent the vehicle from being overturned in an emergency direction.
- the rotation speed n of the motor shaft 220 is not greater than the value n2, that is, the control motor assembly 200 is operated at a medium and low speed. For example, 2350 rpm ⁇ n2 ⁇ 2450 rpm.
- the rotational speed n of the motor shaft 220 is controlled to satisfy: n1 ⁇ n ⁇ n2.
- the motor The rotational speed n of the shaft 220 is also controlled between n1 and n2, and the wheels are only fine-tuned for emergency avoidance.
- the acceleration a of the motor shaft 220 satisfies: a ⁇ a1. That is, the maximum acceleration of the motor shaft 220 is controlled to prevent the motor assembly 200 from being thrown.
- the motor oil pump assembly 1000 has a high lightening level, a small occupied space, a low manufacturing cost, and a small direct contact area of the oil pump assembly 100 with other components, which can greatly reduce secondary noise.
- the sound source of the motor oil pump assembly 1000 is good, and the pulsation fluctuation of the motor oil pump assembly 1000 can be reduced by the method of oil pulsation cancellation, and the active noise reduction of the motor oil pump assembly 1000 is realized, and the operation of the oil pump assembly 100 is completed.
- the low friction force makes the motor oil pump assembly 1000 work efficiently.
- the present disclosure also discloses a steering system 10, with reference to FIG. 22, a steering system 10 of an embodiment of the present disclosure is provided with a motor oil pump assembly 1000 as described in any of the above embodiments.
- the present disclosure also discloses a vehicle 1.
- the vehicle 1 of the embodiment of the present disclosure is provided with the steering system 10 described in any of the above embodiments.
- the vehicle 1 of the embodiment of the present disclosure may be a bus.
- the terms “mounted,” “connected,” “connected,” “fixed,” and the like shall be used in a broad sense, such as a fixed connection, or a detachable connection, or Integral; may be mechanically connected or electrically connected; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
- the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
一种电机油泵总成,包括:电机组件(200),油泵组件(100),内隔音罩(400),预紧缓冲组件(300)和安全阀。油泵组件(100)支撑在电机组件(200)的端盖上;内隔音罩(400)罩设在油泵组件(100)外,且与油泵组件(100)限定出填充有低压油的内层隔音腔(401),内层隔音腔(401)与油泵组件(100)的低压腔连通;预紧缓冲组件(300)夹设在油泵组件(100)的上端盖(110)与内隔音罩(400)之间,且预紧缓冲组件(300)与油泵组件(100)的高压腔(102)连通;安全阀设置成在高压腔(102)的压力大于预定压力值时泄压。还公开了一种转向系统和车辆。在实际应用中,可实现电机油泵的轻量化,降低工作噪音。
Description
本公开属于车辆制造技术领域,具体而言,涉及一种电机油泵总成、具有该电机油泵总成的转向系统和具有该转向系统的车辆。
电机油泵总成广泛应用于车辆的转向系统,相关技术中,油泵组件浸没在高压油中,油泵组件的外侧为高压腔,这使得需要设计高强度的壳体来密封该高压腔,对壳体的铸造工艺以及高压腔的密封性能要求很高,且壳体的厚度较大,不符合轻量化的要求。进一步地,油泵组件在工作过程中产生的振动噪音较大,相关技术中往往通过设置各种阻尼元件来隔离噪音,阻尼元件的构造复杂,占用较大的安装空间,且生产成本高,装配工艺复杂,存在改进空间。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种工作噪音低、轻量化水平高的电机油泵总成。
本公开的另一个目的在于提出一种具有上述电机油泵总成的转向系统。
本公开的另一个目的在于提出一种具有上述转向系统的车辆。
根据本公开第一方面实施例的电机油泵总成,包括:电机组件;油泵组件,所述油泵组件支撑在所述电机组件的端盖上;内隔音罩,所述内隔音罩罩设在所述油泵组件外,且与所述油泵组件限定出填充有低压油的内层隔音腔,所述内层隔音腔与所述油泵组件的低压腔连通;预紧缓冲组件,所述预紧缓冲组件夹设在所述油泵组件的上端盖与所述内隔音罩之间,且所述预紧缓冲组件与所述油泵组件的高压腔连通;安全阀,所述安全阀设置成在所述高压腔的压力大于预定压力值时泄压。
根据本公开第一方面实施例的电机油泵总成,通过在内隔音罩与油泵组件之间填充低压油,有助于实现电机油泵总成的轻量化,电机油泵总成占用的空间小,制造成本低,工作噪音小。
根据本公开第二方面实施例的转向系统,设置有如第一方面任一种所述的电机油泵总成。
所述转向系统与上述的电机油泵总成相对于现有技术所具有的优势相同,在此不再赘述。
根据本公开第三方面实施例的车辆,设置有如第二方面任一种所述的转向系统。
所述车辆与上述的转向系统相对于现有技术所具有的优势相同,在此不再赘述。
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开第一种实施例的电机油泵总成的结构示意图;
图2是根据本公开第二种实施例的电机油泵总成的结构示意图;
图3是根据本公开第三种实施例的电机油泵总成的结构示意图;
图4是根据本公开第四种实施例的电机油泵总成的结构示意图;
图5是根据本公开第五种实施例的电机油泵总成的结构示意图;
图6是根据本公开第六种实施例的电机油泵总成的结构示意图;
图7是根据本公开第七种实施例的电机油泵总成的结构示意图;
图8是根据本公开第八种实施例的电机油泵总成的结构示意图;
图9是根据本公开第九种实施例的电机油泵总成的结构示意图;
图10是根据本公开第十种实施例的电机油泵总成的结构示意图;
图11是根据本公开第十一种实施例的电机油泵总成的结构示意图;
图12是根据本公开第十二种实施例的电机油泵总成的结构示意图;
图13是根据本公开第十三种实施例的电机油泵总成的结构示意图;
图14是根据本公开第十四种实施例的电机油泵总成的结构示意图;
图15是根据本公开第十五种实施例的电机油泵总成的结构示意图;
图16是根据本公开第十六种实施例的电机油泵总成的结构示意图;
图17是根据本公开第十七种实施例的电机油泵总成的结构示意图;
图18是根据本公开第十八种实施例的电机油泵总成的结构示意图;
图19是根据本公开第十九种实施例的电机油泵总成的结构示意图;
图20是根据本公开第二十种实施例的电机油泵总成的结构示意图;
图21是根据本公开实施例的电机油泵总成的输出脉动消除示意图;
图22是根据本公开实施例的转向系统的结构示意图;
图23是根据本公开实施例的车辆的结构示意图。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同
或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确限定。
下面将参考附图并结合实施例来详细说明本公开。
首先参照附图详细描述根据本公开实施例的电机油泵总成1000。
如图1-图21所示,电机油泵总成1000包括电机组件200、油泵组件100、内隔音罩400和预紧缓冲组件300。
电机组件200用于提供油泵组件100运转的驱动力,比如电机组件200的电机轴220可以通过联轴器230与油泵组件100的输入轴130相连。当然,电机组件200不限于直接驱动油泵组件100,还可以通过变速箱或减速器等传动机构与油泵组件100连接。
油泵组件100在电机组件200的驱动下工作,以将低压油转变为高压油输出。油泵组件100可以为外啮合齿轮泵、摆线齿轮泵、叶片泵或柱塞泵等。油泵组件100可以支撑在电机组件200的端盖210上,比如油泵组件100的下端盖120可以支撑在电机组件200的端盖210上。
内隔音罩400罩设在油泵组件100外,内隔音罩400与油泵组件100限定出内层隔音腔401,内层隔音腔401内填充有低压油。内层隔音腔401可以与油泵组件100的低压腔101(液压油输入腔)连通。
也就是说,油泵组件100的外围被低压油包裹,内层隔音腔401的压力小,便于密封,内隔音罩400不起到高压容器的作用,不必受限于强度的影响,提供了轻量化设计的可能性,内隔音罩400的壁可以设置的较薄,比如内隔音罩400可以由薄金属制成,以减小电机油泵总成1000的占用空间及重量。同时,油泵组件100的振动噪音可以被内层隔音腔401内的低压油吸收以及被内隔音罩400反射,以降低电机油泵总成1000的工作噪音。
预紧缓冲组件300止抵在油泵组件100的上端盖110与内隔音罩400之间,可以理解的是,预紧缓冲组件300对油泵组件100的上端盖110施加向下的预紧力,使油泵组件100的上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120相互压紧,以保持油泵组件100的密封性,且在装配时无需在油泵组件100上进行螺栓大扭矩锁紧,预紧缓冲组件300提供的预紧力只需保证油泵组件100安装上即可,这样可以减小油泵组件100的工作摩擦力,提升油泵组件100的工作能效,油泵组件100的机械效率更高。
同时,油泵组件100与其他部件(各种壳体)的直接接触面积较小,参考图1-图20,
油泵组件100只在联轴器230外的包裹区域以及高压油路到转向器的接口区域与电机组件200的端盖210存在接触,且在油泵组件100的进出油口处还设有密封圈,密封圈在预紧力的作用下变形,使油泵组件100的下端盖120与电机组件200的端盖210之间形成间隙油膜,由于接触面积小,该间隙油膜及密封圈可以消除油泵组件100与端盖210的振荡产生的二次低频噪音,而油泵组件100工作产生的高频噪音也可以被密封圈及间隙油膜反射或吸收。
预紧缓冲组件300与油泵组件100的高压腔102连通。可以理解的是,油泵组件100的输出脉动高压油一路传向预紧缓冲组件300,另一路通过出油通道1010传向转向器,比如预紧缓冲组件300可以与高压腔102的上端连通,出油通道1010可以与高压腔102的下端相连。
当高压油的脉动传导到预紧缓冲组件300时,预紧缓冲组件300可以反射该脉动,参考图21,(a)图上面为反射前的脉动,(a)图下面为反射后的脉动,(b)图为两路脉动合成后的示意图,反射的脉动与直接传向出油通道1010的脉动形成油液脉动错位,两股错位的油液脉动相互抵消,从而可以消减甚至消除电机油泵总成1000的输出脉动,以实现电机油泵总成1000的主动降噪。
根据本公开实施例的电机油泵总成1000,通过在内隔音罩400与油泵组件100之间填充低压油,有助于电机油泵总成1000的轻量化,且电机油泵总成1000的工作噪音小。
在本公开的一些实施例中,参考图1-图20,内隔音罩400可以包括顶盖410和侧围420,顶盖410可以与侧围420相连,侧围420可以与电机组件200的端盖210相连,顶盖410可以为板状(包括平板和弯折板),侧围420可以大体呈环形。
在一些实施例中,参考图1-图7、图9、图11、图16-10,顶盖410可以通过螺纹紧固件与侧围420相连,顶盖410与侧围420的连接处可以设有密封圈,侧围420可以与电机组件200的端盖210形成为一体,由此,内隔音罩400的成型简单,且密封位置少。
在另一些实施例中,参考图8、图10、图12-15,顶盖410可以与侧围420形成为一体,侧围420可以与电机组件200的端盖210通过螺纹紧固件相连,这样,内隔音罩400的成型简单,且密封位置少。
内隔音罩400的结构形式有多种,上面仅列举内隔音罩400的两种结构,在实际的应用过程中可以根据油泵组件100的油路走向等因素设计合适的结构形式的内隔音罩400。
在本公开的一些实施例中,参考图1-图20,电机油泵总成1000还可以包括外隔音罩500,外隔音罩500可以罩设在内隔音罩400的至少部分外,且外隔音罩500与内隔音罩400之间限定出外层隔音腔501。
外隔音罩500可以由内表面光滑、中间有孔的材料制成,这样,外隔音罩500对噪音
的反射能力强、吸收效果好。在一些实施例中,外隔音罩500可以由塑料或金属尼龙复合材料制成,金属尼龙复合材料可以为尼龙基材内添加金属网的复合材料。
外层隔音腔501内可以填充有多种材料,在一些实施例中,参考图1-图5和图7-图18,外层隔音腔501用于填充低压油。内层隔音腔401可以与外层隔音腔501连通,在一个实施例中,低压油可以在外层隔音腔501、内层隔音腔401以及油泵组件100的低压腔101之间流通。
需要说明的是,内层隔音腔401与外层隔音腔501的连通包括直接连通和间接连通,比如外层隔音腔501与内层隔音腔401之间可以设有隔断502,隔断502用于防止外层隔音腔501内的低压油直接流向内层隔音腔401,外层隔音腔501与内层隔音腔401之间可以通过电机腔201间接连通。
在另一些实施例中,参考图6和图19-图20,外隔音罩500罩设在内隔音罩400外,且外隔音罩500与内隔音罩400之间可以填充有吸音层510,吸音层510可以为多孔材料制成,比如吸音层510可以为吸音棉,根据噪音的频率,可以设置相关的吸音棉参数,以更好地吸掉超标噪音。
可以理解的是,在内层隔音腔401内的低压油以及内隔音罩400的吸收及反射下,少部分工作噪音会穿过内隔音罩400,此时外层隔音腔501内的材料比如吸音棉或者低压油会进一步吸收该工作噪音,且外隔音罩500也可以对工作噪音起到吸收与反射的作用,这样,电机油泵总成1000的工作噪音经过多重吸收与反射可以得到极大地消减。
例如,参考图20,外隔音罩500外还可以覆盖有外吸音层600,以进一步地隔绝油泵组件100的工作噪音,外吸音层600可以为多孔材料制成,比如外吸音层600可以为尼龙件,尼龙件的内表面光滑、中间多孔,有助于反射及吸收噪音。
在一些实施例中,油泵组件100的下端盖120可以直接支撑在电机组件200的端盖210上。
在另一些实施例中,油泵组件100也可以悬浮设置,参考图14-图15和图17-图20,电机油泵总成1000还可以包括缓冲垫片122,缓冲垫片122可以夹设在油泵组件100的下端盖120与电机组件200的端盖210之间。缓冲垫片122设在油泵组件100与端盖210接触的地方,可以起到缓冲与吸音的作用,防止油泵组件100通过接触部将工作振动直接传递出去。
油泵组件100泵油过程中,存在扭矩波动,反馈到油泵组件100表面形成固有频率的振荡,缓冲垫片122与振荡直接接触,以消除油泵组件100与电机组件200之间的撞击振荡。
另一方面,缓冲垫片122可以把油泵组件100与外围的连接完全隔离开,起到反射噪
音的效果,同时,缓冲垫片122的至少部分可以由多孔材料制成,比如缓冲垫片122的至少部分可以具有一定的柔性及多孔结构,这样缓冲垫片122能吸走部分频率的噪音。
例如,参考图14、图15、图17、图19、图20,缓冲垫片122可以为单层结构,比如缓冲垫片122可以为单层尼龙件。
参考图18,缓冲垫片122可以包括多层,且缓冲垫片122的多层中在外侧的两层为刚性层,中间至少包括一层柔性层。刚性的外层便于与油泵组件100的下端盖120及电机组件200的端盖210连接,油泵组件100与电机组件200之间的支撑强度更大,柔性层则可以起到吸音与减振的作用。
任意相邻的两层之间可以固化连接,以防止在电机油泵总成1000的工作过程中缓冲垫片122发生内部的错位,比如对于橡胶与金属的相邻两层,可以采用硫化连接。在一个实施例中,缓冲垫片122可以包括依次层叠的上层钢垫片122a、中层尼龙垫片122b和下层钢垫片122c。
在本公开的一些优选实施例中,参考图1-图6,油泵组件100的出油通道1010可以设在电机组件200的端盖210上,出油通道1010与高压腔102的下端连通,比如出油通道1010可以通过下通道121与高压腔102的下端相连,下通道121贯穿下端盖120。
参考图1-图6,油泵组件100的上端盖110上可以设有端盖腔111,端盖腔111可以贯穿上端盖110,且端盖腔111与高压腔102的上端连通,预紧缓冲组件300可以与端盖腔111配合以隔绝高压腔102与内层隔音腔401。
可以理解的是,预紧缓冲组件300的下端面通过端盖腔111与高压腔102的上端连通,脉动高压油一路向下通过出油通道1010输出,另一路向上传导到预紧缓冲组件300,并被预紧缓冲组件300反射,参考图21,反射的脉动与直接传向出油通道1010的脉动形成油液脉动错位,两股错位的油液脉动相互抵消,从而可以消除电机油泵总成1000的输出脉动,以实现电机油泵总成1000的主动降噪。
端盖腔111可以构造为阶梯孔以形成阶梯面,预紧缓冲组件300与端盖腔111配合以隔绝高压腔102与内层隔音腔401,预紧缓冲组件300在高压油的压力作用下止抵内隔音罩400的顶盖410,预紧缓冲组件300受到内隔音罩400的反作用力以压紧油泵组件100,且端盖腔111的阶梯面受到高压油向下的油压以压紧上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120。
参考图1-图6,顶盖410可以具有向下敞开的凹槽411,预紧缓冲组件300可以止抵凹槽411的顶壁,在此顶壁指在上下方向上,凹槽411的上壁,在装配时凹槽411可以起到定位的作用,还能防止预紧缓冲组件300在工作过程中偏置。
预紧缓冲组件300可以包括活塞310和弹性件320,活塞310与端盖腔111配合以隔绝
高压腔102与内层隔音腔401,活塞310与端盖腔111的周壁之间设有活塞密封圈312,活塞310和弹性件320组成的预紧缓冲组件300可以夹设在端盖腔111的阶梯面与内隔音罩400之间。活塞310可以为金属尼龙复合材料或金属材料制成,弹性件320可以为弹簧。
参考图1,弹性件320可以弹性夹设在活塞310与端盖腔111的阶梯面之间,活塞310可以止抵内隔音罩400。弹性件320可以利用其弹力对油泵组件100的上端盖110施加向下的预紧力,使油泵组件100的上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120相互压紧,以保持油泵组件100的密封性。
活塞310的朝向内隔音罩400的端面具有凸起部311,凸起部311止抵内隔音罩400。凸起部311可以止抵顶盖410上的凹槽411的顶壁,这样可以减小活塞310与内隔音罩400的接触面积,降低活塞310与内隔音罩400之间产生的二次噪音,且活塞310不会因长期使用而与内隔音罩400形成自然冷焊。凸起部311可以为多个,多个凸起部311均匀分布在活塞310的朝向内隔音罩400的端面上,以使活塞310的受力均匀,比如多个凸起部311可以位于同一个圆环上。
当然,弹性件320和活塞310的位置也可以对调,参考图2-图4和图6,弹性件320可以弹性夹设在活塞310与内隔音罩400之间,活塞310的一端可以止抵端盖腔111的阶梯面。
弹性件320可以利用其弹力通过活塞310对油泵组件100的上端盖110施加向下的预紧力,使油泵组件100的上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120相互压紧,以保持油泵组件100的密封性,且弹性件320的一端可以止抵凹槽411的顶壁,凹槽411对弹性件320还有限位的作用,可以防止弹性件320偏置。
活塞310的朝向阶梯面的端面上可以具有凸起部311,凸起部311止抵阶梯面,这样可以减小活塞310与阶梯面的接触面积,降低活塞310与上端盖110之间产生的二次噪音,且活塞310不会因长期使用而与阶梯面形成自然冷焊。凸起部311可以为多个,多个凸起部311均匀分布在活塞310的远离内隔音罩400的端面上,以使活塞310的受力均匀,比如多个凸起部311可以位于同一个圆环上,每个凸起部311可以具有梯形截面。
活塞310可以通过弹性件320的伸缩消除一部分脉动,比如油压突然增大,活塞310在油压的作用下可以向上运动以压缩弹性件320。被活塞310压紧的活塞密封圈312及活塞310与端盖腔111的周壁之间的间隙油膜也可以消除一部分脉动,从而消减油泵组件100的输出脉动,使得输出的油液压力更加平稳均匀。
进一步地,参考图3和图4,电机油泵总成1000还可以包括安全阀,安全阀可以设置成在高压腔102的压力大于预定压力值时泄压。安全阀可以包括设在端盖腔111的周壁上的泄压孔112,泄压孔112连通端盖腔111与内层隔音腔401,在高压腔102的压力不大于
预定压力值时活塞310封堵泄压孔112,且在高压腔102的压力大于预定压力值时活塞310移动至开启泄压孔112的位置。
可以理解的是,在正常状况下,高压腔102的压力不大于预定压力值,活塞310基本封堵泄压孔112,泄压孔112被活塞310与端盖腔111的周壁之间的间隙油膜密封,在油泵组件100的输出压力异常时,高压腔102的压力大于预定压力值,油压对活塞310的压力克服弹性件320的弹力使活塞310向上运动,活塞310移动至开启泄压孔112的位置时,泄压孔112与高压腔102之间连通,可以实现泄压,此时,活塞310作为阀芯,起到调节油泵组件100输出流量和压力作用。
在本公开的另一些实施例中,参考图14-图20,油泵组件100的出油通道1010的至少一部分可以设在内隔音罩400内,比如出油通道1010与高压腔102的上端(远离电机组件200的一端)连通。
在出油通道1010与高压腔102的上端连通的实施例中,参考图17-图20,油泵组件100的下端盖120与电机组件200的端盖210之间可以夹设有缓冲垫片122,缓冲垫片122设在油泵组件100与端盖210接触的地方,可以起到缓冲与吸音的作用,防止油泵组件100通过接触部将工作振动直接传递出去。缓冲垫片122的结构可以为图17和图20所示的单层结构,也可以为图18所示的多层结构。
在一些实施例中,参考图14-图15,内隔音罩400可以设有出油通道1010,出油通道1010与隔音罩腔402连通,比如出油通道1010可以一直连通到隔音罩腔402的顶壁,活塞310与上端盖110一体成型,活塞310内设有贯穿活塞310的活塞孔314,活塞孔314一直贯穿上端盖110,活塞孔314与高压腔102及隔音罩腔402均相连。这样,油泵组件100泵出的高压油的流向为:高压腔102-活塞孔314-出油通道1010。
活塞310的朝向隔音罩腔402的端面上具有凸起部311,凸起部311止抵隔音罩腔402的顶壁。
可以理解的是,通过设置凸起部311可以减小活塞310的端面与内隔音罩400之间的接触面积,降低活塞310与内隔音罩400之间产生的二次噪音,且活塞310不会因长期使用而与内隔音罩400形成自然冷焊。凸起部311可以为多个,多个凸起部311均匀分布在活塞310的朝向内隔音罩400的端面上,以使活塞310的受力均匀,比如多个凸起部311可以位于同一个圆环上,凸起部311可以具有梯形截面。
在另一些实施例中,参考图16-图20,油泵组件100的上端盖110具有端盖腔111,端盖腔111贯穿上端盖110,且端盖腔111与油泵组件100的高压腔102连通,内隔音罩400上设有隔音罩腔402,预紧缓冲组件300包括活塞310和弹性件320,活塞310的上段与隔音罩腔402配合,活塞310的下段与端盖腔111配合,且活塞310的上段与隔音罩腔402
的周壁之间设有活塞密封圈312,活塞310的下段与端盖腔111的周壁之间设有活塞密封圈312,以隔绝油泵组件100的高压腔102与内层隔音腔401,弹性件320用于提供预紧力。活塞310可以为金属尼龙复合材料或金属材料制成。
可以理解的是,活塞310可以通过弹性件320的伸缩消除一部分脉动,被活塞310压紧的活塞密封圈312、活塞310与端盖腔111的周壁之间的间隙油膜以及活塞310与隔音罩腔402的周壁之间的间隙油膜也可以消除一部分脉动,从而消减油泵组件100的输出脉动,使得输出的油液压力更加平稳均匀。
端盖腔111可以构造为阶梯孔以形成阶梯面,弹性件320可以弹性夹设在活塞310与阶梯面之间,活塞310止抵隔音罩腔402的顶壁,活塞310的上段的直径小于活塞310的下段的直径,活塞310的上段与活塞310的下段之间的台阶面与内隔音罩400间隔开且位于内层隔音腔401内,以防止活塞310与内隔音罩400撞击。
活塞310与弹性件320止抵的一端设有上导向凸起315,即活塞310的一端设有上导向凸起315,所述该端与弹性件320止抵,端盖腔111的阶梯面上设有与上导向凸起315相对应的下导向凸起113。弹性件可以为弹簧,且套设在上导向凸起315与下导向凸起113外。上导向凸起315可以为多个,多个上导向凸起315均匀分布在活塞310的朝向端盖腔111的端面上,比如多个上导向凸起315可以位于同一个圆环上。下导向凸起113可以为多个,多个下导向凸起113均匀分布在端盖腔111的阶梯面上。
活塞310在高压腔102输出的高压油的压力以及弹性件320的弹性力的共同作用下止抵内隔音罩400,内隔音罩400的反作用力使弹性件320压紧油泵组件100,且端盖腔111的阶梯面受到高压油向下的油压以压紧上端盖110,油泵组件100的上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120相互压紧,以保持油泵组件100的密封性。
在本公开的又一些实施例中,参考图7-图13,电机油泵总成1000具有出油通道1010和出油支路1020,其中出油通道1010与高压腔102的下端连通,比如出油通道1010可以通过贯穿下端盖120的下通道121与高压腔102的下端相连,出油支路1020与出油通道1010相连,以将高压油引导到预紧缓冲组件300的远离上端盖110的一端,高压油向下通过出油通道1010输出,并在出油支路1020处分支以传导到预紧缓冲组件300,预紧缓冲组件300在油压的作用下压紧上端盖110,以提供部分预紧力。
内隔音罩400上可以设有隔音罩腔402,隔音罩腔402可以设在内隔音罩400的顶盖410上,预紧缓冲组件300可以包括活塞310和弹性件320,活塞310与隔音罩腔402配合,且活塞310止抵油泵组件100的上端盖110,活塞310与隔音罩腔402的周壁之间可以夹设有活塞密封圈312。弹性件320弹性夹设在隔音罩腔402的顶壁与活塞310之间,弹性件320用于提供压紧上端盖110的预紧力,弹性件320可以为弹簧,隔音罩腔402与油泵
组件100的高压腔102连通,活塞310在油压的作用下压紧上端盖110,弹性件320的弹力以及从出油支路1020引出的高压油的油压共同作用于上端盖110,使油泵组件100的上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120相互压紧,以保持油泵组件100的密封性。
出油通道1010可以设在电机组件200的端盖210上,出油通道1010可以与高压腔102的下端连通,比如出油通道1010可以通过贯穿下端盖120的下通道121与高压腔102的下端相连。出油支路1020与出油通道1010连通,且出油支路1020与隔音罩腔402连通,出油支路1020可以贯穿到隔音罩腔402的顶壁,参考图7-图13,出油支路1020可以设在内隔音罩400上。
脉动高压油一路通过出油通道1010直接输出,另一路通过出油支路1020传导到活塞310,并逆向反射,参考图21,反射的脉动与直接传向出油通道1010的脉动形成油液脉动错位,两股错位的油液脉动相互抵消,从而可以消除电机油泵总成1000的输出脉动,以实现电机油泵总成1000的主动降噪。
活塞310可以通过弹性件320的伸缩消除一部分脉动,比如油压突然增大,活塞310在油压的作用下可以向下运动,被活塞310压紧的活塞密封圈312及活塞310与端盖腔111的周壁之间的间隙油膜也可以消除一部分脉动,从而消减油泵组件100的输出脉动,使得输出的油液压力更加平稳均匀。
活塞310的结构形式有多种,参考图7,活塞310与上端盖110可以为分体式,活塞310可以为金属尼龙复合材料或金属材料制成。
活塞310可以包括相连的活塞段316和抵压段317,活塞段316和抵压段317可以一体成型。活塞段316与隔音罩腔402配合,活塞段317与隔音罩腔402的周壁之间可以夹设有活塞密封圈312。抵压段317止抵上端盖110,且抵压段317的横截面积可以大于活塞段316的横截面积,这样抵压段317可以将活塞段316承受的弹性件320的弹性力以及油液的压力更为均衡地施加给上端盖110的各个区域,油泵组件100的安装密封性更好。抵压段317在上端盖110上的投影可以与上端盖110完全重合。
抵压段317的朝向上端盖110的端面上可以具有抵压凸台318,抵压凸台318止抵上端盖110。这样可以减小活塞310与上端盖110的接触面积,降低活塞310与上端盖110之间产生的二次噪音,且活塞310不会因长期使用而与上端盖110形成自然冷焊。抵压凸台318可以为多个,多个抵压凸台318相互间隔开,以使活塞310的受力均匀,比如多个抵压凸台318可以位于多个同心圆环上,抵压凸台318可以具有梯形截面。
参考图8-图13,活塞310与油泵组件100的上端盖110形成为一体,且活塞310可以为金属尼龙复合材料或金属材料制成。这样,电机油泵总成1000的结构和装配工序更简单。
当然,预紧缓冲组件300可以有多种结构形式,上述活塞310与弹性件320的结构形式仅仅为一种实施例。在另一些实施例中,预紧缓冲组件300可以为液压阀,上端盖110和/或内隔音罩400形成液压阀的阀座,阀座上具有阀腔,阀腔内设有阀芯。
在本公开的一个实施例中,参考图5,电机油泵总成1000包括电机组件200、油泵组件100、内隔音罩400和预紧缓冲组件300。
油泵组件100支撑在电机组件200的端盖210上,油泵组件100的上端盖110具有端盖腔111,端盖腔111贯穿上端盖110,且端盖腔111与油泵组件100的高压腔102连通,内隔音罩400罩设在油泵组件100外,且内隔音罩400与油泵组件100限定出内层隔音腔401,内层隔音腔401填充有低压油,内层隔音腔401与油泵组件100的低压腔101连通。
预紧缓冲组件300包括阀芯330和弹性件320,弹性件320弹性止抵在阀芯330与内隔音罩400之间,以使阀芯330封堵端盖腔111,弹性件320可以为弹簧。
阀芯330在弹性件320的弹力作用下,封堵端盖腔111,使高压的端盖腔111与低压的内层隔音腔401隔开。且弹性件320还提供油泵组件100的预紧力,阀芯330对油泵组件100的上端盖110施加的压力,使油泵组件100的上端盖110、油泵本体(比如轴承、齿轮等)和下端盖120相互压紧,以保持油泵组件100的密封性,且无需在油泵组件100上进行螺栓大扭矩锁紧,预紧缓冲组件300提供的预紧力只需保证油泵组件100安装上即可,这样可以减小油泵组件100的工作摩擦力,提升油泵组件100的工作能效,油泵组件100的机械效率高。
阀芯330可以通过弹性件320的伸缩消除一部分脉动,且油泵组件100输出的脉动高压油分为两路,一路向下通过出油通道1010输出,另一路向上传导到阀芯330,并被阀芯330反射。参考图21,反射的脉动与直接传向出油通道1010的脉动形成油液脉动错位,两股错位的油液脉动相互抵消,从而可以消除电机油泵总成1000的输出脉动,以实现电机油泵总成1000的主动降噪,且电机油泵总成1000输出的油液压力更加平稳均匀。
在该实施例中,阀芯330封堵了高压腔102的上端,出油通道1010可以通过贯穿下端盖120的下通道121与高压腔102连通,从而输出高压油,这种结构形式的油路在上文已进行了详细的描述,在此不再赘述。
阀芯330可以包括依次相连的密封段331、导向段332和限位段333。内隔音罩400具有朝向上端盖110敞开的隔音罩腔402,导向段332与隔音罩腔402的内周壁配合,导向段332与隔音罩腔402的内周壁之间的间隙油膜也可以消除一部分脉动。弹性件320套设在限位段333外,且弹性件320止抵在隔音罩腔402的顶壁与导向段332的端面之间,限位段333可以起到导向与限位的作用。
参考图5,阀芯330可以具有锥形密封面,锥形密封面可以设在密封段331上,换言之,
阀芯330可以为锥阀,上端盖110可以具有与阀芯330的锥形密封面对应的锥形密封面。这样,阀芯330对端盖腔111的封堵效果更好。
在本公开的一些实施例中,油泵组件100的出油通道1010上可以设有吸能部,吸能部可以为多种结构,比如吸能部可以为储能腔1032或储气罐或阻尼孔。
在一个实施例中,参考图4,吸能部可以为储能腔1032,储能腔1032可以设在出油通道1010上,储能腔1032的截面积可以大于出油通道1010的其他部分的截面积,储能腔1032可以起到消除油液脉动且进行流体消音的作用。
储能腔1032可以设在出油通道1010的弯折处,比如图4中,储能腔1032可以有圆形截面,储能腔1032的周壁的下端可以与油泵组件100的高压腔102的下端连通,储能腔1032的周壁的中上端可以一直连通到电机油泵总成1000的出油口。这样,储油腔对脉动的缓冲效果及对噪音的消除效果更好。
在另一个实施例中,参考图10-图12,储能腔1032可以设在隔音罩腔402与高压腔102之间的高压油路上,也就是说,储能腔1032可以位于出油支路1020上,储能腔1032的横截面积可以大于出油支路1020的其他部分的横截面积。
储能腔1032可以具有圆形横截面,储能腔1032可以设在隔音罩的侧围420内,参考图11,储能腔1032可以从侧围420的远离顶盖410的一端一直延伸到顶盖410,这样储能腔1032的体积更大,储能腔1032可以起到消除油液脉动且进行流体消音的作用,通过设计储能腔1032的尺寸可以实现对各种频率噪音的消除。
在又一个实施例中,参考图12和图15,油泵组件100的高压油路上设有储能腔1032,储能腔1032的至少一端连有消音筒1033,消音筒1033可以为金属材质制成。
储能腔1032的两端均设有消音筒1033,消音筒1033可以构造为一端敞开的筒状,其中一个消音筒1033的敞开端嵌入电机组件200的端盖210,且该消音筒1033的敞开端与出油通道1010连通,另一个消音筒1033的敞开端嵌入内隔音罩400,且该音筒的敞开端与出油支路1020连通。
消音筒1033上设有通孔1034,消音筒1033上可以设有多个通孔1034,多个通孔1034相互间隔开设在消音筒1033的周壁上,其中同一个消音筒1033上至少存在两个孔径不同的通孔1034,且这两个孔径不同通孔1034可以沿消音筒1033的轴向间隔开。
可以理解的是,消音筒1033与储能腔1032的配合可以起到消除油液脉动及流体噪音的作用,消音筒1033上的通孔1034使得消音筒1033与储能腔1032之间形成多个口径的不同的分油路,以起到扰流的作用,且孔径不同的通孔1034可以消除不同频率的噪音。
参考图12,高压油路可以包括出油通道1010和出油支路1020,出油通道1010与高压腔102连通,比如出油通道1010可以设在电机组件200的端盖210上,且出油通道1010
通过贯穿下端盖120的下通道121与高压腔102的下端相连,出油支路1020与出油通道1010连通,出油支路1020与隔音罩腔402连通。出油支路1020可以贯穿到隔音罩腔402的顶壁,储能腔1032可以位于出油支路1020上,在该实施例中,储能腔1032和消音筒1033为出油支路1020的一部分。
参考图15,高压油路包括出油通道1010,出油通道1010与隔音罩腔402连通,活塞310内设有贯穿活塞310的活塞孔314,活塞孔314与高压腔102及隔音罩腔402均相连,储能腔1032设在出油通道1010上。在该实施例中,储能腔1032和消音筒1033作为出油通道1010的一部分,且在该实施例中,由于高压油不通过下端盖120输出,油泵组件100的下端盖120与电机组件200的端盖210之间可以夹设有上述实施例描述的缓冲垫片122,以使油泵组件100悬浮设置。
在又一个实施例中,吸能部可以包括软管1031。参考图13和图14,软管1031可以设在油泵组件100的高压油路上。例如,软管1031设在隔音罩腔402与高压腔102之间的高压油路上。
软管1031可以通过第一硬管1021和第二硬管1022与其他油路连通,软管1031的一端套设在第一硬管1021外,软管1031的另一端套设在第二硬管1022外,软管1031可以浸没在低压油内,比如在外层隔音腔501内填充低压油的实施例中,软管1031可以位于外层隔音腔501内。例如,第一硬管1021和第二硬管1022可以为金属管,软管1031可以为橡胶管。在高压油路内产生脉冲时,软管1031可以发生弹性形变增大自身的直径,从而消除脉动,降低噪音。
进一步地,第一硬管1021和第二硬管1022中的至少一个的内周壁上可以设有螺旋槽1023,在油液通过螺旋槽1023时,螺旋槽1023的螺旋扰流作用可以进一步降低脉动。
参考图13,高压油路可以包括出油通道1010和出油支路1020,出油通道1010与高压腔102连通,比如出油通道1010可以设在电机组件200的端盖210上,且出油通道1010通过贯穿下端盖120的下通道121与高压腔102的下端相连,出油支路1020与出油通道1010连通,出油支路1020与隔音罩腔402连通。出油支路1020可以贯穿到隔音罩腔402的顶壁,且软管1031可以设在出油支路1020上,出油支路1020包括第一硬管1021和第二硬管1022,第一硬管1021与出油通道1010连通,第二硬管1022与隔音罩腔402连通,第一硬管1021和第二硬管1022通过软管1031连接。在该实施例中,软管1031为出油支路1020的一部分。
参考图14,高压油路包括出油通道1010,出油通道1010与隔音罩腔402连通,活塞310内设有贯穿活塞310的活塞孔314,活塞孔314与高压腔102及隔音罩腔402均相连,软管1031设在出油通道1010上,出油通道1010还包括第一硬管1021和第二硬管1022,
软管1031连接在第一硬管1021与第二硬管1022之间。在该实施例中,软管1031为出油通道1010的一部分,且在该实施例中,由于高压油不通过下端盖120输出,油泵组件100的下端盖120与电机组件200的端盖210之间可以夹设有上述实施例描述的缓冲垫片122,以使油泵组件100悬浮设置。
在本公开的一些实施例中,参考图1-图20,电机组件200可以为液冷式,且电机组件200的电机腔201与油泵组件100的低压腔101连通,通过油泵组件100的吸油负压作用,可以驱动油液流经电机腔201,从而在电机油泵总成1000的工作过程中,实现对电机组件200的液冷散热。
在外层隔音腔501填充有低压油且与内层隔音腔401连通的实施例中,电机油泵总成1000的进油口可以与外层隔音腔501直接连通,为了引导油液的流向,在一些实施例中,参考图1、图3-图5和图11,外层隔音腔501与内层隔音腔401之间可以设有隔断502,这样油液的流向为:外层隔音腔501-电机腔201-低压腔101-高压腔102-出油通道1010-转向。
当然,电机油泵总成1000的进油口还可以设在其他位置,比如电机油泵总成1000的进油口可以设在电机组件200的电控盒260底部。
可以理解的是,电机组件200的电控部分的发热较严重,油液可以经过电控盒260底部的进油口进入电机腔201,且油液先行冷却电机组件200的电控部分,通过油泵组件100的吸油负压作用,油液流向电控散热油层263,对电机三相线261和电控控制及直流交流转化板262进行冷却,且定子250周围可以设计有冷却油道,冷却油路内的油液可以冷却定子250,油液再经过冷却油路达到油泵组件100的吸油口。
电机组件200的转子240可以浸没在低压油内,这样油液可以起到迟滞转子240转动的作用,以缓冲转子240的急加速或急减速及惯性模量过大的问题,从而防止电机组件200抛载时对转向油路的冲击,转向的手感更佳,方向盘不易抖动,且转子240可以对上下的电控散热油层263和电机低压润滑散热油层264形成环形搅动,加强电控部分及定子250的冷却效果。
进一步地,为了防止电机组件200抛载对转向油路的冲击,影响转向的手感,可以在油路内增加储能结构,还可以通过电控方面对电机组件200的转速进行控制,比如在高速降低情况下对电机组件200的转速进行一个均匀加速度算法以降低转速,以在转速迅速降低的过程中,使电机组件200及油泵组件100的负载有一个缓慢降低的过程。
本公开实施例的电机油泵总成1000可以用于转向系统,电机组件200的电机轴220与油泵组件100的输入轴130相连,电机轴220的转速n至少根据车速v和方向盘的转角w控制,电机轴220的转速n可以决定油泵组件100输出的油压和流量,从而可以控制车轮
的转动。
基于本公开的电机油泵总成1000,当v=0km/h,且w≤w1时,控制电机轴220的转速n满足:n3≤n≤n4。例如,w1<5°,950rpm≤n3≤1050rpm,1150rpm≤n4≤1250rpm。在一个实施例中,w1=0°,n1=1000rpm,n2=1200rpm。
换言之,车辆停车怠速工况,方向盘基本不工作,车速为零,电机组件200的CAN通讯线无输入信号,电机组件200驱动油泵组件100以低怠速工况运行,电机轴220的转速最低,保证电机组件200的散热要求,电机油泵总成1000的噪音最低。
基于本公开的电机油泵总成1000,当v>0km/h,且w≤w1时,控制电机轴220的转速n满足:n5≤n≤n6。例如,w1<5°,1450rpm≤n5≤1550rpm,1550rpm≤n6≤1650rpm,在一个示例中,n5=1500rpm,n6=1600rpm。
换言之,车辆启动运行,方向盘不转动或微小转动,车轮未转向,且直流电流微小,电机组件200驱动油泵组件100,怠速工作,电机轴220的转速稍微提高,以保证整车转向需求,同时因为整车运行过程中已经产生路噪音,转速提高的噪音不超过或重叠整车噪音。
基于本公开的电机油泵总成1000,当v=0km/h,且w>5°时,控制电机轴220的转速n与方向盘的转角w正相关。
换言之,在车辆原地转向时,方向盘的转角越大,电机轴220的转速越大,电机油泵总成1000输出的液压油的压力和流量也越大,以使车轮实现更大的转角,且此时电机油泵总成1000的工作噪音略大于轮胎的路噪,可以以较小的噪音,提醒路人车辆转向。
基于本公开的电机油泵总成1000,当0<v<v1时,电机轴220的转速n与车速v负相关,电机轴220的转速n与方向盘的转角w正相关。
换言之,在车辆中低速行驶时,车速越低或者方向盘的转角越大,电机轴220的转速越大,电机油泵总成1000输出的液压油的压力和流量也越大,以使车轮实现更大的转角,且此时电机油泵总成1000输出的液压油的压力和流量大致为原地转向时的一半,电机油泵总成1000的工作噪音低于轮胎的路噪,从而可以实现静音转向。
基于本公开的电机油泵总成1000,当v≥v1时,控制电机轴220的转速n满足:n≤n2。
可以理解的是,在v≥v1时,车辆高速行驶,比如v1≥60km/h,一般进行紧急避让措施,此时需要对转向的流量进行控制,防止车辆在高速状况下,紧急打方向导致翻车,此时限定电机轴220的转速n不大于值n2,即控制电机组件200在中低速运行。例如,2350rpm≤n2≤2450rpm。
进一步地,基于本公开的电机油泵总成1000,当v≥v1,且w>w1时,控制电机轴220的转速n满足:n1≤n≤n2。也就是说,在车辆高速行驶时,即使驾驶员猛打方向盘,电机
轴220的转速n也控制在n1与n2之间,车轮也只进行微调以实现紧急避让。例如,v1≥60km/h,1550rpm≤n1≤1650rpm,2350rpm≤n2≤2450rpm,在一个实施例中,v1=80km/h,n1=1600rpm,n2=2400rpm。
例如,电机轴220的加速度a满足:a≤a1。也就是说,控制电机轴220的最大加速度,防止电机组件200抛载。
需要说明的是,在不相互矛盾的情况下,本领域的技术人员可以将本公开中的不同实施例中的特征相互组合,比如各种结构形式的内隔音罩400、各种结构形式的预紧缓冲组件300、各种结构形式的吸能部、各种结构形式的油路走向等,可以相互组合。
根据本公开实施例的电机油泵总成1000,电机油泵总成1000的轻量化水平高,占用的空间小,制造成本低,油泵组件100与其他部件的直接接触面积小,可以大幅减少二次噪音源,电机油泵总成1000的隔音效果好,且通过油液脉动抵消的方法,可以减小电机油泵总成1000的脉动波动,实现电机油泵总成1000的主动降噪,同时油泵组件100的工作摩擦力小,使得电机油泵总成1000的工作能效高。
本公开还公开了一种转向系统10,参考图22,本公开实施例的转向系统10设置有上述任一种实施例描述的电机油泵总成1000。
本公开还公开了一种车辆1,参考图23,本公开实施例的车辆1设置有上述任一种实施例描述的转向系统10,例如,本公开实施例的车辆1可以为大巴客车。
此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (20)
- 一种电机油泵总成,其特征在于,包括:电机组件;油泵组件,所述油泵组件支撑在所述电机组件的端盖上;内隔音罩,所述内隔音罩罩设在所述油泵组件外,且与所述油泵组件限定出填充有低压油的内层隔音腔,所述内层隔音腔与所述油泵组件的低压腔连通;预紧缓冲组件,所述预紧缓冲组件夹设在所述油泵组件的上端盖与所述内隔音罩之间,且所述预紧缓冲组件与所述油泵组件的高压腔连通;安全阀,所述安全阀设置成在所述高压腔的压力大于预定压力值时泄压。
- 根据权利要求1所述的电机油泵总成,其特征在于,所述上端盖具有贯穿所述上端盖且与所述油泵组件的高压腔连通的端盖腔,所述预紧缓冲组件包括活塞和弹性件,所述活塞与所述端盖腔配合以隔绝所述高压腔与所述内层隔音腔,所述弹性件用于提供预紧力。
- 根据权利要求2所述的电机油泵总成,其特征在于,所述安全阀包括设在所述端盖腔的周壁上的泄压孔,所述泄压孔连通所述端盖腔与所述内层隔音腔,且在所述高压腔的压力不大于所述预定压力值时所述活塞封堵所述泄压孔,且在所述高压腔的压力大于所述预定压力值时所述活塞移动至开启所述泄压孔的位置。
- 根据权利要求2或3所述的电机油泵总成,其特征在于,所述弹性件弹性夹设在所述活塞与所述内隔音罩之间。
- 根据权利要求4所述的电机油泵总成,其特征在于,所述端盖腔构造为阶梯孔以形成阶梯面,所述活塞的一端止抵所述阶梯面。
- 根据权利要求5所述的电机油泵总成,其特征在于,所述活塞的朝向所述阶梯面的端面上具有凸起部。
- 根据权利要求2-6中任一项所述的电机油泵总成,其特征在于,所述弹性件为弹簧。
- 根据权利要求2-7中任一项所述的电机油泵总成,其特征在于,所述活塞与所述端盖腔的周壁之间设有活塞密封圈。
- 根据权利要求2-8中任一项所述的电机油泵总成,其特征在于,所述活塞为金属尼龙复合材料或金属材料制成。
- 根据权利要求1-9中任一项所述的电机油泵总成,其特征在于,所述内隔音罩包括:顶盖;侧围,与所述顶盖和所述电机组件的端盖相连。
- 根据权利要求10所述的电机油泵总成,其特征在于,所述顶盖与所述侧围通过螺纹紧固件相连,所述电机组件的端盖与所述侧围形成为一体。
- 根据权利要求10所述的电机油泵总成,其特征在于,所述顶盖的下表面具有向下敞开的凹槽,所述预紧缓冲组件止抵所述凹槽的顶壁。
- 根据权利要求1-12中任一项所述的电机油泵总成,其特征在于,所述油泵组件还具有下端盖,所述电机组件的端盖上设有出油通道,所述出油通道通过贯穿所述下端盖的下通道与所述高压腔的下端相连。
- 根据权利要求1-13中任一项所述的电机油泵总成,其特征在于,还包括:外隔音罩,所述外隔音罩罩设在所述内隔音罩的至少部分外,且与所述内隔音罩限定出用于填充低压油的外层隔音腔,所述内层隔音腔与所述外层隔音腔连通。
- 根据权利要求14所述的电机油泵总成,其特征在于,所述外隔音罩为金属尼龙复合材料制成。
- 根据权利要求1-15中任一项所述的电机油泵总成,其特征在于,所述油泵组件为外啮合齿轮泵或摆线齿轮泵或叶片泵或柱塞泵。
- 根据权利要求1-16中任一项所述的电机油泵总成,其特征在于,所述电机组件为液冷式,且所述电机组件的电机腔与所述油泵组件的低压腔连通。
- 根据权利要求17所述的电机油泵总成,其特征在于,所述电机组件的转子浸没在低压油内。
- 一种转向系统,其特征在于,设置有如权利要求1-18中任一项所述的电机油泵总成。
- 一种车辆,其特征在于,设置有如权利要求19所述的转向系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610856920.2A CN107867324B (zh) | 2016-09-28 | 2016-09-28 | 电机油泵总成、转向系统和车辆 |
CN201610856920.2 | 2016-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018059381A1 true WO2018059381A1 (zh) | 2018-04-05 |
Family
ID=61752269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/103358 WO2018059381A1 (zh) | 2016-09-28 | 2017-09-26 | 电机油泵总成、转向系统和车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107867324B (zh) |
WO (1) | WO2018059381A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040134708A1 (en) * | 2002-12-27 | 2004-07-15 | Mitsubishi Denki Kabushiki Kaisha | Electro-hydraulic power steering apparatus |
CN101096949A (zh) * | 2006-06-30 | 2008-01-02 | Trw汽车股份有限公司 | 电动机/泵机组 |
CN103375553A (zh) * | 2012-04-24 | 2013-10-30 | 比亚迪股份有限公司 | 张紧器芯体及具有该芯体的张紧器和转向器 |
CN204279611U (zh) * | 2014-10-31 | 2015-04-22 | 比亚迪股份有限公司 | 转向油泵组件及具有其的车辆 |
CN204419616U (zh) * | 2014-12-15 | 2015-06-24 | 比亚迪股份有限公司 | 油泵组件和具有其的车辆 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005028872A2 (en) * | 2003-09-18 | 2005-03-31 | Myrakelle, Llc | Rotary blood pump |
US9729028B2 (en) * | 2012-10-04 | 2017-08-08 | Mitsubishi Electric Corporation | Rotary electric machine having integrated drive control device |
CN203285712U (zh) * | 2013-06-14 | 2013-11-13 | 襄阳绿控电气科技有限公司 | 一种电动汽车用电动助力转向泵 |
CN205370968U (zh) * | 2016-02-01 | 2016-07-06 | 瑞立集团瑞安汽车零部件有限公司 | 一种泵体简化的转向油泵 |
-
2016
- 2016-09-28 CN CN201610856920.2A patent/CN107867324B/zh active Active
-
2017
- 2017-09-26 WO PCT/CN2017/103358 patent/WO2018059381A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040134708A1 (en) * | 2002-12-27 | 2004-07-15 | Mitsubishi Denki Kabushiki Kaisha | Electro-hydraulic power steering apparatus |
CN101096949A (zh) * | 2006-06-30 | 2008-01-02 | Trw汽车股份有限公司 | 电动机/泵机组 |
US20080003116A1 (en) * | 2006-06-30 | 2008-01-03 | Trw Automotive Gmbh | Motor/pump unit |
CN103375553A (zh) * | 2012-04-24 | 2013-10-30 | 比亚迪股份有限公司 | 张紧器芯体及具有该芯体的张紧器和转向器 |
CN204279611U (zh) * | 2014-10-31 | 2015-04-22 | 比亚迪股份有限公司 | 转向油泵组件及具有其的车辆 |
CN204419616U (zh) * | 2014-12-15 | 2015-06-24 | 比亚迪股份有限公司 | 油泵组件和具有其的车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN107867324A (zh) | 2018-04-03 |
CN107867324B (zh) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018059385A1 (zh) | 电机油泵总成、转向系统和车辆 | |
WO2018059383A1 (zh) | 电机油泵总成、转向系统和车辆 | |
WO2018059382A1 (zh) | 电机油泵总成、转向系统和车辆 | |
WO2018059380A1 (zh) | 电机油泵总成、转向系统和车辆 | |
WO2018059381A1 (zh) | 电机油泵总成、转向系统和车辆 | |
WO2018059384A1 (zh) | 电机油泵总成、转向系统和车辆 | |
WO2018059379A1 (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869441B (zh) | 电机油泵总成及控制方法 | |
CN107869430B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869438B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869443B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869440B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869445B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869444B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869434B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107867326B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869442B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869437B (zh) | 电机油泵总成、转向系统和车辆 | |
CN107869432B (zh) | 电机油泵总成、转向系统和车辆 | |
CN216588983U (zh) | 静音式防爆高压泵组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17854831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17854831 Country of ref document: EP Kind code of ref document: A1 |