WO2017204490A1 - 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법 - Google Patents
철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법 Download PDFInfo
- Publication number
- WO2017204490A1 WO2017204490A1 PCT/KR2017/005211 KR2017005211W WO2017204490A1 WO 2017204490 A1 WO2017204490 A1 WO 2017204490A1 KR 2017005211 W KR2017005211 W KR 2017005211W WO 2017204490 A1 WO2017204490 A1 WO 2017204490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monitoring target
- railroad vehicle
- railroad
- defect
- monitoring
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000012806 monitoring device Methods 0.000 title claims abstract description 10
- 230000007547 defect Effects 0.000 claims abstract description 59
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000003745 diagnosis Methods 0.000 abstract description 10
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 3
- 238000004901 spalling Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L15/00—Indicators provided on the vehicle or train for signalling purposes
- B61L15/0081—On-board diagnosis or maintenance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C17/00—Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C17/00—Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
- B61C17/12—Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K13/00—Other auxiliaries or accessories for railways
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K9/00—Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K9/00—Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
- B61K9/08—Measuring installations for surveying permanent way
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/042—Track changes detection
Definitions
- the present invention relates to a railway vehicle monitoring device and a monitoring method using the same.
- the driving conditions are determined by the driver's adjustment such as the speed and acceleration of the vehicle and the torque of the motor, and the driving environment such as temperature, wind direction, wind speed, humidity, precipitation, track curvature according to the position of the vehicle, pier and tunnel, etc. It includes what is determined by.
- the monitoring of the main parts, driving stability, and integrated track method of railroad vehicles does not fully consider the actual driving environment, but the monitoring is carried out through the measurement of a very simple physical quantity. .
- diagnosis is made with a single diagnosis item, there are various causes, which makes it difficult to suggest a practical solution.
- the present invention proposes a railroad vehicle monitoring apparatus and a monitoring method using the same that can monitor a defect related to railroad cars based on driving data measured from various sensors related to railroad cars.
- a method for monitoring a failure associated with a railroad vehicle by a railroad vehicle monitoring apparatus selecting a monitoring target of the railroad vehicle, selecting a diagnostic criteria related to the monitoring target, a plurality of mutual Measuring driving data related to the monitoring object while driving the railroad vehicle using different kinds of sensors, and comparing the driving data with reference values in a normal state, respectively, and determining whether a defect of the monitoring object occurs; It includes.
- the selecting of the monitoring target may include setting a monitoring target having a high reproducibility of the failure and a monitoring target having a low reproducibility of the failure, depending on whether the failure is reproducible.
- the high reproducibility failure includes damage to main components mounted on the railroad vehicle, and the failure of low reproducibility is due to a balance instability caused by lateral vibration during the running of the railroad vehicle or a line defect in which the railroad vehicle travels. It may include.
- the plurality of different types of sensors may include at least two sensors of a vibration sensor, a temperature sensor, a thermal image sensor, a position sensor, a speed sensor, an acceleration sensor, an ultrasonic sensor, and a current sensor.
- the selecting of the monitoring target may further include setting a characteristic function according to whether or not the failure of the monitoring target is reproducible, and determining whether the defect is generated may include determining a characteristic function according to driving data.
- a result value may be derived, and the result value may be compared with a reference value in a steady state to determine whether a defect occurs in the monitoring target.
- Determining whether or not a defect of the monitoring target occurs measuring the driving data for the main parts of the same type mounted on each of the plurality of trucks of the railroad car, the result of each characteristic function for the main parts of the same type By comparing the values, it is possible to diagnose whether or not a failure occurs for the main parts.
- the determining of whether or not a defect of the monitoring target occurs may include calculating a result value of a characteristic function related to the balance instability in real time for each of the plurality of trucks of the railroad vehicle, and calculating the result value for each of the plurality of trucks. In comparison, the occurrence of the balance instability can be diagnosed.
- Determining whether a defect of the monitoring target occurs comparing the result value of the characteristic function associated with the balance instability with the result value calculated for the railroad car at a different time zone from the railroad car, and correlating it by the driving position of the railroad car
- the relationship can be analyzed to simultaneously diagnose the balance instability and track defects.
- the railroad vehicle monitoring apparatus of the present invention sets a monitoring target associated with a railroad vehicle, selects and stores a diagnostic criterion for diagnosing a fault occurrence of the monitoring target, and stores the data in a database using various sensors while the railroad vehicle is running. And a detection unit for detecting driving data related to the monitoring target, and a control unit for comparing the driving data with the diagnostic criteria stored in the database, and determining whether a defect occurs in the monitoring target in consideration of reproducibility of a failure.
- the monitoring object with high reproducibility of the failure may include a main component mounted on the railway vehicle.
- the control unit measures driving data for the main parts of the same kind mounted on each of the plurality of trucks of the railway vehicle, compares the result of each characteristic function for the main parts of the same kind, and compares the results with respect to the main parts. Diagnosis can be made.
- the monitoring object with low reproducibility of the failure may include a balance instability due to lateral vibration while traveling of the railroad vehicle or a track defect that the railroad vehicle travels.
- the controller calculates a result value of a characteristic function related to the balance instability in real time for each of the plurality of trucks of the railroad car, and compares the result value for each of the plurality of trucks to determine whether the balance instability is generated. Diagnosis can be made.
- the controller may determine that a defect has occurred on a track on which the railroad vehicle travels.
- the present invention by selecting the monitoring target and the characteristic function in consideration of the reproducibility of the failure associated with the railway vehicle, and determining whether or not a defect occurs for the monitoring target based on the driving data measured from a variety of sensors, Provide an environment for early detection of vehicle-related failures.
- the present invention by early detection of the defects, major instability and track defects for the main components of the railway vehicle, the environment that can protect the safety of passengers by preventing accidents caused by the defects of the major components of the vehicle in advance To provide.
- FIG. 1 is a view schematically showing the structure of a railway vehicle monitoring apparatus according to an embodiment of the present invention.
- FIG. 2 is a flowchart schematically illustrating a process of monitoring a failure associated with a railway vehicle according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating an example of selecting a monitoring target and a characteristic function according to an embodiment of the present invention.
- FIG. 4 is a diagram specifically illustrating a process of monitoring a failure associated with a railway vehicle according to an embodiment of the present invention.
- ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
- FIG. 1 is a view schematically showing the structure of a railway vehicle monitoring apparatus according to an embodiment of the present invention.
- the railroad vehicle monitoring device is shown only a schematic configuration required for the description according to an embodiment of the present invention, but is not limited to this configuration.
- the railroad vehicle monitoring apparatus 100 includes a detector 110, a selector 120, and a controller 130.
- the detection unit 110 detects driving data related to a monitoring target by using various sensors while the railroad vehicle is traveling.
- the monitoring target includes a main component mounted on a railroad vehicle, a balance instability due to lateral vibration while the railroad vehicle is running, a track on which the railroad vehicle runs, and the like.
- the driving data may include data related to a driving environment of a railway vehicle, and may include at least one of a driving speed, an acceleration, a driving position, a temperature, a vibration value, a current value, a wind direction, a wind speed, a humidity, and a rainfall of the railway vehicle. Can be.
- the detector 110 may include a vibration sensor 10, a temperature sensor 20, a thermal image sensor 30, a position sensor 40, a speed sensor 50, an acceleration sensor 60, and an ultrasonic sensor 70. And various physical quantities related to the monitoring from the current sensor 80, and provide the measured data to the controller 130.
- the selecting unit 120 sets a monitoring target associated with the railroad car, selects a diagnostic criterion for diagnosing a defect of the monitoring target, and stores the diagnostic criteria in a database.
- the selecting unit 120 includes a monitoring target selecting unit 122, a characteristic function selecting unit 124, a diagnostic criteria selecting unit 126, and a database 128 according to an embodiment of the present invention.
- the monitoring target selecting unit 122 sets a monitoring target having a high reproducibility of the failure and a monitoring target having a low reproducibility of the failure according to whether the failure is reproducible.
- the monitoring object with high reproducibility of failure includes damage of main components mounted on the railway vehicle.
- the monitoring object with low reproducibility of failure may include a balance instability due to lateral vibration while the railroad vehicle is traveling or a track defect that the railroad vehicle travels.
- the characteristic function selecting unit 124 sets a characteristic function to analyze whether or not a failure occurs for the monitoring target.
- the characteristic function is a function for determining the damage, balance instability or track health of the main components of the railway vehicle, and is a function consisting of parameters related to the driving conditions and the driving environment of the railway vehicle.
- the characteristic function may include at least one of a vibration characteristic function, a temperature change characteristic function, a torsion characteristic function, and a current characteristic function according to one embodiment of the present invention.
- the diagnostic criterion selecting unit 126 sets a diagnostic criterion for determining whether a monitoring target is defective and stores it in the database 128.
- the controller 130 derives a result value of the characteristic function using the driving data detected by the detector 110, and compares the result value with a reference value in a steady state to determine whether a defect of the corresponding monitoring target occurs.
- controller 130 may determine whether a defect of the monitoring target occurs by comparing the driving data and the result value of the characteristic function with the diagnostic criteria stored in the database 128.
- the controller 130 includes a defect diagnosis unit 132 according to an embodiment of the present invention.
- the defect diagnosis unit 132 derives a result value of the characteristic function according to the driving data, and compares the derived result value with a reference value in a steady state to determine whether a defect of the monitoring target occurs.
- the railroad vehicle monitoring apparatus 100 measures the driving data for the main parts of the same type mounted on each of the plurality of trucks of the railroad car, and for each of the main parts of the same type By comparing the result of the characteristic function of to diagnose whether or not a failure occurs for the main parts.
- the railroad vehicle monitoring apparatus 100 calculates the result of the characteristic function associated with the balance instability in real time for each of the plurality of trucks of the railroad car, By comparing the results of the results, it is possible to diagnose the occurrence of the balance instability.
- the railroad vehicle monitoring apparatus 100 compares the resultant value of the characteristic function related to the balance instability with the resultant value calculated for the railroad vehicle at a different time from the railroad vehicle, It is also possible to diagnose the balance instability and the track defect simultaneously by analyzing the correlation for each driving position.
- controller 130 may be implemented as one or more processors operating by a set program, the set program may be programmed to perform each step of the railway vehicle monitoring method according to an embodiment of the present invention. have.
- FIG. 2 is a flowchart schematically illustrating a process of monitoring a failure associated with a railway vehicle according to an embodiment of the present invention. The following flowchart is described using the same reference numerals in connection with the configuration of FIG. 1.
- the railroad vehicle monitoring apparatus 100 selects a monitoring target related to a vehicle in consideration of reproducibility of a failure, and selects a characteristic function related to the corresponding monitoring target.
- the monitoring object with high reproducibility of failure includes damage of main components mounted on the railway vehicle.
- the monitoring object with low reproducibility of failure may include a balance instability due to lateral vibration while the railroad vehicle is traveling or a track defect that the railroad vehicle travels.
- the railroad vehicle monitoring apparatus 100 selects a diagnostic criterion for determining whether a monitoring target is defective and makes a database (S104).
- the railroad vehicle monitoring apparatus 100 measures the driving data of the railroad vehicle, and calculates the characteristic function result value using the measured driving data (S106).
- the driving data includes at least one of the traveling speed, acceleration, driving position, temperature, vibration value, current value, wind direction, wind speed, humidity, and rainfall of the railway vehicle.
- the railway vehicle monitoring apparatus 100 compares the characteristic function result value and the diagnostic criteria of the database when the failure reproducibility is high, evaluates the repeatability for exceeding the criteria, and is installed in the railway vehicle. Diagnose the damage of the main components (S108 to S114).
- the railway vehicle monitoring apparatus 100 diagnoses the balance instability and the line defect by comparing the characteristic function result value and the diagnostic criteria in real time (S118).
- FIG. 3 is a diagram illustrating an example of selecting a monitoring target and a characteristic function according to an embodiment of the present invention.
- the railroad vehicle monitoring apparatus 100 measures driving data of a vehicle to monitor damage to major components of a railroad vehicle, occurrence of instability of a railroad track, and defects in a track.
- the driving data are parameterized and classified according to grades (S210 and S220).
- the parameters include measurement date and time (Xdtm), running speed (Xspd), running position (Xgps), outside temperature (Xtmp), wind direction (Xwnd), humidity and rainfall (Xhmd).
- the railroad vehicle monitoring apparatus 100 divides the ratings by speed, location, and temperature, respectively, and calculates the driving data measured by each parameter and the result value of the characteristic function for the corresponding driving data. Build related DB.
- the railroad vehicle monitoring apparatus 100 sets a monitoring object having high reproducibility and a monitoring object having low reproducibility according to whether the failure is reproducible (S230).
- highly reproducible failures include damage to wheel bearings, damage to drive shafts, motor block overheating, blower system damage, switchboard overheating, gearbox damage, main power converter damage and traction motor damage.
- monitoring objects with low reproducibility of failure include balance instability and line defects.
- the railroad vehicle monitoring apparatus 100 sets a measurement sensor to measure the driving data for each monitoring target (S240).
- the vibration sensor and the temperature sensor may be set as the measurement sensor to monitor the defect of the wheel bearing, and the temperature sensor may be set as the measurement sensor to monitor the defect of the switchboard.
- vibration sensors and sensors related to driving positions may be set.
- the railroad vehicle monitoring apparatus 100 sets a characteristic function for diagnosing a defect for each monitoring target (S250). For example, in order to diagnose a wheel bearing defect, a vibration characteristic function related to a temperature characteristic function, momentum and an envelope spectrum is set. Set the temperature change characteristic function, related to the maximum temperature, to monitor the switchboard for defects. In addition, in order to monitor the deficiency of the balance instability, a vibration characteristic function related to the vibration value and the envelope spectrum may be set.
- FIG. 4 is a diagram specifically illustrating a process of monitoring a failure associated with a railway vehicle according to an embodiment of the present invention.
- the railroad vehicle monitoring apparatus 100 sets a monitoring object and a measurement sensor to detect whether there is a defect, and selects a characteristic function associated with the monitoring object (S310).
- the railroad vehicle monitoring apparatus 100 selects a diagnostic criterion for determining whether the monitoring target is defective (S320).
- the railroad vehicle monitoring apparatus 100 detects driving data related to a driving condition and a driving environment, calculates a result value of a characteristic function based on the detected driving data, Detecting whether a defect occurs in consideration of the reproducibility of the fault (S330 to S350).
- the characteristic function may include at least one of a vibration characteristic function, a temperature change characteristic function, a torsion characteristic function, and a current characteristic function according to an embodiment of the present invention.
- the vibration characteristic function associated with the vibration sensor includes at least one of root mean square acceleration (RMS), peak, skewness, kurtosis, crest factor, impulse factor, shape factor, and spectral values of the defect frequency. To the same as Equation 8.
- RMS root mean square acceleration
- x (i) is the acceleration measurement
- RMSA is the calculated RMS value of acceleration
- Peak is the maximum amplitude of a given section of the high frequency signal waveform.
- skewness represents a measure of how far the probability distribution of the actual random variable is from the mean value
- crest factor represents a ratio of the peak to the mean value as a measure of a waveform such as AC current or sound.
- Kurtosis represents one measure of the peak size of the random variable probability distribution, and the clearance factor is a factor for detecting the initial spalling of the bearing due to fatigue.
- the impulse factor is a useful method under simulation conditions using the Gaussian probability density function model of bearing spalling due to fatigue as one dimensionless amplitude parameter
- the shape factor is bearing spalling due to fatigue as another dimensionless amplitude parameter. This is a useful method under simulation conditions using the Gaussian probability density function of.
- the railroad vehicle monitoring apparatus 100 classifies the driving conditions and the driving environment as parameters in the case of wheel bearings, and doubles them as characteristic functions of vibration and temperature sensor values in the categorized categories. If only one characteristic function of is exceeded, it is considered that there is a possibility of primary defect.
- the railway vehicle monitoring apparatus 100 shows a relative difference sufficiently in comparison with the characteristic function of other wheel bearings in the bogie, and if such a phenomenon continues to be repeatedly diagnosed as a defect Can be.
- the temperature change characteristic function includes the maximum value of the temperature sensor, and the diagnostic criterion using the allowable tolerance and the limit temperature is shown in Equation 9 below.
- the temperature characteristic function means that the maximum temperature value of each pixel is measured when the temperature of a wide area, such as a thermal image sensor, is measured by pixels.
- the railroad vehicle monitoring apparatus 100 attaches a plurality of thermal image sensors to the motor blocks of a tow truck of a railroad vehicle and to switchboards of a passenger car, and the maximum temperature by the temperature change characteristic function is a diagnostic reference value. If it exceeds, it is considered that there is a possibility of primary defect.
- the railroad vehicle monitoring apparatus 100 is compared with the maximum temperature of the adjacent motor block and the switchboard, respectively, and if this phenomenon is repeated continuously, the final diagnosis that a defect occurred in the motor block or switchboard can do.
- the torsion characteristic function is expressed by Equation 10 below.
- ⁇ is a torsion strain
- ⁇ 1 and ⁇ 2 represent encoder rotation angles
- T 1 and T 2 represent drive torque and brake torque.
- the railroad vehicle monitoring apparatus 100 may diagnose whether a power transmission device of the railroad vehicle is defective by using the torsion function.
- the railroad vehicle monitoring apparatus 100 measures the three-phase current waveform of the main power converter using a current sensor, respectively, and derives a characteristic function relating to roundness as shown in Equation 11 below. .
- the railroad vehicle monitoring apparatus 100 may identify the defect of the main component by whether the roundness I d and I q according to Equation 11 are within the allowable tolerance at the reference value R f . .
- the railroad vehicle monitoring apparatus 100 is a lateral vibration sensor mounted on the bogie to detect occurrence of bogie instability, and generally measures low frequency signals within 10 Hz, and for a specific time in real time. It will monitor if a certain vibration value persists.
- the railway vehicle monitoring apparatus 100 has a high level of instability associated with a specific driving position, and if the vehicle is continuously present in other trucks and other trains, the track integrity may be generated. It can be diagnosed as.
- the railway vehicle monitoring apparatus selects a monitoring target and a characteristic function in consideration of reproducibility of a failure associated with a railway vehicle, and monitors the target based on data measured from various sensors. By determining whether or not a defect has occurred, the system provides an environment for early detection of a failure associated with a railway vehicle.
- the present invention by early detection of the defects, major instability and track defects for the main components of the railway vehicle, the environment that can protect the safety of passengers by preventing accidents caused by the defects of the major components of the vehicle in advance To provide.
- the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
본 발명에 따른 철도 차량 모니터링 방법은 철도 차량 모니터링 장치가 철도 차량과 관련된 고장을 모니터링하는 방법에서, 상기 철도 차량의 모니터링 대상을 선정하는 단계, 상기 모니터링 대상과 관련된 진단 기준을 선정하는 단계, 상기 철도 차량의 주행 중에 상기 모니터링 대상과 관련된 주행 데이터를 측정하는 단계, 그리고 상기 주행 데이터에 따른 상기 특성함수의 결과값을 도출하고, 상기 결과값을 정상상태에서의 기준치와 비교해서 상기 모니터링 대상의 결함 발생 여부를 판단하는 단계를 포함한다.
Description
본 발명은 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법에 관한 것이다.
철도 차량의 주행 중에는 여러가지 주행 조건에 의한 영향을 크게 받는다. 여기서, 주행 조건은 차량의 속도와 가속도, 모터의 토오크와 같이 운전자의 조정으로 결정되는 것과, 온도, 풍향, 풍속, 습도, 강수량, 차량의 위치에 의한 선로의 곡률, 교각 및 터널 등의 주행 환경에 의해 결정되는 것을 포함한다.
온도 및 풍향 풍속과 관련된 일기는 철도 차량의 운행에 크게 영향을 주는 요인으로 판단된다. 일정 속도이상의 바람이 부는 경우 운행 자체가 금지되기도 한다. 그리고, 철도 차량은 습도 및 강수량 등의 영향을 받는다. 철도 차량에서는 전체적인 전력의 흐름이 팬터그래프에서 고압을 받아 지상선로를 통해 전류가 흐르는 폐회로를 구성하나, 습도와 강수량이 전체 전기의 흐름 및 전기적 외란으로 작용하여 측정센서에 작용하는 영향이 변할 수 있다. 따라서, 지상의 실내에서 우수한 특성을 보이는 계측 물리량과 이의 분석을 통한 모니터링 및 진단기술은 실제 주행하는 철도 차량에서는 외란에 의해 무용지물이 되기 쉽다.
또한 철도차량의 주요 부품, 주행안정성 및 선로 통합 모니터링 방법에서 실제 주행 환경을 충분히 고려하지 못하면서도 매우 단순화된 물리량의 계측을 통해 모니터링을 실시하고 있어 진단의 결과의 신뢰성이 충분히 확보되지 못하는 경우가 많다. 때로는 단일한 진단 항목으로 진단이 이루어졌다고 해도 여러가지 원인이 존재하여 실제적인 해결방안을 제시하는데 어려움이 있다.
따라서, 다중의 물리량을 계측하여 종합적으로 진단결과의 정확한 분석을 통해서 근본 원인을 최대한 압축하여 실제적인 해결방안을 제시하는 것이 요구된다.
이 배경기술 부분에 기재된 사항은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
본 발명은 철도 차량과 관련된 다종의 센서들로부터 측정된 주행 데이터를 바탕으로 철도 차량과 관련된 결함을 모니터링할 수 있는 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법을 제안하고자 한다.
본 발명의 철도 차량 모니터링 방법은 철도 차량 모니터링 장치가 철도 차량과 관련된 고장을 모니터링하는 방법에서, 상기 철도 차량의 모니터링 대상을 선정하는 단계, 상기 모니터링 대상과 관련된 진단 기준을 선정하는 단계, 복수의 서로 다른 종류의 센서들을 이용해서 상기 철도 차량의 주행 중에 상기 모니터링 대상과 관련된 주행 데이터들을 측정하는 단계, 그리고 상기 주행 데이터들을 각각 정상상태에서의 기준치와 비교해서 상기 모니터링 대상의 결함 발생 여부를 판단하는 단계를 포함한다.
상기 모니터링 대상을 선정하는 단계는, 고장의 재현성 여부에 따라, 고장의 재현성이 높은 모니터링 대상과 고장의 재현성이 낮은 모니터링 대상을 설정하는 단계를 포함할 수 있다.
상기 재현성이 높은 고장은, 상기 철도 차량에 장착된 주요 부품의 손상을 포함하며, 상기 재현성이 낮은 고장은, 상기 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 또는 상기 철도 차량이 주행하는 선로 결함을 포함할 수 있다.
상기 복수의 서로 다른 종류의 센서들은, 진동 센서, 온도 센서, 열화상 센서, 위치 센서, 속도 센서, 가속도 센서, 초음파 센서 및 전류 센서 중 적어도 두개의 센서를 포함할 수 있다.
상기 모니터링 대상을 선정하는 단계는, 상기 모니터링 대상에 대한 고장의 재현성 여부에 따라, 특성함수를 설정하는 단계를 더 포함하며, 상기 결함 발생 여부를 판단하는 단계는, 주행 데이터에 따른 상기 특성함수의 결과값을 도출하고, 상기 결과값을 정상상태에서의 기준치와 비교해서 상기 모니터링 대상의 결함 발생 여부를 판단할 수 있다.
상기 모니터링 대상의 결함 발생 여부를 판단하는 단계는, 철도 차량의 복수의 대차들에 각각에 장착된 동종의 주요 부품에 대한 주행 데이터를 측정하고, 상기 동종의 주요 부품에 대한 각각의 특성함수의 결과값을 비교해서 상기 주요 부품에 대한 고장 발생 여부를 진단할 수 있다.
상기 모니터링 대상의 결함 발생 여부를 판단하는 단계는, 철도 차량의 복수의 대차들 각각에 대해 실시간으로 대차 불안전성과 관련된 특성함수의 결과값을 계산하고, 상기 복수의 대차들 각각에 대한 상기 결과값을 비교해서 상기 대차 불안전성의 발생 여부를 진단할 수 있다.
상기 모니터링 대상의 결함 발생 여부를 판단하는 단계는, 상기 대차 불안전성과 관련된 특성함수의 결과값을 상기 철도 차량과 다른 시간대의 철도 차량에 대해 계산한 결과값과 비교하고, 철도 차량의 주행 위치 별로 연관 관계를 분석하여 상기 대차 불안전성 및 선로 결함을 동시에 진단할 수 있다.
본 발명의 철도 차량 모니터링 장치는 철도 차량과 관련된 모니터링 대상을 설정하고, 상기 모니터링 대상의 결함 발생을 진단할 진단 기준을 선정하여 데이터베이스에 저장하는 선정부, 상기 철도 차량의 주행 중에 각종 센서를 이용해서 상기 모니터링 대상과 관련된 주행 데이터를 검출하는 검출부, 그리고 상기 주행 데이터를 상기 데이터베이스에 저장된 상기 진단 기준과 비교하며, 고장의 재현성 여부를 고려해서 상기 모니터링 대상의 결함 발생 여부를 판단하는 제어부를 포함한다.
상기 고장의 재현성이 높은 모니터링 대상은, 상기 철도 차량에 장착된 주요 부품을 포함할 수 있다.
상기 제어부는, 철도 차량의 복수의 대차들에 각각에 장착된 동종의 주요 부품에 대한 주행 데이터를 측정하고, 상기 동종의 주요 부품에 대한 각각의 특성함수의 결과값을 비교해서 상기 주요 부품에 대한 고장 발생 여부를 진단할 수 있다.
상기 고장의 재현성이 낮은 모니터링 대상은, 상기 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 또는 상기 철도 차량이 주행하는 선로 결함을 포함할 수 있다.
상기 제어부는, 철도 차량의 복수의 대차들 각각에 대해 실시간으로 대차 불안전성과 관련된 특성함수의 결과값을 계산하고, 상기 복수의 대차들 각각에 대한 상기 결과값을 비교해서 상기 대차 불안전성의 발생 여부를 진단할 수 있다.
상기 제어부는, 상기 대차 불안전성이 상기 철도 차량이 주행하는 특정 위치에서 반복적으로 발생되는 경우, 상기 철도 차량이 주행하는 선로 상에 결함이 발생한 것으로 판단할 수 있다.
본 발명에 따르면, 철도 차량과 관련된 고장의 재현성 여부를 고려해서 모니터링 대상 및 특성함수를 선정하고, 다종의 센서들로부터 측정된 주행 데이터를 바탕으로 상기 모니터링 대상에 대한 결함 발생 여부를 판단함으로써, 철도 차량과 관련된 고장을 조기에 검출할 수 있는 환경을 제공한다.
또한, 본 발명은 철도 차량의 주요 부품에 대한 결함, 대차 불안전성 및 선로 결함 등을 조기에 검출함으로써, 차량의 주요부품의 결함 발생으로 인한 사고를 미연에 방지하여 승객의 안전을 보호할 수 있는 환경을 제공한다.
도 1은 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치의 구조를 간략히 도시한 도면이다.
도 2는 본 발명의 한 실시예에 따라 철도 차량과 관련된 고장을 모니터링하는 과정을 간략히 도시한 흐름도이다.
도 3은 본 발명의 한 실시예에 따라 모니터링 대상 및 특성 함수를 선정하는 예를 도시한 도면이다.
도 4는 본 발명의 한 실시예에 따라 철도 차량과 관련된 고장을 모니터링하는 과정을 구체적으로 도시한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 의미한다. 또한, 명세서에 기재된 "…부", "…모듈" 의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이제 도 1 내지 도 4를 참고하여 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법에 대하여 상세하게 설명한다.
도 1은 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치의 구조를 간략히 도시한 도면이다. 이때, 철도 차량 모니터링 장치는 본 발명의 실시예에 따른 설명을 위해 필요한 개략적인 구성만을 도시할 뿐 이러한 구성에 국한되는 것은 아니다.
도 1을 참조하면, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 검출부(110), 선정부(120) 및 제어부(130)을 포함한다.
검출부(110)는 철도 차량의 주행 중에 각종 센서를 이용해서 모니터링 대상과 관련된 주행 데이터를 검출한다. 여기서, 모니터링 대상은 철도 차량에 장착된 주요 부품, 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 및 철도 차량이 주행하는 선로 등을 포함한다. 그리고, 주행 데이터는 철도 차량의 주행 환경과 관련된 데이터를 포함하며, 상기 철도 차량의 주행속도, 가속도, 주행위치, 온도, 진동값, 전류값, 풍향, 풍속, 습도 및 강우량 중 적어도 하나를 포함할 수 있다.
예를 들어, 검출부(110)는 진동 센서(10), 온도 센서(20), 열화상 센서(30), 위치 센서(40), 속도 센서(50), 가속도 센서(60), 초음파 센서(70) 및 전류 센서(80)로부터 상기 모니터링과 관련된 각종 물리량을 측정하고, 측정된 데이터를 제어부(130)에 제공한다.
선정부(120)는 철도 차량과 관련된 모니터링 대상을 설정하고, 상기 모니터링 대상의 결함 발생을 진단할 진단 기준을 선정하여 데이터베이스에 저장한다.
선정부(120)는 본 발명의 한 실시예에 따라 모니터링 대상 선정부(122), 특성함수 선정부(124), 진단 기준 선정부(126) 및 데이터베이스(128)를 포함한다.
모니터링 대상 선정부(122)는 고장의 재현성 여부에 따라 고장의 재현성이 높은 모니터링 대상과 고장의 재현성이 낮은 모니터링 대상을 설정한다. 여기서, 고장의 재현성이 높은 모니터링 대상은 상기 철도 차량에 장착된 주요 부품의 손상을 포함한다. 또한, 고장의 재현성이 낮은 모니터링 대상은 상기 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 또는 상기 철도 차량이 주행하는 선로 결함을 포함할 수 있다.
특성함수 선정부(124)는 상기 모니터링 대상에 대한 고장 여부를 분석할 특성함수를 설정한다. 이때, 특성함수는 철도 차량의 주요 부품의 손상, 대차 불안전성 또는 선로 건전성을 판단하기 위한 함수이며, 철도 차량의 주행 조건 및 주행 환경과 관련된 파라미터로 이루어진 함수이다. 그리고, 특성함수는 본 발명의 한 실시예에 따라 진동 특성함수, 온도 변화 특성함수, 비틀림 특성함수 및 전류 특성함수 중 적어도 하나를 포함할 수 있다.
진단 기준 선정부(126)는 모니터링 대상의 결함 여부를 판단하기 위한 진단 기준을 설정하고, 이를 데이터베이스128)에 저장한다.
제어부(130)는 검출부(110)에서 검출된 주행 데이터를 이용해서 특성함수의 결과값을 도출하고, 상기 결과값을 정상상태에서의 기준치와 비교해서 해당 모니터링 대상의 결함 발생 여부를 판단한다.
또한, 제어부(130)는 상기 주행 데이터 및 상기 특성함수의 결과값을 상기 데이터베이스(128)에 저장된 진단 기준과 비교하여 모니터링 대상의 결함 발생 여부를 판단할 수 있다.
제어부(130)는 본 발명의 한 실시예에 따라 결함 진단부(132)을 포함한다.
결함 진단부(132)는 주행 데이터에 따른 특성함수의 결과값을 도출하고, 도출된 결과값을 정상상태에서의 기준치와 비교해서 상기 모니터링 대상의 결함 발생 여부를 판단한다.
여기서, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 철도 차량의 복수의 대차들에 각각에 장착된 동종의 주요 부품에 대한 주행 데이터를 측정하고, 상기 동종의 주요 부품에 대한 각각의 특성함수의 결과값을 비교해서 상기 주요 부품에 대한 고장 발생 여부를 진단한다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 철도 차량의 복수의 대차들 각각에 대해 실시간으로 대차 불안전성과 관련된 특성함수의 결과값을 계산하고, 상기 복수의 대차들 각각에 대한 상기 결과값을 비교해서 상기 대차 불안전성의 발생 여부를 진단할 수 있다.
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 대차 불안전성과 관련된 특성함수의 결과값을 상기 철도 차량과 다른 시간대의 철도 차량에 대해 계산한 결과값과 비교하고, 철도 차량의 주행 위치 별로 연관 관계를 분석하여 상기 대차 불안전성 및 선로 결함을 동시에 진단할 수도 있다.
이러한 목적을 위하여, 제어부(130)는 설정된 프로그램에 의하여 동작하는 하나 이상의 프로세서로 구현될 수 있으며, 상기 설정된 프로그램은 본 발명의 실시예에 따른 철도 차량 모니터링 방법의 각 단계를 수행하도록 프로그래밍 된 것일 수 있다.
도 2는 본 발명의 한 실시예에 따라 철도 차량과 관련된 고장을 모니터링하는 과정을 간략히 도시한 흐름도이다. 이하의 흐름도는 도 1의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 2를 참조하면, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 고장의 재현성 여부를 고려해서 차량과 관련된 모니터링 대상을 선정을 선정하고, 해당 모니터링 대상과 관련된 특성함수를 선정한다(S102). 여기서, 고장의 재현성이 높은 모니터링 대상은 상기 철도 차량에 장착된 주요 부품의 손상을 포함한다. 또한, 고장의 재현성이 낮은 모니터링 대상은 상기 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 또는 상기 철도 차량이 주행하는 선로 결함을 포함할 수 있다.
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 모니터링 대상의 결함 여부를 판단할 진단 기준을 선정하고, 데이터베이스화한다(S104).
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 철도 차량의 주행 데이터를 측정하고, 측정된 주행 데이터를 이용해서 특성함수 결과값을 연산한다(S106). 여기서, 주행 데이터는 상기 철도 차량의 주행속도, 가속도, 주행위치, 온도, 진동값, 전류값, 풍향, 풍속, 습도 및 강우량 중 적어도 하나를 포함한다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 고장 재현성이 높은 경우, 특성함수 결과값과 데이터베이스의 진단 기준을 비교하고, 기준 초과에 대한 반복성을 평가해서 철도 차량에 장착된 주요 부품의 손상 여부를 진단한다(S108 내지 S114).
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 고장의 재현성이 낮은 경우, 특성함수 결과값 및 진단 기준을 실시간으로 비교하여 대차 불안전성 및 선로 결함 여부를 진단한다(S118).
도 3은 본 발명의 한 실시예에 따라 모니터링 대상 및 특성 함수를 선정하는 예를 도시한 도면이다.
도 3을 참조하면, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 철도 차량의 주요 부품 손상, 대차 불안정성 발생 및 선로의 결함을 모니터링하기 위해서 차량의 주행 데이터를 측정하고, 측정된 주행 데이터를 파라미터화하여 등급별로 분류한다(S210, S220). 여기서, 파라미터는 측정 일자 및 시각(Xdtm), 주행속도(Xspd), 주행위치(Xgps), 외기온도(Xtmp), 풍향풍속(Xwnd) 및 습도와 강우상황(Xhmd) 등을 포함한다.
예를 들어, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 속도, 위치, 온도 별로 각각 등급을 나누고, 각 파리미터별로 측정된 주행 데이터 및 해당 주행 데이터에 대한 특성함수의 결과값과 관련된 DB를 구축한다.
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 고장의 재현성 여부에 따라 재현성이 높은 모니터링 대상과 재현성이 낮은 모니터링 대상을 설정한다(S230). 예를 들어, 고장의 재현성이 높은 모니터링 대상은 철도 차량의 휠 베어링 손상, 구동축 손상, 모터블록 과열, 송풍기 시스템 손상, 배전반 과열, 기어박스 손상, 주전력변환기 손상 및 견인모터 손상 등을 포함한다. 그리고, 고장의 재현성이 낮은 모니터링 대상은 대차 불안전성 및 선로 결함 등을 포함한다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 모니터링 대상 별로 주행 데이터를 측정할 측정 센서를 설정한다(S240). 예를 들어, 휠베이링의 결함 여부를 모니터링하기 위해서는 진동 센서 및 온도 센서를 측정 센서로 설정하고, 배전반의 결함 여부를 모니터링하기 위해서 온도 센서를 측정센서로 설정할 수 있다. 또한, 대차 불안전성이나 선로 결함을 모니터링 하기 위해서는 진동 센서 및 주행 위치와 관련된 센서를 설정할 수 있다.
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 모니터링 대상 별로 결함 여부를 진단할 특성함수를 설정한다(S250). 예를 들어, 휠베어링 결함 여부를 진단하기 위해서는 온도 특성함수, 모멘텀 및 포락 스펙트럼과 관련된 진동 특성함수를 설정한다. 배전반의 결함 여부를 모니터링하기 위해서 최대 온도와 관련된, 온도 변화 특성함수를 설정한다. 또한, 대차 불안전성을 결함을 모니터링하기 위해서는 진동값 및 포락 스펙트럼과 관련된 진동 특성함수를 설정할 수 있다.
도 4는 본 발명의 한 실시예에 따라 철도 차량과 관련된 고장을 모니터링하는 과정을 구체적으로 도시한 도면이다.
도4를 참조하면, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 결함 여부를 검출할 모니터링 대상과 측정 센서를 설정하고, 해당 모니터링 대상과 관련된 특성함수를 선정한다(S310).
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 모니터링 대상의 결함 여부를 판단할 진단 기준을 선정한다(S320).
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 주행 조건 및 주행 환경과 관련된 주행 데이터를 검출하고, 검출된 주행 데이터를 바탕으로 특성함수의 결과값을 연산하며, 모니터링 대상에 대한 고장의 재현성 여부를 고려해서 결함 발생 여부를 검출한다(S330 내지 S350).
여기서, 특성함수는 본 발명의 한 실시예에 따라 진동 특성함수, 온도 변화 특성함수, 비틀림 특성함수 및 전류 특성함수 중 적어도 하나를 포함할 수 있다.
그리고, 진동센서와 관련된 진동 특성함수는 RMSA(Root Mean Square Acceleration), Peak, Skewness, Kurtosis, Crest factor, Impulse factor, Shape factor 및 결함주파수의 스펙트럼값 중 적어도 하나를 포함하며, 이는 하기 수학식 1내지 수학식 8과 같다.
여기서, x(i)는 가속도 측정값이이며, 는 평균값을 포함하고, RMSA는 가속도에 관한 RMS의 계산값을 나타내며, Peak 는 고주파 신호파형에서 주어진 구간의 최대 진폭을 나타낸다.
또한, Skewness는 실제 랜덤변수의 확률분포가 평균값에 대한 어느 정도 치우치어져 있는지를 나타내는 척도를 나타내며, Crest factor는 교류전류나 소리와 같은 파형의 척도로써 평균값에 대한 peak의 비를 나타낸다.
그리고, Kurtosis는 Random변수 확률 분포의 peak크기에 대한 하나의 척도를 나타내며, Clearance factor는 피로에 의한 bearing의 초기 spalling을 검출하기 위한 요소이다.
그리고, Impulse factor는 하나의 무차원 진폭 parameter로 피로에 의한 bearing spalling의 가오스 확률밀도함수 모델을 사용하는 시뮬레이션 조건하에 유용한 방법이며, Shape factor는 또 하나의 무차원 진폭 parameter로 피로에 의한 bearing spalling의 가오스 확률밀도함수 모델을 사용하는 시뮬레이션 조건하에 유용한 방법이다.
예를 들어, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 휠베어링의 경우 주행조건 및 주행환경을 파라미터로 분류하고, 이렇게 분류된 카테고리에서 진동 및 온도 센서값의 특성함수로 둘중의 하나의 특성함수만 기준치를 넘는 경우 일차적인 결함 발생 가능성 있는 것으로 판단한다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 대차내에 타 휠베어링의 특성함수와 비교하여 상대적인 차이를 충분히 보이고, 반복적으로 이러한 현상이 지속되는 경우 결함이 발생한 것으로 최종 진단할 수 있다.
그리고, 온도 변화 특성함수는 온도센서의 최대값을 포함하며, 허용공차와 한계온도를 이용하여 진단기준은 하기 수학식 9와 같다.
그리고, 온도 특성함수는 열화상 센서와 같이 넓은 영역의 온도를 픽셀로 측정하는 경우 각 픽셀의 온도값 중에 최대가 되는 것을 의미한다.
본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 철도 차량의 견인차의 모터블럭들과 객차의 배전반들에 다수의 열화상센서를 부착하고, 온도 변화 특성함수에 의한 최대 온도가 진단 기준치를 넘는 경우 일차적인 결함 발생 가능성 있는 것으로 판단한다.
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 인접 모터블럭 및 배전반의 최대온도와 각각 비교하고, 이러한 현상이 반복적으로 지속되는 경우 모터블럭이나 배전반에 결함이 발생한 것으로 최종 진단할 수 있다.
그리고, 비틀림 특성함수는 하기 수학식 10과 같다.
여기서, θ는 비틀림 스트레인이며, θ1, θ2는 엔코더 회전 각도를 나타내며, T1, T2는 구동 토오크 및 제동 토오크를 나타낸다.
본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 상기 비틀림 함수를 이용하여 철도 차량의 동력전달장치의 결함 여부를 진단할 수 있다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 전류센서를 이용해 주전력변환장치의 3상 전류 파형을 각각 측정하고, 하기 수학식 11과 같이 진원도에 관한 특성함수를 도출한다.
그리고, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 상기 수학식 11에 의한 진원도 Id, Iq가 기준치 Rf에서 허용 공차 안에 존재하는지 여부로 주요 부품의 결함을 확인할 수 있다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 대차 불안정성 발생을 감지하기 위해 대차에 장착된 횡방향 진동 센서로 일반적으로 10Hz이내의 저주파 신호를 계측하고, 실시간으로 특정 시간 동안 특정 진동값이 지속되는지를 모니터링하게 된다.
또한, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치(100)는 상기와 같은 대차 불안전성이 특정한 주행 위치와 연관성이 크고, 다른 대차 및 다른 편성 차량에서도 지속적으로 나타나는 경우, 선로의 건전성 결함이 발생한 것으로 진단할 수 있다.
이와 같이, 본 발명의 한 실시예에 따른 철도 차량 모니터링 장치는 철도 차량과 관련된 고장의 재현성 여부를 고려해서 모니터링 대상 및 특성함수를 선정하고, 다종의 센서들로부터 측정된 데이터를 바탕으로 상기 모니터링 대상에 대한 결함 발생 여부를 판단함으로써, 철도 차량과 관련된 고장을 조기에 검출할 수 있는 환경을 제공한다.
또한, 본 발명은 철도 차량의 주요 부품에 대한 결함, 대차 불안전성 및 선로 결함 등을 조기에 검출함으로써, 차량의 주요부품의 결함 발생으로 인한 사고를 미연에 방지하여 승객의 안전을 보호할 수 있는 환경을 제공한다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (14)
- 철도 차량 모니터링 장치가 철도 차량과 관련된 고장을 모니터링하는 방법에서,상기 철도 차량의 모니터링 대상을 선정하는 단계,상기 모니터링 대상과 관련된 진단 기준을 선정하는 단계,복수의 서로 다른 종류의 센서들을 이용해서 상기 철도 차량의 주행 중에 상기 모니터링 대상과 관련된 주행 데이터들을 측정하는 단계, 그리고상기 주행 데이터들을 각각 정상상태에서의 기준치와 비교해서 상기 모니터링 대상의 결함 발생 여부를 판단하는 단계를 포함하는 철도 차량 모니터링 방법.
- 제1항에서,상기 모니터링 대상을 선정하는 단계는,고장의 재현성 여부에 따라, 고장의 재현성이 높은 모니터링 대상과 고장의 재현성이 낮은 모니터링 대상을 설정하는 단계를 포함하는 철도 차량 모니터링 방법.
- 제2항에서,상기 재현성이 높은 고장은,상기 철도 차량에 장착된 주요 부품의 손상을 포함하며,상기 재현성이 낮은 고장은,상기 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 또는 상기 철도 차량이 주행하는 선로 결함을 포함하는 철도 차량 모니터링 방법.
- 제3항에서,상기 복수의 서로 다른 종류의 센서들은,진동 센서, 온도 센서, 열화상 센서, 위치 센서, 속도 센서, 가속도 센서, 초음파 센서 및 전류 센서 중 적어도 두개의 센서를 포함하는 철도 차량 모니터링 방법.
- 제4항에서,상기 모니터링 대상을 선정하는 단계는,상기 모니터링 대상에 대한 고장의 재현성 여부에 따라, 특성함수를 설정하는 단계를 더 포함하며,상기 결함 발생 여부를 판단하는 단계는,주행 데이터에 따른 상기 특성함수의 결과값을 도출하고, 상기 결과값을 정상상태에서의 기준치와 비교해서 상기 모니터링 대상의 결함 발생 여부를 판단하는 철도 차량 모니터링 방법.
- 제5항에서,상기 모니터링 대상의 결함 발생 여부를 판단하는 단계는,철도 차량의 복수의 대차들에 각각에 장착된 동종의 주요 부품에 대한 주행 데이터를 측정하고, 상기 동종의 주요 부품에 대한 각각의 특성함수의 결과값을 비교해서 상기 주요 부품에 대한 고장 발생 여부를 진단하는 철도 차량 모니터링 방법.
- 제5항에서,상기 모니터링 대상의 결함 발생 여부를 판단하는 단계는,철도 차량의 복수의 대차들 각각에 대해 실시간으로 대차 불안전성과 관련된 특성함수의 결과값을 계산하고, 상기 복수의 대차들 각각에 대한 상기 결과값을 비교해서 상기 대차 불안전성의 발생 여부를 진단하는 철도 차량 모니터링 방법.
- 제5항에서,상기 모니터링 대상의 결함 발생 여부를 판단하는 단계는,상기 대차 불안전성과 관련된 특성함수의 결과값을 상기 철도 차량과 다른 시간대의 철도 차량에 대해 계산한 결과값과 비교하고, 철도 차량의 주행 위치 별로 연관 관계를 분석하여 상기 대차 불안전성 및 선로 결함을 동시에 진단하는 철도 차량 모니터링 방법.
- 철도 차량과 관련된 모니터링 대상을 설정하고, 상기 모니터링 대상의 결함 발생을 진단할 진단 기준을 선정하여 데이터베이스에 저장하는 선정부,상기 철도 차량의 주행 중에 각종 센서를 이용해서 상기 모니터링 대상과 관련된 주행 데이터를 검출하는 검출부, 그리고상기 주행 데이터를 상기 데이터베이스에 저장된 상기 진단 기준과 비교하며, 고장의 재현성 여부를 고려해서 상기 모니터링 대상의 결함 발생 여부를 판단하는 제어부를 포함하는 철도 차량 모니터링 장치.
- 제9항에서,상기 고장의 재현성이 높은 모니터링 대상은,상기 철도 차량에 장착된 주요 부품을 포함하는 철도 차량 모니터링 장치.
- 제10항에서,상기 제어부는,철도 차량의 복수의 대차들에 각각에 장착된 동종의 주요 부품에 대한 주행 데이터를 측정하고, 상기 동종의 주요 부품에 대한 각각의 특성함수의 결과값을 비교해서 상기 주요 부품에 대한 고장 발생 여부를 진단하는 철도 차량 모니터링 장치.
- 제9항에서,상기 고장의 재현성이 낮은 모니터링 대상은,상기 철도 차량의 주행중 횡방향 진동에 의한 대차 불안전성 또는 상기 철도 차량이 주행하는 선로 결함을 포함하는 철도 차량 모니터링 장치.
- 제12항에서,상기 제어부는,철도 차량의 복수의 대차들 각각에 대해 실시간으로 대차 불안전성과 관련된 특성함수의 결과값을 계산하고, 상기 복수의 대차들 각각에 대한 상기 결과값을 비교해서 상기 대차 불안전성의 발생 여부를 진단하는 철도 차량 모니터링 장치.
- 제12항에서,상기 제어부는,상기 대차 불안전성이 상기 철도 차량이 주행하는 특정 위치에서 반복적으로 발생되는 경우, 상기 철도 차량이 주행하는 선로 상에 결함이 발생한 것으로 판단하는 철도 차량 모니터링 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/303,166 US10919545B2 (en) | 2016-05-20 | 2017-05-19 | Apparatus for monitoring railroad car and monitoring method using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0062236 | 2016-05-20 | ||
KR1020160062236A KR101829645B1 (ko) | 2016-05-20 | 2016-05-20 | 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204490A1 true WO2017204490A1 (ko) | 2017-11-30 |
Family
ID=60411796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/005211 WO2017204490A1 (ko) | 2016-05-20 | 2017-05-19 | 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10919545B2 (ko) |
KR (1) | KR101829645B1 (ko) |
WO (1) | WO2017204490A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10919545B2 (en) | 2016-05-20 | 2021-02-16 | Globiz Co., Ltd. | Apparatus for monitoring railroad car and monitoring method using the same |
CN115257857A (zh) * | 2022-09-28 | 2022-11-01 | 西南交通大学 | 一种基于惯性原理的轨面三角坑识别方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106679999B (zh) * | 2016-12-26 | 2018-11-23 | 合肥工大高科信息科技股份有限公司 | 一种车厢内置式高速列车走行部件在线故障检测装置 |
KR102126428B1 (ko) * | 2018-01-02 | 2020-06-24 | 주식회사 글로비즈 | 철도 차량 부품들의 결함을 진단하는 방법 및 장치 |
KR102111196B1 (ko) * | 2018-01-23 | 2020-05-14 | 케이티엠엔지니어링(주) | 지상 차량 부품 탐지 시스템 |
KR102527319B1 (ko) * | 2018-01-29 | 2023-05-03 | 한국전자통신연구원 | 철도 차량의 부품 및 운영 환경 특징 벡터 정보 기반의 기계 학습 고장 진단 시스템 및 그 방법 |
KR102132850B1 (ko) * | 2018-05-24 | 2020-07-13 | 주식회사 글로비즈 | 차량 안전부품 진단장치 |
KR102624536B1 (ko) * | 2018-12-31 | 2024-01-15 | 주식회사 일진글로벌 | 고장 진단 장치 및 이러한 고장 진단 장치를 구비하는 차량용 휠베어링 |
KR102172012B1 (ko) * | 2019-05-09 | 2020-10-30 | 주식회사 글로비즈 | 철도차량 안전부품 진단장치 |
KR102235625B1 (ko) | 2019-11-05 | 2021-04-05 | 한국철도기술연구원 | 철도차량의 이상 상태 진단 시스템 및 이를 이용한 이상 상태 진단 방법 |
KR102116890B1 (ko) * | 2019-11-07 | 2020-05-29 | 주식회사 지에스지 | 무선 가속도계를 이용한 이동형 레일/궤도 결함 실시간 분석 및 모니터링 시스템 및 방법 |
CN110849288B (zh) * | 2019-11-29 | 2021-03-26 | 中车南京浦镇车辆有限公司 | 一种基于车体轮廓线的轨道车辆脱轨检测方法 |
US11842578B2 (en) | 2019-12-26 | 2023-12-12 | Globiz Co., Ltd. | Vehicle safety component diagnosis apparatus |
KR102334220B1 (ko) * | 2020-04-27 | 2021-12-02 | 주식회사 글로비즈 | 철도 차량 부품들의 결함을 진단하고 남은 수명을 계산하는 방법 및 장치 |
DE102021203898A1 (de) * | 2021-04-20 | 2022-10-20 | Siemens Mobility GmbH | Sensoranordnung und Verfahren zur Positionsbestimmung für ein Schienenfahrzeug |
KR102558020B1 (ko) * | 2021-07-13 | 2023-07-20 | 케이티엠엔지니어링(주) | 인공지능 알고리즘 적용 방식의 진단 변수 결정 방법 및 이에 의한 철도 차량의 진단 방법 |
KR102448793B1 (ko) * | 2021-11-09 | 2022-09-29 | 주식회사 우진기전 | 복합 연동장치를 이용한 철도상태 기반(cbm) 유지보수 예측시스템 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002053040A (ja) * | 2000-08-08 | 2002-02-19 | Nippon Signal Co Ltd:The | 鉄道車両の走行異常判別システム |
JP2007278894A (ja) * | 2006-04-07 | 2007-10-25 | Nsk Ltd | 異常診断装置および異常診断方法 |
JP2011245917A (ja) * | 2010-05-24 | 2011-12-08 | Hitachi Ltd | 鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両 |
KR20140133635A (ko) * | 2013-05-08 | 2014-11-20 | 이승영 | 철도 차량의 모니터링 시스템 및 방법 |
JP2015023370A (ja) * | 2013-07-18 | 2015-02-02 | 株式会社ニシヤマ | 画像同期装置、測定システムおよび画像同期方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7708232B2 (en) * | 2005-05-19 | 2010-05-04 | Progressive Rail Technologies, Inc. | Railroad car lateral instability and tracking error detector |
ES2384005T3 (es) * | 2008-09-19 | 2012-06-28 | Bombardier Transportation Gmbh | Dispositivo y sistema de monitorización de inestabilidad, en particular para un vehículo ferroviario |
DE102009053801B4 (de) * | 2009-11-18 | 2019-03-21 | Knorr-Bremse Systeme für Schienenfahrzeuge GmbH | Verfahren und Einrichtung zur Zustandsüberwachung wenigstens einen Radsatz aufweisenden Drehgestells eines Schienenfahrzeugs |
EP2602168B1 (en) * | 2011-12-07 | 2015-07-22 | Railway Metrics and Dynamics Sweden AB | Method and system for detection and analysis of railway bogie operational problems |
DE102013210361A1 (de) * | 2013-06-04 | 2014-12-04 | Siemens Aktiengesellschaft | Verfahren zur Ermittlung zumindest einer Geschwindigkeit bei einem Schienenfahrzeug |
GB2542115B (en) * | 2015-09-03 | 2017-11-15 | Rail Vision Europe Ltd | Rail track asset survey system |
KR101829645B1 (ko) | 2016-05-20 | 2018-02-20 | 주식회사 글로비즈 | 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법 |
-
2016
- 2016-05-20 KR KR1020160062236A patent/KR101829645B1/ko active IP Right Grant
-
2017
- 2017-05-19 WO PCT/KR2017/005211 patent/WO2017204490A1/ko active Application Filing
- 2017-05-19 US US16/303,166 patent/US10919545B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002053040A (ja) * | 2000-08-08 | 2002-02-19 | Nippon Signal Co Ltd:The | 鉄道車両の走行異常判別システム |
JP2007278894A (ja) * | 2006-04-07 | 2007-10-25 | Nsk Ltd | 異常診断装置および異常診断方法 |
JP2011245917A (ja) * | 2010-05-24 | 2011-12-08 | Hitachi Ltd | 鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両 |
KR20140133635A (ko) * | 2013-05-08 | 2014-11-20 | 이승영 | 철도 차량의 모니터링 시스템 및 방법 |
JP2015023370A (ja) * | 2013-07-18 | 2015-02-02 | 株式会社ニシヤマ | 画像同期装置、測定システムおよび画像同期方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10919545B2 (en) | 2016-05-20 | 2021-02-16 | Globiz Co., Ltd. | Apparatus for monitoring railroad car and monitoring method using the same |
CN115257857A (zh) * | 2022-09-28 | 2022-11-01 | 西南交通大学 | 一种基于惯性原理的轨面三角坑识别方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101829645B1 (ko) | 2018-02-20 |
US20190232978A1 (en) | 2019-08-01 |
KR20170131792A (ko) | 2017-11-30 |
US10919545B2 (en) | 2021-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017204490A1 (ko) | 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법 | |
JP5382991B2 (ja) | 軌道系交通システムの異常診断方法及び異常診断システム | |
CN104316729B (zh) | 机车车辆转向架检测用加速度传感器的自诊断方法 | |
RU2444449C1 (ru) | Способ и система диагностики и удаленного мониторинга контактной сети железной дороги | |
CN111024416B (zh) | 一种列车牵引系统的故障诊断方法及系统 | |
CN107478350A (zh) | 一种铁路客车轴承温度检测方法及数字/模拟集成式温度传感器 | |
JP6796545B2 (ja) | 鉄道車両機器診断装置および鉄道車両機器診断方法 | |
CN109855710B (zh) | 一种汽车衡称重状态监测系统及检测方法 | |
CN112286180A (zh) | 一种基于巡检机器人的电力巡检分析系统及方法 | |
RU100967U1 (ru) | Система диагностики и удаленного мониторинга контактной сети железной дороги | |
WO2016113724A1 (ja) | 状態監視装置、状態監視システム、および編成列車 | |
CN110171442B (zh) | 车轮扁疤的检测系统、检测方法 | |
CN113405590A (zh) | 轨道车辆关键部件状态测试装置、系统及方法 | |
CN110220726A (zh) | 车轮不圆的检测系统、检测方法 | |
CN111076750B (zh) | 一种用于检测接触网吊弦线夹松脱的装置及方法 | |
KR20180110783A (ko) | 다수 개의 매개변수에 의한 철도 차량의 진단 시스템 및 그에 의한 철도 차량의 안전 진단 방법 | |
KR20190088933A (ko) | 다수 개의 매개변수에 의한 철도 차량의 진단 시스템 및 그에 의한 철도 차량의 안전 진단 방법 | |
KR100683590B1 (ko) | 고속철도차량의 브이브이브이에프 인버터 및 보조 컨버터진단 시스템 | |
CN211009229U (zh) | 一种动车组风机故障智能诊断系统 | |
JP2000079839A (ja) | 衝撃計測装置 | |
KR102412379B1 (ko) | 철도 차량의 차륜 및 차축 베어링 다중 진단 시스템 | |
KR102535467B1 (ko) | 인공지능 알고리즘 적용 방식의 철도 차량 작동 상태 진단 시스템 | |
KR102184314B1 (ko) | 댐퍼 이상 자가진단 장치 및 방법 | |
CN113790861B (zh) | 水电站冷却水泄漏智能检测方法 | |
WO2023249277A1 (ko) | 전기차 진단 및 예지 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17803009 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.03.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17803009 Country of ref document: EP Kind code of ref document: A1 |