WO2017138659A1 - 走行支援装置 - Google Patents
走行支援装置 Download PDFInfo
- Publication number
- WO2017138659A1 WO2017138659A1 PCT/JP2017/005009 JP2017005009W WO2017138659A1 WO 2017138659 A1 WO2017138659 A1 WO 2017138659A1 JP 2017005009 W JP2017005009 W JP 2017005009W WO 2017138659 A1 WO2017138659 A1 WO 2017138659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moving object
- host vehicle
- avoidance
- unit
- travel
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims description 22
- 230000003111 delayed effect Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims 2
- 238000000034 method Methods 0.000 description 22
- 239000000470 constituent Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000001172 regenerating effect Effects 0.000 description 5
- 208000019901 Anxiety disease Diseases 0.000 description 4
- 230000036506 anxiety Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
- G08G1/163—Decentralised systems, e.g. inter-vehicle communication involving continuous checking
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
Definitions
- This disclosure relates to a technique for avoiding a collision between the host vehicle and a moving object around the host vehicle.
- a technique for avoiding a collision between the own vehicle and a moving object around the own vehicle is known. For example, when the possibility of collision between the host vehicle and the moving object is calculated based on the position and vehicle speed as the traveling information of the own vehicle and the position and speed as the movement information of the moving object, and the possibility of collision is high What operates a brake is known.
- the movement information of the moving object is detected by a detection device such as a camera or a millimeter wave radar mounted on the host vehicle.
- alarm information is sent from the first vehicle to the second vehicle.
- a technique for transmitting by wireless communication is described.
- the alarm information includes the collision risk, the position information of the first vehicle, and the traveling direction of the first vehicle.
- the second vehicle When the second vehicle receives the alarm information from the communication device of the first vehicle that is an external device, if the first vehicle that transmitted the alarm information is located behind, the vehicle starts, stops and cancels the release, or accelerates. By doing so, it tries to avoid collision with the first vehicle or reduce collision damage.
- the communication radio wave is affected by radio wave interruption or noise. Therefore, the reliability of the movement information acquired indirectly by wireless communication or the like is lower than the case of directly acquiring the movement information of the moving object from a vehicle-mounted detection device such as a camera or a millimeter wave radar.
- One aspect of the present disclosure reduces anxiety of an occupant based on movement information acquired from a detection device mounted on the host vehicle and movement information acquired from an external device for a moving object around the host vehicle. On the other hand, it is desirable to be able to provide a technique for appropriately controlling the traveling of the host vehicle in order to avoid a collision between the host vehicle and a moving object.
- the travel support apparatus includes a travel information unit, a first information unit, a second information unit, a first determination unit, a second determination unit, and a first avoidance amount unit. And a second avoidance amount unit and a travel control unit.
- the travel information unit acquires at least the position of the host vehicle and the vehicle speed as the travel information of the host vehicle.
- the first information unit acquires at least the position and speed of the moving object from the detection device mounted on the own vehicle as the first movement information of the moving object around the own vehicle.
- the second information unit acquires at least the position and speed of the moving object from the outside device outside the host vehicle as the second movement information of the moving object.
- the first determination unit determines a first possibility that the host vehicle and the moving object collide from the travel information acquired by the travel information unit and the first movement information acquired by the first information unit. Based on the first possibility, it is determined whether or not to execute the first avoidance traveling for avoiding the collision between the host vehicle and the moving object.
- the second determination unit determines a second possibility that the host vehicle and the moving object collide from the traveling information acquired by the traveling information unit and the second movement information acquired by the second information unit. Based on the second possibility, it is determined whether or not to execute the second avoidance traveling for avoiding the collision between the host vehicle and the moving object.
- the collision between the host vehicle and the moving object is performed based on the first possibility determined by the first determination unit.
- a first avoidance amount for avoiding the above is set.
- the second avoidance amount unit performs a collision between the host vehicle and the moving object based on the second possibility determined by the second determination unit.
- the host vehicle uses the second avoidance amount as a second avoidance amount rather than the first avoidance amount set by the first avoidance amount section.
- the control amount for controlling the travel of the vehicle is set, the control amount is reduced, and when the execution start timing of the travel control of the host vehicle is set, the execution start timing is delayed.
- the travel control unit avoids a collision between the host vehicle and the moving object based on the first avoidance amount set by the first avoidance amount unit and the second avoidance amount set by the second avoidance amount unit. Therefore, the traveling of the own vehicle is controlled.
- traveling of the host vehicle when the traveling of the host vehicle is controlled based on the second avoidance amount so that the host vehicle avoids traveling, the collision between the host vehicle and the moving object can be avoided as compared with the case where the avoiding traveling is not performed at all.
- the possibility is high.
- traveling of the host vehicle can be appropriately controlled in order to avoid a collision between the host vehicle and a moving object.
- control amount for controlling the traveling of the host vehicle is set as the second avoidance amount when the second avoidance travel is performed, rather than the first avoidance amount when the first avoidance travel is performed.
- control amount is set small, and when the execution start timing of the travel control of the host vehicle is set, the execution start timing is set late.
- the block diagram which shows the driving assistance system by this embodiment.
- the schematic diagram which shows the positional relationship of the own vehicle, a moving object, and a shield.
- the schematic diagram explaining the collision avoidance by offset.
- the flowchart which shows a driving assistance process.
- the block diagram explaining the setting of the avoidance amount.
- the schematic diagram explaining the determination of the detection possibility by the vehicle-mounted detection apparatus.
- a driving support system 2 shown in FIG. 1 is mounted on a vehicle, and includes a wireless device 10, a camera 12, a millimeter wave radar 14, a vehicle speed sensor 16, a GPS 18, a map DB device 20, and a driving support device 30.
- HMI is an abbreviation for Human Machine Interface.
- a vehicle on which the driving support system 2 is mounted is referred to as a host vehicle.
- the wireless device 10 communicates wirelessly with an external device outside the host vehicle.
- the out-of-vehicle device may be installed in either a person, a bicycle, a vehicle having a driving source, a roadside machine, or a management center.
- the camera 12 images the front, side, and rear of the vehicle.
- an image analysis device (not shown)
- moving objects existing in front, side, and rear of the host vehicle are detected.
- Millimeter wave radar 14 scans a range of a predetermined angle by outputting millimeter waves to the front, side, and rear of the vehicle.
- the millimeter wave radar 14 detects the reflected wave of the irradiated millimeter wave, determines the distance to the object from the time required for the millimeter wave to reciprocate with the object that reflected the millimeter wave, and detects the reflected wave.
- the direction in which an object exists is determined from the direction of irradiation with millimeter waves.
- the vehicle speed sensor 16 detects the current vehicle speed of the host vehicle.
- the GPS 18 receives a positioning signal from a GPS satellite and measures the position of the host vehicle.
- the map data stored in the map DB device 20 includes links and nodes representing roads.
- a link connects nodes representing intersections, branch points, junctions, and the like.
- a road is constructed by connecting the links.
- Registered in the link are data such as an identification number, a link length, a latitude / longitude indicating coordinates of a start point and an end point, a road type indicating a highway, a national road, and the like, and the number of lanes.
- map data the sizes of structures such as buildings existing along links representing roads and structures around nodes representing intersections, branch points, junctions, etc. are registered.
- the driving support device 30 includes a microcomputer including a CPU and a semiconductor memory such as a RAM, a ROM, and a flash memory.
- the driving support device 30 may be equipped with one microcomputer or a plurality of microcomputers.
- Each function of the driving support device 30 is realized by the CPU executing a program stored in a non-transitional physical recording medium such as a ROM or a flash memory. By executing this program, a method corresponding to the program is executed.
- the travel support device 30 includes a travel information unit 32, a first information unit 34, a second information unit 36, and a first determination unit 38 as functional configurations realized by the CPU executing a program.
- a second determination unit 40, a first avoidance amount unit 42, a second avoidance amount unit 44, a map acquisition unit 46, a reliability determination unit 48, an obstruction determination unit 50, and a prediction unit. 52, a travel control unit 54, and a notification unit 56 are provided.
- the method of realizing these elements constituting the driving support device 30 is not limited to software, and some or all of the elements are realized using hardware that combines logic circuits, analog circuits, and the like. Also good.
- the powertrain system 60 controls the opening of the throttle device and the fuel injection amount in accordance with the drive output commanded from the driving support device 30 when the internal combustion engine is mounted as the drive source, and the motor as the drive source. If it is installed, the power supplied to the motor is controlled.
- the brake system 62 controls the actuator provided in the hydraulic circuit of the hydraulic brake according to the braking force commanded from the driving support device 30.
- the brake system 62 When the host vehicle is equipped with a motor as a drive source, the brake system 62 generates a braking force by regenerative braking by controlling the power supplied to the motor according to the braking force commanded from the driving support device 30. May be.
- the steering system 64 drives the steering wheel according to the torque commanded from the driving support device 30 and controls the traveling direction of the host vehicle.
- [2. processing] (1) Outline of Processing As shown in FIG. 2, when the host vehicle 100 is traveling toward an intersection 210 with poor visibility due to a shield 200 such as a building, the moving object 110 is covered by the shield 200.
- the driving support process will be described by taking as an example a situation where the vehicle is moving toward the same intersection 210 from behind.
- the host vehicle 100 is a vehicle that includes wheels, uses at least one of an internal combustion engine and a motor as a drive source, and can control at least one of the vehicle speed and the traveling direction by the travel support device 30.
- the moving object 110 may be any object as long as it moves. For example, a human, a bicycle, and a vehicle having wheels and a drive source correspond to the moving object 110.
- the camera 12 and the millimeter wave radar 14 cannot detect the moving object 110.
- the host vehicle 100 reaches the position 102, the camera 12 and the millimeter wave radar 14 can detect the moving object 110 moving to the position 112.
- the driving support device 30 transmits the second movement information of the moving object 110 including at least the position and the moving speed of the moving object 110 blocked by the shielding object 200 from an external device other than the host vehicle 100 by wireless communication. Obtain indirectly. With respect to the second movement information, the movement information including at least the position and movement speed of the moving object 110 directly acquired by the driving support device 30 from the camera 12 and the millimeter wave radar 14 is the first movement information of the moving object 110. It is.
- the driving support device 30 can detect the traveling directions of the host vehicle 100 and the moving object 110 from the change in position.
- the driving support device 30 acquires the vehicle speed of the host vehicle 100 from the vehicle speed sensor 16 and acquires the position of the host vehicle 100 based on the GPS 18 and the map data stored in the map DB device 20.
- Information including at least the position of the host vehicle 100 and the vehicle speed is travel information of the host vehicle 100.
- the external device may be installed on any object as long as it can wirelessly transmit the second movement information of the moving object 110.
- the wireless device of the moving object 110 may transmit the position and moving speed of the moving object 110 detected by the moving object 110 itself.
- the position and moving speed of the moving object 110 detected by the roadside device may be used, and the roadside device's wireless device may transmit.
- the wireless device of the management center may transmit the position and moving speed received from the moving object 110 by the management center.
- the driving support device 30 determines the own vehicle 100 and the moving object 110 based on the first moving information of the moving object 110 acquired from the camera 12 and the millimeter wave radar 14 and the driving information of the own vehicle 100. TTC, which is the estimated time until the collision occurs.
- the driving assistance device 30 determines that the first possibility that the host vehicle 100 and the moving object 110 collide is higher as the TTC is shorter.
- the driving support device 30 calculates TTC based on the second movement information of the moving object 110 and the driving information of the host vehicle 100 acquired from the outside device instead of the first movement information.
- the driving support device 30 determines that the second possibility that the host vehicle 100 and the moving object 110 collide is higher as the TTC is shorter.
- the driving support device 30 is set based on the first possibility, and when the driving support device 30 controls the driving of the host vehicle 100 to avoid the collision between the host vehicle 100 and the moving object 110, the driving support device 30 performs the avoidance driving.
- the avoidance amount is the first avoidance amount.
- the avoidance travel of the host vehicle 100 executed by the first avoidance amount is the first avoidance travel.
- the driving support device 30 is set based on the second possibility, and the driving support device 30 controls the driving of the host vehicle 100 to avoid the collision between the host vehicle 100 and the moving object 110 to avoid it.
- the avoidance amount when traveling is the second avoidance amount.
- the avoidance travel of the host vehicle 100 executed by the first avoidance amount is the second avoidance travel.
- the driving support device 30 executes the first avoidance driving when the first possibility is equal to or higher than a first threshold value that can be determined that the host vehicle 100 and the moving object 110 collide with each other. For example, the driving support device 30 sets the accelerator off state even when the driver instructs the powertrain system 60 and steps on the accelerator pedal as the first avoidance driving by the braking force. That is, when the drive source is an internal combustion engine, the throttle opening is fully closed and the injection amount of the injector becomes zero. The driving support device 30 cuts off power supply to the motor when the drive source is a motor.
- the driving support device 30 sets the engine braking force high by reducing the gear ratio in the powertrain system 60 or the like. Also good. Even when the driving source is a motor, the driving support device 30 not only cuts off the power supply to the motor but also drives the motor as a generator and utilizes so-called regenerative torque when driven as a generator. Also good.
- the travel support device 30 When the travel support device 30 fully closes the throttle opening and sets the injection amount of the injector to 0, the engine brake is activated and braking force is applied. When the driving support device 30 cuts off the power supply to the motor, the regenerative brake is activated and a braking force is applied.
- the travel support device 30 instructs the brake system 62 to operate the hydraulic brake as the first avoidance travel by the braking force.
- the travel support device 30 commands the steering system 64 as the first avoidance travel by steering, and operates the steering in a direction to avoid the moving object 110.
- the traveling support device 30 executes the second avoidance traveling if the second possibility is equal to or greater than a second threshold that can be determined that the host vehicle 100 and the moving object 110 collide with each other.
- the second threshold value may be the same value as the first threshold value, or may be a different value. As described above, since the second threshold value has low information reliability, the second threshold value is determined according to the reliability, for example, by adding or subtracting the GPS position accuracy to the own vehicle 100 or the moving object 110. May be set.
- the driving support device 30 applies the braking force to the host vehicle 100 as the second avoidance traveling by the braking force, even if the driver steps on the accelerator pedal, as in the first avoidance traveling.
- the driving support device 30 does not use a hydraulic brake as the second avoidance driving by the braking force. Therefore, the braking force set as the second avoidance amount in the second avoidance travel is smaller than the braking force set as the first avoidance amount in the first avoidance travel.
- the traveling support device 30 In addition to the magnitude of the braking force that is the control amount of the traveling control that causes the host vehicle 100 to travel while avoiding the host vehicle 100, the traveling support device 30 also generates the braking force that is the execution start timing of the traveling control that causes the host vehicle 100 to avoid traveling. Set as an avoidance amount. In this case, the timing for generating the braking force set as the second avoidance amount in the second avoidance travel is later than the timing for generating the braking force set as the first avoidance amount in the first avoidance travel. .
- the driving support device 30 makes the control amount set as the second avoidance amount smaller than the control amount set as the first avoidance amount or starts the execution of the travel control set as the second avoidance amount What is necessary is just to perform at least any one of making a timing later than the execution start timing of the traveling control set as a 1st avoidance amount.
- the driving support device 30 instructs the brake system 62 so that, for example, if the braking device is a hydraulic brake, the vehicle 100 actually The hydraulic brake may be instructed to apply a hydraulic pressure within a range where no braking force is applied.
- the traveling support device 30 actually operates the hydraulic brake to execute the first avoidance traveling that avoids the collision with the moving object 110, the braking force is quickly applied to the host vehicle 100.
- the driving support device 30 offsets the lateral position of the host vehicle 100 in a direction orthogonal to the current traveling direction as the second avoidance driving by steering. You may stagger.
- the third threshold value is higher than the second threshold value.
- the driving support device 30 performs the offsetting of the lateral position before operating the braking force.
- the driving support device 30 may divide the offset amount into a plurality of times instead of executing the offset amount by one operation. For example, the driving support device 30 may be executed before operating the engine brake for the first time and after operating the engine brake for the second time.
- the traveling support device 30 predicts that the collision point with the moving object 110 is on the right side of the own vehicle 100 based on the second movement information with respect to the traveling direction of the own vehicle 100
- the lateral position of the host vehicle 100 is offset in a direction away from the location.
- the same direction as the moving direction of the moving object 110 is the direction in which the host vehicle 100 is offset.
- the traveling support device 30 predicts that the collision point with the moving object 110 is on the left side of the own vehicle 100 based on the second movement information with respect to the traveling direction of the own vehicle 100
- the lateral position of the host vehicle 100 is offset in a direction away from the location.
- the direction opposite to the moving direction of the moving object 110 is the direction in which the host vehicle 100 is offset.
- the offset direction described in FIG. 3 and FIG. 4 is not fixed. If the offset amount is smaller when offset in the opposite direction to that described, or if there is a large margin on the offset side after offset, the reverse direction is reversed.
- the direction may be an offset direction.
- the travel support device 30 also avoids the timing of starting the steering that is the execution start timing of travel control for avoiding the host vehicle 100. Set as a quantity. In this case, the steering start timing set as the second avoidance amount in the second avoidance travel is later than the steering start timing set as the first avoidance amount in the first avoidance travel.
- the map acquisition unit 46 acquires the current position of the host vehicle 100 from the GPS 18, and maps the position of the host vehicle 100 on the map data acquired from the map DB device 20. Furthermore, in S400, the map acquisition part 46 acquires the distance from the own vehicle 100 to an intersection from map data, when an intersection exists ahead of the advancing direction of the own vehicle 100. FIG.
- the travel information unit 32 acquires the vehicle speed of the host vehicle 100 from the vehicle speed sensor 16, and acquires the position of the host vehicle 100 mapped on the map data by the map acquisition unit 46.
- the map acquisition unit 46 determines whether or not the distance from the vehicle 100 to the intersection is equal to or less than a predetermined distance as a condition for performing the second avoidance travel.
- the map acquisition unit 46 is still in the second state even if the own vehicle 100 may collide with the moving object. It is determined that there is no need to avoid driving. In this case, this process ends. Even when there is no intersection in front of the host vehicle 100, the determination in S404 is No.
- the shielding determination unit 50 determines in S406 that the own vehicle Information on the shield around the intersection in front of 100 in the traveling direction is acquired from the map data.
- the second information unit 36 receives the second movement information of the moving object 110 that is received by the wireless device 10 and is moving by being blocked by the shielding object 200 with respect to the host vehicle 100, as shown in FIG. 2. get.
- the second information unit 36 may acquire the second movement information from any of the moving object 110, the roadside machine, and the management center.
- the second determination unit 40 as shown in FIG. 6, the traveling information of the host vehicle 110 acquired from the traveling information unit 32 and the second moving information of the moving object 110 acquired from the second information unit 36. Based on the above, it is determined whether or not it is necessary to execute the second avoidance traveling.
- the second determination unit 40 calculates a TTC that is a time until the collision.
- the second determination unit 40 determines that the second possibility that the host vehicle 100 and the moving object 110 collide is higher as the TTC is shorter.
- the notification unit 56 notifies the occupant of the host vehicle 100 that the second avoidance traveling is executed by the HMI 66.
- the HMI 66 any of image notification by a display, sound notification by a speaker, lighting notification by a lamp or the like, or a combination of a plurality of notifications can be used.
- the traveling control unit 54 commands at least one of the powertrain system 60, the brake system 62, and the steering system 64 based on the second avoidance amount set by the second avoidance amount unit 44.
- the second avoidance traveling described above is executed.
- the second avoidance amount represented by the braking force and the offset amount when executing the second avoidance travel is not a fixed value, and the second avoidance amount unit 44 may be set variably.
- the second avoidance amount unit 44 depends on the reliability of wireless communication with the external device, the reliability of the second movement information acquired from the external device, and the relative speed of the moving object 110 with respect to the host vehicle 100. Thus, the second avoidance amount is set.
- the control amount of the travel control is set as the second avoidance amount within the allowable range. In this case, the control amount is increased, and when the execution start timing of the travel control is set, the execution start timing can be advanced.
- the reliability determination unit 48 determines the reliability of the wireless communication and the reliability of the second movement information.
- the reliability determination unit 48 determines the reliability of wireless communication according to the type of wireless device, wireless communication state, and the like. The reliability determination unit 48 determines that, as the type of wireless device, for example, a dedicated wireless device has higher wireless communication reliability than a mobile phone.
- the reliability of the second movement information is, for example, the reliability of the position of the moving object 110.
- the reliability determination unit 48 determines that the reliability of the position of the moving object 110 is higher as the frequency of wireless communication with the external device is higher and the number of GPS satellites detected by the moving object 110 is larger.
- the second avoidance amount unit 44 sets the second avoidance amount as travel control.
- the control amount is set, the control amount is increased, and when the execution start timing of the travel control is set, the execution start timing can be advanced.
- the braking force and the steering amount which are the control amounts of the travel control that the second avoidance amount unit 44 sets as the second avoidance amount when the second avoidance travel is turned on in S412,
- the first avoidance amount unit 42 is smaller than the braking force and the steering amount that are set as the first avoidance amount.
- the execution start timing of the travel control that is set as the second avoidance amount by the second avoidance amount unit 44 is that the first avoidance travel is on.
- the first avoidance amount unit 42 is later than the execution start timing of the travel control set as the first avoidance amount.
- the first determination unit 38 determines whether at least one of the camera 12 and the millimeter wave radar 14 has detected the moving object 110.
- the determination in S414 is performed by the camera 12 and the millimeter wave radar regardless of whether or not there is an obstacle between the position of the host vehicle 100 indicated by the travel information and the position of the moving object 110 indicated by the second movement information. 14 and No. when the moving object 110 cannot be detected.
- Whether or not there is an obstacle between the position of the host vehicle 100 and the position of the moving object 110 depends on the position and size of the obstacle shown on the map data acquired by the map acquisition unit 46 and the position of the host vehicle 100. Based on the position and the position of the moving object 110, the shielding object determination unit 50 determines.
- the shielding object determination unit 50 Based on the position and size of the stationary object detected by at least one of the camera 12 and the millimeter wave radar 14, the shielding object determination unit 50 detects that the shielding object is between the position of the host vehicle 100 and the position of the moving object 110. It may be determined whether or not it exists.
- the process proceeds to S420. If the determination in S414 is No and both the camera 12 and the millimeter wave radar 14 have not detected the moving object 110, in S416, the first determination unit 38 has not detected the moving object 110 in S414. It is determined whether the determination timing is included in the prediction detection period.
- the timing at which at least one of the camera 12 and the millimeter wave radar 14 can detect the moving object 110 hidden behind the shielding object 200 is represented by an error. It is expressed in a period including.
- the moving object 110 can be detected when the straight line 300 connecting the moving object 110 and the corner of the shield 200 intersects the position where the camera 12 and the millimeter wave radar 14 are installed in the host vehicle 100. Is done.
- the positions of the host vehicle 100, the moving object 110, and the shielding object 200 are represented by coordinates in which the center of the front surface of the host vehicle 100 is the origin and the position of the host vehicle 100 is fixed. Further, a straight line 300 connecting the corner of the shield 200 and the moving object 110 passes through the center of the side surface of the moving object 110 on the own vehicle 100 side.
- the equation of the straight line 300 is expressed by the following equation (1).
- the coordinates (x1, y1) representing the corner of the shield 200 can be detected by the camera 12 and the millimeter wave radar 14.
- the coordinates (x2, y2) representing the moving object 110 are included in the second movement information acquired by the second information unit 36 through wireless communication.
- the coordinate system of the camera 12 and the coordinate system of the millimeter wave radar 14 are different. However, since only the coordinate system is different, in order to simplify the description in FIG. 7, the camera 12 and the millimeter wave radar 14 are installed at the same position in the center of the front surface of the host vehicle 100. The coordinate system and the coordinate system of the millimeter wave radar 14 are set to the same coordinate system.
- the moving object 110 in which at least one of the camera 12 and the millimeter wave radar 14 is blocked by the shielding object 200 can be detected because the x coordinate at which the straight line 300 intersects the x axis contacting the front surface of the host vehicle 100. This is when the following equation (5) is satisfied.
- a and b are represented by x1, x2, y1, and y2, and x1, x2, y1, and y2 are determined by the vehicle speed and position of the host vehicle 100 and the moving speed and position of the moving object 110, respectively.
- the elapsed time after detecting the moving object 110 that may collide is expressed as a variable.
- the prediction unit 52 calculates the prediction detection period used in the determination of S416 from Expression (5).
- the technique based on the linear function approximation as described above is exemplified as a simple technique in program implementation.
- a quadratic function or a multi-order function approximation may be used.
- the moving object 110 is more than indicated by the second movement information. It can be determined that the moving speed is slow. Therefore, the moving object 110 is not detected by being blocked by the shield 200.
- the first determination unit 38 determines that the host vehicle 100 and the moving object 110 do not collide. As a result, the process proceeds to S426. In S426, the travel control unit 54 ends the second avoidance travel.
- the traveling control unit 54 determines whether or not the second avoidance traveling is being executed by controlling the traveling of the host vehicle 100. If the determination in S418 is Yes and the travel control unit 54 is executing the second avoidance travel, the process proceeds to S412 to continue the second avoidance travel.
- the traveling control unit 54 is not executing the second avoidance traveling, the present process ends. Since S420 is executed when at least one of the camera 12 and the millimeter wave radar 14 can detect the moving object 110, the first information unit 34 moves from at least one of the camera 12 and the millimeter wave radar 14 in S420. The first movement information of the object 110 is acquired.
- the first determination unit 38 as shown in FIG. 6, travel information of the host vehicle 100 acquired from the travel information unit 32, and first movement information of the moving object 110 acquired from the first information unit 34. Based on the above, it is determined whether it is necessary to execute the first avoidance travel.
- the specific determination method is substantially the same as the determination method described in step S410 if the second movement information is the first movement information and the second determination unit 40 is the first determination unit 38. The description will be omitted. If the determination in S422 is Yes and the first avoidance travel needs to be executed, the process proceeds to S428.
- the determination in S422 is No and it is not necessary to execute the first avoidance travel and the first avoidance travel is in the off state, it is determined in S424 whether or not the second avoidance travel is being performed.
- the first movement information acquired directly from the camera 12 and the millimeter wave radar 14 is more reliable than the second movement information acquired indirectly from the vehicle exterior device through wireless communication.
- the determination in S422 is No and it is not necessary to execute the first avoidance travel
- the determination in S424 is Yes, and if the second avoidance travel is being performed, the travel control unit 54 in S426 Then, the second avoidance traveling is finished.
- the determination of S422 is Yes, the first avoidance traveling needs to be executed, and the processing of S428 performed when the first avoidance traveling is in the on state is the determination of S430 by the first determination unit 38. This is executed until the collision between the host vehicle 100 and the moving object 110 is avoided by the first avoidance travel.
- the notification unit 56 notifies the occupant of the host vehicle 100 that the first avoidance travel is executed by the HMI 66, as in the case of notifying the second avoidance travel.
- the travel control unit 54 commands the power train system 60, the brake system 62, and the steering system 64 based on the first avoidance amount calculated by the first avoidance amount unit 42, and The first avoidance travel described above is executed.
- the travel control unit 54 ends the first avoidance travel in S432.
- the driving support device 30 is based on the second movement information acquired indirectly from the outside device by wireless communication. A second avoidance run is executed.
- the second avoidance travel is executed in advance. There is a high possibility that a collision with the moving object 110 can be avoided. Moreover, even if the own vehicle 100 and the moving object 110 collide, damage to the own vehicle 100 and the moving object 110 can be reduced.
- the driving support device 30 sets the second avoidance amount to the control amount of the driving control rather than the first avoidance amount. Is set to be small, and when the execution start timing of travel control is set, the execution start timing is delayed. Thereby, the anxiety which a passenger
- the notification unit 56 Since the notification unit 56 notifies the occupant that the second avoidance travel is performed, the occupant explains why the second avoidance travel is performed on the moving object 110 that is not visible to the occupant of the host vehicle 100. Understandable. Thereby, the anxiety which a passenger
- the sudden braking can be suppressed. Thereby, it is possible to avoid a collision between the vehicle following the host vehicle 100 and the host vehicle 100 due to sudden braking.
- the second avoidance amount is set to be variable according to the reliability of the wireless communication, the reliability of the second movement information, and the relative speed of the moving object 110 with respect to the host vehicle 100, so that the second Can be set appropriately.
- the camera 12 and the millimeter wave radar 14 correspond to a detection device
- the map DB device 20 corresponds to a storage device.
- S400 and S404 correspond to the processing as the map acquisition unit 46
- S402 corresponds to the processing as the travel information unit 32
- S406 corresponds to the processing as the shielding object determination unit 50
- S408 corresponds to the second information.
- S410 corresponds to the processing as the second determination unit 40
- part of S412 and part of S428 correspond to the processing as the notification unit 56
- part of S412, S418 , S424, S426, part of S428, S432 corresponds to processing as the travel control unit 54
- part of S412 corresponds to processing as the second avoidance amount unit 44
- part of S412 is reliability determination
- part of S414, S416, S422, S430 corresponds to the processing as the first determination unit 38
- part of S416 corresponds to the processing as the prediction unit 52
- 420 corresponds to processing as a first information unit 34
- a part of the S428 corresponds to processing as a first amount of avoidance portion 42.
- the driving support device 30 may execute at least one of the engine brake and the regenerative braking, or only one of the lateral position offsets of the host vehicle 100 as the second avoidance traveling.
- the travel support device 30 starts applying the hydraulic pressure to the hydraulic brake within a range where the hydraulic brake is not actually operated when the second avoidance traveling is finished in a state where the hydraulic brake is not applied. Also good. As a result, when the first avoidance travel is executed, a braking force can be quickly applied to the host vehicle 100 by the hydraulic brake.
- the first information unit 34 has not acquired the first movement information from both the camera 12 and the millimeter wave radar 14 which are detection devices mounted on the host vehicle 100.
- the second information unit 36 acquires the second movement information by wireless communication, the detection of the moving object 110 by the camera 12 and the millimeter wave radar 14 is blocked between the host vehicle 100 and the moving object 110. You may determine with the shield 200 existing.
- the driving support device 30 may increase the vehicle speed of the host vehicle 100 as the second avoidance driving.
- a plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or a single function of one constituent element may be realized by a plurality of constituent elements. Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or a single function possessed by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate
- the present disclosure is realized in various forms such as a travel support program for causing a computer to function as the travel support device, a recording medium on which the travel support program is recorded, and a travel support method. You can also.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
走行支援装置(30)は、走行情報部(32、S402)と、第1の情報部(34、S420)と、第2の情報部(36、S408)と、第1の判定部(38、S414、S416、S422、S430)と、第2の判定部(40、S410)と、第1の回避量部(42、S428)と、第2の回避量部(44、S412)と、走行制御部(54、S412、S418、S424~S428、S432)とを備える。第2の回避量部は、第2の回避走行を実行するための第2の回避量として、第1の回避量部が設定する第1の回避量よりも、走行制御の制御量を設定する場合は小さく、走行制御の実行開始タイミングを設定する場合は遅くする。
Description
本国際出願は、2016年2月10日に日本国特許庁に出願された日本国特許出願第2016-023907号と、2017年1月24日に日本国特許庁に出願された日本国特許出願第2017-010550号とに基づく優先権を主張するものであり、日本国特許出願第2016-023907号の全内容と第2017-010550号の全内容とを参照により本国際出願に援用する。
本開示は、自車両と自車両の周囲の移動物体との衝突を回避する技術に関する。
自車両と自車両の周囲の移動物体との衝突を回避する技術が知られている。例えば、自車両の走行情報である位置と車速、ならびに移動物体の移動情報である位置と速度に基づいて、自車両と移動物体とが衝突する可能性を算出し、衝突可能性が高い場合にブレーキを作動させるものが知られている。移動物体の移動情報は、自車両に搭載されたカメラ、ミリ波レーダ等の検出装置により検出される。
下記特許文献1には、第1の車両と第1の車両の進行方向に存在する第2の車両との衝突危険度が閾値以上の場合、第1の車両から第2の車両に警報情報を無線通信により送信する技術が記載されている。警報情報には、衝突危険度と、第1の車両の位置情報と、第1の車両の進行方向と、が含まれる。
第2の車両は、車外装置である第1の車両の通信装置から警報情報を受信すると、警報情報を送信した第1の車両が後方に位置している場合、発進、停止保持解除または加速を行うことにより、第1の車両との衝突を回避するか衝突被害を軽減しようとしている。
特許文献1に記載の技術のように無線通信等により間接的に自車両の周囲の移動物体の移動情報を取得する場合、通信電波は電波遮断やノイズの影響等を受ける。したがって、無線通信等により間接的に取得する移動情報の信頼性は、カメラ、ミリ波レーダ等の車載の検出装置から移動物体の移動情報を直接取得する場合に比べて低い。
発明者の詳細な検討の結果、間接的に取得する自車両の周囲の移動物体の移動情報に基づいて、自車両がブレーキや操舵を制御して移動物体との衝突を回避すると、衝突しない移動物体に対して自車両に不要な回避走行をさせる可能性があるという課題が見出された。さらに、回避走行は乗員が予測する通常走行から外れた走行であるから、自車両に回避走行をさせると乗員が不安を感じるという課題が見出された。
一方、間接的に取得する移動物体の移動情報の信頼性が低いとはいえ、自車両と移動物体とが衝突する可能性はあるから、安全性を考慮すれば回避走行をすることが望ましい。
本開示の一態様は、自車両の周囲の移動物体について、自車両に搭載された検出装置から取得する移動情報と、車外装置から取得する移動情報とに基づいて、乗員の不安感を低減しつつ、自車両と移動物体との衝突を回避するために自車両の走行を適切に制御する技術を提供できることが望ましい。
本開示の一態様は、自車両の周囲の移動物体について、自車両に搭載された検出装置から取得する移動情報と、車外装置から取得する移動情報とに基づいて、乗員の不安感を低減しつつ、自車両と移動物体との衝突を回避するために自車両の走行を適切に制御する技術を提供できることが望ましい。
本開示の一態様における走行支援装置は、走行情報部と、第1の情報部と、第2の情報部と、第1の判定部と、第2の判定部と、第1の回避量部と、第2の回避量部と、走行制御部と、を備えている。
走行情報部は、自車両の走行情報として少なくとも自車両の位置と車速とを取得する。第1の情報部は、自車両の周囲の移動物体の第1の移動情報として少なくとも移動物体の位置と速度とを自車両に搭載された検出装置から取得する。第2の情報部は、移動物体の第2の移動情報として少なくとも移動物体の位置と速度とを自車両の外部の車外装置から取得する。
第1の判定部は、走行情報部が取得する走行情報と第1の情報部が取得する第1の移動情報とから自車両と移動物体とが衝突する第1の可能性を判定し、第1の可能性に基づいて、自車両と移動物体との衝突を回避するための第1の回避走行を実行するか否かを判定する。
第2の判定部は、走行情報部が取得する走行情報と第2の情報部が取得する第2の移動情報とから自車両と移動物体とが衝突する第2の可能性を判定し、第2の可能性に基づいて、自車両と移動物体との衝突を回避するための第2の回避走行を実行するか否かを判定する。
第1の回避量部は、第1の判定部が第1の回避走行を実行すると判定すると、第1の判定部が判定する第1の可能性に基づいて、自車両と移動物体との衝突を回避するための第1の回避量を設定する。
第2の回避量部は、第2の判定部が第2の回避走行を実行すると判定すると、第2の判定部が判定する第2の可能性に基づいて自車両と移動物体との衝突を回避するための第2の回避量を設定し、第1の回避走行が実行される場合に第1の回避量部が設定する第1の回避量よりも、第2の回避量として、自車両の走行を制御する制御量を設定する場合は制御量を小さく、自車両の走行制御の実行開始タイミングを設定する場合は実行開始タイミングを遅くする。
走行制御部は、第1の回避量部が設定する第1の回避量と第2の回避量部が設定する第2の回避量とに基づいて、自車両と移動物体との衝突を回避するために自車両の走行を制御する。
この構成によれば、第2の回避量に基づいて自車両の走行を制御して自車両に回避走行させる場合、回避走行を全くさせない場合よりも、自車両と移動物体との衝突を回避できる可能性は高い。また、たとえ自車両と移動物体とが衝突したとしても、自車両および移動物体への損害を低減できる。したがって、本開示の一態様では、自車両と移動物体との衝突を回避するために、自車両の走行を適切に制御できる。
さらに、第1の回避走行が実行される場合の第1の回避量よりも、第2の回避走行が実行される場合の第2の回避量として、自車両の走行を制御する制御量が設定される場合は制御量が小さく設定され、自車両の走行制御の実行開始タイミングが設定される場合は実行開始タイミングが遅く設定される。これにより、第2の回避量に基づいて自車両の走行を制御して自車両に回避走行させる場合、乗員が感じる不安感を低減できる。
尚、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
以下、本開示が適用された実施形態を図に基づいて説明する。
[1.構成]
図1に示す走行支援システム2は、車両に搭載されており、無線装置10と、カメラ12と、ミリ波レーダ14と、車速センサ16と、GPS18と、地図DB装置20と、走行支援装置30と、パワートレインシステム60と、ブレーキシステム62と、ステアリングシステム64と、HMI66とを備えている。HMIは、Human Machine Interfaceの略である。以下、走行支援システム2が搭載されている車両を自車両という。
[1.構成]
図1に示す走行支援システム2は、車両に搭載されており、無線装置10と、カメラ12と、ミリ波レーダ14と、車速センサ16と、GPS18と、地図DB装置20と、走行支援装置30と、パワートレインシステム60と、ブレーキシステム62と、ステアリングシステム64と、HMI66とを備えている。HMIは、Human Machine Interfaceの略である。以下、走行支援システム2が搭載されている車両を自車両という。
無線装置10は、自車両の外部の車外装置と無線通信する。車外装置は、人間または自転車または駆動源を有する車両または路側機または管理センターのいずれに設置されていてもよい。
カメラ12は自車両の前方と側方と後方とを撮像するものである。カメラ12が撮像した画像データが図示しない画像解析装置で解析されることにより、自車両の前方と側方と後方とに存在する移動物体が検出される。
ミリ波レーダ14は、自車両の前方と側方と後方とにミリ波を出力して所定角度の範囲をスキャンする。ミリ波レーダ14は、照射したミリ波の反射波を検出し、ミリ波を反射した物体との間をミリ波が往復するのに要した時間から物体までの距離を求め、反射波を検出したときにミリ波を照射した方向から物体が存在する方位を求める。
尚、ミリ波レーダ14等の電磁波を照射するレーダに代えて、レーザ光を照射するLIDARを使用してもよい。
車速センサ16は自車両の現在車速を検出する。GPS18は、GPS衛星から測位信号を受信して自車両の位置を測位する。
車速センサ16は自車両の現在車速を検出する。GPS18は、GPS衛星から測位信号を受信して自車両の位置を測位する。
地図DB装置20に記憶されている地図データには、道路を表わすリンクとノードとが含まれる。リンクは、交差点、分岐点、合流点等を表すノード間を接続するものである。各リンクを接続することにより道路が構成される。リンクには、識別番号、リンク長、始点および終点の座標を表わす緯度経度、高速道路や国道等を表わす道路種別、車線数等のデータが登録されている。
さらに地図データには、道路を表すリンクに沿って存在する建物等の構造物、ならびに交差点、分岐点、合流点等を表すノードの周囲の構造物のそれぞれの大きさが登録されている。
走行支援装置30は、CPUと、RAM、ROM、フラッシュメモリ等の半導体メモリとを備えるマイクロコンピュータを搭載している。尚、走行支援装置30は、1つのマイクロコンピュータを搭載してもよいし、複数のマイクロコンピュータを搭載してもよい。
走行支援装置30の各機能は、CPUがROMまたはフラッシュメモリ等の非遷移的実体的記録媒体に記憶されているプログラムを実行することにより実現される。このプログラムが実行されることにより、プログラムに対応する方法が実行される。
走行支援装置30は、CPUがプログラムを実行することで実現される機能の構成として、走行情報部32と、第1の情報部34と、第2の情報部36と、第1の判定部38と、第2の判定部40と、第1の回避量部42と、第2の回避量部44と、地図取得部46と、信頼性判定部48と、遮蔽物判定部50と、予測部52と、走行制御部54と、報知部56とを備えている。
走行支援装置30を構成するこれらの要素を実現する手法は、ソフトウェアに限るものではなく、一部の要素または全部の要素を、論理回路やアナログ回路等を組み合わせたハードウェアを用いて実現してもよい。
パワートレインシステム60は、走行支援装置30から指令される駆動出力にしたがって、駆動源として内燃機関を搭載している場合にはスロットル装置の開度および燃料噴射量を制御し、駆動源としてモータを搭載している場合にはモータへの供給電力を制御する。
ブレーキシステム62は、走行支援装置30から指令される制動力にしたがって、油圧式ブレーキの液圧回路に設けられたアクチュエータを制御する。自車両が駆動源としてモータを搭載している場合には、ブレーキシステム62は、走行支援装置30から指令される制動力にしたがって、モータへの供給電力を制御して回生ブレーキによる制動力を生成してもよい。
ステアリングシステム64は、走行支援装置30から指令されるトルクにしたがってステアリングハンドルを駆動し、自車両の進行方向を制御する。
[2.処理]
(1)処理の概略
図2に示すように、自車両100が例えば建造物等の遮蔽物200のために見通しの悪い交差点210に向かって走行しているときに、移動物体110が遮蔽物200の陰から同じ交差点210に向かって移動している状況を例にして、走行支援処理について説明する。
[2.処理]
(1)処理の概略
図2に示すように、自車両100が例えば建造物等の遮蔽物200のために見通しの悪い交差点210に向かって走行しているときに、移動物体110が遮蔽物200の陰から同じ交差点210に向かって移動している状況を例にして、走行支援処理について説明する。
自車両100は、車輪を備え、内燃機関およびモータの少なくとも一方を駆動源とし、少なくとも車速と進行方向とのいずれかを走行支援装置30が制御できる車両である。
移動物体110は、移動するものであればどのような物体でもよい。例えば、人間と、自転車と、車輪と駆動源とを有する車両とが移動物体110に対応する。
移動物体110は、移動するものであればどのような物体でもよい。例えば、人間と、自転車と、車輪と駆動源とを有する車両とが移動物体110に対応する。
自車両100に対し移動物体110が遮蔽物200に遮られている間、カメラ12とミリ波レーダ14とは移動物体110を検出できない。自車両100が位置102に到達すると、カメラ12とミリ波レーダ14とは位置112に移動している移動物体110を検出できる。
位置102でカメラ12とミリ波レーダ14とが移動物体110を検出し、移動物体110との衝突を回避するために走行支援装置30がブレーキシステム62に指令してブレーキを作動させても、衝突するまでの予測時間が短い。したがって、衝突を回避することは困難である。
そこで、走行支援装置30は、遮蔽物200に遮られている移動物体110の位置と移動速度とを少なくとも含む移動物体110の第2の移動情報を、自車両100以外の車外装置から無線通信により間接的に取得する。第2の移動情報に対し、カメラ12とミリ波レーダ14とから走行支援装置30が直接取得する移動物体110の位置と移動速度とを少なくとも含む移動情報が、移動物体110の第1の移動情報である。
走行支援装置30は、自車両100と移動物体110とのそれぞれの進行方向を、位置の変化から検出できる。
走行支援装置30は、自車両100の車速を車速センサ16から取得し、自車両100の位置をGPS18と地図DB装置20に記憶されている地図データとに基づいて取得する。自車両100の位置と車速とを少なくとも含む情報が、自車両100の走行情報である。
走行支援装置30は、自車両100の車速を車速センサ16から取得し、自車両100の位置をGPS18と地図DB装置20に記憶されている地図データとに基づいて取得する。自車両100の位置と車速とを少なくとも含む情報が、自車両100の走行情報である。
車外装置は、移動物体110の第2の移動情報を無線で送信できる無線装置であれば、どのような物体に設置されていてもよい。移動物体110自身が検出した移動物体110の位置と移動速度とを、移動物体110の無線装置が送信してもよい。あるいは、路側機が検出した移動物体110の位置と移動速度とをし、路側機の無線装置が送信してもよい。あるいは、管理センターが移動物体110から受信した位置および移動速度を、管理センターの無線装置が送信してもよい。
以下の説明では、自車両100の走行情報と移動物体110の第1の移動情報とに基づいて走行支援装置30が判定する自車両100と移動物体110とが衝突する可能性が第1の可能性である。これに対し、自車両100の走行情報と移動物体110の第2の移動情報とに基づいて走行支援装置30が判定する自車両100と移動物体110とが衝突する可能性が第2の可能性である。
具体的には、走行支援装置30は、カメラ12およびミリ波レーダ14から取得する移動物体110の第1の移動情報と自車両100の走行情報とに基づいて、自車両100と移動物体110とが衝突するまでの予測時間であるTTCを算出する。走行支援装置30は、TTCが短いほど、自車両100と移動物体110とが衝突する第1の可能性は高いと判定する。
走行支援装置30は、第1の移動情報に代えて車外装置から取得する移動物体110の第2の移動情報と自車両100の走行情報とに基づいてTTCを算出する。走行支援装置30は、TTCが短いほど、自車両100と移動物体110とが衝突する第2の可能性は高いと判定する。
第1の可能性に基づいて走行支援装置30が設定し、自車両100と移動物体110との衝突を回避するために走行支援装置30が自車両100の走行を制御して回避走行させるときの回避量が第1の回避量である。第1の回避量により実行される自車両100の回避走行が第1の回避走行である。
これに対し、第2の可能性に基づいて走行支援装置30が設定し、自車両100と移動物体110との衝突を回避するために走行支援装置30が自車両100の走行を制御して回避走行させるときの回避量が第2の回避量である。第1の回避量により実行される自車両100の回避走行が第2の回避走行である。
走行支援装置30は、第1の可能性が自車両100と移動物体110とが衝突すると判定できる第1の閾値以上であれば、第1の回避走行を実行する。
例えば、走行支援装置30は、制動力による第1の回避走行として、パワートレインシステム60に指令してドライバがアクセルペダルを踏んでいても、アクセルオフ状態とする。つまり、駆動源が内燃機関の場合にはスロットル開度が全閉になり、インジェクタの噴射量は0になる。走行支援装置30は、駆動源がモータの場合にはモータへの電力供給を遮断する。
例えば、走行支援装置30は、制動力による第1の回避走行として、パワートレインシステム60に指令してドライバがアクセルペダルを踏んでいても、アクセルオフ状態とする。つまり、駆動源が内燃機関の場合にはスロットル開度が全閉になり、インジェクタの噴射量は0になる。走行支援装置30は、駆動源がモータの場合にはモータへの電力供給を遮断する。
走行支援装置30は、例えば、インジェクタの噴射量を0にするだけでは減速量が不足している場合には、パワートレインシステム60内のギア比を下げるなどしてエンジンブレーキ力を高く設定してもよい。走行支援装置30は、駆動源がモータの場合においても、モータへの電源供給を遮断するだけでなく、モータを発電機として駆動し、発電機として駆動されるときのいわゆる回生トルクを活用してもよい。
走行支援装置30がスロットル開度を全閉にし、インジェクタの噴射量を0にすることにより、エンジンブレーキが作動して制動力が加わる。走行支援装置30がモータへの電力供給を遮断することにより、回生ブレーキが作動して制動力が加わる。
さらに、走行支援装置30は、制動力による第1の回避走行として、ブレーキシステム62に指令して油圧ブレーキを作動させる。
走行支援装置30は、操舵による第1の回避走行として、ステアリングシステム64に指令し、移動物体110を避ける方向に操舵を作動させる。
走行支援装置30は、操舵による第1の回避走行として、ステアリングシステム64に指令し、移動物体110を避ける方向に操舵を作動させる。
走行支援装置30は、第2の可能性が自車両100と移動物体110とが衝突すると判定できる第2の閾値以上であれば、第2の回避走行を実行する。尚、第2の閾値は第1の閾値と同じ値でもよいし、異なる値でもよい。また、前述したように、第2の閾値は情報の信頼性が低いため、例えばGPSの位置精度分を自車両100または移動物体110に加算または減算するなど、信頼度に応じて第2の閾値を設定してもよい。
走行支援装置30は、制動力による第2の回避走行として、第1の回避走行と同様に、ドライバがアクセルペダルを踏んでいてもアクセルオフ状態とし、自車両100に制動力を加える。走行支援装置30は、制動力による第2の回避走行として、油圧ブレーキを使用しない。したがって、第2の回避走行において第2の回避量として設定される制動力は、第1の回避走行において第1の回避量として設定される制動力よりも小さい。
走行支援装置30は、自車両100を回避走行させる走行制御の制御量である制動力の大きさに加え、自車両100を回避走行させる走行制御の実行開始タイミングである制動力を発生させるタイミングも回避量として設定する。この場合、第2の回避走行において第2の回避量として設定される制動力を発生させるタイミングは、第1の回避走行において第1の回避量として設定される制動力を発生させるタイミングよりも遅い。
走行支援装置30は、第2の回避量として設定される制御量を第1の回避量として設定される制御量よりも小さくするか、あるいは第2の回避量として設定される走行制御の実行開始タイミングを第1の回避量として設定される走行制御の実行開始タイミングよりも遅くするかの少なくともいずれか一方を実行すればよい。
尚、走行支援装置30は、第2の回避走行として実際に制動力を作動させない場合であっても、ブレーキシステム62に指令して、例えばブレーキ装置が油圧ブレーキであれば、実際に自車両100に制動力が加わらない範囲の油圧を油圧ブレーキに加えるように指令してもよい。これにより、走行支援装置30が実際に油圧ブレーキを作動させて移動物体110との衝突を回避する第1の回避走行を実行するときに、速やかに自車両100に制動力が加わる。
走行支援装置30は、第2の可能性が第3の閾値以上の場合、操舵による第2の回避走行として、現在の進行方向に対して直交する方向に自車両100の横方向位置をオフセットしてずらしてもよい。第3の閾値は第2の閾値よりも高い値である。
走行支援装置30は、横方向位置をオフセットする場合、制動力を作動させる前に行う。走行支援装置30は、横方向位置をオフセットする場合、オフセット量を1回の作動で実行するのではなく、複数回に分けてもよい。例えば、走行支援装置30は、1回目をエンジンブレーキを作動させる前に実行し、2回目をエンジンブレーキを作動させた後に実行してもよい。
走行支援装置30は、図3に示すように、自車両100の進行方向に対し、第2の移動情報に基づいて移動物体110との衝突箇所が自車両100の右側であると予測すると、衝突箇所から離れる方向に自車両100の横方向位置をオフセットさせる。図3の場合は、移動物体110の移動方向と同じ方向が自車両100をオフセットさせる方向である。
走行支援装置30は、図4に示すように、自車両100の進行方向に対し、第2の移動情報に基づいて移動物体110との衝突箇所が自車両100の左側であると予測すると、衝突箇所から離れる方向に自車両100の横方向位置をオフセットさせる。図4の場合は、移動物体110の移動方向と逆方向が自車両100をオフセットさせる方向である。
尚、図3と図4とで説明したオフセット方向は固定ではなく、説明した方向と逆方向にオフセットする方がオフセット量が小さいか、オフセット後にオフセット側のスペースの余裕が大きい場合には、逆方向がオフセット方向であってもよい。
尚、第2の回避走行において第2の回避量として設定されるオフセットするための操舵量は、第1の回避走行において第1の回避量として設定される操舵量よりも小さい。
走行支援装置30は、自車両100を回避走行させる走行制御の制御量である操舵量の大きさに加え、自車両100を回避走行させる走行制御の実行開始タイミングである操舵を開始するタイミングも回避量として設定する。この場合、第2の回避走行において第2の回避量として設定される操舵の開始タイミングは、第1の回避走行において第1の回避量として設定される操舵の開始タイミングよりも遅い。
走行支援装置30は、自車両100を回避走行させる走行制御の制御量である操舵量の大きさに加え、自車両100を回避走行させる走行制御の実行開始タイミングである操舵を開始するタイミングも回避量として設定する。この場合、第2の回避走行において第2の回避量として設定される操舵の開始タイミングは、第1の回避走行において第1の回避量として設定される操舵の開始タイミングよりも遅い。
(2)走行支援処理
図5に示すフローチャートに基づいて、走行支援装置30が自車両100と移動物体110との衝突を回避するために実行する走行支援処理を説明する。図5の走行支援処理は常時実行される。尚、図5において、「S」はステップを表している。
図5に示すフローチャートに基づいて、走行支援装置30が自車両100と移動物体110との衝突を回避するために実行する走行支援処理を説明する。図5の走行支援処理は常時実行される。尚、図5において、「S」はステップを表している。
S400において地図取得部46は、GPS18から自車両100の現在位置を取得し、地図DB装置20から取得する地図データ上における自車両100の位置をマッピングする。さらに、S400において地図取得部46は、自車両100の進行方向前方に交差点が存在する場合、自車両100から交差点までの距離を、地図データから取得する。
S402において、走行情報部32は、車速センサ16から自車両100の車速を取得し、地図取得部46が地図データ上にマッピングした自車両100の位置を取得する。
S404において地図取得部46は、第2の回避走行をする条件として、自車両100から交差点までの距離が所定距離以下であるか否かを判定する。
S404において地図取得部46は、第2の回避走行をする条件として、自車両100から交差点までの距離が所定距離以下であるか否かを判定する。
S404の判定がNoであり、自車両100から交差点までの距離が所定距離より長い場合、地図取得部46は,自車両100と移動物体とが衝突する可能性があっても、まだ第2の回避走行をする必要はないと判断する。この場合、本処理は終了する。尚、自車両100の前方に交差点がない場合も、S404の判定はNoになる。
S404の判定がYesであり、自車両100から交差点までの距離が所定距離以下であり自車両100が第2の回避走行をする可能性がある場合、S406において遮蔽物判定部50は、自車両100の進行方向前方の交差点の周囲の遮蔽物の情報を地図データから取得する。
S408において第2の情報部36は、図2に示すように、無線装置10が受信した、自車両100に対し遮蔽物200に遮られて移動している移動物体110の第2の移動情報を取得する。第2の情報部36は、移動物体110または路側機または管理センターのいずれから第2の移動情報を取得してもよい。
S410において第2の判定部40は、図6に示すように、走行情報部32から取得する自車両110の走行情報と、第2の情報部36から取得する移動物体110の第2の移動情報とに基づいて、第2の回避走行を実行する必要があるか否かを判定する。
具体的には、第2の判定部40は、自車両100と移動物体110とが衝突すると判定すると、衝突するまでの時間であるTTCを算出する。第2の判定部40は、TTCが短いほど、自車両100と移動物体110とが衝突する可能性である第2の可能性が高いと判定する。
S410の判定がNoであり、第2の可能性が第2の閾値よりも低いために第2の回避走行を実行する必要がない場合、処理はS414に移行する。この場合、第2の回避走行は実行されずオフ状態になる。
S410の判定がYesであり、第2の可能性が第2の閾値以上であるために第2の回避走行を実行する必要がある場合、第2の回避走行はオン状態になる。そこで、S412において報知部56は、HMI66により第2の回避走行を実行することを自車両100の乗員に報知させる。HMI66として、ディスプレイによる画像報知、スピーカによる音声報知、ランプ等による点灯報知のいずれか、あるいは複数の報知の組み合わせが使用できる。
同じくS412において走行制御部54は、第2の回避量部44が設定する第2の回避量に基づいて、パワートレインシステム60とブレーキシステム62とステアリングシステム64との少なくとも一つに指令して、前述した第2の回避走行を実行させる。
ここで、第2の回避走行を実行するときの制動力とオフセット量とが表す第2の回避量は、固定値ではなく、第2の回避量部44が可変に設定してもよい。例えば、第2の回避量部44は、車外装置との無線通信の信頼性と、車外装置から取得する第2の移動情報の信頼性と、自車両100に対する移動物体110の相対速度とに応じて、第2の回避量を設定する。
無線通信の信頼性と第2の移動情報の信頼性とが高いほど第2の可能性の信頼性は高いので、許容される範囲内で第2の回避量として、走行制御の制御量を設定する場合は制御量を大きく、走行制御の実行開始タイミングを設定する場合は実行開始タイミングを早くすることができる。無線通信の信頼性と第2の移動情報の信頼性とは、信頼性判定部48が判定する。
信頼性判定部48は、無線装置の種類、無線通信状態等によって無線通信の信頼性を判定する。信頼性判定部48は、無線装置の種類として、例えば専用の無線装置の方が携帯電話よりも無線通信の信頼性が高いと判定する。
第2の移動情報の信頼性は、例えば移動物体110の位置の信頼性である。信頼性判定部48は、車外装置との無線通信の頻度が高いほど、移動物体110が検出するGPS衛星の数が多いほど移動物体110の位置の信頼性が高いと判定する。
また、自車両100に対する移動物体110の相対速度が速いほど、自車両100と移動物体110とが衝突する可能性は高いので、第2の回避量部44は第2の回避量として、走行制御の制御量を設定する場合は制御量を大きく、走行制御の実行開始タイミングを設定する場合は実行開始タイミングを早くすることができる。
尚、S412において第2の回避走行がオン状態になる場合に第2の回避量部44が第2の回避量として設定する走行制御の制御量である制動力と操舵量とは、第1の回避走行がオン状態になる場合に第1の回避量部42が第1の回避量として設定する制動力と操舵量とよりも小さい。
さらに、S412において第2の回避走行がオン状態になる場合に第2の回避量部44が第2の回避量として設定する走行制御の実行開始タイミングは、第1の回避走行がオン状態になる場合に第1の回避量部42が第1の回避量として設定する走行制御の実行開始タイミングよりも遅い。
S414において第1の判定部38は、カメラ12とミリ波レーダ14との少なくとも一方が移動物体110を検出しているか否かを判定する。
S414の判定は、走行情報が示す自車両100の位置と第2の移動情報が示す移動物体110の位置との間に遮蔽物が存在しているか否かに関わらず、カメラ12とミリ波レーダ14との両方が移動物体110を検出できない場合はNoになる。
S414の判定は、走行情報が示す自車両100の位置と第2の移動情報が示す移動物体110の位置との間に遮蔽物が存在しているか否かに関わらず、カメラ12とミリ波レーダ14との両方が移動物体110を検出できない場合はNoになる。
一方、自車両100の位置と移動物体110の位置との間に遮蔽物が存在せず、カメラ12とミリ波レーダ14との少なくとも一方が移動物体110を検出できる場合、S414の判定はYesになる。
自車両100の位置と移動物体110の位置との間に遮蔽物が存在するか否かは、地図取得部46が取得する地図データ上に示される遮蔽物の位置および大きさと、自車両100の位置と、移動物体110の位置とに基づいて、遮蔽物判定部50が判定する。
遮蔽物判定部50は、カメラ12とミリ波レーダ14との少なくとも一方が検出する静止物体の位置と大きさとに基づいて、自車両100の位置と移動物体110の位置との間に遮蔽物が存在するか否かを判定してもよい。
S414の判定がYesであり、カメラ12とミリ波レーダ14との少なくとも一方が移動物体110を検出している場合、処理はS420に移行する。
S414の判定がNoであり、カメラ12とミリ波レーダ14との両方が移動物体110を検出していない場合、S416において第1の判定部38は、S414において移動物体110を検出していないと判定するタイミングが、予測検出期間に含まれるか否かを判定する。
S414の判定がNoであり、カメラ12とミリ波レーダ14との両方が移動物体110を検出していない場合、S416において第1の判定部38は、S414において移動物体110を検出していないと判定するタイミングが、予測検出期間に含まれるか否かを判定する。
具体的には予測検出期間は、図7に示すように、カメラ12とミリ波レーダ14との少なくとも一方が遮蔽物200の陰に隠れていた移動物体110を検出できるようになるタイミングを、誤差を含めた期間で表している。図7では、移動物体110と遮蔽物200の角とを結ぶ直線300が、カメラ12とミリ波レーダ14とが自車両100に設置されている位置と交差すると、移動物体110を検出できると判断される。
尚、図7では、自車両100前面中央部を原点とし、自車両100の位置を固定にした座標で自車両100と移動物体110と遮蔽物200との位置が表される。また、遮蔽物200の角と移動物体110とを結ぶ直線300は、自車両100側の移動物体110の側面中央部を通っている。直線300の式は次式(1)で表される。
y=ax+b ・・・(1)
遮蔽物200の角の座標を(x1、y1)、直線300と交差する移動物体110の座標を(x2、y2)とすると、直線300の傾きaは次式(2)で表される。
遮蔽物200の角の座標を(x1、y1)、直線300と交差する移動物体110の座標を(x2、y2)とすると、直線300の傾きaは次式(2)で表される。
a=(y2-y1)/(x2-x1) ・・・(2)
遮蔽物200の角を表す座標(x1、y1)は、カメラ12とミリ波レーダ14とで検出できる。移動物体110を表す座標(x2、y2)は、第2の情報部36が無線通信で取得する第2の移動情報に含まれている。
遮蔽物200の角を表す座標(x1、y1)は、カメラ12とミリ波レーダ14とで検出できる。移動物体110を表す座標(x2、y2)は、第2の情報部36が無線通信で取得する第2の移動情報に含まれている。
式(1)に座標を(x1、y1)を代入すると、切片bは次式(3)で表される。
b=-a×x1+y1 ・・・(3)
ここで、y=0を式(1)に代入すると、直線300がx軸と交差するx座標は次式(4)で表される。
b=-a×x1+y1 ・・・(3)
ここで、y=0を式(1)に代入すると、直線300がx軸と交差するx座標は次式(4)で表される。
x=-b/a ・・・(4)
ここで、カメラ12とミリ波レーダ14との設置位置は通常異なるので、カメラ12の座標系とミリ波レーダ14の座標系とは異なる。しかし、座標系が異なるだけであるから、図7では説明を簡単にするために、カメラ12とミリ波レーダ14とは自車両100の前面中央部の同じ位置に設置されており、カメラ12の座標系とミリ波レーダ14の座標系とは同じ座標系に設定されている。
ここで、カメラ12とミリ波レーダ14との設置位置は通常異なるので、カメラ12の座標系とミリ波レーダ14の座標系とは異なる。しかし、座標系が異なるだけであるから、図7では説明を簡単にするために、カメラ12とミリ波レーダ14とは自車両100の前面中央部の同じ位置に設置されており、カメラ12の座標系とミリ波レーダ14の座標系とは同じ座標系に設定されている。
カメラ12とミリ波レーダ14との少なくとも一方が遮蔽物200に遮られている移動物体110を検出できるようになるのは、自車両100の前面と接するx軸に直線300が交差するx座標が次式(5)を満たすときである。
|-b/a|<k ・・・(5)
式(5)において定数kは、ミリ波レーダ14の検出誤差等を考慮して適宜設定される。
式(5)において定数kは、ミリ波レーダ14の検出誤差等を考慮して適宜設定される。
式(5)において、a、bは、x1、x2、y1、y2により表され、x1、x2、y1、y2は、自車両100の車速と位置、ならびに移動物体110の移動速度と位置により、衝突する可能性のある移動物体110を検出してからの経過時間を変数として表される。予測部52は、S416の判定で使用する予測検出期間を式(5)から算出する。
本実施形態においては、プログラム実装上で簡便な手法として、上記のような一次関数近似による手法を例示した。これに対し、移動物体110および自車両100の減速度を考慮し、二次関数または多数次関数近似を用いてもよい。
S416の判定がYesであり、予測検出期間になってもカメラ12とミリ波レーダ14との両方が移動物体110を検出していない場合、移動物体110は、第2の移動情報が示すよりも移動速度が遅いと判断できる。そのため、移動物体110は遮蔽物200に遮られて検出されていない。
この場合、第1の判定部38は、カメラ12とミリ波レーダ14との両方が移動物体110を検出していないので、自車両100と移動物体と110とは衝突しないと判定する。その結果、処理はS426に移行する。S426において走行制御部54は、第2の回避走行を終了する。
S416の判定がNoであり予測検出期間ではない場合、S418において、走行制御部54は、自車両100の走行を制御して第2の回避走行を実行中であるか否かを判定する。S418の判定がYesであり、走行制御部54が第2の回避走行を実行中であれば、第2の回避走行を続けるために処理はS412に移行する。
S418の判定がNoであり、走行制御部54が第2の回避走行を実行していない場合、本処理は終了する。
S420はカメラ12とミリ波レーダ14との少なくとも一方が移動物体110を検出できるときに実行されるので、S420において第1の情報部34は、カメラ12とミリ波レーダ14との少なくとも一方から移動物体110の第1の移動情報を取得する。
S420はカメラ12とミリ波レーダ14との少なくとも一方が移動物体110を検出できるときに実行されるので、S420において第1の情報部34は、カメラ12とミリ波レーダ14との少なくとも一方から移動物体110の第1の移動情報を取得する。
S422において第1の判定部38は、図6に示すように、走行情報部32から取得する自車両100の走行情報と、第1の情報部34から取得する移動物体110の第1の移動情報とに基づいて、第1の回避走行を実行する必要があるか否かを判定する。
具体的な判定方法は、S410で説明した判定方法で、第2の移動情報を第1の移動情報とし、第2の判定部40を第1の判定部38とすれば実質的に同一であるから説明を省略する。S422の判定がYesであり、第1の回避走行を実行する必要がある場合、処理はS428に移行する。
S422の判定がNoであり、第1の回避走行を実行する必要がなく第1の回避走行がオフ状態の場合、S424において第2の回避走行が実行中であるか否かが判定される。カメラ12とミリ波レーダ14とから直接取得する第1の移動情報は、無線通信により車外装置から間接的に取得する第2の移動情報よりも信頼性が高い。
したがって、S422の判定がNoであり、第1の回避走行を実行する必要がない場合、S424の判定がYesであり、第2の回避走行が実行中であれば、S426において走行制御部54は、第2の回避走行を終了する。
S422の判定がYesであり、第1の回避走行を実行する必要があり第1の回避走行がオン状態の場合に実行されるS428の処理は、第1の判定部38によるS430の判定がYesになり、第1の回避走行により自車両100と移動物体110との衝突が回避されるまで実行される。
S428において報知部56は、第2の回避走行を報知するときと同様に、HMI66により第1の回避走行を実行することを自車両100の乗員に報知させる。同じS428において走行制御部54は、第1の回避量部42が算出する第1の回避量に基づいて、パワートレインシステム60とブレーキシステム62とステアリングシステム64との少なくとも一つに指令して、前述した第1の回避走行を実行させる。
S430の判定がYesになり、第1の回避走行により自車両100と移動物体110との衝突が回避されると、S432において走行制御部54は、第1の回避走行を終了する。
[3.効果]
以上説明した上記実施形態によると、以下の効果を得ることができる。
(1)カメラ12とミリ波レーダ14とが両方ともに移動物体110を検出できない場合にも、走行支援装置30は、無線通信により車外装置から間接的に取得する第2の移動情報に基づいて、第2の回避走行を実行する。
以上説明した上記実施形態によると、以下の効果を得ることができる。
(1)カメラ12とミリ波レーダ14とが両方ともに移動物体110を検出できない場合にも、走行支援装置30は、無線通信により車外装置から間接的に取得する第2の移動情報に基づいて、第2の回避走行を実行する。
カメラ12とミリ波レーダ14との少なくとも一方が移動物体110を検出して第1の回避走行を開始する前に、予め第2の回避走行を実行するので、第1の回避走行により自車両100と移動物体110との衝突を回避できる可能性が高くなる。また、自車両100と移動物体110とが衝突したとしても、自車両100および移動物体110への損害を低減できる。
(2)第2の可能性の信頼性は第1の可能性の信頼性よりも低いので、走行支援装置30は、第2の回避量を第1の回避量よりも、走行制御の制御量を設定する場合は制御量を小さく、走行制御の実行開始タイミングを設定する場合は実行開始タイミングを遅くする。これにより、自車両100の乗員には見えていない移動物体110に対して実行される第2の回避走行により乗員が受ける不安感を低減できる。
(3)第2の回避走行を実行することを報知部56が乗員に報知するので、自車両100の乗員には見えていない移動物体110に対して第2の回避走行をする理由を乗員が理解できる。これにより、乗員が受ける不安感を低減できる。
(4)第2の回避走行としてエンジンブレーキと回生ブレーキとの少なくとも一方による制動力を、第1の回避走行として油圧ブレーキによる制動力よりも小さくするので、急ブレーキになることを抑制できる。これにより、急ブレーキのために自車両100の後続車と自車両100とが衝突することを回避できる。
(5)第2の回避量が、無線通信の信頼性と、第2の移動情報の信頼性と、自車両100に対する移動物体110の相対速度とに応じて可変に設定することにより、第2の回避量を適切に設定できる。
以上説明した上記実施形態において、カメラ12とミリ波レーダ14とが検出装置に対応し、地図DB装置20が記憶装置に対応する。
また、S400、S404が地図取得部46としての処理に対応し、S402が走行情報部32としての処理に対応し、S406が遮蔽物判定部50としての処理に対応し、S408が第2の情報部36としての処理に対応し、S410が第2の判定部40としての処理に対応し、S412の一部、S428の一部が報知部56としての処理に対応し、S412の一部、S418、S424、S426、S428の一部、S432が走行制御部54としての処理に対応し、S412の一部が第2の回避量部44としての処理に対応し、S412の一部が信頼性判定部48としての処理に対応し、S414、S416の一部、S422、S430が第1の判定部38としての処理に対応し、S416の一部が予測部52としての処理に対応し、S420が第1の情報部34としての処理に対応し、S428の一部が第1の回避量部42としての処理に対応する。
また、S400、S404が地図取得部46としての処理に対応し、S402が走行情報部32としての処理に対応し、S406が遮蔽物判定部50としての処理に対応し、S408が第2の情報部36としての処理に対応し、S410が第2の判定部40としての処理に対応し、S412の一部、S428の一部が報知部56としての処理に対応し、S412の一部、S418、S424、S426、S428の一部、S432が走行制御部54としての処理に対応し、S412の一部が第2の回避量部44としての処理に対応し、S412の一部が信頼性判定部48としての処理に対応し、S414、S416の一部、S422、S430が第1の判定部38としての処理に対応し、S416の一部が予測部52としての処理に対応し、S420が第1の情報部34としての処理に対応し、S428の一部が第1の回避量部42としての処理に対応する。
[4.他の実施形態]
(1)走行支援装置30は、第2の回避走行として、エンジンブレーキと回生ブレーキとの少なくとも一方、あるいは自車両100の横方向位置のオフセットの一方だけを実行してもよい。
(1)走行支援装置30は、第2の回避走行として、エンジンブレーキと回生ブレーキとの少なくとも一方、あるいは自車両100の横方向位置のオフセットの一方だけを実行してもよい。
(2)走行支援装置30は、油圧ブレーキに油圧を加えていない状態で第2の回避走行を終了するときに、実際に油圧ブレーキが作動しない範囲で油圧ブレーキに油圧を加えることを開始してもよい。これにより、第1の回避走行を実行するときに、速やかに油圧ブレーキにより自車両100に制動力を加えることができる。
(3)遮蔽物判定部50は、自車両100に搭載された検出装置であるカメラ12とミリ波レーダ14との両方から第1の情報部34が第1の移動情報を取得しておらず、第2の情報部36が無線通信により第2の移動情報を取得している場合、自車両100と移動物体110との間にカメラ12とミリ波レーダ14とによる移動物体110の検出を遮る遮蔽物200が存在すると判定してもよい。
(4)移動物体110との衝突を回避できる可能性が高いのであれば、走行支援装置30は、自車両100の車速を上昇させることを第2の回避走行としてもよい。
(5)上記実施形態における一つの構成要素が有する複数の機能を複数の構成要素によって実現したり、一つの構成要素が有する一つの機能を複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を一つの構成要素によって実現したり、複数の構成要素が有する一つの機能を一つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。尚、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(5)上記実施形態における一つの構成要素が有する複数の機能を複数の構成要素によって実現したり、一つの構成要素が有する一つの機能を複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を一つの構成要素によって実現したり、複数の構成要素が有する一つの機能を一つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。尚、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(6)上述した走行支援装置の他、当該走行支援装置としてコンピュータを機能させるための走行支援プログラム、この走行支援プログラムを記録した記録媒体、走行支援方法など、種々の形態で本開示を実現することもできる。
Claims (10)
- 走行支援装置(30)であって、
自車両(100)の走行情報として少なくとも前記自車両の位置と車速とを取得するように構成された走行情報部(32、S402)と、
前記自車両の周囲の移動物体(110)の第1の移動情報として少なくとも前記移動物体の位置と速度とを前記自車両に搭載された検出装置から取得するように構成された第1の情報部(34、S420)と、
前記移動物体の第2の移動情報として少なくとも前記移動物体の位置と速度とを前記自車両の外部の車外装置から取得するように構成された第2の情報部(36、S408)と、
前記走行情報部が取得する前記走行情報と前記第1の情報部が取得する前記第1の移動情報とから、前記自車両と前記移動物体とが衝突する第1の可能性を判定し、前記第1の可能性に基づいて、前記自車両と前記移動物体との衝突を回避するための第1の回避走行を実行するか否かを判定するように構成された第1の判定部(38、S414、S416、S422、S430)と、
前記走行情報部が取得する前記走行情報と前記第2の情報部が取得する前記第2の移動情報とから、前記自車両と前記移動物体とが衝突する第2の可能性を判定し、前記第2の可能性に基づいて、前記自車両と前記移動物体との衝突を回避するための第2の回避走行を実行するか否かを判定するように構成された第2の判定部(40、S410)と、
前記第1の判定部が前記第1の回避走行を実行すると判定すると、前記第1の判定部が判定する前記第1の可能性に基づいて、前記自車両と前記移動物体との衝突を回避するための第1の回避量を設定するように構成された第1の回避量部(42、S428)と、
前記第2の判定部が前記第2の回避走行を実行すると判定すると、前記第2の判定部が判定する前記第2の可能性に基づいて前記自車両と前記移動物体との衝突を回避するための第2の回避量を設定し、前記第1の回避走行が実行される場合に前記第1の回避量部が設定する前記第1の回避量よりも、前記第2の回避量として、前記自車両の走行を制御する制御量を設定する場合は前記制御量を小さく、前記自車両の走行制御の実行開始タイミングを設定する場合は前記実行開始タイミングを遅くするように構成された第2の回避量部(44、S412)と、
前記第1の回避量部が設定する前記第1の回避量と前記第2の回避量部が設定する前記第2の回避量とに基づいて、前記自車両と前記移動物体との衝突を回避するために前記自車両の走行を制御するように構成された走行制御部(54、S412、S418、S424~S428、S432)と、
を備える走行支援装置。 - 請求項1に記載の走行支援装置であって、
前記自車両と前記移動物体との間に前記検出装置による前記移動物体の検出を遮る遮蔽物(200)が存在するか否かを判定するように構成された遮蔽物判定部(50、S406)をさらに備え、
前記第2の情報部は、前記車外装置から無線通信により前記第2の移動情報を取得するように構成されており、
前記走行制御部(S412、S428)は、前記遮蔽物が存在すると前記遮蔽物判定部が判定する場合は前記第2の回避量に基づいて、前記遮蔽物が存在しないと前記遮蔽物判定部が判定する場合は前記第1の回避量に基づいて、前記自車両の走行を制御するように構成されている、
走行支援装置。 - 請求項2に記載の走行支援装置であって、
地図データを記憶している記憶装置から前記地図データを取得するように構成された地図取得部(46、、S400、S404)をさらに備え、
前記遮蔽物判定部は、前記地図取得部が取得する前記地図データに基づいて前記遮蔽物が存在するか否かを判定するように構成されている、
走行支援装置。 - 請求項1から3のいずれか一項に記載の走行支援装置であって、
前記走行制御部(S426)は、前記第2の回避量に基づいて前記自車両の走行を制御中に、前記第1の判定部が前記自車両と前記移動物体とは衝突しないと判定すると、前記第2の回避量に基づいて前記自車両の走行を制御することを終了するように構成されている、
走行支援装置。 - 請求項4に記載の走行支援装置であって、
前記走行情報と前記第2の移動情報とに基づいて、前記移動物体を検出できていなかった前記検出装置が前記移動物体を検出できるようになるタイミングを予測するように構成された予測部(52、S416)をさらに備え、
前記第1の判定部(S422)は、前記走行制御部が前記第2の回避量に基づいて前記自車両の走行を制御中に、前記予測部が予測する前記タイミングよりも早いタイミングで前記検出装置が前記移動物体を検出できるようになると、前記自車両と前記移動物体とは衝突しないと判定するように構成されている、
走行支援装置。 - 請求項4または5に記載の走行支援装置であって、
請求項4に記載の走行支援装置の場合は、前記走行情報と前記第2の移動情報とに基づいて、前記移動物体を検出できていなかった前記検出装置が前記移動物体を検出できるようになるタイミングを予測するように構成された予測部(52、S416)をさらに備え、
前記第1の判定部(S416)は、前記走行制御部が前記第2の回避量に基づいて前記自車両の走行を制御中に、前記予測部が予測する前記タイミングになっても前記検出装置が前記移動物体を検出できない場合、前記自車両と前記移動物体とは衝突しないと判定するように構成されている、
走行支援装置。 - 請求項1から6のいずれか一項に記載の走行支援装置であって、
前記第2の移動情報の信頼性を判定するように構成された信頼性判定部(48、S412)をさらに備え、
前記第2の回避量部は、前記信頼性判定部が判定する前記第2の移動情報の信頼性が低くなるにしたがい前記第2の回避量として、前記制御量を設定する場合は前記制御量を小さく、前記実行開始タイミングを設定する場合は前記実行開始タイミングを遅くするように構成されている、
走行支援装置。 - 請求項1から7のいずれか一項に記載の走行支援装置であって、
前記第2の回避量部は、前記移動物体の速度が遅いほど前記第2の回避量として、前記制御量を設定する場合は前記制御量を小さく、前記実行開始タイミングを設定する場合は前記実行開始タイミングを遅くするように構成されている、
走行支援装置。 - 請求項1から8のいずれか一項に記載の走行支援装置であって、
前記走行制御部(S412)は、前記第2の判定部が前記自車両と前記移動物体とが衝突すると判定すると、前記自車両の進行方向に対して直交する方向の前記自車両の横方向位置をずらすように構成されている、
走行支援装置。 - 請求項9に記載の走行支援装置であって、
前記第2の判定部は、前記自車両が前記移動物体と衝突する衝突箇所を予測し、
前記走行制御部は、前記第2の判定部が予測する前記衝突箇所に応じて前記横方向位置をずらす方向を設定するように構成されている、
走行支援装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780010463.8A CN108604423B (zh) | 2016-02-10 | 2017-02-10 | 行驶辅助装置 |
DE112017000749.6T DE112017000749T5 (de) | 2016-02-10 | 2017-02-10 | Fahrassistenzvorrichtung |
CN202110784952.7A CN113335275B (zh) | 2016-02-10 | 2017-02-10 | 行驶辅助装置 |
US16/076,460 US10933865B2 (en) | 2016-02-10 | 2017-02-10 | Driving assistance device |
US17/159,996 US11572063B2 (en) | 2016-02-10 | 2021-01-27 | Driving assistance device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016023907 | 2016-02-10 | ||
JP2016-023907 | 2016-02-10 | ||
JP2017-010550 | 2017-01-24 | ||
JP2017010550A JP6465127B2 (ja) | 2016-02-10 | 2017-01-24 | 走行支援装置 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/076,460 A-371-Of-International US10933865B2 (en) | 2016-02-10 | 2017-02-10 | Driving assistance device |
US17/159,996 Continuation US11572063B2 (en) | 2016-02-10 | 2021-01-27 | Driving assistance device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138659A1 true WO2017138659A1 (ja) | 2017-08-17 |
Family
ID=59563487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/005009 WO2017138659A1 (ja) | 2016-02-10 | 2017-02-10 | 走行支援装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113335275B (ja) |
WO (1) | WO2017138659A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109425343A (zh) * | 2017-09-05 | 2019-03-05 | 丰田自动车株式会社 | 本车位置推断装置 |
CN110271547A (zh) * | 2018-03-15 | 2019-09-24 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法以及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006195641A (ja) * | 2005-01-12 | 2006-07-27 | Nissan Motor Co Ltd | 車両用情報提供装置 |
JP2010030513A (ja) * | 2008-07-30 | 2010-02-12 | Fuji Heavy Ind Ltd | 車両の運転支援装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010067397A1 (ja) * | 2008-12-09 | 2010-06-17 | トヨタ自動車株式会社 | 物体検出装置および物体検出方法 |
US8229663B2 (en) * | 2009-02-03 | 2012-07-24 | GM Global Technology Operations LLC | Combined vehicle-to-vehicle communication and object detection sensing |
EP2431225B1 (en) * | 2010-09-17 | 2013-11-27 | SMR Patents S.à.r.l. | Method for an automotive hazardous detection and information system |
JP6105513B2 (ja) * | 2014-01-10 | 2017-03-29 | エイディシーテクノロジー株式会社 | 車両制御装置、及び車載用画像表示装置 |
JP6174514B2 (ja) * | 2014-04-14 | 2017-08-02 | 本田技研工業株式会社 | 衝突可能性判定装置、運転支援装置、衝突可能性判定方法、及び衝突可能性判定プログラム |
-
2017
- 2017-02-10 CN CN202110784952.7A patent/CN113335275B/zh active Active
- 2017-02-10 WO PCT/JP2017/005009 patent/WO2017138659A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006195641A (ja) * | 2005-01-12 | 2006-07-27 | Nissan Motor Co Ltd | 車両用情報提供装置 |
JP2010030513A (ja) * | 2008-07-30 | 2010-02-12 | Fuji Heavy Ind Ltd | 車両の運転支援装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109425343A (zh) * | 2017-09-05 | 2019-03-05 | 丰田自动车株式会社 | 本车位置推断装置 |
CN109425343B (zh) * | 2017-09-05 | 2022-10-18 | 丰田自动车株式会社 | 本车位置推断装置 |
CN110271547A (zh) * | 2018-03-15 | 2019-09-24 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113335275B (zh) | 2024-02-09 |
CN113335275A (zh) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6465127B2 (ja) | 走行支援装置 | |
CN108995644B (zh) | 转向辅助系统 | |
US9981658B2 (en) | Autonomous driving vehicle system | |
US11524688B2 (en) | Apparatus and method for assisting turn of vehicle at intersection | |
US8386146B2 (en) | Inter-vehicle distance control apparatus and inter-vehicle distance control method | |
EP3552912A1 (en) | Drive mode-switching control device and drive mode-switching control method | |
US8977420B2 (en) | Vehicle procession control through a traffic intersection | |
JP2021020580A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP2019151185A (ja) | 運転支援装置 | |
EP3888992A1 (en) | Automated driving control system, vehicle, and method of automated driving control | |
JP6493422B2 (ja) | 走行支援装置 | |
JP2020050108A (ja) | 車両制御装置、車両制御方法、及びプログラム | |
JP2007062604A (ja) | 車両用自動制動装置 | |
JP4692077B2 (ja) | 先行車検出装置 | |
US11884276B2 (en) | Travel assistance method and travel assistance device | |
WO2017138659A1 (ja) | 走行支援装置 | |
KR20220164127A (ko) | 충돌 회피 측면 이동 시스템 | |
JP7226238B2 (ja) | 車両制御システム | |
JP7351076B2 (ja) | 電動車両の制御方法、及び、電動車両の制御装置 | |
JP2010267124A (ja) | 環境予測装置 | |
WO2017138658A1 (ja) | 走行支援装置 | |
US11912275B2 (en) | Autonomous driving control method and autonomous driving control device | |
JP2023105692A (ja) | 車両の運転支援装置 | |
JP2019182353A (ja) | 走行制御装置 | |
JP2023046108A (ja) | 車両の運転支援装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17750380 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112017000749 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17750380 Country of ref document: EP Kind code of ref document: A1 |