Nothing Special   »   [go: up one dir, main page]

WO2017130668A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017130668A1
WO2017130668A1 PCT/JP2017/000361 JP2017000361W WO2017130668A1 WO 2017130668 A1 WO2017130668 A1 WO 2017130668A1 JP 2017000361 W JP2017000361 W JP 2017000361W WO 2017130668 A1 WO2017130668 A1 WO 2017130668A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
gate
switching element
supply circuit
Prior art date
Application number
PCT/JP2017/000361
Other languages
English (en)
French (fr)
Inventor
聡 平沼
光一 八幡
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017563766A priority Critical patent/JP6469894B2/ja
Priority to DE112017000253.2T priority patent/DE112017000253T5/de
Priority to CN201780004118.3A priority patent/CN108450049B/zh
Priority to US16/069,754 priority patent/US10840800B2/en
Publication of WO2017130668A1 publication Critical patent/WO2017130668A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conversion device.
  • Patent Document 1 discloses an inverter device that uses normally-off type switching elements for the upper and lower arms and turns on the lower arm switching elements when the power supply voltage is lost.
  • a power conversion device includes a switching element, an inverter circuit that inputs a DC voltage and outputs an AC voltage, a gate drive circuit that outputs a drive signal for driving the switching element, and the drive signal
  • a gate power supply circuit for supplying a gate power supply voltage for outputting to the gate drive circuit, and a storage circuit for storing a charge for turning on the switching element, wherein the storage circuit includes the gate power supply circuit
  • the storage circuit includes the gate power supply circuit
  • the electric charge is stored by the gate power supply voltage.
  • the abnormal state of the gate power supply circuit the electric charge is supplied to the switching element to turn on the switching element.
  • FIG. 1 is a circuit configuration diagram of a power converter according to an embodiment of the present invention.
  • the power converter 1 converts the DC voltage from the battery 2 into an AC voltage and drives the motor generator 3.
  • the motor generator 3 is used as various types of power for vehicles such as electric vehicles and hybrid vehicles.
  • the capacitor 4 is connected in parallel with the battery 2 and smoothes the voltage that fluctuates during power conversion.
  • the contactor 5 connects and disconnects the battery 2 and the power converter 1.
  • the opening / closing of the contactor 5 is controlled by the controller 6 and is opened / closed by a contactor opening / closing signal from the controller 6.
  • the current sensor 7 detects a three-phase current value that drives the motor generator 3 and outputs it to the controller 6. Based on the current value from the current sensor 7 and the like, the controller 6 gives the power converter 1 a PWM (pulse width modulation) signal with which the motor generator 3 has a desired torque and rotational speed.
  • PWM pulse width modulation
  • the power converter 1 includes an inverter circuit 8, a gate control circuit 9, and a gate power supply circuit 10.
  • the inverter circuit 8 includes a switching element 81 having a three-phase bridge configuration, and upper and lower arm series circuits 8U, 8V, and 8W each including two switching elements 81 are provided corresponding to the U phase, the V phase, and the W phase. .
  • the upper and lower arm series circuits 8U, 8V, and 8W are electrically connected to the positive electrode line P and the negative electrode line N, respectively.
  • a gate control circuit 9 for six phases is provided to drive and control each switching element 81 having a three-phase bridge configuration of the inverter circuit 8.
  • the gate power supply circuit 10 supplies each gate control circuit 9 with a gate power supply voltage necessary for turning on the switching element 81.
  • FIG. 2 is a circuit configuration diagram of the gate control circuit 9.
  • Each gate control circuit 9 includes a gate drive circuit 91, a power supply circuit 92, and a storage circuit 93.
  • the gate drive circuit 91 performs switching control of the switching element 81 of the inverter circuit 8 based on a PWM (pulse width modulation) signal P1 from the controller 6. That is, when driving the lower arm, the gate drive circuit 91 uses the gate power supply voltage supplied from the gate power supply circuit 10 to insulate and amplify the lower arm PWM signal and use this as a drive signal to switch the lower arm switching element. 81 is output to the gate electrode.
  • PWM pulse width modulation
  • the gate power supply voltage supplied from the gate power supply circuit 10 is used to insulate and amplify the upper arm PWM signal, and this is used as a drive signal for the gate electrode of the switching element 81 of the upper arm. Output to. Thereby, each switching element 81 performs a switching operation based on the input drive signal.
  • the power supply circuit 92 supplies a voltage to the power storage circuit 93 according to a signal output from the controller 6 when the gate power supply circuit 10 becomes abnormal.
  • the storage circuit 93 is normally charged by the gate power supply voltage supplied from the gate power supply circuit 10, and charged in response to the voltage supplied from the power supply circuit 92 when the gate power supply circuit 10 becomes abnormal. Discharge the generated power. Thereby, the gate of the switching element 81 is charged, and the switching element 81 is turned on.
  • the induced current generated by the induced voltage charges the smoothing capacitor 4 through the diode of the switching element 81, Increase the voltage. Since the induced voltage is proportional to the rotation speed, the terminal voltage of the motor generator 3 increases when the vehicle is pulled at high speed. Therefore, there is a possibility that the withstand voltage of components in the power conversion device 1 such as the capacitor 4 and the switching element 81 is exceeded.
  • the electric withstand voltage of the power converter 1 it is usually necessary to design the electric withstand voltage of the power converter 1 to be equal to or lower than the maximum induced voltage of the motor generator 3, but the torque required for the vehicle and the maximum current that can be supplied to the inverter circuit 8 In view of this, it may be necessary to design the motor magnet output to be large by reducing the energization current. In this case, the induced voltage becomes high and the above-described problem occurs.
  • the power conversion device 1 when the vehicle is towed, the power conversion device 1 is activated, and the controller 6 turns on all phases of the upper arm or the lower arm of the inverter circuit 8 to set the motor generator 3 to the three-phase short mode. In some cases, a method of not charging the capacitor 4 is employed. However, since it is necessary to activate the inverter circuit 8 when the vehicle is towed, the switching element 81 cannot be turned on when the gate power supply circuit 10 is not activated due to an accident or the like, and the inverter circuit 8 cannot be turned on. Cannot switch to three-phase short mode. Therefore, the vehicle must be pulled at a low speed so that the vehicle cannot be pulled or the induced voltage does not increase. In the present embodiment, as will be described below, even when the gate power supply circuit 10 becomes abnormal due to an accident or the like, the motor generator 3 can be shifted to the three-phase short mode.
  • FIG. 3 is a circuit configuration diagram showing in detail a part of the power conversion device 1 in the present embodiment.
  • the controller 6 provides the PWM signal P1 to the drive circuit 911 of the gate drive circuit 91.
  • the drive circuit 911 is configured by a gate driver IC, and the signal P2 output from the drive circuit 911 is input to a gate terminal of a transistor included in the buffer circuit 912.
  • the buffer circuit 912 forms an amplifier circuit in which a gate power supply voltage is supplied from the gate power supply circuit 10 and a resistor and a transistor are connected in series, and its output is connected to the gate terminal of the switching element 81 as a drive signal.
  • a drive signal is output from the gate drive circuit 91 in accordance with the PWM signal P1 from the controller 6, and the switching element 81 is driven and controlled. Further, the drive circuit 911 detects the gate power supply voltage value P3 of the gate power supply circuit 10, and when the gate power supply voltage becomes lower than the voltage at which the switching element 81 cannot be driven due to a failure of the gate power supply circuit 10, the controller 6 To output a signal P4.
  • the gate power supply circuit 10 is configured by, for example, a flyback converter.
  • a storage circuit 93 is connected to the controller 6 via a power supply circuit 92.
  • the power supply circuit 92 is a photovoltaic coupler composed of photodiodes on the light emitting side and the light receiving side, and is connected to the signal line S ⁇ b> 1 output from the controller 6.
  • a power source LV is connected to the signal line S1 via a resistor R1.
  • the resistor R1 is a resistor for limiting the current supplied from the power source LV.
  • a current flows from the power supply LV through the resistor R1 to the light emitting side photodiode of the photovoltaic coupler, and transmits an optical signal to the light receiving side.
  • the diode on the light receiving side receives the optical signal, uses the photoelectric effect, induces a voltage between the anode and the cathode of the light receiving side diode, and supplies a current.
  • a capacitor C1 is connected in parallel via a diode D1, and a diode D1, a MOS transistor (MOSFET) T1, and a diode D3 are connected in series and connected to the gate electrode of the switching element 81.
  • the output line of the signal P2 of the drive circuit 911 is connected to the connection line between the diode D1 and the MOS transistor T1 via the diode D2.
  • the capacitor C ⁇ b> 1 stores electric charge for charging the gate electrode of the switching element 81.
  • the capacity of the capacitor C1 is set based on the charge amount necessary to turn on the switching element 81.
  • the diode D1 limits the energization direction to the direction in which electric charge is charged from the photovoltaic coupler as the power supply circuit 92 to the capacitor C1.
  • the diode D2 limits the energization direction to the direction in which the electric charge is charged from the drive circuit 911 to the capacitor C1.
  • the diode D3 limits the energization direction to the direction of charging electric charge from the capacitor C1 to the gate electrode of the switching element 81.
  • the MOS transistor T1 cuts off the current flow so that the electric charge stored in the capacitor C1 is not charged to the gate electrode of the switching element 81 except when the gate power supply circuit 10 is abnormal. In FIG.
  • a gate drive circuit 91, a power supply circuit 92, and a power storage circuit 93 corresponding to one switching element 81 are illustrated.
  • the gate drive circuit 91, the power supply circuit 92, and the storage circuit 93 are provided in the same manner as in FIG. 3 corresponding to each of the six switching elements 81.
  • the power converter 1 is supplied with a PWM signal P1 from the controller 6 to the gate drive circuit 91, drives the switching element 81 via the buffer circuit 912, and converts the DC power of the battery 2 into AC power. Then, the motor generator 3 is driven. At that time, electric charge is accumulated in the capacitor C1 in the power storage circuit 93 via the diode D2 by the PWM signal P1 transmitted from the drive circuit 911.
  • the PWM signal P1 is generated based on the gate power supply voltage supplied from the gate power supply circuit 10. In other words, the capacitor C1 has a gate power supply supplied from the gate power supply circuit 10. Charges are accumulated by the voltage.
  • the charge may be accumulated in the capacitor C1 directly from the gate power supply circuit 10 via the diode D2. Since the electric charge accumulated in the capacitor C1 is cut off by the MOS transistor T1, the gate electrode of the switching element 81 is not charged and the normal driving of the switching element 81 is not hindered.
  • the drive circuit 911 monitors the soundness of the gate power supply circuit 10 and determines that an abnormality has occurred in the gate power supply circuit 10 if the voltage value P3 falls below a set threshold, and outputs a signal P4 to the controller 6. .
  • the controller 6 After receiving the signal P4, the controller 6 outputs a signal to the signal line S1 to operate the photovoltaic coupler of the power supply circuit 92.
  • the MOS transistor T1 in the power storage circuit 93 becomes conductive, and the electric charge accumulated in the capacitor C1 is immediately supplied to the gate electrode of the switching element 81, and the switching element 81 is turned on. Further, the capacitor C1 is charged by the voltage supplied from the photovoltaic coupler, and the charge is accumulated. In this way, when the gate power supply circuit 10 is in an abnormal state, the power storage circuit 93 turns on the switching element 81 for all phases of the upper arm or the switching element 81 for all phases of the lower arm.
  • the motor generator 3 can be shifted to the three-phase short mode by turning on all the phases of the upper arm or the lower arm of the inverter circuit 8.
  • the gate power supply circuit 10 has been described as an example in which the gate power supply voltage is supplied to all the switching elements 81 at once. However, the gate power supply circuit 10 may be configured to include the gate power supply circuit 10 distributed for each of the three phases. Good. Moreover, although the example of IGBT was demonstrated as the switching element 81, MOSFET and a bipolar type transistor may be sufficient.
  • the power supply circuit 92 may be configured by a power supply circuit having an insulating type and a simpler structure than the flyback converter.
  • the switching element 81 is driven by using the buffer circuit 912, the buffer circuit 912 may not be provided and only the gate driver IC may be directly driven.
  • the power conversion device 1 includes a switching element 81, and includes an inverter circuit 8 that inputs a DC voltage and outputs an AC voltage, and a gate drive circuit 91 that outputs a drive signal for driving the switching element 81.
  • a gate power supply circuit 10 for supplying a gate power supply voltage for outputting a drive signal to the gate drive circuit 91, and a power storage circuit 93 for storing a charge for turning on the switching element 81.
  • the gate power supply circuit 10 When the gate power supply circuit 10 is in a normal state, charges are accumulated by the gate power supply voltage, and when the gate power supply circuit 10 is in an abnormal state, the charges are supplied to the switching element 81 to turn on the switching element 81. .
  • the power converter device which can respond to the loss of a power supply voltage can be provided, without a circuit structure becoming complicated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)

Abstract

電源回路を増設するために回路構成部品が複雑になり、インバータの通常の動作においても反転回路を使用してスイッチング素子を制御しなければならなかった。 駆動回路911は、ゲート電源回路10の健全性を監視しており、電圧値P3が設定された閾値を下回ればゲート電源回路10に故障が発生したと判断し、コントローラ6へ信号P4を出力する。コントローラ6は、信号P4を受信した後、信号線S1に信号を出力して、電源供給回路92のフォトボルカプラを動作させる。そして、蓄電回路93内のMOSトランジスタT1が導通状態になり、コンデンサC1に蓄積された電荷は即座にスイッチング素子81のゲート電極への充電を開始し、スイッチング素子81をON状態にする。また、コンデンサC1から放電された電荷はフォトボルカプラから充電される状態となる。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 スイッチング素子が上アームと下アームよりなるブリッジ回路として形成されるインバータを備えた電力変換装置において、障害発生時に過電圧が発生するのを防止する為に、下アームのスイッチング素子の少なくとも1つが、電源電圧が加わっていないときに導通状態になるように実現されているインバータが知られている。特許文献1では、上下アームにノーマリオフ型のスイッチング素子を使用し、電源電圧の喪失時に下アームのスイッチング素子をオンさせるインバータ装置が開示されている。
特開2014-192975号公報
 上述した特許文献1に記載の回路構成では、インバータの通常の動作において反転回路を使用してスイッチング素子を制御しなければならないため、回路構成が複雑になる。
 本発明による電力変換装置は、スイッチング素子により構成され、直流電圧を入力して交流電圧を出力するインバータ回路と、前記スイッチング素子を駆動する為のドライブ信号を出力するゲート駆動回路と、前記ドライブ信号を出力する為のゲート電源電圧を前記ゲート駆動回路に供給するゲート電源回路と、前記スイッチング素子をオンさせる為の電荷を蓄電する蓄電回路と、を備え、前記蓄電回路は、前記ゲート電源回路が正常状態の場合には、前記ゲート電源電圧により前記電荷を蓄電し、前記ゲート電源回路が異常状態の場合には、前記電荷を前記スイッチング素子に供給して前記スイッチング素子をオン状態にする。
 本発明によれば、回路構成が複雑になることなく、電源電圧の喪失に対応可能な電力変換装置を提供できる。
電力変換装置の回路構成図である。 ゲート制御回路の回路構成図である。 電力変換装置の一部の詳細な回路構成図である。
 図1は、本発明の一実施形態に係わる電力変換装置の回路構成図である。
 電力変換装置1は、バッテリ2からのDC電圧をAC電圧に変換してモータージェネレータ3を駆動する。モータージェネレータ3は、電気自動車やハイブリッド自動車などの車両の各種動力として用いられる。キャパシタ4はバッテリ2と並列に接続され、電力変換時に変動する電圧を平滑化する。コンタクタ5は、バッテリ2と電力変換装置1との接続および切り離しを行う。コンタクタ5の開閉は、コントローラ6により制御され、コントローラ6からのコンタクタ開閉信号により開閉動作する。
 電流センサ7は、モータージェネレータ3を駆動する三相の電流値を検出し、コントローラ6へ出力する。コントローラ6は、電流センサ7からの電流値などを基に、モータージェネレータ3が所望のトルク、回転数となるPWM(パルス幅変調)信号を電力変換装置1に与える。
 電力変換装置1は、インバータ回路8、ゲート制御回路9、ゲート電源回路10を備えている。インバータ回路8は3相ブリッジ構成のスイッチング素子81により構成され、各々2つのスイッチング素子81から成る上下アーム直列回路8U、8V、8WがU相、V相およびW相に対応して設けられている。上下アーム直列回路8U、8V、8Wは、それぞれ正極ラインPと負極ラインNに電気的に接続される。
 インバータ回路8の3相ブリッジ構成の各スイッチング素子81を駆動制御するために6相分のゲート制御回路9が設けられている。ゲート電源回路10は、各ゲート制御回路9にスイッチング素子81をターンオンさせるのに必要なゲート電源電圧を供給する。
 図2は、ゲート制御回路9の回路構成図である。各ゲート制御回路9は、ゲート駆動回路91、電源供給回路92、蓄電回路93を備える。
 ゲート駆動回路91は、コントローラ6からのPWM(パルス幅変調)信号P1に基づいてインバータ回路8のスイッチング素子81のスイッチング制御を行う。すなわち、ゲート駆動回路91は、下アームを駆動する場合、ゲート電源回路10から供給されたゲート電源電圧を用いて、下アームPWM信号を絶縁かつ増幅し、これをドライブ信号として下アームのスイッチング素子81のゲート電極に出力する。同様に上アームを駆動する場合には、ゲート電源回路10から供給されたゲート電源電圧を用いて、上アームPWM信号を絶縁かつ増幅し、これをドライブ信号として上アームのスイッチング素子81のゲート電極に出力する。これにより、各スイッチング素子81は入力されたドライブ信号に基づいてスイッチング動作する。
 電源供給回路92は、詳細は後述するが、ゲート電源回路10が異常となった場合にコントローラ6から出力される信号に応じて、蓄電回路93に電圧を供給する。蓄電回路93は、通常は、ゲート電源回路10から供給されるゲート電源電圧により充電され、ゲート電源回路10が異常となった場合は、電源供給回路92から供給された電圧に応答して、充電した電力を放電する。これにより、スイッチング素子81のゲートを充電し、スイッチング素子81をON状態にする。
 ここで、モータージェネレータ3を搭載した車両が牽引される場合について説明する。通常、車両が牽引される状況においては、コンタクタ5がオフされ、インバータ回路8がバッテリ2と切り離された状態でモータージェネレータ3が空転する状態が発生する。モータージェネレータ3に同期電動機が用いられる場合、磁石を搭載するロータから発生する磁束がステータの巻線と鎖交することによりモータージェネレータ3の端子に誘起電圧を発生させる。
 車両が牽引される場合、インバータ回路8のスイッチング素子81の全てをターンオフする三相オープンモードにおいて、誘起電圧によって発生する誘導電流はスイッチング素子81のダイオードを通して、平滑用のキャパシタ4を充電し、その電圧を上昇させる。誘起電圧は回転数に比例するため、車両が高速で牽引される場合、モータージェネレータ3の端子電圧が高くなる。そのため、キャパシタ4やスイッチング素子81等の電力変換装置1内の部品の耐圧を超える可能性がある。
 そのため、通常は電力変換装置1の電気的な耐圧をモータージェネレータ3の最大誘起電圧以下となるように設計する必要があるが、車両に要求されるトルクとインバータ回路8に通電できる最大電流との兼ね合いから、通電電流を低めにしてモータ磁石の出力を大きく設計することが必要な場合がある。この場合、誘起電圧が高くなり、上述の問題が生じる。
 そこで、車両の牽引時に電力変換装置1を起動させ、コントローラ6によりインバータ回路8の上アームまたは下アームの全相をターンオンさせてモータージェネレータ3を三相ショートモードにし、モータージェネレータ3の誘起電圧がキャパシタ4を充電しないようにする方法を採用する場合があった。しかし、車両の牽引時にインバータ回路8を起動させる必要があることから、事故等によりゲート電源回路10が異常状態となって起動しない場合、スイッチング素子81をターンオンすることができず、インバータ回路8を三相ショートモードに移行できない。そのため、車両を牽引ができない、もしくは誘起電圧が高くならないように低速度で車両を牽引しなければならない。本実施形態では、以下に説明するように、事故等によりゲート電源回路10が異常となった場合でも、モータージェネレータ3を三相ショートモードに移行することができる。
 図3は、本実施形態における電力変換装置1の一部を詳細に示す回路構成図である。
 コントローラ6は、PWM信号P1をゲート駆動回路91の駆動回路911に与える。駆動回路911は、ゲートドライバICで構成され、駆動回路911より出力された信号P2は、バッファ回路912を構成するトランジスタのゲート端子に入力される。バッファ回路912は、ゲート電源回路10よりゲート電源電圧が供給され、抵抗とトランジスタが直列に接続された増幅回路を構成し、その出力はドライブ信号としてスイッチング素子81のゲート端子に接続される。これにより、ゲート電源回路10が正常に動作している通常の状態では、コントローラ6からのPWM信号P1に応じてゲート駆動回路91からドライブ信号が出力され、スイッチング素子81が駆動制御される。また、駆動回路911は、ゲート電源回路10のゲート電源電圧値P3を検知しており、ゲート電源回路10の故障によりゲート電源電圧がスイッチング素子81を駆動できない電圧以下になった場合に、コントローラ6へ信号P4を出力する。なお、図示省略したが、ゲート電源回路10は、例えばフライバックコンバータによって構成される。
 コントローラ6には、電源供給回路92を介して蓄電回路93が接続される。電源供給回路92は、発光側及び受光側のフォトダイオードより構成されるフォトボルカプラであり、コントローラ6から出力される信号線S1に接続される。信号線S1には、電源LVが抵抗R1を介して接続されている。抵抗R1は電源LVから通電される電流を制限するための抵抗である。
 電源供給回路92のフォトボルカプラは、コントローラ6から信号が与えられると電源LVから抵抗R1を通りフォトボルカプラの発光側のフォトダイオードに電流が流れ、受光側へ光信号を伝送する。受光側のダイオードは、光信号を受け取り、光電効果を利用し、受光側ダイオードのアノード-カソード間に電圧を誘起させ、かつ電流を通電させる。
 蓄電回路93は、ダイオードD1を介してコンデンサC1が並列に接続され、ダイオードD1、MOSトランジスタ(MOSFET)T1、ダイオードD3が直列接続されて、スイッチング素子81のゲート電極に接続される。ダイオードD1とMOSトランジスタT1の接続ラインには、駆動回路911の信号P2の出力ラインがダイオードD2を介して接続される。コンデンサC1はスイッチング素子81のゲート電極を充電するための電荷を蓄える。コンデンサC1の容量は、スイッチング素子81をオン状態とするのに必要な充電電荷量に基づいて設定される。ダイオードD1は、電源供給回路92であるフォトボルカプラからコンデンサC1へ電荷が充電される方向に通電方向を限定する。ダイオードD2は駆動回路911からコンデンサC1へ電荷を充電する方向に通電方向を限定する。ダイオードD3は、コンデンサC1からスイッチング素子81のゲート電極へ電荷を充電する方向へ通電方向を限定する。MOSトランジスタT1は、コンデンサC1に蓄えられた電荷がゲート電源回路10の異常時以外にスイッチング素子81のゲート電極へ充電されないように電流の流れを遮断する。図3では、一個のスイッチング素子81に対応するゲート駆動回路91、電源供給回路92、蓄電回路93を図示した。これらのゲート駆動回路91、電源供給回路92、蓄電回路93は、6個のスイッチング素子81の各々に対応して図3と同様に設けられている。
 次に本実施形態に係る電力変換装置1の動作を図1~図3を参照して説明する。
 電力変換装置1は、通常の動作では、コントローラ6からゲート駆動回路91へPWM信号P1が与えられ、バッファ回路912を介して、スイッチング素子81を駆動し、バッテリ2の直流電力を交流電力に変換し、モータージェネレータ3を駆動する。その際に、蓄電回路93内のコンデンサC1には、駆動回路911から伝送されるPWM信号P1によりダイオードD2を介して電荷が蓄積される。なお、図示省略したが、PWM信号P1はゲート電源回路10から供給されるゲート電源電圧に基づいて生成されるもので、換言すれば、コンデンサC1には、ゲート電源回路10から供給されるゲート電源電圧により電荷が蓄積されることになる。なお、PWM信号P1によらず、ゲート電源回路10から直接、ダイオードD2を介してコンデンサC1に電荷を蓄積してもよい。このようにしてコンデンサC1に蓄積された電荷は、MOSトランジスタT1によって遮断されているので、スイッチング素子81のゲート電極へ充電されることはなく、通常のスイッチング素子81の駆動を妨げることはない。
 駆動回路911は、ゲート電源回路10の健全性を監視しており、電圧値P3が設定された閾値を下回ればゲート電源回路10に異常が発生したと判断し、コントローラ6へ信号P4を出力する。コントローラ6は、信号P4を受信した後、信号線S1に信号を出力して、電源供給回路92のフォトボルカプラを動作させる。そして、蓄電回路93内のMOSトランジスタT1が導通状態になり、コンデンサC1に蓄積された電荷は即座にスイッチング素子81のゲート電極へ供給され、スイッチング素子81をON状態にする。また、コンデンサC1はフォトボルカプラから供給される電圧により充電されて電荷が蓄積される状態となる。このようにして、蓄電回路93は、ゲート電源回路10が異常状態の場合には、上アーム全相のスイッチング素子81もしくは下アーム全相のスイッチング素子81をオン状態にする。
 以上の動作により、ゲート電源回路10が故障した場合においても、インバータ回路8の上アームまたは下アームの全相をターンオンさせてモータージェネレータ3を三相ショートモードに移行できる。なお、ゲート電源回路10は、全てのスイッチング素子81に一括してゲート電源電圧を供給する例で説明したが、三相の各相ごとに分散してゲート電源回路10を備える構成であってもよい。また、スイッチング素子81としてIGBTの例で説明したが、MOSFETやバイポーラタイプのトランジスタでもよい。更に、電源供給回路92としてフォトボルカプラの例で説明したが、絶縁タイプでフライバックコンバータより簡素な構造の電源回路で構成してもよい。更に、スイッチング素子81をバッファ回路912を用いて駆動する例で説明したが、バッファ回路912がなく、ゲートドライバICのみの直接駆動してもよい。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置1は、スイッチング素子81により構成され、直流電圧を入力して交流電圧を出力するインバータ回路8と、スイッチング素子81を駆動する為のドライブ信号を出力するゲート駆動回路91と、ドライブ信号を出力する為のゲート電源電圧をゲート駆動回路91に供給するゲート電源回路10と、スイッチング素子81をオンさせる為の電荷を蓄電する蓄電回路93と、を備え、蓄電回路93は、ゲート電源回路10が正常状態の場合には、ゲート電源電圧により電荷を蓄積し、ゲート電源回路10が異常状態の場合には、電荷をスイッチング素子81に供給してスイッチング素子81をオン状態にする。これにより、回路構成が複雑になることなく、電源電圧の喪失に対応可能な電力変換装置を提供できる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1 電力変換装置
2 バッテリ
3 モータージェネレータ
4 キャパシタ
5 コンタクタ
6 コントローラ
7 電流センサ
8 インバータ回路
9 ゲート制御回路
10 ゲート電源回路
81 スイッチング素子
91 ゲート駆動回路
92 電源供給回路
93 蓄電回路

Claims (6)

  1.  スイッチング素子により構成され、直流電圧を入力して交流電圧を出力するインバータ回路と、
     前記スイッチング素子を駆動する為のドライブ信号を出力するゲート駆動回路と、
     前記ドライブ信号を出力する為のゲート電源電圧を前記ゲート駆動回路に供給するゲート電源回路と、
     前記スイッチング素子をオンさせる為の電荷を蓄電する蓄電回路と、を備え、
     前記蓄電回路は、前記ゲート電源回路が正常状態の場合には、前記ゲート電源電圧により前記電荷を蓄電し、前記ゲート電源回路が異常状態の場合には、前記電荷を前記スイッチング素子に供給して前記スイッチング素子をオン状態にする電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記蓄電回路は、前記ゲート電源回路が異常状態の場合には、上アーム全相の前記スイッチング素子もしくは下アーム全相の前記スイッチング素子をオン状態にする電力変換装置。
  3.  請求項1または請求項2に記載の電力変換装置であって、
     前記蓄電回路に電圧を供給する電源供給回路をさらに備え、
     前記蓄電回路は、前記ゲート電源回路が異常状態の場合には、前記電源供給回路から供給される電圧により前記電荷を蓄電する電力変換装置。
  4.  請求項1から請求項3のいずれか一項に記載の電力変換装置であって、
     前記蓄電回路は、前記電荷の供給を遮断する遮断回路を備え、前記ゲート電源回路が正常状態の場合には、前記電荷を前記遮断回路により遮断して、前記スイッチング素子に供給しない電力変換装置。
  5.  請求項1から請求項4のいずれか一項に記載の電力変換装置であって、
     前記蓄電回路は、前記電荷を蓄電するコンデンサを備え、
     前記コンデンサの容量は、前記スイッチング素子をオンさせる為に必要なゲート充電電荷量に基づいて設定されている電力変換装置。
  6.  請求項1から請求項5のいずれか一項に記載の電力変換装置であって、
     前記蓄電回路に電源を供給するフォトボルカプラを備える電力変換装置。
PCT/JP2017/000361 2016-01-29 2017-01-10 電力変換装置 WO2017130668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017563766A JP6469894B2 (ja) 2016-01-29 2017-01-10 電力変換装置
DE112017000253.2T DE112017000253T5 (de) 2016-01-29 2017-01-10 Leistungsumwandlungsvorrichtung
CN201780004118.3A CN108450049B (zh) 2016-01-29 2017-01-10 电源转换装置
US16/069,754 US10840800B2 (en) 2016-01-29 2017-01-10 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-015031 2016-01-29
JP2016015031 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130668A1 true WO2017130668A1 (ja) 2017-08-03

Family

ID=59398128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000361 WO2017130668A1 (ja) 2016-01-29 2017-01-10 電力変換装置

Country Status (5)

Country Link
US (1) US10840800B2 (ja)
JP (1) JP6469894B2 (ja)
CN (1) CN108450049B (ja)
DE (1) DE112017000253T5 (ja)
WO (1) WO2017130668A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092603A (zh) * 2017-12-30 2018-05-29 赵志泓 一种基于新型逆变器的混凝土屋顶监控供电系统
CN108183679A (zh) * 2017-12-30 2018-06-19 赵志泓 一种基于新型逆变器的彩钢屋顶监控供电系统
CN108199652A (zh) * 2017-12-30 2018-06-22 孙振华 一种防雷家庭光伏供电系统
CN109818395A (zh) * 2019-01-28 2019-05-28 浙江众合科技股份有限公司 一种超级电容供电的电源防护电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003966B2 (ja) * 2019-04-25 2022-01-21 株式会社デンソー 駆動回路
DE102020111576B4 (de) * 2020-04-28 2022-11-17 Seg Automotive Germany Gmbh Schaltungsanordnung für einen Stromrichter, Stromrichter, elektrische Maschine und Verfahren zum Betreiben einer elektrischen Maschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014158399A (ja) * 2013-02-18 2014-08-28 Aisin Aw Co Ltd 回転電機駆動装置
JP2015115977A (ja) * 2013-12-09 2015-06-22 東芝三菱電機産業システム株式会社 電力変換装置
JP2015159684A (ja) * 2014-02-25 2015-09-03 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938656B1 (fr) * 2008-11-18 2011-08-26 Thales Sa Systeme a securite intrinseque et module de test, notamment pour une utilisation dans un systeme de signalisation ferroviaire
US8994208B2 (en) * 2010-03-15 2015-03-31 Magna Electronics Inc. Backup power for overvoltage protection for electric vehicle
CN102130643A (zh) * 2010-12-27 2011-07-20 东南大学 开关磁阻电机电容自举式驱动电路和驱动方法
JP2014192975A (ja) * 2013-03-26 2014-10-06 Aisin Aw Co Ltd インバータ装置
JP2015082943A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 車両制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014158399A (ja) * 2013-02-18 2014-08-28 Aisin Aw Co Ltd 回転電機駆動装置
JP2015115977A (ja) * 2013-12-09 2015-06-22 東芝三菱電機産業システム株式会社 電力変換装置
JP2015159684A (ja) * 2014-02-25 2015-09-03 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092603A (zh) * 2017-12-30 2018-05-29 赵志泓 一种基于新型逆变器的混凝土屋顶监控供电系统
CN108183679A (zh) * 2017-12-30 2018-06-19 赵志泓 一种基于新型逆变器的彩钢屋顶监控供电系统
CN108199652A (zh) * 2017-12-30 2018-06-22 孙振华 一种防雷家庭光伏供电系统
CN109818395A (zh) * 2019-01-28 2019-05-28 浙江众合科技股份有限公司 一种超级电容供电的电源防护电路

Also Published As

Publication number Publication date
US10840800B2 (en) 2020-11-17
US20190020263A1 (en) 2019-01-17
CN108450049B (zh) 2020-11-17
DE112017000253T5 (de) 2018-09-13
JPWO2017130668A1 (ja) 2018-06-28
JP6469894B2 (ja) 2019-02-13
CN108450049A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
JP6469894B2 (ja) 電力変換装置
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
JP5433608B2 (ja) 電力変換装置
US8963476B2 (en) Synchronous machine with switching element in the excitation circuit
CN109104886B (zh) 逆变器装置
US11444551B2 (en) Power conversion device with inverter circuit
CN101330251A (zh) 对永磁电动机控制电路的保护
JP2015159684A (ja) 回転電機制御装置
US20160329840A1 (en) Electric motor with brake
US20120229068A1 (en) Inverter
JP4532875B2 (ja) 電力変換装置
JP6392464B2 (ja) 車両用駆動装置、車両用駆動システム、および、車両用駆動装置の制御方法
JP7259563B2 (ja) 回転電機制御システム
US20120217918A1 (en) Inverter
JP2021035090A (ja) インバータ制御装置
JP6638504B2 (ja) インバータ駆動装置
US11012021B2 (en) Inverter device and control circuit therefor, and motor driving system
WO2010113500A1 (ja) 開閉器操作装置および3相用開閉器
JP2021065039A (ja) スイッチの駆動装置
JP7460508B2 (ja) 電力変換装置
JP2007244102A (ja) 電源装置
JP2020156272A (ja) 回転電機制御装置
CN114614688A (zh) 用于逆变器的保护装置、逆变器系统以及电动车辆
JP2011097721A (ja) 車載用回転電機の駆動装置
JP2014011927A (ja) インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563766

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000253

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743899

Country of ref document: EP

Kind code of ref document: A1