Nothing Special   »   [go: up one dir, main page]

WO2017101667A1 - 一种信道检测的控制方法及相关设备 - Google Patents

一种信道检测的控制方法及相关设备 Download PDF

Info

Publication number
WO2017101667A1
WO2017101667A1 PCT/CN2016/107551 CN2016107551W WO2017101667A1 WO 2017101667 A1 WO2017101667 A1 WO 2017101667A1 CN 2016107551 W CN2016107551 W CN 2016107551W WO 2017101667 A1 WO2017101667 A1 WO 2017101667A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
information
time
scheduling request
Prior art date
Application number
PCT/CN2016/107551
Other languages
English (en)
French (fr)
Inventor
乔梁
Original Assignee
深圳市金立通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金立通信设备有限公司 filed Critical 深圳市金立通信设备有限公司
Publication of WO2017101667A1 publication Critical patent/WO2017101667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel detection control method and related device.
  • LAA Licensed Assisted Access
  • LTE Long Term Evolution
  • the transmitting node needs to perform LBT detection to detect whether the transport channel is available. Therefore, there will be some unnecessary LBT detection; in addition, excessive LBT detection will result in increased power consumption of the transmission node.
  • the embodiment of the invention provides a channel detection control method and related device, which can reduce the number of LBT detections and reduce the power consumption of the device.
  • a first aspect of the embodiments of the present invention provides a channel detection control method, which is applied to an authorized auxiliary access LAA technology, and includes:
  • the operation for transmitting the uplink grant information is not performed after the LBT detection is performed.
  • a second aspect of the embodiments of the present invention provides a channel detection control method, which is applied to an authorized auxiliary access LAA technology, and includes:
  • the base station is the same as the carrier used by the first terminal for downlink data transmission and the carrier used by the second terminal for the PUSCH transmission.
  • a third aspect of the embodiments of the present invention provides a channel detection control method, which is applied to an authorized auxiliary access LAA technology, and includes:
  • the terminal After the terminal randomly accesses the base station, the terminal sends a scheduling request to the base station by using a physical uplink control channel (PUCCH);
  • PUCCH physical uplink control channel
  • the terminal receives the uplink grant information and the indication information that are sent by the base station in response to the scheduling request, where the indication information is used to indicate that the terminal responds to the uplink grant information and performs physical uplink shared channel PUSCH transmission with the base station.
  • the start time and the identifier information for indicating whether to perform the LBT detection after the listener is performed, when the start time of the PUSCH transmission and the deadline information included by the base station for the downlink data transmission with the first terminal include When the interval is within the preset time range, or when the system subframe number corresponding to the PUSCH transmission and the system subframe number corresponding to the cutoff time include the interval of the system subframe number in the preset time range When the number of frame symbols is within, the identifier information of whether to perform LBT detection is configured by the base station not to perform the LBT detection;
  • the identifier information of whether the LBT detection is performed is used to indicate whether the terminal performs the LBT detection operation, the carrier used by the base station and the first terminal for downlink data transmission, and the PUSCH of the terminal The carrier used for transmission is the same.
  • a fourth aspect of the embodiments of the present invention provides a base station, including:
  • An obtaining unit configured to acquire deadline information for performing downlink data transmission with the first terminal
  • a receiving unit configured to receive a scheduling request sent by a second terminal that is randomly accessed by using a physical uplink control channel (PUCCH), where the base station and the first terminal use a carrier for downlink data transmission and the second terminal
  • PUCCH physical uplink control channel
  • a first determining unit configured to determine, according to the cutoff time information and the preset time range, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that the base station sends the second base terminal to the second terminal
  • the operation for transmitting the uplink grant information is not performed after the LBT detection is performed.
  • a fifth aspect of the embodiments of the present invention provides a base station, including:
  • An obtaining unit configured to acquire deadline information for performing downlink data transmission with the first terminal
  • a receiving unit configured to receive a scheduling request sent by the second terminal of the random access through the physical uplink control channel PUCCH;
  • a sending unit configured to send uplink authorization information to the second terminal in response to the scheduling request, and Instructing information, where the indication information includes a start time for indicating that the second terminal performs physical uplink shared channel PUSCH transmission with the base station in response to the uplink grant information, and indicating whether to perform LBT detection after listening
  • the identifier information when the interval between the start time of the PUSCH transmission and the cutoff time included in the cutoff time information is within a preset time range, or the system subframe number corresponding to the PUSCH transmission and the deadline information When the interval of the system subframe number corresponding to the cutoff time is within the number of subframe symbols corresponding to the preset time range, whether the identifier information for performing LBT detection is configured by the base station not to perform the LBT detection, And the operation of performing the LBT detection on the PUSCH when the second terminal and the base station perform the PUSCH transmission, where the identifier information of whether the LBT detection is performed is used to indicate whether the second terminal is Performing the operation of the
  • a sixth aspect of the embodiments of the present invention provides a terminal, including:
  • a sending unit configured to send a scheduling request to the base station by using a physical uplink control channel (PUCCH) after the terminal randomly accesses the base station;
  • PUCCH physical uplink control channel
  • a receiving unit configured to receive uplink authorization information and indication information that is sent by the base station in response to the scheduling request, where the indication information is used to indicate that the terminal performs a physical uplink shared channel PUSCH with the base station in response to the uplink grant information.
  • the interval of the cutoff time is within the preset time range, or the interval between the system subframe number corresponding to the PUSCH transmission and the system subframe number corresponding to the cutoff time included in the cutoff time information corresponds to the preset time range
  • the identifier information of whether to perform LBT detection is configured by the base station not to perform the LBT detection;
  • a determining unit configured to determine, according to the indication information, a start time of performing the PUSCH transmission with the base station, so that the terminal does not perform the LBT detection on the PUSCH when performing the PUSCH transmission with the base station Operation
  • the identifier information of whether the LBT detection is performed is used to indicate whether the terminal performs the LBT detection operation, the carrier used by the base station and the first terminal for downlink data transmission, and the PUSCH of the terminal The carrier used for transmission is the same.
  • the base station may acquire the deadline information of the downlink data transmission with the first terminal, and receive the scheduling of the second terminal that is randomly connected to the same terminal as the first terminal. And determining, according to the deadline information and the preset time range, a time for sending the uplink authorization information to the second terminal in response to the scheduling request, so that the base station may send the uplink authorization information when sending the uplink authorization information to the second terminal.
  • the channel does not perform the operation of the LBT detection after listening first.
  • the time for the base station to send the uplink grant information to the terminal is dynamically adjusted, so that the interval between the adjusted time for sending the uplink grant information and the cutoff time for the downlink data transmission of the previous terminal is within a preset time range.
  • the LBT detection is not performed on the channel for transmitting the uplink grant information. Thereby reducing the number of times the base station performs LBT detection and reducing the power consumption of the base station.
  • FIG. 1 is a schematic flowchart of a channel detection control method according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart diagram of another method for controlling channel detection according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of uplink and downlink data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of still another method for controlling channel detection according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another uplink and downlink data transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of still another method for controlling channel detection according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the embodiment of the present invention provides a channel detection control method and related equipment, which dynamically adjusts the time when the base station sends the uplink grant information to the terminal, so that the adjusted time for transmitting the uplink grant information and the end of the downlink data transmission of the previous terminal are
  • LBT detection is not performed on the channel for transmitting the uplink grant information, thereby reducing the number of LBT detections and reducing the power consumption of the device.
  • FIG. 1 is a schematic flowchart diagram of a channel detection control method according to an embodiment of the present invention.
  • the channel detection control method can be applied to the authorized auxiliary access LAA technology to expand the use of the unlicensed spectrum based on the licensed spectrum.
  • an LBT detection technique can be introduced after listening.
  • the process is generally: before the signal transmission, the transmitting node (base station or terminal) needs to perform CCA (Clear Channel Assessment) detection on the transmission channel, where the energy detection method can be used to determine that when the energy of the transmission channel exceeds When a certain threshold is used, the transmission channel can be considered occupied, the transmission node cannot transmit on the transmission channel, and the transmission channel is observed during the CCA detection time; when the energy of the transmission channel is lower than a certain threshold, the transmission can be considered as the transmission. The channel is idle, and the transmitting node can perform data transmission on the channel.
  • CCA Carrier Channel Assessment
  • the embodiment of the invention discloses a scheme, when the interval between the downlink data transmission and the start time of the data transmission of the transmission node is within a specific range (which may be a preset time range) under the same carrier and the same base station.
  • the transmission node (base station or terminal) may not need to perform LBT detection. This not only helps to improve the efficiency of the system, but also significantly reduces the power consumption of the transmission node.
  • the method for controlling channel detection may include the following steps:
  • the base station acquires deadline information for performing downlink data transmission with the first terminal.
  • the base station in the LAA technology, can work in the licensed frequency band or Working in an unlicensed band.
  • the deadline information of the downlink data transmission may be obtained, and the first terminal may include a mobile phone, a tablet computer, a palmtop computer, a personal digital assistant (PDA), and a mobile internet.
  • a device Mobile Internet Device, MID
  • a smart wearable device such as a smart watch, a smart wristband, etc.
  • the cutoff time information may include, but is not limited to, at least one of a cutoff time (ie, an end time of downlink data transmission) and a system subframe number corresponding to the cutoff time.
  • the cutoff time may be converted into a corresponding system subframe number according to a preset rule, where the system subframe number corresponding to the cutoff time is a system subframe number corresponding to the base station and the second terminal, for example, the base station and the second terminal in the LTE system transmit Corresponding system subframe number.
  • the preset rule may be an existing conversion method, which is not limited in the embodiment of the present invention.
  • the specific implementation manner of the step 101 that the base station acquires the deadline information for performing downlink data transmission with the first terminal may include the following steps:
  • the base station performs downlink data transmission with the first terminal by using a physical downlink shared channel (PDSCH), and the downlink data transmission carries a reference signal, so that the first terminal demodulates the reference signal and feeds back the PDSCH to the base station.
  • PDSCH physical downlink shared channel
  • the base station determines the deadline information of the downlink data transmission according to the channel state information.
  • the base station when performing downlink data transmission with the first terminal, may perform quality estimation on the channel by including a reference signal in the PDSCH, and after receiving the reference signal, the first terminal demodulates the reference signal.
  • the channel state information of the PDSCH is fed back to the base station, and the base station can estimate the deadline information of the current downlink data transmission according to the channel state information.
  • the maximum downlink transmission time supported is 32 ms, and the cutoff time of the downlink data transmission may be delayed by 32 ms for the start time of the current downlink data transmission.
  • the reference signal may be a CRS (Cell Reference Signal), a DMRS (Demodulation Reference Signal), a CSI-RS (Channel State Information Reference Signal), or the like.
  • the embodiment of the invention is not limited.
  • the channel state information, that is, CSI may include, but is not limited to, PMI (Precoding Matrix Indicator), CQI (Channel Quality Indicator), RI (Rand Indicator), and PTI (Precoding). Type Indicator, Precoding type indication) and so on.
  • the base station receives a scheduling request sent by the second terminal that is randomly accessed by using the physical uplink control channel PUCCH.
  • the first terminal and the second terminal may be the same terminal, or may be two different terminals, which are not limited in the embodiment of the present invention.
  • the second terminal may include various types of terminals, such as a mobile phone, a tablet, a PDA, a PDA, a MID, a smart wearable device (such as a smart watch, a smart wristband, etc.), which are not limited in the embodiment of the present invention.
  • the second terminal when the same carrier is in the same base station, the second terminal may initiate random access to the base station to successfully access the base station.
  • the second terminal may send a scheduling request to the base station by using UCI (Uplink Control Information) of the PUCCH (Physical Uplink Control Channel) in addition to the Scheduling Request (SR) transmission.
  • UCI Uplink Control Information
  • PUCCH Physical Uplink Control Channel
  • SR Scheduling Request
  • the same carrier of the first terminal and the second terminal can be understood as the carrier used by the base station and the first terminal for downlink data transmission, and the base station is the same as the carrier used by the second terminal for PUCCH transmission. Wherein one or more channels may be included under one carrier.
  • the base station determines, according to the cutoff time information and the preset time range, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that when the base station sends the uplink grant information to the second terminal, the base station is configured to transmit the uplink grant.
  • the channel of the information is not subjected to the operation of the LBT detection after listening first.
  • the base station may respond to the scheduling request when the priority of the second terminal can be scheduled under the current base station and the uplink resource can be scheduled. And sending uplink grant information (Uplink Grant, UL grant) to the second terminal.
  • the base station may determine, according to the deadline information of the downlink data transmission of the first terminal and the preset time range, the time for sending the uplink grant information, so that the determined uplink grant information is sent, in order to reduce the LBT detection that is not necessary for the base station to perform the transmission.
  • the time interval between the time and the deadline information included in the downlink data transmission of the first terminal and the downlink data of the first terminal is within a preset time range, or the system subframe number corresponding to the uplink authorization information is corresponding to the deadline included in the deadline information.
  • the interval of the system subframe number is within the number of subframe symbols corresponding to the preset time range.
  • the determined time for sending the uplink grant information is a time point, and may also be a time range.
  • the preset time range is a time triggering threshold of the LBT detection, and the time triggering threshold may be 35 microseconds (us), or 25 us, or 16 us or less than 16 us, and the like, which is not limited in the embodiment of the present invention.
  • the time trigger threshold is 16us
  • the preset time range is 0 ⁇ 16us. If the cutoff time is a millisecond (ms), the time range for sending the uplink grant information is (a-16*10 -3 , a+ 16*10 -3 ).
  • the deadline information includes a cutoff time
  • the step 103 determines, according to the cutoff time information and the preset time range, a specific implementation manner of the time for sending the uplink grant information to the second terminal in response to the scheduling request, where The following steps:
  • the base station determines, according to the deadline, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that the interval between the cutoff time and the time for sending the uplink grant information is within a preset time range.
  • the base station when the interval between the downlink time of the downlink transmission of the base station and the first terminal and the time when the base station sends the uplink authorization information to the second terminal are within a preset time range, when the base station sends the uplink authorization information to the second terminal, The LBT detection is not performed on the channel used for transmitting the uplink grant information, that is, the base station can directly send the uplink grant information on the channel without detecting whether the channel for transmitting the uplink grant information is available.
  • the deadline information includes a system subframe number corresponding to the deadline
  • the step 103 determines, according to the deadline information and the preset time range, that the uplink authorization information is sent to the second terminal in response to the scheduling request.
  • the specific implementation of time includes the following steps:
  • the base station determines, according to the system subframe number corresponding to the cutoff time, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that the system subframe number corresponding to the cutoff time is a system subframe corresponding to the uplink grant information.
  • the interval of the number is within the number of subframe symbols corresponding to the preset time range.
  • the system subframe number corresponding to the cutoff time of the downlink data transmission of the first terminal and the system subframe number corresponding to the base station transmitting the uplink grant information to the second terminal are in the preset time range.
  • the base station sends the uplink grant information to the second terminal, the base station does not perform LBT detection on the channel for transmitting the uplink grant information, that is, the base station does not need to detect whether the channel for transmitting the uplink grant information is available, and may directly
  • the uplink grant information is sent on the channel.
  • the number of subframe symbols is the difference between the subframe numbers.
  • the base station may acquire the deadline information of the downlink data transmission with the first terminal, and receive the scheduling request sent by the second terminal that is the same as the first terminal of the first terminal, and according to the deadline.
  • the time and the preset time range are determined to be sent to the second terminal in response to the scheduling request.
  • the time of the uplink grant information, so that when the base station sends the uplink grant information to the second terminal, the operation for transmitting the uplink grant information may not be performed after the LBT detection is performed.
  • the time for the base station to send the uplink grant information to the terminal can be dynamically adjusted, so that the interval between the adjusted time for sending the uplink grant information and the deadline for the downlink data transmission of the previous terminal is at a preset time.
  • the LBT detection is not performed on the channel for transmitting the uplink grant information in the range. Thereby reducing the number of times the base station performs LBT detection and reducing the power consumption of the base station.
  • FIG. 2 is a schematic flowchart diagram of another method for controlling channel detection according to an embodiment of the present invention.
  • the channel detection control method can be applied to the authorized auxiliary access LAA technology to expand the use of the unlicensed spectrum based on the licensed spectrum.
  • the method for controlling channel detection may include the following steps:
  • the base station acquires deadline information for performing downlink data transmission with the first terminal.
  • the cutoff time information may include, but is not limited to, at least one of a cutoff time (ie, an end time of downlink data transmission) and a system subframe number corresponding to the cutoff time.
  • the base station receives a scheduling request sent by the second terminal that is randomly accessed by using the physical uplink control channel PUCCH.
  • the first terminal and the second terminal may be the same terminal, or may be two different terminals, and the base station and the first terminal use downlink carrier data transmission, and the base station and the second terminal perform PUCCH transmission.
  • the carrier used is the same.
  • the second terminal may periodically send a scheduling request to the base station. When the base station receives the scheduling request sent by the second terminal, the base station may not be scheduled or has no available uplink resources because the priority of the second terminal is too low. Instead of responding to the scheduling request, the second terminal periodically sends a scheduling request to the base station until the base station responds.
  • the base station determines, according to the cutoff time information and the preset time range, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that when the base station sends the uplink grant information to the second terminal, the base station transmits the uplink grant information.
  • the channel does not perform the operation of the LBT detection after listening first.
  • the preset time range is a time triggering threshold of the LBT detection, and the time triggering threshold may be 35 us, or 25 us, or 16 us or less than 16 us, and the like, which is not limited in the embodiment of the present invention.
  • the base station counts the number of times the scheduling request sent by the second terminal is received within the target time.
  • the target time is a time interval when the base station first receives the scheduling request sent by the second terminal to the determined critical time for transmitting the uplink authorization information.
  • the time for transmitting the uplink grant information determined by the deadline information and the preset time range may be a time range, and the critical time for transmitting the uplink grant information is the boundary of the time range.
  • the base station determines whether the number of times is less than or equal to a preset maximum retransmission threshold. If yes, step 206 is performed; if no, step 207 is performed.
  • the preset maximum retransmission threshold is a preset maximum number of times that the second terminal is allowed to repeatedly send a scheduling request to the base station.
  • the preset maximum retransmission threshold can be preset and stored in the base station.
  • the base station sends the uplink authorization information to the second terminal without performing the LBT detection operation, in response to the scheduling request sent by the second terminal received by the Nth time.
  • the base station may not send the second request to the second terminal without responding to the scheduling request, if the determined time for transmitting the uplink authorization information is not to perform the LBT detection.
  • the uplink authorization information may be selected to continue to wait.
  • the second terminal may periodically send a scheduling request to the base station. Each time the base station receives the scheduling request, the base station may determine to send the uplink to the second terminal in response to the scheduling request.
  • the time of the authorization information still satisfies the condition that the LBT detection is not performed, that is, whether the interval between the time when the uplink authorization information is sent to the second terminal in response to the scheduling request and the deadline included in the deadline information remains within the preset time range.
  • the time until the uplink grant information is sent to the second terminal tends to a critical value.
  • the base station sends the uplink grant information in a waiting manner, and dynamically adjusts the time for transmitting the uplink grant information, so that the base station can communicate with other terminals connected to the base station while waiting for the uplink grant information to be sent, thereby improving communication efficiency.
  • the base station when the number of times the scheduling request sent by the second terminal is received in the target time is less than or equal to the preset maximum retransmission threshold, that is, the number of times does not exceed the preset maximum retransmission threshold.
  • the time when the uplink authorization information is sent has reached the critical value.
  • the base station does not continue to wait, and can respond to the scheduling request sent by the second terminal received by the Nth time, and send the uplink authorization information to the second terminal without performing the LBT detection operation.
  • N is a positive integer not greater than the number of times.
  • the base station sends the uplink authorization information to the second terminal without performing the LBT detection operation, in response to the scheduling request sent by the second terminal received by the Mth.
  • the second terminal when the number of times the scheduling request sent by the second terminal is received in the target time is greater than the preset maximum retransmission threshold, it means that the uplink authorization information is sent when the number exceeds the preset maximum retransmission threshold.
  • the time has not yet reached the critical value.
  • the second terminal can only send the scheduling request with the same number of times as the preset maximum retransmission threshold to the base station, and the base station can respond to the scheduling of the second terminal received by the Mth time.
  • the request is to send the uplink authorization information to the second terminal without performing the LBT detection operation, where M is a positive integer not greater than a preset maximum retransmission threshold.
  • the second terminal may perform a PUSCH (Physical Uplink Shared Channel) transmission with the base station in response to the uplink grant information.
  • PUSCH Physical Uplink Shared Channel
  • the base station may control the second terminal in the subframe according to the TA (Timing Advance) configured by the base station to the second terminal.
  • PUSCH transmission is performed on n+k (k is a positive integer not less than 0).
  • k is 4
  • TDD Time Division Duplex
  • FIG. 3 is a schematic diagram of uplink and downlink data transmission according to an embodiment of the present invention.
  • each small cell represents one subframe.
  • the base station may control the second terminal to perform PUSCH transmission on at least the n+4th subframe.
  • the interval between the deadline of the downlink data transmission between the base station and the first terminal and the time when the base station sends the uplink authorization information is within a preset time range.
  • the preset time range in which the above base station does not need to perform LBT detection is defined as a subframe boundary. Considering that the unit after the sub-frame is converted into time is milliseconds, the time range unit here should also be milliseconds, and the symbols in the subframe should also be Convert to the corresponding milliseconds. Of course, in view of the time unit of LBT detection, the range unit can also be microseconds.
  • the start node of the second terminal uplink burst or the downlink transmission cutoff time of the first terminal is not located at the boundary, the remaining symbols in the subframe send a start signal for downlink coarse synchronization and/or channel reservation ( Initial signal) or reservation signal.
  • the time for the base station to send the uplink grant information to the terminal can be dynamically adjusted, thereby reducing the number of times the base station performs LBT detection and reducing the power consumption of the base station.
  • the concept of the maximum threshold for sending a scheduling request by the terminal is introduced, and the time for transmitting the uplink authorization information can be more flexibly adjusted.
  • FIG. 4 is a schematic flowchart diagram of still another method for controlling channel detection according to an embodiment of the present invention.
  • the channel detection control method can be applied to the authorized auxiliary access LAA technology to expand the use of the unlicensed spectrum based on the licensed spectrum.
  • the method for controlling channel detection may include the following steps:
  • the base station acquires deadline information for performing downlink data transmission with the first terminal.
  • the cutoff time information may include, but is not limited to, at least one of a cutoff time and a system subframe number corresponding to the cutoff time.
  • the specific implementation manner of the step 401 base station acquiring the deadline information for performing downlink data transmission with the first terminal may include the following steps:
  • the base station performs downlink data transmission with the first terminal by using the PDSCH channel, where the downlink data transmission carries a reference signal, so that the first terminal demodulates the reference signal and feeds back channel state information of the PDSCH to the base station;
  • the base station determines the deadline information of the downlink data transmission according to the channel state information.
  • the reference signal may be a CRS, a DMRS, a CSI-RS, or the like, which is not limited in the embodiment of the present invention.
  • Channel state information that is, CSI, may generally include, but is not limited to, PMI, CQI, RI, PTI, and the like.
  • the base station receives a scheduling request sent by the second terminal that is randomly accessed through the physical uplink control channel PUCCH.
  • the first terminal and the second terminal may be the same terminal, or may be two different terminals.
  • the specific implementation manner of the base station receiving the scheduling request sent by the second terminal of the random access by using the physical uplink control channel (PUCCH) may include the following steps:
  • the base station sends the uplink grant information and the indication information to the second terminal, where the indication information includes a start time for indicating that the second terminal responds to the uplink grant information and the base station performs PUSCH transmission, and is used to indicate whether to execute the first.
  • the LBT detects the identification information so that the second terminal does not perform LBT detection on the PUSCH when performing PUSCH transmission with the base station.
  • the base station when the priority of the second terminal can be scheduled under the current base station and the uplink resource can be scheduled, the base station can send the uplink authorization to the second terminal in response to the scheduling request sent by the second terminal.
  • the information may be sent to the second terminal, where the indication information may be used to indicate the start time of the second terminal in response to the uplink grant information and the base station process PUSCH transmission, and may also be used to indicate whether to perform the LBT detection identifier information.
  • the interval between the start time of the PUSCH transmission and the cutoff time included in the cutoff time information is within a preset time range, or the system subframe number corresponding to the PUSCH transmission and the system subframe number corresponding to the cutoff time included in the cutoff time information
  • the interval is within the number of subframe symbols corresponding to the preset time range, whether the above-mentioned identification information for performing LBT detection is configured by the base station not to perform LBT detection, so that the second terminal does not perform LBT on the PUSCH channel when performing PUSCH transmission with the base station. The operation of the test.
  • the identifier information of whether the LBT detection is performed is used to indicate whether the second terminal performs the LBT detection operation, and may be represented by an identifier bit, for example, 0 means no LBT detection is performed, 1 means LBT detection is performed, or 0 is performed. LBT detection, 1 means no LBT detection is performed.
  • the carrier and the base station used by the base station and the first terminal for downlink data transmission are the same as the carrier used for the PUSCH transmission performed by the second terminal.
  • the preset time range is a time triggering threshold of the LBT detection, and the time triggering threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the start time of the second terminal in response to the uplink grant information and the base station performing PUSCH transmission indicated by the indication information may be a time point or a time range.
  • FIG. 5 is another schematic diagram of uplink and downlink data transmission according to an embodiment of the present invention.
  • the terminal here refers to the second terminal, and each cell represents one subframe, and it is assumed that the base station transmits uplink grant information on the nth subframe (that is, the terminal receives the uplink grant in the nth subframe).
  • the second terminal may be controlled to perform PUSCH transmission on at least the n+4th subframe.
  • the interval between the cutoff time of the downlink data transmission of the base station and the first terminal and the start time of the PUSCH transmission performed by the second terminal is within a preset time range.
  • the start time of the PUSCH transmission of the terminal and the base station can be controlled, so that the start time of the PUSCH transmission is separated from the deadline of the downlink data transmission of the previous terminal terminal.
  • the LBT detection may not be performed, thereby reducing the number of times the terminal performs LBT detection and reducing the power consumption of the terminal.
  • FIG. 6 is a schematic flowchart diagram of still another method for controlling channel detection according to an embodiment of the present invention.
  • the channel detection control method can be applied to the authorized auxiliary access LAA technology to expand the use of the unlicensed spectrum based on the licensed spectrum.
  • the control method of the channel detection may include the following steps:
  • the terminal After the terminal randomly accesses the base station, the terminal sends a scheduling request to the base station by using a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • step 601 after the terminal randomly accesses the base station, the specific implementation manner in which the terminal sends a scheduling request to the base station by using the physical uplink control channel (PUCCH) may include the following steps:
  • the terminal After the terminal randomly accesses the base station, the terminal sends a scheduling request to the base station at a specific time through the physical uplink control channel PUCCH.
  • the terminal receives uplink authorization information and indication information that is sent by the base station in response to the scheduling request, where the indication information includes a start time for indicating that the terminal responds to the uplink authorization information with the base station, and an identifier for indicating whether to perform LBT detection. information.
  • the base station when the priority of the terminal can be scheduled under the current base station and the uplink resource can be scheduled, the base station can respond to the scheduling request sent by the terminal, and send the uplink authorization information to the terminal,
  • the indication information may be sent to the terminal, where the indication information may be used to indicate the start time of the terminal to perform the PUSCH transmission with the base station in response to the uplink authorization information, and may also be used to indicate whether to perform the LBT detection identifier information, when the start time of the PUSCH transmission is
  • the system that the base station acquires the cutoff time information of the downlink data transmission with the first terminal includes the cutoff time within the preset time range, or the system corresponding to the cutoff time included in the cutoff time information corresponding to the system subframe number corresponding to the PUSCH transmission When the interval of the subframe number is within the number of subframe symbols corresponding to the preset time range, whether the above-mentioned identification information for performing LBT detection is configured by the base station to not perform LBT detection.
  • the terminal and the first terminal may be the same terminal, or may be different terminals.
  • the carrier and the base station used by the base station and the first terminal for downlink data transmission are performed with the terminal
  • the carrier used for PUSCH transmission is the same.
  • the base station when the base station transmits the uplink grant information on the subframe n (n is a positive integer not less than 0), the base station may control the terminal to be in the subframe according to the timing advance TA configured by the base station to the terminal.
  • PUSCH transmission is performed on n+k (k is a positive integer not less than 0).
  • k is 4; in the TDD system, k is greater than or equal to 4.
  • the preset time range is a time trigger threshold of the LBT detection.
  • the time-triggered threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the terminal determines, according to the indication information, a start time for performing PUSCH transmission with the base station, so that the terminal does not perform an LBT detection operation on the PUSCH when performing the PUSCH transmission with the base station.
  • the terminal when the base station transmits the uplink grant information on the nth subframe (that is, the terminal receives the uplink grant information on the nth subframe), the terminal may control the terminal in at least the n+4th sub-interface.
  • PUSCH transmission is performed on the frame.
  • the cutoff time of the downlink data transmission between the base station and the first terminal and the start time of the PUSCH transmission performed by the base station and the terminal are within a preset time range.
  • the terminal may perform LBT detection when performing PUSCH transmission, thereby reducing the number of times the terminal performs LBT detection and reducing the power consumption of the terminal.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the base station may include:
  • the obtaining unit 701 is configured to acquire deadline information for performing downlink data transmission with the first terminal.
  • the base station in the LAA technology, can work in both the licensed frequency band and the unlicensed frequency band.
  • the deadline information of the downlink data transmission may be obtained.
  • the deadline information may include, but is not limited to, at least one of a deadline (ie, an end time of downlink data transmission) and a system subframe number corresponding to the deadline.
  • the cutoff time can be converted into a corresponding system subframe number according to a preset rule, where the system subframe corresponding to the cutoff time
  • the number is a system subframe number corresponding to the base station and the second terminal, for example, the system subframe number corresponding to the base station and the second terminal transmission in the LTE system.
  • the preset rule may be an existing conversion method, which is not limited in the embodiment of the present invention.
  • the receiving unit 702 is configured to receive a scheduling request that is sent by the second terminal that is randomly accessed by using the physical uplink control channel PUCCH.
  • the first terminal and the second terminal may be the same terminal, or may be two different terminals, which are not limited in the embodiment of the present invention.
  • the second terminal Under the same carrier and the base station, the second terminal may initiate random access to the base station to successfully access the base station.
  • the second terminal may send a scheduling request to the base station through the UCI of the PUCCH on the basis of supporting the scheduling request transmission.
  • the same carrier of the first terminal and the second terminal can be understood as the carrier used by the base station and the first terminal for downlink data transmission, and the base station is the same as the carrier used by the second terminal for PUCCH transmission.
  • the first determining unit 703 is configured to determine, according to the cutoff time information and the preset time range, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that the base station sends the uplink grant information to the second terminal.
  • the channel for transmitting the uplink grant information does not perform the operation of the LBT detection after listening first.
  • the receiving unit 702 may respond to the scheduling if the priority of the second terminal can be scheduled under the current base station and the uplink resource can be scheduled. Requesting and sending uplink authorization information to the second terminal.
  • the first determining unit 703 may determine, according to the foregoing information about the downlink time of the downlink data transmission of the first terminal and the preset time range stored in the base station, the sending uplink is obtained by the acquiring unit 701.
  • the time of the authorization information so that the determined time for transmitting the uplink authorization information is within a preset time range between the time interval of the base station and the deadline information of the downlink data transmission of the first terminal, or the system corresponding to the uplink authorization information is sent.
  • the interval between the subframe number corresponding to the cutoff time included in the cutoff time information and the system subframe number is within the number of subframe symbols corresponding to the preset time range.
  • the determined time for sending the uplink grant information is a time point, and may also be a time range.
  • the preset time range is a time triggering threshold of the LBT detection, and the time triggering threshold may be 35 us, or 25 us, or 16 us or less than 16 us, and the like, which is not limited in the embodiment of the present invention.
  • the first determining unit 703 determines, according to the cutoff time information and the preset time range, the time for sending the uplink grant information to the second terminal in response to the scheduling request.
  • the specific implementation may be:
  • the first determining unit 703 determines, according to the cutoff time, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that the interval between the cutoff time and the time for sending the uplink grant information is within a preset time range.
  • the first determining unit 703 determines, according to the deadline information and the preset time range, that the scheduling request is sent to the second terminal.
  • the specific implementation time of the uplink authorization information may be:
  • the first determining unit 703 determines, according to the system subframe number corresponding to the cutoff time, a time for sending the uplink grant information to the second terminal in response to the scheduling request, so that the system subframe number corresponding to the cutoff time is corresponding to the system that sends the uplink grant information.
  • the interval of the subframe number is within the number of subframe symbols corresponding to the preset time range.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the base station shown in FIG. 8 is further optimized based on the base station shown in FIG. 7.
  • the acquiring unit 701 in the base station shown in FIG. 8 may include:
  • the transmitting unit 7011 is configured to perform downlink data transmission with the first terminal by using the physical downlink shared channel PDSCH, where the downlink data transmission carries a reference signal, so that the first terminal demodulates the reference signal and feeds back channel state information of the PDSCH to the base station;
  • the second determining unit 7012 is configured to determine, according to the channel state information, deadline information of the downlink data transmission.
  • the reference signal may be a CRS, a DMRS, a CSI-RS, or the like, which is not limited in the embodiment of the present invention.
  • Channel state information that is, CSI, may generally include, but is not limited to, PMI, CQI, RI, PTI, and the like.
  • the base station shown in FIG. 8 may further include:
  • the statistics unit 704 is configured to count the number of times the scheduling request sent by the second terminal is received in the target time, where the target time is the time when the base station first receives the scheduling request sent by the second terminal to the determined critical time for sending the uplink authorization information. time interval;
  • the determining unit 705 is configured to determine whether the number of times is less than or equal to a preset maximum retransmission threshold
  • the sending unit 706 is configured to: when the determining unit 705 determines that the number of times is less than or equal to the preset maximum retransmission threshold, responding to the scheduling request sent by the second terminal received by the Nth time, without performing the LBT detection operation
  • the second terminal sends the uplink authorization information, where N is a positive integer not greater than the number of times;
  • the sending unit 706 is further configured to: when the determining unit 705 determines that the number of times is greater than a preset maximum retransmission threshold, responding to the scheduling request sent by the second terminal received by the Mth, without performing the LBT detection operation
  • the second terminal sends the uplink authorization information, where M is a positive integer that is not greater than a preset maximum retransmission threshold.
  • the time for the base station to send the uplink grant information to the terminal can be dynamically adjusted, thereby reducing the number of times the base station performs LBT detection and reducing the power consumption of the base station.
  • the concept of the maximum threshold for sending a scheduling request by the terminal is introduced, and the time for transmitting the uplink authorization information can be more flexibly adjusted.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the base station 900 can include at least one processor 901, such as a CPU (Central Processing Unit), at least one input device 902, at least one output device 903, a memory 904, and the like. Among them, these components are communicatively connected by one or more buses 905.
  • processor 901 such as a CPU (Central Processing Unit)
  • input device 902 at least one input device 902
  • the output device 903 a memory 904, and the like.
  • these components are communicatively connected by one or more buses 905.
  • the structure of the base station shown in FIG. 9 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the illustration or Fewer parts, or a combination of some parts, or different parts. among them:
  • the input device 902 may include a wired interface, a wireless interface, and the like, and may be used to receive signals transmitted by the terminal for uplink.
  • the output device 903 can include a wired interface, a wireless interface, etc., and can be used to downlink signals to the terminal and the like.
  • the memory 904 may be a high speed RAM memory or a non-unstable memory, such as at least one disk memory.
  • the memory 904 can also optionally be at least one storage device located remotely from the aforementioned processor 901. As shown in FIG. 9, the application program, the data, and the like may be included in the memory 904, which is not limited by the embodiment of the present invention.
  • the processor 901 can be used to call an application stored in the memory 904. Order to do the following:
  • the control input device 902 receives a scheduling request sent by the second terminal of the random access through the physical uplink control channel PUCCH, where the base station uses the same carrier used by the downlink data transmission of the first terminal and the carrier used by the PUCCH transmission of the second terminal;
  • the channel transmitting the uplink grant information does not perform the operation of the LBT detection after listening first.
  • the first terminal and the first terminal may be the same terminal, or may be different terminals.
  • the preset time range is the time trigger threshold for LBT detection.
  • the time-triggered threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the specific implementation manner of the processor 901 acquiring the deadline information for performing downlink data transmission with the first terminal may be:
  • the control output device 903 performs downlink data transmission with the first terminal through the physical downlink shared channel PDSCH, and the downlink data transmission carries a reference signal, so that the first terminal demodulates the reference signal and feeds back channel state information of the PDSCH to the base station;
  • the cutoff time information of the downlink data transmission is determined according to the channel state information.
  • the deadline information includes a cutoff time
  • the processor 901 determines, according to the cutoff time information and the preset time range stored in the memory 904, that the uplink authorization information is sent to the second terminal in response to the scheduling request.
  • the specific implementation of time can be:
  • the cutoff time information includes a system subframe number corresponding to the cutoff time
  • the processor 901 determines, according to the cutoff time information and the preset time range stored in the memory 904, to respond to the scheduling request to the second
  • the specific implementation manner of the time when the terminal sends the uplink authorization information may be:
  • the time of the uplink grant information is such that the interval between the system subframe number corresponding to the cutoff time and the system subframe number corresponding to the uplink grant information is within the number of subframe symbols corresponding to the preset time range stored in the memory 904.
  • the processor 901 may also call an application stored in the memory 904 and perform the following operations:
  • the target time is the time interval from the time when the base station first receives the scheduling request sent by the second terminal to the determined critical time for transmitting the uplink authorization information
  • the control output device 903 When the number of times is less than or equal to the preset maximum retransmission threshold stored in the memory 904, in response to the scheduling request sent by the second terminal received by the input device 902 for the Nth time, the control output device 903 does not perform the LBT detection operation. Sending uplink authorization information to the second terminal, where N is a positive integer not greater than the number of times;
  • the control output device 903 sends an uplink grant to the second terminal without performing the LBT detection operation, in response to the scheduling request sent by the second terminal received by the input device 902.
  • M is a positive integer not greater than the preset maximum retransmission threshold.
  • the base station introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the method for controlling channel detection introduced in conjunction with FIG. 1 or FIG.
  • the time for the base station to send the uplink grant information to the terminal can be dynamically adjusted, thereby reducing the number of times the base station performs LBT detection and reducing the power consumption of the base station.
  • the concept of the maximum threshold for sending a scheduling request by the terminal is introduced, and the time for transmitting the uplink authorization information can be more flexibly adjusted.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the base station may include:
  • the obtaining unit 1001 is configured to acquire the deadline information for performing downlink data transmission with the first terminal.
  • the cutoff time information may include, but is not limited to, at least one of a cutoff time and a system subframe number corresponding to the cutoff time.
  • the receiving unit 1002 is configured to receive a scheduling request sent by the second terminal that is randomly accessed by using the physical uplink control channel PUCCH.
  • the first terminal and the second terminal may be the same terminal, or may be two different terminals.
  • the receiving unit 1002 may be specifically configured to receive a scheduling request that the second terminal that is randomly accessed sends to the base station at a specific time through the physical uplink control channel PUCCH.
  • the sending unit 1003 is configured to send the uplink grant information and the indication information to the second terminal, where the indication information includes a start for indicating that the second terminal responds to the uplink grant information with the base station to perform physical uplink shared channel PUSCH transmission.
  • Time and indication information for indicating whether to perform LBT detection after listening when the interval between the start time of the PUSCH transmission and the cutoff time included in the cutoff time information is within a preset time range, or when the PUSCH transmits the corresponding system
  • the interval between the frame number and the system subframe number corresponding to the cutoff time includes the number of subframe symbols corresponding to the preset time range, whether the identifier information for performing the LBT detection is configured by the base station not to perform the LBT detection, When the second terminal and the base station perform PUSCH transmission, the LBT detection operation is not performed on the PUSCH.
  • whether the identifier information for performing the LBT detection is used to indicate whether the second terminal performs the LBT detection operation may be represented by a flag bit 0 or 1.
  • the carrier used by the base station and the first terminal for downlink data transmission is the same as the carrier used by the base station for PUSCH transmission by the second terminal.
  • the preset time range is a time triggering threshold of the LBT detection, and the time triggering threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the start time of the second terminal in response to the uplink grant information and the base station performing PUSCH transmission indicated by the indication information may be a time point or a time range.
  • FIG. 11 is a schematic structural diagram of another base station according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the base station shown in FIG. 11 is further optimized based on the base station shown in FIG. Compared with the base station shown in FIG. 10, the acquiring unit 1001 in the base station shown in FIG. 11 may include:
  • the transmitting unit 1001a is configured to perform downlink data transmission with the first terminal by using the physical downlink shared channel PDSCH, where the downlink data transmission carries a reference signal, so that the first terminal demodulates the reference signal. And feeding back, to the base station, channel state information of the PDSCH;
  • the determining unit 1001b is configured to determine the cutoff time information of the downlink data transmission according to the channel state information.
  • the reference signal may be a CRS, a DMRS, a CSI-RS, or the like, which is not limited in the embodiment of the present invention.
  • Channel state information that is, CSI, may generally include, but is not limited to, PMI, CQI, RI, PTI, and the like.
  • the start time of the PUSCH transmission of the terminal and the base station can be controlled to make the start time of the PUSCH transmission and the downlink data transmission of the previous terminal terminal.
  • the terminal may perform LBT detection when performing PUSCH transmission, thereby reducing the number of times the terminal performs LBT detection and reducing the power consumption of the terminal.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present invention, which is used to perform a channel detection control method provided by an embodiment of the present invention.
  • the base station 1200 can include at least one processor 1201, such as a CPU, at least one input device 1202, at least one output device 1203, a memory 1204, and the like. Among them, these components are communicatively connected through one or more buses 1205. It can be understood by those skilled in the art that the structure of the base station shown in FIG. 12 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the figure or Fewer parts, or a combination of some parts, or different parts. among them:
  • the input device 1202 may include a wired interface, a wireless interface, and the like, and may be used to receive signals and the like transmitted by the terminal.
  • the output device 1203 may include a wired interface, a wireless interface, etc., and may be used to downlink signals and the like to the terminal.
  • the memory 1204 may be a high speed RAM memory or a non-unstable memory, such as at least one disk memory.
  • the memory 1204 can optionally also be at least one storage device located remotely from the aforementioned processor 1201. As shown in FIG. 12, the application program, the data, and the like may be included in the memory 1204, which is not limited by the embodiment of the present invention.
  • the processor 1201 can be used to call an application stored in the memory 1204 to perform the following operations:
  • the control input device 1202 receives a scheduling request sent by the second terminal of the random access through the physical uplink control channel PUCCH;
  • the control output device 1203 sends the uplink grant information and the indication information to the second terminal, where the indication information includes a start time for instructing the second terminal to perform physical uplink shared channel PUSCH transmission with the base station in response to the uplink grant information, and It is used to indicate whether to perform identification information of LBT detection after listening first;
  • the identifier information for performing the LBT detection is configured by the base station not to perform LBT detection, so that the PUSCH is not transmitted when the second terminal and the base station perform PUSCH transmission.
  • the operation of performing the LBT detection wherein the identifier information for performing the LBT detection is used to indicate whether the second terminal performs the LBT detection operation, the carrier used by the base station and the first terminal for downlink data transmission, and the PUSCH performed by the base station and the second terminal.
  • the carrier used for transmission is the same.
  • the first terminal and the first terminal may be the same terminal, or may be different terminals.
  • the preset time range is the time trigger threshold for LBT detection.
  • the time-triggered threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the specific implementation manner of the processor 1201 acquiring the deadline information for performing downlink data transmission with the first terminal may be:
  • the control output device 1203 performs downlink data transmission with the first terminal through the physical downlink shared channel PDSCH, where the downlink data transmission carries a reference signal, so that the first terminal demodulates the reference signal and feeds back channel state information of the PDSCH to the base station;
  • the cutoff time information of the downlink data transmission is determined according to the channel state information.
  • the processor 1201 controls the input device 1202 to receive a scheduling request that is sent by the second terminal of the random access by using the physical uplink control channel PUCCH.
  • the control input device 1202 receives a scheduling request sent by the second terminal of the random access to the base station at a specific time through the physical uplink control channel PUCCH.
  • the base station introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the control method for channel detection introduced in conjunction with FIG. 4 of the present invention.
  • the start time of the PUSCH transmission of the terminal and the base station can be controlled, so that the start time of the PUSCH transmission is separated from the deadline of the downlink data transmission of the previous terminal terminal.
  • the LBT detection may not be performed, thereby reducing the number of times the terminal performs LBT detection and reducing the power consumption of the terminal.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the terminal may include:
  • the sending unit 1301 is configured to send a scheduling request to the base station by using a physical uplink control channel (PUCCH) after the terminal randomly accesses the base station.
  • PUCCH physical uplink control channel
  • the sending unit 1301 may be specifically configured to send a scheduling request to the base station at a specific time through the physical uplink control channel PUCCH after the terminal randomly accesses the base station.
  • the receiving unit 1302 is configured to receive uplink authorization information and indication information that are sent by the base station in response to the scheduling request, where the indication information includes a start time for indicating, by the terminal, the physical uplink shared channel (PUSCH) transmission with the base station in response to the uplink grant information, and is used for indicating Whether to perform the identification information of the LBT detection after listening, when the start time of the PUSCH transmission and the cutoff time included in the deadline information of the downlink data transmission by the first terminal are within a preset time range, or When the system subframe number corresponding to the PUSCH transmission and the system subframe number corresponding to the cutoff time include the number of subframe symbols corresponding to the preset time range, whether the identifier information for performing the LBT detection is configured by the base station In order not to perform LBT detection.
  • the indication information includes a start time for indicating, by the terminal, the physical uplink shared channel (PUSCH) transmission with the base station in response to the uplink grant information, and is used for indicating Whether to perform
  • the receiving unit 1302 may trigger the uplink authorization information sent by the base station to respond to the scheduling request.
  • the terminal and the first terminal may be the same terminal, or may be two different terminals.
  • the identifier information for performing the LBT detection is used to indicate whether the terminal performs the LBT detection operation.
  • the carrier and the base station used by the base station and the first terminal for downlink data transmission are the same as those used by the terminal for PUSCH transmission.
  • the preset time range is a time trigger threshold of the LBT detection.
  • the time-triggered threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the determining unit 1303 is configured to determine, according to the indication information, a start time for performing PUSCH transmission with the base station, so that the terminal does not perform an LBT detection operation on the PUSCH when performing the PUSCH transmission with the base station.
  • the start time of the PUSCH transmission performed by the terminal indicated by the base station can be received, so that the interval between the start time of the PUSCH transmission and the deadline of the downlink data transmission of the previous terminal is
  • the LBT detection may not be performed, thereby reducing the number of times the terminal performs LBT detection and reducing the power consumption of the terminal.
  • FIG. 14 is a schematic structural diagram of another terminal according to an embodiment of the present invention, for performing a channel detection control method provided by an embodiment of the present invention.
  • the terminal 1400 can include at least one processor 1401, such as a CPU, at least one input device 1402, at least one output device 1403, a memory 1404, and the like. Among them, these components are communicatively connected by one or more buses 1405.
  • the structure of the terminal shown in FIG. 14 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the figure or Fewer parts, or a combination of some parts, or different parts. among them:
  • the input device 1402 may include a wired interface, a wireless interface, and the like, and may be used to obtain a signal sent by the base station in downlink.
  • the output device 1403 may include a wired interface, a wireless interface, etc., and may be used to uplink signals to the base station and the like.
  • the memory 1404 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
  • the memory 1404 can also optionally be at least one storage device located remotely from the aforementioned processor 1401.
  • the operating system, the application program, the data, and the like may be included in the memory 1404 as a computer storage medium, which is not limited in the embodiment of the present invention.
  • the processor 1401 can be used to call an application stored in the memory 1404 to perform the following operations:
  • the control output device 1403 After the terminal randomly accesses the base station, the control output device 1403 passes the physical uplink control channel.
  • the PUCCH sends a scheduling request to the base station;
  • the control input device 1402 receives the uplink grant information and the indication information sent by the base station in response to the scheduling request, where the indication information includes a start time for indicating, by the terminal, the physical uplink shared channel PUSCH transmission with the base station in response to the uplink grant information, and is used to indicate whether Performing the identification information of the LBT detection after listening, when the start time of the PUSCH transmission and the cutoff time included in the deadline information of the downlink data transmission by the first terminal are within a preset time range, or when When the interval between the system subframe number corresponding to the cutoff time included in the PUSCH transmission and the system subframe number corresponding to the cutoff time information is within the preset number of subframes, the identifier information for performing the LBT detection is configured by the base station as Do not perform LBT detection;
  • the identifier information for performing the LBT detection is used to indicate whether the terminal performs the LBT detection operation, and the base station and the carrier used by the first terminal for downlink data transmission and the carrier used by the base station and the terminal for PUSCH transmission are the same.
  • the terminal and the first terminal may be the same terminal, or may be different terminals.
  • the preset time range is the time trigger threshold for LBT detection.
  • the time-triggered threshold may be 35 us, or 25 us, or 16 us or less than 16 us, etc., which is not limited in the embodiment of the present invention.
  • the processor 1401 when the terminal randomly accesses the base station, and the control output device 1403 sends a scheduling request to the base station by using the physical uplink control channel (PUCCH), may be:
  • the control output device 1403 After the terminal randomly accesses the base station, the control output device 1403 sends a scheduling request to the base station at a specific time through the physical uplink control channel PUCCH.
  • the terminal introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the control method for channel detection introduced in conjunction with FIG. 6 of the present invention.
  • the terminal by implementing the terminal shown in FIG. 14, the start time of the PUSCH transmission performed by the terminal and the base station indicated by the base station can be received, so that the start time of the PUSCH transmission and the deadline of the downlink data transmission of the previous terminal are
  • the terminal may perform LBT detection when performing PUSCH transmission, thereby reducing the number of times the terminal performs LBT detection and reducing the power consumption of the terminal.
  • Modules or sub-modules in all embodiments of the present invention may be implemented by a general-purpose integrated circuit, such as a CPU. Or implemented by an ASIC (Application Specific Integrated Circuit).
  • a general-purpose integrated circuit such as a CPU.
  • ASIC Application Specific Integrated Circuit
  • the base station and the unit in the terminal may be combined, divided, and deleted according to actual needs.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信道检测的控制方法及相关设备,其中,该方法包括:基站获取与第一终端进行下行数据传输的截止时间信息;接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,与第一终端下行数据传输所使用的载波和第二终端的PUCCH传输所使用的载波相同;根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间,以使基站向第二终端发送上行授权信息时可以对用于传输上行授权信息的信道不进行先听后说LBT检测的操作。实施本发明实施例,能够减少基站进行LBT检测的次数,降低基站的功耗。

Description

一种信道检测的控制方法及相关设备
本申请要求于2015年12月17日提交中国专利局、申请号为201510954042.3、发明名称为“一种信道检测的控制方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种信道检测的控制方法及相关设备。
背景技术
随着通信业务量的急剧增加,授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,可以在授权频谱的基础上扩大使用未授权频谱。3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)组织提出了LAA(Licensed Assisted Access,授权辅助接入)技术以实现在LTE(Long Term Evolution,长期演进)授权频谱的基础上来使用未授权频谱。为了与未授权频谱更好的共存,在LTE中引入LBT(Listen Before Talk,先听后说)机制,使得LTE在非授权频谱上如果检测到信道忙时不占用该信道,如果检测到信道闲才占用。在现有的LAA中,当出现上下行数据转换时,传输节点都需要执行LBT检测,以检测传输信道是否可用。因此,这样会出现一些不必要的LBT检测;此外,过多的LBT检测会导致传输节点的功耗增加。
发明内容
本发明实施例提供了一种信道检测的控制方法及相关设备,能够减少LBT检测的次数,降低设备的功耗。
本发明实施例第一方面提供了一种信道检测的控制方法,应用于授权辅助接入LAA技术中,包括:
基站获取与第一终端进行下行数据传输的截止时间信息;
所述基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,其中,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUCCH传输所使用的载波相同;
所述基站根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述基站向所述第二终端发送所述上行授权信息时对用于传输所述上行授权信息的信道不进行先听后说LBT检测的操作。
本发明实施例第二方面提供了一种信道检测的控制方法,应用于授权辅助接入LAA技术中,包括:
基站获取与第一终端进行下行数据传输的截止时间信息;
所述基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求;
所述基站响应所述调度请求,向所述第二终端发送上行授权信息和指示信息,所述指示信息包括用于指示所述第二终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息;
当所述PUSCH传输的起始时间与所述截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测,以使所述第二终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作,其中,所述是否执行LBT检测的标识信息用于表示所述第二终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUSCH传输所使用的载波相同。
本发明实施例第三方面提供了一种信道检测的控制方法,应用于授权辅助接入LAA技术中,包括:
当终端随机接入基站后,所述终端通过物理上行控制信道PUCCH向所述基站发送调度请求;
所述终端接收所述基站响应所述调度请求发送的上行授权信息和指示信息,所述指示信息包括用于指示所述终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当所述PUSCH传输的起始时间与所述基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测;
所述终端根据所述指示信息确定与所述基站进行所述PUSCH传输的起始时间,以使所述终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作;
其中,所述是否执行LBT检测的标识信息用于表示所述终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述终端的所述PUSCH传输所使用的载波相同。
本发明实施例第四方面提供了一种基站,包括:
获取单元,用于获取与第一终端进行下行数据传输的截止时间信息;
接收单元,用于接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,其中,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUCCH传输所使用的载波相同;
第一确定单元,用于根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述基站向所述第二终端发送所述上行授权信息时对用于传输所述上行授权信息的信道不进行先听后说LBT检测的操作。
本发明实施例第五方面提供了一种基站,包括:
获取单元,用于获取与第一终端进行下行数据传输的截止时间信息;
接收单元,用于接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求;
发送单元,用于响应所述调度请求,向所述第二终端发送上行授权信息和 指示信息,所述指示信息包括用于指示所述第二终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当所述PUSCH传输的起始时间与所述截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测,以使所述第二终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作,其中,所述是否执行LBT检测的标识信息用于表示所述第二终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUSCH传输所使用的载波相同。
本发明实施例第六方面提供了一种终端,包括:
发送单元,用于当所述终端随机接入基站后,通过物理上行控制信道PUCCH向所述基站发送调度请求;
接收单元,用于接收所述基站响应所述调度请求发送的上行授权信息和指示信息,所述指示信息包括用于指示所述终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当所述PUSCH传输的起始时间与所述基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测;
确定单元,用于根据所述指示信息确定与所述基站进行所述PUSCH传输的起始时间,以使所述终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作;
其中,所述是否执行LBT检测的标识信息用于表示所述终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述终端的所述PUSCH传输所使用的载波相同。
本发明实施例中,在授权辅助接入LAA技术中,基站可以获取与第一终端进行下行数据传输的截止时间信息,并接收随机接入的与第一终端同载波的第二终端发送的调度请求,并根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间,以使基站向第二终端发送上行授权信息时可以对用于传输上行授权信息的信道不进行先听后说LBT检测的操作。可见,实施本发明实施例,能够通过动态调整基站向终端发送上行授权信息的时间,以使得调整后的发送上行授权信息的时间与上一个终端下行数据传输的截止时间的间隔在预设时间范围内时对用于传输上行授权信息的信道不进行LBT检测。从而减少基站进行LBT检测的次数,降低基站的功耗。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种信道检测的控制方法的流程示意图;
图2是本发明实施例提供的另一种信道检测的控制方法的流程示意图;
图3是本发明实施例提供的一种上下行数据传输示意图;
图4是本发明实施例提供的又一种信道检测的控制方法的流程示意图;
图5是本发明实施例提供的另一种上下行数据传输示意图;
图6是本发明实施例提供的又一种信道检测的控制方法的流程示意图;
图7是本发明实施例提供的一种基站的结构示意图;
图8是本发明实施例提供的另一种基站的结构示意图;
图9是本发明实施例提供的又一种基站的结构示意图;
图10是本发明实施例提供的又一种基站的结构示意图;
图11是本发明实施例提供的又一种基站的结构示意图;
图12是本发明实施例提供的又一种基站的结构示意图;
图13是本发明实施例提供的一种终端的结构示意图;
图14是本发明实施例提供的另一种终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种信道检测的控制方法及相关设备,通过动态调整基站向终端发送上行授权信息的时间,以使得调整后的发送上行授权信息的时间与上一个终端下行数据传输的截止时间的间隔在预设时间范围内时对用于传输上行授权信息的信道不进行LBT检测,从而减少LBT检测的次数,降低设备的功耗。以下分别进行详细说明。
请参阅图1,图1是本发明实施例提供的一种信道检测的控制方法的流程示意图。其中,该信道检测的控制方法可以应用于授权辅助接入LAA技术中,以实现在授权频谱的基础上扩大使用未授权频谱。在LAA技术中,为了避免在已被占用的载波上进行通信,可以引入先听后说LBT检测技术。其过程一般为:在信号传输之前,传输节点(基站或终端)需要对传输信道进行CCA(Clear Channel Assessment,空闲信道评估)检测,这里可以利用能量检测的方法来判定,当传输信道的能量超过特定阈值时,可以认为该传输信道被占用,传输节点不能在该传输信道上进行传输且在CCA检测时间内对该传输信道进行观测;当传输信道的能量低于特定阈值时,可以认为该传输信道空闲,传输节点可以在该信道上进行数据传输。
较多的进行LBT检测对系统的效率是不利的,此外过多的LBT检测也会导致传输节点的功耗增加。本发明实施例公开一种方案,在同载波同基站下,当下行数据传输的截止时间与传输节点进行数据传输的起始时间的间隔在特定范围内时(可以是一个预设的时间范围),传输节点(基站或终端)可以无需执行LBT检测。这样不但有利于系统效率的提升,也能够明显的降低传输节点的功耗。具体的,如图1所示,该信道检测的控制方法可以包括以下步骤:
101、基站获取与第一终端进行下行数据传输的截止时间信息。
本发明实施例中,在LAA技术中,基站既可以工作在授权频段,也可以 工作在未授权频段。基站与第一终端进行下行数据传输时,可以获取本次下行数据传输的截止时间信息,第一终端可以包括移动手机、平板电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、智能穿戴设备(如智能手表、智能手环等)等各类终端,本发明实施例不作限定。
本发明实施例中,截止时间信息可以包括但不限于截止时间(即下行数据传输的结束时间)和截止时间对应的系统子帧号等中的至少一种。截止时间可以按照预设规则转换为对应的系统子帧号,这里截止时间对应的系统子帧号为基站与第二终端传输下对应的系统子帧号,如LTE系统下基站与第二终端传输对应的系统子帧号。预设规则可以为现有的转换方法,本发明实施例不作限定。
作为一种可选的实施方式,步骤101基站获取与第一终端进行下行数据传输的截止时间信息的具体实施方式可以包括以下步骤:
11)基站通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)与第一终端进行下行数据传输,下行数据传输中携带有参考信号,以使第一终端解调该参考信号并向基站反馈该PDSCH的信道状态信息;
12)基站根据该信道状态信息确定该下行数据传输的截止时间信息。
在该实施方式中,基站与第一终端进行下行数据传输时,可以通过在PDSCH中包括参考信号来对信道进行质量估计,第一终端接收到该参考信号后,对该参考信号进行解调,并将该PDSCH的信道状态信息反馈给基站,基站可以根据该信道状态信息估计出本次下行数据传输的截止时间信息。在LAA技术中,支持的最大下行传输时间为32ms,则下行数据传输的截止时间可以为当前下行数据传输的起始时间往后推延32ms。
在该实施方式中,参考信号可以是CRS(Cell Reference Signal,小区参考信号)、DMRS(Demodulation Reference Signal,解调参考信号)、CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)等等,本发明实施例不作限定。信道状态信息,也就是CSI,一般可以包括但不限于:PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI(Channel Quality Indicator,信道质量指示)、RI(Rand Indicator,秩指示)和PTI(Precoding Type Indicator, 预编码类型指示)等等。
102、基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求。
本发明实施例中,第一终端和第二终端可以是同一个终端,也可以是不同的两个终端,本发明实施例不作限定。第二终端可以包括移动手机、平板电脑、掌上电脑、PDA、MID、智能穿戴设备(如智能手表、智能手环等)等各类终端,本发明实施例不作限定。
本发明实施例中,在同载波同基站下,可以存在第二终端向基站发起随机接入,以成功接入该基站。第二终端在支持调度请求(Scheduling Request,SR)发送的基础上,可以通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)的UCI(Uplink Control Information,上行控制信息)向基站发送调度请求。第一终端与第二终端同载波可以理解为基站与第一终端下行数据传输所使用的载波和基站与第二终端进行PUCCH传输所使用的载波相同。其中,一个载波下可以包括一个或多个信道。
103、基站根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间,以使基站向第二终端发送该上行授权信息时对用于传输该上行授权信息的信道不进行先听后说LBT检测的操作。
本发明实施例中,基站接收到第二终端发送的调度请求后,当第二终端的优先级在当前基站下可以被调度以及有上行资源可被调度的情况下,基站可以响应该调度请求,并向第二终端发送上行授权信息(Uplink Grant,UL grant)。为了减少基站在进行传输时不必要的LBT检测,基站可以根据上述与第一终端下行数据传输的截止时间信息以及预设时间范围,确定发送上行授权信息的时间,以使得确定的发送上行授权信息的时间与上述基站同第一终端下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内,或者发送上行授权信息对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内。其中,确定的发送上行授权信息的时间为一个时间点,也可以为一个时间范围。
本发明实施例中,预设时间范围为LBT检测的时间触发门限,时间触发门限可以为35微秒(us)、或25us、或16us或小于16us等等,本发明实施例 不作限定。例如,当时间触发门限为16us,则预设时间范围为0~16us,假设截止时间为a毫秒(ms),则发送上行授权信息的时间的范围为(a-16*10-3,a+16*10-3)。
作为一种可选的实施方式,截止时间信息包括截止时间,步骤103基站根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间的具体实施方式包括以下步骤:
13)基站根据该截止时间确定响应该调度请求向第二终端发送上行授权信息的时间,以使该截止时间与发送上行授权信息的时间的间隔在预设时间范围内。
在该实施方式中,当基站与第一终端下行数据传输的截止时间与基站向第二终端发送上行授权信息的时间的间隔在预设时间范围内时,基站向第二终端发送上行授权信息时对用于传输上行授权信息的信道不进行LBT检测,即基站无需检测用于传输该上行授权信息的信道是否可用,即可直接在该信道上发送上行授权信息。
作为一种可选的实施格式,截止时间信息包括截止时间对应的系统子帧号,步骤103基站根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间的具体实施方式包括以下步骤:
14)基站根据该截止时间对应的系统子帧号确定响应该调度请求向第二终端发送上行授权信息的时间,以使该截止时间对应的系统子帧号与发送上行授权信息对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内。
在该实施方式中,当基站与第一终端下行数据传输的截止时间对应的系统子帧号与基站向第二终端发送上行授权信息对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,基站向第二终端发送上行授权信息时对用于传输上行授权信息的信道不进行LBT检测,即基站无需检测用于传输该上行授权信息的信道是否可用,即可直接在该信道上发送上行授权信息。其中,子帧符号数为子帧号之间的差值。
在图1所描述的方法中,基站可以获取与第一终端进行下行数据传输的截止时间信息,并接收随机接入的与第一终端同载波的第二终端发送的调度请求,并根据该截止时间以及预设时间范围确定响应该调度请求向第二终端发送 上行授权信息的时间,以使基站向第二终端发送上行授权信息时可以对用于传输上行授权信息的信道不进行先听后说LBT检测的操作。通过实施图1所描述的方法,能够通过动态调整基站向终端发送上行授权信息的时间,以使得调整后的发送上行授权信息的时间与上一个终端下行数据传输的截止时间的间隔在预设时间范围内时对用于传输上行授权信息的信道不进行LBT检测。从而减少基站进行LBT检测的次数,降低基站的功耗。
请参阅图2,图2是本发明实施例提供的另一种信道检测的控制方法的流程示意图。其中,该信道检测的控制方法可以应用于授权辅助接入LAA技术中,以实现在授权频谱的基础上扩大使用未授权频谱。如图2所示,该信道检测的控制方法可以包括以下步骤:
201、基站获取与第一终端进行下行数据传输的截止时间信息。
本发明实施例中,截止时间信息可以包括但不限于截止时间(即下行数据传输的结束时间)和截止时间对应的系统子帧号等中的至少一种。
202、基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求。
本发明实施例中,第一终端和第二终端可以是同一个终端,也可以是不同的两个终端,基站与第一终端下行数据传输所使用的载波和基站与第二终端进行PUCCH传输所使用的载波相同。第二终端可以是周期性地向基站发送调度请求,当基站接收到第二终端发送的调度请求后,基站可能因为第二终端的优先级过低而不被调度或者没有可用的上行资源时,而不响应调度请求,则第二终端会周期性向基站发送调度请求,直至基站响应。
203、基站根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间,以使基站向第二终端发送上行授权信息时对用于传输上行授权信息的信道不进行先听后说LBT检测的操作。
本发明实施例中,预设时间范围为LBT检测的时间触发门限,时间触发门限可以为35us、或25us、或16us或小于16us等等,本发明实施例不作限定。
204、基站统计目标时间内接收到第二终端发送的调度请求的次数。
本发明实施例中,目标时间为基站首次接收第二终端发送的调度请求的时间到确定的发送上行授权信息的临界时间的时间间隔。通过截止时间信息以及预设时间范围确定的发送上行授权信息的时间可以为一个时间范围,发送上行授权信息的临界时间则为该时间范围的边界。
205、基站判断该次数是否小于或等于预设最大重传门限值,若是,则执行步骤206;若否,则执行步骤207。
本发明实施例中,预设最大重传门限值为预设的允许第二终端重复向基站发送调度请求的最大次数。预设最大重传门限值可以预先设定并存储在基站中。
206、基站响应第N次接收到的第二终端发送的调度请求,在不进行LBT检测操作下向第二终端发送上行授权信息。
本发明实施例中,基站在接收到第二终端发送的调度请求后,在确定的发送上行授权信息的时间满足不执行LBT检测的情况下,基站可以不立即响应该调度请求向第二终端发送上行授权信息,而是可以选择继续等待,在等待的过程中,第二终端可以周期性地向基站发送调度请求,基站每接收到一次调度请求,可以判断响应该调度请求向第二终端发送上行授权信息的时间是否仍然满足不执行LBT检测的条件,即判断响应该调度请求向第二终端发送上行授权信息的时间与截止时间信息包括的截止时间的间隔是否仍保持在预设时间范围内,直至向第二终端发送上行授权信息的时间趋于临界值。基站以等待的方式发送上行授权信息,动态调整了发送上行授权信息的时间,使得基站在等待发送上行授权信息的过程中,能够与连接该基站的其他终端进行通信,提高通信效率。
本发明实施例中,当目标时间内接收到第二终端发送的调度请求的次数小于或等于预设最大重传门限值,意味着该次数还未超出预设最大重传门限值时,发送上行授权信息的时间已达到临界值,此时基站不再继续等待,可以响应第N次接收到的第二终端发送的调度请求,在不进行LBT检测操作下向第二终端发送上行授权信息,其中,N为不大于该次数的正整数。
207、基站响应第M次接收到的第二终端发送的调度请求,在不进行LBT检测操作下向第二终端发送上行授权信息。
本发明实施例中,当目标时间内接收到第二终端发送的调度请求的次数大于预设最大重传门限值,意味着该次数超出预设最大重传门限值时,发送上行授权信息的时间还未达到临界值,此时,第二终端最多只能向基站发送次数与预设最大重传门限值相同的调度请求,基站可以响应第M次接收到的第二终端发送的调度请求,在不进行LBT检测操作下向第二终端发送上行授权信息,其中,M为不大于预设最大重传门限值的正整数。
本发明实施例中,当基站向第二终端发送上行授权信息后,第二终端可以响应该上行授权信息与基站进行PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输。当基站在子帧n(n为不小于0的正整数)上传输上行授权信息时,根据基站给第二终端配置的TA(Timing Advance,定时提前量),基站可以控制第二终端在子帧n+k(k为不小于0的正整数)上进行PUSCH传输。其中,在FDD(Frequency Division Duplex,频分双工)系统下,k为4;在TDD(Time Division Duplex,时分双工)系统下,k大于等于4。
请一并参阅图3,图3是本发明实施例提供的一种上下行数据传输示意图。如图3所示,每一小格代表一个子帧,假设基站在第n个子帧上传输上行授权信息时,可以控制第二终端在至少第n+4个子帧上进行PUSCH传输。此外,基站与第一终端下行数据传输的截止时间与基站发送上行授权信息的时间的间隔在预设时间范围以内。
其中,以上基站无须执行LBT检测的预设时间范围定义为子帧边界,考虑到子帧换算成时间后的单位是毫秒,这里的时间范围单位也应该是毫秒,且子帧里的符号也应该换算成相应的毫秒。当然,鉴于LBT检测的时间单位,该范围单位也可以是微秒。此外,当第二终端上行burst的开始节点或第一终端的下行传输截止时间不是位于边界时,会在该子帧中剩余的符号发送用于下行粗同步和/或信道保留的起始信号(initial signal)或保留信号(reservation signal)。
本发明实施例中,通过实施图2所描述的方法,能够通过动态调整基站向终端发送上行授权信息的时间,可以减少基站进行LBT检测的次数,降低基站的功耗。此外,引入了终端发送调度请求最大门限值的概念,能够更灵活的调整发送上行授权信息的时间。
请参阅图4,图4是本发明实施例提供的又一种信道检测的控制方法的流程示意图。其中,该信道检测的控制方法可以应用于授权辅助接入LAA技术中,以实现在授权频谱的基础上扩大使用未授权频谱。如图4所示,该信道检测的控制方法可以包括以下步骤:
401、基站获取与第一终端进行下行数据传输的截止时间信息。
本发明实施例中,截止时间信息可以包括但不限于截止时间和截止时间对应的系统子帧号等中的至少一种。
作为一种可选的实施方式,步骤401基站获取与第一终端进行下行数据传输的截止时间信息的具体实施方式可以包括以下步骤:
41)基站通过PDSCH信道与第一终端进行下行数据传输,下行数据传输中携带有参考信号,以使第一终端解调该参考信号并向基站反馈该PDSCH的信道状态信息;
42)基站根据该信道状态信息确定该下行数据传输的截止时间信息。
在该实施方式中,参考信号可以是CRS、DMRS、CSI-RS等等,本发明实施例不作限定。信道状态信息,也就是CSI,一般可以包括但不限于:PMI、CQI、RI和PTI等等。
402、基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求。
本发明实施例中,第一终端和第二终端可以是同一个终端,也可以是不同的两个终端。
作为一种可选的实施方式,步骤402基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求的具体实施方式可以包括以下步骤:
43)基站接收随机接入的第二终端通过物理上行控制信道PUCCH每隔特定时间向基站发送的调度请求。
403、基站响应该调度请求,向第二终端发送上行授权信息和指示信息,该指示信息包括用于指示第二终端响应上行授权信息与基站进行PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,以使第二终端与基站进行PUSCH传输时对PUSCH不进行LBT检测的操作。
本发明实施例中,当第二终端的优先级在当前基站下可以被调度且有上行资源可被调度的情况下,基站可以响应第二终端发送的调度请求,基站向第二终端发送上行授权信息的同时,还可以向第二终端发送指示信息,该指示信息可以用于指示第二终端响应上行授权信息与基站进程PUSCH传输的起始时间,还可以用于指示是否执行LBT检测的标识信息,当PUSCH传输的起始时间与截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当PUSCH传输对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,上述是否执行LBT检测的标识信息被基站配置为不执行LBT检测,以使得第二终端与基站进行PUSCH传输时对PUSCH信道不进行LBT检测的操作。其中,上述是否执行LBT检测的标识信息用于表示第二终端是否进行LBT检测的操作,可以用一个标识位来表示,例如:0代表不执行LBT检测,1代表执行LBT检测;或者0代表执行LBT检测,1代表不执行LBT检测。
本发明实施例中,基站与第一终端下行数据传输所使用的载波和基站与第二终端进行的PUSCH传输所使用的载波相同。预设时间范围为LBT检测的时间触发门限,该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。该指示信息指示的第二终端响应上行授权信息与基站进行PUSCH传输的起始时间可以是一个时间点,也可以是一个时间范围。
请一并参阅图5,图5是本发明实施例提供的另一种上下行数据传输示意图。如图5所示,这里的终端指代的是第二终端,每一小格代表一个子帧,假设基站在第n个子帧上传输上行授权信息(即终端在第n个子帧上接收上行授权信息)时,可以控制第二终端在至少第n+4个子帧上进行PUSCH传输。此外,基站与第一终端下行数据传输的截止时间与第二终端进行的PUSCH传输的起始时间的间隔在预设时间范围以内。
本发明实施例中,通过实施图4所描述的方法,能够通过控制终端与基站的PUSCH传输的起始时间,以使得PUSCH传输的起始时间与上一个终端终端下行数据传输的截止时间的间隔在预设时间范围内时终端进行PUSCH传输时可以不进行LBT检测,从而减少终端进行LBT检测的次数,降低终端的功耗。
请参阅图6,图6是本发明实施例提供的又一种信道检测的控制方法的流程示意图。其中,该信道检测的控制方法可以应用于授权辅助接入LAA技术中,以实现在授权频谱的基础上扩大使用未授权频谱。如图6所示,该信道检测的控制方法可以包括以下步骤:
601、当终端随机接入基站后,终端通过物理上行控制信道PUCCH向基站发送调度请求。
作为一种可选的实施方式,步骤601当终端随机接入基站后,终端通过物理上行控制信道PUCCH向基站发送调度请求的具体实施方式可以包括以下步骤:
61)当终端随机接入基站后,终端通过物理上行控制信道PUCCH每隔特定时间向基站发送调度请求。
602、终端接收基站响应该调度请求发送的上行授权信息和指示信息,该指示信息包括用于指示终端响应该上行授权信息与基站进行PUSCH传输的起始时间以及用于指示是否执行LBT检测的标识信息。
本发明实施例中,当终端的优先级在当前基站下可以被调度且有上行资源可被调度的情况下,基站可以响应终端发送的调度请求,并在向终端发送上行授权信息的同时,还可以向终端发送指示信息,该指示信息可以用于指示终端响应上行授权信息与基站进行PUSCH传输的起始时间,还可以用于指示是否执行LBT检测的标识信息,当PUSCH传输的起始时间与基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当PUSCH传输对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,上述是否执行LBT检测的标识信息被基站配置为不执行LBT检测。其中,指示的PUSCH传输的起始时间可以是一个时间点,也可以是一个时间范围。上述是否执行LBT检测的标识信息用于表示终端是否进行LBT检测的操作,可以用一个标识位0或1来表示。
本发明实施例中,该终端与第一终端可以是同一个终端,也可以是不同的两个终端。基站与第一终端下行数据传输所使用的载波和基站与该终端进行 PUSCH传输所使用的载波相同。
本发明实施例中,当基站在子帧n(n为不小于0的正整数)上传输上行授权信息时,根据基站给该终端配置的定时提前量TA,基站可以控制该终端可以在子帧n+k(k为不小于0的正整数)上进行PUSCH传输。其中,在FDD系统下,k为4;在TDD系统下,k大于等于4。
本发明实施例中,预设时间范围为LBT检测的时间触发门限。该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。
603、终端根据该指示信息确定与基站进行PUSCH传输的起始时间,以使终端与基站进行PUSCH传输时对PUSCH不进行LBT检测的操作。
本发明实施例中,如图5所示,假设基站在第n个子帧上传输上行授权信息(即终端在第n个子帧上接收上行授权信息)时,可以控制终端在至少第n+4个子帧上进行PUSCH传输。此外,基站与第一终端下行数据传输的截止时间和基站与终端进行的PUSCH传输的起始时间的间隔在预设时间范围以内。
本发明实施例中,通过实施图6所描述的方法,能够接收基站指示的终端与基站进行PUSCH传输的起始时间,以使得PUSCH传输的起始时间与上一个终端下行数据传输的截止时间的间隔在预设时间范围内时终端进行PUSCH传输时可以不进行LBT检测,从而减少终端进行LBT检测的次数,降低终端的功耗。
请参阅图7,图7是本发明实施例提供的一种基站的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。如图7所示,该基站可以包括:
获取单元701,用于获取与第一终端进行下行数据传输的截止时间信息。
本发明实施例中,在LAA技术中,基站既可以工作在授权频段,也可以工作在未授权频段。基站与第一终端进行下行数据传输时,可以获取本次下行数据传输的截止时间信息。截止时间信息可以包括但不限于截止时间(即下行数据传输的结束时间)和截止时间对应的系统子帧号等中的至少一种。截止时间可以按照预设规则转换为对应的系统子帧号,这里截止时间对应的系统子帧 号为基站与第二终端传输下对应的系统子帧号,如LTE系统下基站与第二终端传输对应的系统子帧号。预设规则可以为现有的转换方法,本发明实施例不作限定。
接收单元702,用于接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求。
本发明实施例中,第一终端和第二终端可以是同一个终端,也可以是不同的两个终端,本发明实施例不作限定。在同载波同基站下,第二终端可以向基站发起随机接入,以成功接入该基站。第二终端在支持调度请求发送的基础上,可以通过PUCCH的UCI向基站发送调度请求。第一终端与第二终端同载波可以理解为基站与第一终端下行数据传输所使用的载波和基站与第二终端进行PUCCH传输所使用的载波相同。
第一确定单元703,用于根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间,以使基站向第二终端发送该上行授权信息时对用于传输该上行授权信息的信道不进行先听后说LBT检测的操作。
本发明实施例中,接收单元702接收到第二终端发送的调度请求后,在第二终端的优先级在当前基站下可以被调度以及有上行资源可被调度的情况下,基站可以响应该调度请求,并向第二终端发送上行授权信息。为了减少基站在进行传输时不必要的LBT检测,第一确定单元703可以根据获取单元701获取的上述与第一终端下行数据传输的截止时间信息以及基站中存储的预设时间范围,确定发送上行授权信息的时间,以使得确定的发送上行授权信息的时间与上述基站同第一终端下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内,或者发送上行授权信息对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内。其中,确定的发送上行授权信息的时间为一个时间点,也可以为一个时间范围。
本发明实施例中,预设时间范围为LBT检测的时间触发门限,时间触发门限可以为35us、或25us、或16us或小于16us等等,本发明实施例不作限定。
作为一种可选的实施方式,当截止时间信息包括截止时间时,第一确定单元703根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间的具体实施方式可以为:
第一确定单元703根据该截止时间确定响应该调度请求向第二终端发送上行授权信息的时间,以使该截止时间与发送上行授权信息的时间的间隔在预设时间范围内。
作为一种可选的实施方式,当截止时间信息包括截止时间对应的系统子帧号时,第一确定单元703根据该截止时间信息以及预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间的具体实施方式可以为:
第一确定单元703根据该截止时间对应的系统子帧号确定响应该调度请求向第二终端发送上行授权信息的时间,以使该截止时间对应的系统子帧号与发送上行授权信息对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内。
作为一种可选的实施方式,请一并参阅图8,图8是本发明实施例提供的另一种基站的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。其中,图8所示的基站是在图7所示的基站的基础上进一步优化得到的。与图7所示的基站相比,图8所示的基站中获取单元701可以包括:
传输单元7011,用于通过物理下行共享信道PDSCH与第一终端进行下行数据传输,下行数据传输中携带有参考信号,以使第一终端解调该参考信号并向基站反馈PDSCH的信道状态信息;
第二确定单元7012,用于根据该信道状态信息确定下行数据传输的截止时间信息。
在该实施方式中,参考信号可以是CRS、DMRS、CSI-RS等等,本发明实施例不作限定。信道状态信息,也就是CSI,一般可以包括但不限于:PMI、CQI、RI和PTI等等。
作为一种可选的实施方式,图8所示的基站还可以包括:
统计单元704,用于统计目标时间内接收到第二终端发送的调度请求的次数,目标时间为基站首次接收第二终端发送的调度请求的时间到确定的发送所述上行授权信息的临界时间的时间间隔;
判断单元705,用于判断该次数是否小于或等于预设最大重传门限值;
发送单元706,用于当判断单元705判断出该次数小于或等于预设最大重传门限值时,响应第N次接收到的第二终端发送的调度请求,在不进行LBT检测操作下向第二终端发送所述上行授权信息,N为不大于该次数的正整数;
发送单元706,还用于当判断单元705判断出该次数大于预设最大重传门限值时,响应第M次接收到的第二终端发送的调度请求,在不进行LBT检测操作下向第二终端发送上行授权信息,M为不大于预设最大重传门限值的正整数。
本发明实施例中,通过实施图7和图8所示的基站,能够通过动态调整基站向终端发送上行授权信息的时间,可以减少基站进行LBT检测的次数,降低基站的功耗。此外,引入了终端发送调度请求最大门限值的概念,能够更灵活的调整发送上行授权信息的时间。
请参阅图9,图9是本发明实施例提供的又一种基站的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。如图9所示,该基站900可以包括:至少一个处理器901,例如CPU(Central Processing Unit,中央处理器),至少一个输入装置902,至少一个输出装置903,存储器904等组件。其中,这些组件通过一条或多条总线905进行通信连接。本领域技术人员可以理解,图9中示出的基站的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置902可以包括有线接口、无线接口等,可以用于接收终端上行传输的信号等。输出装置903可以包括有线接口、无线接口等,可以用于向终端下行传输信号等。
本发明实施例中,存储器904可以是高速RAM存储器,也可以是非不稳定的存储器,例如至少一个磁盘存储器。存储器904可选的还可以是至少一个位于远离前述处理器901的存储装置。如图9所示,存储器904中可以包括应用程序和数据等,本发明实施例不作限定。
在图9所示的基站中,处理器901可以用于调用存储器904中存储的应用程 序以执行以下操作:
获取与第一终端进行下行数据传输的截止时间信息;
控制输入装置902接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,其中,基站与第一终端下行数据传输所使用的载波和第二终端的PUCCH传输所使用的载波相同;
根据该截止时间信息以及存储器904中存储的预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间,以使在输出装置903向第二终端发送上行授权信息时对用于传输该上行授权信息的信道不进行先听后说LBT检测的操作。
其中,第一终端和第一终端可以是同一终端,也可以是不同终端。预设时间范围为LBT检测的时间触发门限。该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。
作为一种可选的实施方式,处理器901获取与第一终端进行下行数据传输的截止时间信息的具体实施方式可以为:
控制输出装置903通过物理下行共享信道PDSCH与第一终端进行下行数据传输,下行数据传输中携带有参考信号,以使第一终端解调该参考信号并向基站反馈该PDSCH的信道状态信息;
根据该信道状态信息确定下行数据传输的截止时间信息。
作为一种可选的实施方式,该截止时间信息包括截止时间,处理器901根据该截止时间信息以及存储器904中存储的预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间的具体实施方式可以为:
根据该截止时间确定响应该调度请求向第二终端发送上行授权信息的时间,以使该截止时间与发送上行授权信息的时间的间隔在存储器904中存储的预设时间范围内。
作为一种可选的实施方式,该截止时间信息包括截止时间对应的系统子帧号,处理器901根据该截止时间信息以及存储器904中存储的预设时间范围,确定响应该调度请求向第二终端发送上行授权信息的时间的具体实施方式可以为:
根据该截止时间对应的系统子帧号确定响应该调度请求向第二终端发送 上行授权信息的时间,以使该截止时间对应的系统子帧号与发送上行授权信息对应的系统子帧号的间隔在存储器904中存储的预设时间范围对应的子帧符号数内。
作为一种可选的实施方式,处理器901还可以调用存储器904中存储的应用程序,并执行以下操作:
统计目标时间内接收到第二终端发送的调度请求的次数,该目标时间为基站首次接收第二终端发送的调度请求的时间到确定的发送上行授权信息的临界时间的时间间隔;
判断该次数是否小于或等于存储器904中存储的预设最大重传门限值;
当该次数小于或等于存储器904中存储的预设最大重传门限值时,响应输入装置902第N次接收到的第二终端发送的调度请求,控制输出装置903在不进行LBT检测操作下向第二终端发送上行授权信息,N为不大于该次数的正整数;
当该次数大于预设最大重传门限值时,响应输入装置902第M次接收到的第二终端发送的调度请求,控制输出装置903在不进行LBT检测操作下向第二终端发送上行授权信息,M为不大于预设最大重传门限值的正整数。
具体地,本发明实施例中介绍的基站可以实施本发明结合图1或图2介绍的信道检测的控制方法实施例中的部分或全部流程。
本发明实施例中,通过实施图9所示的基站,能够通过动态调整基站向终端发送上行授权信息的时间,可以减少基站进行LBT检测的次数,降低基站的功耗。此外,引入了终端发送调度请求最大门限值的概念,能够更灵活的调整发送上行授权信息的时间。
请参阅图10,图10是本发明实施例提供的一种基站的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。如图10所示,该基站可以包括:
获取单元1001,用于获取与第一终端进行下行数据传输的截止时间信息。
本发明实施例中,截止时间信息可以包括但不限于截止时间和截止时间对应的系统子帧号等中的至少一种。
接收单元1002,用于接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求。
本发明实施例中,第一终端和第二终端可以是同一个终端,也可以是不同的两个终端。
作为一种可选的实施方式,接收单元1002具体可以用于接收随机接入的第二终端通过物理上行控制信道PUCCH每隔特定时间向基站发送的调度请求。
发送单元1003,用于响应该调度请求,向第二终端发送上行授权信息和指示信息,该指示信息包括用于指示第二终端响应该上行授权信息与基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当PUSCH传输的起始时间与截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当PUSCH传输对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,上述是否执行LBT检测的标识信息被基站配置为不执行LBT检测,以使第二终端与基站进行PUSCH传输时对PUSCH不进行LBT检测的操作。
本发明实施例中,上述是否执行LBT检测的标识信息用于表示第二终端是否进行LBT检测的操作,可以用一个标志位0或1来表示。基站与第一终端下行数据传输所使用的载波和基站与第二终端进行的PUSCH传输所使用的载波相同。预设时间范围为LBT检测的时间触发门限,该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。该指示信息指示的第二终端响应上行授权信息与基站进行PUSCH传输的起始时间可以是一个时间点,也可以是一个时间范围。
作为一种可选的实施方式,请一并参阅图11,图11是本发明实施例提供的又一种基站的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。其中,图11所示的基站是在图10所示的基站的基础上进一步优化得到的。与图10所示的基站相比,图11所示的基站中获取单元1001可以包括:
传输单元1001a,用于通过物理下行共享信道PDSCH与第一终端进行下行数据传输,下行数据传输中携带有参考信号,以使第一终端解调该参考信号 并向基站反馈PDSCH的信道状态信息;
确定单元1001b,用于根据该信道状态信息确定下行数据传输的截止时间信息。
在该实施方式中,参考信号可以是CRS、DMRS、CSI-RS等等,本发明实施例不作限定。信道状态信息,也就是CSI,一般可以包括但不限于:PMI、CQI、RI和PTI等等。
本发明实施例中,通过实施图10和图11所示的基站,能够通过控制终端与基站的PUSCH传输的起始时间,以使得PUSCH传输的起始时间与上一个终端终端下行数据传输的截止时间的间隔在预设时间范围内时终端进行PUSCH传输时可以不进行LBT检测,从而减少终端进行LBT检测的次数,降低终端的功耗。
请参阅图12,图12是本发明实施例提供的又一种基站的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。如图12所示,该基站1200可以包括:至少一个处理器1201,例如CPU,至少一个输入装置1202,至少一个输出装置1203,存储器1204等组件。其中,这些组件通过一条或多条总线1205进行通信连接。本领域技术人员可以理解,图12中示出的基站的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置1202可以包括有线接口、无线接口等,可以用于接收终端上行传输的信号等。输出装置1203可以包括有线接口、无线接口等,可以用于向终端下行传输信号等。
本发明实施例中,存储器1204可以是高速RAM存储器,也可以是非不稳定的存储器,例如至少一个磁盘存储器。存储器1204可选的还可以是至少一个位于远离前述处理器1201的存储装置。如图12所示,存储器1204中可以包括应用程序和数据等,本发明实施例不作限定。
在图12所示的基站中,处理器1201可以用于调用存储器1204中存储的应用程序以执行以下操作:
获取与第一终端进行下行数据传输的截止时间信息;
控制输入装置1202接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求;
响应该调度请求,控制输出装置1203向第二终端发送上行授权信息和指示信息,该指示信息包括用于指示第二终端响应该上行授权信息与基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息;
当PUSCH传输的起始时间与截止时间信息包括的截止时间的间隔在存储器1204存储的预设时间范围内时,或者当PUSCH传输对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,上述是否执行LBT检测的标识信息被基站配置为不执行LBT检测,以使第二终端与基站进行PUSCH传输时对PUSCH不进行LBT检测的操作,其中,上述是否执行LBT检测的标识信息用于表示第二终端是否进行LBT检测的操作,基站与第一终端下行数据传输所使用的载波和基站与第二终端进行的PUSCH传输所使用的载波相同。
其中,第一终端和第一终端可以是同一终端,也可以是不同终端。预设时间范围为LBT检测的时间触发门限。该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。
作为一种可选的实施方式,处理器1201获取与第一终端进行下行数据传输的截止时间信息的具体实施方式可以为:
控制输出装置1203通过物理下行共享信道PDSCH与第一终端进行下行数据传输,下行数据传输中携带有参考信号,以使第一终端解调该参考信号并向基站反馈所述PDSCH的信道状态信息;
根据该信道状态信息确定下行数据传输的截止时间信息。
作为一种可选的实施方式,处理器1201控制输入装置1202接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求的具体实施方式可以为:
控制输入装置1202接收随机接入的第二终端通过物理上行控制信道PUCCH每隔特定时间向基站发送的调度请求。
具体地,本发明实施例中介绍的基站可以实施本发明结合图4介绍的信道检测的控制方法实施例中的部分或全部流程。
本发明实施例中,通过实施图12所示的基站,能够通过控制终端与基站的PUSCH传输的起始时间,以使得PUSCH传输的起始时间与上一个终端终端下行数据传输的截止时间的间隔在预设时间范围内时终端进行PUSCH传输时可以不进行LBT检测,从而减少终端进行LBT检测的次数,降低终端的功耗。
请参阅图13,图13是本发明实施例提供的一种终端的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。如图13所示,该终端可以包括:
发送单元1301,用于当终端随机接入基站后,通过物理上行控制信道PUCCH向基站发送调度请求。
作为一种可选的实施方式,发送单元1301具体可以用于当终端随机接入基站后,通过物理上行控制信道PUCCH每隔特定时间向基站发送调度请求。
接收单元1302,用于接收基站响应该调度请求发送的上行授权信息和指示信息,该指示信息包括用于指示终端响应上行授权信息与基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当PUSCH传输的起始时间与基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当PUSCH传输对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,上述是否执行LBT检测的标识信息被基站配置为不执行LBT检测。
本发明实施例中,当发送单元1301向基站发送调度请求后,可以触发接收单元1302接收基站响应调度请求所发送的上行授权信息。该终端与第一终端可以是同一个终端,也可以是不同的两个终端。其中,上述是否执行LBT检测的标识信息用于表示终端是否进行LBT检测的操作。基站与第一终端下行数据传输所使用的载波和基站与该终端进行PUSCH传输所使用的载波相同。
本发明实施例中,预设时间范围为LBT检测的时间触发门限。该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。
确定单元1303,用于根据该指示信息确定与基站进行PUSCH传输的起始时间,以使终端与基站进行PUSCH传输时对PUSCH不进行LBT检测的操作。
本发明实施例中,通过实施图13所示的终端,能够接收基站指示的终端进行PUSCH传输的起始时间,以使得PUSCH传输的起始时间与上一个终端下行数据传输的截止时间的间隔在预设时间范围内时终端进行PUSCH传输时可以不进行LBT检测,从而减少终端进行LBT检测的次数,降低终端的功耗。
请参阅图14,图14是本发明实施例提供的另一种终端的结构示意图,用于执行本发明实施例提供的信道检测的控制方法。如图14所示,该终端1400可以包括:至少一个处理器1401,例如CPU,至少一个输入装置1402,至少一个输出装置1403,存储器1404等组件。其中,这些组件通过一条或多条总线1405进行通信连接。本领域技术人员可以理解,图14中示出的终端的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置1402可以包括有线接口、无线接口等,可以用于获取基站下行发送的信号等。输出装置1403可以包括有线接口、无线接口等,可以用于向基站上行传输信号等。
本发明实施例中,存储器1404可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1404可选的还可以是至少一个位于远离前述处理器1401的存储装置。如图14所示,作为一种计算机存储介质的存储器1404中可以包括操作系统、应用程序和数据等,本发明实施例不作限定。
在图14所示的终端中,处理器1401可以用于调用存储器1404中存储的应用程序以执行以下操作:
当终端随机接入基站后,控制输出装置1403通过物理上行控制信道 PUCCH向基站发送调度请求;
控制输入装置1402接收基站响应该调度请求发送的上行授权信息和指示信息,该指示信息包括用于指示终端响应该上行授权信息与基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当PUSCH传输的起始时间与基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当PUSCH传输对应的系统子帧号与截止时间信息包括的截止时间对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内时,上述是否执行LBT检测的标识信息被基站配置为不执行LBT检测;
根据该指示信息确定与基站进行PUSCH传输的起始时间,以使终端与基站进行PUSCH传输时对PUSCH不进行LBT检测的操作;
其中,上述是否执行LBT检测的标识信息用于表示终端是否进行LBT检测的操作,基站与第一终端下行数据传输所使用的载波和基站与终端的PUSCH传输所使用的载波相同。
其中,该终端与第一终端可以为同一终端,也可以为不同终端。预设时间范围为LBT检测的时间触发门限。该时间触发门限可以为35us,或25us,或16us或小于16us等等,本发明实施例不作限定。
作为一种可选的实施方式,处理器1401当终端随机接入基站后,控制输出装置1403通过物理上行控制信道PUCCH向基站发送调度请求的具体实施方式可以为:
当终端随机接入基站后,控制输出装置1403通过物理上行控制信道PUCCH每隔特定时间向所述基站发送调度请求。
具体地,本发明实施例中介绍的终端可以实施本发明结合图6介绍的信道检测的控制方法实施例中的部分或全部流程。
本发明实施例中,通过实施图14所示的终端,能够接收基站指示的终端与基站进行PUSCH传输的起始时间,以使得PUSCH传输的起始时间与上一个终端下行数据传输的截止时间的间隔在预设时间范围内时终端进行PUSCH传输时可以不进行LBT检测,从而减少终端进行LBT检测的次数,降低终端的功耗。
本发明所有实施例中的模块或子模块,可以通过通用集成电路,例如CPU, 或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例基站和终端中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,简称RAM)等。
以上对本发明实施例提供的一种信道检测的控制方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (32)

  1. 一种信道检测的控制方法,应用于授权辅助接入LAA技术中,其特征在于,包括:
    基站获取与第一终端进行下行数据传输的截止时间信息;
    所述基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,其中,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUCCH传输所使用的载波相同;
    所述基站根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述基站向所述第二终端发送所述上行授权信息时对用于传输所述上行授权信息的信道不进行先听后说LBT检测的操作。
  2. 根据权利要求1所述的方法,其特征在于,所述预设时间范围为所述LBT检测的时间触发门限。
  3. 根据权利要求2所述的方法,其特征在于,所述时间触发门限为35us,或25us,或16us或小于16us。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述基站获取与第一终端进行下行数据传输的截止时间信息,包括:
    基站通过物理下行共享信道PDSCH与第一终端进行下行数据传输,所述下行数据传输中携带有参考信号,以使所述第一终端解调所述参考信号并向所述基站反馈所述PDSCH的信道状态信息;
    所述基站根据所述信道状态信息确定所述下行数据传输的截止时间信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述截止时间信息包括截止时间,所述基站根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间,包括:
    所述基站根据所述截止时间确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述截止时间与所述发送上行授权信息的时间的间隔在预设时间范围内。
  6. 根据权利要求1-4中任一项所述的方法,其特征在于,所述截止时间信息包括截止时间对应的系统子帧号,所述基站根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间,包括:
    所述基站根据所述截止时间对应的系统子帧号确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述截止时间对应的系统子帧号与发送所述上行授权信息对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站统计目标时间内接收到所述第二终端发送的调度请求的次数,所述目标时间为所述基站首次接收到所述第二终端发送的调度请求的时间到确定的发送所述上行授权信息的临界时间的时间间隔;
    所述基站判断所述次数是否小于或等于预设最大重传门限值;
    当所述次数小于或等于所述预设最大重传门限值时,所述基站响应第N次接收到的所述第二终端发送的调度请求,在不进行所述LBT检测操作下向所述第二终端发送所述上行授权信息,所述N为不大于所述次数的正整数;
    当所述次数大于所述预设最大重传门限值时,所述基站响应第M次接收到的所述第二终端发送的调度请求,在不进行所述LBT检测操作下向所述第二终端发送所述上行授权信息,所述M为不大于所述预设最大重传门限值的正整数。
  8. 一种信道检测的控制方法,应用于授权辅助接入LAA技术中,其特征在于,包括:
    基站获取与第一终端进行下行数据传输的截止时间信息;
    所述基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求;
    所述基站响应所述调度请求,向所述第二终端发送上行授权信息和指示信息,所述指示信息包括用于指示所述第二终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息;
    当所述PUSCH传输的起始时间与所述截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测,以使所述第二终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作,其中,所述是否执行LBT检测的标识信息用于表示所述第二终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUSCH传输所使用的载波相同。
  9. 根据权利要求8所述的方法,其特征在于,所述预设时间范围为所述LBT检测的时间触发门限。
  10. 根据权利要求9所述的方法,其特征在于,所述时间触发门限为35us,或25us,或16us或小于16us。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述基站获取与第一终端进行下行数据传输的截止时间信息,包括:
    基站通过物理下行共享信道PDSCH与第一终端进行下行数据传输,所述下行数据传输中携带有参考信号,以使所述第一终端解调所述参考信号并向所述基站反馈所述PDSCH的信道状态信息;
    所述基站根据所述信道状态信息确定所述下行数据传输的截止时间信息。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,所述基站接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,包括:
    所述基站接收随机接入的第二终端通过物理上行控制信道PUCCH每隔特定时间向所述基站发送的调度请求。
  13. 一种信道检测的控制方法,应用于授权辅助接入LAA技术中,其特征在于,包括:
    当终端随机接入基站后,所述终端通过物理上行控制信道PUCCH向所述基站发送调度请求;
    所述终端接收所述基站响应所述调度请求发送的上行授权信息和指示信息,所述指示信息包括用于指示所述终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当所述PUSCH传输的起始时间与所述基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测;
    所述终端根据所述指示信息确定与所述基站进行所述PUSCH传输的起始时间,以使所述终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作;
    其中,所述是否执行LBT检测的标识信息用于表示所述终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述终端的所述PUSCH传输所使用的载波相同。
  14. 根据权利要求13所述的方法,其特征在于,所述预设时间范围为所述LBT检测的时间触发门限。
  15. 根据权利要求14所述的方法,其特征在于,所述时间触发门限为35us,或25us,或16us或小于16us。
  16. 根据权利要求13-15中任一项所述的方法,其特征在于,所述当终端随机接入基站后,所述终端通过物理上行控制信道PUCCH向所述基站发送调度请求,包括:
    当终端随机接入基站后,所述终端通过物理上行控制信道PUCCH每隔特定时间向所述基站发送调度请求。
  17. 一种基站,其特征在于,包括:
    获取单元,用于获取与第一终端进行下行数据传输的截止时间信息;
    接收单元,用于接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求,其中,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUCCH传输所使用的载波相同;
    第一确定单元,用于根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述基站向所述第二终端发送所述上行授权信息时对用于传输所述上行授权信息的信道不进行先听后说LBT检测的操作。
  18. 根据权利要求17所述的基站,其特征在于,所述预设时间范围为所述LBT检测的时间触发门限。
  19. 根据权利要求18所述的基站,其特征在于,所述时间触发门限为35us,或25us,或16us或小于16us。
  20. 根据权利要求17-19中任一项所述的基站,其特征在于,所述获取单元包括:
    传输单元,用于通过物理下行共享信道PDSCH与第一终端进行下行数据传输,所述下行数据传输中携带有参考信号,以使所述第一终端解调所述参考 信号并向所述基站反馈所述PDSCH的信道状态信息;
    第二确定单元,用于根据所述信道状态信息确定所述下行数据传输的截止时间。
  21. 根据权利要求17-20中任一项所述的基站,其特征在于,所述截止时间信息包括截止时间,所述第一确定单元根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间的方式具体为:
    所述第一确定单元根据所述截止时间确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述截止时间与所述发送上行授权信息的时间的间隔在预设时间范围内。
  22. 根据权利要求17-20中任一项所述的基站,其特征在于,所述截止时间信息包括截止时间对应的系统子帧号,所述第一确定单元根据所述截止时间信息以及预设时间范围,确定响应所述调度请求向所述第二终端发送上行授权信息的时间的方式具体为:
    所述基站根据所述截止时间对应的系统子帧号确定响应所述调度请求向所述第二终端发送上行授权信息的时间,以使所述截止时间对应的系统子帧号与发送所述上行授权信息对应的系统子帧号的间隔在预设时间范围对应的子帧符号数内。
  23. 根据权利要求17-22中任一项所述的基站,其特征在于,所述基站还包括:
    统计单元,用于统计目标时间内接收到所述第二终端发送的调度请求的次数,所述目标时间为所述基站首次接收所述第二终端发送的调度请求的时间到确定的发送所述上行授权信息的临界时间的时间间隔;
    判断单元,用于判断所述次数是否小于或等于预设最大重传门限值;
    发送单元,用于当所述判断单元判断出所述次数小于或等于所述预设最大重传门限值时,响应第N次接收到的所述第二终端发送的调度请求,在不进 行所述LBT检测操作下向所述第二终端发送所述上行授权信息,所述N为不大于所述次数的正整数;
    所述发送单元,还用于当所述判断单元判断出所述次数大于所述预设最大重传门限值时,响应第M次接收到的所述第二终端发送的调度请求,在不进行所述LBT检测操作下向所述第二终端发送所述上行授权信息,所述M为不大于所述预设最大重传门限值的正整数。
  24. 一种基站,其特征在于,包括:
    获取单元,用于获取与第一终端进行下行数据传输的截止时间信息;
    接收单元,用于接收随机接入的第二终端通过物理上行控制信道PUCCH发送的调度请求;
    发送单元,用于响应所述调度请求,向所述第二终端发送上行授权信息和指示信息,所述指示信息包括用于指示所述第二终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当所述PUSCH传输的起始时间与所述截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测,以使所述第二终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作,其中,所述是否执行LBT检测的标识信息用于表示所述第二终端是否进行所述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述第二终端的所述PUSCH传输所使用的载波相同。
  25. 根据权利要求24所述的基站,其特征在于,所述预设时间范围为所述LBT检测的时间触发门限。
  26. 根据权利要求25所述的基站,其特征在于,所述时间触发门限为35us,或25us,或16us或小于16us。
  27. 根据权利要求24-26中任一项所述的基站,其特征在于,所述获取单元包括:
    传输单元,用于通过物理下行共享信道PDSCH与第一终端进行下行数据传输,所述下行数据传输中携带有参考信号,以使所述第一终端解调所述参考信号并向所述基站反馈所述PDSCH的信道状态信息;
    确定单元,用于根据所述信道状态信息确定所述下行数据传输的截止时间信息。
  28. 根据权利要求24-27中任一项所述的基站,其特征在于,所述接收单元具体用于接收随机接入的第二终端通过物理上行控制信道PUCCH每隔特定时间向所述基站发送的调度请求。
  29. 一种终端,其特征在于,包括:
    发送单元,用于当所述终端随机接入基站后,通过物理上行控制信道PUCCH向所述基站发送调度请求;
    接收单元,用于接收所述基站响应所述调度请求发送的上行授权信息和指示信息,所述指示信息包括用于指示所述终端响应所述上行授权信息与所述基站进行物理上行共享信道PUSCH传输的起始时间以及用于指示是否执行先听后说LBT检测的标识信息,当所述PUSCH传输的起始时间与所述基站获取的与第一终端进行下行数据传输的截止时间信息包括的截止时间的间隔在预设时间范围内时,或者当所述PUSCH传输对应的系统子帧号与所述截止时间信息包括的截止时间对应的系统子帧号的间隔在所述预设时间范围对应的子帧符号数内时,所述是否执行LBT检测的标识信息被所述基站配置为不执行所述LBT检测;
    确定单元,用于根据所述指示信息确定与所述基站进行所述PUSCH传输的起始时间,以使所述终端与所述基站进行所述PUSCH传输时对所述PUSCH不进行所述LBT检测的操作;
    其中,所述是否执行LBT检测的标识信息用于表示所述终端是否进行所 述LBT检测的操作,所述基站与所述第一终端下行数据传输所使用的载波和所述终端的所述PUSCH传输所使用的载波相同。
  30. 根据权利要求29所述的终端,其特征在于,所述预设时间范围为所述LBT检测的时间触发门限。
  31. 根据权利要求30所述的终端,其特征在于,所述时间触发门限为35us,或25us,或16us或小于16us。
  32. 根据权利要求29-31中任一项所述的终端,其特征在于,所述发送单元具体用于当终端随机接入基站后,通过物理上行控制信道PUCCH每隔特定时间向所述基站发送调度请求。
PCT/CN2016/107551 2015-12-17 2016-11-28 一种信道检测的控制方法及相关设备 WO2017101667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510954042.3A CN105611540A (zh) 2015-12-17 2015-12-17 一种信道检测的控制方法及相关设备
CN201510954042.3 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017101667A1 true WO2017101667A1 (zh) 2017-06-22

Family

ID=55991009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107551 WO2017101667A1 (zh) 2015-12-17 2016-11-28 一种信道检测的控制方法及相关设备

Country Status (2)

Country Link
CN (1) CN105611540A (zh)
WO (1) WO2017101667A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611540A (zh) * 2015-12-17 2016-05-25 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备
PL3595397T3 (pl) * 2016-06-11 2022-02-21 Beijing Xiaomi Mobile Software Co., Ltd. Procedura nasłuchiwania przed rozmową w urządzeniu bezprzewodowym i urządzenie bezprzewodowe
CN107733550A (zh) * 2016-08-11 2018-02-23 株式会社Ntt都科摩 指示和确定子帧的起始发送定时的方法、基站和用户设备
CN107888256B (zh) 2016-09-30 2022-12-02 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
CN111953655B (zh) * 2017-02-28 2023-03-10 华为云计算技术有限公司 一种通信系统中服务器响应请求消息的方法及设备
CN110972327B (zh) * 2018-09-28 2022-03-11 维沃移动通信有限公司 基于非授权频段的信号传输方法和通信设备
CN112087807A (zh) * 2019-06-13 2020-12-15 中兴通讯股份有限公司 一种实现上行授权的方法及装置和基站
EP4156744A4 (en) * 2020-08-07 2023-07-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN117121615A (zh) * 2021-04-12 2023-11-24 中兴通讯股份有限公司 包括和不包括先收后发的信道接入流程之间的切换

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648646A (zh) * 2009-12-02 2012-08-22 高通股份有限公司 用于使用带静默期的先听后讲来进行频谱共享的装置和方法
CN104581908A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置
CN105592468A (zh) * 2015-12-17 2016-05-18 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备、系统
CN105611540A (zh) * 2015-12-17 2016-05-25 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备
CN105933099A (zh) * 2016-06-06 2016-09-07 深圳市金立通信设备有限公司 一种传输信道探测参考信号srs的方法、终端及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867521B2 (en) * 2011-08-26 2014-10-21 Broadcom Corporation Apparatus and method for communication
CN104486013B (zh) * 2014-12-19 2017-01-04 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104540158B (zh) * 2015-01-12 2018-12-25 宇龙计算机通信科技(深圳)有限公司 信道检测通知方法、系统和基站
CN104717687B (zh) * 2015-04-09 2018-07-27 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整系统和设备
CN104812032B (zh) * 2015-04-10 2018-09-07 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置
CN105072690B (zh) * 2015-09-06 2018-08-28 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648646A (zh) * 2009-12-02 2012-08-22 高通股份有限公司 用于使用带静默期的先听后讲来进行频谱共享的装置和方法
CN104581908A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置
CN105592468A (zh) * 2015-12-17 2016-05-18 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备、系统
CN105611540A (zh) * 2015-12-17 2016-05-25 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备
CN105933099A (zh) * 2016-06-06 2016-09-07 深圳市金立通信设备有限公司 一种传输信道探测参考信号srs的方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Design of UL LBT for LM", 3GPP TSG RAN WG1 MEETING #83, RL-156575, 22 November 2015 (2015-11-22), XP051002993 *

Also Published As

Publication number Publication date
CN105611540A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2017101667A1 (zh) 一种信道检测的控制方法及相关设备
JP6594553B2 (ja) 接続モードdrxオペレーションを制御するための方法
CN107439030B (zh) 在lte许可协助接入操作中的drx处理
US9999005B2 (en) Method and apparatus for enhanced secondary cell activation and deactivation
EP3177094B1 (en) Data transmission method and device
EP3070986B1 (en) Device and method of handling communication operations with a network
WO2018166392A1 (zh) 帧结构确定方法和基站
EP3145251B1 (en) User terminal, wireless base station, and wireless communication method
JP6462141B2 (ja) アンライセンス・バンド送信をスケジュールするための方法およびシステム
WO2021062602A1 (en) Method and apparatus for sharing channel occupancy time on unlicensed spectrum
EP3334217B1 (en) Data transmission method, terminal and ran device
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
CN108605339B (zh) 一种上行控制信息传输的方法及装置
WO2014067140A1 (zh) 一种信息传输方法、用户设备及基站
JP2022517198A (ja) チャネルアクセススキームの決定方法及び装置、端末装置、ネットワーク装置
US20210176017A1 (en) HARQ Feedback Method And Apparatus
EP3668228B1 (en) Sending method, receiving method, device, and system for sounding reference signals
US11228933B2 (en) Method for transmitting information and terminal device
CN114342451B (zh) 用于激活辅小区的通信方法和装置
US9042280B2 (en) Methods and apparatus for half duplex scheduling
JP7117387B6 (ja) 競合ウィンドウの決定方法及びデバイス
WO2017113206A1 (zh) 一种数据通信的方法、终端设备及网络设备
WO2017193674A1 (zh) 一种数据传输的控制方法及相关设备
CN109155990A (zh) 一种计数方法及装置
CN106961742A (zh) 一种上行laa的通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874724

Country of ref document: EP

Kind code of ref document: A1