WO2017197949A1 - 一种数据传输的控制方法及相关设备 - Google Patents
一种数据传输的控制方法及相关设备 Download PDFInfo
- Publication number
- WO2017197949A1 WO2017197949A1 PCT/CN2017/074933 CN2017074933W WO2017197949A1 WO 2017197949 A1 WO2017197949 A1 WO 2017197949A1 CN 2017074933 W CN2017074933 W CN 2017074933W WO 2017197949 A1 WO2017197949 A1 WO 2017197949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink
- subframe
- downlink
- base station
- target
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a data transmission control method and related device.
- LAA Licensed Assisted Access
- LBT Listen Before Talk
- the scheduling information of the uplink subframe is usually sent by the Downlink Control Information (DCI) of the downlink subframe.
- DCI Downlink Control Information
- each downlink subframe is scheduled to correspond to one. Uplink subframe.
- the corresponding downlink subframe cannot be transmitted, so that the uplink subframe corresponding to the downlink subframe cannot be scheduled, thereby reducing the utilization of system resources.
- the embodiment of the invention provides a data transmission control method and related device, which can enable multiple downlink subframes to be scheduled in one downlink subframe, thereby effectively improving system resource utilization.
- a first aspect of the embodiments of the present invention provides a data transmission control method, which is applied to an authorized auxiliary access LAA system, where the method includes:
- the base station acquires a target downlink subframe to be sent when performing uplink scheduling on the spectrum-assisted unlicensed spectrum
- the base station generates uplink scheduling information according to the at least one uplink subframe, where the uplink scheduling information is used to indicate the at least one uplink subframe;
- the base station sends the uplink scheduling information to the terminal on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe.
- a second aspect of the embodiments of the present invention provides a data transmission control method, which is applied to an authorized auxiliary access LAA system, where the method includes:
- the terminal receives uplink scheduling information that is sent by the base station on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe, where the uplink scheduling information is used to indicate at least one uplink subframe scheduled by the target downlink subframe;
- the terminal determines the at least one uplink subframe according to the uplink scheduling information.
- a third aspect of the embodiments of the present invention provides a base station, including:
- An acquiring unit configured to acquire a target downlink subframe to be sent when performing uplink scheduling on the licensed spectrum-assisted unlicensed spectrum
- a determining unit configured to determine at least one uplink subframe scheduled by the target downlink subframe
- a generating unit configured to generate, according to the at least one uplink subframe, uplink scheduling information, where the uplink scheduling information is used to indicate the at least one uplink subframe;
- a sending unit configured to send the uplink scheduling information to the terminal on a physical hybrid automatic retransmission indication channel (PHICH) corresponding to the target downlink subframe.
- PHICH physical hybrid automatic retransmission indication channel
- a fourth aspect of the embodiments of the present invention provides a terminal, including:
- a receiving unit configured to receive uplink scheduling information that is sent by the base station on a physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe, where the uplink scheduling information is used to indicate at least one uplink subframe scheduled by the target downlink subframe ;
- a determining unit configured to determine the at least one uplink subframe according to the uplink scheduling information.
- the base station when the base station performs the uplink scheduling of the licensed spectrum-assisted unlicensed spectrum, the base station may determine at least the target downlink subframe scheduled after the target downlink subframe is to be sent. An uplink subframe, and generating uplink scheduling information according to the at least one uplink subframe, where the uplink scheduling information is used to indicate the at least one uplink subframe, where the base station can The uplink scheduling information is sent to the terminal on the idle PHICH channel corresponding to the downlink subframe, so that the terminal can send the uplink data according to the indication of the uplink scheduling information.
- multi-subframe scheduling can be performed on the PHICH channel that is idle without performing downlink feedback in the uplink HARQ transmission process, so that one downlink subframe is scheduled to simultaneously schedule multiple uplink subframes, thereby increasing the uplink sub-frame.
- the probability that the frame is scheduled improves the signaling efficiency of the LAA system, and effectively improves the uplink performance of the system and improves the resource utilization of the system.
- FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
- FIG. 2 is a schematic flowchart of a method for controlling data transmission according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a downlink subframe scheduling uplink subframe according to an embodiment of the present disclosure
- FIG. 4 is a schematic flowchart of another method for controlling data transmission according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
- FIG. 10 is a schematic structural diagram of still another terminal according to an embodiment of the present invention.
- the embodiment of the present invention provides a data transmission control method and related device, which can perform multi-subframe scheduling on an idle PHICH channel without performing downlink feedback in an uplink HARQ transmission process, so as to support multiple scheduling of one downlink subframe simultaneously.
- the uplink subframe can increase the probability that the uplink subframe is scheduled, improve the signaling efficiency of the LAA system, effectively improve the uplink performance of the system, and improve the resource utilization of the system. The details are described below separately.
- FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
- a base station and at least one terminal are included, wherein the base station can be in communication connection with multiple terminals.
- Terminals can include mobile phones, tablets, PDAs, personal digital assistants (PDAs), mobile Internet devices (MIDs), smart wearable devices (such as smart watches, smart bracelets, etc.)
- the terminal is not limited in this embodiment of the present invention.
- carrier aggregation (CA) technology may be introduced to aggregate multiple consecutive or discontinuous carriers to increase the peak rate and network capacity of the user.
- the transmission bandwidth of the system effectively increases the uplink and downlink transmission rates.
- CA carrier aggregation
- an Authorized Auxiliary Access LAA technology has been introduced.
- the LAA system since the unlicensed spectrum is introduced, it is necessary to consider the coexistence of the licensed spectrum and the unlicensed spectrum. Therefore, it is necessary to comply with the use rule of the unlicensed spectrum to listen to the LBT mechanism first.
- the LBT mechanism when the base station and the terminal perform data transmission, the LBT mechanism is introduced, and the base station needs to perform channel state monitoring before scheduling or transmitting data to determine the busy state of the channel, if the channel state is idle.
- the channel can be used for user scheduling or data transmission; if the channel status is non-idle (ie, occupied), the channel cannot be used.
- the allocation of the uplink and downlink subframes corresponding to each uplink and downlink time slot configuration is shown in Table 1, where D represents In the downlink subframe, S represents a special subframe, and U represents an uplink subframe.
- the number of downlink subframes is greater than or equal to the number of uplink subframes.
- the downlink subframe is used to schedule the uplink subframe, and each downlink subframe is scheduled to be configured with a corresponding uplink subframe. Frames, that is, one-to-one correspondence.
- the number of the downlink sub-frames is less than the number of the uplink sub-frames.
- one downlink sub-frame is configured to schedule two uplink sub-frames, and a 2-bit length "UL index" field may be introduced. Instructions.
- the channel state detection is required before the scheduling.
- the downlink subframe cannot be uplink scheduled, and the corresponding uplink subframe cannot be scheduled for uplink transmission, so that the LAA is enabled.
- the uplink performance of the system is reduced.
- the embodiment of the present invention adopts a scheme in which one downlink subframe can schedule multiple uplink subframes.
- one downlink subframe can schedule multiple uplink subframes.
- downlink feedback is not performed during the uplink synchronous or asynchronous HARQ (Hybrid Automatic Repeat reQuest) transmission. Therefore, the channel PHICH (Physical Hybrid- for downlink feedback of the uplink HARQ)
- the ARQ Indicator Channel is an idle state.
- the uplink scheduling information is transmitted in the idle PHICH channel to perform uplink multi-subframe scheduling, so that one downlink subframe is simultaneously scheduled for multiple uplink subframes.
- the idle PHICH channel in the LAA system is used for uplink scheduling, which can ensure that the uplink subframe is fully scheduled under the premise of LBT, effectively improving the uplink performance of the system and improving the resource utilization of the system.
- FIG. 2 is a schematic flowchart of a method for controlling data transmission according to an embodiment of the present invention.
- the data transmission control method is applied to the LAA system.
- the data transmission control method may include the following steps:
- the base station acquires a target downlink subframe to be sent when performing the uplink scheduling by the spectrum-assisted unlicensed spectrum.
- the target downlink subframe when the base station is to perform uplink scheduling or downlink transmission in the licensed spectrum-assisted unlicensed spectrum, the target downlink subframe may be acquired first, where the target downlink subframe is available for data information and/or Or the downlink subframe in which the control information is transmitted, and the channel corresponding to the target downlink subframe is in an idle state at this time.
- the target downlink subframe may be deployed on the unlicensed spectrum, that is, the carrier carrying the target downlink subframe is deployed on the unlicensed spectrum; the target downlink subframe may also be deployed on the licensed spectrum, in the embodiment of the present invention. Not limited.
- the specific implementation manner of the base station acquiring the target downlink subframe to be sent may include the following steps:
- the base station uses the LBT to detect the channel for transmitting the downlink subframe on the unlicensed spectrum by using the LBT first;
- the base station determines that the downlink subframe is the target downlink subframe to be transmitted.
- an LBT mechanism is introduced in the LAA system, and the base station uses the LBT mechanism to perform unlicensed spectrum before performing uplink scheduling or downlink transmission on the unlicensed spectrum.
- the channel for transmitting a certain downlink subframe performs state detection. When detecting that the channel is occupied, the state of the channel corresponding to the next downlink subframe may be detected; when the state of the channel is detected to be idle. If the downlink subframe is determined to be the target downlink subframe, the base station may perform uplink scheduling or downlink transmission on the downlink subframe.
- the base station may use the LBT mechanism to perform state detection on a channel PDCCH (Physical Downlink Control Channel) for transmitting a downlink subframe on the unlicensed spectrum, to determine whether the PDCCH is in an idle state, and if it is in an idle state. , then the transmission can be performed on the downlink subframe.
- PDCCH Physical Downlink Control Channel
- the base station may determine the target downlink subframe to be sent according to information such as a preset transmission protocol and/or channel quality.
- the base station determines at least one uplink subframe scheduled by the target downlink subframe.
- the base station when the base station acquires the target downlink subframe that can be used for the control information transmission, the base station may further determine at least one uplink subframe that is actually scheduled by the target downlink subframe.
- the at least one uplink subframe may be an uplink subframe in the licensed spectrum, or an uplink subframe in the unlicensed spectrum, and may include both an uplink subframe in the licensed spectrum and an uplink subframe in the unlicensed spectrum.
- the frame is not limited in the embodiment of the present invention.
- the specific implementation manner of the step 202, the base station determining, by the base station, the at least one uplink subframe scheduled by the target downlink subframe may include the following steps:
- the base station determines, according to the currently used target uplink and downlink time slot configuration, and at least one of the preset transmission delay and the uplink channel quality, at least one uplink subframe scheduled by the target downlink subframe in the target uplink and downlink time slot configuration. frame.
- the target uplink and downlink timeslot configuration currently used by the base station may be one of the uplink and downlink time slot configurations 0 to 6, and the allocation of the downlink subframe and the uplink subframe corresponding to the different uplink and downlink time slot configurations.
- the situation is different.
- the preset transmission delay may be the minimum delay of the downlink transmission feedback, which is generally specified as 4 milliseconds (ms), and the preset transmission delays corresponding to different uplink and downlink time slot configurations may be different.
- the base station may first know the quality of the uplink channel before performing uplink scheduling, and may perform scheduling if the uplink channel quality is good, and may not perform scheduling if the uplink channel quality is poor.
- the base station can learn the quality of the current uplink channel according to the SRS (Sounding Reference Signal) reported by the terminal.
- the at least one uplink subframe that can be scheduled by the target downlink subframe can be determined by using the at least one of the preset transmission delay and the uplink channel quality.
- FIG. 3 is a schematic diagram of a downlink subframe scheduling uplink subframe according to an embodiment of the present invention.
- Figure 3 shows the frame structure corresponding to the uplink and downlink time slot configuration 0.
- the base station can
- the target downlink subframe to be transmitted is obtained as the subframe 0 by using the LBT mechanism, and the subframe 1, the subframe 5, and the subframe 6 are detected to be occupied.
- the special subframe S can be regarded as the downlink subframe.
- the base station determines, in the uplink and downlink time slot configuration 0, that the uplink subframe scheduled by the subframe 0 is the subframe 4 and the subframe, in combination with the preset transmission delay (eg, not lower than 4 ms) and/or the uplink channel quality. 7 to 9 total of 4 subframes.
- the preset transmission delay eg, not lower than 4 ms
- the specific implementation manner of the step 202, the base station determining, by the base station, the at least one uplink subframe scheduled by the target downlink subframe may include the following steps:
- the base station determines, according to the current target uplink and downlink time slot configuration and the preset mapping relationship, the at least one uplink subframe scheduled by the target downlink subframe in the target uplink and downlink time slot configuration, where the preset mapping relationship includes different
- the uplink and downlink timeslots are configured to correspond to the downlink subframes and the scheduled uplink subframes.
- the target uplink and downlink time slot configuration may include any one of uplink and downlink time slot configurations 0-6.
- the mappings between the downlink subframes and the scheduled uplink subframes in different uplink and downlink timeslots in the preset mapping relationship may be different, and the uplink subframes scheduled by different downlink subframes in the same uplink and downlink slot configuration may be different. Can be the same.
- the base station may, according to the current uplink and downlink time slot configuration, use the preset mapping relationship to find the uplink subframe corresponding to the different downlink subframes in the target uplink and downlink time slot configuration, thereby determining the target downlink subframe scheduling.
- Uplink subframe For example, as shown in FIG. 3, the uplink subframes corresponding to the subframe 0 corresponding to the uplink and downlink slot configuration 0 in the preset mapping relationship are subframe 4 and subframes 7-9.
- the base station generates uplink scheduling information according to the at least one uplink subframe.
- the uplink scheduling information is used to indicate the at least one uplink subframe, and the uplink scheduling information includes information about the at least one uplink subframe.
- the uplink scheduling information may include, but is not limited to, at least one of: a starting subframe position and an ending subframe position of the at least one uplink subframe; or, a starter of the at least one uplink subframe a frame position and a number of subframes (or a duration) of the at least one uplink subframe; or a frame number set of all subframes in the at least one uplink subframe.
- the base station may generate uplink scheduling information according to the subframe 4 and the subframes 7-9.
- the uplink scheduling information may include a starting subframe position (subframe 4) and an ending subframe position (subframe 9), and is applicable to the scheduled uplink subframe connection.
- Continuation since subframes 5 and 6 are downlink subframes, so subframe 4 and subframes 7-9 are consecutive 4 uplink subframes); or, may include start subframe position (subframe 4) and subframe
- the number (4) is also applicable to the case where the scheduled uplink subframes are consecutive; or may include the frame number set of the subframes ⁇ 4, 7, 8, 9 ⁇ , which is applicable to the scheduled uplink subframes at this time. Continuous or discontinuous.
- the uplink scheduling information may include other expressions for indicating the at least one uplink subframe, such as including the starting subframe position, the ending subframe position, and the number of subframes, in addition to the foregoing.
- the number of uplink subframes in the target uplink and downlink time slot configuration may be obtained, and the uplink scheduling information may be represented by a bit, and the bit length is consistent with the number of uplink subframes in the target uplink and downlink time slot configuration.
- the scheduled uplink subframe is set to 1; for example, the uplink scheduling information includes the scheduled start subframe position and the end subframe position, and the uplink scheduling is performed.
- the bit length of the information is the number of uplink subframes between the start subframe and the end subframe (including the start subframe and the end subframe), and the scheduled uplink subframe is set to 1, which is applicable to The case where the scheduled uplink subframe is continuous or discontinuous.
- the base station sends the uplink scheduling information to the terminal on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe.
- one downlink subframe may be corresponding to a PDCCH channel for downlink transmission control information, and may also correspond to a PHICH channel for performing downlink HARQ downlink feedback.
- a PDCCH channel for downlink transmission control information it is specified that corresponding downlink feedback needs to be performed on the PHICH channel during the uplink HARQ process.
- the terminal is not required to perform downlink feedback during the uplink HARQ transmission process, that is, after receiving the uplink transmission data, the base station does not perform corresponding downlink feedback on the current received data, thereby performing uplink HARQ.
- the PHICH channel of the downlink feedback is idle. Therefore, the uplink scheduling information can be sent on the idle PHICH channel to implement uplink multi-subframe scheduling.
- the uplink scheduling information may be carried when the downlink feedback is sent. In this case, the indication resource of the uplink scheduling information needs to be additionally added.
- the method described in FIG. 2 may further include the following steps:
- the base station generates downlink control information according to the at least one uplink subframe.
- the base station lowers the downlink on the physical downlink control channel PDCCH corresponding to the target downlink subframe Control information is sent to the terminal.
- the downlink control information DCI is used to indicate resource information corresponding to the at least one uplink subframe transmission, where the resource information may include, but is not limited to, a physical resource block occupied by the at least one uplink subframe transmission (Physical Resource) Block (PRB) information (that is, information of resource blocks allocated for the at least one uplink subframe) and information such as a modulation and coding scheme corresponding to the at least one uplink subframe.
- PRB Physical Resource Block
- the information of the allocated resource block may include information such as the identity, size, and/or number of the resource block.
- the downlink control information is sent separately from the uplink scheduling information, and the downlink control information is sent by using the PDCCH channel corresponding to the target downlink subframe, and the uplink scheduling information is sent by using the PHICH channel corresponding to the target downlink subframe, and the two may be simultaneously or
- the embodiments of the present invention are not limited.
- the modulation coding mode and the allocation of resource blocks may be determined according to channel quality and/or scheduling policy.
- the downlink control information may be resource information corresponding to all subframes of the at least one uplink subframe that is scheduled, that is, one DCI may indicate all uplink subframes scheduled; and the downlink control information may also be sent multiple times.
- Each DCI indicates only one scheduled uplink subframe, such as DCI1 indicating scheduled subframe 4, DCI2 indicating scheduled subframe 7, and so on.
- the method described in FIG. 2 may further include the following steps:
- the base station receiving data that is uplinked by the terminal in the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the terminal After receiving the uplink scheduling information sent by the base station through the PHICH channel and the downlink control information sent by using the PDCCH channel, the terminal parses the uplink scheduling information and the downlink control information to obtain the scheduled at least one uplink subframe and the corresponding one.
- the information such as the modulation coding mode and the allocated resource block is modulated to perform uplink transmission on the at least one uplink subframe.
- the base station receiving data performs uplink transmission in the PUSCH (Physical Uplink Shared Channel) corresponding to the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- PUSCH Physical Uplink Shared Channel
- the terminal uses the LBT mechanism to detect the channel state before performing the uplink data transmission on the uplink subframe, and performs the transmission when the channel is idle.
- the terminal can perform uplink data transmission on the uplink subframe without performing LBT channel detection.
- the base station when performing the uplink scheduling of the licensed spectrum-assisted unlicensed spectrum, may determine at least one uplink subframe scheduled by the target downlink subframe after acquiring the target downlink subframe to be sent. And generating the uplink scheduling information according to the at least one uplink subframe, where the uplink scheduling information is used to indicate the at least one uplink subframe, and the base station may send the uplink scheduling information to the terminal on the idle PHICH channel corresponding to the target downlink subframe, So that the terminal can send the uplink data according to the indication of the uplink scheduling information.
- multi-subframe scheduling can be performed on the idle PHICH channel without performing downlink feedback in the uplink HARQ transmission process, so as to support one downlink subframe and simultaneously schedule multiple uplink subframes, thereby increasing the uplink.
- the probability that the subframe is scheduled improves the signaling efficiency of the LAA system, and effectively improves the uplink performance of the system and improves the resource utilization of the system.
- FIG. 4 is a schematic flowchart diagram of another method for controlling data transmission according to an embodiment of the present invention.
- the data transmission control method is applied to the LAA system.
- the data transmission control method may include the following steps:
- the terminal receives uplink scheduling information that is sent by the base station on the physical hybrid automatic retransmission indication channel (PHICH) corresponding to the target downlink subframe, where the uplink scheduling information is used to indicate at least one uplink subframe scheduled by the target downlink subframe.
- PHICH physical hybrid automatic retransmission indication channel
- the target downlink subframe is deployed in a subframe that may be deployed on the unlicensed spectrum, or may be a subframe that is deployed on the licensed spectrum, which is not limited in the embodiment of the present invention.
- the base station may further generate uplink scheduling information, where the uplink scheduling information is used to indicate the at least one uplink subframe. And transmitting the uplink scheduling information to the terminal by using the PHICH channel corresponding to the target downlink subframe, so that the terminal can receive the uplink scheduling information sent by the base station.
- the PHICH channel is a channel that is idle without performing downlink feedback in uplink HARQ transmission.
- the uplink and downlink timeslot configuration currently used by the base station may be any one of the uplink and downlink time slot configurations 0-6.
- the at least one uplink subframe may be an uplink subframe in the licensed spectrum, or an uplink subframe in the unlicensed spectrum, and may include both an uplink subframe and an unlicensed spectrum in the licensed spectrum.
- the following uplink subframes are not limited in the embodiment of the present invention.
- the uplink scheduling information may include, but is not limited to, at least one of: a starting subframe position and an ending subframe position of the at least one uplink subframe; or, a starter of the at least one uplink subframe a frame position and a number of subframes (or a duration) of the at least one uplink subframe; or a frame number set of all subframes in the at least one uplink subframe.
- the uplink scheduling information may include other expressions in addition to the foregoing, and is not limited in the embodiment of the present invention.
- the terminal determines, according to the uplink scheduling information, the at least one uplink subframe.
- the terminal may parse the uplink scheduling information to parse the scheduled at least one uplink subframe indicated in the uplink scheduling information, so that the terminal may determine The at least one uplink subframe is a scheduled subframe. For example, as shown in FIG.
- the terminal may determine, according to the uplink scheduling information, that the scheduled uplink subframe is subframe 4 and subframes 7-9; if the uplink scheduling information includes the starting subframe location (sub The frame 4) and the number of subframes (4), the terminal may also determine, according to the uplink scheduling information, that the scheduled uplink subframe is the subframe 4 and the subframes 7-9; if the uplink scheduling information includes the scheduled subframe The frame number set ⁇ 4, 7, 8, 9 ⁇ , the terminal may determine, according to the uplink scheduling information, that the scheduled uplink subframe is subframe 4 and subframes 7-9.
- the method described in FIG. 4 may further include the following steps:
- the terminal receives downlink control information that is sent by the base station on the physical downlink control channel PDCCH corresponding to the target downlink subframe.
- the downlink control information DCI is used to indicate the resource information corresponding to the at least one uplink subframe transmission
- the resource information may include the information of the physical resource block PRB occupied by the at least one uplink subframe transmission, that is, the foregoing
- the information of the resource block allocated by an uplink subframe may include information such as an identifier, a size, and/or a number of the resource block.
- the resource information may include information such as the modulation and coding mode corresponding to the at least one uplink subframe, and the information in the embodiment of the present invention is not limited.
- the method described in FIG. 4 may further include the following steps:
- the terminal uplinks and sends data to the base station in the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the terminal performs uplink transmission data to the base station in the PUSCH channel corresponding to the at least one uplink subframe according to the uplink scheduling information and the downlink control information. Specifically, the terminal may send, according to the uplink scheduling information and the downlink control information, each uplink subframe in the at least one uplink subframe to the base station to send data to the base station according to the corresponding modulation and coding scheme.
- the terminal uses the LBT mechanism to detect the channel state before performing the uplink data transmission on the uplink subframe, and performs the transmission when the channel is idle.
- the terminal may perform uplink data transmission on the uplink subframe without performing LBT channel detection.
- the terminal may receive and parse the uplink scheduling information sent by the base station on the PHICH channel that is idle by not performing downlink feedback in the uplink HARQ transmission, and determine according to the uplink scheduling information.
- One or more uplink subframes are scheduled to perform uplink data transmission in the scheduled uplink subframe, thereby increasing the probability that the uplink subframe is scheduled, improving the signaling efficiency of the LAA system, and effectively improving the system.
- Uplink performance improves system resource utilization.
- FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention, for performing a data transmission control method provided by an embodiment of the present invention.
- the base station may include:
- the obtaining unit 501 is configured to acquire a target downlink subframe to be sent when performing the uplink scheduling by the licensed spectrum-assisted unlicensed spectrum.
- the target downlink subframe is a downlink subframe in which data information and/or control information can be transmitted, and the channel corresponding to the target downlink subframe is in an idle state at this time.
- the target downlink subframe may be deployed in an unlicensed spectrum or in an authorized spectrum.
- the determining unit 502 is configured to determine at least one uplink subframe scheduled by the target downlink subframe.
- the at least one uplink subframe may be an uplink subframe in the licensed spectrum, or an uplink subframe in the unlicensed spectrum, and may include both an uplink subframe and an unlicensed spectrum in the licensed spectrum.
- the following uplink subframes are not limited in the embodiment of the present invention.
- the specific implementation manner of the determining, by the determining unit 502, the at least one uplink subframe scheduled by the target downlink subframe may be:
- the determining unit 502 determines, according to the currently adopted target uplink and downlink time slot configuration, and at least one of the preset transmission delay and the uplink channel quality, at least one uplink sub-scheduled in the target uplink and downlink time slot configuration. frame.
- the target uplink and downlink time slot configuration may include any one of uplink and downlink time slot configurations 0-6.
- the specific implementation manner of the determining, by the determining unit 502, the at least one uplink subframe scheduled by the target downlink subframe may be:
- the determining unit 502 determines, according to the currently adopted target uplink and downlink time slot configuration and the preset mapping relationship, the at least one uplink subframe scheduled by the target downlink subframe in the target uplink and downlink time slot configuration, where the preset mapping relationship includes different
- the uplink and downlink timeslots are configured to correspond to the downlink subframes and the scheduled uplink subframes.
- the target uplink and downlink time slot configuration may include any one of uplink and downlink time slot configurations 0-6.
- the generating unit 503 is configured to generate uplink scheduling information according to the at least one uplink subframe.
- the uplink scheduling information is used to indicate the at least one uplink subframe, and the uplink scheduling information includes information about the at least one uplink subframe.
- the uplink scheduling information may include, but is not limited to, at least one of the following situations:
- a set of frame numbers of all subframes in the at least one uplink subframe is a set of frame numbers of all subframes in the at least one uplink subframe.
- the sending unit 504 is configured to send the uplink scheduling information to the terminal on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe.
- the PHICH channel is used for performing uplink HARQ.
- downlink feedback is not performed on the PHICH channel in the uplink HARQ process, so that the corresponding PHICH channel is idle. Therefore, uplink scheduling information can be sent on the idle PHICH channel to implement Uplink multi-subframe scheduling.
- FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention.
- a method for controlling data transmission provided by an embodiment of the present invention.
- the base station shown in FIG. 6 is further optimized based on the base station shown in FIG. 5.
- the acquiring unit 501 in the base station shown in FIG. 6 may include:
- the detecting sub-unit 5011 is configured to detect, by using the LBT, the channel for transmitting the downlink subframe on the unlicensed spectrum.
- the determining sub-unit 5012 is configured to determine, when the detecting sub-unit 5011 detects that the channel for transmitting the downlink subframe on the unlicensed spectrum is an idle channel, determining the downlink subframe as the target downlink subframe to be sent.
- the generating unit 503 is further configured to generate downlink control information according to the at least one uplink subframe.
- the downlink control information is used to indicate the resource information corresponding to the at least one uplink subframe transmission, and the resource information may include but is not limited to the information of the physical resource block PRB occupied by the at least one uplink subframe and the at least one uplink. Information such as the modulation and coding method corresponding to the subframe.
- the sending unit 504 is further configured to send the downlink control information to the terminal on the physical downlink control channel PDCCH corresponding to the target downlink subframe.
- the base station shown in FIG. 6 may further include:
- the receiving unit 505 is configured to receive data that is uplinked by the terminal in the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the sending unit 504 After the sending unit 504 sends the uplink scheduling information and the downlink control information to the terminal, the sending unit 504 can send a triggering command to the receiving unit 505, so that the receiving unit 505 receives the uplink transmission information of the terminal according to the uplink scheduling information and the downlink control information. data.
- multiple subframe scheduling can be performed on the PHICH channel that is idle without performing downlink feedback in the uplink HARQ transmission process, so as to support one downlink subframe and simultaneously schedule multiple An uplink subframe, thereby increasing the probability that the uplink subframe is scheduled, Improve the signaling efficiency of the LAA system, and effectively improve the uplink performance of the system and improve the resource utilization of the system.
- FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention, for performing a data transmission control method provided by an embodiment of the present invention.
- the base station 700 can include at least one processor 701, such as a CPU (Central Processing Unit), at least one input device 702, at least one output device 703, a memory 704, and the like.
- these components can be communicatively connected through one or more buses 705.
- the structure of the base station shown in FIG. 7 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the figure or Fewer parts, or a combination of some parts, or different parts. among them:
- the input device 702 may include a wired interface, a wireless interface, and the like, and may be used to receive data and uplink data transmitted by the terminal.
- the output device 703 may include a wired interface, a wireless interface, etc., and may be used to downlink signals to the terminal and the like.
- the memory 704 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
- the memory 704 can optionally also be at least one storage device located remotely from the aforementioned processor 701. As shown in FIG. 7, the application 704 and the like may be included in the memory 704, which is not limited by the embodiment of the present invention.
- the processor 701 can be used to call an application stored in the memory 704 to perform the following operations:
- uplink scheduling information For generating, according to the foregoing at least one uplink subframe, uplink scheduling information, where the uplink scheduling information is used to indicate the at least one uplink subframe;
- the trigger output device 703 sends the uplink scheduling information to the terminal on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe, where the PHICH is automatically mixed in the uplink hybrid A channel that requests idle HARQ transmission without downlink feedback and is idle.
- the specific implementation manner of the processor 701 acquiring the target downlink subframe to be sent may be:
- the LBT After listening, the LBT detects the channel used for transmitting the downlink subframe on the unlicensed spectrum
- the channel for transmitting the downlink subframe on the unlicensed spectrum is an idle channel, determining that the downlink subframe is the target downlink subframe to be transmitted.
- the processor 701 may also invoke an application stored in the memory 704 and perform the following operations:
- downlink control information is used to indicate information about a physical resource block PRB occupied by the at least one uplink subframe transmission, and a corresponding modulation and coding manner;
- the trigger output device 703 sends the downlink control information to the terminal on the physical downlink control channel PDCCH corresponding to the target downlink subframe.
- the processor 701 can also call an application stored in the memory 704 and perform the following operations:
- the trigger input device 702 receives data that is uplinked by the terminal in the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the specific implementation manner of the processor 701 determining the at least one uplink subframe scheduled by the target downlink subframe may be:
- the target uplink and downlink time slot configuration may include any one of uplink and downlink time slot configurations 0-6.
- the specific implementation manner of the processor 701 determining the at least one uplink subframe scheduled by the target downlink subframe may be:
- the target uplink and downlink time slot configuration may include any one of uplink and downlink time slot configurations 0-6.
- the uplink scheduling information may include, but is not limited to, at least one of the following situations:
- a set of frame numbers of all subframes in the at least one uplink subframe is a set of frame numbers of all subframes in the at least one uplink subframe.
- multi-subframe scheduling can be performed on the PHICH channel that is idle without performing downlink feedback in the uplink HARQ transmission process, so as to support one downlink subframe and simultaneously schedule multiple uplink sub-frames.
- the frame can increase the probability that the uplink subframe is scheduled, improve the signaling efficiency of the LAA system, and effectively improve the uplink performance of the system and improve the resource utilization of the system.
- FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention, for performing a data transmission control method provided by an embodiment of the present invention.
- the terminal may include:
- the receiving unit 801 is configured to receive uplink scheduling information that is sent by the base station on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe, where the uplink scheduling information is used to indicate at least one uplink subframe scheduled by the target downlink subframe.
- the target downlink subframe may be deployed in the unlicensed spectrum, or may be deployed in the licensed spectrum, which is not limited in the embodiment of the present invention.
- the at least one uplink subframe scheduled by the target downlink subframe may be an uplink subframe in the licensed spectrum or an uplink subframe in the unlicensed spectrum, and may also include an uplink subframe in the licensed spectrum and an unlicensed spectrum.
- the following uplink subframes are not limited in the embodiment of the present invention.
- the PHICH channel is a channel that is idle without performing downlink feedback during uplink HARQ transmission.
- the uplink scheduling information may include, but is not limited to, at least one of the following situations:
- a set of frame numbers of all subframes in the at least one uplink subframe is a set of frame numbers of all subframes in the at least one uplink subframe.
- the determining unit 802 is configured to determine the at least one uplink subframe according to the uplink scheduling information.
- the receiving unit 801 is further configured to receive downlink control information that is sent by the base station on the physical downlink control channel PDCCH corresponding to the target downlink subframe.
- the downlink control information is used to indicate resource information corresponding to the at least one uplink subframe transmission
- the resource information may include information of a physical resource block PRB occupied by the at least one uplink subframe transmission, that is, at least one of the foregoing
- the resource block information allocated by the uplink subframe may include information such as an identifier, a size, and/or a number of the resource block.
- the resource information may further include information such as a modulation and coding mode corresponding to the at least one uplink subframe, which is not limited in the embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of another terminal according to an embodiment of the present invention, for performing a data transmission control method provided by an embodiment of the present invention.
- the terminal shown in FIG. 9 is further optimized based on the terminal shown in FIG. 8.
- the terminal shown in FIG. 9 may further include:
- the sending unit 803 is configured to send uplink data to the base station in the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the sending unit 803 may perform uplink data transmission to the base station in the PUSCH channel corresponding to the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the sending unit 803 uses the LBT mechanism to detect the channel state before the uplink data transmission in the uplink subframe, when the channel is idle.
- the uplink subframe is an uplink subframe in the licensed spectrum
- the sending unit 803 can perform uplink data transmission on the uplink subframe without performing LBT channel detection.
- the uplink scheduling information sent by the base station by using the PHICH channel that is idle without performing downlink feedback during the uplink HARQ transmission may be received and parsed according to the uplink scheduling.
- the information is used to determine one or more uplink subframes to be scheduled to perform uplink data transmission in the scheduled uplink subframe, thereby increasing the probability that the uplink subframe is scheduled, and improving the signaling efficiency of the LAA system, and Effectively improve the uplink performance of the system, improve the system Resource utilization.
- FIG. 10 is a schematic structural diagram of another terminal according to an embodiment of the present invention, for performing a data transmission control method provided by an embodiment of the present invention.
- the terminal 1000 may include at least one processor 1001, such as a CPU, at least one input device 1002, at least one output device 1003, a memory 1004, and the like. Among them, these components can be communicatively connected through one or more buses 1005.
- the structure of the terminal shown in FIG. 10 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the figure or Fewer parts, or a combination of some parts, or different parts. among them:
- the input device 1002 may include a wired interface, a wireless interface, and the like, and may be used to receive signals sent by the base station in downlink.
- the output device 1003 may include a wired interface, a wireless interface, etc., and may be used to uplink data to the base station and the like.
- the memory 1004 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
- the memory 1004 can also optionally be at least one storage device located remotely from the aforementioned processor 1001.
- the operating system, the application program, the data, and the like may be included in the memory 1004 as a computer storage medium, which is not limited by the embodiment of the present invention.
- the processor 1001 can be used to call an application stored in the memory 1004 to perform the following operations:
- the trigger input device 1002 receives uplink scheduling information that is sent by the base station on the physical hybrid automatic retransmission indication channel PHICH corresponding to the target downlink subframe, where the uplink scheduling information is used to indicate at least one uplink subframe scheduled by the target downlink subframe, where The target downlink subframe may be deployed in an unlicensed spectrum or an authorized spectrum, where the PHICH is a channel that is idle without performing downlink feedback in an uplink hybrid automatic repeat request (HARQ transmission);
- HARQ transmission uplink hybrid automatic repeat request
- the processor 1001 may also invoke an application stored in the memory 1004. And do the following:
- the trigger input device 1002 receives the downlink control information that is sent by the base station on the physical downlink control channel PDCCH corresponding to the target downlink subframe, and the downlink control information may be used to indicate the information of the physical resource block PRB occupied by the at least one uplink subframe transmission.
- Information such as a modulation and coding scheme corresponding to the at least one uplink subframe.
- processor 1001 may also invoke an application stored in the memory 1004 and perform the following operations:
- the trigger output device 1003 uplinkly transmits data to the base station in the at least one uplink subframe according to the uplink scheduling information and the downlink control information.
- the uplink scheduling information may include, but is not limited to, at least one of the following situations:
- a set of frame numbers of all subframes in the at least one uplink subframe is a set of frame numbers of all subframes in the at least one uplink subframe.
- the uplink scheduling information sent by the base station on the PHICH channel that is idle without downlink feedback during the uplink HARQ transmission process may be received and analyzed, and determined according to the uplink scheduling information.
- One or more uplink subframes are scheduled to perform uplink data transmission in the scheduled uplink subframe, thereby increasing the probability that the uplink subframe is scheduled, improving the signaling efficiency of the LAA system, and effectively improving the system.
- Uplink performance improves system resource utilization.
- Modules or sub-modules in all embodiments of the present invention may be implemented by a general-purpose integrated circuit, such as a CPU, or by an ASIC (Application Specific Integrated Circuit).
- a general-purpose integrated circuit such as a CPU
- ASIC Application Specific Integrated Circuit
- a unit or a subunit in a base station and a terminal may be combined, divided, and deleted according to actual needs.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供了一种数据传输的控制方法及相关设备,应用于授权辅助接入LAA系统中,该方法包括:基站在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧;基站确定所述目标下行子帧调度的至少一个上行子帧;基站根据所述至少一个上行子帧,生成上行调度信息,所述上行调度信息用于指示所述至少一个上行子帧;基站在所述目标下行子帧对应的物理混合自动重传指示信道PHICH上将所述上行调度信息发送至终端。实施本发明实施例,能够使一个下行子帧调度多个上行子帧,有效提升系统的资源利用率。
Description
本发明涉及通信技术领域,尤其涉及一种数据传输的控制方法及相关设备。
随着用户设备的普及以及通信业务量的急剧增加,授权频谱越来越不足以提供更高的网络容量。为了满足日益增长的网络需求,在授权频谱的基础上扩大使用非授权频谱成为一个重要的可行方向。3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)组织提出了LAA(Licensed Assisted Access,授权辅助接入)技术以实现在授权频谱的辅助下使用非授权的频谱资源。为了使授权频谱与非授权频谱更好的共存,在LAA系统中引入了LBT(Listen Before Talk,先听后说)机制,即在数据传输之前先进行信道状态的监听,判断要使用的信道是否已经被占用,在信道没有被占用的前提下才对该信道的资源进行调度。
在LTE(Long Term Evolution,长期演进)系统中,上行子帧的调度信息通常是通过下行子帧的下行控制信息(Downlink Control Information,DCI)发出的,一般规定每个下行子帧调度一个对应的上行子帧。然而,在LBT机制下当信道被占用时将导致对应的下行子帧无法进行发送,以使得无法调度该下行子帧对应的上行子帧,从而降低了系统资源的利用率。
发明内容
本发明实施例提供了一种数据传输的控制方法及相关设备,能够使一个下行子帧调度多个上行子帧,有效提升系统的资源利用率。
本发明实施例第一方面提供了一种数据传输的控制方法,应用于授权辅助接入LAA系统中,所述方法包括:
基站在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧;
所述基站确定所述目标下行子帧调度的至少一个上行子帧;
所述基站根据所述至少一个上行子帧,生成上行调度信息,所述上行调度信息用于指示所述至少一个上行子帧;
所述基站在所述目标下行子帧对应的物理混合自动重传指示信道PHICH上将所述上行调度信息发送至终端。
本发明实施例第二方面提供了一种数据传输的控制方法,应用于授权辅助接入LAA系统中,所述方法包括:
终端接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,所述上行调度信息用于指示所述目标下行子帧调度的至少一个上行子帧;
所述终端根据所述上行调度信息,确定所述至少一个上行子帧。
本发明实施例第三方面提供了一种基站,包括:
获取单元,用于在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧;
确定单元,用于确定所述目标下行子帧调度的至少一个上行子帧;
生成单元,用于根据所述至少一个上行子帧,生成上行调度信息,所述上行调度信息用于指示所述至少一个上行子帧;
发送单元,用于在所述目标下行子帧对应的物理混合自动重传指示信道PHICH上将所述上行调度信息发送至终端。
本发明实施例第四方面提供了一种终端,包括:
接收单元,用于接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,所述上行调度信息用于指示所述目标下行子帧调度的至少一个上行子帧;
确定单元,用于根据所述上行调度信息,确定所述至少一个上行子帧。
本发明实施例中,在授权辅助接入LAA系统中,基站在授权频谱辅助非授权频谱进行上行调度时,可以在获取到待发送的目标下行子帧后,确定该目标下行子帧调度的至少一个上行子帧,并根据上述至少一个上行子帧生成上行调度信息,该上行调度信息用于指示上述至少一个上行子帧,基站可以在该目
标下行子帧对应的空闲PHICH信道上将该上行调度信息发送至终端,以使得终端可以根据该上行调度信息的指示发送上行数据。可见,实施本发明实施例,可以在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上进行多子帧调度,以支持一个下行子帧同时调度多个上行子帧,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种应用场景的示意图;
图2是本发明实施例提供的一种数据传输的控制方法的流程示意图;
图3是本发明实施例提供的一种下行子帧调度上行子帧的示意图;
图4是本发明实施例提供的另一种数据传输的控制方法的流程示意图;
图5是本发明实施例提供的一种基站的结构示意图;
图6是本发明实施例提供的另一种基站的结构示意图;
图7是本发明实施例提供的又一种基站的结构示意图;
图8是本发明实施例提供的一种终端的结构示意图;
图9是本发明实施例提供的另一种终端的结构示意图;
图10是本发明实施例提供的又一种终端的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种数据传输的控制方法及相关设备,可以在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上进行多子帧调度,以支持一个下行子帧同时调度多个上行子帧,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。以下分别进行详细说明。
为了更好的理解本发明实施例,下面先对本发明实施例公开的应用场景进行描述。请参阅图1,图1是本发明实施例提供的一种应用场景的示意图。在图1所示的应用场景中,包括基站和至少一个终端,其中,基站可以与多个终端进行通信连接。终端可以包括移动手机、平板电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、智能穿戴设备(如智能手表、智能手环等)等各类终端,本发明实施例不作限定。在图1所示的应用场景中,为了满足用户的峰值速率和网络容量提升的要求,可以引入载波聚合(Carrier Aggregation,CA)技术,将多个连续或不连续的载波聚合在一起,从而增加系统的传输带宽,有效提升上下行传输速率。然而,由于授权频谱资源有限,越来越不能够满足日益增长的用户群,因此,可以通过使用非授权频谱来扩展频谱资源。为了实现在授权频谱的辅助下使用非授权频谱,引入了授权辅助接入LAA技术。在LAA系统中,由于引入了非授权频谱,需要考虑授权频谱与非授权频谱的共存,因此,需要遵守非授权频谱的使用规则先听后说LBT机制。
本发明实施例中,基站与终端进行数据传输时,由于引入了LBT机制,基站在调度或发送数据之前,需要先进行信道状态的监听,以判断信道的忙闲状态,如果信道状态为空闲状态,则可以使用该信道进行用户调度或数据发送;如果信道状态为非空闲(即被占用)状态,则无法使用该信道。在现有LTE系统中,包含有上下行时隙配置0~6共七种时隙配置,每一种上下行时隙配置对应的上下行子帧的分配如表1所示,其中,D代表下行子帧,S代表特殊子帧,U代表上行子帧。对于上下行时隙配置1~6,下行子帧数均大于或等于上行子帧数,在LTE系统中采用下行子帧来调度上行子帧,且规定每个下行子帧调度一个对应的上行子帧,即一一对应关系。而对于上下行时隙配置0,由
于下行子帧数少于上行子帧数,为了使所有的上行子帧均可以被调度,则规定一个下行子帧调度两个上行子帧,可以引入长度为2bit的“UL index”字段来进行指示。由于在LAA系统中引入了LBT机制,在调度之前需要先进行信道状态的检测,当信道被占用时,则下行子帧无法进行上行调度,进而无法调度对应的上行子帧进行上行传输,使得LAA系统的上行性能降低。
表1
基于上述问题,且为了使所有的上行子帧都具有被调度的可能以最大化系统的上行性能,本发明实施例采用了一个下行子帧可以调度多个上行子帧的方案。在LAA系统中,对于上下行时隙配置0~6,规定一个下行子帧可以调度多个上行子帧。同时,在LAA系统中,规定在上行同步或异步HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)传输过程中不进行下行反馈,因此,用于上行HARQ的下行反馈的信道PHICH(Physical Hybrid-ARQ Indicator Channel,物理混合自动重传指示信道)为空闲状态。在该空闲的PHICH信道中来传输上行调度信息,以进行上行多子帧调度,以实现一个下行子帧同时调度多个上行子帧。通过实施该方案,利用了LAA系统中空闲的PHICH信道进行上行调度,可以保障上行子帧在LBT的前提下被充分调度,有效改善系统的上行性能,提升系统的资源利用率。
基于图1所示的应用场景,本发明实施例公开了一种数据传输的控制方法。请参阅图2,图2是本发明实施例提供的一种数据传输的控制方法的流程示意图。其中,该数据传输的控制方法应用于LAA系统中,如图2所示,该数据传输的控制方法可以包括以下步骤:
201、基站在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧。
本发明实施例中,在LAA系统中,当基站要在授权频谱辅助非授权频谱进行上行调度或下行传输时,可以先获取目标下行子帧,其中,目标下行子帧为可以进行数据信息和/或控制信息发送的下行子帧,目标下行子帧对应使用的信道此时为空闲状态。其中,该目标下行子帧可以部署于非授权频谱,也即是说,承载该目标下行子帧的载波部署于非授权频谱;该目标下行子帧也可以部署于授权频谱上,本发明实施例不作限定。
作为一种可选的实施方式,当该目标下行子帧部署于非授权频谱上时,步骤201基站获取待发送的目标下行子帧的具体实施方式可以包括以下步骤:
21)基站利用先听后说LBT对非授权频谱上用于传输下行子帧的信道进行检测;
22)当检测到非授权频谱上用于传输该下行子帧的信道为空闲信道时,基站确定该下行子帧为待发送的目标下行子帧。
在该实施方式中,为了使授权频谱与非授权频谱更好的共存,在LAA系统中引入了LBT机制,基站在非授权频谱上进行上行调度或下行传输之前,先利用LBT机制对非授权频谱上用于传输某一下行子帧的信道进行状态检测,当检测到该信道已被占用时,则可以对下一下行子帧对应的信道进行状态检测;当检测到该信道的状态为空闲状态(即未被占用)时,则可以将该下行子帧确定为目标下行子帧,基站可以在该下行子帧上进行上行调度或下行传输。具体地,基站可以利用LBT机制对非授权频谱上用于传输下行子帧的信道PDCCH(Physical Downlink Control Channel,物理下行控制信道)进行状态检测,以判断该PDCCH是否处于空闲状态,若为空闲状态,则可以在该下行子帧上进行传输。
作为一种可选的实施方式,当该目标下行子帧部署于授权频谱上时,基站可以根据预设传输协议和/或信道质量等信息来确定出待发送的目标下行子帧。
202、基站确定该目标下行子帧调度的至少一个上行子帧。
本发明实施例中,当基站获取到能够进行控制信息发送的目标下行子帧时,可以进一步确定该目标下行子帧实际调度的至少一个上行子帧。其中,上述至少一个上行子帧可以是授权频谱下的上行子帧,也可以是非授权频谱下的上行子帧,还可以既包含授权频谱下的上行子帧,也包含非授权频谱下的上行子帧,本发明实施例不作限定。
作为一种可选的实施方式,步骤202基站确定该目标下行子帧调度的至少一个上行子帧的具体实施方式可以包括以下步骤:
23)基站根据当前采用的目标上下行时隙配置,以及预设传输时延与上行信道质量中的至少一种,确定该目标下行子帧在目标上下行时隙配置下调度的至少一个上行子帧。
在该实施方式中,基站当前采用的目标上下行时隙配置可以为上下行时隙配置0~6中的其中一种,不同的上下行时隙配置对应的下行子帧与上行子帧的分配情况不同。预设传输时延可以为下行传输反馈的最小时延,一般规定为4毫秒(ms),不同的上下行时隙配置对应的预设传输时延可以不同。具体地,如果基站在第n(n为大于等于0的整数)个下行子帧上进行下行传输时,则该第n个下行子帧能够调度的上行子帧可以为第n+k(k>=4)个上行子帧。
在该实施方式中,基站在进行上行调度之前,可以先获知上行信道的质量,如果上行信道质量较好,则可以进行调度;如果上行信道质量较差,则可以不进行调度。基站可以根据终端上报的SRS(Sounding Reference Signal,探测参考信号)来获知当前上行信道的质量。基站在当前采用的目标上下行时隙配置下,可以结合考虑预设传输时延和上行信道质量中的至少一种信息来确定出该目标下行子帧能够调度的至少一个上行子帧。
举例来说,请参阅图3,图3是本发明实施例提供的一种下行子帧调度上行子帧的示意图。图3所示的为上下行时隙配置0所对应的帧结构,基站可以
通过LBT机制获取到待发送的目标下行子帧为子帧0,而检测出子帧1、子帧5和子帧6均已被占用,这里可以将特殊子帧S看作为下行子帧。进一步地,基站在上下行时隙配置0下,可以结合预设传输时延(如不低于4ms)和/或上行信道质量来确定出子帧0调度的上行子帧为子帧4和子帧7~9共4个子帧。
作为一种可选的实施方式,步骤202基站确定该目标下行子帧调度的至少一个上行子帧的具体实施方式可以包括以下步骤:
24)基站根据当前采用的目标上下行时隙配置以及预设映射关系,确定该目标下行子帧在目标上下行时隙配置下调度的至少一个上行子帧,其中,该预设映射关系包括不同的上下行时隙配置下下行子帧与调度的上行子帧的对应关系。
在该实施方式中,目标上下行时隙配置可以包括上下行时隙配置0~6中的任意一种。预设映射关系中不同的上下行时隙配置下下行子帧与调度的上行子帧的对应关系可以不同,且同一上下行时隙配置下的不同下行子帧调度的上行子帧可以不同,也可以相同。基站可以根据当前采用的目标上下行时隙配置,从预设映射关系中查找出目标上下行时隙配置下不同的下行子帧对应调度的上行子帧,从而确定出该目标下行子帧调度的上行子帧。例如,如图3所示,预设映射关系中指示上下行时隙配置0下子帧0对应调度的上行子帧为子帧4和子帧7~9。
203、基站根据上述至少一个上行子帧,生成上行调度信息。
本发明实施例中,该上行调度信息用于指示上述至少一个上行子帧,该上行调度信息中包含了上述至少一个上行子帧的信息。
具体地,该上行调度信息可以包括但不限于以下情况中的至少一种:上述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,上述至少一个上行子帧的起始子帧位置和上述至少一个上行子帧的子帧个数(或持续长度);或者,上述至少一个上行子帧中的所有子帧的帧号集合。例如,如图3所示,当上下行时隙配置0下子帧0对应调度的上行子帧为子帧4和子帧7~9时,基站可以根据子帧4和子帧7~9生成上行调度信息,该上行调度信息可以包括起始子帧位置(子帧4)和结束子帧位置(子帧9),此时适用于调度的上行子帧连
续的(由于子帧5和6为下行子帧,所以子帧4和子帧7~9为连续的4个上行子帧)情况;或者,可以包括起始子帧位置(子帧4)和子帧个数(4个),此时也适用于调度的上行子帧连续的情况;或者,可以包括子帧的帧号集合{4,7,8,9},此时适用于调度的上行子帧连续或不连续的情况。此外,该上行调度信息除可以包括上述情况外,还可以包括其他表达方式,用于指示上述至少一个上行子帧,如同时包括起始子帧位置、结束子帧位置和子帧个数等;又如,可以获取目标上下行时隙配置下的上行子帧的个数,该上行调度信息可以用比特位来表示,其比特长度与目标上下行时隙配置下的上行子帧的个数一致,当调度哪个或哪些上行子帧时,则将被调度的上行子帧置位为1;再如,该上行调度信息包括被调度的起始子帧位置和结束子帧位置,且该上行调度信息的比特长度为起始子帧与结束子帧之间上行子帧的个数(包括起始子帧和结束子帧),则被调度的上行子帧置位为1,此时可适用于调度的上行子帧连续或不连续的情况。
204、基站在该目标下行子帧对应的物理混合自动重传指示信道PHICH上将该上行调度信息发送至终端。
本发明实施例中,一个下行子帧可以对应有用于下行传输控制信息的PDCCH信道外,还可以对应有用于进行上行HARQ的下行反馈的PHICH信道。在LTE系统中,规定在进行上行HARQ过程中需在PHICH信道上进行相应的下行反馈。而在LAA系统中,规定终端在进行上行HARQ传输过程中不进行下行反馈,即基站接收到终端上行传输的数据后,对本次接收到数据不进行相应的下行反馈,从而用于进行上行HARQ的下行反馈的PHICH信道则是闲置的。因此,可以在该空闲的PHICH信道上进行上行调度信息的发送,以实现上行多子帧调度。可选的,当该目标下行子帧对应的PHICH信道为非空闲信道时,可以在发送下行反馈的同时携带该上行调度信息,此时,则需要额外增加该上行调度信息的指示资源。
本发明实施例中,图2所描述的方法还可以包括以下步骤:
25)基站根据上述至少一个上行子帧,生成下行控制信息;
26)基站在该目标下行子帧对应的物理下行控制信道PDCCH上将该下行
控制信息发送至终端。
其中,该下行控制信息DCI用于指示上述至少一个上行子帧传输时对应的资源信息,其中,该资源信息可以包括但不限于上述至少一个上行子帧传输时所占用的物理资源块(Physical Resource Block,PRB)的信息(即为上述至少一个上行子帧分配的资源块的信息)和上述至少一个上行子帧对应的调制编码方式等信息。分配的资源块的信息可以包括资源块的标识、大小和/或个数等信息。该下行控制信息与上行调度信息进行分开发送,下行控制信息通过该目标下行子帧对应的PDCCH信道进行发送,而上行调度信息通过该目标下行子帧对应的PHICH信道进行发送,两者可以同时或先后发送,本发明实施例不作限定。其中,调制编码方式和资源块的分配可以根据信道质量和/或调度策略来决定。
此外,下行控制信息中可以是包含被调度的上述至少一个上行子帧的所有子帧对应的资源信息,即一个DCI可以指示被调度的所有上行子帧;下行控制信息中也可以多次发送,每一个DCI仅指示一个被调度的上行子帧,如DCI1指示被调度的子帧4,DCI2指示被调度的子帧7等等。
本发明实施例中,基站向终端发送完上行调度信息和下行控制信息后,图2所描述的方法还可以包括以下步骤:
27)基站接收终端根据该上行调度信息和该下行控制信息在上述至少一个上行子帧中上行传输的数据。
其中,终端接收到基站通过PHICH信道发送的上行调度信息以及通过PDCCH信道发送的下行控制信息后,对上行调度信息和下行控制信息进行解析,以获得被调度的上述至少一个上行子帧和对应的调制编码方式、分配的资源块等信息,从而在上述至少一个上行子帧上进行上行传输。具体地,基站接收终端根据该上行调度信息和该下行控制信息在上述至少一个上行子帧对应的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)中进行上行传输的数据。其中,当上述至少一个上行子帧中存在非授权频谱下的上行子帧时,终端在该上行子帧上进行上行数据传输之前,利用LBT机制进行信道状态的检测,在信道空闲时才进行传输;当上述至少一个上行子帧中存在授权频
谱下的上行子帧时,终端可以无需进行LBT信道检测即可在该上行子帧上进行上行数据传输。
在图2所描述的方法中,在授权频谱辅助非授权频谱进行上行调度时,基站可以在获取到待发送的目标下行子帧后,可以确定该目标下行子帧调度的至少一个上行子帧,并根据上述至少一个上行子帧生成上行调度信息,该上行调度信息用于指示上述至少一个上行子帧,基站可以在该目标下行子帧对应的空闲PHICH信道上将该上行调度信息发送至终端,以使得终端可以根据该上行调度信息的指示发送上行数据。通过实施图2所描述的方法,可以在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上进行多子帧调度,以支持一个下行子帧同时调度多个上行子帧,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。
基于图1所示的应用场景,本发明实施例公开了另一种数据传输的控制方法。请参阅图4,图4是本发明实施例提供的另一种数据传输的控制方法的流程示意图。其中,该数据传输的控制方法应用于LAA系统中,如图4所示,该数据传输的控制方法可以包括以下步骤:
401、终端接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,该上行调度信息用于指示该目标下行子帧调度的至少一个上行子帧。
本发明实施例中,该目标下行子帧部署于可以是部署于非授权频谱上的子帧,也可以是部署于授权频谱上的子帧,本发明实施例不作限定。当基站获取到待发送的目标下行子帧,并确定出该目标下行子帧调度的至少一个上行子帧后,基站可以进一步生成上行调度信息,该上行调度信息用于指示上述至少一个上行子帧,并将该上行调度信息通过该目标下行子帧对应的PHICH信道发送至终端,从而使得终端可以接收基站发送的该上行调度信息。其中,PHICH信道为在上行HARQ传输中不进行下行反馈而空闲的信道。此时,基站当前采用的上下行时隙配置可以为上下行时隙配置0~6中的任意一种。
本发明实施例中,上述至少一个上行子帧可以是授权频谱下的上行子帧,也可以是非授权频谱下的上行子帧,还可以既包含授权频谱下的上行子帧,也包含非授权频谱下的上行子帧,本发明实施例不作限定。
具体地,该上行调度信息可以包括但不限于以下情况中的至少一种:上述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,上述至少一个上行子帧的起始子帧位置和上述至少一个上行子帧的子帧个数(或持续长度);或者,上述至少一个上行子帧中的所有子帧的帧号集合。此外,该上行调度信息除可以包括上述情况外,还可以包括其他表达方式,本发明实施例不作限定。
402、终端根据该上行调度信息,确定上述至少一个上行子帧。
本发明实施例中,终端在接收到该上行调度信息后,可以对该上行调度信息进行解析,以解析出该上行调度信息中指示的被调度的上述至少一个上行子帧,从而终端可以确定出上述至少一个上行子帧为被调度的子帧。例如,如图3所示,当子帧0调度的上行子帧为子帧4和子帧7~9共4个子帧时,如果该上行调度信息中包含起始子帧位置(子帧4)和结束子帧位置(子帧9),则终端可以根据该上行调度信息确定出被调度的上行子帧为子帧4和子帧7~9;如果该上行调度信息中包含起始子帧位置(子帧4)和子帧个数(4个),则终端也可以根据该上行调度信息确定出被调度的上行子帧为子帧4和子帧7~9;如果该上行调度信息中包含调度的子帧的帧号集合{4,7,8,9},则终端可以根据该上行调度信息确定出被调度的上行子帧即为子帧4和子帧7~9。
本发明实施例中,图4所描述的方法还可以包括以下步骤:
41)终端接收基站在该目标下行子帧对应的物理下行控制信道PDCCH上发送的下行控制信息。
其中,该下行控制信息DCI用于指示上述至少一个上行子帧传输时对应的资源信息,该资源信息可以包括上述至少一个上行子帧传输时所占用的物理资源块PRB的信息,即为上述至少一个上行子帧分配的资源块的信息,可以包括资源块的标识、大小和/或个数等信息。该资源信息除包含上述至少一个上行子帧分配的资源块信息外,还可以包括上述至少一个上行子帧对应的调制编码方式等信息,本发明实施例不作限定。
本发明实施例中,终端在接收到基站发送的上行调度信息和下行控制信息后,图4所描述的方法还可以包括以下步骤:
42)终端根据该上行调度信息和该下行控制信息在上述至少一个上行子帧中向基站上行发送数据。
其中,终端根据该上行调度信息和该下行控制信息在上述至少一个上行子帧对应的PUSCH信道中向基站进行上行发送数据。具体地,终端可以根据该上行调度信息和该下行控制信息,上述至少一个上行子帧中的每一个上行子帧按照对应的调制编码方式,在分配的资源块上向基站上行发送数据。其中,当被调度的上行子帧为非授权频谱下的上行子帧时,终端在该上行子帧上进行上行数据传输之前,利用LBT机制进行信道状态的检测,在信道空闲时才进行传输;当该上行子帧为授权频谱下的上行子帧时,终端可以无需进行LBT信道检测即可在该上行子帧上进行上行数据传输。
本发明实施例中,通过实施图4所描述的方法,终端可以接收并解析基站通过在上行HARQ传输中不进行下行反馈而空闲的PHICH信道上发送的上行调度信息,根据该上行调度信息来确定被调度的一个或多个上行子帧,以实现在被调度的上行子帧中进行上行数据传输,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。
基于图1所示的应用场景,本发明实施例公开了一种基站。请参阅图5,图5是本发明实施例提供的一种基站的结构示意图,用于执行本发明实施例提供的数据传输的控制方法。如图5所示,该基站可以包括:
获取单元501,用于在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧。
本发明实施例中,目标下行子帧为可以进行数据信息和/或控制信息发送的下行子帧,目标下行子帧对应使用的信道此时为空闲状态。其中,该目标下行子帧可以部署于非授权频谱,也可以部署于授权频谱。
确定单元502,用于确定该目标下行子帧调度的至少一个上行子帧。
本发明实施例中,上述至少一个上行子帧可以是授权频谱下的上行子帧,也可以是非授权频谱下的上行子帧,还可以既包含授权频谱下的上行子帧,也包含非授权频谱下的上行子帧,本发明实施例不作限定。
作为一种可选的实施方式,确定单元502确定该目标下行子帧调度的至少一个上行子帧的具体实施方式可以为:
确定单元502根据当前采用的目标上下行时隙配置,以及预设传输时延与上行信道质量中的至少一种,确定该目标下行子帧在目标上下行时隙配置下调度的至少一个上行子帧。其中,该目标上下行时隙配置可以包括上下行时隙配置0~6中的任意一种。
作为一种可选的实施方式,确定单元502确定该目标下行子帧调度的至少一个上行子帧的具体实施方式可以为:
确定单元502根据当前采用的目标上下行时隙配置以及预设映射关系,确定该目标下行子帧在目标上下行时隙配置下调度的至少一个上行子帧,其中,该预设映射关系包括不同的上下行时隙配置下下行子帧与调度的上行子帧的对应关系。其中,该目标上下行时隙配置可以包括上下行时隙配置0~6中的任意一种。
生成单元503,用于根据上述至少一个上行子帧,生成上行调度信息。
本发明实施例中,该上行调度信息用于指示上述至少一个上行子帧,该上行调度信息中包含了上述至少一个上行子帧的信息。
作为一种可选的实施方式,该上行调度信息可以包括但不限于以下情况中的至少一种:
上述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,
上述至少一个上行子帧的起始子帧位置和上述至少一个上行子帧的子帧个数(或持续长度);或者,
上述至少一个上行子帧中的所有子帧的帧号集合。
发送单元504,用于在该目标下行子帧对应的物理混合自动重传指示信道PHICH上将该上行调度信息发送至终端。
本发明实施例中,在LTE系统中,PHICH信道用于进行上行HARQ的下
行反馈,而在LAA系统中,在上行HARQ过程中在PHICH信道上不进行下行反馈,从而使得对应的PHICH信道空闲,因此,可以在该空闲的PHICH信道上进行上行调度信息的发送,以实现上行多子帧调度。
作为一种可选的实施方式,当该目标下行子帧部署于非授权频谱上时,请一并参阅图6,图6是本发明实施例提供的另一种基站的结构示意图,用于执行本发明实施例提供的数据传输的控制方法。其中,图6所示的基站是在图5所示的基站的基础上进一步优化得到的。与图5所示的基站相比,图6所示的基站中获取单元501可以包括:
检测子单元5011,用于利用先听后说LBT对非授权频谱上用于传输下行子帧的信道进行检测;
确定子单元5012,用于当检测子单元5011检测到非授权频谱上用于传输该下行子帧的信道为空闲信道时,确定该下行子帧为待发送的目标下行子帧。
本发明实施例中,生成单元503,还可以用于根据上述至少一个上行子帧,生成下行控制信息。
其中,该下行控制信息用于指示上述至少一个上行子帧传输时对应的资源信息,该资源信息可以包括但不限于上述至少一个上行子帧所占用的物理资源块PRB的信息和上述至少一个上行子帧对应的调制编码方式等信息。
相应地,发送单元504,还用于在该目标下行子帧对应的物理下行控制信道PDCCH上将该下行控制信息发送至终端。
作为一种可选的实施方式,图6所示的基站还可以包括:
接收单元505,用于接收终端根据该上行调度信息和该下行控制信息在上述至少一个上行子帧中上行传输的数据。
其中,发送单元504在向终端发送完携带有上行调度信息和下行控制信息后,可以向接收单元505发送触发指令,以触发接收单元505接收终端根据该上行调度信息和该下行控制信息上行传输的数据。
本发明实施例中,通过实施图5和图6所示的基站,可以在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上进行多子帧调度,以支持一个下行子帧同时调度多个上行子帧,从而能够增加上行子帧被调度的机率,
提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。
基于图1所示的应用场景,本发明实施例公开了又一种基站。请参阅图7,图7是本发明实施例提供的又一种基站的结构示意图,用于执行本发明实施例提供的数据传输的控制方法。如图7所示,该基站700可以包括:至少一个处理器701,例如CPU(Central Processing Unit,中央处理器),至少一个输入装置702,至少一个输出装置703,存储器704等组件。其中,这些组件可以通过一条或多条总线705进行通信连接。本领域技术人员可以理解,图7中示出的基站的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置702可以包括有线接口、无线接口等,可以用于接收终端上行传输的数据等。输出装置703可以包括有线接口、无线接口等,可以用于向终端下行传输信号等。
本发明实施例中,存储器704可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器704可选的还可以是至少一个位于远离前述处理器701的存储装置。如图7所示,存储器704中可以包括应用程序和数据等,本发明实施例不作限定。
在图7所示的基站中,处理器701可以用于调用存储器704中存储的应用程序以执行以下操作:
在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧,该目标下行子帧可以部署于非授权频谱或授权频谱;
确定该目标下行子帧调度的至少一个上行子帧;
根据上述至少一个上行子帧,生成上行调度信息,该上行调度信息用于指示上述至少一个上行子帧;
触发输出装置703在该目标下行子帧对应的物理混合自动重传指示信道PHICH上将该上行调度信息发送至终端,其中,PHICH为在上行混合自动重
传请求HARQ传输中不进行下行反馈而空闲的信道。
作为一种可选的实施方式,当该目标下行子帧部署于非授权频谱上时,处理器701获取待发送的目标下行子帧的具体实施方式可以为:
利用先听后说LBT对非授权频谱上用于传输下行子帧的信道进行检测;
当检测到非授权频谱上用于传输该下行子帧的信道为空闲信道时,确定该下行子帧为待发送的目标下行子帧。
本发明实施例中,处理器701还可以调用存储器704中存储的应用程序,并执行以下操作:
根据上述至少一个上行子帧,生成下行控制信息,该下行控制信息可以用于指示上述至少一个上行子帧传输时占用的物理资源块PRB的信息和对应的调制编码方式等信息;
触发输出装置703在该目标下行子帧对应的物理下行控制信道PDCCH上将该下行控制信息发送至终端。
作为一种可选的实施方式,处理器701还可以调用存储器704中存储的应用程序,并执行以下操作:
触发输入装置702接收终端根据该上行调度信息和该下行控制信息在上述至少一个上行子帧中上行传输的数据。
作为一种可选的实施方式,处理器701确定该目标下行子帧调度的至少一个上行子帧的具体实施方式可以为:
根据当前采用的目标上下行时隙配置,以及存储器704中存储的预设传输时延与上行信道质量中的至少一种,确定该目标下行子帧在目标上下行时隙配置下调度的至少一个上行子帧。其中,该目标上下行时隙配置可以包括上下行时隙配置0~6中的任意一种。
作为一种可选的实施方式,处理器701确定该目标下行子帧调度的至少一个上行子帧的具体实施方式可以为:
根据当前采用的目标上下行时隙配置以及存储器704中存储的预设映射关系,确定该目标下行子帧在目标上下行时隙配置下调度的至少一个上行子帧,其中,该预设映射关系包括不同的上下行时隙配置下下行子帧与调度的上
行子帧的对应关系。其中,该目标上下行时隙配置可以包括上下行时隙配置0~6中的任意一种。
作为一种可选的实施方式,该上行调度信息可以包括但不限于以下情况中的至少一种:
上述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,
上述至少一个上行子帧的起始子帧位置和上述至少一个上行子帧的子帧个数;或者,
上述至少一个上行子帧中的所有子帧的帧号集合。
本发明实施例中,通过实施图7所示的基站,可以在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上进行多子帧调度,以支持一个下行子帧同时调度多个上行子帧,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。
基于图1所示的应用场景,本发明实施例公开了一种终端。请参阅图8,图8是本发明实施例提供的一种终端的结构示意图,用于执行本发明实施例提供的数据传输的控制方法。如图8所示,该终端可以包括:
接收单元801,用于接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,该上行调度信息用于指示该目标下行子帧调度的至少一个上行子帧。
本发明实施例中,该目标下行子帧可以部署于非授权频谱,也可以部署于授权频谱,本发明实施例不作限定。该目标下行子帧调度的至少一个上行子帧可以是授权频谱下的上行子帧,也可以是非授权频谱下的上行子帧,还可以既包含授权频谱下的上行子帧,也包含非授权频谱下的上行子帧,本发明实施例不作限定。其中,PHICH信道为在上行HARQ传输过程中不进行下行反馈而空闲的信道。
作为一种可选的实施方式,该上行调度信息可以包括但不限于以下情况中的至少一种:
上述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,
上述至少一个上行子帧的起始子帧位置和上述至少一个上行子帧的子帧个数(或持续长度);或者,
上述至少一个上行子帧中的所有子帧的帧号集合。
确定单元802,用于根据该上行调度信息,确定上述至少一个上行子帧。
本发明实施例中,接收单元801,还可以用于接收基站在该目标下行子帧对应的物理下行控制信道PDCCH上发送的下行控制信息。
其中,该下行控制信息用于指示上述至少一个上行子帧传输时对应的资源信息,该资源信息可以包括上述至少一个上行子帧传输时所占用的物理资源块PRB的信息,即为上述至少一个上行子帧分配的资源块信息,可以包括资源块的标识、大小和/或个数等信息。此外,该资源信息还可以包括上述至少一个上行子帧对应的调制编码方式等信息,本发明实施例不作限定。
请一并参阅图9,图9是本发明实施例提供的另一种终端的结构示意图,用于执行本发明实施例提供的数据传输的控制方法。其中,图9所示的终端是在图8所示的终端的基础上进一步优化得到的。与图8所示的终端相比,图9所示的终端还可以包括:
发送单元803,用于根据该上行调度信息和该下行控制信息在上述至少一个上行子帧中向基站上行发送数据。
具体地,发送单元803可以根据该上行调度信息和该下行控制信息,在上述至少一个上行子帧对应的PUSCH信道中向基站进行上行数据传输。其中,当上述至少一个上行子帧中存在非授权频谱下的上行子帧时,则发送单元803在该上行子帧上进行上行数据传输之前,利用LBT机制进行信道状态的检测,在信道空闲时才进行传输;当该上行子帧为授权频谱下的上行子帧时,发送单元803可以无需进行LBT信道检测即可在该上行子帧上进行上行数据传输。
本发明实施例中,通过实施图8和图9所示的终端,可以接收并解析基站通过在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上发送的上行调度信息,根据该上行调度信息来确定被调度的一个或多个上行子帧,以实现在被调度的上行子帧中进行上行数据传输,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系
统的资源利用率。
基于图1所示的应用场景,本发明实施例公开了又一种终端。请参阅图10,图10是本发明实施例提供的又一种终端的结构示意图,用于执行本发明实施例提供的数据传输的控制方法。如图10所示,该终端1000可以包括:至少一个处理器1001,例如CPU,至少一个输入装置1002,至少一个输出装置1003,存储器1004等组件。其中,这些组件可以通过一条或多条总线1005进行通信连接。本领域技术人员可以理解,图10中示出的终端的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置1002可以包括有线接口、无线接口等,可以用于接收基站下行发送的信号等。输出装置1003可以包括有线接口、无线接口等,可以用于向基站上行传输数据等。
本发明实施例中,存储器1004可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1004可选的还可以是至少一个位于远离前述处理器1001的存储装置。如图10所示,作为一种计算机存储介质的存储器1004中可以包括操作系统、应用程序和数据等,本发明实施例不作限定。
在图10所示的终端中,处理器1001可以用于调用存储器1004中存储的应用程序以执行以下操作:
触发输入装置1002接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,该上行调度信息用于指示该目标下行子帧调度的至少一个上行子帧,其中,该目标下行子帧可以部署于非授权频谱或授权频谱,该PHICH为在上行混合自动重传请求HARQ传输中不进行下行反馈而空闲的信道;
根据该上行调度信息,确定上述至少一个上行子帧。
本发明实施例中,处理器1001还可以调用存储器1004中存储的应用程序,
并执行以下操作:
触发输入装置1002接收基站在该目标下行子帧对应的物理下行控制信道PDCCH上发送的下行控制信息,该下行控制信息可以用于指示上述至少一个上行子帧传输时占用的物理资源块PRB的信息和上述至少一个上行子帧对应的调制编码方式等信息。
作为一种可选的实施方式,处理器1001还可以调用存储器1004中存储的应用程序,并执行以下操作:
触发输出装置1003根据该上行调度信息和该下行控制信息在上述至少一个上行子帧中向基站上行发送数据。
作为一种可选的实施方式,该上行调度信息可以包括但不限于以下情况中的至少一种:
上述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,
上述至少一个上行子帧的起始子帧位置和上述至少一个上行子帧的子帧个数;或者,
上述至少一个上行子帧中的所有子帧的帧号集合。
本发明实施例中,通过实施图10所示的终端,可以接收并解析基站通过在上行HARQ传输过程中不进行下行反馈而空闲的PHICH信道上发送的上行调度信息,根据该上行调度信息来确定被调度的一个或多个上行子帧,以实现在被调度的上行子帧中进行上行数据传输,从而能够增加上行子帧被调度的机率,提高了LAA系统的信令效率,并有效改善系统的上行性能,提升系统的资源利用率。
本发明所有实施例中的模块或子模块,可以通过通用集成电路,例如CPU,或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例基站和终端中的单元或子单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,简称RAM)等。
以上对本发明实施例提供的一种数据传输的控制方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (24)
- 一种数据传输的控制方法,其特征在于,应用于授权辅助接入LAA系统中,所述方法包括:基站在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧;所述基站确定所述目标下行子帧调度的至少一个上行子帧;所述基站根据所述至少一个上行子帧,生成上行调度信息,所述上行调度信息用于指示所述至少一个上行子帧;所述基站在所述目标下行子帧对应的物理混合自动重传指示信道PHICH上将所述上行调度信息发送至终端。
- 根据权利要求1所述的方法,其特征在于,当所述目标下行子帧部署于非授权频谱上时,所述基站获取待发送的目标下行子帧,包括:所述基站利用先听后说LBT对非授权频谱上用于传输下行子帧的信道进行检测;当检测到非授权频谱上用于传输所述下行子帧的信道为空闲信道时,所述基站确定所述下行子帧为待发送的目标下行子帧。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:所述基站根据所述至少一个上行子帧,生成下行控制信息,所述下行控制信息用于指示所述至少一个上行子帧传输时对应的资源信息;所述基站在所述目标下行子帧对应的物理下行控制信道PDCCH上将所述下行控制信息发送至终端。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:所述基站接收所述终端根据所述上行调度信息和所述下行控制信息在所述至少一个上行子帧中上行传输的数据。
- 根据权利要求1-4中任一项所述的方法,其特征在于,所述基站确定所述目标下行子帧调度的至少一个上行子帧,包括:所述基站根据当前采用的目标上下行时隙配置,以及预设传输时延与上行信道质量中的至少一种,确定所述目标下行子帧在所述目标上下行时隙配置下调度的至少一个上行子帧。
- 根据权利要求1-4中任一项所述的方法,其特征在于,所述基站确定所述目标下行子帧调度的至少一个上行子帧,包括:所述基站根据当前采用的目标上下行时隙配置以及预设映射关系,确定所述目标下行子帧在所述目标上下行时隙配置下调度的至少一个上行子帧,其中,所述预设映射关系包括不同的上下行时隙配置下下行子帧与调度的上行子帧的对应关系。
- 根据权利要求5或6所述的方法,其特征在于,所述目标上下行时隙配置包括上下行时隙配置0至6中的任意一种。
- 根据权利要求1-7中任一项所述的方法,其特征在于,所述上行调度信息包括以下情况中的至少一种:所述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,所述至少一个上行子帧的起始子帧位置和所述至少一个上行子帧的子帧个数;或者,所述至少一个上行子帧中的所有子帧的帧号集合。
- 一种数据传输的控制方法,其特征在于,应用于授权辅助接入LAA系统中,所述方法包括:终端接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,所述上行调度信息用于指示所述目标下行子帧调度的至少一个上行子帧;所述终端根据所述上行调度信息,确定所述至少一个上行子帧。
- 根据权利要求9所述的方法,其特征在于,所述方法还包括:所述终端接收所述基站在所述目标下行子帧对应的物理下行控制信道PDCCH上发送的下行控制信息,所述下行控制信息用于指示所述至少一个上行子帧传输时对应的资源信息。
- 根据权利要求10所述的方法,其特征在于,所述方法还包括:所述终端根据所述上行调度信息和所述下行控制信息在所述至少一个上行子帧中向所述基站上行发送数据。
- 根据权利要求9-11中任一项所述的方法,其特征在于,所述上行调度信息包括以下情况中的至少一种:所述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,所述至少一个上行子帧的起始子帧位置和所述至少一个上行子帧的子帧个数;或者,所述至少一个上行子帧中的所有子帧的帧号集合。
- 一种基站,其特征在于,包括:获取单元,用于在授权频谱辅助非授权频谱进行上行调度时,获取待发送的目标下行子帧;确定单元,用于确定所述目标下行子帧调度的至少一个上行子帧;生成单元,用于根据所述至少一个上行子帧,生成上行调度信息,所述上行调度信息用于指示所述至少一个上行子帧;发送单元,用于在所述目标下行子帧对应的物理混合自动重传指示信道PHICH上将所述上行调度信息发送至终端。
- 根据权利要求13所述的基站,其特征在于,当所述目标下行子帧部 署于非授权频谱上时,所述获取单元包括:检测子单元,用于利用先听后说LBT对非授权频谱上用于传输下行子帧的信道进行检测;确定子单元,用于当所述检测子单元检测到非授权频谱上用于传输所述下行子帧的信道为空闲信道时,确定所述下行子帧为待发送的目标下行子帧。
- 根据权利要求13或14所述的基站,其特征在于,所述生成单元,还用于根据所述至少一个上行子帧,生成下行控制信息,所述下行控制信息用于指示所述至少一个上行子帧传输时对应的资源信息;所述发送单元,还用于在所述目标下行子帧对应的物理下行控制信道PDCCH上将所述下行控制信息发送至终端。
- 根据权利要求15所述的基站,其特征在于,所述基站还包括:接收单元,用于接收所述终端根据所述上行调度信息和所述下行控制信息在所述至少一个上行子帧中上行传输的数据。
- 根据权利要求13-16中任一项所述的基站,其特征在于,所述确定单元确定所述目标下行子帧调度的至少一个上行子帧的方式具体为:所述确定单元根据当前采用的目标上下行时隙配置,以及预设传输时延与上行信道质量中的至少一种,确定所述目标下行子帧在所述目标上下行时隙配置下调度的至少一个上行子帧。
- 根据权利要求13-16中任一项所述的基站,其特征在于,所述确定单元确定所述目标下行子帧调度的至少一个上行子帧的方式具体为:所述确定单元根据当前采用的目标上下行时隙配置以及预设映射关系,确定所述目标下行子帧在所述目标上下行时隙配置下调度的至少一个上行子帧,其中,所述预设映射关系包括不同的上下行时隙配置下下行子帧与调度的上行子帧的对应关系。
- 根据权利要求17或18所述的基站,其特征在于,所述目标上下行时隙配置包括上下行时隙配置0至6中的任意一种。
- 根据权利要求13-19中任一项所述的基站,其特征在于,所述上行调度信息包括以下情况中的至少一种:所述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,所述至少一个上行子帧的起始子帧位置和所述至少一个上行子帧的子帧个数;或者,所述至少一个上行子帧中的所有子帧的帧号集合。
- 一种终端,其特征在于,包括:接收单元,用于接收基站在目标下行子帧对应的物理混合自动重传指示信道PHICH上发送的上行调度信息,所述上行调度信息用于指示所述目标下行子帧调度的至少一个上行子帧;确定单元,用于根据所述上行调度信息,确定所述至少一个上行子帧。
- 根据权利要求21所述的终端,其特征在于,所述接收单元,还用于接收所述基站在所述目标下行子帧对应的物理下行控制信道PDCCH上发送的下行控制信息,所述下行控制信息用于指示所述至少一个上行子帧传输时对应的资源信息。
- 根据权利要求22所述的终端,其特征在于,所述终端还包括:发送单元,用于根据所述上行调度信息和所述下行控制信息在所述至少一个上行子帧中向所述基站上行发送数据。
- 根据权利要求21-23中任一项所述的终端,其特征在于,所述上行调度信息包括以下情况中的至少一种:所述至少一个上行子帧的起始子帧位置和结束子帧位置;或者,所述至少一个上行子帧的起始子帧位置和所述至少一个上行子帧的子帧个数;或者,所述至少一个上行子帧中的所有子帧的帧号集合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610341448.9 | 2016-05-20 | ||
CN201610341448.9A CN106102168A (zh) | 2016-05-20 | 2016-05-20 | 一种数据传输的控制方法及相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017197949A1 true WO2017197949A1 (zh) | 2017-11-23 |
Family
ID=57230057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/074933 WO2017197949A1 (zh) | 2016-05-20 | 2017-02-27 | 一种数据传输的控制方法及相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106102168A (zh) |
WO (1) | WO2017197949A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111107628A (zh) * | 2018-10-25 | 2020-05-05 | 普天信息技术有限公司 | 一种数据传输方法及装置 |
CN114731704A (zh) * | 2020-11-02 | 2022-07-08 | 北京小米移动软件有限公司 | 通信方法、装置、电子设备以及存储介质 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106102168A (zh) * | 2016-05-20 | 2016-11-09 | 深圳市金立通信设备有限公司 | 一种数据传输的控制方法及相关设备 |
CN108282293B (zh) * | 2017-01-06 | 2021-12-03 | 大唐移动通信设备有限公司 | 一种数据传输方法、终端及基站 |
JP2020057824A (ja) * | 2017-02-01 | 2020-04-09 | シャープ株式会社 | 基地局装置、端末装置および通信方法 |
WO2019014941A1 (en) * | 2017-07-21 | 2019-01-24 | Nec Corporation | METHODS AND DEVICES FOR DATA COMMUNICATION BASED ON LICENSE-ASSISTED ACCESS |
CN110062463B (zh) * | 2018-05-11 | 2021-04-09 | 中国信息通信研究院 | 一种移动通信系统和上行控制信道发送方法 |
CN111342942B (zh) * | 2018-12-19 | 2021-09-21 | 北京紫光展锐通信技术有限公司 | 上行控制信息的上报方法及装置、存储介质、用户终端 |
CN113840388B (zh) * | 2021-10-22 | 2024-03-22 | 普联技术有限公司 | Zigbee与Wifi共存的通信方法及通信设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101499895A (zh) * | 2008-02-01 | 2009-08-05 | 大唐移动通信设备有限公司 | 一种时分双工系统中的上行调度方法 |
CN104104486A (zh) * | 2013-04-12 | 2014-10-15 | 北京三星通信技术研究有限公司 | 一种支持多子帧调度上行数据传输的方法和设备 |
KR20140148277A (ko) * | 2013-06-21 | 2014-12-31 | 주식회사 케이티 | 다중 서브프레임 스케줄링 제어 방법 및 그 장치 |
US20150043480A1 (en) * | 2013-08-07 | 2015-02-12 | Broadcom Corporation | System and Method for Multi-Subframe Data Transmission |
CN106102168A (zh) * | 2016-05-20 | 2016-11-09 | 深圳市金立通信设备有限公司 | 一种数据传输的控制方法及相关设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867406B (zh) * | 2009-04-20 | 2012-10-10 | 电信科学技术研究院 | 子帧位置获取方法和系统以及基站和中继节点 |
CN103368708A (zh) * | 2012-03-30 | 2013-10-23 | 北京三星通信技术研究有限公司 | 一种pusch的重传指示方法 |
CN103716132B (zh) * | 2012-09-28 | 2018-08-17 | 中兴通讯股份有限公司 | 一种下行控制信息的处理装置及方法 |
CN104917597B (zh) * | 2014-03-13 | 2018-11-23 | 上海朗帛通信技术有限公司 | 一种非授权频谱上的传输方法和装置 |
CN104540230B (zh) * | 2015-01-30 | 2018-11-06 | 深圳酷派技术有限公司 | 一种上行调度方法及装置 |
-
2016
- 2016-05-20 CN CN201610341448.9A patent/CN106102168A/zh active Pending
-
2017
- 2017-02-27 WO PCT/CN2017/074933 patent/WO2017197949A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101499895A (zh) * | 2008-02-01 | 2009-08-05 | 大唐移动通信设备有限公司 | 一种时分双工系统中的上行调度方法 |
CN104104486A (zh) * | 2013-04-12 | 2014-10-15 | 北京三星通信技术研究有限公司 | 一种支持多子帧调度上行数据传输的方法和设备 |
KR20140148277A (ko) * | 2013-06-21 | 2014-12-31 | 주식회사 케이티 | 다중 서브프레임 스케줄링 제어 방법 및 그 장치 |
US20150043480A1 (en) * | 2013-08-07 | 2015-02-12 | Broadcom Corporation | System and Method for Multi-Subframe Data Transmission |
CN106102168A (zh) * | 2016-05-20 | 2016-11-09 | 深圳市金立通信设备有限公司 | 一种数据传输的控制方法及相关设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111107628A (zh) * | 2018-10-25 | 2020-05-05 | 普天信息技术有限公司 | 一种数据传输方法及装置 |
CN114731704A (zh) * | 2020-11-02 | 2022-07-08 | 北京小米移动软件有限公司 | 通信方法、装置、电子设备以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106102168A (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017197949A1 (zh) | 一种数据传输的控制方法及相关设备 | |
WO2018000841A1 (zh) | 一种harq重传的指示方法及相关设备 | |
CN108282271B (zh) | 用于tdd系统的调度定时设计 | |
US20190335496A1 (en) | Channel listening method and apparatus | |
CN108605339B (zh) | 一种上行控制信息传输的方法及装置 | |
WO2020057565A1 (zh) | 一种harq-ack的传输方法、终端设备及网络设备 | |
WO2017101667A1 (zh) | 一种信道检测的控制方法及相关设备 | |
WO2014067140A1 (zh) | 一种信息传输方法、用户设备及基站 | |
WO2020200017A1 (zh) | 一种通信方法及装置 | |
WO2019095332A1 (zh) | 数据传输方法、终端设备和网络设备 | |
WO2018027918A1 (zh) | 上行信道发送方法和装置 | |
WO2018177115A1 (zh) | 一种免调度传输的方法及装置 | |
WO2018010497A1 (zh) | 一种混合自动重传请求进程处理方法、设备及通信系统 | |
WO2019062838A1 (zh) | 数据传输方法及装置 | |
US10820345B2 (en) | Method and apparatus for determining contention window information | |
WO2021056581A1 (zh) | 上行信号的发送和接收方法以及装置 | |
US12009931B2 (en) | Uplink transmission method and communications apparatus | |
WO2017193674A1 (zh) | 一种数据传输的控制方法及相关设备 | |
US11528714B2 (en) | Data transmission method and apparatus | |
WO2020097775A1 (en) | Communications with preconfigured uplink resources | |
CN109155990A (zh) | 一种计数方法及装置 | |
WO2015062477A1 (zh) | 一种数据传输方法及设备 | |
US10986651B2 (en) | Information transmission method and apparatus | |
EP3793324B1 (en) | Setting length of non-predictable period | |
US20190174526A1 (en) | Uplink scheduling method based on a dynamic frame structure, uplink scheduling device, and base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17798516 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17798516 Country of ref document: EP Kind code of ref document: A1 |