Nothing Special   »   [go: up one dir, main page]

WO2017199557A1 - 撮像装置、撮像方法、プログラム、及び非一時的記録媒体 - Google Patents

撮像装置、撮像方法、プログラム、及び非一時的記録媒体 Download PDF

Info

Publication number
WO2017199557A1
WO2017199557A1 PCT/JP2017/009862 JP2017009862W WO2017199557A1 WO 2017199557 A1 WO2017199557 A1 WO 2017199557A1 JP 2017009862 W JP2017009862 W JP 2017009862W WO 2017199557 A1 WO2017199557 A1 WO 2017199557A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
optical system
light receiving
sensor
Prior art date
Application number
PCT/JP2017/009862
Other languages
English (en)
French (fr)
Inventor
小野 修司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018518122A priority Critical patent/JP6633746B2/ja
Publication of WO2017199557A1 publication Critical patent/WO2017199557A1/ja
Priority to US16/186,604 priority patent/US10638056B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0896Catadioptric systems with variable magnification or multiple imaging planes, including multispectral systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/28Circuitry to measure or to take account of the object contrast
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera

Definitions

  • the present invention relates to an imaging apparatus, an imaging method, a program, and a non-temporary recording medium, and more particularly, to a technique for simultaneously capturing a plurality of images using a directional sensor in which each light receiving sensor has directivity with respect to an incident angle of light. .
  • an imaging system that can simultaneously acquire a plurality of images having different imaging characteristics by using an optical system having different imaging characteristics depending on a region and an imaging system including a directional sensor.
  • the directivity sensor is manufactured so that only light from the assumed pupil region is sensed, but in reality, interference occurs and the light from other pupil regions is also felt.
  • Patent Literature 1 In order to deal with such a problem, Patent Literature 1 generates an image corresponding to one area from an imaging signal of a light receiving sensor corresponding to one area among a plurality of areas, and corrects the generated image. At the same time, a technique for removing the influence of a light beam that has passed through a region other than one region from an image generated corresponding to the one region is described.
  • Patent Document 1 has a problem that when there is a high-luminance subject, the interference component cannot be removed due to the influence of signal saturation, and the image quality of the output image is deteriorated. . Further, in order to acquire an image with an expanded dynamic range so as not to cause white stripes in a high-luminance subject, it is necessary to take two images with different exposure times.
  • each of the light receiving sensors is an image obtained by simultaneously capturing a plurality of images with an imaging system including a directional sensor having directivity with respect to the incident angle of light, and expanding the dynamic range.
  • An object is to provide an imaging device, an imaging method, a program, and a non-temporary recording medium.
  • an imaging apparatus includes a photographic lens including a first optical system and a second optical system provided in different regions, a plurality of first light receiving sensors, and a plurality of second light receiving elements.
  • the sensors are two-dimensionally arranged directional sensors, and M and N are numbers larger than 1, the first light receiving sensor and the second light receiving for the first incident light incident through the first optical system.
  • An image generation unit that generates a second image from the second image signal The first image signal and the second image signal are acquired in a state in which the second incident light is shielded, and the first image signal is obtained by shielding the second incident light.
  • a dynamic range expansion processing unit that generates a third image having a dynamic range that is equal to or less than M times the dynamic range.
  • the second incident light is transmitted by the directional sensor whose sensitivity ratio of the first light receiving sensor and the second light receiving sensor to the first incident light incident through the first optical system is M: 1.
  • the first image signal and the second image signal are acquired from the plurality of first light receiving sensors and the second light receiving sensor in a light-shielded state, and are equal to or less than M times the dynamic range of the first image generated from the first image signal. Since the third image having the dynamic range is generated, it is possible to capture an image with an expanded dynamic range by the imaging system in which the light receiving sensor includes a directivity sensor having directivity with respect to the incident angle of light.
  • the first light shielding control unit includes a first shutter that switches between a light transmission state and a light shielding state. Thereby, the incidence or shading of the second incident light on the directivity sensor can be appropriately controlled.
  • the first shutter is preferably disposed in the optical path of the first incident light. Thereby, the incidence or shading of the second incident light on the directivity sensor can be appropriately controlled.
  • a second light shielding control unit configured to control the incidence or shielding of the first incident light on the directivity sensor, and the dynamic range expansion processing unit receives the second incident light and blocks the first incident light in a state of shielding the first incident light.
  • the first image signal and the second image signal are acquired, and a fourth image having a dynamic range N times the dynamic range of the second image is generated. Thereby, the image which expanded the dynamic range by 2nd incident light can be image
  • the second light shielding control unit includes a second shutter that switches between a light transmission state and a light shielding state. As a result, it is possible to appropriately control the incidence or shielding of the first incident light on the directivity sensor.
  • the second shutter is preferably arranged in the optical path of the second incident light. As a result, it is possible to appropriately control the incidence or shielding of the first incident light on the directivity sensor.
  • the first optical system and the second optical system have different imaging characteristics. As a result, images having different imaging characteristics can be taken simultaneously.
  • one of the first optical system and the second optical system is a wide-angle optical system, and the other is a telephoto optical system having a longer focal length than the wide-angle optical system.
  • a wide-angle image and a telephoto image can be taken simultaneously.
  • the first optical system is arranged in the center and the second optical system is arranged in an annular shape in the periphery of the first optical system.
  • the first optical system and the second optical system can be appropriately arranged, and the incidence or shading of the second incident light to the directional sensor can be appropriately controlled.
  • a diaphragm for adjusting the amount of light incident on the directional sensor may be provided, and the first light shielding control unit may control the incidence or shielding of the second incident light on the directional sensor by the diaphragm. Thereby, the incidence or shading of the second incident light on the directivity sensor can be appropriately controlled.
  • one aspect of an imaging method includes a photographing lens including a first optical system and a second optical system provided in different regions, a plurality of first light receiving sensors, and a plurality of second light receiving elements.
  • the sensors are two-dimensionally arranged directional sensors, and M and N are numbers larger than 1, the first light receiving sensor and the second light receiving for the first incident light incident through the first optical system.
  • An image reading method for acquiring a first image signal obtained from a plurality of first light receiving sensors and a second image signal obtained from a plurality of second light receiving sensors; A first image is generated from the first image signal, and the second image An image generation step for generating a second image from the signal, a first light-blocking control step for controlling the incidence or light-blocking of the second incident light on the directional sensor, and the first image signal in a state where the second incident light is blocked.
  • the second incident light is transmitted by the directional sensor whose sensitivity ratio of the first light receiving sensor and the second light receiving sensor to the first incident light incident through the first optical system is M: 1.
  • the first image signal and the second image signal are acquired from the plurality of first light receiving sensors and the second light receiving sensor in a light-shielded state, and are equal to or less than M times the dynamic range of the first image generated from the first image signal. Since the third image having the dynamic range is generated, it is possible to capture an image with an expanded dynamic range by the imaging system in which the light receiving sensor includes a directivity sensor having directivity with respect to the incident angle of light.
  • a program that causes an imaging apparatus to execute an imaging method is also included in this aspect.
  • a non-transitory recording medium in which a computer-readable code of the program is recorded is also included in this aspect.
  • an image with an expanded dynamic range can be taken by an imaging system in which each light receiving sensor includes a directional sensor having directivity with respect to the incident angle of light.
  • FIG. 1 is a perspective view showing a digital camera.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of the imaging unit. 3 is a view taken in the direction of arrow A in FIG.
  • FIG. 4 is a diagram illustrating a detailed cross-sectional configuration example of the pupil selection sensor.
  • FIG. 5 is a diagram illustrating an optical path of wide-angle image light incident on the various lenses.
  • FIG. 6 is a diagram illustrating an optical path of telephoto image light incident on the various lenses.
  • FIG. 7 is a diagram showing a wide-angle image taken simultaneously with the telephoto image.
  • FIG. 8 is a diagram showing a telephoto image taken simultaneously with a wide-angle image.
  • FIG. 9 is a diagram illustrating a wide-angle image in which interference occurs.
  • FIG. 1 is a perspective view showing a digital camera.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of the imaging unit. 3 is a view taken in the direction of
  • FIG. 10 is a diagram illustrating a telephoto image in which interference occurs.
  • FIG. 11 is a diagram illustrating optical paths of wide-angle image light and telephoto image light that are incident on the various lenses and the pupil selection sensor.
  • FIG. 12 is a graph showing the photoelectric conversion characteristics of the first light receiving sensor and the second light receiving sensor when the first liquid crystal shutter is in the transmission state and the second liquid crystal shutter is in the light shielding state.
  • FIG. 13 is a diagram illustrating optical paths of wide-angle image light and telephoto image light that are incident on the various lenses and the pupil selection sensor.
  • FIG. 14 is a graph showing the photoelectric conversion characteristics of the first light receiving sensor and the second light receiving sensor when the first liquid crystal shutter is in a light shielding state and the second liquid crystal shutter is in a transmissive state.
  • FIG. 15 is a block diagram illustrating a functional configuration example of a digital camera.
  • FIG. 16 is a block diagram illustrating a detailed circuit configuration of the dynamic range expansion processing unit.
  • FIG. 17 is a diagram illustrating the signal level of the combined image data combined according to each dynamic range by the combining processing circuit.
  • FIG. 18 is a flowchart illustrating an example of an imaging method using a digital camera.
  • FIG. 19 is a block diagram illustrating a functional configuration example of a digital camera.
  • FIG. 20 is a block diagram illustrating a functional configuration example of a digital camera.
  • FIG. 1 is a perspective view illustrating a digital camera 10 (an example of an imaging apparatus) according to the present embodiment.
  • the digital camera 10 is provided with a multi-lens 11 having an optical axis L and a flash light emitting unit 12 for irradiating a subject with photographing auxiliary light on the front surface of the main body, and a release button 13 for executing an imaging operation is provided on the upper surface of the main body. Is provided.
  • the digital camera 10 In order for a photographer to photograph a subject using the digital camera 10, the digital camera 10 is held, the various lenses 11 are pointed at the subject, and the release button 13 is pressed.
  • the subject image formed on the light receiving surface of the pupil selection sensor 24 (see FIG. 2) via the various lenses 11 is photoelectrically converted by the pupil selection sensor 24 and read out as an image signal based on the operation of the release button 13. By subjecting this image signal to image processing, a captured image of the subject can be acquired.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of the imaging unit 14 including the various lenses 11 and the pupil selection sensor 24.
  • the various lenses 11 include a first optical system 21 and a second optical system 22 having mutually independent imaging characteristics.
  • the first optical system is an optical system having different focal lengths.
  • 21 and the second optical system 22 are configured. That is, the various lenses 11 of the present embodiment include a first optical system 21 (one of which is an example of a wide-angle optical system) configured by a wide-angle image capturing lens group and a second optical system 22 configured by a telephoto image capturing lens group. (The other is an example of a telephoto optical system).
  • the first optical system 21 shown in FIG. 2 is common to the first wide-angle lens 21a, the second wide-angle lens 21b, the third wide-angle lens 21c, the fourth wide-angle lens 21d, which are arranged on the same optical axis L.
  • a lens 23 is included.
  • the second optical system 22 includes a first telephoto reflector 22b provided with a first telephoto lens 22a, a first telephoto reflective mirror 22c, and a second telephoto reflector provided with a second telephoto reflective mirror 22e. 22d and the common lens 23 are comprised.
  • FIG. 3 is a view taken in the direction of arrow A in FIG.
  • the first optical system 21 (particularly the first wide-angle lens 21a, the second wide-angle lens 21b, the third wide-angle lens 21c and the fourth wide-angle lens 21d) and the second optical system 22 (particularly the first telephoto lens 22a,
  • the first telescope reflector 22b, the first telescope reflector 22c, the second telescope reflector 22d, and the second telescope reflector 22e) are arranged concentrically, and the first optical system 21 is a central optical system.
  • the second optical system 22 forms a peripheral optical system arranged in a ring around the periphery of the first optical system 21.
  • the common lens 23 is disposed on the optical axis L and is shared between the first optical system 21 and the second optical system 22.
  • the various lenses 11 are the first optical system 21 and the second optical system 22 having the common optical axis L, and the first optical system 21 and the second optical system 22 having mutually different focal lengths and photographing field angles.
  • An optical system 22 is included.
  • the pupil selection sensor 24 is a directional sensor in which a plurality of light receiving sensors 25 (photoelectric conversion elements) have directivity with respect to the incident angle of light, and the plurality of light receiving sensors 25 are orthogonal to the optical axis L.
  • the wide-angle image light W (see FIG. 5 as an example of the first incident light) that is two-dimensionally arranged in the direction to be incident and is incident through the first optical system 21 and the telephoto image that is incident through the second optical system 22
  • Light T an example of second incident light, see FIG. 6) is received simultaneously.
  • FIG. 4 is a diagram illustrating a detailed cross-sectional configuration example of the pupil selection sensor 24.
  • the pupil selection sensor 24 includes a first light receiving sensor 25a and a second light receiving sensor 25b having different angle sensitivity characteristics, and the first light receiving sensor 25a and the second light receiving sensor 25b are alternately arranged.
  • the first light receiving sensor 25a receives the wide-angle image light W and outputs a first image signal for generating a wide-angle image (an example of the first image), and the second light-receiving sensor 25b receives the telephoto image light T. Then, a second image signal for generating a telephoto image (an example of the second image) is output.
  • the plurality of first light receiving sensors 25a constitute a first sensor group 24a that selectively receives the wide-angle image light W, and the plurality of second light receiving sensors 25b are second sensors that selectively receive the telephoto image light T.
  • the group 24b is configured.
  • Each of the first light receiving sensor 25a and the second light receiving sensor 25b has a microlens 26, a photodiode 29, and an intermediate layer 27 in which the microlens 26 and the photodiode 29 are disposed.
  • the intermediate layer 27 is provided with a light shielding mask 28.
  • the light shielding mask 28 is disposed around the light receiving surface of the photodiode 29, and in the second light receiving sensor 25b, the light receiving surface of the photodiode 29 is disposed.
  • a light shielding mask 28 is disposed at the center. The arrangement of the light shielding mask 28 is determined according to which one of the first optical system 21 and the second optical system 22 corresponds, and each light shielding mask 28 blocks light from the optical system that does not correspond. The light from the corresponding optical system is received by the photodiode 29 without being blocked.
  • the pupil selection sensor 24 configured in this way actually has the telephoto image light T interfered with the first light receiving sensor 25a that selectively receives the wide-angle image light W, and selectively receives the telephoto image light T.
  • Wide-angle image light W interferes with the second light receiving sensor 25b.
  • M and N are numbers greater than 1
  • the ratio of the sensitivity (interference) between the first light receiving sensor 25a and the second light receiving sensor 25b with respect to the wide-angle image light W is M: 1
  • the telephoto image light Assume that the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b to T is 1: N.
  • a plurality of light receiving sensors for selectively receiving the light that has passed through the corresponding optical system of the first optical system 21 and the second optical system 22 by pupil division by the light receiving sensor 25 including the light shielding mask 28.
  • pupil division may be realized by other means.
  • a light shielding mask 28 may be provided on the upstream side of the optical path of incident light from the micro lens 26, or a light shielding such as a liquid crystal shutter. Light shielding means other than the mask 28 may be used.
  • members other than the light shielding mask 28 may be provided in the intermediate layer 27.
  • members other than the light shielding mask 28 may be provided in the intermediate layer 27.
  • wirings and / or circuits can be provided in the intermediate layer 27.
  • the pupil selection sensor 24 is configured by R (red), G (green), and B (blue) color filters (optical filters) disposed with respect to the first light receiving sensor 25a and the second light receiving sensor 25b.
  • a color filter array is provided, and an image (mosaic image) of each color obtained corresponding to the color array pattern of the color filter array is synchronized by the digital image signal processing unit 34 (see FIG. 13). Color wide-angle images and telephoto images can be obtained.
  • the imaging unit 14 includes a light shielding unit 50 including a first liquid crystal shutter 51 (an example of a second shutter) and a second liquid crystal shutter 52 (an example of a first shutter).
  • the first liquid crystal shutter 51 and the second liquid crystal shutter 52 are liquid crystal panels arranged concentrically in a direction orthogonal to the optical axis L, respectively.
  • the first liquid crystal shutter 51 and the second liquid crystal shutter 52 are configured to be switchable between a transmitting state that transmits incident light and a light blocking state that blocks light. This switching is performed by a light blocking shutter control unit 48 (see FIG. 15). ).
  • the first liquid crystal shutter 51 has a circular shape corresponding to the first optical system 21, and is located between the first wide-angle lens 21 a and the second wide-angle lens 21 b, and is used for the wide-angle image light W. It is arranged at the position of the optical path. That is, the first liquid crystal shutter 51 controls the passage and blocking of the wide-angle image light W according to the transmission state and the light shielding state.
  • the first liquid crystal shutter 51 is not limited to the one disposed inside the first optical system 21, and may be disposed before the first optical system 21 in the optical path of the wide-angle image light W. It may be arranged behind the first optical system 21 (between the first optical system 21 and the pupil selection sensor 24).
  • the second liquid crystal shutter 52 is annularly arranged around the first liquid crystal shutter 51 in correspondence with the second optical system 22, and the first telephoto reflection mirror 22c and the second telephoto reflection mirror 22e. Between the optical path and the position of the optical path of the telephoto image light T. That is, the second liquid crystal shutter 52 controls the passage and blocking of the telephoto image light T according to the transmission state and the light shielding state.
  • the second liquid crystal shutter 52 is not limited to the one disposed inside the second optical system 22, and may be disposed before the second optical system 22 in the optical path of the telephoto image light T. You may arrange
  • the light shielding unit 50 may configure the first liquid crystal shutter 51 and the second liquid crystal shutter 52 as a single liquid crystal panel, and individually switch the transmission state and the light shielding state for each region.
  • FIG. 5 is a diagram showing an optical path of the wide-angle image light W incident on the various lenses 11 (particularly the first optical system 21) and the pupil selection sensor 24 (particularly the first sensor group 24a (see FIG. 4)) shown in FIG. Yes, the first liquid crystal shutter 51 is in a transmissive state.
  • the wide-angle image light W is a first wide-angle lens 21a, a first liquid crystal shutter 51, a second wide-angle lens 21b, a third wide-angle lens 21c, and a fourth wide-angle lens.
  • a wide-angle image is formed on the first light receiving sensor 25a of the pupil selection sensor 24 by sequentially passing through the lens 21d and the common lens 23.
  • FIG. 6 is a diagram showing an optical path of the telephoto image light T incident on the various lenses 11 (particularly the second optical system 22) and the pupil selection sensor 24 (particularly the second sensor group 24b (see FIG. 4)) shown in FIG.
  • the second liquid crystal shutter 52 is in a transmissive state.
  • the telephoto image light T passes (transmits) through the first telephoto lens 22a, is reflected by the first telephoto reflection mirror 22c, and then passes through the second liquid crystal shutter 52 to be second. It is reflected by the telephoto reflecting mirror 22e, passes through the second liquid crystal shutter 52 and the common lens 23, and forms a telephoto image on the second light receiving sensor 25b of the pupil selection sensor 24.
  • the length in the direction of the optical axis L of the second optical system 22 for taking a telephoto image with a long focal length is reflected by each of the first telescopic reflecting mirror 22c and the second telescopic reflecting mirror 22e and folded back.
  • the length can be shortened.
  • the wide angle image light W and the telephoto image light T are selectively received by the pupil selection sensor 24, and the wide angle image and the telephoto image are received. Can be taken simultaneously.
  • 7 and 8 are diagrams showing an example of a wide-angle image and a telephoto image taken simultaneously, respectively. 7 and 8, when there is no interference between the wide-angle image and the telephoto image (the wide-angle image light W does not enter the second light receiving sensor 25b at all, and the telephoto image light T does not enter the first light receiving sensor. An example of a case in which no light is incident on 25a) is shown.
  • FIG. 9 and FIG. 10 are diagrams showing examples of a wide-angle image and a telephoto image when interference occurs.
  • the telephoto image has interference in the wide-angle image, and in addition to the original subject image (small lorry in the center of the image), a false image (large image of the lorry) due to interference exists in the image. Appears slightly.
  • the wide-angle image also has interference in the telephoto image, and in addition to the original subject (large lorry in the center of the image), a false image (small image of the lorry) due to interference is an image. It appears slightly in the center.
  • the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b to the wide-angle image light W is M: 1. Therefore, M / (M + 1) of the wide-angle image light W is received by the first light receiving sensor 25a, and 1 / (M + 1) interferes with the second light receiving sensor 25b.
  • the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b to the telephoto image light T is 1: N. Accordingly, N / (N + 1) of the telephoto image light T is received by the second light receiving sensor 25b, and 1 / (N + 1) interferes with the first light receiving sensor 25a.
  • FIG. 11 is a diagram illustrating optical paths of the wide-angle image light W and the telephoto image light T that are incident on the various lenses 11 and the pupil selection sensor 24 illustrated in FIG. 2.
  • the first liquid crystal shutter 51 is in a transmissive state
  • the second liquid crystal The case where the shutter 52 is in a light shielding state is shown.
  • the telephoto image light T passes through the first telephoto lens 22a, is reflected by the first telephoto reflection mirror 22c, and then enters the second liquid crystal shutter 52.
  • the second liquid crystal shutter 52 is in a light-shielding state, the telephoto image light T incident on the second liquid crystal shutter 52 is blocked by the second liquid crystal shutter 52 and does not enter the second telephoto reflection mirror 22e. As a result, a telephoto image is not formed on the second light receiving sensor 25b of the pupil selection sensor 24.
  • the wide-angle image light W is transmitted through the first wide-angle lens 21a, the first liquid-crystal shutter 51, the first liquid-crystal shutter 51 of the first optical system 21, as in the case shown in FIG.
  • a wide-angle image is formed on the first light receiving sensor 25a of the pupil selection sensor 24 through the 2 wide-angle lens 21b, the third wide-angle lens 21c, the fourth wide-angle lens 21d, and the common lens 23 sequentially.
  • the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b to the wide-angle image light W is M: 1, M / (M + 1) of the wide-angle image light W is transmitted to the first light receiving sensor 25a.
  • the second light receiving sensor 25b receives 1 / (M + 1) light. Therefore, a wide-angle image is formed on the first light receiving sensor 25a, and a wide-angle image is formed on the second light receiving sensor 25b with an exposure amount 1 / M of the wide-angle image photographed by the first light receiving sensor 25a.
  • FIG. 12 is a graph showing the photoelectric conversion characteristics of the first light receiving sensor 25a and the second light receiving sensor 25b when the first liquid crystal shutter 51 is in the transmission state and the second liquid crystal shutter 52 is in the light shielding state.
  • the relative incident light amount and the vertical axis indicate the output signal.
  • the output of the first light receiving sensor 25a increases proportionally as the relative incident light amount increases, and the output signal reaches a saturation value when the relative incident light amount is 100%. Thereafter, even if the relative incident light quantity increases, the output of the first light receiving sensor 25a becomes constant at the saturation value.
  • the second light receiving sensor 25b has a sensitivity of 1 / M with respect to the first light receiving sensor 25a, and reaches a saturation value when the relative incident light quantity is M ⁇ 100%.
  • FIG. 13 is a diagram illustrating optical paths of the wide-angle image light W and the telephoto image light T that are incident on the various lenses 11 and the pupil selection sensor 24 illustrated in FIG.
  • the first liquid crystal shutter 51 is in a light shielding state
  • the second liquid crystal shutter 52 is in a transmissive state.
  • the wide-angle image light W enters the first liquid crystal shutter 51 after passing through the first wide-angle lens 21 a of the first optical system 21.
  • the first liquid crystal shutter 51 since the first liquid crystal shutter 51 is in a light shielding state, the wide-angle image light W incident on the first liquid crystal shutter 51 is blocked by the first liquid crystal shutter 51 and does not enter the second wide-angle lens 21b. As a result, a wide-angle image is not formed on the first light receiving sensor 25a of the pupil selection sensor 24.
  • the telephoto image light T passes through the second liquid crystal shutter 52 after passing through the first telephoto lens 22a, being reflected by the first telephoto reflection mirror 22c, since the second liquid crystal shutter 52 is in the transmission state. Then, it is reflected by the second telephoto reflecting mirror 22e, passes through the second liquid crystal shutter 52 and the common lens 23, and forms a telephoto image on the pupil selection sensor 24.
  • N / (N + 1) of the telephoto image light T is transmitted to the second light receiving sensor 25b.
  • the first light receiving sensor 25a receives 1 / (N + 1) light. Accordingly, a telephoto image is formed on the second light receiving sensor 25b, and a telephoto image is formed on the first light receiving sensor 25a with an exposure amount 1 / N of the telephoto image taken by the second light receiving sensor 25b.
  • FIG. 14 is a graph showing the photoelectric conversion characteristics of the first light receiving sensor 25a and the second light receiving sensor 25b when the first liquid crystal shutter 51 is in a light shielding state and the second liquid crystal shutter 52 is in a transmissive state.
  • the relative incident light amount and the vertical axis indicate the output signal.
  • the output of the second light receiving sensor 25b increases proportionally as the relative incident light amount increases, and the output signal reaches a saturation value when the relative incident light amount is 100%. Thereafter, even if the relative incident light quantity increases, the output of the second light receiving sensor 25b becomes constant at the saturation value.
  • the first light receiving sensor 25a has a sensitivity of 1 / N with respect to the second light receiving sensor 25b, and reaches a saturation value when the relative incident light quantity is N ⁇ 100%.
  • FIG. 15 is a block diagram illustrating a functional configuration example of the digital camera 10 according to the present embodiment.
  • the digital camera 10 includes an imaging / image acquisition unit 32 that acquires various images, and a digital image signal processing unit that performs signal processing on the various images.
  • a recording unit 40 for recording, displaying, and transmitting various images subjected to signal processing
  • a display unit 42 for displaying, and transmitting various images subjected to signal processing
  • a display unit 42 for transmitting various images subjected to signal processing
  • a display unit 42 for transmitting various images subjected to signal processing
  • a display unit 42 for a display unit 42
  • a transmission unit 44 a shooting mode selection / processing switching control unit 46 for switching the operation of the digital camera 10
  • a light shielding unit 50 has a light-shielding shutter controller 48 for controlling 50.
  • the functions of the imaging / image acquisition unit 32, the digital image signal processing unit 34, the imaging mode selection / processing switching control unit 46, the light shielding shutter control unit 48, and the like are processors such as a CPU (Central Processing Unit) in the digital camera 10. May be realized by the operation of a programmable logic device (PLD) or ASIC (Application Specific Integrated Circuit), which is a processor whose circuit configuration can be changed after manufacturing, such as an FPGA (Field Programmable Gate Array). It may be realized by a dedicated electric circuit which is a processor having a circuit configuration designed exclusively for executing a specific process such as the above or a combination thereof.
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • Wide-angle image light W via the first various lens pupils 61 corresponding to the first optical system 21 is received by the first sensor group 24a of the pupil selection sensor 24, and the second optical system 22 (FIG. 2).
  • the telephoto image light T via the second various lens pupil 62 corresponding to the reference) is received by the second sensor group 24b of the pupil selection sensor 24.
  • the imaging / image acquisition unit 32 includes a pupil selection sensor 24.
  • the imaging / image acquisition unit 32 (an example of an image reading unit) acquires a first image signal from the first sensor group 24a of the pupil selection sensor 24 and acquires a second image signal from the second sensor group 24b.
  • the first image signal and the second image signal are input to the digital image signal processing unit 34.
  • the digital image signal processing unit 34 includes an interference reduction processing unit 36 and a dynamic range expansion processing unit 38.
  • the interference reduction processing unit 36 uses the first liquid crystal shutter 51 and the second liquid crystal shutter 52 in the transmission state, and the second image signal that is interfering from the first image signal and the second image signal acquired by the imaging / image acquisition unit 32. Wide-angle image data with reduced and telephoto image data with reduced interfering first image signal.
  • the dynamic range expansion processing unit 38 expands the dynamic range from the first image signal and the second image signal acquired from the imaging / image acquisition unit 32 with either the first liquid crystal shutter 51 or the second liquid crystal shutter 52 being in a light-shielded state.
  • the wide-angle image data or the telephoto image data with an expanded dynamic range is generated.
  • the image data generated in the digital image signal processing unit 34 is sent to the recording unit 40, the display unit 42, and / or the transmission unit 44.
  • the recording unit 40 includes a recording medium built in the digital camera 10 and / or a recording medium removable from the digital camera 10, and records the image data sent from the digital image signal processing unit 34 on these recording media.
  • the display unit 42 includes a liquid crystal monitor, and displays the image data sent from the digital image signal processing unit 34 on the liquid crystal monitor.
  • the transmission unit 44 transmits the image data sent from the digital image signal processing unit 34 via a communication means such as a wireless LAN (Local Area Network).
  • a communication means such as a wireless LAN (Local Area Network).
  • the shooting mode selection / processing switching control unit 46 corresponds to the shooting mode selected by the user of the digital camera 10 using an operation unit (not shown), and the imaging / image acquisition unit 32, the digital image signal processing unit 34, and The processing in the light shielding shutter control unit 48 is controlled.
  • the light shielding shutter control unit 48 (an example of the first light shielding control unit and an example of the second light shielding control unit) controls the transmission state and the light shielding state of the first liquid crystal shutter 51 and the second liquid crystal shutter 52.
  • FIG. 16 is a block diagram showing a detailed circuit configuration of the dynamic range expansion processing unit 38 shown in FIG.
  • the dynamic range expansion processing unit 38 includes offset processing units 100 and 102, linear matrix circuits 110 and 112, gain correction circuits 120 and 122, a synthesis processing circuit 130, and the like.
  • the first image signal and the second image signal are input to the offset processing unit 100 and the offset processing unit 102, respectively, and are subjected to offset processing.
  • the first image signal and the second image signal subjected to the offset processing are output to the linear matrix circuits 110 and 112, where a color tone correction process for correcting the spectral characteristics of the pupil selection sensor 24 is performed.
  • the first image signal and the second image signal output from the linear matrix circuits 110 and 112 are output to the gain correction circuits 120 and 122, respectively.
  • the gain correction circuits 120 and 122 perform white balance adjustment by applying a gain for white balance adjustment for each of the R, G, and B image signals.
  • the first image signal and the second image signal output from the gain correction circuits 120 and 122 are output to the synthesis processing circuit 130, respectively.
  • the composition processing circuit 130 mainly includes a tone conversion LUT (Look-Up Table) 132 for high-sensitivity image data, a tone conversion LUT 134 for low-sensitivity image data, and an adder 136.
  • a tone conversion LUT Look-Up Table
  • the gradation conversion LUTs 132 and 134 are derived from six gradation conversion LUTs respectively corresponding to six dynamic ranges of M ⁇ 100% or less (100%, 130%, 170%, 230%, 300%, 400%).
  • the corresponding gradation conversion LUT is selected from the six gradation conversion LUTs according to the enlargement ratio of the dynamic range selected by the operation unit (not shown).
  • the first image signal and the second image signal input to the synthesis processing circuit 130 are subjected to gradation conversion by the gradation conversion LUT selected based on the dynamic range expansion rate from the gradation conversion LUTs 132 and 134, respectively. It is output to the adder 136.
  • the adder 136 synthesizes (adds) the first image signal and the second image signal that have undergone gradation conversion by the gradation conversion LUTs 132 and 134.
  • FIG. 17 is a diagram showing the signal level of the combined image data synthesized by the synthesis processing circuit 130 according to each dynamic range. As shown in the figure, the maximum value of the signal level of the combined image data combined according to each dynamic range is the same, and the signal level smoothly changes from the luminance 0 to the maximum luminance of each dynamic range. Is synthesized as follows. That is, the tone conversion LUTs 132 and 134 perform tone conversion so that the synthesis result shown in FIG. 17 is obtained.
  • the gradation conversion LUTs 132 and 134 are configured by five gradation conversion LUTs corresponding to five dynamic ranges whose dynamic range is other than 100%.
  • the synthesized R, G, B dot-sequential image signals output from the adder 136 of the synthesis processing circuit 130 are converted into luminance signals Y and color difference signals Cr, Cb after being subjected to synchronization processing.
  • the luminance signal Y and the color difference signals Cr and Cb are recorded in the recording unit 40, displayed on the display unit 42, and / or transmitted by the transmission unit 44.
  • the enlargement ratio of the dynamic range is 400% at the maximum, but the dynamic range of the wide-angle image can be maximized at M ⁇ 100%, and the dynamic range of the telephoto image can be maximized at N ⁇ 100%.
  • FIG. 18 is a flowchart illustrating an example of an imaging method by the digital camera 10.
  • the user of the digital camera 10 can set the shooting mode of the digital camera 10 using an operation unit (not shown).
  • the camera can be selected from a wide-angle / telephoto simultaneous shooting mode, a wide-angle dynamic range expansion shooting mode, and a telephoto dynamic range expansion shooting mode.
  • the photographing mode selection / process switching control unit 46 determines the photographing mode in which the digital camera 10 is set in step S1. If the set shooting mode is the wide-angle / telephoto simultaneous shooting mode, the process proceeds to step S2. If the wide-angle dynamic range expansion shooting mode is set, the process proceeds to step S6. If the set shooting mode is the telephoto dynamic range expansion shooting mode, the process proceeds to step S10. .
  • the light-shielding shutter control unit 48 sets the first liquid crystal shutter 51 and the second liquid crystal shutter 52 to the transmissive state in step S2.
  • the imaging / image acquisition unit 32 acquires the first image signal from the first sensor group 24a of the pupil selection sensor 24, and the second sensor group 24b receives the first image signal. Two image signals are acquired (an example of an image reading process).
  • the first image signal and the second image signal are input to the digital image signal processing unit 34, and interference reduction processing is performed by the interference reduction processing unit 36 in step S4.
  • the crosstalk ratio of the first image signal and the second image signal is determined by the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b.
  • the value of a certain pixel of the first image signal is T 1
  • the value of the corresponding pixel (adjacent pixel) of the second image signal is W 1
  • the value of the true pixel when there is no interference between these pixels is T 2.
  • W 2 the following expressions 1 and 2 are established.
  • T 1 (M ⁇ T 2 + W 2 ) / (M + 1) (Formula 1)
  • W 1 (T 2 + N ⁇ W 2 ) / (N + 1) (Formula 2)
  • step S5 the wide-angle image on the basis of the above T 2, to obtain the telescopic image on the basis of W 2 (an example of an image generation step).
  • step S6 the light-shielding shutter control unit 48 sets the first liquid crystal shutter 51 to the transmissive state and the second liquid crystal shutter 52 to the light-shielding state.
  • Set an example of a first light shielding control step.
  • the imaging / image acquisition unit 32 acquires the first image signal from the first sensor group 24a of the pupil selection sensor 24, and the second sensor group 24b receives the first image signal. Two image signals are acquired.
  • the second liquid crystal shutter 52 is in a light shielding state, the telephoto image light T does not enter the first sensor group 24a and the second sensor group 24b.
  • the wide-angle image light W is received by the first sensor group 24a at a ratio of M / (M + 1) and the second sensor group 24b at a ratio of 1 / (M + 1).
  • the first image signal output from the first sensor group 24 a and the second image signal output from the second sensor group 24 b are input to the digital image signal processing unit 34.
  • the dynamic range expansion processing unit 38 of the digital image signal processing unit 34 performs dynamic range expansion processing on the first image signal and the second image signal in accordance with the dynamic range expansion rate selected by the operation unit (not shown).
  • step S9 a wide-angle image with an expanded dynamic range is acquired (an example of a dynamic range expansion process).
  • a wide-angle image (an example of a third image) having a dynamic range M times the dynamic range of the wide-angle image in the wide-angle / telephoto simultaneous shooting mode can be acquired.
  • the image is not limited to an image having a dynamic range of M times, and a wide-angle image having a dynamic range of M times or less can be acquired.
  • step S10 the light shielding shutter control unit 48 sets the first liquid crystal shutter 51 to the light shielding state and the second liquid crystal shutter 52 to the transmission state. Set.
  • the imaging / image acquisition unit 32 acquires the first image signal from the first sensor group 24a of the pupil selection sensor 24, and the second sensor group 24b receives the first image signal.
  • Two image signals are acquired (an example of an image reading process).
  • the wide-angle image light W does not enter the first sensor group 24a and the second sensor group 24b.
  • the telephoto image light T is received by the first sensor group 24a at a ratio of 1 / (N + 1) and the second sensor group 24b at a ratio of N / (N + 1).
  • the first image signal output from the first sensor group 24 a and the second image signal output from the second sensor group 24 b are input to the digital image signal processing unit 34.
  • the dynamic range expansion processing unit 38 of the digital image signal processing unit 34 performs dynamic range expansion processing on the first image signal and the second image signal according to the dynamic range expansion rate selected by the operation unit (not shown).
  • step S13 a telephoto image with an expanded dynamic range is acquired.
  • a telephoto image (an example of a fourth image) having a dynamic range N times the dynamic range of the telephoto image in the wide-angle and telephoto simultaneous shooting mode can be acquired.
  • the image is not limited to an image having an N times dynamic range, and a telephoto image having an N times or less dynamic range can be acquired.
  • Each image acquired in each shooting mode can be recorded, displayed, and / or transmitted by the recording unit 40, the display unit 42, and the transmission unit 44, respectively.
  • a wide-angle image having a dynamic range of M times or less is acquired in the wide-angle dynamic range expansion shooting mode
  • a telephoto image having a dynamic range of N times or less is acquired in the telephoto dynamic range expansion shooting mode. It is also possible to take a wide-angle image having a dynamic range and a telephoto image having a dynamic range of N times or less by operating the release button 13 once by the user.
  • the first liquid crystal shutter 51 and the second liquid crystal shutter 52 may be switched and sequentially switched for photographing.
  • a wide-angle image with an expanded dynamic range and a telephoto image with an expanded dynamic range can be taken alternately in succession, and a wide-angle image and a telephoto image can be imaged.
  • FIG. 19 is a block diagram illustrating a functional configuration example of the digital camera 10 according to the second embodiment.
  • symbol is attached
  • the various lenses 11 have a first optical system (not shown) having a first characteristic, a second optical system (not shown) having a second characteristic, and a third optical system (not shown) having a third characteristic.
  • a first liquid crystal shutter 51, a second liquid crystal shutter 52, and a third liquid crystal shutter 53 for switching light transmission and light shielding are arranged. Has been.
  • the pupil selection sensor 24 is a directional sensor in which a plurality of light receiving sensors have directivity with respect to the incident angle of light.
  • the pupil selection sensor 24 includes a first sensor group 24a that selectively receives light via the first diverse lens pupil 61, a second sensor group 24b that selectively receives light via the second diverse lens pupil 62, And a third sensor group 24c that selectively receives light via the third diverse lens pupil 63.
  • the first liquid crystal shutter 51, the second liquid crystal shutter 52, and the third liquid crystal shutter 53 are in the transmissive state, the first light incident on the first optical system of the various lenses 11 corresponds to the first optical system.
  • Light is received by the first sensor group 24 a of the pupil selection sensor 24 through the one multi-lens pupil 61.
  • the second light incident on the second optical system is received by the second sensor group 24b via the second various lens pupil 62 corresponding to the second optical system, and the third light incident on the third optical system.
  • the ratio of the sensitivity of the light receiving sensors constituting the first sensor group 24a, the light receiving sensors constituting the second sensor group 24b, and the light receiving sensors constituting the third sensor group 24c is as follows. Assume that M1: M2: M3, M4: M5: M6 for the second light, and M7: M8: M9 for the third light.
  • the sensitivity ratio of the three images having the ratio M4: M5: M6 is obtained for the second characteristic image. Images can be taken at the same time, and an image having the second characteristic with an expanded dynamic range according to the sensitivity ratio can be acquired.
  • the sensitivity of each light receiving sensor of the pupil selection sensor 24 with respect to the light from the open pupil region is set by opening a specific pupil region among the plurality of pupil regions and closing the other pupil regions.
  • the pupil image in the open state can be synthesized to obtain an image with a wide dynamic range.
  • FIG. 20 is a block diagram illustrating a functional configuration example of a digital camera 70 according to the third embodiment.
  • symbol is attached
  • the digital camera 70 includes a photographing lens 71 having uniform characteristics in a region where light enters.
  • the photographing lens 71 includes a diaphragm 72 that forms a circular diaphragm aperture by a plurality of diaphragm blades and adjusts the amount of light incident on the pupil selection sensor 24 by changing the aperture diameter.
  • the size of the aperture diameter of the diaphragm 72 is controlled by the diaphragm controller 75.
  • the pupil selection sensor 24 is a directional sensor in which the plurality of light receiving sensors 25 have directivity with respect to the incident angle of light, and has the same configuration as the pupil selection sensor 24 shown in FIG.
  • the digital camera 70 includes a fine image generation unit 76 in the digital image signal processing unit 34.
  • the fine image generation unit 76 uses the first image signal acquired from the first sensor group 24a of the pupil selection sensor 24 and the second image signal acquired from the second sensor group 24b in parallel as different pixels in the image. Thus, fine image data is generated.
  • the fine image data has a resolution that is twice the resolution of the image data with the expanded dynamic range generated by the dynamic range expansion processing unit 38.
  • the diaphragm control unit 75 sets the diaphragm 72 to the open state. In this case, light incident from the vicinity of the center of the photographing lens 71 is incident on the first sensor group 24a of the pupil selection sensor 24 via the first lens pupil 73, and light incident from the vicinity of the vicinity of the center of the photographing lens 71 is obtained. Then, the light enters the second sensor group 24b through the second lens pupil 74.
  • the imaging / image acquisition unit 32 acquires a first image signal from the first sensor group 24a and acquires a second image signal from the second sensor group 24b.
  • the first image signal and the second image signal are input to the digital image signal processing unit 34, and the fine image generation unit 76 generates fine image data.
  • a fine image can be acquired by using both image signals of the first sensor group 24a and the second sensor group 24b in parallel.
  • the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b to the incident light from the first lens pupil 73 is M: 1.
  • the aperture control unit 75 stops the aperture diameter of the aperture 72 and blocks incident light from the second lens pupil 74. Accordingly, light that has passed through the second lens pupil 74 does not enter the pupil selection sensor 24.
  • the ratio of the sensitivity of the first light receiving sensor 25a and the second light receiving sensor 25b to the incident light from the first lens pupil 73 is M: 1. Therefore, M / (M + 1) of the incident light is received by the first light receiving sensor 25a, and 1 / (M + 1) interferes with the second light receiving sensor 25b.
  • the imaging / image acquisition unit 32 acquires the first image signal from the first sensor group 24a of the pupil selection sensor 24, and acquires the second image signal from the second sensor group 24b.
  • the first image signal and the second image signal are input to the digital image signal processing unit 34.
  • the dynamic range expansion processing unit 38 of the digital image signal processing unit 34 performs dynamic range expansion processing on the first image signal and the second image signal in accordance with a dynamic range expansion rate selected by an operation unit (not shown).
  • the various lenses 11 shown in FIG. 2 may be used.
  • the various lenses 11 when the diaphragm 72 is opened, a wide-angle image and a telephoto image can be taken simultaneously, the aperture diameter of the diaphragm 72 is reduced, and incident light from the second optical system 22 is captured.
  • an image in which the dynamic range of the wide-angle image is expanded can be acquired. That is, an image with an expanded dynamic range having the imaging characteristics of the first optical system 21 can be acquired.
  • the present invention can be widely applied to an imaging apparatus, an imaging method, and their application technologies capable of imaging a plurality of images using an imaging system in which each light receiving sensor has a directivity sensor having directivity with respect to an incident angle of light.
  • the applicable technical field is not particularly limited.
  • the present invention can be applied not only to an imaging device that captures an image in response to a user operation but also to an imaging device that automatically captures an image.
  • the present invention can also be applied to an imaging apparatus that performs imaging.
  • the imaging method is a non-temporary recording medium such as a CD-ROM (Compact Disk-Read Only Memory) configured as a program for causing a computer to realize the above steps and storing a computer-readable code of the program. It is also possible to configure.
  • a CD-ROM Compact Disk-Read Only Memory

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Studio Devices (AREA)
  • Cameras In General (AREA)
  • Shutters For Cameras (AREA)
  • Lenses (AREA)

Abstract

各受光センサが光の入射角に関して指向性を有する指向性センサを備える撮像系により複数の画像を同時に撮影し、ダイナミックレンジを拡大した画像を取得する撮像装置、撮像方法、プログラム、及び非一時的記録媒体を提供する。撮影レンズの第1光学系を介して入射した第1入射光に対する第1受光センサと第2受光センサとの感度の比率がM:1である指向性センサから、撮影レンズの第2入射光を遮光した状態で第1受光センサと第2受光センサとの画像信号を取得し、第1受光センサの画像信号による第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成する。

Description

撮像装置、撮像方法、プログラム、及び非一時的記録媒体
 本発明は、撮像装置、撮像方法、プログラム、及び非一時的記録媒体に関し、特に各受光センサが光の入射角に関して指向性を有する指向性センサを使用して複数の画像を同時に撮影する技術に関する。
 領域により異なる撮像特性を有する光学系と指向性センサを備える撮像系により、撮像特性が異なる複数の画像を同時に取得可能な撮像システムが提案されている。指向性センサは、理想的には、想定された瞳領域からの光だけを感じるように製作されるが、実際には混信が生じて、他の瞳領域からの光にも感じてしまう。
 このような課題に対し、特許文献1には、複数の領域の内の一の領域に対応する受光センサの撮像信号から一の領域に対応する画像を生成し、生成された画像の補正を行う際に、一の領域に対応して生成された画像から一の領域以外の領域を通過した光束の影響を除去する技術が記載されている。
国際公開第2013/146506号公報
 しかしながら、特許文献1に記載の技術では、高輝度の被写体がある場合には、信号飽和の影響によって混信成分を除去することができず、出力画像の画質を劣化させてしまうという問題があった。また、高輝度の被写体に白トビが発生しないように、ダイナミックレンジを拡大した画像を取得するためには、露光時間の異なる2枚の画像を撮影する必要があった。
 本発明はこのような事情に鑑みてなされたもので、各受光センサが光の入射角に関して指向性を有する指向性センサを備える撮像系により複数の画像を同時に撮影し、ダイナミックレンジを拡大した画像を取得する撮像装置、撮像方法、プログラム、及び非一時的記録媒体を提供することを目的とする。
 上記目的を達成するために撮像装置の一の態様は、それぞれ異なる領域に設けられた第1光学系と第2光学系とを備える撮影レンズと、複数の第1受光センサと複数の第2受光センサとが2次元状に配列された指向性センサであって、M及びNを1より大きい数とすると、第1光学系を介して入射した第1入射光に対する第1受光センサと第2受光センサとの感度の比率がM:1であり、第2光学系を介して入射した第2入射光に対する第1受光センサと第2受光センサとの感度の比率が1:Nである指向性センサと、複数の第1受光センサから得られる第1画像信号と複数の第2受光センサから得られる第2画像信号とを取得する画像読み出し部と、第1画像信号から第1画像を生成し、第2画像信号から第2画像を生成する画像生成部と、第2入射光の指向性センサへの入射又は遮光を制御する第1遮光制御部と、第2入射光を遮光した状態で第1画像信号と第2画像信号とを取得し、第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成するダイナミックレンジ拡大処理部と、を備えた。
 本態様によれば、第1光学系を介して入射した第1入射光に対する第1受光センサと第2受光センサとの感度の比率がM:1である指向性センサによって、第2入射光を遮光した状態で複数の第1受光センサと第2受光センサとから第1画像信号と第2画像信号とを取得し、第1画像信号から生成される第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成するようにしたので、受光センサが光の入射角に関して指向性を有する指向性センサを備える撮像系により、ダイナミックレンジを拡大した画像を撮影することができる。
 第1遮光制御部は、光の透過状態と遮光状態とを切り替える第1シャッタを備えることが好ましい。これにより、第2入射光の指向性センサへの入射又は遮光を適切に制御することができる。
 第1シャッタは、第1入射光の光路に配置されることが好ましい。これにより、第2入射光の指向性センサへの入射又は遮光を適切に制御することができる。
 第1入射光の指向性センサへの入射又は遮光を制御する第2遮光制御部を備え、ダイナミックレンジ拡大処理部は、第2入射光を入射させ、かつ第1入射光を遮光した状態で第1画像信号と第2画像信号とを取得し、第2画像のダイナミックレンジのN倍のダイナミックレンジを有する第4画像を生成することが好ましい。これにより、第2入射光によるダイナミックレンジを拡大した画像を撮影することができる。
 第2遮光制御部は、光の透過状態と遮光状態とを切り替える第2シャッタを備えることが好ましい。これにより、第1入射光の指向性センサへの入射又は遮光を適切に制御することができる。
 第2シャッタは、第2入射光の光路に配置されることが好ましい。これにより、第1入射光の指向性センサへの入射又は遮光を適切に制御することができる。
 第1光学系及び第2光学系は、互いに異なる撮像特性を有することが好ましい。これにより、互いに異なる撮像特性を有する画像を同時に撮影することができる。
 第1光学系及び第2光学系は、一方が広角光学系であり、他方が広角光学系より焦点距離が長い望遠光学系であることが好ましい。これにより、広角画像と望遠画像とを同時に撮影することができる。
 撮影レンズは、第1光学系が中央部に配置され、第2光学系が第1光学系の周辺部に環状に配置されることが好ましい。これにより、第1光学系と第2光学系とを適切に配置し、また、第2入射光の指向性センサへの入射又は遮光を適切に制御することができる。
 指向性センサへ入射する光量を調節するための絞りを備え、第1遮光制御部は、絞りによって第2入射光の指向性センサへの入射又は遮光を制御してもよい。これにより、第2入射光の指向性センサへの入射又は遮光を適切に制御することができる。
 上記目的を達成するために撮像方法の一の態様は、それぞれ異なる領域に設けられた第1光学系と第2光学系とを備える撮影レンズと、複数の第1受光センサと複数の第2受光センサとが2次元状に配列された指向性センサであって、M及びNを1より大きい数とすると、第1光学系を介して入射した第1入射光に対する第1受光センサと第2受光センサとの感度の比率がM:1であり、第2光学系を介して入射した第2入射光に対する第1受光センサと第2受光センサとの感度の比率が1:Nである指向性センサと、を備えた撮像装置の撮像方法であって、複数の第1受光センサから得られる第1画像信号と複数の第2受光センサから得られる第2画像信号とを取得する画像読み出し工程と、第1画像信号から第1画像を生成し、第2画像信号から第2画像を生成する画像生成工程と、第2入射光の指向性センサへの入射又は遮光を制御する第1遮光制御工程と、第2入射光を遮光した状態で第1画像信号と第2画像信号とを取得し、第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成するダイナミックレンジ拡大処理工程と、を備えた。
 本態様によれば、第1光学系を介して入射した第1入射光に対する第1受光センサと第2受光センサとの感度の比率がM:1である指向性センサによって、第2入射光を遮光した状態で複数の第1受光センサと第2受光センサとから第1画像信号と第2画像信号とを取得し、第1画像信号から生成される第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成するようにしたので、受光センサが光の入射角に関して指向性を有する指向性センサを備える撮像系により、ダイナミックレンジを拡大した画像を撮影することができる。
 撮像方法を撮像装置に実行させるプログラムも本態様に含まれる。また、プログラムのコンピュータ読み取り可能なコードが記録された、非一時的記録媒体も本態様に含まれる。
 本発明によれば、各受光センサが光の入射角に関して指向性を有する指向性センサを備える撮像系により、ダイナミックレンジを拡大した画像を撮影することができる。
図1は、デジタルカメラを示す斜視図である。 図2は、撮像部の断面構成を示す図である。 図3は、図2のA矢視図である。 図4は、瞳選択センサの詳細な断面構成例を示す図である。 図5は、多様レンズに入射する広角画像光の光路を示す図である。 図6は、多様レンズに入射する望遠画像光の光路を示す図である。 図7は、望遠画像と同時に撮影した広角画像を示す図である。 図8は、広角画像と同時に撮影した望遠画像を示す図である。 図9は、混信が生じている広角画像を示す図である。 図10は、混信が生じている望遠画像を示す図である。 図11は、多様レンズ及び瞳選択センサに入射する広角画像光及び望遠画像光の光路を示す図である。 図12は、第1液晶シャッタを透過状態、第2液晶シャッタを遮光状態とした場合の第1受光センサと第2受光センサの光電変換特性を示すグラフである。 図13は、多様レンズ及び瞳選択センサに入射する広角画像光及び望遠画像光の光路を示す図である。 図14は、第1液晶シャッタを遮光状態、第2液晶シャッタを透過状態とした場合の第1受光センサと第2受光センサの光電変換特性を示すグラフである。 図15は、デジタルカメラの機能構成例を示すブロック図である。 図16は、ダイナミックレンジ拡大処理部の詳細な回路構成を示すブロック図である。 図17は、合成処理回路により各ダイナミックレンジに応じて合成された合成後の画像データの信号レベルを示す図である。 図18は、デジタルカメラによる撮像方法の一例を示すフローチャートである。 図19は、デジタルカメラの機能構成例を示すブロック図である。 図20は、デジタルカメラの機能構成例を示すブロック図である。
 以下、添付図面に従って本発明の好ましい実施形態について説明する。
 〔デジタルカメラの構成〕
 図1は、本実施形態に係るデジタルカメラ10(撮像装置の一例)を示す斜視図である。デジタルカメラ10は、光軸Lを有する多様レンズ11及び被写体に撮影補助光を照射するフラッシュ発光部12が本体の前面に設けられており、撮像動作を実行させるためのレリーズボタン13が本体の上面に設けられている。
 撮影者がデジタルカメラ10を用いて被写体を撮影するには、デジタルカメラ10を保持して多様レンズ11を被写体に向け、レリーズボタン13を押せばよい。多様レンズ11を介して瞳選択センサ24(図2参照)の受光面に結像した被写体像は、瞳選択センサ24において光電変換され、レリーズボタン13の操作に基づいて、画像信号として読み出される。この画像信号に画像処理を施すことにより、被写体の撮影画像を取得することができる。
 〔撮像部の構成〕
 図2は、多様レンズ11及び瞳選択センサ24を備える撮像部14の断面構成を示す図である。
 多様レンズ11(撮影レンズの一例)は、相互に独立した撮像特性を有する第1光学系21及び第2光学系22を含み、特に本実施形態では焦点距離が互いに異なる光学系によって第1光学系21及び第2光学系22が構成される。すなわち、本実施形態の多様レンズ11は、広角画像撮影レンズ群によって構成される第1光学系21(一方が広角光学系の一例)と、望遠画像撮影レンズ群によって構成される第2光学系22(他方が望遠光学系の一例)とを含んでいる。
 図2に示す第1光学系21は、同一の光軸L上に配置される第1広角用レンズ21a、第2広角用レンズ21b、第3広角用レンズ21c、第4広角用レンズ21d及び共通レンズ23を含んで構成される。一方、第2光学系22は、第1望遠用レンズ22a、第1望遠用反射ミラー22cが設けられる第1望遠用反射体22b、第2望遠用反射ミラー22eが設けられる第2望遠用反射体22d、及び共通レンズ23を含んで構成される。
 図3は、図2のA矢視図である。第1光学系21(特に第1広角用レンズ21a、第2広角用レンズ21b、第3広角用レンズ21c及び第4広角用レンズ21d)と第2光学系22(特に第1望遠用レンズ22a、第1望遠用反射体22b、第1望遠用反射ミラー22c、第2望遠用反射体22d及び第2望遠用反射ミラー22e)とは、同心状に配置され、第1光学系21は中央光学系を形成し、第2光学系22は第1光学系21の周辺部に環状に配置された周辺光学系を形成する。なお、共通レンズ23は、光軸L上に配置され、第1光学系21と第2光学系22との間で共用される。
 このように、多様レンズ11は、共通の光軸Lを有する第1光学系21及び第2光学系22であって、相互に異なる焦点距離及び撮影画角を有する第1光学系21及び第2光学系22を含んでいる。
 図2の説明に戻り、瞳選択センサ24は、複数の受光センサ25(光電変換素子)が光の入射角に関して指向性を有する指向性センサであり、複数の受光センサ25が光軸Lと直交する方向に2次元状に配置され、第1光学系21を介して入射する広角画像光W(第1入射光の一例、図5参照)と、第2光学系22を介して入射する望遠画像光T(第2入射光の一例、図6参照)とを同時に受光する。
 図4は、瞳選択センサ24の詳細な断面構成例を示す図である。瞳選択センサ24は、角度感度特性が異なる第1受光センサ25aと第2受光センサ25bとを備えており、第1受光センサ25aと第2受光センサ25bとは、交互に配置されている。
 第1受光センサ25aは、広角画像光Wを受光して広角画像(第1画像の一例)を生成するための第1画像信号を出力し、第2受光センサ25bは、望遠画像光Tを受光して望遠画像(第2画像の一例)を生成するための第2画像信号を出力する。
 複数の第1受光センサ25aは、広角画像光Wを選択的に受光する第1センサ群24aを構成し、複数の第2受光センサ25bは、望遠画像光Tを選択的に受光する第2センサ群24bを構成する。
 第1受光センサ25a及び第2受光センサ25bの各々は、マイクロレンズ26、フォトダイオード29、及びマイクロレンズ26とフォトダイオード29とが配置される中間層27を有する。中間層27には遮光マスク28が設けられており、第1受光センサ25aではフォトダイオード29の受光面の周辺部に遮光マスク28が配置され、第2受光センサ25bではフォトダイオード29の受光面の中央部に遮光マスク28が配置される。遮光マスク28の配置は、第1光学系21及び第2光学系22のうちのいずれに対応するかに応じて決定され、各遮光マスク28は、対応しない光学系からの光を遮断する一方で対応する光学系からの光を遮断することなくフォトダイオード29に受光させる。
 このように構成された瞳選択センサ24は、実際には、広角画像光Wを選択的に受光する第1受光センサ25aに望遠画像光Tが混信し、望遠画像光Tを選択的に受光する第2受光センサ25bに広角画像光Wが混信する。本実施形態では、M及びNを1より大きい数とすると、広角画像光Wに対する第1受光センサ25aと第2受光センサ25bとの感度(混信)の比率がM:1であり、望遠画像光Tに対する第1受光センサ25aと第2受光センサ25bとの感度の比率が1:Nであるとする。例えば、M=10、N=10とすることができる。なお、MとNとは異なる値であってもよい。
 なお、ここでは、遮光マスク28を含む受光センサ25によって、第1光学系21及び第2光学系22のうち対応する光学系を通過した光を瞳分割して選択的に受光する複数の受光センサを実現しているが、他の手段によって瞳分割を実現してもよい。例えば、共通レンズ23(図2参照)とマイクロレンズ26との間のように、マイクロレンズ26よりも入射光の光路の上流側に遮光マスク28が設けられてもよいし、液晶シャッタ等の遮光マスク28以外の遮光手段を用いてもよい。
 また、中間層27には遮光マスク28以外の部材を設けてもよく、例えば配線及び/又は回路類を中間層27に設けることができる。
 瞳選択センサ24には、第1受光センサ25a及び第2受光センサ25bに対して配設されたR(赤),G(緑),B(青)のカラーフィルタ(光学フィルタ)により構成されるカラーフィルタ配列が設けられており、このカラーフィルタ配列の色配列パターンに対応して得られる各色の画像(モザイク画像)をデジタル画像信号処理部34(図13参照)が同時化処理することにより、カラーの広角画像及び望遠画像が得られるようになっている。
 再び図2の説明に戻り、撮像部14は、第1液晶シャッタ51(第2シャッタの一例)及び第2液晶シャッタ52(第1シャッタの一例)からなる遮光部50を備えている。第1液晶シャッタ51及び第2液晶シャッタ52は、それぞれ光軸Lと直交する方向に同心状に配置された液晶パネルである。第1液晶シャッタ51及び第2液晶シャッタ52は、入射する光を透過する透過状態及び光を遮光する遮光状態に切り替え可能に構成されており、この切り替えは、遮光シャッタ制御部48(図15参照)によって制御される。
 第1液晶シャッタ51は第1光学系21に対応した円形の形状を有しており、第1広角用レンズ21aと第2広角用レンズ21bとの間の位置であって、広角画像光Wの光路の位置に配置されている。すなわち、第1液晶シャッタ51は、透過状態及び遮光状態により、広角画像光Wの通過及び遮断を制御する。なお、第1液晶シャッタ51は、第1光学系21の内部に配置されるものに限定されず、広角画像光Wの光路の第1光学系21よりも前段に配置されてもよいし、第1光学系21よりも後段(第1光学系21と瞳選択センサ24との間)に配置されていてもよい。
 また、第2液晶シャッタ52は、第2光学系22に対応して、第1液晶シャッタ51の周辺部に環状に配置されており、第1望遠用反射ミラー22cと第2望遠用反射ミラー22eとの間の位置であって、望遠画像光Tの光路の位置に配置されている。すなわち、第2液晶シャッタ52は、透過状態及び遮光状態により、望遠画像光Tの通過及び遮断を制御する。第2液晶シャッタ52についても、第2光学系22の内部に配置されるものに限定されず、望遠画像光Tの光路の第2光学系22よりも前段に配置されてもよいし、第2光学系22よりも後段(第2光学系22と瞳選択センサ24との間)に配置されていてもよい。
 遮光部50は、第1液晶シャッタ51及び第2液晶シャッタ52を1枚の液晶パネルとして構成し、それぞれの領域について個別に透過状態及び遮光状態を切り替えてもよい。
 〔撮像部の作用〕
 <第1液晶シャッタ及び第2液晶シャッタが透過状態の場合>
 図5は、図2に示す多様レンズ11(特に第1光学系21)及び瞳選択センサ24(特に第1センサ群24a(図4参照))に入射する広角画像光Wの光路を示す図であり、第1液晶シャッタ51が透過状態である場合を示している。同図に示すように、広角画像光Wは、第1光学系21の第1広角用レンズ21a、第1液晶シャッタ51、第2広角用レンズ21b、第3広角用レンズ21c、第4広角用レンズ21d及び共通レンズ23を順次通過し、瞳選択センサ24の第1受光センサ25aに広角画像が結像する。
 図6は、図2に示す多様レンズ11(特に第2光学系22)及び瞳選択センサ24(特に第2センサ群24b(図4参照))に入射する望遠画像光Tの光路を示す図であり、第2液晶シャッタ52が透過状態である場合を示している。同図に示すように、望遠画像光Tは、第1望遠用レンズ22aを通過(透過)して第1望遠用反射ミラー22cに反射された後、第2液晶シャッタ52を通過して第2望遠用反射ミラー22eにより反射され、第2液晶シャッタ52、共通レンズ23を通過し、瞳選択センサ24の第2受光センサ25bに望遠画像が結像する。第1望遠用反射ミラー22c及び第2望遠用反射ミラー22eの各々により反射されて光路が折り返されることにより、焦点距離の長い望遠画像撮影用の第2光学系22の光軸Lの方向に関する長さを短くすることができる。
 したがって、第1液晶シャッタ51及び第2液晶シャッタ52が共に透過状態である場合には、瞳選択センサ24において広角画像光Wと望遠画像光Tとを選択的に受光し、広角画像と望遠画像を同時に撮影することができる。
 図7及び図8は、それぞれ同時に撮影した広角画像と望遠画像との一例を示す図である。なお、図7及び図8では、広角画像と望遠画像との間で混信が生じていない場合(広角画像光Wが第2受光センサ25bに全く入射せず、望遠画像光Tが第1受光センサ25aに全く入射しない場合)の例を示している。
 これに対し、図9及び図10は、それぞれ混信が生じている場合の広角画像と望遠画像との一例を示す図である。図9に示すように、広角画像中に望遠画像が混信しており、本来の被写体像(画像中央の小さな貨物自動車)の他に、混信による偽像(貨物自動車の大きな像)が画像内にうっすらと現れている。一方、図10に示すように、望遠画像中にも広角画像が混信しており、本来の被写体(画像中央の大きな貨物自動車)の他に、混信による偽像(貨物自動車の小さな像)が画像中央にうっすらと現れている。
 前述のように、本実施形態に係る瞳選択センサ24は、広角画像光Wに対する第1受光センサ25aと第2受光センサ25bとの感度の比率がM:1である。したがって、広角画像光WのM/(M+1)は第1受光センサ25aに受光され、1/(M+1)は第2受光センサ25bに混信する。また、望遠画像光Tに対する第1受光センサ25aと第2受光センサ25bとの感度の比率が1:Nである。したがって、望遠画像光TのN/(N+1)は第2受光センサ25bに受光され、1/(N+1)は第1受光センサ25aに混信する。
 <第1液晶シャッタが透過状態、第2液晶シャッタが遮光状態の場合>
 図11は、図2に示す多様レンズ11及び瞳選択センサ24に入射する広角画像光W及び望遠画像光Tの光路を示す図であり、第1液晶シャッタ51が透過状態であり、第2液晶シャッタ52が遮光状態の場合を示している。
 望遠画像光Tは、第1望遠用レンズ22aを通過し、第1望遠用反射ミラー22cに反射された後、第2液晶シャッタ52に入射する。ここでは、第2液晶シャッタ52は遮光状態であるため、第2液晶シャッタ52に入射した望遠画像光Tは第2液晶シャッタ52により遮断され、第2望遠用反射ミラー22eには入射しない。その結果、瞳選択センサ24の第2受光センサ25bには望遠画像が結像しない。
 一方、第1液晶シャッタ51は透過状態であるため、図5に示した場合と同様に、広角画像光Wは、第1光学系21の第1広角用レンズ21a、第1液晶シャッタ51、第2広角用レンズ21b、第3広角用レンズ21c、第4広角用レンズ21d及び共通レンズ23を順次通過し、瞳選択センサ24の第1受光センサ25aに広角画像が結像する。
 ここで、広角画像光Wに対する第1受光センサ25aと第2受光センサ25bとの感度の比率はM:1であるため、広角画像光WのうちM/(M+1)は第1受光センサ25aに受光され、1/(M+1)は第2受光センサ25bが受光する。したがって、第1受光センサ25aに広角画像が結像するとともに、第2受光センサ25bに、第1受光センサ25aで撮影される広角画像の1/Mの露光量により広角画像が結像する。
 図12は、第1液晶シャッタ51を透過状態、及び第2液晶シャッタ52を遮光状態とした場合の第1受光センサ25aと第2受光センサ25bの光電変換特性を示すグラフであり、横軸は相対的入射光量、縦軸は出力信号を示している。
 第1受光センサ25aの出力は、相対的入射光量が増加するに従って比例して増加し、相対的入射光量が100%の場合に出力信号が飽和値に達する。以後、相対的入射光量が増加しても、第1受光センサ25aの出力は飽和値において一定となる。
 一方、第2受光センサ25bは、第1受光センサ25aに対して感度が1/Mであり、相対的入射光量がM×100%の場合に飽和値に達する。
 このように、第1液晶シャッタ51を透過状態、及び第2液晶シャッタ52を遮光状態とすることにより、露光量の異なる2枚の広角画像(高感度の広角画像と低感度の広角画像)を同時に撮影することができる。
 <第1液晶シャッタが遮光状態、第2液晶シャッタが透過状態の場合>
 図13は、図2に示す多様レンズ11及び瞳選択センサ24に入射する広角画像光W及び望遠画像光Tの光路を示す図である。ここでは、第1液晶シャッタ51は遮光状態であり、第2液晶シャッタ52は透過状態である。
 広角画像光Wは、第1光学系21の第1広角用レンズ21aを通過した後、第1液晶シャッタ51に入射する。ここでは、第1液晶シャッタ51は遮光状態であるため、第1液晶シャッタ51に入射した広角画像光Wは第1液晶シャッタ51により遮断され、第2広角用レンズ21bには入射しない。その結果、瞳選択センサ24の第1受光センサ25aには広角画像が結像しない。
 一方、望遠画像光Tは、第2液晶シャッタ52が透過状態であるため、第1望遠用レンズ22aを通過して第1望遠用反射ミラー22cに反射された後、第2液晶シャッタ52を通過して第2望遠用反射ミラー22eにより反射され、第2液晶シャッタ52、共通レンズ23を通過し、瞳選択センサ24上に望遠画像が結像する。
 ここで、望遠画像光Tに対する第1受光センサ25aと第2受光センサ25bとの感度の比率は1:Nであるため、望遠画像光TのうちN/(N+1)は第2受光センサ25bに受光され、1/(N+1)は第1受光センサ25aが受光する。したがって、第2受光センサ25bに望遠画像が結像するとともに、第1受光センサ25aに、第2受光センサ25bで撮影される望遠画像の1/Nの露光量で望遠画像が結像する。
 図14は、第1液晶シャッタ51を遮光状態、及び第2液晶シャッタ52を透過状態とした場合の第1受光センサ25aと第2受光センサ25bの光電変換特性を示すグラフであり、横軸は相対的入射光量、縦軸は出力信号を示している。
 第2受光センサ25bの出力は、相対的入射光量が増加するに従って比例して増加し、相対的入射光量が100%の場合に出力信号が飽和値に達する。以後、相対的入射光量が増加しても、第2受光センサ25bの出力は飽和値において一定となる。
 一方、第1受光センサ25aは、第2受光センサ25bに対して感度が1/Nであり、相対的入射光量がN×100%の場合に飽和値に達する。
 このように、第1液晶シャッタ51を遮光状態、及び第2液晶シャッタ52を透過状態とすることにより、露光量の異なる2枚の望遠画像(高感度の望遠画像と低感度の望遠画像)を同時に撮影することができる。
 〔デジタルカメラの機能構成〕
 図15は、本実施形態に係るデジタルカメラ10の機能構成例を示すブロック図である。同図に示すように、デジタルカメラ10は、上記の多様レンズ11、瞳選択センサ24の他に、多様画像を取得する撮像・画像取得部32、多様画像に信号処理を施すデジタル画像信号処理部34、信号処理が施された多様画像をそれぞれ記録、表示、伝送する記録部40、表示部42、伝送部44、デジタルカメラ10の動作を切り替える撮影モード選択・処理切替制御部46、及び遮光部50を制御する遮光シャッタ制御部48を有する。撮像・画像取得部32、デジタル画像信号処理部34、撮影モード選択・処理切替制御部46、及び遮光シャッタ制御部48等の各機能はデジタルカメラ10内におけるCPU(Central Processing Unit)等のプロセッサ類が動作することにより実現されてもよいし、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路やこれらの組み合わせにより実現されてもよい。
 第1光学系21(図2参照)に対応する第1多様レンズ瞳61を介した広角画像光Wは、瞳選択センサ24の第1センサ群24aによって受光され、第2光学系22(図2参照)に対応する第2多様レンズ瞳62を介した望遠画像光Tは、瞳選択センサ24の第2センサ群24bによって受光される。
 撮像・画像取得部32は、瞳選択センサ24を備えている。撮像・画像取得部32(画像読み出し部の一例)は、瞳選択センサ24の第1センサ群24aから第1画像信号を取得し、第2センサ群24bから第2画像信号を取得する。この第1画像信号及び第2画像信号は、デジタル画像信号処理部34に入力される。
 デジタル画像信号処理部34は、混信低減処理部36及びダイナミックレンジ拡大処理部38を備えている。
 混信低減処理部36は、第1液晶シャッタ51及び第2液晶シャッタ52を透過状態として撮像・画像取得部32が取得した第1画像信号及び第2画像信号から、混信している第2画像信号を低減させた広角画像データ及び混信している第1画像信号を低減させた望遠画像データを生成する。
 ダイナミックレンジ拡大処理部38は、第1液晶シャッタ51及び第2液晶シャッタ52のいずれかを遮光状態として撮像・画像取得部32から取得した第1画像信号及び第2画像信号から、ダイナミックレンジを拡大した広角画像データ又はダイナミックレンジを拡大した望遠画像データを生成する。
 デジタル画像信号処理部34において生成された画像データは、記録部40、表示部42、及び/又は伝送部44に送られる。
 記録部40はデジタルカメラ10に内蔵された記録媒体及び/又はデジタルカメラ10から取り外し可能な記録媒体を備え、デジタル画像信号処理部34から送られた画像データをこれらの記録媒体に記録する。
 表示部42は液晶モニタを備え、デジタル画像信号処理部34から送られた画像データをこの液晶モニタに表示する。
 伝送部44は、デジタル画像信号処理部34から送られた画像データを、無線LAN(Local Area Network)等の通信手段を介して伝送する。
 撮影モード選択・処理切替制御部46は、デジタルカメラ10の使用者が不図示の操作部を用いて選択した撮影モードに対応させて、撮像・画像取得部32、デジタル画像信号処理部34、及び遮光シャッタ制御部48における処理を制御する。
 遮光シャッタ制御部48(第1遮光制御部の一例、第2遮光制御部の一例)は、第1液晶シャッタ51及び第2液晶シャッタ52の透過状態及び遮光状態を制御する。
 〔ダイナミックレンジ拡大処理部の構成〕
 図16は、図15に示したダイナミックレンジ拡大処理部38の詳細な回路構成を示すブロック図である。同図に示すように、ダイナミックレンジ拡大処理部38は、オフセット処理部100及び102、リニアマトリクス回路110及び112、ゲイン補正回路120及び122、及び合成処理回路130等を備えている。
 ここでは、M≧4であり、第1液晶シャッタ51を透過状態、第2液晶シャッタ52を遮光状態として、高感度の広角画像と低感度の広角画像の2枚の広角画像を同時に撮影した場合のダイナミックレンジ拡大処理について説明する。
 第1画像信号及び第2画像信号は、それぞれオフセット処理部100及びオフセット処理部102に入力され、オフセット処理が施される。
 オフセット処理された第1画像信号及び第2画像信号は、リニアマトリクス回路110及び112に出力され、ここで瞳選択センサ24の分光特性を補正する色調補正処理が行われる。
 リニアマトリクス回路110及び112から出力された第1画像信号及び第2画像信号は、ゲイン補正回路120及び122にそれぞれ出力される。ゲイン補正回路120及び122は、R,G,Bの画像信号ごとにそれぞれホワイトバランス調整用のゲインをかけることによりホワイトバランス調整を行う。ゲイン補正回路120及び122から出力された第1画像信号及び第2画像信号は、それぞれ合成処理回路130に出力される。
 合成処理回路130は、主として高感度画像データ用の階調変換LUT(Look-Up Table)132と、低感度画像データ用の階調変換LUT134と、加算器136とから構成されている。
 階調変換LUT132及び134は、ここではM×100%以下の6つのダイナミックレンジ(100%、130%、170%、230%、300%、400%)にそれぞれ対応する6つの階調変換LUTからなり、不図示の操作部によって選択されたダイナミックレンジの拡大率に応じて6つの階調変換LUTの中から対応する階調変換LUTが選択される。
 合成処理回路130に入力された第1画像信号及び第2画像信号は、それぞれ階調変換LUT132及び134の中からダイナミックレンジの拡大率に基づいて選択された階調変換LUTにより階調変換され、加算器136に出力される。
 加算器136は、階調変換LUT132と134によって階調変換された第1画像信号及び第2画像信号を真数合成(加算)する。
 図17は、合成処理回路130により各ダイナミックレンジに応じて合成された合成後の画像データの信号レベルを示す図である。同図に示すように、各ダイナミックレンジに応じて合成された合成後の画像データの信号レベルの最大値はそれぞれ一致し、かつ輝度0から各ダイナミックレンジの最大輝度にわたって信号レベルは滑らかに変化するように合成される。すなわち、階調変換LUT132及134は、図17に示す合成結果が得られるような階調変換を行っている。
 なお、ここでは、設定されたダイナミックレンジが100%の場合には、第1画像信号及び第2画像信号を合成せずに第1画像信号のみを使用し、かつ第1画像信号の階調変換を行わないようにしている。したがって、階調変換LUT132及び134は、ダイナミックレンジが100%以外の5つのダイナミックレンジに対応する5つの階調変換LUTから構成される。
 合成処理回路130の加算器136から出力された合成後のR,G,Bの点順次の画像信号は、同時化処理された後に輝度信号Y,色差信号Cr,Cbに変換される。輝度信号Y及び色差信号Cr,Cbは、記録部40に記録され、表示部42に表示され、及び/又は伝送部44によって伝送される。
 ここでは、ダイナミックレンジの拡大率は400%を最大としているが、広角画像のダイナミックレンジはM×100%、望遠画像のダイナミックレンジはN×100%を最大とすることができる。
 〔デジタルカメラの撮像方法〕
 図18は、デジタルカメラ10による撮像方法の一例を示すフローチャートである。
 デジタルカメラ10の使用者は、不図示の操作部を用いて、デジタルカメラ10の撮影モードを設定することができる。本実施形態では、広角・望遠同時撮影モード、広角ダイナミックレンジ拡大撮影モード、及び望遠ダイナミックレンジ拡大撮影モードから選択可能に構成されているものとする。
 撮影モード選択・処理切替制御部46は、ステップS1において、デジタルカメラ10が設定された撮影モードを判断する。設定されている撮影モードが広角・望遠同時撮影モードである場合はステップS2に、広角ダイナミックレンジ拡大撮影モードである場合はステップS6に、望遠ダイナミックレンジ拡大撮影モードである場合はステップS10に移行する。
 広角・望遠同時撮影モードであると判断された場合は、ステップS2において、遮光シャッタ制御部48は、第1液晶シャッタ51及び第2液晶シャッタ52を透過状態に設定する。
 その後、ステップS3において使用者がレリーズボタン13を押すことにより、撮像・画像取得部32は、瞳選択センサ24の第1センサ群24aから第1画像信号を取得し、第2センサ群24bから第2画像信号を取得する(画像読み出し工程の一例)。
 この第1画像信号及び第2画像信号はデジタル画像信号処理部34に入力され、ステップS4において、混信低減処理部36によって混信低減処理が施される。
 第1画像信号及び第2画像信号の混信比率は、第1受光センサ25a及び第2受光センサ25bの感度の比率により決まる。第1画像信号のある画素の値をT、第2画像信号の対応する画素(隣接する画素)の値をW、これらの画素に混信が無い場合の真の画素の値をそれぞれT、Wとすると、以下の式1及び式2が成り立つ。
 T=(M×T+W)/(M+1) …(式1)
 W=(T+N×W)/(N+1) …(式2)
 この式1及び式2を用いて各画素のT及びWを求めることにより、混信を低減させた画像信号を取得することができる。
 最後に、ステップS5において、上記のTに基づいて広角画像を、Wに基づいて望遠画像を取得する(画像生成工程の一例)。
 ステップS1において広角ダイナミックレンジ拡大撮影モードであると判断された場合は、ステップS6において、遮光シャッタ制御部48は、第1液晶シャッタ51を透過状態に設定し、第2液晶シャッタ52を遮光状態に設定する(第1遮光制御工程の一例)。
 その後、ステップS7において使用者がレリーズボタン13を押すことにより、撮像・画像取得部32は、瞳選択センサ24の第1センサ群24aから第1画像信号を取得し、第2センサ群24bから第2画像信号を取得する。ここでは、第2液晶シャッタ52が遮光状態であるため、望遠画像光Tは第1センサ群24a及び第2センサ群24bに入射しない。また、広角画像光Wは、第1センサ群24aにM/(M+1)、第2センサ群24bに1/(M+1)の割合で受光される。
 第1センサ群24aから出力される第1画像信号及び第2センサ群24bから出力される第2画像信号は、デジタル画像信号処理部34に入力される。デジタル画像信号処理部34のダイナミックレンジ拡大処理部38は、ステップS8において、不図示の操作部によって選択されたダイナミックレンジ拡大率に応じて、第1画像信号及び第2画像信号にダイナミックレンジ拡大処理を施し、ステップS9において、ダイナミックレンジを拡大した広角画像を取得する(ダイナミックレンジ拡大処理工程の一例)。
 広角ダイナミックレンジ拡大撮影モードによれば、広角・望遠同時撮影モードにおける広角画像のダイナミックレンジのM倍のダイナミックレンジを有する広角画像(第3画像の一例)を取得することができる。また、M倍のダイナミックレンジを有する画像に限定されず、M倍以下のダイナミックレンジを有する広角画像を取得することができる。
 ステップS1において望遠ダイナミックレンジ拡大撮影モードであると判断された場合は、ステップS10において、遮光シャッタ制御部48は、第1液晶シャッタ51を遮光状態に設定し、第2液晶シャッタ52を透過状態に設定する。
 その後、ステップS11において使用者がレリーズボタン13を押すことにより、撮像・画像取得部32は、瞳選択センサ24の第1センサ群24aから第1画像信号を取得し、第2センサ群24bから第2画像信号を取得する(画像読み出し工程の一例)。ここでは、第1液晶シャッタ51が遮光状態であるため、広角画像光Wは第1センサ群24a及び第2センサ群24bに入射しない。また、望遠画像光Tは、第1センサ群24aに1/(N+1)、第2センサ群24bにN/(N+1)の割合で受光される。
 第1センサ群24aから出力される第1画像信号及び第2センサ群24bから出力される第2画像信号は、デジタル画像信号処理部34に入力される。デジタル画像信号処理部34のダイナミックレンジ拡大処理部38は、ステップS12において、不図示の操作部によって選択されたダイナミックレンジ拡大率に応じて、第1画像信号及び第2画像信号にダイナミックレンジ拡大処理を施し、ステップS13において、ダイナミックレンジを拡大した望遠画像を取得する。
 望遠ダイナミックレンジ拡大撮影モードによれば、広角・望遠同時撮影モードにおける望遠画像のダイナミックレンジのN倍のダイナミックレンジを有する望遠画像(第4画像の一例)を取得することができる。また、N倍のダイナミックレンジを有する画像に限定されず、N倍以下のダイナミックレンジを有する望遠画像を取得することができる。
 各撮影モードによって取得された各画像は、記録部40、表示部42、伝送部44によってそれぞれ記録、表示、及び/又は伝送することができる。
 ここでは、広角ダイナミックレンジ拡大撮影モードにおいてM倍以下のダイナミックレンジを有する広角画像を取得し、望遠ダイナミックレンジ拡大撮影モードにおいてN倍以下のダイナミックレンジを有する望遠画像を取得したが、M倍以下のダイナミックレンジを有する広角画像とN倍以下のダイナミックレンジを有する望遠画像とを使用者による一度のレリーズボタン13の操作により撮影することも可能である。この場合は、第1液晶シャッタ51及び第2液晶シャッタ52の透過状態及び遮光状態を順次切り替えて撮影すればよい。
 また、ダイナミックレンジを拡大した広角画像とダイナミックレンジを拡大した望遠画像とを連続して交互に撮影し、広角画像の動画像と望遠画像の動画像とを撮影することも可能である。
 〔第2の実施形態〕
 図19は、第2の実施形態に係るデジタルカメラ10の機能構成例を示すブロック図である。なお、図15に示すブロック図と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 多様レンズ11は、第1特性を有する不図示の第1光学系、第2特性を有する不図示の第2光学系、及び第3特性を有する不図示の第3光学系を有している。この第1光学系、第2光学系、及び第3光学系に対応させて、光の透過及び遮光を切り替えるための第1液晶シャッタ51、第2液晶シャッタ52、及び第3液晶シャッタ53が配置されている。
 瞳選択センサ24は、複数の受光センサが光の入射角に関して指向性を有する指向性センサである。瞳選択センサ24は、第1多様レンズ瞳61を介した光を選択的に受光する第1センサ群24a、第2多様レンズ瞳62を介した光を選択的に受光する第2センサ群24b、及び第3多様レンズ瞳63を介した光を選択的に受光する第3センサ群24cを備えている。
 第1液晶シャッタ51、第2液晶シャッタ52、及び第3液晶シャッタ53が透過状態の場合は、多様レンズ11の第1光学系に入射した第1の光は、第1光学系に対応する第1多様レンズ瞳61を介して瞳選択センサ24の第1センサ群24aによって受光される。同様に、第2光学系に入射した第2の光は、第2光学系に対応する第2多様レンズ瞳62を介して第2センサ群24bによって受光され、第3光学系に入射した第3の光は、第3光学系に対応する第3多様レンズ瞳63を介して第3センサ群24cによって受光される。
 このように、第1液晶シャッタ51、第2液晶シャッタ52、及び第3液晶シャッタ53を透過状態とすることにより、第1特性の画像、第2特性の画像、及び第3特性の画像を同時に撮影することができる。
 また、瞳選択センサ24には、第1センサ群24a、第2センサ群24b、及び第3センサ群24cに混信が生じている。ここでは、第1センサ群24aを構成する受光センサ、第2センサ群24bを構成する受光センサ、及び第3センサ群24cを構成する受光センサにおける感度の比率は、第1の光に対してはM1:M2:M3、第2の光に対してはM4:M5:M6、第3の光に対してはM7:M8:M9であるものとする。
 したがって、第1液晶シャッタ51が透過状態、第2液晶シャッタ52及び第3液晶シャッタ53が遮光状態の場合は、第1特性の画像について、感度の比率がM1:M2:M3である3枚の画像を同時に撮影することができる。例えば、M1=100、M2=10、M3=1の場合であれば、100倍のダイナミックレンジ、又はそれ以下のダイナミックレンジを有する画像を取得することができる。
 また、第2液晶シャッタ52が透過状態、第1液晶シャッタ51及び第3液晶シャッタ53が遮光状態の場合は、第2特性の画像について、感度の比率がM4:M5:M6である3枚の画像を同時に撮影することができ、感度の比率に応じてダイナミックレンジを拡大した第2特性の画像を取得することができる。
 同様に、第3液晶シャッタ53が透過状態、第1液晶シャッタ51及び第2液晶シャッタ52が遮光状態の場合は、第3特性の画像について、感度の比率がM7:M8:M9である3枚の画像を同時に撮影することができ、感度の比率に応じてダイナミックレンジを拡大した第3特性の画像を取得することができる。
 このように、複数の瞳領域のうち特定の瞳領域を開状態とし、その他の瞳領域を閉状態とすることにより、開状態の瞳領域からの光に対する瞳選択センサ24の各受光センサの感度差を利用して、開状態の瞳の像を合成し、広いダイナミックレンジの画像を取得することができる。
 〔第3の実施形態〕
 図20は、第3の実施形態に係るデジタルカメラ70の機能構成例を示すブロック図である。なお、図15に示すブロック図と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 デジタルカメラ70は、光が入射する領域において一様な特性を有する撮影レンズ71を備えている。また、撮影レンズ71は、複数枚の絞り羽根により円形の絞り開口部を形成し、開口径を変更することにより瞳選択センサ24へ入射する光量を調節する絞り72を備えている。絞り72の開口径の大きさは、絞り制御部75によって制御される。
 瞳選択センサ24は、複数の受光センサ25が光の入射角に関して指向性を有する指向性センサであり、図4に示す瞳選択センサ24と同様の構成を有している。
 また、デジタルカメラ70は、デジタル画像信号処理部34に精細画像生成部76を備えている。精細画像生成部76は、瞳選択センサ24の第1センサ群24aから取得した第1画像信号及び第2センサ群24bから取得した第2画像信号を画像内のそれぞれ異なる画素として並列に使用することにより、精細画像データを生成する。この精細画像データは、ダイナミックレンジ拡大処理部38が生成するダイナミックレンジを拡大した画像データの解像度の2倍の解像度を有している。
 不図示の操作部により精細撮影モードに設定されると、絞り制御部75は、絞り72を開放状態に設定する。この場合、撮影レンズ71の中央付近から入射した光は、第1レンズ瞳73を介して瞳選択センサ24の第1センサ群24aに入射し、撮影レンズ71の中央付近の周辺から入射した光は、第2レンズ瞳74を介して第2センサ群24bに入射する。撮像・画像取得部32は、第1センサ群24aから第1画像信号を取得し、第2センサ群24bから第2画像信号を取得する。
 この第1画像信号及び第2画像信号はデジタル画像信号処理部34に入力され、精細画像生成部76によって精細画像データが生成される。
 このように、絞り72が開放状態である場合には、第1センサ群24aと第2センサ群24bとの両方の画像信号を並列に使用することにより、精細画像を取得することができる。
 次に、ダイナミックレンジ拡大撮影モードにおける動作について説明する。ここでは、第1レンズ瞳73からの入射光に対する第1受光センサ25aと第2受光センサ25bとの感度の比率がM:1であるものとする。
 不図示の操作部によりダイナミックレンジ拡大撮影モードに設定されると、絞り制御部75は、絞り72の開口径を絞り、第2レンズ瞳74からの入射光を遮断する。したがって、瞳選択センサ24には、第2レンズ瞳74を介した光は入射しない。
 また、撮影レンズ71への入射光のうち、第1レンズ瞳73を介して瞳選択センサ24に入射した光は、第1センサ群24aに入射するとともに、第2センサ群24bに混信する。ここでは、瞳選択センサ24は、第1レンズ瞳73からの入射光に対する第1受光センサ25aと第2受光センサ25bとの感度の比率がM:1である。したがって、入射光のM/(M+1)は第1受光センサ25aに受光され、1/(M+1)は第2受光センサ25bに混信する。
 撮像・画像取得部32は、瞳選択センサ24の第1センサ群24aから第1画像信号を取得し、第2センサ群24bから第2画像信号を取得する。この第1画像信号及び第2画像信号は、デジタル画像信号処理部34に入力される。
 デジタル画像信号処理部34のダイナミックレンジ拡大処理部38は、不図示の操作部によって選択されたダイナミックレンジ拡大率に応じて、第1画像信号及び第2画像信号にダイナミックレンジ拡大処理を施す。
 このように、絞り72の開口径を絞ることにより第2レンズ瞳74に対応する入射光を遮断し、第1レンズ瞳73に対応する入射光のみを入射させ、第1受光センサ25aと第2受光センサ25bとに感度の比率に応じて受光させることにより、ダイナミックレンジを拡大した画像を取得することができる。
 ここでは、光が入射する領域において一様な特性を有する撮影レンズ71を用いた例を説明したが、図2に示した多様レンズ11を用いてもよい。多様レンズ11を用いた場合は、絞り72を開放状態とした場合は、広角画像と望遠画像とを同時に撮影することができ、絞り72の開口径を絞り、第2光学系22からの入射光を遮断状態とした場合は、広角画像のダイナミックレンジを拡大した画像を取得することができる。すなわち、第1光学系21の撮像特性を有するダイナミックレンジを拡大した画像を取得することができる。
 本発明は、各受光センサが光の入射角に関して指向性を有する指向性センサを備える撮像系を用いて複数の画像を撮像可能な撮像装置、撮像方法及びそれらの応用技術に対して広く適用可能であり、その適用可能な技術分野は特に限定されない。例えば、ユーザ操作に応じて撮像を行う撮像装置だけではなく、自動的に撮像を行う撮像装置に対しても本発明は適用可能であり、また静止画を撮像する撮像装置だけではなく、動画を撮像する撮像装置に対しても本発明は適用可能である。
 撮像方法は、コンピュータに上記の各工程を実現させるためのプログラムとして構成し、当該プログラムのコンピュータ読み取り可能なコードを記憶したCD-ROM(Compact Disk-Read Only Memory)等の非一時的記録媒体を構成することも可能である。
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
10 デジタルカメラ
11 多様レンズ
12 フラッシュ発光部
13 レリーズボタン
14 撮像部
21 第1光学系
21a 第1広角用レンズ
21b 第2広角用レンズ
21c 第3広角用レンズ
21d 第4広角用レンズ
22 第2光学系
22a 第1望遠用レンズ
22b 第1望遠用反射体
22c 第1望遠用反射ミラー
22d 第2望遠用反射体
22e 第2望遠用反射ミラー
23 共通レンズ
24 瞳選択センサ
24a 第1センサ群
24b 第2センサ群
24c 第3センサ群
25 受光センサ
25a 第1受光センサ
25b 第2受光センサ
26 マイクロレンズ
27 中間層
28 遮光マスク
29 フォトダイオード
32 撮像・画像取得部
34 デジタル画像信号処理部
36 混信低減処理部
38 ダイナミックレンジ拡大処理部
40 記録部
42 表示部
44 伝送部
46 撮影モード選択・処理切替制御部
48 遮光シャッタ制御部
50 遮光部
51 第1液晶シャッタ
52 第2液晶シャッタ
53 第3液晶シャッタ
61 第1多様レンズ瞳
62 第2多様レンズ瞳
63 第3多様レンズ瞳
70 デジタルカメラ
71 撮影レンズ
72 絞り
73 第1レンズ瞳
74 第2レンズ瞳
75 絞り制御部
76 精細画像生成部
100 オフセット処理部
102 オフセット処理部
110 リニアマトリクス回路
120 ゲイン補正回路
130 合成処理回路
132 階調変換LUT
134 階調変換LUT
136 加算器
Cr 色差信号
L 光軸
T 望遠画像光
W 広角画像光
Y 輝度信号
S1~S13 撮像方法

Claims (13)

  1.  それぞれ異なる領域に設けられた第1光学系と第2光学系とを備える撮影レンズと、
     複数の第1受光センサと複数の第2受光センサとが2次元状に配列された指向性センサであって、M及びNを1より大きい数とすると、前記第1光学系を介して入射した第1入射光に対する前記第1受光センサと前記第2受光センサとの感度の比率がM:1であり、前記第2光学系を介して入射した第2入射光に対する前記第1受光センサと前記第2受光センサとの感度の比率が1:Nである指向性センサと、
     前記複数の第1受光センサから得られる第1画像信号と前記複数の第2受光センサから得られる第2画像信号とを取得する画像読み出し部と、
     前記第1画像信号から第1画像を生成し、前記第2画像信号から第2画像を生成する画像生成部と、
     前記第2入射光の前記指向性センサへの入射又は遮光を制御する第1遮光制御部と、
     前記第2入射光を遮光した状態で前記第1画像信号と前記第2画像信号とを取得し、前記第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成するダイナミックレンジ拡大処理部と、
     を備えた撮像装置。
  2.  前記第1遮光制御部は、光の透過状態と遮光状態とを切り替える第1シャッタを備えた請求項1に記載の撮像装置。
  3.  前記第1シャッタは、前記第2入射光の光路に配置される請求項2に記載の撮像装置。
  4.  前記第1入射光の前記指向性センサへの入射又は遮光を制御する第2遮光制御部を備え、
     前記ダイナミックレンジ拡大処理部は、前記第2入射光を入射させ、かつ前記第1入射光を遮光した状態で前記第1画像信号と前記第2画像信号とを取得し、前記第2画像のダイナミックレンジのN倍のダイナミックレンジを有する第4画像を生成する請求項1から3のいずれか1項に記載の撮像装置。
  5.  前記第2遮光制御部は、光の透過状態と遮光状態とを切り替える第2シャッタを備えた請求項4に記載の撮像装置。
  6.  前記第2シャッタは、前記第1入射光の光路に配置される請求項5に記載の撮像装置。
  7.  前記第1光学系及び前記第2光学系は、互いに異なる撮像特性を有する請求項1から6のいずれか1項に記載の撮像装置。
  8.  前記第1光学系及び前記第2光学系は、一方が広角光学系であり、他方が前記広角光学系より焦点距離が長い望遠光学系である請求項7に記載の撮像装置。
  9.  前記撮影レンズは、前記第1光学系が中央部に配置され、前記第2光学系が前記第1光学系の周辺部に環状に配置された請求項1から8のいずれか1項に記載の撮像装置。
  10.  前記指向性センサへ入射する光量を調節するための絞りを備え、
     前記第1遮光制御部は、前記絞りによって前記第2入射光の前記指向性センサへの入射又は遮光を制御する請求項1に記載の撮像装置。
  11.  それぞれ異なる領域に設けられた第1光学系と第2光学系とを備える撮影レンズと、複数の第1受光センサと複数の第2受光センサとが2次元状に配列された指向性センサであって、M及びNを1より大きい数とすると、前記第1光学系を介して入射した第1入射光に対する前記第1受光センサと前記第2受光センサとの感度の比率がM:1であり、前記第2光学系を介して入射した第2入射光に対する前記第1受光センサと前記第2受光センサとの感度の比率が1:Nである指向性センサと、を備えた撮像装置の撮像方法であって、
     前記複数の第1受光センサから得られる第1画像信号と前記複数の第2受光センサから得られる第2画像信号とを取得する画像読み出し工程と、
     前記第1画像信号から第1画像を生成し、前記第2画像信号から第2画像を生成する画像生成工程と、
     前記第2入射光の前記指向性センサへの入射又は遮光を制御する第1遮光制御工程と、
     前記第2入射光を遮光した状態で前記第1画像信号と前記第2画像信号とを取得し、前記第1画像のダイナミックレンジのM倍以下のダイナミックレンジを有する第3画像を生成するダイナミックレンジ拡大処理工程と、
     を備えた撮像方法。
  12.  請求項11に記載の撮像方法を撮像装置に実行させるプログラム。
  13.  請求項12に記載のプログラムのコンピュータ読み取り可能なコードが記録された、非一時的記録媒体。
PCT/JP2017/009862 2016-05-17 2017-03-13 撮像装置、撮像方法、プログラム、及び非一時的記録媒体 WO2017199557A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018518122A JP6633746B2 (ja) 2016-05-17 2017-03-13 撮像装置、撮像方法、プログラム、及び非一時的記録媒体
US16/186,604 US10638056B2 (en) 2016-05-17 2018-11-12 Imaging device, imaging method, program, and non-transitory recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098913 2016-05-17
JP2016098913 2016-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/186,604 Continuation US10638056B2 (en) 2016-05-17 2018-11-12 Imaging device, imaging method, program, and non-transitory recording medium

Publications (1)

Publication Number Publication Date
WO2017199557A1 true WO2017199557A1 (ja) 2017-11-23

Family

ID=60325800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009862 WO2017199557A1 (ja) 2016-05-17 2017-03-13 撮像装置、撮像方法、プログラム、及び非一時的記録媒体

Country Status (3)

Country Link
US (1) US10638056B2 (ja)
JP (1) JP6633746B2 (ja)
WO (1) WO2017199557A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244621A1 (ja) * 2018-06-21 2019-12-26 富士フイルム株式会社 撮像装置、無人移動体、撮像方法、システム、及びプログラム
JP2021184020A (ja) * 2020-05-21 2021-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 反射屈折光学系の撮像レンズ
CN114706258A (zh) * 2018-11-06 2022-07-05 原相科技股份有限公司 多光源的光机结构
US20230400667A1 (en) * 2022-06-13 2023-12-14 Carl Zeiss Ag Optical arrangement with an overview function for a catadioptric microscope objective

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021016130A (es) * 2019-06-28 2022-05-30 Lumenuity Llc Delaware Sistemas y métodos para fotografía de alta resolución y gran aumento utilizando un pequeño sistema de formación de imágenes.
TWI710793B (zh) 2019-08-23 2020-11-21 大立光電股份有限公司 光學攝影系統及電子裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024636A1 (ja) * 2011-08-16 2013-02-21 富士フイルム株式会社 撮像装置
WO2013027488A1 (ja) * 2011-08-24 2013-02-28 富士フイルム株式会社 撮像装置
JP2015201834A (ja) * 2014-03-31 2015-11-12 ソニー株式会社 固体撮像装置及びその駆動制御方法、画像処理方法、並びに、電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785433B2 (ja) * 2005-06-10 2011-10-05 キヤノン株式会社 固体撮像装置
JP4649623B2 (ja) * 2006-01-18 2011-03-16 国立大学法人静岡大学 固体撮像装置及びその画素信号の読みだし方法
JP5442571B2 (ja) * 2010-09-27 2014-03-12 パナソニック株式会社 固体撮像装置及び撮像装置
WO2013146506A1 (ja) 2012-03-27 2013-10-03 富士フイルム株式会社 撮像装置及び撮像方法
JP2015153975A (ja) * 2014-02-18 2015-08-24 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法および電子機器
JP2016009043A (ja) * 2014-06-24 2016-01-18 ソニー株式会社 イメージセンサ、演算方法、および電子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024636A1 (ja) * 2011-08-16 2013-02-21 富士フイルム株式会社 撮像装置
WO2013027488A1 (ja) * 2011-08-24 2013-02-28 富士フイルム株式会社 撮像装置
JP2015201834A (ja) * 2014-03-31 2015-11-12 ソニー株式会社 固体撮像装置及びその駆動制御方法、画像処理方法、並びに、電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244621A1 (ja) * 2018-06-21 2019-12-26 富士フイルム株式会社 撮像装置、無人移動体、撮像方法、システム、及びプログラム
US11122215B2 (en) 2018-06-21 2021-09-14 Fujifilm Corporation Imaging apparatus, unmanned moving object, imaging method, system, and program
CN114706258A (zh) * 2018-11-06 2022-07-05 原相科技股份有限公司 多光源的光机结构
JP2021184020A (ja) * 2020-05-21 2021-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 反射屈折光学系の撮像レンズ
US20230400667A1 (en) * 2022-06-13 2023-12-14 Carl Zeiss Ag Optical arrangement with an overview function for a catadioptric microscope objective

Also Published As

Publication number Publication date
JP6633746B2 (ja) 2020-01-22
JPWO2017199557A1 (ja) 2019-03-28
US20190082093A1 (en) 2019-03-14
US10638056B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2017199557A1 (ja) 撮像装置、撮像方法、プログラム、及び非一時的記録媒体
JP5155333B2 (ja) イメージ・センサーにおける改善された光感度
JP4717363B2 (ja) マルチスペクトル画像撮影装置及びアダプタレンズ
JP5361535B2 (ja) 撮像装置
US20120147227A1 (en) Image pickup apparatus and control method thereof
WO2013089036A1 (ja) 撮像装置
JP2009260411A (ja) 撮像装置
JPH10336686A (ja) 撮像装置
JP5348258B2 (ja) 撮像装置
WO2013027507A1 (ja) 撮像装置
JP2015087401A (ja) 撮像装置
JP2003179819A (ja) 撮像装置
US10178360B2 (en) Imaging sensor coupled with layered filters
JP2020120204A (ja) 画像処理装置、画像処理方法およびプログラム
JP2011237638A (ja) 撮影装置
JP2011232615A (ja) 撮像装置
JP2014130231A (ja) 撮像装置、その制御方法、および制御プログラム
JP5284183B2 (ja) 画像処理装置およびその方法
JP2017158123A (ja) 信号処理装置および撮像装置
JP2016048282A (ja) 撮像装置
JP6687276B1 (ja) 二板式撮像装置と二板式撮像装置の画像処理方法とその固体撮像素子の位置決め方法
JP4682070B2 (ja) 画像信号処理装置
WO2022213316A1 (en) Camera system including multiple lenses and multiple image sensors, and method for controlling the same
RU2736780C1 (ru) Устройство для формирования цветного изображения (варианты)
JP2016046773A (ja) 撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798992

Country of ref document: EP

Kind code of ref document: A1