Nothing Special   »   [go: up one dir, main page]

WO2017199461A1 - 電子部品 - Google Patents

電子部品 Download PDF

Info

Publication number
WO2017199461A1
WO2017199461A1 PCT/JP2017/000045 JP2017000045W WO2017199461A1 WO 2017199461 A1 WO2017199461 A1 WO 2017199461A1 JP 2017000045 W JP2017000045 W JP 2017000045W WO 2017199461 A1 WO2017199461 A1 WO 2017199461A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
electrode
electronic component
conductor
metal film
Prior art date
Application number
PCT/JP2017/000045
Other languages
English (en)
French (fr)
Inventor
上田 佳功
▲高▼志 姫田
工藤 敬実
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780029556.5A priority Critical patent/CN109074947B/zh
Priority to JP2018518069A priority patent/JP6721044B2/ja
Publication of WO2017199461A1 publication Critical patent/WO2017199461A1/ja
Priority to US16/170,964 priority patent/US11398341B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to an electronic component.
  • coil components as an example of electronic components include those described in Japanese Patent Application Laid-Open No. 2014-197590 (Patent Document 1).
  • the electronic component includes a substrate, a first conductor layer provided on the upper surface of the substrate, a first insulating layer provided on the first conductor layer, a second conductor layer provided on the lower surface of the substrate, And a second insulating layer provided under the two conductor layers.
  • a first external electrode and a second external electrode are provided on the first insulating layer.
  • the first external electrode is electrically connected to the first conductor layer via the first extraction electrode.
  • the second external electrode is electrically connected to the second conductor layer via the second extraction electrode.
  • the conductor layers are provided on both surfaces of the substrate.
  • a plurality of conductor layers and a plurality of insulating layers are alternately provided on the substrate, and the conductor layers are separated.
  • a configuration in which via electrodes are connected (build-up configuration) is also conceivable.
  • the insulating layer between the conductor layers has a higher coefficient of thermal expansion than the conductor layer, and due to the difference in expansion coefficient due to heat, delamination may occur at the conductor layer, for example, at the interface between the conductor layer and the via electrode.
  • an object of the present invention is to provide an electronic component that can reduce delamination between conductor layers.
  • the electronic component of the present invention is Comprising a body portion including insulating layers and conductor layers laminated alternately; A part of the insulating layer and the conductor layer is exposed on a side surface in a direction orthogonal to the stacking direction of the main body part, A metal film is provided on the side surface of the main body so as to extend in the stacking direction and cover the insulating layer and the conductor layer exposed on the side surface.
  • the exposure includes not only the exposure of the electronic component to the outside but also the exposure to other members, that is, the exposure at the boundary surface with other members.
  • Covering includes covering at least a part of the member.
  • the metal film since the metal film extends in the stacking direction of the insulating layer and the conductor layer and covers the insulating layer and the conductor layer on the side surface of the main body, the metal film includes the insulating layer and the conductor layer.
  • the movement in the stacking direction is restricted. Therefore, even when heat is applied to the electronic component, delamination between the conductor layers due to the difference in the thermal expansion coefficient between the insulating layer and the conductor layer can be reduced.
  • the electronic component includes an external electrode provided on one surface of the main body in the stacking direction and electrically connected to the conductor layer, and the metal film is connected to the external electrode.
  • the metal film since the metal film is connected to the external electrode and covers the insulating layer and the conductor layer on the side surface of the main body, the metal film electrically bypasses the external electrode and the conductor layer. Therefore, the electrical resistance (particularly the DC electrical resistance Rdc) between the external electrode and the conductor layer can be reduced.
  • the main body portion is located between the external electrode and the conductor layer, and has a columnar electrode that electrically connects the external electrode and the conductor layer, A part of the columnar electrode is exposed on the side surface and the one surface of the main body, and the metal film covers the columnar electrode exposed on the side surface.
  • a part of the columnar electrode is exposed on the side surface and one surface of the main body, and the metal film covers the columnar electrode exposed on the side surface and one surface.
  • the metal film covers the columnar electrodes, the electrical resistance between the layers can be reduced while reinforcing the separation of the columnar electrodes.
  • the main body has a via electrode embedded in the insulating layer and electrically connected to the conductor layer; A part of the via electrode is exposed on the side surface of the main body, and the metal film covers the via electrode exposed on the side surface.
  • a part of the via electrode is exposed on the side surface of the main body, and the metal film covers the via electrode exposed on the side surface.
  • part of the via electrode and the metal film are connected, and delamination between the conductor layer and the via electrode due to heat can be reduced.
  • peeling can be effectively reduced.
  • the width of one side of the via electrode in the stacking direction is smaller than the width of the other side of the via electrode in the stacking direction.
  • the width of one side of the via electrode in the stacking direction is smaller than the width of the other side of the via electrode in the stacking direction.
  • delamination is likely to occur at the connection surface of the via electrode with the conductor layer on one side, so that the effect of reducing delamination by the metal film becomes even more effective.
  • the main body has a via electrode that connects between conductor layers adjacent in the stacking direction,
  • the metal film connects between conductor layers adjacent in the stacking direction.
  • the via electrode is usually small and the area of the connection surface between the conductor layer and the via electrode is also small, delamination at the contact surface is likely to occur due to thermal expansion of the insulating layer. Since the metal film connects between conductor layers adjacent in the stacking direction, delamination between the conductor layer and the via electrode due to heat can be reduced.
  • the conductor layer exposed on the side surface has three or more layers in the stacking direction.
  • a plurality of the external electrodes are arranged in parallel on the one surface of the main body, and a plurality of the metal films are arranged in parallel on the side surface of the main body.
  • the electrode is connected to each metal film.
  • a plurality of external electrodes are arranged in parallel on one surface of the main body, a plurality of metal films are arranged in parallel on the side surface of the main body, and each external electrode is connected to each metal film. ing.
  • the number of external electrodes and metal films increases, the size of the electronic component is limited, so that the connection surface with the other members of the conductor layer becomes small and delamination tends to occur. The effect of reducing delamination by the film becomes even more effective.
  • the conductor layer constitutes a spiral wiring.
  • the conductor layer constitutes a narrow wiring
  • the connection surface with other members of the conductor layer is likely to be small, and delamination is likely to occur.
  • the reduction effect becomes even more effective.
  • the metal layer is provided on the side surface of the main body portion so as to extend in the stacking direction and cover the insulating layer and the conductor layer exposed on the side surface, thereby reducing delamination of the conductor layer. it can.
  • FIG. 1 is a perspective view showing a first embodiment of an electronic component.
  • FIG. 2 is an XZ sectional view of the electronic component.
  • 1 and 2 show a coil component 1 as an example of an electronic component.
  • the coil component 1 is mounted on an electronic device such as a personal computer, a DVD player, a digital camera, a TV, a mobile phone, or a car electronics, and is, for example, a rectangular parallelepiped component as a whole.
  • the shape of the coil component 1 is not particularly limited, and may be a columnar shape, a polygonal column shape, a truncated cone shape, or a polygonal frustum shape.
  • the coil component 1 includes a main body 10 including insulating layers 41, 42, 43 and conductor layers 201, 202 that are alternately stacked, and one surface 103 in the stacking direction of the main body 10.
  • the external electrodes 61 and 62 are provided and electrically connected to the conductor layers 201 and 202.
  • the stacking direction is a direction (Z direction) in which the insulating layers 41, 42, 43 and the conductor layers 201, 202 are stacked, not the extending direction (XY direction). That is, the first insulating layer 41, the first conductor layer 201, the second insulating layer 42, the second conductor layer 202, and the third insulating layer 43 are sequentially stacked in the stacking direction.
  • a metal film 80 is provided on the side surfaces 101 and 102 of the main body 10.
  • the metal film 80 is connected to the external electrodes 61 and 62, extends in the stacking direction, and covers the insulating layers 41, 42, 43 and the conductor layers 201, 202 exposed on the side surfaces 101, 102.
  • the external electrodes 61 and 62 are omitted, and the metal film 80 is drawn with a two-dot chain line.
  • the metal film 80 extends in the stacking direction of the insulating layers 41, 42, 43 and the conductor layers 201, 202, and the insulating layers 41, 42, 43 and the conductor layers 201, 102 on the side surfaces 101, 102 of the main body 10. Since it covers 202, the metal film 80 restrains the movement of the insulating layers 41, 42, 43 and the conductor layers 201, 202 in the stacking direction. Therefore, even when heat is applied to the coil component 1, delamination of the conductor layers 201 and 202 due to the difference in thermal expansion coefficient between the insulating layers 41, 42 and 43 and the conductor layers 201 and 202 can be reduced.
  • the conductive resin has a thermal expansion coefficient close to that of the insulating layers 41, 42, 43, and the insulating layers 41, 42, 43. Therefore, the effect of reducing delamination cannot be obtained.
  • the metal film 80 is connected to the external electrodes 61 and 62 and covers the insulating layers 41, 42 and 43 and the conductor layers 201 and 202 of the side surfaces 101 and 102 of the main body 10, the metal film 80 is external
  • the electrodes 61 and 62 and the conductor layers 201 and 202 are electrically bypassed. Therefore, the electrical resistance (particularly the DC electrical resistance Rdc) between the external electrodes 61 and 62 and the conductor layers 201 and 202 can be reduced.
  • the solder is wetted in a direction away from the external electrodes 61 and 62 in the stacking direction through the metal film 80, By becoming a fillet shape, the strength of the coil component 1 is improved. Thereby, the reliability of solder connection is improved, and the occurrence of cracks or the like in the solder due to heat such as reflow is suppressed.
  • the main body 10 is positioned between the external electrodes 61 and 62 and the conductor layers 201 and 202, and the columnar electrode 11 that electrically connects the external electrodes 61 and 62 and the conductor layers 201 and 202. , 12. Part of the columnar electrodes 11 and 12 are exposed on the side surfaces 101 and 102 and the one surface 103 of the main body 10, and the metal film 80 covers the columnar electrodes 11 and 12 exposed on the side surfaces 101 and 102.
  • the main body 10 has via electrodes 271, 272, and 273 that are embedded in the insulating layers 42 and 43 and electrically connect the conductor layers 201 and 202.
  • the via electrodes 271 and 272 are exposed on the side surfaces 101 and 102 of the main body 10, and the metal film 80 covers the via electrodes 271 and 272 exposed on the side surfaces 101 and 102.
  • the via electrodes 271 and 272 and the metal film 80 are connected, and delamination between the conductor layers 201 and 202 and the via electrodes 271 and 272 due to heat can be reduced.
  • peeling can be effectively reduced.
  • the coil component 1 includes a main body 10, a first external electrode 61 and a second external electrode 62 provided on one surface 103 of the main body 10, and a first side surface of the main body 10. 101 and the second side electrode 102, the metal film 80 provided on the second side surface 102, and the first columnar electrode 11 provided on the main body 10 and connected to the first external electrode 61 and the second columnar electrode connected to the second external electrode 62. Twelve.
  • the main body 10 is formed in a substantially rectangular parallelepiped shape, and has a length, a width, and a height.
  • the length direction of the main body 10 is defined as the X direction
  • the width direction of the main body 10 is defined as the Y direction
  • the height direction of the main body 10 is defined as the Z direction.
  • the first side surface 101 and the second side surface 102 are located in the X direction.
  • the main body 10 includes a first conductor layer 201 and a second conductor layer 202, an insulator 40 covering the first and second conductor layers 201 and 202, and a magnetic body 30 covering the insulator 40.
  • the insulator 40 includes a first insulating layer 41, a second insulating layer 42, and a third insulating layer 43.
  • the first insulating layer 41, the first conductor layer 201, the second insulating layer 42, the second conductor layer 202, and the third insulating layer 43 are stacked in order from the lower layer to the upper layer.
  • the upper and lower sides of the coil component 1 are described as being coincident with the upper and lower sides (Z direction) of FIG.
  • the Z direction coincides with the direction in which the layers are stacked (stacking direction).
  • the first conductor layer 201 includes the first spiral wiring 21.
  • the second conductor layer 202 includes the second spiral wiring 22.
  • the first and second spiral wirings 21 and 22 are each formed in a spiral shape on a plane.
  • the first spiral wiring 21 is formed in a spiral shape that approaches the center while turning clockwise as viewed from above.
  • the second spiral wiring 22 is formed in, for example, a spiral shape turning away from the center while turning clockwise as viewed from above.
  • the first and second spiral wirings 21 and 22 are made of a low resistance metal such as Cu, Ag, or Au, for example.
  • a low resistance metal such as Cu, Ag, or Au
  • a spiral wire having a low resistance and a narrow pitch can be formed.
  • the first spiral wiring 21 is stacked on the first insulating layer 41.
  • the second insulating layer 42 is stacked on the first insulating layer 41 and covers the first spiral wiring 21.
  • the second spiral wiring 22 is stacked on the second insulating layer 42.
  • the third insulating layer 43 is stacked on the second insulating layer 42 and covers the second spiral wiring 22. In this manner, the first and second spiral wirings 21 and 22 and the first to third insulating layers 41, 42, and 43 are alternately stacked. In other words, each of the first and second spiral wirings 21 and 22 is laminated on the insulating layer and covered with an insulating layer above the insulating layer.
  • the second spiral wiring 22 is electrically connected to the first spiral wiring 21 via a third via electrode 273 on the inner peripheral side extending in the stacking direction.
  • the third via electrode 273 is provided in the second insulating layer 42.
  • the inner peripheral portion 21 a of the first spiral wiring 21 and the inner peripheral portion 22 a of the second spiral wiring 22 are electrically connected via the third via electrode 273.
  • the first spiral wiring 21 and the second spiral wiring 22 constitute one inductor.
  • the outer peripheral portion 21b of the first spiral wiring 21 and the outer peripheral portion 22b of the second spiral wiring 22 are located on both ends of the insulator 40 as viewed from the stacking direction.
  • the outer peripheral portion 21b of the first spiral wiring 21 is located on the first columnar electrode 11 side, and the outer peripheral portion 22b of the second spiral wiring 22 is located on the second columnar electrode 12 side.
  • the outer peripheral portion 21 b of the first spiral wiring 21 includes a second via electrode 272 on the outer peripheral side provided in the second insulating layer 42, a first connection wiring 25 provided on the second insulating layer 42, and a third It is electrically connected to the first columnar electrode 11 through the outer peripheral first via electrode 271 provided in the insulating layer 43.
  • the outer peripheral portion 22 b of the second spiral wiring 22 is electrically connected to the second columnar electrode 12 through the first via electrode 271 provided in the third insulating layer 43.
  • the outer peripheral portion 22 b of the second spiral wiring 22 is also electrically connected to the second connection wiring 26 provided on the first insulating layer 41 via the second via electrode 272 provided in the second insulating layer 42.
  • this configuration is not essential.
  • the second connection wiring 26 and connecting it to the outer peripheral portion 22b the symmetry in the coil component 1 can be increased, and variations in electrical characteristics and reliability can be reduced.
  • the second connection wiring 26 and the first spiral wiring 21 constitute a first conductor layer 201
  • the first connection wiring 25 and the second spiral wiring 22 constitute a second conductor layer 202.
  • the second connection wiring 26 and the first spiral wiring 21 are not electrically connected.
  • the first connection wiring 25 and the second spiral wiring 22 are not connected. Are not electrically connected.
  • the insulator 40 is made of a composite material of an inorganic filler and a resin.
  • the resin is an organic insulating material made of, for example, epoxy resin, bismaleimide, liquid crystal polymer, polyimide, or the like.
  • the inorganic filler is an insulating layer such as SiO 2 .
  • the insulator 40 is not limited to the composite material, and may be made of only resin.
  • the thermal expansion coefficient of the insulator 40 (first, second, and third insulating layers 41, 42, and 43) is usually 30 ppm / k or more, but even in this case, the metal film 80 can effectively perform delamination. Can be reduced.
  • the insulator 40 has an inner diameter hole 40 a inside the inner diameters of the first and second spiral wirings 21 and 22.
  • the magnetic body 30 is made of a composite material of a resin 35 and a metal magnetic powder 36.
  • the resin 35 is an organic insulating material made of, for example, an epoxy resin, bismaleimide, liquid crystal polymer, polyimide, or the like.
  • the metal magnetic powder 36 is, for example, an FeSi alloy such as FeSiCr, an FeCo alloy, an Fe alloy such as NiFe, or an amorphous alloy thereof.
  • the magnetic body 30 has an inner magnetic path 37a and an outer magnetic path 37b.
  • the inner magnetic path 37 a is located in the inner diameter of the first and second spiral wires 21 and 22 and the inner diameter hole 40 a of the insulator 40.
  • the outer magnetic path 37b is located above and below the first and second spiral wires 21 and 22 and the insulator 40, and is also located on the outer diameter side of the insulator 40 (not shown).
  • the first and second columnar electrodes 11 and 12 are provided above the first and second spiral wirings 21 and 22 in the stacking direction.
  • the first columnar electrode 11 is located on the first side face 101 side of the main body 10.
  • the second columnar electrode 12 is located on the second side surface 102 side of the main body 10.
  • the columnar electrodes 11 and 12 are made of the same material as the spiral wirings 21 and 22, for example.
  • the first columnar electrode 11 is embedded in the magnetic body 30 of the main body 10 so that a part of the first columnar electrode 11 is exposed on the first side surface 101 and the first surface 103 of the main body 10.
  • the second columnar electrode 12 is embedded in the magnetic body 30 of the main body 10 so that a part of the second columnar electrode 12 is exposed on the second side surface 102 and the one surface 103 of the main body 10.
  • the first columnar electrode 11 is electrically connected to the first spiral wiring 21, and the second columnar electrode 12 is electrically connected to the second spiral wiring 22.
  • a first external electrode 61 is provided on the upper surface of the first columnar electrode 11, and a second external electrode 62 is provided on the upper surface of the second columnar electrode 12.
  • the first and second external electrodes 61 and 62 are connected to the electrodes of the mounting board via solder when the coil component 1 is mounted on the mounting board.
  • the metal film 80 is formed on the first side surface 101 of the main body 10 with the first columnar electrode 11, the first via electrode 271, the first connection wiring 25, the second via electrode 272, and the outer peripheral portion 21 b of the first spiral wiring 21. In contact with the first external electrode 61.
  • the metal film 80 is made of a low resistance metal such as Cu, Ag, or Au, for example.
  • the metal film 80 is formed by, for example, electrolytic plating, electroless plating, or sputtering.
  • the metal film 80 is formed on the second side surface 102 of the main body 10 with the second columnar electrode 12, the first via electrode 271, the outer peripheral portion 22 b of the second spiral wiring 22, the second via electrode 272, and the second connection wiring. 26 and in contact with the second external electrode 62.
  • a base 50 is prepared.
  • a plurality of coil components 1 are manufactured by one base 50.
  • the base 50 includes an insulating substrate 51 and base metal layers 52 provided on both surfaces of the insulating substrate 51.
  • the insulating substrate 51 is a glass epoxy substrate
  • the base metal layer 52 is a Cu foil
  • the upper surface is a smooth surface. Since the base 50 is peeled off as will be described later, the thickness of the base 50 does not affect the thickness of the coil component 1, so that a thickness that is easy to handle is used for reasons such as processing warpage. That's fine.
  • a dummy metal layer 60 is bonded on one surface of the base 50.
  • the dummy metal layer 60 is a Cu foil. Since the dummy metal layer 60 is bonded to the base metal layer 52 of the base 50, the dummy metal layer 60 is bonded to the smooth surface of the base metal layer 52. For this reason, the adhesive force of the dummy metal layer 60 and the base metal layer 52 can be weakened, and the base 50 can be easily peeled off from the dummy metal layer 60 in a subsequent process.
  • the adhesive that bonds the base 50 and the dummy metal layer 60 is a low-tack adhesive. Further, in order to weaken the adhesive force between the base 50 and the dummy metal layer 60, it is desirable that the adhesive surface between the base 50 and the dummy metal layer 60 be a glossy surface.
  • the first insulating layer 41 is laminated on the dummy metal layer 60 temporarily fixed to the base 50. At this time, the first insulating layer 41 is thermocompressed and thermoset by a vacuum laminator or a press machine. Thereafter, the central portion of the first insulating layer 41 corresponding to the inner magnetic path (magnetic core) is removed by a laser or the like to form the opening 41a.
  • the first spiral wiring 21 and the second connection wiring 26 as the first conductor layer 201 are laminated on the first insulating layer 41 by using a semi-additive method.
  • the first spiral wiring 21 and the second connection wiring 26 are formed so as not to contact each other.
  • the second connection wiring 26 is provided on the side opposite to the outer peripheral portion 21b.
  • a power feeding film is formed on the first insulating layer 41 by electroless plating, sputtering, vapor deposition, or the like.
  • a photosensitive resist is applied or pasted on the power supply film, and a wiring pattern is formed by photolithography.
  • metal wiring corresponding to the first spiral wiring 21 and the second connection wiring 26 is formed by electrolytic plating.
  • the photosensitive resist is peeled off with a chemical solution, and the power feeding film is removed by etching.
  • the first sacrificial conductor 71 corresponding to the inner magnetic path is provided on the dummy metal layer 60 in the opening 41a of the first insulating layer 41 by using a semi-additive method.
  • the second insulating layer 42 is stacked on the first insulating layer 41, and the first spiral wiring 21, the second connection wiring 26, and the first sacrificial conductor 71 are covered with the second insulating layer 42. . Further, the second insulating layer 42 is thermocompressed and thermoset by a vacuum laminator or a press machine.
  • via holes 42b for filling the second via electrodes 272 and the third via electrodes 273 are formed in the second insulating layer 42 by laser processing or the like. Further, the portion of the second insulating layer 42 corresponding to the inner magnetic path (magnetic core) is removed by a laser or the like to form the opening 42a.
  • the via hole is filled with the second via electrode 272 and the third via electrode 273, and the second spiral wiring 22 as the second conductor layer 202 and the first connection are formed on the second insulating layer 42.
  • the wiring 25 is stacked.
  • the second spiral wiring 22 and the first connection wiring 25 are formed so as not to contact each other.
  • the first connection wiring 25 is provided on the side opposite to the outer peripheral portion 22b.
  • a second sacrificial conductor 72 corresponding to the inner magnetic path is provided on the first sacrificial conductor 71 in the opening 42 a of the second insulating layer 42.
  • the second via electrode 272, the third via electrode 273, the second spiral wiring 22, the first connection wiring 25, and the second sacrificial conductor 72 are the first spiral wiring 21, the second connection wiring 26, and the first sacrificial conductor. It can be provided by the same processing as 71.
  • the third insulating layer 43 is laminated on the second insulating layer 42, and the second spiral wiring 22, the first connection wiring 25, and the second sacrificial conductor 72 are covered with the third insulating layer 43. . Further, the third insulating layer 43 is thermocompressed and thermoset by a vacuum laminator or a press machine.
  • the portion of the third insulating layer 43 corresponding to the inner magnetic path (magnetic core) is removed by a laser or the like to form the opening 43a.
  • the base 50 is peeled off from the dummy metal layer 60 at the bonding surface between the one surface of the base 50 (base metal layer 52) and the dummy metal layer 60. Then, the dummy metal layer 60 is removed by etching or the like. At this time, the first and second sacrificial conductors 71 and 72 are removed by etching or the like, and as shown in FIG. 3I, an inner diameter hole 40a corresponding to the inner magnetic path is provided in the insulator 40. Thereafter, a via hole 43b for filling the first via electrode 271 is formed in the third insulating layer 43 by laser processing or the like.
  • first via electrode 271 is filled in the via hole 43 b, and the columnar first and second columnar electrodes 11 and 12 are stacked on the third insulating layer 43. At this time, the first via electrode 271 and the first and second columnar electrodes 11 and 12 can be provided by the same process as the first spiral wiring 21.
  • the upper and lower surfaces of the first and second columnar electrodes 11 and 12 and the insulator 40 are covered with the magnetic body 30, and the magnetic body 30 is thermocompression bonded by a vacuum laminator or a press machine.
  • the coil substrate 5 is formed by thermosetting.
  • the magnetic body 30 is also filled in the hole 40 a of the insulator 40.
  • the upper and lower magnetic bodies 30 of the coil substrate 5 are thinned by a grinding method.
  • the upper side surfaces of the first and second columnar electrodes 11 and 12 are located on the same plane as the upper side surface of the magnetic body 30 by exposing a part of the first and second columnar electrodes 11 and 12. .
  • first and second external electrodes 61 and 62 are provided on the upper side surfaces of the first and second columnar electrodes 11 and 12.
  • the coil substrate 5 (main body portion 10) is divided into pieces on the cut surface C by dicing or scribing.
  • the cut surface C constitutes the first and second side surfaces 101 and 102 of the main body 10. That is, the first columnar electrode 11, the first via electrode 271, the first connection wiring 25, the second via electrode 272, and the outer peripheral portion 21 b of the first spiral wiring 21 are exposed to the first side surface 101 of the main body portion 10. .
  • the second columnar electrode 12, the first via electrode 271, the outer peripheral portion 22 b of the second spiral wiring 22, the second via electrode 272, and the second connection wiring 26 are exposed on the second side surface 102 of the main body 10.
  • a metal film 80 (see FIG. 2) is provided on the first and second side surfaces 101 and 102 of the main body 10.
  • the metal film 80 is formed by, for example, a Cu plating process. This plating process may be either electroless plating or electrolytic plating.
  • the metal film 80 is formed of the first external electrode 61, the first columnar electrode 11, the first via electrode 271, the first connection wiring 25, the second via electrode 272, and the first spiral wiring.
  • the outer peripheral part 21b of 21 is covered.
  • the metal film 80 includes the second external electrode 62, the second columnar electrode 12, the first via electrode 271, the outer peripheral portion 22b of the second spiral wiring 22, the second via electrode 272, and the second connection.
  • the wiring 26 is covered. In this way, the coil component 1 shown in FIG. 2 is formed.
  • the coil substrate 5 is formed on one surface of both surfaces of the base 50.
  • the coil substrate 5 may be formed on each of both surfaces of the base 50.
  • a plurality of first and second spiral wirings 21 and 22 and an insulator 40 are formed in parallel on one surface of the base 50 so that a large number of coil substrates 5 can be formed at the same time. Also good. Thereby, the several coil components 1 can be formed simultaneously using the one base 50, and high productivity can be acquired.
  • FIG. 4 is an X direction view showing a second embodiment of the electronic component of the present invention.
  • the second embodiment is different from the first embodiment in the configuration of via electrodes. This different configuration will be described below. Note that in the second embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
  • the width of one side of the first via electrode 271A in the stacking direction is smaller than the width of the other side of the first via electrode 271A in the stacking direction.
  • the width of the lower end (lower side in the Z direction) of the first via electrode 271A is smaller than the width of the upper end (upper side in the Z direction) of the first via electrode 271A. That is, the shape of the first via electrode 271A is a trapezoid when viewed from the X direction. In this case, due to the contact area, delamination is likely to occur on the connection surface with the first connection wiring 25 which is the lower end side (one side) of the first via electrode 271A.
  • the delamination reduction effect of the metal film 80 can be more effectively exhibited.
  • the second via electrode 272A has the same configuration as the first via electrode 271A.
  • the second side surface 102 has the same configuration as that of the first side surface 101.
  • the width of the upper end of the first via electrode may be smaller than the width of the lower end of the first via electrode. Further, at least one of the first and second via electrodes may have the above-described configuration.
  • FIG. 5 is a perspective view showing a third embodiment of the electronic component of the present invention.
  • the third embodiment differs from the first embodiment in the number of external electrodes and metal films. This different configuration will be described below. Note that in the third embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
  • a plurality of (four in this embodiment) first external electrodes 61 are arranged in parallel along the Y direction on the one surface 103 of the main body 10.
  • a plurality of (four in this embodiment) metal films 80 are arranged in parallel on the first side surface 101 of the main body portion 10 along the Y direction.
  • Each first external electrode 61 is connected to each metal film 80.
  • a plurality (four in this embodiment) of the second external electrodes 62 are arranged in parallel on the one surface 103 of the main body 10 along the Y direction.
  • a plurality (four in this embodiment) of the metal films 80 are arranged in parallel on the second side surface 102 of the main body 10 along the Y direction.
  • Each second external electrode 62 is connected to each metal film 80.
  • the size of the coil component 1 is limited, and therefore the columnar electrodes 11 and 12, the spiral wirings 21 and 22, and the via electrode. 271 and 272 and connection wirings 25 and 26 become smaller.
  • the metal film 80 covers the columnar electrodes 11 and 12, the spiral wirings 21 and 22, the via electrodes 271 and 272, and the connection wirings 25 and 26. Can be effectively reduced.
  • the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
  • the feature points of the first to third embodiments may be variously combined.
  • the metal film and the external electrode are separate members, but the metal film and the external electrode may be the same member (integrated).
  • the columnar electrode is provided, but the columnar electrode may be omitted.
  • the columnar electrode and the via electrode are exposed on the side surface, but only the conductor layer may be exposed on the side surface without exposing the columnar electrode and the via electrode on the side surface.
  • the metal film is formed by plating growth from the conductor layers on both sides of the insulating layer and straddling the insulating layer.
  • the metal film covers the insulating layer between the conductor layers. That is, the via electrode may be covered with an insulating layer so as not to be exposed on the side surface of the main body.
  • the main body has via electrodes that connect between the conductor layers adjacent in the stacking direction, and the metal film is formed of the conductor layers adjacent in the stacking direction. It becomes the structure which connects between.
  • the via electrode is usually smaller than the conductor layer, and the area of the connection surface between the conductor layer and the via electrode is also reduced, so that delamination at the contact surface occurs due to the thermal expansion of the insulating layer. Is likely to occur.
  • the configuration of the metal film, the columnar electrode, and the trapezoidal via electrode is described. However, only the configuration of the metal film and the trapezoidal via electrode may be used.
  • a configuration of a plurality of metal films, a plurality of external electrodes, a columnar electrode, and a via electrode is described, but only a configuration of a plurality of metal films and a plurality of external electrodes may be used.
  • two layers of spiral wiring are included, but three or more layers of spiral wiring may be included.
  • two conductor layers are used, but three or more conductor layers may be used.
  • the insulating layer is three layers, it may be four or more layers.
  • the electronic component is a coil component, but may be a capacitor or the like.
  • the conductor layer constitutes a spiral wiring, that is, a narrow wiring
  • the connection surface with other members of the conductor layer tends to be small, and delamination tends to occur. The effect of reducing delamination due to is more effective.
  • FIG. 6A shows the relationship between the number of reflows and the DC electrical resistance Rdc when the coil component which is an example of the first embodiment is mounted on a mounting board via solder.
  • the DC electric resistance Rdc was measured as a DC electric resistance value (unit: ⁇ ) between the external electrodes (between the external electrodes 61 and 62 in the coil component 1).
  • the DC electric resistance Rdc hardly changed before and after the reflow.
  • FIG. 6B shows the relationship between the number of reflows and the DC electrical resistance Rdc for a coil component that is not provided with a metal film, which is a comparative example of the first embodiment.
  • the method for measuring the DC electric resistance Rdc was the same as that shown in FIG. 6A.
  • the DC electric resistance Rdc increased before and after the reflow. This means that delamination between conductor layers occurs due to heat during reflow.
  • the delamination between the conductor layers can be reduced.
  • the DC electric resistance Rdc before reflow was lower than that of the comparative example. This is because, in the embodiment, a path through the metal film is formed between the external electrode and the conductor layer, and the path does not pass through the interface between the conductor layer and the via electrode, which tends to increase the DC electrical resistance Rdc. It is considered that the resistance Rdc is reduced. Therefore, the configuration of the embodiment also has an effect of reducing the DC electric resistance between the external electrode and the conductor layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

電子部品は、交互に積層された絶縁層および導体層を含む本体部を有する。絶縁層および導体層の一部は、本体部の積層方向に直交する方向の側面に露出する。本体部の側面には、積層方向に延在して、側面に露出する絶縁層および導体層を覆う金属膜を設けている。

Description

電子部品
 本発明は、電子部品に関する。
 従来、電子部品の一例としてのコイル部品には、特開2014-197590号公報(特許文献1)に記載されたものがある。この電子部品は、基板と、基板の上面に設けられた第1導体層と、第1導体層上に設けられた第1絶縁層と、基板の下面に設けられた第2導体層と、第2導体層下に設けられた第2絶縁層とを有する。第1絶縁層上に、第1外部電極および第2外部電極が設けられている。第1外部電極は、第1引出電極を介して、第1導体層に電気的に接続される。第2外部電極は、第2引出電極を介して、第2導体層に電気的に接続される。
特開2014-197590号公報
 ところで、前記従来のコイル部品では、基板の両面に導体層を設けているが、低背化などのため、例えば、基板上に複数の導体層と複数の絶縁層を交互に設け、導体層間をビア電極で接続する構成(ビルドアップ構成)も考えられる。この場合、導体層間の絶縁層は導体層よりも熱膨張係数が高く、熱による膨張率の差異により、導体層間、例えば導体層とビア電極との界面などで層間剥離が発生するおそれがある。
 そこで、本発明の課題は、導体層間の層間剥離を低減できる電子部品を提供することにある。
 前記課題を解決するため、本発明の電子部品は、
 交互に積層された絶縁層および導体層を含む本体部を備え、
 前記絶縁層および前記導体層の一部は、前記本体部の積層方向に直交する方向の側面に露出し、
 前記本体部の前記側面には、積層方向に延在して、前記側面に露出する前記絶縁層および前記導体層を覆う金属膜を設けている。
 ここで、露出とは、電子部品の外部への露出だけではなく、他の部材への露出、つまり、他の部材との境界面での露出も含むものとする。覆うとは、部材の少なくとも一部を覆うことを含む。
 前記電子部品によれば、金属膜は、絶縁層および導体層の積層方向に延在して、本体部の側面の絶縁層および導体層を覆っているので、金属膜は、絶縁層および導体層の積層方向の移動を拘束する。したがって、電子部品に熱が加わっても、絶縁層および導体層の熱膨張係数の違いによる導体層間の層間剥離を低減できる。
 また、電子部品の一実施形態では、前記本体部の積層方向の一面に設けられ、前記導体層に電気的に接続された外部電極を有し、前記金属膜は、前記外部電極に接続する。
 前記実施形態によれば、金属膜は、外部電極に接続し、本体部の側面の絶縁層および導体層を覆っているので、金属膜は、外部電極と導体層を電気的にバイパスする。したがって、外部電極と導体層との電気抵抗(特に、直流電気抵抗Rdc)を低減できる。
 また、電子部品の一実施形態では、
 前記本体部は、前記外部電極と前記導体層の間に位置し、前記外部電極と前記導体層を電気的に接続する柱状電極を有し、
 前記柱状電極の一部は、前記本体部の前記側面および前記一面に露出し、前記金属膜は、前記側面に露出する前記柱状電極を覆う。
 前記実施形態によれば、柱状電極の一部は、本体部の側面および一面に露出し、金属膜は、側面および一面に露出する柱状電極を覆う。ここで、電子部品の製造工程において、本体部の側面(カット面)においてダイシングする際、本体部の側面側における柱状電極を切削する負荷が大きくなる。柱状電極への負荷が大きくなると、柱状電極が導体層から剥離する恐れや、層間の電気抵抗が大きくなる恐れがある。しかし、金属膜は柱状電極を覆っているので、柱状電極の剥離を補強しつつ、層間の電気抵抗を小さくすることができる。
 また、電子部品の一実施形態では、
 前記本体部は、前記絶縁層に埋め込まれ、前記導体層に電気的に接続するビア電極を有し、
 前記ビア電極の一部は、前記本体部の前記側面に露出し、前記金属膜は、前記側面に露出する前記ビア電極を覆う。
 前記実施形態によれば、ビア電極の一部は、本体部の側面に露出し、金属膜は、側面に露出するビア電極を覆う。これにより、ビア電極の一部と金属膜とが接続され、熱による導体層とビア電極との層間剥離を低減できる。特に、電子部品が小型となり、ビア電極が一層小さくなっても、効果的に剥離を低減できる。
 また、電子部品の一実施形態では、前記ビア電極の積層方向の一方側の幅は、前記ビア電極の積層方向の他方側の幅より小さい。
 前記実施形態によれば、ビア電極の積層方向の一方側の幅は、ビア電極の積層方向の他方側の幅より小さい。この場合、ビア電極の一方側の導体層との接続面において層間剥離が発生しやすくなるため、金属膜による層間剥離の低減効果がより一層効果的となる。
 また、電子部品の一実施形態では、
 前記側面に露出する前記導体層は、積層方向に複数あり、
 前記本体部は、前記積層方向に隣り合う導体層の間を接続するビア電極を有し、
 前記金属膜は、前記積層方向に隣り合う導体層の間を接続する。
 前記実施形態によれば、通常、ビア電極は小さく、導体層とビア電極との接続面の面積も小さくなるため、絶縁層の熱膨張により、当該接触面での層間剥離が発生しやすいが、金属膜は、積層方向に隣り合う導体層の間を接続するので、熱による導体層とビア電極との層間剥離を低減できる。
 また、電子部品の一実施形態では、前記側面に露出する前記導体層は、積層方向に3層以上ある。
 前記実施形態によれば、導体層が3層以上の場合、さらに層間剥離が発生しやすくなるが、金属膜により、層間剥離の低減効果がより一層効果的となる。
 また、電子部品の一実施形態では、前記外部電極は、前記本体部の前記一面に、複数並列に配置され、前記金属膜は、前記本体部の前記側面に、複数並列に配置され、各外部電極は、各金属膜に接続されている。
 前記実施形態によれば、外部電極は、本体部の一面に、複数並列に配置され、金属膜は、本体部の側面に、複数並列に配置され、各外部電極は、各金属膜に接続されている。このように、外部電極および金属膜の数量が増加すると、電子部品の大きさに制約があるため、導体層の他の部材との接続面が小さくなり、層間剥離が発生しやすくなるため、金属膜による層間剥離の低減効果がより一層効果的となる。
 また、電子部品の一実施形態では、前記導体層は、螺旋状の配線を構成する。
 前記実施形態によれば、導体層は、幅の細い配線を構成するため、導体層の他の部材との接続面が小さくなりやすく、層間剥離が発生しやすくなるため、金属膜による層間剥離の低減効果がより一層効果的となる。
 上記態様の電子部品によれば、本体部の側面には、積層方向に延在して、側面に露出する絶縁層および導体層を覆う金属膜を設けているので、導体層の層間剥離を低減できる。
電子部品の第1実施形態を示す斜視図である。 電子部品のXZ断面図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の製造方法を説明する説明図である。 電子部品の第2実施形態を示すX方向矢視図である。 電子部品の第3実施形態を示す斜視図である。 実施例のリフロー回数と電気抵抗との関係を示すグラフである。 比較例のリフロー回数と電気抵抗との関係を示すグラフである。
 以下、本発明の一態様を図示の実施の形態により詳細に説明する。
 (第1実施形態)
 図1は、電子部品の第1実施形態を示す斜視図である。図2は、電子部品のXZ断面図である。図1と図2に、電子部品の一例として、コイル部品1を示す。コイル部品1は、例えば、パソコン、DVDプレーヤー、デジカメ、TV、携帯電話、カーエレクトロニクスなどの電子機器に搭載され、例えば全体として直方体形状の部品である。ただし、コイル部品1の形状は、特に限定されず、円柱状や多角形柱状、円錐台形状、多角形錐台形状であってもよい。
 図1と図2に示すように、コイル部品1は、交互に積層された絶縁層41,42,43および導体層201,202を含む本体部10と、本体部10の積層方向の一面103に設けられ、導体層201,202に電気的に接続された外部電極61,62とを有する。
ここで、積層方向とは、絶縁層41,42,43および導体層201,202が、延在する方向(XY方向)でなく、積み重なる方向(Z方向)である。つまり、第1絶縁層41、第1導体層201、第2絶縁層42、第2導体層202および第3絶縁層43が、順に、積層方向に積層される。
 絶縁層41,42,43および導体層201,202の一部は、本体部10の積層方向に直交する方向の側面101,102に露出する。本体部10の側面101,102には、金属膜80が設けられている。金属膜80は、外部電極61,62に接続し、積層方向に延在して、側面101,102に露出する絶縁層41,42,43および導体層201,202を覆う。なお、図1では、分かりやすくするために、外部電極61,62を省略し、金属膜80を二点鎖線にて描いている。
 したがって、金属膜80は、絶縁層41,42,43および導体層201,202の積層方向に延在して、本体部10の側面101,102の絶縁層41,42,43および導体層201,202を覆っているので、金属膜80は、絶縁層41,42,43および導体層201,202の積層方向の移動を拘束する。したがって、コイル部品1に熱が加わっても、絶縁層41,42,43および導体層201,202の熱膨張係数の違いによる導体層201,202の層間剥離を低減できる。なお、金属膜80の代わりに、金属粉を含有する導電性樹脂を用いても、導電性樹脂は、絶縁層41,42,43に近い熱膨張係数を有し、絶縁層41,42,43の膨張収縮を拘束できないため、層間剥離を低減する効果は得られない。
 また、金属膜80は、外部電極61,62に接続し、本体部10の側面101,102の絶縁層41,42,43および導体層201,202を覆っているので、金属膜80は、外部電極61,62と導体層201,202を電気的にバイパスする。したがって、外部電極61,62と導体層201,202との電気抵抗(特に、直流電気抵抗Rdc)を低減できる。
 さらに、コイル部品1の外部電極61,62を、はんだを介して、実装基板に実装したとき、はんだが、金属膜80を伝って、積層方向の外部電極61,62と離れる方向に濡れ上がり、フィレット状になることで、コイル部品1の強度が向上する。これにより、はんだ接続の信頼性が向上し、例えばリフローなどの熱によって、はんだにクラックなどが発生することが抑制される。
 また、前記コイル部品1では、本体部10は、外部電極61,62と導体層201,202の間に位置し、外部電極61,62と導体層201,202を電気的に接続する柱状電極11,12を有する。柱状電極11,12の一部は、本体部10の側面101,102および一面103に露出し、金属膜80は、側面101,102に露出する柱状電極11,12を覆う。
 ここで、コイル部品1の製造工程において、本体部10の側面101,102(カット面)においてダイシングする際、本体部10の側面101,102側における柱状電極11,12を切削する負荷が大きくなる。柱状電極11,12への負荷が大きくなると、柱状電極11,12が導体層201,202から剥離する恐れや、層間の電気抵抗が大きくなる恐れがある。しかし、金属膜80は柱状電極11,12を覆っているので、柱状電極11,12の剥離を補強しつつ、層間の電気抵抗を小さくすることができる。
 また、前記コイル部品1では、本体部10は、絶縁層42,43に埋め込まれ、導体層201,202を電気的に接続するビア電極271,272,273を有する。ビア電極271,272の一部は、本体部10の側面101,102に露出し、金属膜80は、側面101,102に露出するビア電極271,272を覆う。
 これにより、ビア電極271,272と金属膜80とが接続され、熱による導体層201,202とビア電極271,272との層間剥離を低減できる。特に、コイル部品1が小型となり、ビア電極271,272が一層小さくなっても、効果的に剥離を低減できる。
 以下、コイル部品1について詳細に説明する。
 図1と図2に示すように、コイル部品1は、本体部10と、本体部10の一面103に設けられた第1外部電極61および第2外部電極62と、本体部10の第1側面101および第2側面102に設けられた金属膜80と、本体部10に設けられ、第1外部電極61に接続された第1柱状電極11および第2外部電極62に接続された第2柱状電極12とを有する。
 本体部10は、略直方体状に形成され、長さと幅と高さを有する。本体部10の長さ方向をX方向とし、本体部10の幅方向をY方向とし、本体部10の高さ方向をZ方向とする。第1側面101と第2側面102とは、X方向に位置する。
 本体部10は、第1導体層201および第2導体層202と、第1、第2導体層201,202を覆う絶縁体40と、絶縁体40を覆う磁性体30とを有する。絶縁体40は、第1絶縁層41、第2絶縁層42および第3絶縁層43から構成される。第1絶縁層41、第1導体層201、第2絶縁層42、第2導体層202および第3絶縁層43は、下層から上層に順に積層される。なお、本明細書においては、コイル部品1における上下を、図1の紙面上下(Z方向)と一致するものとして記載する。Z方向は、層が積み重なる方向(積層方向)に一致する。
 第1導体層201は、第1スパイラル配線21を含む。第2導体層202は、第2スパイラル配線22を含む。第1、第2スパイラル配線21,22は、それぞれ、平面においてスパイラル状に形成されている。第1スパイラル配線21は、例えば、上方からみて、時計回りに旋回しながら中心に近づく渦巻き状に形成される。第2スパイラル配線22は、例えば、上方からみて、時計回りに旋回しながら中心から遠ざかる渦巻き状に形成される。
 第1、第2スパイラル配線21,22は、例えば、Cu、Ag、Auなどの低抵抗な金属によって構成される。好ましくは、セミアディティブ工法によって形成されるCuめっきを用いることで、低抵抗でかつ狭ピッチなスパイラル配線を形成できる。
 第1スパイラル配線21は、第1絶縁層41上に積層される。第2絶縁層42は、第1絶縁層41上に積層され、第1スパイラル配線21を覆う。第2スパイラル配線22は、第2絶縁層42上に積層される。第3絶縁層43は、第2絶縁層42上に積層され、第2スパイラル配線22を覆う。このように、第1、第2スパイラル配線21,22と第1~第3絶縁層41,42,43とは、交互に積層される。言い換えると、第1、第2スパイラル配線21,22のそれぞれは、絶縁層上に積層されると共に、当該絶縁層より上層の絶縁層に覆われる。
 第2スパイラル配線22は、積層方向に延在する内周側の第3ビア電極273を介して、第1スパイラル配線21に電気的に接続される。第3ビア電極273は、第2絶縁層42内に設けられる。第1スパイラル配線21の内周部21aと第2スパイラル配線22の内周部22aとは、第3ビア電極273を介して、電気的に接続される。これにより、第1スパイラル配線21及び第2スパイラル配線22は一つのインダクタを構成する。
 第1スパイラル配線21の外周部21bと第2スパイラル配線22の外周部22bは、積層方向からみて、絶縁体40の両端側に位置する。第1スパイラル配線21の外周部21bは、第1柱状電極11側に位置し、第2スパイラル配線22の外周部22bは、第2柱状電極12側に位置する。
 第1スパイラル配線21の外周部21bは、第2絶縁層42内に設けられた外周側の第2ビア電極272と、第2絶縁層42上に設けられた第1接続配線25と、第3絶縁層43内に設けられた外周側の第1ビア電極271とを介して、第1柱状電極11に電気的に接続される。
 第2スパイラル配線22の外周部22bは、第3絶縁層43内に設けられた第1ビア電極271を介して、第2柱状電極12に電気的に接続される。なお、第2スパイラル配線22の外周部22bは、第2絶縁層42内に設けられた第2ビア電極272を介して、第1絶縁層41上に設けられた第2接続配線26にも電気的に接続されるが、この構成は必須ではない。ただし、第2接続配線26を設け、外周部22bと接続することで、コイル部品1内の対称性を高め、電気的特性や信頼性のばらつきを低減することができる。
 ここで、第2接続配線26および第1スパイラル配線21は、第1導体層201を構成し、第1接続配線25および第2スパイラル配線22は、第2導体層202を構成する。
ただし、第1導体層201において、第2接続配線26と第1スパイラル配線21とは電気的に接続されておらず、第2導体層202において、第1接続配線25と第2スパイラル配線22とは電気的に接続されていない。
 絶縁体40は、無機フィラーおよび樹脂のコンポジット材料からなる。樹脂は、例えば、エポキシ系樹脂やビスマレイミド、液晶ポリマ、ポリイミドなどからなる有機絶縁材料である。無機フィラーは、SiOなどの絶縁層である。なお、絶縁体40は、コンポジット材料に限定されず、樹脂のみから構成されるようにしてもよい。絶縁体40(第1、第2、第3絶縁層41,42,43)の熱膨張係数は、通常、30ppm/k以上であるが、この場合でも、金属膜80により効果的に層間剥離を低減できる。絶縁体40は、第1、第2スパイラル配線21,22の内径よりも内側に、内径孔部40aを有する。
 磁性体30は、樹脂35および金属磁性粉36のコンポジット材料からなる。樹脂35は、例えば、エポキシ系樹脂やビスマレイミド、液晶ポリマ、ポリイミドなどからなる有機絶縁材料である。金属磁性粉36は、例えば、FeSiCrなどのFeSi系合金、FeCo系合金、NiFeなどのFe系合金、または、それらのアモルファス合金である。
 磁性体30は、内磁路37aと外磁路37bを有する。内磁路37aは、第1、第2スパイラル配線21,22の内径および絶縁体40の内径孔部40aに位置する。外磁路37bは、第1、第2スパイラル配線21,22および絶縁体40の上下に位置するとともに、絶縁体40の外径側にも位置している(不図示)。
 第1、第2柱状電極11,12は、第1、第2スパイラル配線21,22の積層方向の上方に設けられる。第1柱状電極11は、本体部10の第1側面101側に位置する。第2柱状電極12は、本体部10の第2側面102側に位置する。柱状電極11,12は、例えば、スパイラル配線21,22と同じ材料から構成される。
 第1柱状電極11は、第1柱状電極11の一部が本体部10の第1側面101および一面103に露出するように、本体部10の磁性体30に埋め込まれている。第2柱状電極12は、第2柱状電極12の一部が本体部10の第2側面102および一面103に露出するように、本体部10の磁性体30に埋め込まれている。
 第1柱状電極11は、第1スパイラル配線21に電気的に接続され、第2柱状電極12は、第2スパイラル配線22に電気的に接続される。第1柱状電極11の上面には、第1外部電極61が設けられ、第2柱状電極12の上面には、第2外部電極62が設けられる。第1、第2外部電極61,62は、コイル部品1を実装基板に実装する際に、実装基板の電極にはんだを介して接続される。
 金属膜80は、本体部10の第1側面101において、第1柱状電極11、第1ビア電極271、第1接続配線25、第2ビア電極272、および、第1スパイラル配線21の外周部21bに接触し、さらに、第1外部電極61に接触する。金属膜80は、例えば、Cu、Ag、Auなどの低抵抗な金属によって構成される。金属膜80は、例えば、電解めっき、無電解めっき、または、スパッタにより形成される。
 同様に、金属膜80は、本体部10の第2側面102において、第2柱状電極12、第1ビア電極271、第2スパイラル配線22の外周部22b、第2ビア電極272および第2接続配線26に接触し、さらに、第2外部電極62に接触する。
 次に、図3Aから図3Kを用いてコイル部品1の製造方法について説明する。
 図3Aに示すように、基台50を準備する。この実施形態では、1枚の基台50により複数のコイル部品1を製造する。基台50は、絶縁基板51と、絶縁基板51の両面に設けられたベース金属層52とを有する。この実施形態では、絶縁基板51は、ガラスエポキシ基板であり、ベース金属層52は、Cu箔であり、上面が円滑面となっている。後述するように基台50が剥離されることにより、基台50の厚みは、コイル部品1の厚みに影響を与えないため、加工上のそりなどの理由から適宜取り扱いやすい厚さのものを用いればよい。
 そして、図3Bに示すように、基台50の一面上にダミー金属層60を接着する。この実施形態では、ダミー金属層60は、Cu箔である。ダミー金属層60は、基台50のベース金属層52と接着されるので、ダミー金属層60は、ベース金属層52の円滑面に接着される。このため、ダミー金属層60とベース金属層52の接着力を弱くすることができて、後工程において、基台50をダミー金属層60から容易に剥がすことができる。好ましくは、基台50とダミー金属層60を接着する接着剤は、低粘着接着剤とする。また、基台50とダミー金属層60の接着力を弱くするために、基台50とダミー金属層60の接着面を光沢面とすることが望ましい。
 その後、基台50に仮止めされたダミー金属層60上に第1絶縁層41を積層する。このとき、第1絶縁層41を、真空ラミネータやプレス機などにより、熱圧着し熱硬化する。その後、内磁路(磁芯)に相当する第1絶縁層41の中央部分を、レーザ等により除去し、開口部41aを形成する。
 そして、図3Cに示すように、第1絶縁層41上に、セミアディティブ工法を用いて、第1導体層201としての第1スパイラル配線21および第2接続配線26を積層する。
第1スパイラル配線21および第2接続配線26は、互いに接触しないように形成する。
第2接続配線26は、外周部21bと反対側に設ける。詳しくは、まず、第1絶縁層41上に無電解メッキやスパッタリング、蒸着などにより給電膜を形成する。給電膜の形成後、給電膜上に感光性のレジストを塗布や貼り付け、フォトリソグラフィーにより配線パターンを形成する。その後、電解めっきによって、第1スパイラル配線21と第2接続配線26に相当するメタル配線を形成する。メタル配線の形成後、感光性レジストを薬液により剥離除去し、給電膜をエッチング除去する。なお、その後、さらにこのメタル配線を給電部として、追加のCu電解メッキを施すことでより狭スペースな配線21,26を得ることが可能である。また、第1絶縁層41の開口部41a内のダミー金属層60上に、セミアディティブ工法を用いて、内磁路に対応する第1犠牲導体71を設ける。
 そして、図3Dに示すように、第1絶縁層41に第2絶縁層42を積層して、第1スパイラル配線21、第2接続配線26及び第1犠牲導体71を第2絶縁層42で覆う。さらに、第2絶縁層42を、真空ラミネータやプレス機などにより、熱圧着し熱硬化する。
 そして、図3Eに示すように、第2絶縁層42に、レーザ加工などにより、第2ビア電極272、第3ビア電極273を充填するためのビアホール42bを形成する。また、内磁路(磁芯)に相当する第2絶縁層42の部分を、レーザ等により除去し、開口部42aを形成する。
 そして、図3Fに示すように、ビアホールに第2ビア電極272、第3ビア電極273を充填し、第2絶縁層42上に、第2導体層202としての第2スパイラル配線22および第1接続配線25を積層する。第2スパイラル配線22および第1接続配線25は、互いに接触しないように形成する。第1接続配線25は、外周部22bと反対側に設ける。
また、第2絶縁層42の開口部42a内の第1犠牲導体71上に、内磁路に対応する第2犠牲導体72を設ける。このとき、第2ビア電極272、第3ビア電極273、第2スパイラル配線22、第1接続配線25及び第2犠牲導体72は、第1スパイラル配線21、第2接続配線26及び第1犠牲導体71と同様の処理にて設けることができる。
 そして、図3Gに示すように、第2絶縁層42に第3絶縁層43を積層して、第2スパイラル配線22、第1接続配線25及び第2犠牲導体72を第3絶縁層43で覆う。さらに、第3絶縁層43を、真空ラミネータやプレス機などにより、熱圧着し熱硬化する。
 そして、図3Hに示すように、内磁路(磁芯)に相当する第3絶縁層43の部分を、レーザ等により除去し、開口部43aを形成する。
 その後、基台50(ベース金属層52)の一面とダミー金属層60との接着面で基台50をダミー金属層60から剥がす。そして、ダミー金属層60をエッチングなどにより取り除く。この際、第1、第2犠牲導体71,72をエッチングなどにより取り除いて、図3Iに示すように、絶縁体40に、内磁路に対応する内径孔部40aを設ける。その後、第3絶縁層43に、レーザ加工などにより、第1ビア電極271を充填するためのビアホール43bを形成する。さらに、ビアホール43bに第1ビア電極271を充填し、第3絶縁層43上に、柱状の第1、第2柱状電極11,12を積層する。このとき、第1ビア電極271及び第1、第2柱状電極11、12は第1スパイラル配線21と同様の処理にて設けることができる。
 そして、図3Jに示すように、第1、第2柱状電極11,12および絶縁体40の上下面側を磁性体30で覆い、磁性体30を、真空ラミネータやプレス機などにより、熱圧着し熱硬化することにより、コイル基板5を形成する。この際、磁性体30は、絶縁体40の孔部40aにも充填される。
 そして、図3Kに示すように、コイル基板5の上下の磁性体30を研削工法により薄層化する。このとき、第1、第2柱状電極11,12の一部を露出させることで、第1、第2柱状電極11,12の上側面は、磁性体30の上側面と同一平面上に位置する。そして、第1、第2柱状電極11,12の上側面に、第1、第2外部電極61,62(図2参照)を設ける。
 その後、コイル基板5(本体部10)を、ダイシングやスクライブにより、カット面Cにて個片化する。このとき、カット面Cが、本体部10の第1、第2側面101,102を構成する。つまり、第1柱状電極11、第1ビア電極271、第1接続配線25、第2ビア電極272、および、第1スパイラル配線21の外周部21bが、本体部10の第1側面101に露出する。第2柱状電極12、第1ビア電極271、第2スパイラル配線22の外周部22b、第2ビア電極272、および、第2接続配線26が、本体部10の第2側面102に露出する。
 その後、本体部10の第1、第2側面101,102に、金属膜80(図2参照)を設ける。金属膜80は、例えば、Cuめっき処理により形成される。このめっき処理は、無電解めっき、電解めっきのいずれであってもよい。これにより、第1側面101において、金属膜80は、第1外部電極61、第1柱状電極11、第1ビア電極271、第1接続配線25、第2ビア電極272、および、第1スパイラル配線21の外周部21bを覆う。第2側面102において、金属膜80は、第2外部電極62、第2柱状電極12、第1ビア電極271、第2スパイラル配線22の外周部22b、第2ビア電極272、および、第2接続配線26を覆う。このようにして、図2に示すコイル部品1を形成する。
 なお、上記例示した製造方法では、基台50の両面のうちの一面にコイル基板5を形成しているが、基台50の両面のそれぞれにコイル基板5を形成するようにしてもよい。また、多数のコイル基板5を同時に形成できるように、基台50の一面に、複数の第1、第2スパイラル配線21,22や絶縁体40などを並列に形成し、これらを個片化してもよい。これにより、一つの基台50を用いて、同時に複数のコイル部品1を形成することができ、高い生産性を得ることができる。
 (第2実施形態)
 図4は、本発明の電子部品の第2実施形態を示すX方向矢視図である。第2実施形態は、第1実施形態とは、ビア電極の構成が相違する。この相違する構成を以下に説明する。
なお、第2実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 図4に示すように、電子部品としてのコイル部品1Aでは、第1ビア電極271Aの積層方向の一方側の幅は、第1ビア電極271Aの積層方向の他方側の幅より小さい。具体的に述べると、第1ビア電極271Aの下端(Z方向下方側)の幅は、第1ビア電極271Aの上端(Z方向上方側)の幅よりも小さい。つまり、第1ビア電極271Aの形状は、X方向からみて、台形となる。この場合、接触面積の関係から、第1ビア電極271Aの下端側(一方側)である第1接続配線25との接続面において層間剥離が発生しやすくなる。
 したがって、この構成では金属膜80の層間剥離低減効果をより効果的に発揮させることができる。また、第2ビア電極272Aについても、第1ビア電極271Aと同様の構成である。また、第2側面102についても、第1側面101と同様の構成である。
 なお、第1ビア電極の上端の幅は、第1ビア電極の下端の幅よりも小さくてもよい。また、第1、第2ビア電極の少なくとも一方が、上述の構成であってもよい。
 (第3実施形態)
 図5は、本発明の電子部品の第3実施形態を示す斜視図である。第3実施形態は、第1実施形態とは、外部電極および金属膜の数量が相違する。この相違する構成を以下に説明する。なお、第3実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 図5に示すように、電子部品としてのコイル部品1Bでは、第1外部電極61は、本体部10の一面103に、Y方向に沿って、複数(この実施形態では、4つ)並列に配置されている。金属膜80は、本体部10の第1側面101に、Y方向に沿って、複数(この実施形態では、4つ)並列に配置されている。各第1外部電極61は、各金属膜80に接続される。
 同様に、第2外部電極62は、本体部10の一面103に、Y方向に沿って、複数(この実施形態では、4つ)並列に配置されている。金属膜80は、本体部10の第2側面102に、Y方向に沿って、複数(この実施形態では、4つ)並列に配置されている。各第2外部電極62は、各金属膜80に接続される。
 このように、第1、第2外部電極61,62および金属膜80の数量が増加すると、コイル部品1の大きさに制約があるため、柱状電極11,12、スパイラル配線21,22、ビア電極271,272、および、接続配線25,26が小さくなる。
 しかし、第1実施形態で説明したように、金属膜80は、柱状電極11,12、スパイラル配線21,22、ビア電極271,272、および、接続配線25,26を覆うので、これらの層間剥離を効果的に低減できる。
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第3実施形態のそれぞれの特徴点を様々に組み合わせてもよい。
 前記第1実施形態では、金属膜と外部電極とが別部材としているが、金属膜と外部電極とが同一部材(一体化)であってもよい。また、前記第1実施形態では、柱状電極を設けているが、柱状電極を省略するようにしてもよい。
 前記第1実施形態では、柱状電極およびビア電極を側面に露出させているが、柱状電極およびビア電極を側面に露出させないで、導体層のみを側面に露出させてもよい。このとき、金属膜は、絶縁層の両側の導体層からめっき成長して、絶縁層を跨ぐように形成される。この結果、金属膜は、導体層間の絶縁層を覆う。つまり、ビア電極を絶縁層で覆って本体部の側面に露出させないようにしてもよい。この場合、側面に露出する導体層は、積層方向に複数あり、本体部は、積層方向に隣り合う導体層の間を接続するビア電極を有し、金属膜は積層方向に隣り合う導体層の間を接続する構成となる。ここで、金属膜が無い場合、通常、ビア電極は導体層よりも小さく、導体層とビア電極との接続面の面積も小さくなるため、絶縁層の熱膨張により、当該接触面での層間剥離が発生しやすくなる。一方、上記構成では、金属膜は、積層方向に隣り合う導体層の間を接続するので、熱による導体層の間の絶縁層の膨張圧縮を拘束する。よって、ビア電極を本体部の側面に露出させない構成、すなわち金属膜とビア電極とが接触していない構成であっても、導体層とビア電極との層間剥離を低減できる。
 前記第2実施形態では、金属膜、柱状電極および台形のビア電極の構成を説明しているが、金属膜および台形のビア電極の構成のみでもよい。
 前記第3実施形態では、複数の金属膜、複数の外部電極、柱状電極およびビア電極の構成を説明しているが、複数の金属膜および複数の外部電極の構成のみでもよい。
 前記第1実施形態では、2層のスパイラル配線を含んでいるが、3層以上のスパイラル配線を含んでいてもよい。つまり、導体層を2層としているが、3層以上としてもよく、導体層が3層以上になると、絶縁層が多数積層されることで、熱による膨張収縮が大きくなり、より層間剥離が発生しやすいため、金属層による層間剥離の低減効果がより一層効果的である。また、絶縁層を3層としているが、4層以上としてもよい。
 前記第1実施形態では、電子部品を、コイル部品としているが、コンデンサなどとしてもよい。コイル部品の場合、導体層が、螺旋状の配線、すなわち幅の細い配線を構成するため、導体層の他の部材との接続面が小さくなりやすく、層間剥離が発生しやすくなるため、金属膜による層間剥離の低減効果がより一層効果的となる。
 (実施例)
 次に、第1実施形態の実施例について説明する。
 図6Aは、第1実施形態の実施例であるコイル部品について、はんだを介して実装基板に実装するときの、リフロー回数と直流電気抵抗Rdcとの関係を示す。なお、直流電気抵抗Rdcは外部電極間(コイル部品1における外部電極61、62間)の直流電気抵抗値(単位:Ω)として測定した。図6Aに示すように、実施例では、リフロー前後において、直流電気抵抗Rdcはほとんど変化しなかった。
 図6Bは、第1実施形態の比較例である金属膜を設けないコイル部品について、リフロー回数と直流電気抵抗Rdcとの関係を示す。なお、直流電気抵抗Rdcの測定方法は図6Aと同様とした。図6Bに示すように、比較例では、リフロー前後において、直流電気抵抗Rdcが増加した。これはリフロー時の熱による導体層間の層間剥離が発生していることを意味している。
 このように、金属膜を設けた実施例では、導体層間の層間剥離を低減できる。なお、実施例では、比較例に対し、リフロー前の直流電気抵抗Rdcも低い結果となった。これは、実施例では外部電極と導体層との間に金属膜を経由する経路ができ、該経路では直流電気抵抗Rdcが高くなりやすい導体層とビア電極との界面を経由しないため、直流電気抵抗Rdcが小さくなったものと考えられる。したがって、実施例の構成は、外部電極と導体層との間の直流電気抵抗を小さくする効果も有する。
 1,1A,1B コイル部品(電子部品)
 10 本体部
 101 第1側面
 102 第2側面
 103 一面
 11 第1柱状電極
 12 第2柱状電極
 21 第1スパイラル配線
 21a 内周部
 21b 外周部
 22 第2スパイラル配線
 22a 内周部
 22b 外周部
 25 第1接続配線
 26 第2接続配線
 30 磁性体
 40 絶縁体
 41 第1絶縁層
 42 第2絶縁層
 43 第3絶縁層
 61 第1外部電極
 62 第2外部電極
 80 金属膜
 201 第1導体層
 202 第2導体層
 271 第1ビア電極
 272 第2ビア電極
 C カット面

Claims (9)

  1.  交互に積層された絶縁層および導体層を含む本体部を備え、
     前記絶縁層および前記導体層の一部は、前記本体部の積層方向に直交する方向の側面に露出し、
     前記本体部の前記側面には、積層方向に延在して、前記側面に露出する前記絶縁層および前記導体層を覆う金属膜を設けている、電子部品。
  2.  前記本体部の積層方向の一面に設けられ、前記導体層に電気的に接続された外部電極を有し、前記金属膜は、前記外部電極に接続する、請求項1に記載の電子部品。
  3.  前記本体部は、前記外部電極と前記導体層の間に位置し、前記外部電極と前記導体層を電気的に接続する柱状電極を有し、
     前記柱状電極の一部は、前記本体部の前記側面および前記一面に露出し、前記金属膜は、前記側面に露出する前記柱状電極を覆う、請求項2に記載の電子部品。
  4.  前記本体部は、前記絶縁層に埋め込まれ、前記導体層に電気的に接続するビア電極を有し、
     前記ビア電極の一部は、前記本体部の前記側面に露出し、前記金属膜は、前記側面に露出する前記ビア電極を覆う、請求項1から3の何れか一つに記載の電子部品。
  5.  前記ビア電極の積層方向の一方側の幅は、前記ビア電極の積層方向の他方側の幅より小さい、請求項4に記載の電子部品。
  6.  前記側面に露出する前記導体層は、積層方向に複数あり、
     前記本体部は、前記積層方向に隣り合う導体層の間を接続するビア電極を有し、
     前記金属膜は、前記積層方向に隣り合う導体層の間を接続する、請求項1から3の何れか一つに記載の電子部品。
  7.  前記側面に露出する前記導体層は、積層方向に3層以上ある、請求項6に記載の電子部品。
  8.  前記外部電極は、前記本体部の前記一面に、複数並列に配置され、前記金属膜は、前記本体部の前記側面に、複数並列に配置され、各外部電極は、各金属膜に接続されている、請求項2に記載の電子部品。
  9.  前記導体層は、螺旋状の配線を構成する、請求項1から8の何れか一つに記載の電子部品。
PCT/JP2017/000045 2016-05-16 2017-01-04 電子部品 WO2017199461A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780029556.5A CN109074947B (zh) 2016-05-16 2017-01-04 电子部件
JP2018518069A JP6721044B2 (ja) 2016-05-16 2017-01-04 電子部品
US16/170,964 US11398341B2 (en) 2016-05-16 2018-10-25 Electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098192 2016-05-16
JP2016098192 2016-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/170,964 Continuation US11398341B2 (en) 2016-05-16 2018-10-25 Electronic component

Publications (1)

Publication Number Publication Date
WO2017199461A1 true WO2017199461A1 (ja) 2017-11-23

Family

ID=60325803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000045 WO2017199461A1 (ja) 2016-05-16 2017-01-04 電子部品

Country Status (4)

Country Link
US (1) US11398341B2 (ja)
JP (1) JP6721044B2 (ja)
CN (2) CN112992504A (ja)
WO (1) WO2017199461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170321A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 コイル部品およびその製造方法
JP2019140371A (ja) * 2018-02-08 2019-08-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. インダクタ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627819B2 (ja) * 2017-04-27 2020-01-08 株式会社村田製作所 電子部品およびその製造方法
US11631529B2 (en) 2019-03-19 2023-04-18 Tdk Corporation Electronic component and coil component
KR102178528B1 (ko) * 2019-06-21 2020-11-13 삼성전기주식회사 코일 전자부품
JP7313207B2 (ja) * 2019-06-25 2023-07-24 新光電気工業株式会社 インダクタ、及びインダクタの製造方法
US11189563B2 (en) * 2019-08-01 2021-11-30 Nanya Technology Corporation Semiconductor structure and manufacturing method thereof
KR102230044B1 (ko) 2019-12-12 2021-03-19 삼성전기주식회사 코일 부품
KR102335427B1 (ko) * 2019-12-26 2021-12-06 삼성전기주식회사 코일 부품
KR20220042633A (ko) * 2020-09-28 2022-04-05 삼성전기주식회사 코일 부품

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059539A (ja) * 2005-08-23 2007-03-08 Tdk Corp 積層型コモンモードフィルタ
JP2013219029A (ja) * 2012-04-05 2013-10-24 Samsung Electro-Mechanics Co Ltd 電子部品及び電子部品製造方法
JP2013219295A (ja) * 2012-04-12 2013-10-24 Panasonic Corp コモンモードノイズフィルタ
JP2014120759A (ja) * 2012-12-13 2014-06-30 Samsung Electro-Mechanics Co Ltd コモンモードフィルタ及びその製造方法
JP2014170917A (ja) * 2013-02-28 2014-09-18 Samsung Electro-Mechanics Co Ltd コモンモードフィルター及びその製造方法
JP2015130472A (ja) * 2014-01-07 2015-07-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品及びその実装基板
US20160104565A1 (en) * 2014-10-14 2016-04-14 Murata Manufacturing Co., Ltd. Electronic component
US20160111195A1 (en) * 2014-10-15 2016-04-21 Murata Manufacturing Co., Ltd. Electronic component

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197022B2 (ja) * 1991-05-13 2001-08-13 ティーディーケイ株式会社 ノイズサプレッサ用積層セラミック部品
JPH10335142A (ja) * 1997-05-29 1998-12-18 Citizen Electron Co Ltd チップインダクタとその製造方法
CN100573759C (zh) * 2003-01-30 2009-12-23 威盛电子股份有限公司 叠层电容器的工艺与结构
JP2005217268A (ja) * 2004-01-30 2005-08-11 Tdk Corp 電子部品
JP2007109935A (ja) 2005-10-14 2007-04-26 Matsushita Electric Ind Co Ltd 電子部品及びその製造方法
JP4802697B2 (ja) * 2005-12-16 2011-10-26 カシオ計算機株式会社 半導体装置
JP4400612B2 (ja) 2006-10-31 2010-01-20 Tdk株式会社 積層コンデンサ、および積層コンデンサの製造方法
JP2011071457A (ja) * 2008-12-22 2011-04-07 Tdk Corp 電子部品及び電子部品の製造方法
JP6102420B2 (ja) * 2013-03-29 2017-03-29 Tdk株式会社 コイル部品
KR101365368B1 (ko) * 2012-12-26 2014-02-24 삼성전기주식회사 공통모드필터 및 이의 제조방법
JP5831498B2 (ja) * 2013-05-22 2015-12-09 Tdk株式会社 コイル部品およびその製造方法
JP5888289B2 (ja) 2013-07-03 2016-03-16 株式会社村田製作所 電子部品
JP2015026760A (ja) * 2013-07-29 2015-02-05 株式会社村田製作所 積層コイル
KR101762027B1 (ko) * 2015-11-20 2017-07-26 삼성전기주식회사 코일 부품 및 그 제조 방법
JP6668723B2 (ja) * 2015-12-09 2020-03-18 株式会社村田製作所 インダクタ部品
KR20170074590A (ko) * 2015-12-22 2017-06-30 삼성전기주식회사 공통모드필터

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059539A (ja) * 2005-08-23 2007-03-08 Tdk Corp 積層型コモンモードフィルタ
JP2013219029A (ja) * 2012-04-05 2013-10-24 Samsung Electro-Mechanics Co Ltd 電子部品及び電子部品製造方法
JP2013219295A (ja) * 2012-04-12 2013-10-24 Panasonic Corp コモンモードノイズフィルタ
JP2014120759A (ja) * 2012-12-13 2014-06-30 Samsung Electro-Mechanics Co Ltd コモンモードフィルタ及びその製造方法
JP2014170917A (ja) * 2013-02-28 2014-09-18 Samsung Electro-Mechanics Co Ltd コモンモードフィルター及びその製造方法
JP2015130472A (ja) * 2014-01-07 2015-07-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品及びその実装基板
US20160104565A1 (en) * 2014-10-14 2016-04-14 Murata Manufacturing Co., Ltd. Electronic component
US20160111195A1 (en) * 2014-10-15 2016-04-21 Murata Manufacturing Co., Ltd. Electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170321A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 コイル部品およびその製造方法
US10937589B2 (en) 2017-03-29 2021-03-02 Tdk Corporation Coil component and method of manufacturing the same
JP2019140371A (ja) * 2018-02-08 2019-08-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. インダクタ
US11056272B2 (en) 2018-02-08 2021-07-06 Samsung Electro-Mechanics Co., Ltd. Inductor

Also Published As

Publication number Publication date
CN109074947A (zh) 2018-12-21
JP6721044B2 (ja) 2020-07-08
CN109074947B (zh) 2021-02-02
US11398341B2 (en) 2022-07-26
JPWO2017199461A1 (ja) 2018-11-22
CN112992504A (zh) 2021-06-18
US20190066908A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017199461A1 (ja) 電子部品
JP6668723B2 (ja) インダクタ部品
CN107068351B (zh) 电感元件、封装部件以及开关调节器
JP6627819B2 (ja) 電子部品およびその製造方法
US11521948B2 (en) Method of manufacturing semiconductor device
JP2017011185A (ja) コイル部品の製造方法およびコイル部品
JP7156209B2 (ja) インダクタ部品およびインダクタ部品内蔵基板
JPWO2008120755A1 (ja) 機能素子内蔵回路基板及びその製造方法、並びに電子機器
WO2007126090A1 (ja) 回路基板、電子デバイス装置及び回路基板の製造方法
US10515758B2 (en) Method of manufacturing coil component
US8302298B2 (en) Process for fabricating circuit substrate
US12057258B2 (en) Inductor array component and inductor array component built-in substrate
JP2011187863A (ja) 配線基板及びその製造方法
US20150144384A1 (en) Packaging substrate and fabrication method thereof
JP2023065654A (ja) インダクタ部品およびインダクタ部品内蔵基板
JP2009267149A (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP6293436B2 (ja) 配線基板の製造方法
TWI569368B (zh) 封裝基板、包含該封裝基板的封裝結構及其製作方法
US11289825B2 (en) Radio frequency module and method of manufacturing radio frequency module
JP6777698B2 (ja) コイル部品
JP5997200B2 (ja) 配線基板
JP2006344631A (ja) 部品内蔵基板
KR20170002259A (ko) 인쇄회로기판 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518069

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798900

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798900

Country of ref document: EP

Kind code of ref document: A1