Nothing Special   »   [go: up one dir, main page]

WO2017197675A1 - 一种钛酸锂改性材料及其制备方法 - Google Patents

一种钛酸锂改性材料及其制备方法 Download PDF

Info

Publication number
WO2017197675A1
WO2017197675A1 PCT/CN2016/085326 CN2016085326W WO2017197675A1 WO 2017197675 A1 WO2017197675 A1 WO 2017197675A1 CN 2016085326 W CN2016085326 W CN 2016085326W WO 2017197675 A1 WO2017197675 A1 WO 2017197675A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
ncnts
modified material
zinc
lto
Prior art date
Application number
PCT/CN2016/085326
Other languages
English (en)
French (fr)
Inventor
吕金钊
程浩然
张�焕
李进潘
薛嘉渔
赵成龙
王瑛
Original Assignee
山东玉皇新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东玉皇新能源科技有限公司 filed Critical 山东玉皇新能源科技有限公司
Publication of WO2017197675A1 publication Critical patent/WO2017197675A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of electrochemistry, and particularly relates to a lithium titanate modified material and a preparation method thereof.
  • Lithium-ion batteries are widely used due to their high energy density, high operating voltage, and no memory effect. With the demand for higher energy density and power density batteries, the development of new battery materials is imminent. At present, commercial graphite anode materials have good cycle performance, but their specific capacity is low, and it is easy to cause safety hazards under high current charge and discharge conditions, which limits its application in large-scale energy storage.
  • Spinel-type lithium titanate (LTO) has almost no change in the framework structure during lithium ion intercalation and extraction. It is a "zero strain” material with excellent charge and discharge cycle stability. The lithium-insertion potential is high and does not cause precipitation of supported lithium. It is a highly safe lithium ion anode material.
  • lithium titanate also has its shortcomings, such as low theoretical specific capacity (175 mAh / g), low battery voltage caused by high lithium insertion potential, resulting in low specific energy of the battery; at the same time the material itself is poor in conductivity (inherent conductivity 10 -9S/cm), it is easy to generate large polarization when charging and discharging large currents, which limits the promotion of its application.
  • the academic community mostly uses ion doping to reduce the electrode potential of lithium titanate (Electrochimica Acta 2008, 53:7079); through material nanocrystallization, preparation of special morphology of lithium titanate or carbon or carbon nanotubes (CNTs) coating and other methods to solve the problem of lithium titanate material material degradation due to low electronic conductivity (J. Am.
  • the nanostructured zinc ferrite (ZnFe 2 O 4 ) is a superior binary spinel lithium ion anode material, exhibiting high capacity characteristics, and has a stable lithium insertion potential platform (about 0.9V), which does not cause lithium deposition. , greatly improving the safety of the battery, and the material has the advantages of non-toxic, non-polluting, high safety performance, wide source of raw materials, etc., which provides feasibility for enhancing the energy density of lithium titanate composite with lithium titanate composite.
  • the pure phase ZnFe 2 O 4 material has poor conductivity; the material volume expansion effect is large, resulting in damage to the electrode matrix structure, thereby affecting the cycle stability of the battery.
  • the present invention provides a lithium titanate modified material and a preparation method thereof. It is a new lithium ion battery anode material with high cycle specific capacity, high first charge and discharge efficiency, good rate performance and cycle stability.
  • a lithium titanate modified material is special in that the modified material is composed of a micro/nano structure, including lithium titanate LTO, zinc titanate ZFO, and nitrogen-doped carbon nanotube NCNTs.
  • the advantages of lithium titanate as a negative electrode material are high safety performance, good cycle stability, high first charge and discharge efficiency, but low specific capacity of materials, low electronic conductivity, and high cost; the present invention adopts low cost for this problem.
  • the present invention employs nitrogen-doped carbon nanotubes to buffer the volume change of the zinc ferrite during charge and discharge to stabilize the material, reduce the thermal conductivity, increase the mechanical strength and electronic conductivity of the material, and the micro-nano structure also contributes to lithium ions. Embedding and transfer.
  • the lithium titanate modified material of the present invention can be obtained by post-treatment mixing of LTO, ZFO and NCNTs, or can be obtained by in-situ synthesis.
  • the preparation method of the lithium titanate modified material of the present invention comprises the following steps when the sample is obtained by post-treatment mixing:
  • the ball-milled sample is annealed and heat-treated under an inert atmosphere.
  • the lower alcohol in the step (1) is a mixture of one or more of methanol, ethanol, and propanol.
  • the inert atmosphere in the step (4) is He, N 2 or Ar, and the heat treatment temperature is 200-700 ° C for 0.1-10 h.
  • the preparation method of the lithium titanate modified material of the present invention comprises the following steps when the sample is obtained by in situ synthesis:
  • the iron salt in the step (2) is at least two of ferric chloride, ferric nitrate, ferric citrate and iron acetate, and the zinc salt is one or more of anhydrous zinc sulfate, zinc chloride and zinc sulfate; zinc
  • the molar ratio of zinc to iron in the salt and iron salt is 1:1.8-2.2.
  • the method of mixing the NCNTs with the iron salt and the zinc salt solution in the step (3) is to add the dispersed NCNTs to the solution of the step (2) in stages or to add the solution of the step (2) to the dispersed NCNTs. , the process of mixing is kept stirring.
  • the stirring time in the step (4) is 0-20 h.
  • the inert atmosphere in the step (5) is He, N 2 or Ar, the gas flow rate is 20-1000 sccm, the calcination temperature is 500-1000 ° C, and the treatment time is 0.1-10 h.
  • the lithium titanate modified material prepared by the invention is subjected to electrochemical performance test, and the test is carried out under the following conditions: the weight ratio of the obtained active material to polyvinylidene fluoride (PVDF) and the conductive agent is 8:1:1.
  • the mixture was mixed with N-methylpyrrolidone (NMP) as a solvent, stirred for 6 hours, uniformly coated on a copper foil, and dried under vacuum at 110 ° C to obtain a working electrode sheet.
  • the electrolyte was 1 mol/L of LiPF6/ethylene carbonate (EC)-dimethyl carbonate (DMC) (1:1 by volume); the separator was a polypropylene/polyethylene microporous membrane (Celgard 2500).
  • All batteries (2032 button cells) were assembled in a water-free, oxygen-free glove box with a lithium sheet as the counter electrode. The battery was measured after activation for 12 hours after assembly to allow the electrolyte to sufficiently wet the electrode. The charge and discharge test was performed on the battery performance test system with a voltage range of 0.5-3.0V.
  • the negative electrode material prepared by the invention is a novel ternary composite negative electrode material
  • Lithium titanate as the main material can ensure high safety performance, excellent cycle stability and high first charge and discharge efficiency; adding zinc ferrite can reduce the cost of materials and increase the energy density of materials;
  • the hybrid carbon nanotubes can effectively inhibit the volume change of the material during charging and discharging, resulting in rapid capacity decay and poor cycle performance, increasing the mechanical strength and electronic conductivity of the material, and the micro-nano structure also contributes to the insertion of lithium ions. And transmission;
  • the energy density of the material of the present invention can be increased by 20-40% compared to lithium titanate which has been commercially applied;
  • the preparation process of the invention is simple, the cost is low, the environment is friendly, the safety is high, and the experiment repeatability is good.
  • FIG. 1 is an SEM image of a sample of Example 12 of the present invention.
  • Figure 2 is a graph showing the cycle stability of different samples of the present invention at 1C rate.
  • Figure 3 is a graph showing the cycle stability test of the sample of Example 13 of the present invention.
  • a lithium titanate modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO is prepared by a post-treatment mixing method.
  • the first discharge specific capacity at 0.25 mA is 193 mAh ⁇ g -1
  • the first charge and discharge efficiency is 85%
  • the discharge specific capacity at 1 C is 190 mAh ⁇ g -1 .
  • a lithium titanate modified material 0.05ZFO ⁇ 0.02NCNTs ⁇ 0.93LTO is prepared by a post-treatment mixing method.
  • the first discharge specific capacity at 0.2C was 228 mAh ⁇ g -1
  • the first charge and discharge efficiency was 82%
  • the discharge specific capacity at 1 C was 195 mAh ⁇ g -1 .
  • a lithium titanate modified material of 0.1ZFO ⁇ 0.05NCNTs ⁇ 0.88LTO is prepared by a post-treatment mixing method.
  • the first discharge specific capacity at 0.2C was 258 mAh ⁇ g -1
  • the first charge and discharge efficiency was 77%
  • the discharge specific capacity at 1 C was 210 mAh ⁇ g -1 .
  • a lithium titanate modified material 0.5ZFO ⁇ 0.05NCNTs ⁇ 0.4LTO is prepared by a post-treatment mixing method.
  • the first discharge specific capacity at 0.25 mA is 538 mAh ⁇ g -1
  • the first charge and discharge efficiency is 65%
  • the discharge specific capacity at 1 C is 350 mAh ⁇ g -1 .
  • a lithium titanate modified material 0.5ZFO ⁇ 0.1NCNTs ⁇ 0.4LTO is prepared by a post-treatment mixing method.
  • the first discharge specific capacity at 0.2C was 658mAh ⁇ g-1
  • the first charge and discharge efficiency was 70%
  • the discharge specific capacity at 1C was 558mAh ⁇ g-1.
  • lithium iron nitrate was used as the iron source
  • the lithium titanate modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO was prepared by in-situ synthesis method (the stoichiometric ratio of zinc and iron was 1:2).
  • the first discharge specific capacity at 0.2C was 198 mAh ⁇ g -1
  • the first charge and discharge efficiency was 89%
  • the discharge specific capacity at 1 C was 193 mAh ⁇ g -1 .
  • lithium iron nitrate is used as an iron source, and a lithium titanate modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO (stoichiometric ratio of zinc and iron is 1:1.8) is prepared by in-situ synthesis.
  • the first discharge specific capacity at 0.2C is 195mAh ⁇ g -1
  • the first charge and discharge efficiency is 90%
  • the discharge specific capacity at 1C is 190mAh ⁇ g -1 .
  • lithium iron nitrate was used as the iron source
  • the lithium titanate modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO (the stoichiometric ratio of zinc and iron was 1:2.2) was prepared by in-situ synthesis.
  • the first discharge specific capacity at 0.2C is 190mAh ⁇ g -1
  • the first charge and discharge efficiency is 85%
  • the discharge specific capacity at 1C is 185mAh ⁇ g -1 .
  • lithium ferric chloride modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO was prepared by in-situ synthesis using ferric chloride as the iron source.
  • the first discharge specific capacity was 0.2 mAh ⁇ g -1 at 0.2 C
  • the first charge and discharge efficiency was 80%
  • the discharge specific capacity at 1 C was 173 mAh ⁇ g -1 .
  • lithium titanate modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO was prepared by in-situ synthesis using iron acetate as iron source.
  • the first discharge specific capacity at 0.25 mA is 175 mAh ⁇ g-1
  • the first charge and discharge efficiency is 89%
  • the discharge specific capacity at 1 C is 165 mAh ⁇ g-1.
  • zinc chloride is used as a zinc source
  • a lithium titanate modified material 0.02ZFO ⁇ 0.02NCNTs ⁇ 0.96LTO is prepared by in-situ synthesis.
  • the first discharge specific capacity at 0.2C was 178mAh ⁇ g -1
  • the first charge and discharge efficiency was 88%
  • the discharge specific capacity at 1C was 174mAh ⁇ g -1 .
  • lithium iron nitrate is used as an iron source, and a lithium titanate modified material of 0.1ZFO ⁇ 0.02NCNTs ⁇ 0.88LTO is prepared by in-situ synthesis.
  • the first discharge specific capacity at 250C is 250 mAh ⁇ g -1
  • the first charge and discharge efficiency is 84%
  • the discharge specific capacity at 1 C is 200 mAh ⁇ g -1 .
  • lithium iron nitrate is used as an iron source, and a lithium titanate modified material of 0.1ZFO ⁇ 0.02NCNTs ⁇ 0.88LTO is prepared by in-situ synthesis.
  • the first discharge specific capacity at 230C was 230 mAh ⁇ g -1
  • the first charge and discharge efficiency was 87%
  • the discharge specific capacity at 1 C was 195 mAh ⁇ g -1 .
  • lithium iron nitrate is used as an iron source, and a lithium titanate modified material 0.1ZFO ⁇ 0.1NCNTs ⁇ 0.8LTO is prepared by in-situ synthesis.
  • the first discharge specific capacity at 230C was 230 mAh ⁇ g -1
  • the first charge and discharge efficiency was 82%
  • the discharge specific capacity at 1 C was 205 mAh ⁇ g -1 .
  • lithium iron nitrate is used as an iron source
  • a lithium titanate modified material 0.5ZFO ⁇ 0.02NCNTs ⁇ 0.48LTO is prepared by in-situ synthesis.
  • lithium iron nitrate is used as an iron source, and a lithium titanate modified material 0.5ZFO ⁇ 0.1NCNTs ⁇ 0.4LTO is prepared by in-situ synthesis.
  • the first discharge specific capacity at 0.25 mA is 670 mAh ⁇ g -1
  • the first charge and discharge efficiency is 75%
  • the discharge specific capacity at 1 C is 600 mAh ⁇ g -1 .
  • lithium ferric chloride modified material 0.5ZFO ⁇ 0.1NCNTs ⁇ 0.4LTO was prepared by in-situ synthesis using ferric chloride as the iron source.
  • the first discharge specific capacity at 0.2C was 560 mAh ⁇ g -1
  • the first charge and discharge efficiency was 79%
  • the discharge specific capacity at 1 C was 520 mAh ⁇ g -1 .
  • electrochemical tests were carried out using LTO and ZFO as electrode materials, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种钛酸锂改性材料,属于电化学技术领域,改性材料由微纳结构组成,包括钛酸锂LTO、钛酸锌ZFO和氮掺杂碳纳米管NCNTs。本发明制备工艺简单,条件温和,成本低,重复性好,便于规模化制备,合成出的复合材料颗粒粉体细小且分布均匀,克服了钛酸锂单独作为锂离子电池负极材料时电子电导率低、能量密度低的问题。材料在电化学测试中呈现出较高的初始放电容量和循环比容量、良好的倍率性能和循环稳定性,相比于目前已商业化应用的钛酸锂,该材料能量密度可以提高20-40%,是一种理想的锂离子电池负极材料,在便携式电子设备、电动汽车以及航空航天等领域具有潜在应用前景。

Description

一种钛酸锂改性材料及其制备方法 技术领域
本发明属于电化学技术领域,具体涉及一种钛酸锂改性材料及其制备方法。
背景技术
锂离子电池因其具有高能量密度、高工作电压、无记忆效应等优点得到广泛应用。随着对更高能量密度和功率密度电池的需求,开发新型电池材料迫在眉睫。当前,商业化石墨负极材料虽然具有良好的循环性能,但其比容量较低,且在大电流充放电条件下易产生安全隐患,限制了其在大规模储能领域的应用。尖晶石型钛酸锂(LTO)在锂离子的嵌入和脱出过程中,骨架结构几乎不发生变化,是一种“零应变”材料,具有优异的充放电循环稳定性。嵌锂电位高而不会引起支晶锂的析出,是一种高安全型的锂离子负极材料。但是钛酸锂也有其不足之处,如理论比容量低(175mAh/g)、高嵌锂电位带来的电池电压低,进而造成电池的比能量低;同时材料本身导电性差(固有电导率10-9S/cm),大电流充放电时易产生较大的极化等而限制了其应用的推广。目前,学术界多是采用离子掺杂的方式来降低钛酸锂的电极电势(Electrochimica Acta 2008,53:7079);通过材料纳米化、制备特殊形貌的钛酸锂或采用碳或碳纳米管(CNTs)包覆等方法来解决钛酸锂材料由于电子电导率低导致材料倍率性能降低的问题(J.Am.Chem.Soc.2012,134:7874;RSC Adv.,2012,2:10306)。中国专利公开号CN201210163712.6、CN201010575269.4、CN 201310036005.5、CN201010149910.8报道了碳纳米管和碳修饰改性钛酸锂的方法,此类方法均可以提高钛酸锂的电子电导率。但是上述方法均存在一些问题:(1)离子掺杂引起钛酸锂材料的电极电势降低幅度有限,进而不可能大幅度提高材料的能量密度;(2)碳包覆多是采用价格昂贵的有机碳源高温热分解实现,能耗过高,对环境也不友好;(3)碳纳米管用前需要表面酸化或者酯化处理,过程复杂且对环境不友好;为了实现碳纳米管的均匀分散需要加入价格昂贵的分散剂。
纳米结构铁酸锌(ZnFe2O4)是优越的二元尖晶石锂离子负极材料,展现出高容量的特征,拥有稳定的嵌锂电位平台(约0.9V),不会产生析锂现象,大大提高了电池的安全性,同时该材料具有无毒、无污染、安全性能高,原材料来源广泛等优点,这为其与钛酸锂复合提升钛酸锂复合物的能量密度提供了可行性参考,但是,纯相ZnFe2O4材料的导电性较差;材料体积膨胀效应大,导致电极基体结构遭到破坏,从而影响电池的循环稳定性能。
发明内容
为弥补现有技术的不足,本发明提供一种钛酸锂改性材料及其制备方法,该材料作 为新型锂离子电池负极材料具有较高的循环比容量、高的首次充放电效率、良好的倍率性能和循环稳定性。
本发明是通过如下技术方案实现的:
一种钛酸锂改性材料,其特殊之处在于:所述改性材料由微纳结构组成,包括钛酸锂LTO、钛酸锌ZFO和氮掺杂碳纳米管NCNTs。钛酸锂作为负极材料的优势是安全性能高,循环稳定性好,首次充放电效率高,但是材料的比容量偏低、电子电导率低,成本过高;针对此问题本发明采用价格低廉的且高比容量的铁酸锌来弥补,但是对于铁酸锌而言,它的电子电导率也很低,首次充放电效率低,同时材料在充放电过程中体积膨胀过大造成稳定性下降;针对此问题,本发明采用氮掺杂碳纳米管来缓冲铁酸锌在充放电过程的体积变化稳定材料,疏导热量,增加材料的机械强度和电子电导率,同时微纳结构也有助于锂离子的嵌入和传输。
进一步,本发明的钛酸锂改性材料,化学组成为xZFO·yNCNTs·zLTO,x、y、z分别代表ZFO、NCNTs和LTO的含量,其中,0.01≤x≤0.50,0.01≤y≤0.10,0.4≤z≤0.98,x+y+z=1;NCNTs中N原子含量为0.01-6at%,LTO的平均粒度为5-100μm。
本发明的钛酸锂改性材料可以通过LTO、ZFO和NCNTs后处理混合得到,也可以通过原位合成得到。
本发明的钛酸锂改性材料的制备方法,采用后处理混合得到样品时,包括以下步骤:
(1)将NCNTs超声分散在低碳醇中;
(2)将LTO、ZFO加入到超声分散后的NCNTs中,搅拌均匀后超声,置于烘箱烘干;
(3)将烘干的混合物球磨混合;
(4)球磨好的样品在惰性气氛下退火热处理。
其中,
步骤(1)中低碳醇为甲醇、乙醇、丙醇中的一种或几种的混合。
步骤(4)中惰性气氛为He、N2或Ar,热处理温度为200-700℃,时间为0.1-10h。
本发明的钛酸锂改性材料的制备方法,采用原位合成得到样品时,包括以下步骤:
(1)将NCNTs超声分散在低碳醇中;
(2)将铁盐、锌盐溶解配成溶液;
(3)将步骤(1)分散好的NCNTs与步骤(2)的铁盐、锌盐溶液混合,充分搅拌后,进行超声处理;
(4)将LTO分次加入到步骤(3)的溶液中,充分搅拌、烘干;
(5)在惰性气氛下,将干燥后的样品升温后焙烧,冷却。
其中,
步骤(2)中铁盐为三氯化铁、硝酸铁、柠檬酸铁、乙酸铁中的至少两种,锌盐为无水硫酸锌、氯化锌、硫酸锌中的一种或几种;锌盐、铁盐中锌与铁的摩尔比为1:1.8-2.2。
步骤(3)中NCNTs与铁盐、锌盐溶液的混合方式为将分散好的NCNTs分次加入到步骤(2)的溶液中或将步骤(2)的溶液分次加入到分散好的NCNTs中,加入过程不停的搅拌。
步骤(4)中搅拌时间为0-20h。
步骤(5)中惰性气氛为He、N2或Ar,气体流速为20-1000sccm,焙烧温度为500-1000℃,处理时间为0.1-10h。
将本发明制得的钛酸锂改性材料进行电化学性能测试,测试在如下条件进行:将制得的活性材料与聚偏氟乙烯(PVDF)及导电剂按8:1:1的重量比混合,以N-甲基吡咯烷酮(NMP)为溶剂,搅拌6小时后均匀地涂于铜箔上,110℃真空烘干压片,得到工作电极片。电解液为1mol/L的LiPF6/碳酸乙烯酯(EC)-碳酸二甲酯(DMC)(体积比1:1);隔膜为聚丙烯/聚乙烯微孔膜(Celgard2500)。所有的电池(2032型纽扣电池)均在无水无氧的手套箱里组装成,锂片作为对电极。电池组装后活化12小时后测量,以使电解液充分地浸润到电极上。在电池性能测试系统上进行充放电测试,电压范围为0.5-3.0V。
本发明的有益效果是:
(1)本发明制备的负极材料是新型的三元复合负极材料;
(2)复合负极材料颗粒粉体细小且分布均匀,具有良好的电导率;
(3)钛酸锂作为主体材料可以保证材料具有高的安全性能,优异的循环稳定性,高的首次充放电效率;加入铁酸锌可以降低材料的成本,提高材料的能量密度;加入氮掺杂碳纳米管可以有效抑制材料在充放电过程中体积变化剧烈,导致容量衰减快、循环性能较差的问题,增加材料的机械强度和电子电导率,同时微纳结构也有助于锂离子的嵌入和传输;
(4)相比于目前已商业化应用的钛酸锂,本发明的材料能量密度可以提高20-40%;
(5)本发明制备工艺简单,成本低,环境友好,安全性高,实验重复性好。
附图说明
附图1是本发明实施例12的样品的SEM图。
附图2是本发明不同样品在1C倍率下的循环稳定性对比图。
附图3是本发明实施例13的样品的循环稳定性测试图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明,但并不限定于本发明的保护范围。
实施例1
本实施例采用后处理混合的方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO。
将0.2g的NCNTs的超声分散到甲醇中,然后加入0.2g的ZFO搅拌30min后继续超声1h,再加入9.6g的LTO,重复搅拌和超声步骤,置于烘箱烘干,将混合料通过球磨机进行二次搅拌混合,样品烘干后,在N2气氛下200℃热处理时间1h。
扣电测试结果,0.2C下首次放电比容量为193mAh·g-1,首次充放电效率85%,1C下的放电比容量为190mAh·g-1
实施例2
本实施例采用后处理混合的方法制备钛酸锂改性材料0.05ZFO·0.02NCNTs·0.93LTO。
将0.2g的NCNTs的超声分散到已醇中,然后加入0.5g的ZFO搅拌30min后继续超声1h,再加入9.3g的LTO,重复搅拌和超声步骤,置于烘箱烘干,将混合料通过球磨机进行二次搅拌混合,样品烘干后,在N2气氛下500℃热处理时间0.5h。
扣电测试结果,0.2C下首次放电比容量为228mAh·g-1,首次充放电效率82%,1C下的放电比容量为195mAh·g-1
实施例3
本实施例采用后处理混合的方法制备钛酸锂改性材料0.1ZFO·0.05NCNTs·0.88LTO。
将0.2g的NCNTs的超声分散到丙醇中,然后加入1.0g的ZFO搅拌30min后继续超声1h,再加入8.8g的LTO,重复搅拌和超声步骤,置于烘箱烘干,将混合料通过球磨机进行二次搅拌混合,样品烘干后,在N2气氛下300℃热处理时间1h。
扣电测试结果,0.2C下首次放电比容量为258mAh·g-1,首次充放电效率77%,1C下的放电比容量为210mAh·g-1
实施例4
本实施例采用后处理混合的方法制备钛酸锂改性材料0.5ZFO·0.05NCNTs·0.4LTO。
将0.5g的NCNTs的超声分散到甲醇中,然后加入5.0g的ZFO搅拌30min后继续超 声1h,再加入4.5g的LTO,重复搅拌和超声步骤,置于烘箱烘干,将混合料通过球磨机进行二次搅拌混合,样品烘干后,在N2气氛下500℃热处理时间1h。
扣电测试结果,0.2C下首次放电比容量为538mAh·g-1,首次充放电效率65%,1C下的放电比容量为350mAh·g-1
实施例5
本实施例采用后处理混合的方法制备钛酸锂改性材料0.5ZFO·0.1NCNTs·0.4LTO。
将1.0g的NCNTs的超声分散到已醇中,然后加入5.0g的ZFO搅拌30min后继续超声1h,再加入4.0g的LTO,重复搅拌和超声步骤,置于烘箱烘干,将混合料通过球磨机进行二次搅拌混合,样品烘干后,在N2气氛下700℃热处理时间10h。
扣电测试结果,0.2C下首次放电比容量为658mAh·g-1,首次充放电效率70%,1C下的放电比容量为558mAh·g-1。
实施例6
本实施例以硝酸铁为铁源,采用原位合成方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO(锌和铁的化学计量比为1:2)。
称取0.25g的硝酸锌和0.67g的硝酸铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入9.6g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,700℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为198mAh·g-1,首次充放电效率89%,1C下的放电比容量为193mAh·g-1
实施例7
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO(锌和铁的化学计量比为1:1.8)。
称取0.25g的硝酸锌和0.60g的硝酸铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入9.6g的LTO充分搅拌后置于烘箱烘干,在气体流速500sccm N2惰性气流下,700℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为195mAh·g-1,首次充放电效率90%,1C下的放电比容量为190mAh·g-1
实施例8
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO(锌和铁的化学计量比为1:2.2)。
称取0.25g的硝酸锌和0.74g的硝酸铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到已醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入9.6g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,800℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为190mAh·g-1,首次充放电效率85%,1C下的放电比容量为185mAh·g-1
实施例9
本实施例以三氯化铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO。
称取0.25g的硝酸锌和0.44g的三氯化铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入9.6g的LTO充分搅拌后置于烘箱烘干,在气体流速50sccm N2惰性气流下,700℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为180mAh·g-1,首次充放电效率80%,1C下的放电比容量为173mAh·g-1
实施例10
本实施例以乙酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO。
称取0.25g的硝酸锌和0.70g的乙酸铁溶解于丙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入9.6g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,600℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为175mAh·g-1,首次充放电效率89%,1C下的放电比容量为165mAh·g-1。
实施例11
本实施例以氯化锌为锌源,采用原位合成的方法制备钛酸锂改性材料0.02ZFO·0.02NCNTs·0.96LTO。
称取0.20g的氯化锌和0.44g的三氯化铁溶解于乙醇溶液,将0.2g的NCNTs超声分 散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入9.6g的LTO充分搅拌后置于烘箱烘干,在气体流速1000sccm N2惰性气流下,700℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为178mAh·g-1,首次充放电效率88%,1C下的放电比容量为174mAh·g-1
实施例12
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.1ZFO·0.02NCNTs·0.88LTO。
称取1.23g的硝酸锌和3.35g的硝酸铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入8.8g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,700℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为250mAh·g-1,首次充放电效率84%,1C下的放电比容量为200mAh·g-1
实施例13
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.1ZFO·0.02NCNTs·0.88LTO。
称取1.23g的硝酸锌和3.68g的硝酸铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌5h并超声处理10h,然后加入8.8g的LTO充分搅拌后置于烘箱烘干,在气体流速80sccm N2惰性气流下,600℃热处理时间5h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为230mAh·g-1,首次充放电效率87%,1C下的放电比容量为195mAh·g-1
实施例14
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.1ZFO·0.1NCNTs·0.8LTO。
称取1.23g的硝酸锌和3.68g的硝酸铁溶解于乙醇溶液,将1.0g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌5h并超声处理10h,然后加入8.0g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,800℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为230mAh·g-1,首次充放电效率82%,1C下的放电比容量为205mAh·g-1
实施例15
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.5ZFO·0.02NCNTs·0.48LTO。
称取6.17g的硝酸锌和16.76g的硝酸铁溶解于乙醇溶液,将0.2g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌5h并超声处理10h,然后加入4.8g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,1000℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为650mAh·g-1,首次充放电效率65%,1C下的放电比容量为589mAh·g-1
实施例16
本实施例以硝酸铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.5ZFO·0.1NCNTs·0.4LTO。
称取6.17g的硝酸锌和16.76g的硝酸铁溶解于乙醇溶液,将1.0g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌5h并超声处理10h,然后加入4.0g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,700℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为670mAh·g-1,首次充放电效率75%,1C下的放电比容量为600mAh·g-1
实施例17
本实施例以三氯化铁为铁源,采用原位合成的方法制备钛酸锂改性材料0.5ZFO·0.1NCNTs·0.4LTO。
称取6.17g的硝酸锌和11.2g的三氯化铁溶解于丙醇溶液,将1.0g的NCNTs超声分散到甲醇中,紧接着将超声分散后的NCNTs加入到上述溶液中,不断搅拌10h并超声处理10h,然后加入4.0g的LTO充分搅拌后置于烘箱烘干,在气体流速100sccm N2惰性气流下,1000℃热处理时间10h,然后冷却,即得该材料。
扣电测试结果,0.2C下首次放电比容量为560mAh·g-1,首次充放电效率79%,1C下的放电比容量为520mAh·g-1
对比实施例
本实施例分别以LTO和ZFO作为电极材料进行电化学测试。
针对上述不同实施例的样品在不同倍率下测得的比容量如下表所示:
Figure PCTCN2016085326-appb-000001

Claims (10)

  1. 一种钛酸锂改性材料,其特征在于:所述改性材料由微纳结构组成,包括钛酸锂LTO、钛酸锌ZFO和氮掺杂碳纳米管NCNTs。
  2. 根据权利要求1所述的一种钛酸锂改性材料,其特征在于:所述改性材料的化学组成为xZFO·yNCNTs·zLTO,x、y、z分别代表ZFO、NCNTs和LTO的含量,其中,0.01≤x≤0.50,0.01≤y≤0.10,0.4≤z≤0.98,x+y+z=1。
  3. 根据权利要求1或2所述的一种钛酸锂改性材料,其特征在于:所述NCNTs中N原子含量为0.01-6at%,LTO的平均粒度为5-100μm。
  4. 根据权利要求1所述的一种钛酸锂改性材料的制备方法,其特征在于:采用后处理混合得到样品,包括以下步骤:
    (1)将NCNTs超声分散在低碳醇中;
    (2)将LTO、ZFO加入到超声分散后的NCNTs中,搅拌均匀后超声,置于烘箱烘干;
    (3)将烘干的混合物球磨混合;
    (4)球磨好的样品在惰性气氛下退火热处理。
  5. 根据权利要求4所述的一种钛酸锂改性材料的制备方法,其特征在于:步骤(1)中低碳醇为甲醇、乙醇、丙醇中的一种或几种的混合。
  6. 根据权利要求4所述的一种钛酸锂改性材料的制备方法,其特征在于:步骤(4)中惰性气氛为He、N2或Ar,热处理温度为200-700℃,时间为0.1-10h。
  7. 根据权利要求1所述的一种钛酸锂改性材料的制备方法,其特征在于:采用原位合成得到样品,包括以下步骤:
    (1)将NCNTs超声分散在低碳醇中;
    (2)将铁盐、锌盐溶解配成溶液;
    (3)将步骤(1)分散好的NCNTs与步骤(2)的铁盐、锌盐溶液混合,充分搅拌后,进行超声处理;
    (4)将LTO分次加入到步骤(3)的溶液中,充分搅拌、烘干;
    (5)在惰性气氛下,将干燥后的样品升温后焙烧,冷却。
  8. 根据权利要求7所述的一种钛酸锂改性材料的制备方法,其特征在于:步骤(2)中铁盐为三氯化铁、硝酸铁、柠檬酸铁、乙酸铁中的至少两种,锌盐为无水硫酸锌、氯化锌、硫酸锌中的一种或几种;锌盐、铁盐中锌与铁的摩尔比为1:1.8-2.2。
  9. 根据权利要求7所述的一种钛酸锂改性材料的制备方法,其特征在于:步骤(3)中NCNTs与铁盐、锌盐溶液的混合方式为将分散好的NCNTs分次加入到步骤(2)的溶液中 或将步骤(2)的溶液分次加入到分散好的NCNTs中,加入过程不停的搅拌。
  10. 根据权利要求7所述的一种钛酸锂改性材料的制备方法,其特征在于:步骤(4)中搅拌时间为0-20h;步骤(5)中惰性气氛为He、N2或Ar,气体流速为20-1000sccm,焙烧温度为500-1000℃,处理时间为0.1-10h。
PCT/CN2016/085326 2016-05-20 2016-06-08 一种钛酸锂改性材料及其制备方法 WO2017197675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610338193.0 2016-05-20
CN201610338193.0A CN105895878A (zh) 2016-05-20 2016-05-20 一种钛酸锂改性材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017197675A1 true WO2017197675A1 (zh) 2017-11-23

Family

ID=56716655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085326 WO2017197675A1 (zh) 2016-05-20 2016-06-08 一种钛酸锂改性材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105895878A (zh)
WO (1) WO2017197675A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378463A (zh) * 2018-11-27 2019-02-22 中南大学 锂离子电池复合负极材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318821A (zh) * 2017-12-14 2018-07-24 合肥国轩高科动力能源有限公司 一种快速预测锂电三元材料循环性能的方法
CN109980223A (zh) * 2017-12-28 2019-07-05 张家港市国泰华荣化工新材料有限公司 一种钛酸锂/碳纳米管复合材料及其制备方法和应用
CN110104677B (zh) * 2019-04-01 2021-08-06 桂林电子科技大学 复合钛酸锂材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630732A (zh) * 2009-07-27 2010-01-20 深圳市德方纳米科技有限公司 纳米钛酸锂复合物及其制备方法
WO2012163426A1 (en) * 2011-06-01 2012-12-06 Westfälische Wilhelms Universität Electrode material for lithium and lithium ion batteries
CN103326013A (zh) * 2012-03-23 2013-09-25 株式会社东芝 非水电解质电池和电池组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201769A (zh) * 1998-04-13 1998-12-16 中国科学院固体物理研究所 铁酸锌-二氧化钛纳米复合材料及其制备方法
CN102154739B (zh) * 2010-12-30 2012-09-26 湘潭大学 锂离子电池负极材料ZnFe2O4/C纳米纤维的制备方法
CN102553595A (zh) * 2011-12-22 2012-07-11 南京理工大学 一种纳米铁酸盐/碳纳米管复合材料的制备方法
CN104600289B (zh) * 2014-12-30 2017-12-12 深圳市贝特瑞新能源材料股份有限公司 一种高容量的钛酸锂‑铁酸锌的复合负极材料及其制备方法
CN105576214A (zh) * 2016-02-29 2016-05-11 山东玉皇新能源科技有限公司 基于碳氮导电层修饰钛酸锂材料的改性方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630732A (zh) * 2009-07-27 2010-01-20 深圳市德方纳米科技有限公司 纳米钛酸锂复合物及其制备方法
WO2012163426A1 (en) * 2011-06-01 2012-12-06 Westfälische Wilhelms Universität Electrode material for lithium and lithium ion batteries
CN103326013A (zh) * 2012-03-23 2013-09-25 株式会社东芝 非水电解质电池和电池组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378463A (zh) * 2018-11-27 2019-02-22 中南大学 锂离子电池复合负极材料及其制备方法

Also Published As

Publication number Publication date
CN105895878A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
US9437870B2 (en) Nano-silicon composite lithium ion battery anode material coated with poly (3,4-ethylenedioxythiophene) as carbon source and preparation method thereof
WO2015188726A1 (zh) 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用
CN103219168B (zh) 一种Li4Ti5O12/石墨烯复合电极材料及其制备方法
CN102376937A (zh) 一种纳米钛酸锂/石墨烯复合负极材料及其制备方法
Sun et al. Fe2O3/CNTs composites as anode materials for lithium-ion batteries
WO2020108040A1 (zh) 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
CN109768260B (zh) 一种磷化二钴/碳复合材料及其制备方法和用途
CN109494360B (zh) 一种氧化亚硅复合材料及其制备方法
WO2015051627A1 (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
WO2023097983A1 (zh) 一种普鲁士白复合材料及其制备方法和应用
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
WO2017197675A1 (zh) 一种钛酸锂改性材料及其制备方法
CN110783564A (zh) 一种氮掺杂碳包覆三元正极材料及其制备方法
CN106374086B (zh) 纳米钛酸锂-石墨烯复合材料及其制备方法
Xu et al. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries
Niu et al. High-rate lithium storage of TiNb2O7/reduced graphene oxide
CN113937262A (zh) 一种用于钠离子电池的金属氧化物改性的正极材料及其制备方法和应用
CN110759379B (zh) 一种0d/2d异质结构复合负极材料的制备方法及其应用
CN108695509B (zh) 高储能效率复合型锂电池正极及其制备方法和锂电池
CN108598405B (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
CN105826556A (zh) 一种超薄层状硫化铌及其制备方法与在锂/钠离子电池中的应用
CN114300671A (zh) 一种石墨复合负极材料及其制备方法和应用
CN114242961A (zh) 一种石墨烯/硅的氧化物包覆纳米硅复合材料及制备方法与应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902057

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902057

Country of ref document: EP

Kind code of ref document: A1