WO2017195254A1 - ループヒートパイプ及びその製造方法並びに電子機器 - Google Patents
ループヒートパイプ及びその製造方法並びに電子機器 Download PDFInfo
- Publication number
- WO2017195254A1 WO2017195254A1 PCT/JP2016/063762 JP2016063762W WO2017195254A1 WO 2017195254 A1 WO2017195254 A1 WO 2017195254A1 JP 2016063762 W JP2016063762 W JP 2016063762W WO 2017195254 A1 WO2017195254 A1 WO 2017195254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- liquid pipe
- pipe
- liquid
- evaporator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20336—Heat pipes, e.g. wicks or capillary pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20309—Evaporators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20318—Condensers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20327—Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
Definitions
- the present invention relates to a loop heat pipe, a manufacturing method thereof, and an electronic device.
- sheet-like heat conducting members such as metal plates and heat diffusion sheets are widely used to cool heat-generating components.
- metal plates copper, aluminum, magnesium alloy, and a thin plate obtained by laminating these are used as the metal plate, and the heat conduction performance is determined by the thermal conductivity of the material.
- a graphite sheet is used as the thermal diffusion sheet, and the thermal conductivity is about 500 to about 1500 W / mK. With this level of thermal conductivity, There is a possibility that heat transfer cannot be sufficiently performed.
- a heat pipe that is a heat transfer device that uses the latent heat of vaporization of the refrigerant, regardless of the heat conduction of the material.
- a heat pipe having a diameter of about 3 to about 4 mm corresponds to about 1500 to about 2500 W / mK in terms of thermal conductivity, and shows a larger value than a sheet-like heat conductive member.
- the diameter of the pipe, which is a heat transport pipe is increased, which is a problem in mounting the heat pipe in the apparatus, and its application to mobile devices is not progressing. .
- an evaporator, a condenser, a vapor pipe, and a liquid pipe are manufactured and thinned by laminating six metal thin plates and performing diffusion bonding.
- This loop heat pipe is composed of an evaporator for evaporating the liquid-phase working fluid, a condenser for condensing the gas-phase working fluid, a vapor pipe through which the vapor-phase working fluid flows and connecting the evaporator and the condenser.
- the evaporator, the condenser, the vapor pipe, and the liquid pipe include a first plate member and a second plate member.
- the first plate-like member has a joined structure, and a plurality of first plate members extending in a length direction from the side where the liquid pipe is connected to the side where the steam pipe is connected to the region serving as the evaporator.
- the second plate-shaped member includes a convex portion, a plurality of second convex portions extending in the width direction intersecting the length direction, and a plurality of first concave portions partitioned by the first convex portion and the second convex portion.
- At least one of a plurality of third protrusions extending in the length direction and a plurality of fourth protrusions extending in the width direction in the region to be the evaporator, and a third And a plurality of second concave portions partitioned by at least one of the first and fourth convex portions, and the first plate-like member and the second plate-like member are regions serving as an evaporator, the first concave portion and the third convex portion.
- the first concave portion and the second concave portion on both sides of at least one of the third convex portion and the fourth convex portion are joined so as to face each other and at least one of the first convex portion and the fourth convex portion.
- the electronic apparatus includes a heat generating component and a loop heat pipe that cools the heat generating component, and the loop heat pipe is configured as described above.
- the manufacturing method of this loop heat pipe processes the 1st plate-shaped member, and extends in the length direction which goes to the side where a steam pipe is connected from the side where a liquid pipe is connected to the field used as an evaporator.
- a second recess includes a step of bonding so as to communicate.
- (A), (B) is a schematic plan view which shows the structural example of the cross-girder pattern structure provided in the evaporator with which the loop heat pipe concerning this embodiment is equipped, (A) is a 1st plate-shaped member. The cross-girder pattern provided is shown, and (B) shows the cross-girder pattern provided on the second plate member.
- (A), (B) is a schematic diagram which shows the structural example of the cross-girder pattern structure provided in the evaporator with which the loop heat pipe concerning this embodiment is provided, (A) is a 1st plate-shaped member and 2nd. It is a top view which shows the state which piled up the plate-shaped member, (B) is sectional drawing which follows AA 'of (A).
- (A), (B) is a schematic plan view which shows the structure of the modification of the cross-girder pattern structure provided in the evaporator with which the loop heat pipe concerning this embodiment is provided, and is provided in a 2nd plate-shaped member.
- the cross-girder pattern is shown.
- (A)-(C) is a schematic plan view showing the configuration of a modified example of the cross-girder pattern structure provided in the evaporator provided in the loop heat pipe according to the present embodiment, (A) is a first plate shape The cross-girder pattern provided in a member is shown, (B) shows the cross-girder pattern provided in the 2nd plate-like member, and (C) has piled up the 1st plate-like member and the 2nd plate-like member. Indicates the state.
- (A)-(C) is a schematic plan view showing the configuration of a modified example of the cross-girder pattern structure provided in the evaporator provided in the loop heat pipe according to the present embodiment
- (A) is a first plate shape The cross-girder pattern provided in a member is shown
- (B) shows the cross-girder pattern provided in the 2nd plate-like member
- (C) has piled up the 1st plate-like member and the 2nd plate-like member. Indicates the state.
- (A), (B) is a schematic plan view which shows the structure of the modification of the cross-girder pattern structure provided in the evaporator with which the loop heat pipe concerning this embodiment is provided
- (A) is 2nd plate shape.
- the cross-girder pattern provided in a member is shown, (B) has shown the state which piled up the 1st plate-shaped member and the 2nd plate-shaped member.
- (A), (B) is a schematic diagram for demonstrating the specific structural example of the loop heat pipe concerning this embodiment, and its manufacturing method. It is a schematic diagram which shows the structural example in case the liquid pipe with which the loop heat pipe concerning this embodiment is provided with a groove
- the loop heat pipe according to the present embodiment is provided in a small and thin mobile electronic device such as a smartphone or a tablet terminal, and moves heat generated by a heat generating component (for example, an LSI chip) provided in the electronic device, It is a thin loop heat pipe that cools heat-generating components that are heat sources.
- a heat generating component for example, an LSI chip
- the loop heat pipe of the present embodiment includes an evaporator 2 in which a liquid-phase working fluid evaporates, a condenser 3 in which a gas-phase working fluid condenses, an evaporator 2, and a condenser 3. Are connected, the vapor pipe 4 through which the gas-phase working fluid flows, and the condenser 3 and the evaporator 2 are connected to each other, and a liquid pipe 5 through which the liquid-phase working fluid flows.
- the condenser 3 includes a condensing tube 3A and a heat diffusion plate (heat radiating plate) 3B.
- the loop heat pipe 1 configured as described above is configured so that the evaporator 2 is thermally connected to the heat generating component 7 provided in the mobile device 6 as shown in FIGS. 6 is housed.
- the working fluid is, for example, water, ethanol, acetone, methanol, or chlorofluorocarbons.
- the evaporator 2 has one liquid inlet and one vapor outlet
- the condenser 3 has one vapor inlet and one liquid outlet.
- the vapor outlet of the evaporator 2 and the vapor inlet of the condenser 3 are connected via a vapor pipe 4, and the liquid outlet of the condenser 3 and the liquid inlet of the evaporator 2 are connected via a liquid pipe 5. Connected.
- the evaporator 2, the vapor pipe 4, the condenser 3, and the liquid pipe 5 are connected in a loop shape, and the working fluid sealed in these flows in one direction.
- the working fluid changes from the liquid phase to the gas phase by the heat supplied from the heat-generating component 7 to the evaporator 2, moves with heat to the condenser 3 through the vapor pipe 4, and in the condenser 3.
- the gas phase changes from the gas phase to the liquid phase due to heat dissipation, and returns to the evaporator 2 through the liquid pipe 5.
- the evaporator 2, the condenser 3, the steam pipe 4 and the liquid pipe 5 have a structure in which a first plate-like member 8 and a second plate-like member 9 are joined [FIG. 16 (A). FIG. 16B]. That is, the evaporator 2, the condenser 3, the steam pipe 4 and the liquid pipe 5 are composed of two upper and lower plate-like members 8 and 9.
- the first plate-like member 8 is directed from the side where the liquid pipe 5 is connected to the side where the steam pipe 4 is connected to the region to be the evaporator 2.
- a plurality of first projections 10 extending in the length direction, a plurality of second projections 11 extending in the width direction intersecting the length direction, and a plurality of partitions partitioned by the first projections 10 and the second projections 11 A first recess 12.
- the plurality of first recesses 12 have a depth smaller than the plate thickness.
- the length direction is also referred to as the length direction of the evaporator 2.
- the width direction is also referred to as the width direction of the evaporator 2.
- the convex portion is also referred to as a convex structure or a wall.
- the concave portion is also referred to as a concave structure.
- the 1st plate-shaped member 8 is a metal plate (metal thin plate), specifically, a copper plate (copper thin plate).
- the first plate-like member 8 has a plurality of first recesses 12 arranged in a dot shape in a region to be the evaporator 2 so as to have a depth smaller than the plate thickness by processing such as half etching. These have the cross-girder pattern structure (cross-girder structure; cross-girder pattern) 13 partitioned by the first convex part 10 and the second convex part 11.
- the plurality of first concave portions 12 are half-etched portions, have a concave structure composed of a space surrounded by a bottom surface and side surfaces, and are arranged at regular intervals in a dot shape.
- the evaporator 2 includes a comb-like steam flow path 18 and a comb-like portion 19 that generates a capillary force (see FIG. 9).
- the cross-girder pattern structure 13 is provided in the comb-tooth shaped part 19.
- the 1st recessed part 12 is extended to the middle of the plate
- the second plate-like member 9 has a plurality of third convex portions 14 extending in the length direction and a plurality of fourth protrusions extending in the width direction in the region to be the evaporator 2.
- a convex portion 15 and a plurality of second concave portions 16 partitioned by the third convex portion 14 and the fourth convex portion 15 are provided.
- the plurality of second recesses 16 have a depth smaller than the plate thickness.
- the 2nd plate-shaped member 9 is a metal plate (metal thin plate), specifically, a copper plate (copper thin plate).
- the second plate-like member 9 has a plurality of second recesses 16 arranged in the region to be the evaporator 2 so as to have a depth smaller than the plate thickness by processing such as half etching. It has a cross-girder pattern structure (cross-girder structure; cross-girder pattern) 17 partitioned by the third convex part 14 and the fourth convex part 15.
- the plurality of second concave portions 16 are half-etched portions, have a concave structure composed of a space surrounded by a bottom surface and side surfaces, and are arranged at regular intervals in a dot shape.
- the evaporator 2 includes a comb-like steam flow path 18 and a comb-like portion 19 that generates a capillary force (see FIG. 9).
- a cross-girder pattern structure 17 is provided on the comb-like portion 19.
- the 2nd recessed part 16 is extended to the middle of the plate
- the first plate-like member 8 and the second plate-like member 9 are, as shown in FIGS. 2 (A) and 2 (B), the first concave portion 12 and the third convex portion in the region that becomes the evaporator 2.
- the part 14 and the fourth convex part 15 face each other, and the first concave part 12 and the second concave part 16 on both sides of the third convex part 14 and the fourth convex part 15 are joined so as to communicate with each other.
- first plate-like member 8 and the second plate-like member 9 are regions to be the evaporator 2, and the second concave portion 16, the first convex portion 10, and the second convex portion 11 face each other, and the second concave portion. 16 and the 1st recessed part of the both sides of the 1st convex part 10 and the 2nd convex part 11 are joined so that it may communicate.
- first recess 12 and the second recess 16 are inside, and the positions (opening positions) of the first recess 12 and the second recess 16 are the same.
- the first concave portion 12 and the second concave portion 16 are overlapped and joined so as to be shifted from each other so as to be in different positions.
- the first recess 12 and the second recess 16 opened only upward are communicated, and the communicated portion (space ) Becomes a flow path and functions in the same way as a wick provided in an evaporator of a general loop heat pipe, generates capillary force, penetrates the liquid-phase working fluid, and becomes a gas-phase working fluid It will be.
- the cross-sectional area of the flow path communicating with the recess 16 can be reduced, and the capillary force generated in the evaporator 2 can be increased.
- first plate-like member 8 and the second plate-like member 9 are formed at the center of the first recess 12 of the first plate-like member 8 at the third convex portion 14 and the fourth convexity of the second plate-like member 9.
- the portion where the portion 15 intersects is located, and the first convex portion 10 and the second convex portion 11 of the first plate-like member 8 intersect the central portion of the second concave portion 16 of the second plate-like member 9. It is preferable to join so that the part to perform is located. Thereby, the cross-sectional area of the flow path communicating with the first recess 12 and the second recess 16 can be reduced uniformly, and the capillary force generated in the evaporator 2 can be further increased.
- interval, a shape, etc. are not restricted to what is illustrated here. Further, the number, interval, shape, opening area, and the like of the first recess 12 and the second recess 16 are not limited to those illustrated here. In addition, it is not restricted to the above-mentioned structure, As shown to FIG. 3 (A) and FIG. 3 (B), the 2nd plate-shaped member 9 is the some extended in the length direction in the area
- the 1st plate-shaped member 8 and the 2nd plate-shaped member 9 are the area
- the first concave portion 12 and the second concave portion 16 on both sides of at least one of the third convex portion 14 and the fourth convex portion 15 may be joined so as to communicate with each other.
- the some 1st convex part 10 is provided in parallel mutually.
- the plurality of second convex portions 11 are provided in parallel to each other and are provided so as to be orthogonal to the first convex portion 10.
- the plurality of third convex portions 14 are provided in parallel to each other and in parallel with the first convex portion 10.
- the plurality of fourth convex portions 15 are provided in parallel with each other and are provided in parallel with the second convex portion 11. In this case, the plurality of fourth convex portions 15 are provided to be orthogonal to the third convex portion 14.
- the plurality of third convex portions 14 may be provided in parallel to each other and in parallel with the first convex portion 10.
- the plurality of fourth convex portions 15 may be provided in parallel to each other and provided in parallel with the second convex portion 11. .
- a plurality of first protrusions 10 are provided in parallel to each other, and a plurality of second protrusions 10 are provided.
- the convex portions 11 are provided in parallel to each other, and are provided so as to obliquely intersect the first convex portion 10 (having a certain angle), and the plurality of third convex portions 14 are Provided in parallel with each other, and provided in parallel with the first convex portion 10, the plurality of fourth convex portions 15 are provided in parallel with each other, and in parallel with the second convex portion 11. It may be provided.
- the 4th convex part 15 is provided so that it may cross
- the plurality of third convex portions 14 may be provided in parallel to each other and in parallel with the first convex portion 10.
- the plurality of fourth convex portions 15 may be provided in parallel to each other and provided in parallel with the second convex portion 11. .
- the intervals between the portions 11, the intervals between the plurality of third protrusions 14, and the intervals between the plurality of fourth protrusions 15 are the same.
- the interval between the plurality of first protrusions 10, the interval between the plurality of second protrusions 11, the interval between the plurality of third protrusions 14, and the interval between the plurality of fourth protrusions 15 are limits that can be formed by etching.
- the interval is equivalent to a fine groove having a size of 1 mm (that is, a fine groove having a size capable of generating the most capillary force).
- the interval between the plurality of first protrusions 10, the interval between the plurality of second protrusions 11, and the interval between at least one of the plurality of third protrusions 14 and the plurality of fourth protrusions 15 may be the same.
- the 1st recessed part 12 and the 2nd recessed part 16 are the same size (the same opening area).
- the 1st plate-shaped member 8 is used.
- the first plate member 9 and the second plate-like member 9 are shifted and joined, the first concave portion 12 and the second concave portion 16 can be easily aligned, and a flow path that connects the first concave portion 12 and the second concave portion 16 is ensured. It becomes possible to do.
- the first plate-like member 8 is made of the same material for the first and second convex portions 10 and 11 that constitute the side surface of the first concave portion 12 and the bottom surface of the first concave portion 12.
- the third convex portion 14 and the fourth convex portion 15 constituting the side surface of the second concave portion 16 and the bottom surface of the second concave portion 16 are made of the same material.
- the second plate-like member 9 is made of the same material as at least one of the third convex portion 14 and the fourth convex portion 15 constituting the side surface of the second concave portion 16 and the bottom surface of the second concave portion 16. It ’s fine.
- the 1st recessed part 12 and the 2nd recessed part 16 are formed here by half etching as mentioned above, although it is the same material, it is not restricted to this.
- the first plate-like member 8 may be made of a material in which the first convex portion 10 and the second convex portion 11 constituting the side surface of the first concave portion 12 and the bottom surface of the first concave portion 12 are different.
- the 2nd plate-shaped member 9 may consist of a material from which the 3rd convex part 14 and the 4th convex part 15 which comprise the side surface of the 2nd recessed part 16, and the bottom face of the 2nd recessed part 16 differ.
- it may be such that a metal mesh member is attached to a plate member.
- the present invention is not limited to the above-described configuration.
- the first convex portion 10 and the second convex portion 11 constituting the side surface of the first concave portion 12 are The first communication groove 20 that communicates between the adjacent first recesses 12 may be provided.
- the first communication groove 20 may be provided in at least one location of the first convex portion 10 and the second convex portion 11 constituting the side surface of the first concave portion 12.
- the first communication groove 20 may be provided in at least one side convex portion.
- the first communication groove 20 may be formed by removing a part of the first convex portion 10 and the second convex portion 11 constituting the side surface of the first concave portion 12. Further, the second plate-like member 9 is divided into a plurality of third convex portions 14, a plurality of fourth convex portions 15, and a plurality of second concave portions 16 partitioned by the third convex portions 14 and the fourth convex portions 15.
- the third convex portion 14 and the fourth convex portion 15 constituting the side surface of the second concave portion 16 may include the second communication groove 21 that communicates between the adjacent second concave portions 16. good.
- the 2nd communicating groove 21 should just be provided in the at least 1 place of the 3rd convex part 14 and the 4th convex part 15 which comprise the side surface of the 2nd recessed part 16.
- FIG. For example, when the side surface of the second concave portion 16 is defined by four side convex portions, it is only necessary that the second communication groove 21 is provided in at least one side convex portion.
- the second communication groove 21 may be formed by removing a part of the third convex portion 14 and the fourth convex portion 15 constituting the side surface of the second concave portion 16.
- the evaporator 2 includes a liquid inlet 22 to which the liquid pipe 5 is connected, a vapor outlet 23 to which the steam pipe 4 is connected, and a liquid phase A comb-tooth-shaped portion 19 into which the working fluid permeates and becomes a gas-phase working fluid, and a comb-tooth-shaped steam channel 18 through which the gas-phase working fluid flows.
- the comb-like portion 19 is branched and extended from the side to which the liquid pipe 5 is connected, and includes a plurality of branched portions (branched portions; rib-shaped portions) 19A. That is, the comb-tooth shaped portion 19 is a portion extending in a comb-tooth shape from the liquid inlet 22 toward the inside, and is connected to the liquid pipe 5.
- the comb-shaped steam flow path 18 is provided so as to face the comb-shaped portion 19, and is branched from the side to which the steam pipe 4 is connected.
- a path 18A is provided. That is, the comb-shaped steam flow path 18 is a steam flow path extending in a comb-tooth shape from the steam outlet 23 toward the inside, and is connected to the steam pipe 4.
- the vapor channel 18 is also referred to as a vapor discharge channel because it is a channel through which the vapor-phase working fluid flowing inside the evaporator 2 is discharged to the vapor pipe 4.
- a plurality of steam flow paths 18 ⁇ / b> A where the comb-shaped steam flow paths 18 are branched are provided between the plurality of parts 19 ⁇ / b> A where the comb-shaped portions 19 are branched. That is, a plurality of portions 19A branched from the comb-like portion 19 and a plurality of steam passages 18A branched from the comb-like steam passage 18 are alternately arranged in the in-plane direction. Thereby, thickness reduction of the evaporator 2 is achieved.
- the 1st plate-shaped member 8 is provided with the 1st convex part 10, the 2nd convex part 11, and the 1st recessed part 12 in the area
- the 2nd plate-shaped member 9 is provided with the 3rd convex part 14, the 4th convex part 15, and the 2nd recessed part 16 in the area
- only one of the third convex portion 14 and the fourth convex portion 15 may be provided [see FIGS. 3A and 3B].
- the 2nd plate-shaped member 9 should just be provided with the 2nd recessed part 16 at least one of the 3rd convex part 14 and the 4th convex part 15 in the area
- the 1st convex part 10 with which the 1st plate-shaped member 8 is equipped is parallel to several steam flow path 18A where the comb-shaped steam flow path 18 is branched (namely, the direction through which steam flows).
- the 2nd convex part 11 with which the 1st plate-shaped member 8 is provided is provided so that it may orthogonally cross to several steam flow path 18A where the comb-shaped steam flow path 18 is branched.
- the 3rd convex part 14 with which the 2nd plate-shaped member 9 is provided is provided in parallel with several steam flow path 18A where the comb-shaped steam flow path 18 is branched.
- the 4th convex part 15 with which the 2nd plate-shaped member 9 is provided is provided so that it may orthogonally cross to several steam flow path 18A where the comb-shaped steam flow path 18 is branched.
- the 2nd convex part 11 with which the 1st plate-shaped member 8 is equipped may be provided so that it may cross
- the 4th convex part 15 with which the 2nd plate-shaped member 9 is equipped may be provided so that it may cross
- the first plate-like member 8 includes a plurality of wide grooves wider than the interval between the plurality of first convex portions 10 in the region that becomes the comb-like steam flow path 18, and the second plate-like member 9 is A wide groove provided in the first plate-like member 8 and the second plate-like member 9 includes a plurality of wide grooves wider than the interval between the plurality of third convex portions 14 in a region that becomes the comb-shaped steam flow path 18. It is preferable that the steam flow path 18 is constituted by the above.
- the wide groove provided in the first plate-like member 8 and the second plate-like member 9 has a size that can constitute a flow path through which the gas-phase working fluid flows and the gas-phase working fluid is discharged to the vapor pipe 4. It is sufficient to be a groove, and it is also called a groove.
- the comb-shaped steam flow path 18 is configured such that the flow path widths of the plurality of branched steam flow paths 18A are larger than the intervals between the plurality of first protrusions 10 (or the third protrusions 14). It is preferable that it is wide. Thereby, the pressure loss can be reduced.
- the plurality of branched portions 19A (see FIG. 9) of the comb-shaped portion 19 are respectively adjacent to two adjacent ones of the plurality of steam channels 18A branched from the comb-shaped steam channel 18. It is preferable to include a third communication groove 30 that communicates with the steam flow path 18A.
- the third communication groove 30 may be provided in at least one of the first plate-like member 8 and the second plate-like member 9.
- FIG. 6 (A) and FIG. 6 (B) the case where the 3rd communicating groove 30 is provided in the 2nd plate-shaped member 9 is illustrated.
- the adjacent two adjacent to the cross beam pattern 17 (13) provided in the comb-shaped portion 19A sandwiched between the plurality of branched steam channels 18A of the comb-shaped steam channel 18 of the evaporator 2 is provided.
- the 3rd communication groove 30 which connects two steam flow paths will be provided.
- the adjacent steam flow paths 12 are communicated by the third communication groove 14, so that the pressure difference between the steam flow paths 12 is eliminated, and the pressure in the evaporator 2 due to the generation of steam.
- the distribution is lost, and the gas-phase working fluid generated by the heat from the heat-generating component 7 that is a heat source is uniformly discharged to the vapor pipe 4. Thereby, it becomes possible to shorten the starting time of the loop heat pipe 1.
- the number, interval, and shape of the plurality of portions 19A branched from the comb-like portion 19 are not limited to those exemplified above. Further, the number, interval, and shape of the plurality of steam channels 18A branched from the comb-shaped steam channel 18 are not limited to those exemplified above.
- the evaporator 2 is good also as a thing which is not provided with the comb-tooth-shaped part 19 and the comb-tooth-shaped steam flow path 18. That is, in the evaporator 2, for example, as shown in FIG.
- a portion that generates a capillary force that is, a portion 19X that penetrates a liquid-phase working fluid and becomes a gas-phase working fluid, and a gas-phase working fluid You may comprise as what is provided with the flowing steam flow path 18X.
- the loop heat pipe 1 includes an evaporator 2, a condenser 3, a steam pipe 4 and a liquid pipe 5 that connect the evaporator 2 and the condenser 3. It is sealed at a constant pressure.
- the working fluid changes from a liquid phase to a gas phase by heat supplied to the evaporator 2 from an exothermic component 7 provided outside, and moves to the condenser 3 through the vapor pipe 4 with heat. Due to heat radiation in the condenser 3, the working fluid changes from the gas phase to the liquid phase, and returns to the evaporator 2 through the liquid pipe 5.
- a member (not shown) called a wick having fine pores (pores) is accommodated, and when the working fluid permeates the wick, capillary force is generated in the fine pores, This is the pumping force for fluid movement.
- the evaporator 2 is heated by the heat generated by the heat generating component 7, the liquid-phase working fluid that has permeated into the wick evaporates on the surface of the wick to generate a gas-phase working fluid.
- the heat generated by the heat generating component 7 is used for the phase change in the evaporator 2, the heat is removed from the heat generating component 7.
- the vapor-phase working fluid generated in the evaporator 2 moves to the condenser 3 through the vapor pipe 4, and changes to a liquid-phase working fluid in the condenser 3.
- the liquid-phase working fluid moves to the evaporator 2 through the liquid pipe 5.
- the heat generated by the heat generating component 7 is continuously transferred.
- the vapor-phase working fluid (steam) generated by receiving heat in the evaporator 2 passes through the steam pipe 4 and reaches the condenser 3.
- a capillary force acts in the wick's micropores, and the capillary force is supported to prevent vapor from entering (reversely flowing) from the evaporator 2 toward the liquid tube 5.
- the capillary force generated when the working fluid permeates into the wick is used as a driving source for the refrigerant in the loop heat pipe 1.
- the fluid In order for the fluid to move by the loop heat pipe 1, that is, to remove the latent heat by the evaporator 2 and the working fluid liquefied by the condenser 3 return to the evaporator 2 again, the following conditions are necessary.
- ⁇ P cap ⁇ ⁇ P total (1)
- ⁇ P cap is the capillary pressure generated in the evaporator 2
- ⁇ P total is all pressure loss in the flow path of the loop heat pipe 1.
- the heat transport capability of the loop heat pipe 1 is improved by increasing the capillary force ⁇ P cap in the evaporator 2 that is the drive source of the loop heat pipe 1.
- ⁇ P cap in the evaporator 2 that is the drive source of the loop heat pipe 1.
- FIGS. 7 and 8 when such a loop heat pipe 1 is applied to a mobile device 6, an evaporator 2 and a steam pipe 4 that contact the loop heat pipe 1 with a heat-generating component 7 that is a heat source.
- the condenser 3 and the liquid pipe 5 having the condenser tube 3A and the heat diffusion plate 3B are configured, and the heat of the heat generating component 7 that contacts the evaporator 2 is transported to a relatively low temperature region in the mobile device 6. By doing so, the heat of the heat generating component 7 can be diffused.
- the loop heat pipe 1 when the loop heat pipe 1 is applied to the mobile device 6, it is necessary to reduce the thickness of the components of the loop heat pipe 1.
- the evaporator 2, the steam pipe 4, the condenser 3 and the liquid pipe 5 which are components of the loop heat pipe 1 are individually manufactured and connected by welding or the like, it is difficult to realize a thin shape. .
- a porous body such as a sintered metal, a sintered resin, or a ceramic is used for the wick stored in the evaporator 2, but as the evaporator 2 becomes thinner, although the wick to be housed is also thinned, there is a possibility that breakage or cracking may occur when the porous body made of these materials is thinned. Therefore, it is conceivable that the evaporator 2, the condenser 3, the vapor pipe 4, and the liquid pipe 5 are manufactured and thinned by laminating a plurality of metal thin plates and performing diffusion bonding.
- metal thin plates that is, two surface sheets 24, 25 and four inner layer sheets 26 are patterned by etching, and these are laminated and diffusion-bonded together.
- the thin loop heat pipe 1 that can form the evaporator 2, the condenser 3, the vapor pipe 4, and the liquid pipe 5 at the same time and can be stored in the mobile device 6.
- the metal thin plates 24 to 26 copper thin plates having a thickness of about 0.1 mm may be used.
- openings are provided in the four inner layer sheets 26 by etching, and the upper and lower layers of the four inner layer sheets 26 having these openings are sandwiched between two surface sheets 24 and 25. By doing so, the upper and lower sides of the space formed by the openings of the four inner layer sheets 26 are closed, so that the flow path of the condensation pipe 3A provided in the steam pipe 4, the liquid pipe 5, and the condenser 3 is formed. You can do it.
- the wick provided inside the evaporator 2 and generating a capillary force for driving fluid is formed by providing a plurality of fine holes in each of the four inner layer sheets 26 by etching. Just do it.
- an evaporator 2, a condenser 3, a steam pipe 4, and a liquid pipe 5 can be produced by joining two metal thin plates and joining them. Conceivable.
- the flow path may be formed by half-etching two metal thin plates, that is, patterning recesses and grooves having a depth smaller than the plate thickness, and bonding them together.
- fine grooves 27 and wide grooves 28 are formed in the metal thin plate by etching processing (for example, half etching processing). It is possible to do.
- r wick is the pore radius in the porous body
- ⁇ is the surface tension of the working fluid
- ⁇ is the contact angle between the material of the porous body and the working fluid.
- the size of the fine groove As much as possible so that the cross-sectional area of the fine flow path becomes as small as possible.
- a fine groove that can generate a large capillary force is formed depending on, for example, the dimensional accuracy of an opening made of a resist material and the limit of the etching rate. difficult.
- the loop heat pipe 1 thinned by using two plate-like members is configured as described above in order to improve the capillary force generated in the evaporator 2.
- the capillary force generated in the evaporator 2 can be improved in the loop heat pipe 1 using the two plate-like members 8 and 9 that can be provided at low cost and can be thinned.
- the loop heat pipe 1 constituted by the two plate-like members of the first plate-like member 8 and the second plate-like member 9 can be manufactured as follows.
- the first plate-like member 8 is processed (for example, half-etched), and the length from the side where the liquid pipe 5 is connected to the side where the vapor pipe 4 is connected to the region to be the evaporator 2.
- a plurality of first protrusions 10 extending in the direction, a plurality of second protrusions 11 extending in the width direction intersecting the length direction, and a plurality of first protrusions partitioned by the first protrusions 10 and the second protrusions 11.
- the recess 12 is formed [see, for example, FIG. 1A, FIG. 4A, FIG. 5A].
- the second plate-like member 9 is processed (for example, half-etched), and a plurality of third protrusions 14 extending in the length direction and a plurality of fourth protrusions extending in the width direction are formed in the region to be the evaporator 2. 15 and a plurality of second concave portions 16 partitioned by at least one of the third convex portion 14 and the fourth convex portion 15 [for example, FIG. 1B, FIG. 3A, FIG. (See (B), FIG. 4 (B), FIG. 5 (B), FIG. 6 (A))].
- the 1st recessed part 12 and at least one of the 3rd convex part 14 and the 4th convex part 15 oppose the 1st plate-shaped member 8 and the 2nd plate-shaped member 9,
- the first concave portion 12 and the second concave portion 16 on both sides of at least one of the third convex portion 14 and the fourth convex portion 15 are joined so as to communicate with each other.
- the loop heat pipe 1 can be manufactured [see, for example, FIG. 2A, FIG. 4C, FIG. 5C, and FIG. 6B].
- half-etching or the like is performed on a region to be one evaporator 2 of the two thin metal plates (two top sheets) as the first plate member 8 and the second plate member 9.
- a wide groove serving as a first concave portion 12 and a comb-like steam channel 18 partitioned by the first convex portion 10 and the second convex portion 11 is provided so as to have a depth smaller than the plate thickness, and two sheets
- the second thin film is partitioned by the third convex portion 14 and the fourth convex portion 15 so as to have a depth smaller than the plate thickness by processing such as half etching in the region to be the other evaporator 2.
- a wide groove serving as a recess 16 and a comb-like steam flow path 18 is provided, and further, a region serving as the steam tube 4 of each of the two metal thin plates, a region serving as the condensation tube 3A provided in the condenser 3, and a liquid tube 5 are the steam pipes 4,
- the condensing pipe 3A and the liquid pipe 5 provided in the condenser 3 are provided with concave portions constituting the flow paths, and these two thin metal plates are opposed to each other so that the surfaces provided with the grooves and the concave portions are in contact with each other.
- the thin loop heat pipe 1 may be configured by diffusion bonding.
- the concave portion provided in the region to be the condensation pipe 3A of the first plate member 8 and the second plate member 9 increases the efficiency of heat exchange with the outside air, and can be sufficiently liquefied by condensation. It is provided meandering.
- a plate-like plate is formed around the area to be the condensation pipe 3 ⁇ / b> A provided in the condenser 3. By leaving the member, this portion functions as a heat diffusion plate 3B provided in the condenser 3.
- the steam pipe 4, the condenser pipe 3A, and the liquid pipe 5 are not provided with grooves, but the present invention is not limited to this.
- the liquid pipe 5 may be provided with a structure similar to the cross-girder pattern structures 13 and 17 (see, for example, FIGS. 1 to 4) provided in the evaporator 2 described above. That is, a plurality of first liquid pipe protrusions extending in the length direction, a plurality of second liquid pipe protrusions extending in the width direction, and a first liquid pipe protrusion in a region that becomes the liquid pipe 5 of the first plate-like member 8.
- a plurality of first liquid pipe recesses partitioned by the convex part and the second liquid pipe convex part, and a plurality of third liquids extending in the length direction in the region to be the liquid pipe 5 of the second plate-like member 9 At least one of a convex portion for a pipe and a plurality of convex portions for a fourth liquid pipe extending in the width direction, and a plurality of concave portions for a second liquid pipe partitioned by at least one of a convex portion for a third liquid pipe and a convex portion for a fourth liquid pipe.
- the first plate-like member 8 and the second plate-like member 9 are provided in the region to be the liquid pipe 5 and at least one of the first liquid pipe concave portion, the third liquid pipe convex portion, and the fourth liquid pipe convex portion.
- the first liquid pipe recess communicates with the second liquid pipe recess on both sides of at least one of the third liquid pipe convex portion and the fourth liquid pipe convex portion. Or as being joined to.
- a plurality of first liquid-tubes extending in the length direction in the region to be the liquid tube 5 of the first plate-like member 8.
- a plurality of second liquid pipe concave portions partitioned by at least one of the third liquid pipe convex portion and the fourth liquid pipe convex portion, and the first plate-like member 8 and the second plate-like member 9 are formed.
- the liquid tube 5 may have a liquid tube groove 29 capable of generating a capillary force.
- FIG. 15 illustrates the liquid pipe groove 29 extending in the length direction of the liquid pipe 5.
- the liquid pipe 5 may be provided with a liquid pipe groove that extends in the length direction of the liquid pipe 5 and can generate a capillary force as the liquid pipe groove 29.
- a liquid tube groove (first liquid tube groove) 29 that extends in the length direction of the region that becomes the liquid tube 5 and can generate a capillary force is provided in the region that becomes the liquid tube 5 of the first plate-like member 8.
- a liquid tube groove (second liquid tube groove) 29 that extends in the length direction of the region to be the liquid tube 5 and can generate a capillary force is provided in the region to be the liquid tube 5 of the second plate-shaped member 9.
- the first plate-like member 8 and the second plate-like member 9 are joined with the side having the first liquid pipe groove 29 and the side having the second liquid pipe groove 29 facing each other in the region to be the liquid pipe 5. What should be.
- the first liquid pipe groove 29 and the second liquid pipe groove 29 face each other and are provided in the same direction.
- the region that becomes the liquid pipe 5 of the first plate-like member 8 is processed to obtain the liquid tube 5.
- the second plate member 9 for example, half-etching
- the second plate member 9 The region that becomes the liquid tube 5 is processed to form a second liquid tube groove 29 that extends in the length direction of the region that becomes the liquid tube 5 and can generate a capillary force.
- the first plate-like member 8 and the second plate-like member 9 are connected to the side having the first liquid pipe groove 29 and the second liquid pipe groove in the region to be the liquid pipe 5. What is necessary is just to make it join with the side which has 29 facing.
- the liquid pipe 5 is used as a liquid pipe groove 29, extending in the length direction of the liquid pipe 5, and a liquid pipe groove (first liquid pipe groove) capable of generating a capillary force, and in the width direction of the liquid pipe 5. It is good also as what is provided with the groove
- the first plate-like member 8 is provided with a first liquid tube groove 29 that extends in the length direction of the region that becomes the liquid tube 5 and can generate a capillary force in the region that becomes the liquid tube 5, and the second plate.
- a second liquid tube groove 29 that extends in the width direction of the region that becomes the liquid tube 5 and can generate a capillary force is provided in the region that becomes the liquid tube 5 of the member 9, and the first plate member 8 and the second plate shape
- the member 9 may be joined in a region to be the liquid pipe 5 with the side having the first liquid pipe groove 29 and the side having the second liquid pipe groove 29 facing each other.
- the first liquid pipe groove 29 and the second liquid pipe groove 29 are provided so as to face each other and intersect (for example, orthogonally cross) with a certain angle.
- the region that becomes the liquid pipe 5 of the first plate-like member 8 is processed to obtain the liquid tube 5.
- the second plate member 9 for example, half-etching
- the region that becomes the liquid tube 5 is processed to extend in the width direction of the region that becomes the liquid tube 5 to form a second liquid tube groove 29 that can generate a capillary force, and the first plate member 8 and the second plate
- the first plate-like member 8 and the second plate-like member 9 are connected to the side having the first liquid pipe groove 29 and the second liquid pipe groove 29 in the region to be the liquid pipe 5. What is necessary is just to make it join so that the side which has may be opposed.
- the cross-girder pattern structures 13 and 17 and the liquid pipe groove 29 may be provided over the entire liquid pipe 5 or may be provided in a part of the liquid pipe 5. Further, the number, interval, and shape of the cross-girder pattern structures 13 and 17 and the liquid pipe groove 29 are not limited to those illustrated here. In this way, the liquid pipe 5 is also provided with the cross-girder pattern structures 13 and 17 and the liquid pipe groove 29 that can generate capillary force because the mobile device is oriented vertically, and the position of the heat generating component 7 that is a heat source is Even in such a case, the capillary force acts, so that the liquid-phase working fluid flows inside the liquid tube 5 and flows into the evaporator 2, and the loop heat pipe. This is to make 1 operate stably.
- the first copper thin plate 8 having a thickness of about 0.25 mm is used, and this is patterned with a resist so as to have a shape as shown in FIG. 16A, and then the exposed copper is etched.
- the width of the steam pipe 4 and the condenser pipe 3A provided in the condenser 3 is about 7 mm, and the width of the liquid pipe 5 is about 6 mm.
- each flow path of the steam pipe 4, the condenser pipe 3A, and the liquid pipe 5 is formed by etching (half-etching) a copper thin plate to a depth of about 0.15 mm.
- the inside of the evaporator 2 is formed with a comb-like portion 19 and a comb-like steam flow path 18, and the comb-like portion 19 has, for example, a shape as shown in FIG. Etching (half-etching) is performed so that the cross pattern 13 is formed.
- the interval between the plurality of first protrusions 10 and the interval between the plurality of second grooves 11 constituting the cross beam pattern 13 is about 0.24 mm, and the depth is about 0.12 mm.
- the width of the groove, which is a wide groove constituting the plurality of steam flow paths 18A branched from the comb-shaped steam flow path 18, is about 1 mm, and the depth is about 0.15 mm.
- the region where the cross pattern 13 is provided has a pattern.
- the second copper thin plate 9 having a thickness of about 3 mm is used, and after patterning with a resist so as to have a shape as shown in FIG. 16B, the exposed copper is etched.
- processing is performed so that the evaporator 2, the steam pipe 4, the condenser 3, and the liquid pipe 5 are arranged at symmetrical positions with respect to what is processed into a shape as shown in FIG.
- the width of the steam pipe 4 and the condenser pipe 3A provided in the condenser 3 is about 7 mm
- the width of the liquid pipe 5 is about 6 mm.
- each flow path of the steam pipe 4, the condenser pipe 3A, and the liquid pipe 5 is formed by etching (half-etching) a copper thin plate to a depth of about 0.15 mm.
- the inside of the evaporator 2 is formed with a comb-like portion 19 and a comb-like steam flow path 18, and the comb-like portion 19 has, for example, a shape as shown in FIG. Etching (half-etching) is performed so that the cross pattern 17 is formed.
- the interval between the plurality of third convex portions 14 and the interval between the plurality of fourth convex portions 15 constituting the cross beam pattern 17 is about 0.24 mm, and the depth is about 0.12 mm.
- the width of the groove, which is a wide groove constituting the plurality of steam flow paths 18A branched from the comb-shaped steam flow path 18, is about 1 mm, and the depth is about 0.15 mm.
- the region where the cross pattern 17 is provided is provided with a pattern.
- the copper thin plate 8 etched as shown in FIG. 16 (A) and the copper thin plate 9 etched as shown in FIG. 16 (B) are diffusion bonded, and the inside is evacuated from the liquid inlet.
- the thin loop heat pipe 1 having a thickness of about 0.5 mm can be manufactured.
- the thickness of the first copper thin plate 8 and the second copper thin plate 9 is about 0.3 mm, and the steam pipe 4 and the condenser 3 are connected to each other.
- the width of the condensing tube 3A provided may be about 8 mm, and the thin loop heat pipe 1 having a thickness of about 0.6 mm may be used.
- the pattern provided in the region to be the evaporator 2 of the first copper thin plate 8 and the second copper thin plate 9 is, for example, shown in FIG. 3 (B), FIG. 4 (A), FIG. 4 (B), FIG. 5 (A), FIG. 5 (B), and FIG. 6 (A) are formed by etching (half-etching). Processing).
- the dimensions may be the same as those described above.
- a structure (cross-girder pattern structures 13 and 17) provided inside the evaporator 2 also inside the liquid pipe 5 and
- the above-mentioned cross-girder patterns 13 and 17 may be formed by etching processing (half-etching processing) in the regions to be the liquid pipes 5 of the respective copper thin plates 8 and 9.
- the pattern is attached
- a groove 29 for the liquid pipe extending in the length direction of the liquid pipe 5 may be formed in the area to be the liquid pipe 5 of both copper thin plates 8 and 9, or the area to be the liquid pipe 5 of one copper thin plate.
- the liquid pipe groove 29 extending in the length direction of the liquid pipe 5 may be formed, and the liquid pipe groove 29 extending in the width direction of the liquid pipe 5 may be formed in the region to be the liquid pipe 5 of the other copper thin plate.
- the width of the liquid tube groove 29 may be about 0.1 mm, and the depth may be about 0.12 mm.
- the shape and piping pattern of the loop heat pipe 1 are not limited to those described above.
- a copper thin plate is used as the metal thin plate, but it is sufficient that the metal thin plate can be collectively formed by diffusion bonding, and the material of the metal thin plate is not limited to copper, such as stainless steel or an alloy material. Any material that is suitable for pattern formation by etching or the like and diffusion bonding may be used.
- the dimensions of the loop heat pipe 1 are not limited to those described above, and may be optimized as appropriate according to the required heat transport amount, heat transport distance, pipe height, and pipe width.
- the evaporator 2 in which the cross-girder patterns 13 and 17 formed on the thin metal plates (copper thin plates) 8 and 9 are joined while being shifted is used.
- a design in which the cross-sectional area of the flow path through which the fluid passes is less than half is possible. Thereby, a capillary force twice or more is generated.
- the evaporator only of a groove process is what formed the groove
- each groove width is the same as the interval between the convex portions constituting the cross-girder pattern structures 13 and 17 of the above-described embodiment.
- FIG. 18 shows the loop heat pipe 1 having the evaporator 2 (see FIG. 1) provided with the cross-girder pattern structures 13 and 17 as in the above-described embodiment, and the evaporator only for groove processing (FIG. 14). It is a figure which shows the relationship between the evaporator temperature (heat source temperature) and input electric power (heat amount input into an evaporator) in the loop heat pipe which has a reference.
- fever which flowed into the evaporator of a loop heat pipe moved to the condenser is shown as evaporator temperature (heat source temperature).
- evaporator temperature heat source temperature
- the solid line A indicates the evaporator temperature (heat source temperature) in the loop heat pipe 1 having the evaporator 2 (see FIG. 1) provided with the cross beam pattern structures 13 and 17 as in the above-described embodiment.
- a solid line B indicates an evaporator temperature (heat source temperature) in a loop heat pipe having an evaporator (see FIG. 14) having only a groove processing.
- FIG. 19 shows a loop heat pipe 1 having an evaporator 2 (see FIG. 1) provided with cross-girder pattern structures 13 and 17 as in the above-described embodiment, and an evaporator only for groove processing (see FIG. 14). It is a figure which shows the relationship between the heat transport resistance in the loop heat pipe which has), and input electric power (the amount of heat input into an evaporator). The heat transport resistance represents the efficiency of heat transport from the evaporator to the condenser.
- a solid line A indicates the heat transport resistance in the loop heat pipe 1 having the evaporator 2 (see FIG. 1) provided with the cross beam pattern structures 13 and 17 as in the above-described embodiment.
- a solid line B indicates a heat transport resistance in a loop heat pipe having an evaporator (see FIG. 14) only for groove processing.
- the evaporator 2 As shown in FIG. 19, in the loop heat pipe 1 having the evaporator 2 (see FIG. 1) provided with the cross-girder pattern structures 13 and 17 as in the above-described embodiment, the evaporator only for groove processing (see FIG. 14). It can be seen that efficient heat transport is possible because the heat transport resistance is small compared to the loop heat pipe having (). Therefore, according to the loop heat pipe, the manufacturing method thereof, and the electronic apparatus according to the present embodiment, the capillary force generated in the evaporator 2 in the loop heat pipe 1 thinned using the two plate-like members 8 and 9. There is an advantage that can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
ループヒートパイプ(1)を第1板状部材(8)と第2板状部材(9)とを接合した構造にし、第1板状部材が、蒸発器(2)となる領域に、長さ方向へ延びる複数の第1凸部(10)と、幅方向へ延びる複数の第2凸部(11)と、第1凸部及び第2凸部で仕切られた複数の第1凹部(12)とを備え、第2板状部材が、蒸発器となる領域に、長さ方向へ延びる複数の第3凸部(14)及び幅方向へ延びる複数の第4凸部(15)の少なくとも一方と、第3凸部及び第4凸部の少なくとも一方によって仕切られた複数の第2凹部(16)とを備え、第1板状部材と第2板状部材とが、蒸発器となる領域で、第1凹部と第3凸部及び第4凸部の少なくとも一方とが対向し、第1凹部と第3凸部及び第4凸部の少なくとも一方の両側の第2凹部とが連通するように接合されているものとする。
Description
本発明は、ループヒートパイプ及びその製造方法並びに電子機器に関する。
例えばスマートフォンやタブレット端末等の小型、薄型のモバイル用途の電子機器(モバイル機器)では、発熱部品を冷却するのに、例えば金属板や熱拡散シートなどのシート状の熱伝導部材が広く使用されている。例えば、金属板としては、銅、アルミ、マグネシウム合金、及び、これらを積層した薄板などが使用されているが、その熱伝導の性能は、材料の熱伝導率によって決まる。また、例えば、熱拡散シートとしては、グラファイトシートが使用されているが、熱伝導率が約500~約1500W/mK程度であり、この程度の熱伝導率では発熱部品の発熱量が多くなると、熱移動が充分にできなくなるおそれがある。
そこで、より大きな熱量を効率的に移動・拡散させるために、材料の熱伝導によらず、冷媒の蒸発潜熱を用いた熱移動デバイスであるヒートパイプを利用することが考えられる。例えば、直径約3~約4mmのヒートパイプは、熱伝導率に換算すると約1500~約2500W/mK程度に相当し、シート状の熱伝導部材と比較して大きな値を示す。
しかしながら、効率的な熱輸送には、熱輸送管であるパイプの直径を大きくすることになり、これがヒートパイプを装置に搭載する上での問題となって、モバイル機器への適用は進んでいない。
しかしながら、効率的な熱輸送には、熱輸送管であるパイプの直径を大きくすることになり、これがヒートパイプを装置に搭載する上での問題となって、モバイル機器への適用は進んでいない。
この場合、ヒートパイプのパイプ形状を扁平にすることが考えられるが、扁平にすることで、パイプ内での作動流体の流動が阻害され、熱輸送の能力が低下してしまう。
これに対し、ループヒートパイプは、気相の作動流体と液相の作動流体の流路が独立しており、作動流体が流れる方向が一方向になるため、液相の作動流体と気相の作動流体とが管内を往復するヒートパイプと比較して、作動流体の流動抵抗を小さくすることができ、効率的な熱輸送が可能である。
これに対し、ループヒートパイプは、気相の作動流体と液相の作動流体の流路が独立しており、作動流体が流れる方向が一方向になるため、液相の作動流体と気相の作動流体とが管内を往復するヒートパイプと比較して、作動流体の流動抵抗を小さくすることができ、効率的な熱輸送が可能である。
そこで、モバイル機器にループヒートパイプを用いることが考えられる。
ところで、モバイル用途の小型、薄型の電子機器の中にループヒートパイプを設ける場合、ループヒートパイプの構成部品を薄型化することになる。
この場合、従来までのように、蒸発器、蒸気管、凝縮器、液管を個別に製造し、これらを溶接などで接続するのでは、薄型化を実現するのは難しい。
また、蒸発器に収納されるウィックには、例えば焼結金属、焼結樹脂、セラミックスなどの多孔質体が用いられているが、蒸発器の薄型化にともない、蒸発器に収納されるウィックも薄くすることになるが、これらの材料からなる多孔質体を薄化する際に、破損や亀裂が生じるおそれがある。
この場合、従来までのように、蒸発器、蒸気管、凝縮器、液管を個別に製造し、これらを溶接などで接続するのでは、薄型化を実現するのは難しい。
また、蒸発器に収納されるウィックには、例えば焼結金属、焼結樹脂、セラミックスなどの多孔質体が用いられているが、蒸発器の薄型化にともない、蒸発器に収納されるウィックも薄くすることになるが、これらの材料からなる多孔質体を薄化する際に、破損や亀裂が生じるおそれがある。
そこで、例えば6枚の金属薄板を積層し、拡散接合することによって、蒸発器、凝縮器、蒸気管、液管を作製し、薄型化することが考えられる。
また、さらなる薄型化を実現するために、2枚の金属薄板(板状部材)を用い、これらを接合することで、蒸発器、凝縮器、蒸気管、液管を作製することも考えられる。
この場合、ループヒートパイプにおける作動流体の駆動源である毛細管力を発生させるために、蒸発器となる領域では、金属薄板に微細な幅を持つ溝を形成することが考えられる。そして、毛細管力を大きくするためには、この微細な溝からなる微細流路の断面積ができるだけ小さくなるように、微細な溝のサイズをできるだけ小さくするのが好ましい。
また、さらなる薄型化を実現するために、2枚の金属薄板(板状部材)を用い、これらを接合することで、蒸発器、凝縮器、蒸気管、液管を作製することも考えられる。
この場合、ループヒートパイプにおける作動流体の駆動源である毛細管力を発生させるために、蒸発器となる領域では、金属薄板に微細な幅を持つ溝を形成することが考えられる。そして、毛細管力を大きくするためには、この微細な溝からなる微細流路の断面積ができるだけ小さくなるように、微細な溝のサイズをできるだけ小さくするのが好ましい。
しかしながら、金属薄板に微細な溝を形成するのに例えばエッチング加工を行なう場合、例えばレジスト材による開口(溝の幅)の寸法精度やエッチングレートの限界によって、大きな毛細管力を発生しうる微細な溝を形成するのは難しい。
そこで、2つの板状部材を用いて薄型化したループヒートパイプにおいて、蒸発器内で発生する毛細管力を向上させたい。
そこで、2つの板状部材を用いて薄型化したループヒートパイプにおいて、蒸発器内で発生する毛細管力を向上させたい。
本ループヒートパイプは、液相の作動流体が蒸発する蒸発器と、気相の作動流体が凝縮する凝縮器と、蒸発器と凝縮器とを接続し、気相の作動流体が流れる蒸気管と、凝縮器と蒸発器とを接続し、液相の作動流体が流れる液管とを備え、蒸発器、凝縮器、蒸気管及び液管は、第1板状部材と第2板状部材とを接合した構造になっており、第1板状部材は、蒸発器となる領域に、液管が接続されている側から蒸気管が接続されている側へ向かう長さ方向へ延びる複数の第1凸部と、長さ方向に交差する幅方向へ延びる複数の第2凸部と、第1凸部及び第2凸部によって仕切られた複数の第1凹部とを備え、第2板状部材は、蒸発器となる領域に、長さ方向へ延びる複数の第3凸部及び幅方向へ延びる複数の第4凸部の少なくとも一方と、第3凸部及び第4凸部の少なくとも一方によって仕切られた複数の第2凹部とを備え、第1板状部材と第2板状部材とは、蒸発器となる領域で、第1凹部と第3凸部及び第4凸部の少なくとも一方とが対向し、第1凹部と第3凸部及び第4凸部の少なくとも一方の両側の第2凹部とが連通するように接合されている。
本電子機器は、発熱部品と、発熱部品を冷却するループヒートパイプとを備え、ループヒートパイプは、上述のように構成される。
本ループヒートパイプの製造方法は、第1板状部材を加工して、蒸発器となる領域に、液管が接続されている側から蒸気管が接続されている側へ向かう長さ方向へ延びる複数の第1凸部と、長さ方向に交差する幅方向へ延びる複数の第2凸部と、第1凸部及び第2凸部によって仕切られた複数の第1凹部とを形成する工程と、第2板状部材を加工して、蒸発器となる領域に、長さ方向へ延びる複数の第3凸部及び幅方向へ延びる複数の第4凸部の少なくとも一方と、第3凸部及び第4凸部の少なくとも一方によって仕切られた複数の第2凹部とを形成する工程と、第1板状部材と第2板状部材とを、蒸発器となる領域で、第1凹部と第3凸部及び第4凸部の少なくとも一方とが対向し、第1凹部と第3凸部及び第4凸部の少なくとも一方の両側の第2凹部とが連通するように接合する工程とを含む。
本ループヒートパイプの製造方法は、第1板状部材を加工して、蒸発器となる領域に、液管が接続されている側から蒸気管が接続されている側へ向かう長さ方向へ延びる複数の第1凸部と、長さ方向に交差する幅方向へ延びる複数の第2凸部と、第1凸部及び第2凸部によって仕切られた複数の第1凹部とを形成する工程と、第2板状部材を加工して、蒸発器となる領域に、長さ方向へ延びる複数の第3凸部及び幅方向へ延びる複数の第4凸部の少なくとも一方と、第3凸部及び第4凸部の少なくとも一方によって仕切られた複数の第2凹部とを形成する工程と、第1板状部材と第2板状部材とを、蒸発器となる領域で、第1凹部と第3凸部及び第4凸部の少なくとも一方とが対向し、第1凹部と第3凸部及び第4凸部の少なくとも一方の両側の第2凹部とが連通するように接合する工程とを含む。
したがって、本ループヒートパイプ及びその製造方法並びに電子機器によれば、2つの板状部材を用いて薄型化したループヒートパイプにおいて、蒸発器内で発生する毛細管力を向上させることができるという利点がある。
以下、図面により、本発明の実施の形態にかかるループヒートパイプ及びその製造方法並びに電子機器について説明する。
まず、本実施形態にかかるループヒートパイプについて、図1~図19を参照しながら説明する。
本実施形態にかかるループヒートパイプは、例えばスマートフォンやタブレット端末等の小型、薄型のモバイル用途の電子機器に備えられ、電子機器に備えられる発熱部品(例えばLSIチップ)が発生した熱を移動させ、熱源である発熱部品を冷却する薄型のループヒートパイプである。
まず、本実施形態にかかるループヒートパイプについて、図1~図19を参照しながら説明する。
本実施形態にかかるループヒートパイプは、例えばスマートフォンやタブレット端末等の小型、薄型のモバイル用途の電子機器に備えられ、電子機器に備えられる発熱部品(例えばLSIチップ)が発生した熱を移動させ、熱源である発熱部品を冷却する薄型のループヒートパイプである。
なお、モバイル用途の小型、薄型の電子機器をモバイル機器ともいう。また、発熱部品を電子部品又は発熱素子ともいう。
本実施形態のループヒートパイプは、図7に示すように、液相の作動流体が蒸発する蒸発器2と、気相の作動流体が凝縮する凝縮器3と、蒸発器2と凝縮器3とを接続し、気相の作動流体が流れる蒸気管4と、凝縮器3と蒸発器2とを接続し、液相の作動流体が流れる液管5とを備える。
本実施形態のループヒートパイプは、図7に示すように、液相の作動流体が蒸発する蒸発器2と、気相の作動流体が凝縮する凝縮器3と、蒸発器2と凝縮器3とを接続し、気相の作動流体が流れる蒸気管4と、凝縮器3と蒸発器2とを接続し、液相の作動流体が流れる液管5とを備える。
ここでは、凝縮器3は、凝縮管3Aと、熱拡散プレート(放熱プレート)3Bとを備える。
そして、このように構成されるループヒートパイプ1は、図7、図8に示すように、モバイル機器6に備えられる発熱部品7に蒸発器2が熱的に接続されるようにして、モバイル機器6の内部に収納される。
そして、このように構成されるループヒートパイプ1は、図7、図8に示すように、モバイル機器6に備えられる発熱部品7に蒸発器2が熱的に接続されるようにして、モバイル機器6の内部に収納される。
なお、作動流体は、例えば、水、エタノール、アセトン、メタノール、フロン類などである。
ここでは、蒸発器2は1つの液流入口と1つの蒸気流出口を有し、凝縮器3は1つの蒸気流入口と1つの液流出口を有する。
そして、蒸発器2の蒸気流出口と凝縮器3の蒸気流入口が蒸気管4を介して接続されており、凝縮器3の液流出口と蒸発器2の液流入口が液管5を介して接続されている。
ここでは、蒸発器2は1つの液流入口と1つの蒸気流出口を有し、凝縮器3は1つの蒸気流入口と1つの液流出口を有する。
そして、蒸発器2の蒸気流出口と凝縮器3の蒸気流入口が蒸気管4を介して接続されており、凝縮器3の液流出口と蒸発器2の液流入口が液管5を介して接続されている。
つまり、蒸発器2、蒸気管4、凝縮器3、液管5がループ状に連結されており、これらの内部に封入された作動流体が一方向に流れるようになっている。
ここでは、作動流体は、発熱部品7から蒸発器2に供給される熱で液相から気相へ変化し、熱を伴って蒸気管4を通って凝縮器3へ移動し、凝縮器3における放熱によって気相から液相へ変化し、液管5を通って蒸発器2へ戻るようになっている。
ここでは、作動流体は、発熱部品7から蒸発器2に供給される熱で液相から気相へ変化し、熱を伴って蒸気管4を通って凝縮器3へ移動し、凝縮器3における放熱によって気相から液相へ変化し、液管5を通って蒸発器2へ戻るようになっている。
このため、液相の作動流体と気相の作動流体とが管内を往復するヒートパイプと比較して、作動流体の流動抵抗を小さくすることができ、効率的な熱輸送が可能である。
本実施形態では、蒸発器2、凝縮器3、蒸気管4及び液管5は、第1板状部材8と第2板状部材9とを接合した構造になっている[図16(A)、図16(B)参照]。つまり、蒸発器2、凝縮器3、蒸気管4及び液管5は、上下2枚の板状部材8、9から構成されている。
本実施形態では、蒸発器2、凝縮器3、蒸気管4及び液管5は、第1板状部材8と第2板状部材9とを接合した構造になっている[図16(A)、図16(B)参照]。つまり、蒸発器2、凝縮器3、蒸気管4及び液管5は、上下2枚の板状部材8、9から構成されている。
ここで、第1板状部材8は、図1(A)に示すように、蒸発器2となる領域に、液管5が接続されている側から蒸気管4が接続されている側へ向かう長さ方向へ延びる複数の第1凸部10と、長さ方向に交差する幅方向へ延びる複数の第2凸部11と、第1凸部10及び第2凸部11によって仕切られた複数の第1凹部12とを備える。ここでは、複数の第1凹部12は、板厚よりも小さい深さを有する。
なお、長さ方向を蒸発器2の長さ方向ともいう。また、幅方向を蒸発器2の幅方向ともいう。また、凸部を凸構造又は壁ともいう。また、凹部を凹構造ともいう。
ここでは、第1板状部材8は、金属板(金属薄板)であり、具体的には、銅板(銅薄板)である。
また、第1板状部材8は、蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた複数の第1凹部12が点状に並び、これらが第1凸部10及び第2凸部11によって仕切られた井桁パターン構造(井桁構造;井桁パターン)13を有するものとなっている。
ここでは、第1板状部材8は、金属板(金属薄板)であり、具体的には、銅板(銅薄板)である。
また、第1板状部材8は、蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた複数の第1凹部12が点状に並び、これらが第1凸部10及び第2凸部11によって仕切られた井桁パターン構造(井桁構造;井桁パターン)13を有するものとなっている。
ここでは、複数の第1凹部12は、ハーフエッチングされた部分で、底面と側面で囲まれた空間からなる凹構造を有し、点状に等間隔に並んでいる。
なお、本実施形態では、後述するように、蒸発器2は、くし歯状の蒸気流路18と、毛細管力を発生するくし歯状部分19とから構成され(図9参照)、このうち、くし歯状部分19に井桁パターン構造13が設けられている。
なお、本実施形態では、後述するように、蒸発器2は、くし歯状の蒸気流路18と、毛細管力を発生するくし歯状部分19とから構成され(図9参照)、このうち、くし歯状部分19に井桁パターン構造13が設けられている。
ここで、第1凹部12は、表面から板厚方向の途中まで延びており、貫通しておらず、上方のみ開口されている空間となっている。
また、第2板状部材9は、図1(B)に示すように、蒸発器2となる領域に、長さ方向へ延びる複数の第3凸部14と、幅方向へ延びる複数の第4凸部15と、第3凸部14及び第4凸部15によって仕切られた複数の第2凹部16とを備える。ここでは、複数の第2凹部16は、板厚よりも小さい深さを有する。
また、第2板状部材9は、図1(B)に示すように、蒸発器2となる領域に、長さ方向へ延びる複数の第3凸部14と、幅方向へ延びる複数の第4凸部15と、第3凸部14及び第4凸部15によって仕切られた複数の第2凹部16とを備える。ここでは、複数の第2凹部16は、板厚よりも小さい深さを有する。
ここでは、第2板状部材9は、金属板(金属薄板)であり、具体的には、銅板(銅薄板)である。
また、第2板状部材9は、蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた複数の第2凹部16が並び、これらが第3凸部14及び第4凸部15によって仕切られた井桁パターン構造(井桁構造;井桁パターン)17を有するものとなっている。
また、第2板状部材9は、蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた複数の第2凹部16が並び、これらが第3凸部14及び第4凸部15によって仕切られた井桁パターン構造(井桁構造;井桁パターン)17を有するものとなっている。
ここでは、複数の第2凹部16は、ハーフエッチングされた部分で、底面と側面で囲まれた空間からなる凹構造を有し、点状に等間隔に並んでいる。
なお、本実施形態では、後述するように、蒸発器2は、くし歯状の蒸気流路18と、毛細管力を発生するくし歯状部分19とから構成され(図9参照)、このうち、くし歯状部分19に井桁パターン構造17が設けられている。
なお、本実施形態では、後述するように、蒸発器2は、くし歯状の蒸気流路18と、毛細管力を発生するくし歯状部分19とから構成され(図9参照)、このうち、くし歯状部分19に井桁パターン構造17が設けられている。
ここで、第2凹部16は、表面から板厚方向の途中まで延びており、貫通しておらず、上方のみ開口されている空間となっている。
そして、第1板状部材8と第2板状部材9とは、図2(A)、図2(B)に示すように、蒸発器2となる領域で、第1凹部12と第3凸部14及び第4凸部15とが対向し、第1凹部12と第3凸部14及び第4凸部15の両側の第2凹部16とが連通するように接合されている。
そして、第1板状部材8と第2板状部材9とは、図2(A)、図2(B)に示すように、蒸発器2となる領域で、第1凹部12と第3凸部14及び第4凸部15とが対向し、第1凹部12と第3凸部14及び第4凸部15の両側の第2凹部16とが連通するように接合されている。
また、第1板状部材8と第2板状部材9とは、蒸発器2となる領域で、第2凹部16と第1凸部10及び第2凸部11とが対向し、第2凹部16と第1凸部10及び第2凸部11の両側の第1凹部12とが連通するように接合されている。
このように、第1板状部材8と第2板状部材9とは、第1凹部12及び第2凹部16が内側になり、第1凹部12と第2凹部16の位置(開口位置)が互いにずれて、第1凹部12と第2凹部16が互いに異なる位置になるように重ねて、接合されている。
このように、第1板状部材8と第2板状部材9とは、第1凹部12及び第2凹部16が内側になり、第1凹部12と第2凹部16の位置(開口位置)が互いにずれて、第1凹部12と第2凹部16が互いに異なる位置になるように重ねて、接合されている。
このようにして第1板状部材8と第2板状部材9とを接合することで、上方のみ開口されている第1凹部12と第2凹部16とが連通し、その連通した部分(空間)が流路となり、一般的なループヒートパイプの蒸発器の内部に備えられるウィックと同様に機能して、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となることになる。
そして、第1凹部12に対向する第3凸部14及び第4凸部15、さらには、第2凹部16に対向する第1凸部10及び第2凸部11によって、第1凹部12と第2凹部16とを連通する流路の断面積を小さくすることができ、蒸発器2で発生する毛細管力を大きくすることができる。
そして、第1凹部12に対向する第3凸部14及び第4凸部15、さらには、第2凹部16に対向する第1凸部10及び第2凸部11によって、第1凹部12と第2凹部16とを連通する流路の断面積を小さくすることができ、蒸発器2で発生する毛細管力を大きくすることができる。
特に、第1板状部材8と第2板状部材9とは、第1板状部材8の第1凹部12の中央部に、第2板状部材9の第3凸部14と第4凸部15とが交差する部分が位置し、かつ、第2板状部材9の第2凹部16の中央部に、第1板状部材8の第1凸部10と第2凸部11とが交差する部分が位置するように、接合されていることが好ましい。
これにより、第1凹部12と第2凹部16とを連通する流路の断面積を均一に小さくすることができ、蒸発器2で発生する毛細管力をより大きくすることができる。
これにより、第1凹部12と第2凹部16とを連通する流路の断面積を均一に小さくすることができ、蒸発器2で発生する毛細管力をより大きくすることができる。
なお、第1凸部10、第2凸部11、第3凸部14、第4凸部15の本数、間隔、形状等はここで例示しているものに限られるものではない。また、第1凹部12、第2凹部16の個数、間隔、形状、開口面積等もここで例示しているものに限られるものではない。
なお、上述の構成に限られるものではなく、第2板状部材9は、図3(A)、図3(B)に示すように、蒸発器2となる領域に、長さ方向へ延びる複数の第3凸部14及び幅方向へ延びる複数の第4凸部15の少なくとも一方と、第3凸部14及び第4凸部15の少なくとも一方によって仕切られた複数の第2凹部16とを備えるものとすれば良い。
なお、上述の構成に限られるものではなく、第2板状部材9は、図3(A)、図3(B)に示すように、蒸発器2となる領域に、長さ方向へ延びる複数の第3凸部14及び幅方向へ延びる複数の第4凸部15の少なくとも一方と、第3凸部14及び第4凸部15の少なくとも一方によって仕切られた複数の第2凹部16とを備えるものとすれば良い。
この場合、第1板状部材8と第2板状部材9とは、蒸発器2となる領域で、第1凹部12と第3凸部14及び第4凸部15の少なくとも一方とが対向し、第1凹部12と第3凸部14及び第4凸部15の少なくとも一方の両側の第2凹部16とが連通するように接合されているものとすれば良い。
本実施形態では、図1(A)に示すように、複数の第1凸部10は、互いに平行に設けられている。また、複数の第2凸部11は、互いに平行に設けられており、かつ、第1凸部10に直交するように設けられている。また、図1(B)、図2(A)に示すように、複数の第3凸部14は、互いに平行に設けられており、かつ、第1凸部10と平行に設けられている。また、複数の第4凸部15は、互いに平行に設けられており、かつ、第2凸部11と平行に設けられている。この場合、複数の第4凸部15は、第3凸部14に直交するように設けられていることになる。
本実施形態では、図1(A)に示すように、複数の第1凸部10は、互いに平行に設けられている。また、複数の第2凸部11は、互いに平行に設けられており、かつ、第1凸部10に直交するように設けられている。また、図1(B)、図2(A)に示すように、複数の第3凸部14は、互いに平行に設けられており、かつ、第1凸部10と平行に設けられている。また、複数の第4凸部15は、互いに平行に設けられており、かつ、第2凸部11と平行に設けられている。この場合、複数の第4凸部15は、第3凸部14に直交するように設けられていることになる。
なお、上述のように第3凸部14及び第4凸部15の一方のみを備える場合もある[図3(A)、図3(B)参照]。複数の第3凸部14のみを備える場合、複数の第3凸部14が、互いに平行に設けられており、かつ、第1凸部10と平行に設けられているものとすれば良い。また、複数の第4凸部15のみを備える場合、複数の第4凸部15が、互いに平行に設けられており、かつ、第2凸部11と平行に設けられているものとすれば良い。
なお、上述の構成に限られるものではなく、例えば図4(A)~図4(C)に示すように、複数の第1凸部10が、互いに平行に設けられており、複数の第2凸部11が、互いに平行に設けられており、かつ、第1凸部10に斜めに交差するように(一定の角度を有するように)設けられており、複数の第3凸部14が、互いに平行に設けられており、かつ、第1凸部10と平行に設けられており、複数の第4凸部15が、互いに平行に設けられており、かつ、第2凸部11と平行に設けられているものとしても良い。この場合、第4凸部15は、第3凸部14に斜めに交差するように設けられていることになる。
なお、上述のように第3凸部14及び第4凸部15の一方のみを備える場合もある[図3(A)、図3(B)参照]。複数の第3凸部14のみを備える場合、複数の第3凸部14が、互いに平行に設けられており、かつ、第1凸部10と平行に設けられているものとすれば良い。また、複数の第4凸部15のみを備える場合、複数の第4凸部15が、互いに平行に設けられており、かつ、第2凸部11と平行に設けられているものとすれば良い。
また、本実施形態では、図1(A)、図1(B)、図4(A)、図4(B)に示すように、複数の第1凸部10の間隔、複数の第2凸部11の間隔、複数の第3凸部14の間隔、複数の第4凸部15の間隔は、同一である。ここでは、複数の第1凸部10の間隔、複数の第2凸部11の間隔、複数の第3凸部14の間隔、複数の第4凸部15の間隔は、エッチング加工によって形成できる限界のサイズの微細な溝(即ち、最も毛細管力を発生させうるサイズの微細な溝)に相当する間隔になっている。
なお、上述のように第3凸部14及び第4凸部15の一方のみを備える場合もある[図3(A)、図3(B)参照]。この場合、複数の第1凸部10の間隔、複数の第2凸部11の間隔、複数の第3凸部14及び複数の第4凸部15の少なくとも一方の間隔が、同一であれば良い。
また、本実施形態では、第1凹部12と第2凹部16とが、同じサイズ(同じ開口面積)である。
また、本実施形態では、第1凹部12と第2凹部16とが、同じサイズ(同じ開口面積)である。
このように、本実施形態では、第1凹部12と第2凹部16とが同じサイズであり、第1凹部12及び第2凹部16が等間隔に配置されているため、第1板状部材8と第2板状部材9とをずらして接合する際に、第1凹部12と第2凹部16の位置合わせが容易となり、第1凹部12と第2凹部16を連通する流路を確実に確保することが可能となる。
また、本実施形態では、第1板状部材8は、第1凹部12の側面を構成する第1凸部10及び第2凸部11と第1凹部12の底面とが同じ材料からなる。また、第2板状部材9は、第2凹部16の側面を構成する第3凸部14及び第4凸部15と第2凹部16の底面とが同じ材料からなる。
また、本実施形態では、第1板状部材8は、第1凹部12の側面を構成する第1凸部10及び第2凸部11と第1凹部12の底面とが同じ材料からなる。また、第2板状部材9は、第2凹部16の側面を構成する第3凸部14及び第4凸部15と第2凹部16の底面とが同じ材料からなる。
なお、上述のように第3凸部14及び第4凸部15の一方のみを備える場合もある[図3(A)、図3(B)参照]。この場合、第2板状部材9は、第2凹部16の側面を構成する第3凸部14及び第4凸部15の少なくとも一方と第2凹部16の底面とが同じ材料からなるものとすれば良い。
なお、ここでは、上述のようにハーフエッチングによって第1凹部12及び第2凹部16を形成しているため、同じ材料になっているが、これに限られるものではない。
なお、ここでは、上述のようにハーフエッチングによって第1凹部12及び第2凹部16を形成しているため、同じ材料になっているが、これに限られるものではない。
例えば、第1板状部材8は、第1凹部12の側面を構成する第1凸部10及び第2凸部11と第1凹部12の底面とが異なる材料からなるものであっても良い。同様に、第2板状部材9は、第2凹部16の側面を構成する第3凸部14及び第4凸部15と第2凹部16の底面とが異なる材料からなるものであっても良い。例えば、板状部材に金網状の部材を取り付けたようなものであっても良い。
なお、上述の構成に限られるものではなく、例えば図5(A)~図5(C)に示すように、第1凹部12の側面を構成する第1凸部10及び第2凸部11は、隣接する第1凹部12間を連通する第1連通溝20を備えるものとしても良い。
ここで、第1連通溝20は、第1凹部12の側面を構成する第1凸部10及び第2凸部11の少なくとも1箇所に設けられていれば良い。例えば、第1凹部12の側面が4つの側凸部によって規定されている場合、少なくとも1つの側凸部に第1連通溝20が設けられていれば良い。
ここで、第1連通溝20は、第1凹部12の側面を構成する第1凸部10及び第2凸部11の少なくとも1箇所に設けられていれば良い。例えば、第1凹部12の側面が4つの側凸部によって規定されている場合、少なくとも1つの側凸部に第1連通溝20が設けられていれば良い。
また、第1連通溝20は、第1凹部12の側面を構成する第1凸部10及び第2凸部11の一部を除去することによって形成すれば良い。
また、第2板状部材9を、複数の第3凸部14と、複数の第4凸部15と、第3凸部14及び第4凸部15によって仕切られている複数の第2凹部16とを備えるものとする場合、第2凹部16の側面を構成する第3凸部14及び第4凸部15は、隣接する第2凹部16間を連通する第2連通溝21を備えるものとしても良い。
また、第2板状部材9を、複数の第3凸部14と、複数の第4凸部15と、第3凸部14及び第4凸部15によって仕切られている複数の第2凹部16とを備えるものとする場合、第2凹部16の側面を構成する第3凸部14及び第4凸部15は、隣接する第2凹部16間を連通する第2連通溝21を備えるものとしても良い。
ここで、第2連通溝21は、第2凹部16の側面を構成する第3凸部14及び第4凸部15の少なくとも1箇所に設けられていれば良い。例えば、第2凹部16の側面が4つの側凸部によって規定されている場合、少なくとも1つの側凸部に第2連通溝21が設けられていれば良い。
また、第2連通溝21は、第2凹部16の側面を構成する第3凸部14及び第4凸部15の一部を除去することによって形成すれば良い。
また、第2連通溝21は、第2凹部16の側面を構成する第3凸部14及び第4凸部15の一部を除去することによって形成すれば良い。
この場合、蒸発器2のくし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに挟まれるくし歯状部分19Aに設けられる井桁パターン13、17に、隣接する2つの蒸気流路同士を連通する第1連通溝20及び第2連通溝21が設けられることになる。
このように、第1連通溝20及び第2連通溝21を設けることで、隣り合う蒸気流路同士を連通させることができ(図9参照)、蒸気流路間の圧力差がなくなり、蒸気発生に伴う蒸発器2内の圧力分布がなくなって、熱源である発熱部品7からの熱によって発生した気相の作動流体が均一に蒸気管4に排出されることになる。これにより、ループヒートパイプ1の起動時間を短縮することが可能となる。
このように、第1連通溝20及び第2連通溝21を設けることで、隣り合う蒸気流路同士を連通させることができ(図9参照)、蒸気流路間の圧力差がなくなり、蒸気発生に伴う蒸発器2内の圧力分布がなくなって、熱源である発熱部品7からの熱によって発生した気相の作動流体が均一に蒸気管4に排出されることになる。これにより、ループヒートパイプ1の起動時間を短縮することが可能となる。
ところで、本実施形態では、蒸発器2は、図9に示すように、液管5が接続されている液流入口22と、蒸気管4が接続されている蒸気流出口23と、液相の作動流体が浸透し、気相の作動流体となるくし歯状部分19と、気相の作動流体が流れるくし歯状の蒸気流路18とを備える。
ここで、くし歯状部分19は、液管5が接続されている側から分岐されて延びており、分岐されている複数の部分(分岐部分;リブ状部分)19Aを備える。つまり、くし歯状部分19は、液流入口22から内部へ向けてくし歯状に延びた部分であり、液管5につながっている。
ここで、くし歯状部分19は、液管5が接続されている側から分岐されて延びており、分岐されている複数の部分(分岐部分;リブ状部分)19Aを備える。つまり、くし歯状部分19は、液流入口22から内部へ向けてくし歯状に延びた部分であり、液管5につながっている。
また、くし歯状の蒸気流路18は、くし歯状部分19に対向するように設けられ、蒸気管4が接続されている側から分岐されて延びており、分岐されている複数の蒸気流路18Aを備える。つまり、くし歯状の蒸気流路18は、蒸気流出口23から内部へ向けてくし歯状に延びた蒸気流路であり、蒸気管4につながっている。
なお、蒸気流路18は、蒸発器2の内部を流れる気相の作動流体を蒸気管4へ排出する流路であるため、蒸気排出流路ともいう。
なお、蒸気流路18は、蒸発器2の内部を流れる気相の作動流体を蒸気管4へ排出する流路であるため、蒸気排出流路ともいう。
ここでは、くし歯状部分19の分岐されている複数の部分19Aの間に、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aが設けられている。つまり、くし歯状部分19の分岐されている複数の部分19Aと、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aとが、面内方向に交互に配置されており、これにより、蒸発器2の薄型化が図られている。
そして、第1板状部材8は、くし歯状部分19となる領域に、第1凸部10、第2凸部11、第1凹部12を備える[図1(A)、図2(A)参照]。また、第2板状部材9は、くし歯状部分19となる領域に、第3凸部14、第4凸部15、第2凹部16を備える[図1(B)、図2(A)参照]。
なお、上述のように第3凸部14及び第4凸部15の一方のみを備える場合もある[図3(A)、図3(B)参照]。この場合、第2板状部材9は、くし歯状部分19となる領域に、第3凸部14及び第4凸部15の少なくとも一方、第2凹部16を備えるものとすれば良い。
なお、上述のように第3凸部14及び第4凸部15の一方のみを備える場合もある[図3(A)、図3(B)参照]。この場合、第2板状部材9は、くし歯状部分19となる領域に、第3凸部14及び第4凸部15の少なくとも一方、第2凹部16を備えるものとすれば良い。
ここでは、第1板状部材8に備えられる第1凸部10は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに(即ち、蒸気が流れる方向に)平行に設けられている。また、第1板状部材8に備えられる第2凸部11は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに直交するように設けられている。
また、第2板状部材9に備えられる第3凸部14は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに平行に設けられている。また、第2板状部材9に備えられる第4凸部15は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに直交するように設けられている。
また、第2板状部材9に備えられる第3凸部14は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに平行に設けられている。また、第2板状部材9に備えられる第4凸部15は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに直交するように設けられている。
なお、第1板状部材8に備えられる第2凸部11は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに斜めに交差するように設けられていても良い[図4(A)、図4(C)参照]。また、第2板状部材9に備えられる第4凸部15は、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに斜めに交差するように設けられていても良い[図4(B)、図4(C)参照]。
また、第1板状部材8は、くし歯状の蒸気流路18となる領域に、複数の第1凸部10の間隔よりも広い複数の幅広溝を備え、第2板状部材9は、くし歯状の蒸気流路18となる領域に、複数の第3凸部14の間隔よりも広い複数の幅広溝を備え、第1板状部材8及び第2板状部材9に備えられる幅広溝によって蒸気流路18が構成されることが好ましい。
ここで、第1板状部材8及び第2板状部材9に備えられる幅広溝は、気相の作動流体が流れ、気相の作動流体を蒸気管4へ排出する流路を構成しうるサイズの溝であれば良く、グルーブともいう。
このように、くし歯状の蒸気流路18は、分岐されている複数の蒸気流路18Aのそれぞれの流路幅が複数の第1凸部10(又は第3凸部14)の間隔よりも広くなっていることが好ましい。これにより、圧損を小さくすることが可能となる。
このように、くし歯状の蒸気流路18は、分岐されている複数の蒸気流路18Aのそれぞれの流路幅が複数の第1凸部10(又は第3凸部14)の間隔よりも広くなっていることが好ましい。これにより、圧損を小さくすることが可能となる。
また、くし歯状部分19の分岐されている複数の部分19A(図9参照)は、それぞれ、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aのうち隣り合う2つの蒸気流路18Aを連通する第3連通溝30を備えることが好ましい。
この場合、図6(A)、図6(B)に示すように、第3連通溝30は、第1板状部材8及び第2板状部材9の少なくとも一方に設けられていれば良い。なお、図6(A)、図6(B)では、第2板状部材9に第3連通溝30を設ける場合を例示している。
この場合、図6(A)、図6(B)に示すように、第3連通溝30は、第1板状部材8及び第2板状部材9の少なくとも一方に設けられていれば良い。なお、図6(A)、図6(B)では、第2板状部材9に第3連通溝30を設ける場合を例示している。
また、この場合、蒸発器2のくし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aに挟まれるくし歯状部分19Aに設けられる井桁パターン17(13)に、隣接する2つの蒸気流路同士を連通する第3連通溝30が設けられることになる。
このように、隣り合う蒸気流路12同士(図9参照)を、第3連通溝14によって連通させることで、蒸気流路12間の圧力差がなくなり、蒸気発生に伴う蒸発器2内の圧力分布がなくなって、熱源である発熱部品7からの熱によって発生した気相の作動流体が均一に蒸気管4に排出されることになる。これにより、ループヒートパイプ1の起動時間を短縮することが可能となる。
このように、隣り合う蒸気流路12同士(図9参照)を、第3連通溝14によって連通させることで、蒸気流路12間の圧力差がなくなり、蒸気発生に伴う蒸発器2内の圧力分布がなくなって、熱源である発熱部品7からの熱によって発生した気相の作動流体が均一に蒸気管4に排出されることになる。これにより、ループヒートパイプ1の起動時間を短縮することが可能となる。
なお、くし歯状部分19の分岐されている複数の部分19Aの本数、間隔、形状は、上述の例示しているものに限られるものではない。また、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aの本数、間隔、形状は、上述の例示しているものに限られるものではない。また、蒸発器2は、くし歯状部分19やくし歯状の蒸気流路18を備えないものとしても良い。つまり、蒸発器2は、例えば図10に示すように、毛細管力を発生する部分、即ち、液相の作動流体が浸透し、気相の作動流体となる部分19Xと、気相の作動流体が流れる蒸気流路18Xとを備えるものとして構成しても良い。
ところで、上述のように構成しているのは、以下の理由による。
ループヒートパイプ1は、図11に示すように、蒸発器2、凝縮器3、蒸発器2と凝縮器3とを連結する蒸気管4及び液管5を備え、これらの内部には作動流体が一定圧力で封入されている。
作動流体は、外部に設けられた発熱部品7から蒸発器2に供給される熱で液相から気相へと変化し、熱を伴って蒸気管4を通って凝縮器3に移動する。凝縮器3における放熱によって、作動流体は気相から液相へ変化し、液管5を通って蒸発器2に戻る。
ループヒートパイプ1は、図11に示すように、蒸発器2、凝縮器3、蒸発器2と凝縮器3とを連結する蒸気管4及び液管5を備え、これらの内部には作動流体が一定圧力で封入されている。
作動流体は、外部に設けられた発熱部品7から蒸発器2に供給される熱で液相から気相へと変化し、熱を伴って蒸気管4を通って凝縮器3に移動する。凝縮器3における放熱によって、作動流体は気相から液相へ変化し、液管5を通って蒸発器2に戻る。
蒸発器2の内部には、微細孔(細孔)をもつウィックと呼ばれる部材(図示せず)が収納されており、ウィックに作動流体が浸透する際に、微細孔において毛細管力が発生し、これが流体移動のためのポンピング力となる。
蒸発器2が、発熱部品7が発生した熱によって加熱されると、ウィック内に浸透した液相の作動流体が、ウィックの表面で蒸発して気相の作動流体が発生する。
蒸発器2が、発熱部品7が発生した熱によって加熱されると、ウィック内に浸透した液相の作動流体が、ウィックの表面で蒸発して気相の作動流体が発生する。
この蒸発器2内における相変化に発熱部品7が発生した熱が使われるため、発熱部品7から熱が奪われることになる。
そして、蒸発器2で発生した気相の作動流体は蒸気管4を通って凝縮器3へ移動し、凝縮器3で液相の作動流体に変化する。
液相の作動流体は、液管5を通って蒸発器2へ移動する。
そして、蒸発器2で発生した気相の作動流体は蒸気管4を通って凝縮器3へ移動し、凝縮器3で液相の作動流体に変化する。
液相の作動流体は、液管5を通って蒸発器2へ移動する。
このような作動流体の循環が繰り返されることで、発熱部品7が発生した熱の移動が連続して行われる。
ループヒートパイプ1内では、蒸発器2における受熱によって発生した気相の作動流体(蒸気)が、蒸気管4を通過して凝縮器3へと至る。
このとき、凝縮器3の液管5側から蒸発器2にかけては、理想的には液相の作動流体(作動液)が存在し、蒸発器2内のウィックには作動液が浸透している状態になっている。
ループヒートパイプ1内では、蒸発器2における受熱によって発生した気相の作動流体(蒸気)が、蒸気管4を通過して凝縮器3へと至る。
このとき、凝縮器3の液管5側から蒸発器2にかけては、理想的には液相の作動流体(作動液)が存在し、蒸発器2内のウィックには作動液が浸透している状態になっている。
そして、ウィックの微細孔内において毛細管力が働き、この毛細管力が支えとなって蒸発器2から液管5の方向への蒸気の侵入(逆流)を防いでいる。
ウィックに作動液が浸み込む際に発生する毛細管力は、ループヒートパイプ1における冷媒の駆動源として使用される。
ループヒートパイプ1による流体の移動、即ち、蒸発器2で潜熱を奪い、凝縮器3で液化した作動流体が再び蒸発器2に戻るためには、以下の条件が必要である。
ΔPcap≧ΔPtotal・・・(1)
ここで、ΔPcapは、蒸発器2で発生する毛細管圧力、ΔPtotalは、ループヒートパイプ1の流路のすべての圧力損失である。
ウィックに作動液が浸み込む際に発生する毛細管力は、ループヒートパイプ1における冷媒の駆動源として使用される。
ループヒートパイプ1による流体の移動、即ち、蒸発器2で潜熱を奪い、凝縮器3で液化した作動流体が再び蒸発器2に戻るためには、以下の条件が必要である。
ΔPcap≧ΔPtotal・・・(1)
ここで、ΔPcapは、蒸発器2で発生する毛細管圧力、ΔPtotalは、ループヒートパイプ1の流路のすべての圧力損失である。
上記式(1)から、ループヒートパイプ1の駆動源である蒸発器2での毛細管力ΔPcapを高めることで、ループヒートパイプ1の熱輸送能力が向上する。
ところで、図7、図8に示すように、このようなループヒートパイプ1をモバイル機器6に適用する場合、ループヒートパイプ1を、熱源である発熱部品7と接触する蒸発器2、蒸気管4、凝縮管3Aと熱拡散プレート3Bを備える凝縮器3及び液管5から構成されるものとし、蒸発器2に接触する発熱部品7の熱を、モバイル機器6内の比較的低温の領域に輸送することで、発熱部品7の熱を拡散させることができる。
ところで、図7、図8に示すように、このようなループヒートパイプ1をモバイル機器6に適用する場合、ループヒートパイプ1を、熱源である発熱部品7と接触する蒸発器2、蒸気管4、凝縮管3Aと熱拡散プレート3Bを備える凝縮器3及び液管5から構成されるものとし、蒸発器2に接触する発熱部品7の熱を、モバイル機器6内の比較的低温の領域に輸送することで、発熱部品7の熱を拡散させることができる。
しかしながら、ループヒートパイプ1をモバイル機器6に適用する場合、ループヒートパイプ1の構成部品を薄型化する必要がある。
例えば、ループヒートパイプ1の構成部品である蒸発器2、蒸気管4、凝縮器3及び液管5を個別に製造し、これらを溶接などで接続したのでは、薄型化を実現することは難しい。
例えば、ループヒートパイプ1の構成部品である蒸発器2、蒸気管4、凝縮器3及び液管5を個別に製造し、これらを溶接などで接続したのでは、薄型化を実現することは難しい。
また、例えば、蒸発器2に収納されるウィックには、例えば焼結金属、焼結樹脂、セラミックスなどの多孔質体が用いられているが、蒸発器2の薄型化にともない、蒸発器2に収納されるウィックも薄くすることになるが、これらの材料からなる多孔質体を薄化する際に、破損や亀裂が生じるおそれがある。
そこで、複数の金属薄板を積層し、拡散接合することによって、蒸発器2、凝縮器3、蒸気管4、液管5を作製し、薄型化することが考えられる。
そこで、複数の金属薄板を積層し、拡散接合することによって、蒸発器2、凝縮器3、蒸気管4、液管5を作製し、薄型化することが考えられる。
例えば、図12に示すように、6枚の金属薄板、即ち、2枚の表面シート24、25と4枚の内層シート26をエッチング加工によってパターニングし、これらを積層し、一括で拡散接合することによって、蒸発器2、凝縮器3、蒸気管4、液管5を同時に形成し、モバイル機器6に収納できる薄型のループヒートパイプ1を実現することが考えられる。
この場合、金属薄板24~26としては、厚さ約0.1mmの銅薄板を用いれば良い。
この場合、金属薄板24~26としては、厚さ約0.1mmの銅薄板を用いれば良い。
また、図13に示すように、4枚の内層シート26にエッチングによって開口部を設け、これらの開口部を有する4枚の内層シート26の上下を2枚の表面シート24、25で挟んで積層することで、4枚の内層シート26の開口部によって形成された空間の上下が閉じられて、蒸気管4、液管5、凝縮器3に備えられる凝縮管3Aの流路が形成されるようにすれば良い。
また、蒸発器2の内部に設けられ、流体駆動のための毛細管力を発生させる構造であるウィックは、4枚の内層シート26のそれぞれに、エッチングによって、複数の微細な孔を設けることによって形成すれば良い。
また、さらに薄型のループヒートパイプ1を実現するために、2枚の金属薄板を用い、これらを接合することで、蒸発器2、凝縮器3、蒸気管4、液管5を作製することも考えられる。
また、さらに薄型のループヒートパイプ1を実現するために、2枚の金属薄板を用い、これらを接合することで、蒸発器2、凝縮器3、蒸気管4、液管5を作製することも考えられる。
この場合、2枚の金属薄板をハーフエッチングし、即ち、板厚よりも小さい深さを有する凹部や溝をパターニングし、これらを貼り合わせることで、流路を形成すれば良い。
この場合、蒸発器2となる領域では、毛細管力を発生させるために、例えば図14に示すように、エッチング加工(例えばハーフエッチング加工)によって、金属薄板に微細な溝27や幅広溝28を形成することが考えられる。
この場合、蒸発器2となる領域では、毛細管力を発生させるために、例えば図14に示すように、エッチング加工(例えばハーフエッチング加工)によって、金属薄板に微細な溝27や幅広溝28を形成することが考えられる。
一般に、均等な孔をもつ多孔質体(ウィック)に、作動流体が染み込むことを想定すると、このときに、蒸発器2において発生する毛細管圧力ΔPcapは、次式(2)で表される。
ここで、rwickは多孔質体における細孔半径であり、σは作動流体の表面張力であり、θは多孔質体の材料と作動流体の間の接触角である。
上記式(2)から、毛細管力を大きくする一つの条件として、多孔質体の細孔半径rwickを小さくすることが挙げられる。
上述のような2枚の金属薄板を用いたループヒートパイプ1では、上記式(2)の細孔半径rwickは、蒸発器部分にエッチング加工によって形成される微細な溝のサイズ(例えば幅)に相当し、溝によってできる微細流路の断面積に相関する。
上記式(2)から、毛細管力を大きくする一つの条件として、多孔質体の細孔半径rwickを小さくすることが挙げられる。
上述のような2枚の金属薄板を用いたループヒートパイプ1では、上記式(2)の細孔半径rwickは、蒸発器部分にエッチング加工によって形成される微細な溝のサイズ(例えば幅)に相当し、溝によってできる微細流路の断面積に相関する。
毛細管力を大きくするためには、微細流路の断面積ができるだけ小さくなるように、微細な溝のサイズをできるだけ小さくするのが好ましい。
しかしながら、金属薄板に微細な溝を形成するのに例えばエッチング加工を行なう場合、例えばレジスト材による開口の寸法精度やエッチングレートの限界によって、大きな毛細管力を発生しうる微細な溝を形成するのは難しい。
しかしながら、金属薄板に微細な溝を形成するのに例えばエッチング加工を行なう場合、例えばレジスト材による開口の寸法精度やエッチングレートの限界によって、大きな毛細管力を発生しうる微細な溝を形成するのは難しい。
そこで、2つの板状部材を用いて薄型化したループヒートパイプ1において、蒸発器2内で発生する毛細管力を向上させるべく、上述のように構成している。これにより、低コストで提供でき、かつ、薄型化を実現できる2つの板状部材8、9を用いたループヒートパイプ1において、蒸発器2で発生する毛細管力を向上させることができる。
ところで、上述のように、第1板状部材8及び第2板状部材9の2つの板状部材によって構成されるループヒートパイプ1は、以下のようにして製造することができる。
ところで、上述のように、第1板状部材8及び第2板状部材9の2つの板状部材によって構成されるループヒートパイプ1は、以下のようにして製造することができる。
まず、第1板状部材8を加工(例えばハーフエッチング加工)して、蒸発器2となる領域に、液管5が接続されている側から蒸気管4が接続されている側へ向かう長さ方向へ延びる複数の第1凸部10と、長さ方向に交差する幅方向へ延びる複数の第2凸部11と、第1凸部10及び第2凸部11によって仕切られた複数の第1凹部12とを形成する[例えば図1(A)、図4(A)、図5(A)参照]。
また、第2板状部材9を加工(例えばハーフエッチング加工)して、蒸発器2となる領域に、長さ方向へ延びる複数の第3凸部14及び幅方向へ延びる複数の第4凸部15の少なくとも一方と、第3凸部14及び第4凸部15の少なくとも一方によって仕切られた複数の第2凹部16とを形成する[例えば図1(B)、図3(A)、図3(B)、図4(B)、図5(B)、図6(A)参照]。
そして、第1板状部材8と第2板状部材9とを、蒸発器2となる領域で、第1凹部12と第3凸部14及び第4凸部15の少なくとも一方とが対向し、第1凹部12と第3凸部14及び第4凸部15の少なくとも一方の両側の第2凹部16とが連通するように接合する。
このようにして、ループヒートパイプ1を製造することができる[例えば図2(A)、図4(C)、図5(C)、図6(B)参照]。
このようにして、ループヒートパイプ1を製造することができる[例えば図2(A)、図4(C)、図5(C)、図6(B)参照]。
具体的には、第1板状部材8及び第2板状部材9としての2枚の金属薄板(2枚の表面シート)の一方の蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第1凸部10及び第2凸部11によって仕切られた第1凹部12及びくし歯状の蒸気流路18となる幅広溝を設けるとともに、2枚の金属薄板の他方の蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第3凸部14及び第4凸部15によって仕切られた第2凹部16及びくし歯状の蒸気流路18となる幅広溝を設け、さらに、2枚の金属薄板のそれぞれの蒸気管4となる領域、凝縮器3に備えられる凝縮管3Aとなる領域、液管5となる領域には、それぞれ、蒸気管4、凝縮器3に備えられる凝縮管3A、液管5の各流路を構成する凹部を設け、これらの2枚の金属薄板を、溝及び凹部が設けられている面同士が接触するように対向させ、拡散接合して、薄型のループヒートパイプ1を構成すれば良い。
ここでは、第1板状部材8及び第2板状部材9の凝縮管3Aとなる領域に設けられる凹部は、外気との熱交換の効率を上げ、凝縮による液化が十分に行なえるように、蛇行させて設けられている。また、ここでは、蒸発器2、蒸気管4、凝縮器3及び液管5のそれぞれの形状にパターニングする際に、凝縮器3に備えられる凝縮管3Aとなる領域の周囲に平板状に板状部材を残すことで、この部分が凝縮器3に備えられる熱拡散プレート3Bとして機能するようにしている。
なお、上述のループヒートパイプ1では、蒸気管4、凝縮管3A及び液管5には溝は設けられていないが、これに限られるものではない。
例えば、上述の蒸発器2に設けられている井桁パターン構造13、17(例えば図1~図4参照)と同様の構造を、液管5にも設けても良い。
つまり、第1板状部材8の液管5となる領域に、長さ方向へ延びる複数の第1液管用凸部と、幅方向へ延びる複数の第2液管用凸部と、第1液管用凸部及び第2液管用凸部によって仕切られた複数の第1液管用凹部とを設けるとともに、第2板状部材9の液管5となる領域に、長さ方向へ延びる複数の第3液管用凸部及び幅方向へ延びる複数の第4液管用凸部の少なくとも一方と、第3液管用凸部及び第4液管用凸部の少なくとも一方によって仕切られた複数の第2液管用凹部とを設け、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用凹部と第3液管用凸部及び第4液管用凸部の少なくとも一方とが対向し、第1液管用凹部と第3液管用凸部及び第4液管用凸部の少なくとも一方の両側の第2液管用凹部とが連通するように接合されているものとしても良い。
例えば、上述の蒸発器2に設けられている井桁パターン構造13、17(例えば図1~図4参照)と同様の構造を、液管5にも設けても良い。
つまり、第1板状部材8の液管5となる領域に、長さ方向へ延びる複数の第1液管用凸部と、幅方向へ延びる複数の第2液管用凸部と、第1液管用凸部及び第2液管用凸部によって仕切られた複数の第1液管用凹部とを設けるとともに、第2板状部材9の液管5となる領域に、長さ方向へ延びる複数の第3液管用凸部及び幅方向へ延びる複数の第4液管用凸部の少なくとも一方と、第3液管用凸部及び第4液管用凸部の少なくとも一方によって仕切られた複数の第2液管用凹部とを設け、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用凹部と第3液管用凸部及び第4液管用凸部の少なくとも一方とが対向し、第1液管用凹部と第3液管用凸部及び第4液管用凸部の少なくとも一方の両側の第2液管用凹部とが連通するように接合されているものとしても良い。
この場合、上述のループヒートパイプの製造方法における第1板状部材8を加工する工程において、第1板状部材8の液管5となる領域に、長さ方向へ延びる複数の第1液管用凸部と、幅方向へ延びる複数の第2液管用凸部と、第1液管用凸部及び第2液管用凸部によって仕切られた複数の第1液管用凹部とを形成し、第2板状部材9を加工する工程において、第1板状部材8の液管5となる領域に、長さ方向へ延びる複数の第3液管用凸部及び幅方向へ延びる複数の第4液管用凸部の少なくとも一方と、第3液管用凸部及び第4液管用凸部の少なくとも一方によって仕切られた複数の第2液管用凹部とを形成し、第1板状部材8と第2板状部材9とを接合する工程において、液管5となる領域で、第1液管用凹部と第3液管用凸部及び第4液管用凸部の少なくとも一方とが対向し、第1液管用凹部と第3液管用凸部及び第4液管用凸部の少なくとも一方の両側の第2液管用凹部とが連通するように、第1板状部材8と第2板状部材9とを接合するようにすれば良い。
また、例えば、図15に示すように、液管5を、毛細管力を発生させうる液管用溝29を有するものとしても良い。なお、図15では、液管5の長さ方向へ延びる液管用溝29を例示している。
例えば、液管5を、液管用溝29として、液管5の長さ方向へ延び、毛細管力を発生させうる液管用溝を備えるものとすれば良い。
例えば、液管5を、液管用溝29として、液管5の長さ方向へ延び、毛細管力を発生させうる液管用溝を備えるものとすれば良い。
この場合、第1板状部材8の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる液管用溝(第1液管用溝)29を設けるとともに、第2板状部材9の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる液管用溝(第2液管用溝)29を設け、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用溝29を有する側と第2液管用溝29を有する側とを対向させて接合されているものとすれば良い。この場合、第1液管用溝29と第2液管用溝29は、互いに対向し、かつ、同一方向に設けられることになる。
また、上述のループヒートパイプの製造方法における第1板状部材8を加工(例えばハーフエッチング加工)する工程において、第1板状部材8の液管5となる領域を加工して、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29を形成し、第2板状部材9を加工(例えばハーフエッチング加工)する工程において、第2板状部材9の液管5となる領域を加工して、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第2液管用溝29を形成し、第1板状部材8と第2板状部材9とを接合する工程において、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用溝29を有する側と第2液管用溝29を有する側とを対向させて接合するようにすれば良い。
また、例えば、液管5を、液管用溝29として、液管5の長さ方向へ延び、毛細管力を発生させうる液管用溝(第1液管用溝)と、液管5の幅方向へ延び、毛細管力を発生させうる液管用溝(第2液管用溝)とを備えるものとしても良い。
この場合、第1板状部材8の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29を設けるとともに、第2板状部材9の液管5となる領域に、液管5となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝29を設け、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用溝29を有する側と第2液管用溝29を有する側とを対向させて接合されているものとすれば良い。この場合、第1液管用溝29と第2液管用溝29は、互いに対向し、かつ、一定の角度を有して交差(例えば直交)するように設けられることになる。
この場合、第1板状部材8の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29を設けるとともに、第2板状部材9の液管5となる領域に、液管5となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝29を設け、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用溝29を有する側と第2液管用溝29を有する側とを対向させて接合されているものとすれば良い。この場合、第1液管用溝29と第2液管用溝29は、互いに対向し、かつ、一定の角度を有して交差(例えば直交)するように設けられることになる。
また、上述のループヒートパイプの製造方法における第1板状部材8を加工(例えばハーフエッチング加工)する工程において、第1板状部材8の液管5となる領域を加工して、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29を形成し、第2板状部材9を加工(例えばハーフエッチング加工)する工程において、第2板状部材9の液管5となる領域を加工して、液管5となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝29を形成し、第1板状部材8と第2板状部材9とを接合する工程において、第1板状部材8と第2板状部材9とを、液管5となる領域で、第1液管用溝29を有する側と第2液管用溝29を有する側とを対向させて接合するようにすれば良い。
なお、井桁パターン構造13、17や液管用溝29は、液管5の全体にわたって設けられていても良いし、液管5の一部分に設けられていても良い。また、井桁パターン構造13、17や液管用溝29の本数、間隔、形状はここで例示しているものに限られるものではない。
このようにして、液管5にも、井桁パターン構造13、17や毛細管力を発生させうる液管用溝29を設けるのは、モバイル機器が縦向きになり、熱源である発熱部品7の位置が上側になる場合があり、このような場合であっても、毛細管力が作用することで、液相の作動流体が液管5の内部を流れ、蒸発器2へ流入するようにし、ループヒートパイプ1が安定して動作するようにするためである。
このようにして、液管5にも、井桁パターン構造13、17や毛細管力を発生させうる液管用溝29を設けるのは、モバイル機器が縦向きになり、熱源である発熱部品7の位置が上側になる場合があり、このような場合であっても、毛細管力が作用することで、液相の作動流体が液管5の内部を流れ、蒸発器2へ流入するようにし、ループヒートパイプ1が安定して動作するようにするためである。
以下、具体的な構成例及びその製造方法について説明する。
まず、厚さ約0.25mmの第1の銅薄板8を用い、これを、図16(A)に示すような形状になるように、レジストでパターニングした後に、露出した銅をエッチング加工する。
ここで、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約7mm、液管5の幅は約6mmである。
まず、厚さ約0.25mmの第1の銅薄板8を用い、これを、図16(A)に示すような形状になるように、レジストでパターニングした後に、露出した銅をエッチング加工する。
ここで、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約7mm、液管5の幅は約6mmである。
また、蒸気管4、凝縮管3A及び液管5の各流路は、銅薄板を深さ約0.15mmまでエッチング加工(ハーフエッチング加工)して形成する。
また、蒸発器2の内部は、図9に示すように、くし歯状部分19とくし歯状の蒸気流路18とが形成され、くし歯状部分19に例えば図1(A)に示すような井桁パターン13が形成されるようにエッチング加工(ハーフエッチング加工)して形成する。
また、蒸発器2の内部は、図9に示すように、くし歯状部分19とくし歯状の蒸気流路18とが形成され、くし歯状部分19に例えば図1(A)に示すような井桁パターン13が形成されるようにエッチング加工(ハーフエッチング加工)して形成する。
ここで、井桁パターン13を構成する複数の第1凸部10の間隔及び複数の第2溝11の間隔は約0.24mmであり、深さは約0.12mmである。また、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aを構成する幅広溝であるグルーブの幅は約1mmであり、深さは約0.15mmである。なお、図16(A)では、井桁パターン13が設けられる領域に模様を付している。
次に、厚さ約3mmの第2の銅薄板9を用い、これを、図16(B)に示すような形状になるように、レジストでパターニングした後に、露出した銅をエッチング加工する。
ここでは、図16(A)に示すような形状に加工したものに対し、蒸発器2、蒸気管4、凝縮器3及び液管5が対称な位置に配置されるように加工する。
ここで、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約7mm、液管5の幅は約6mmである。
ここでは、図16(A)に示すような形状に加工したものに対し、蒸発器2、蒸気管4、凝縮器3及び液管5が対称な位置に配置されるように加工する。
ここで、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約7mm、液管5の幅は約6mmである。
また、蒸気管4、凝縮管3A及び液管5の各流路は、銅薄板を深さ約0.15mmまでエッチング加工(ハーフエッチング加工)して形成する。
また、蒸発器2の内部は、図9に示すように、くし歯状部分19とくし歯状の蒸気流路18とが形成され、くし歯状部分19に例えば図1(B)に示すような井桁パターン17が形成されるようにエッチング加工(ハーフエッチング加工)して形成する。
また、蒸発器2の内部は、図9に示すように、くし歯状部分19とくし歯状の蒸気流路18とが形成され、くし歯状部分19に例えば図1(B)に示すような井桁パターン17が形成されるようにエッチング加工(ハーフエッチング加工)して形成する。
ここで、井桁パターン17を構成する複数の第3凸部14の間隔及び複数の第4凸部15の間隔は約0.24mmであり、深さは約0.12mmである。また、くし歯状の蒸気流路18の分岐されている複数の蒸気流路18Aを構成する幅広溝であるグルーブの幅は約1mmであり、深さは約0.15mmである。なお、図16(B)では、井桁パターン17が設けられる領域に模様を付している。
そして、図16(A)に示すようにエッチング加工された銅薄板8と、図16(B)に示すようにエッチング加工された銅薄板9とを拡散接合し、液注入口から内部を真空排気した後、配管内に作動液として水(あるいはエタノールやフロン)を注入することで、厚さ約0.5mmの薄型のループヒートパイプ1を作製することができる。
なお、このようにして作製されるループヒートパイプ1において、例えば、第1の銅薄板8及び第2の銅薄板9の厚さを約0.3mmとし、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約8mmとし、厚さ約0.6mmの薄型のループヒートパイプ1としても良い。
なお、このようにして作製されるループヒートパイプ1において、例えば、第1の銅薄板8及び第2の銅薄板9の厚さを約0.3mmとし、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約8mmとし、厚さ約0.6mmの薄型のループヒートパイプ1としても良い。
また、上述のようにして作製されるループヒートパイプ1において、第1の銅薄板8及び第2の銅薄板9の蒸発器2となる領域に設けられるパターンを、例えば図3(A)、図3(B)、図4(A)、図4(B)、図5(A)、図5(B)、図6(A)に示すようなパターンが形成されるようにエッチング加工(ハーフエッチング加工)しても良い。この場合も、上述の場合と同様の寸法にすれば良い。
また、上述のようにして作製されるループヒートパイプ1において、図17に示すように、液管5の内部にも蒸発器2の内部に設けられている構造(井桁パターン構造13、17)と同様の構造を形成する場合、それぞれの銅薄板8、9の液管5となる領域に、上述の井桁パターン13、17をエッチング加工(ハーフエッチング加工)によって形成すれば良い。なお、図17では、井桁パターン13、17が設けられる領域に模様を付している。
また、上述のようにして作製されるループヒートパイプ1において、液管5の内部にも毛細管力を発生させうる液管用溝29を形成する場合(図15参照)、それぞれの銅薄板の液管5となる領域に液管用溝29をエッチング加工(ハーフエッチング加工)によって形成すれば良い。
この場合、両方の銅薄板8、9の液管5となる領域に液管5の長さ方向に延びる液管用溝29を形成しても良いし、一方の銅薄板の液管5となる領域に液管5の長さ方向に延びる液管用溝29を形成し、他方の銅薄板の液管5となる領域に液管5の幅方向に延びる液管用溝29を形成しても良い。
この場合、両方の銅薄板8、9の液管5となる領域に液管5の長さ方向に延びる液管用溝29を形成しても良いし、一方の銅薄板の液管5となる領域に液管5の長さ方向に延びる液管用溝29を形成し、他方の銅薄板の液管5となる領域に液管5の幅方向に延びる液管用溝29を形成しても良い。
ここで、液管用溝29の幅は約0.1mmとし、深さは約0.12mmとすれば良い。
なお、ループヒートパイプ1の形状、配管パターンは、上述のものに限られるものではない。また、ここでは、金属薄板として銅薄板を用いているが、金属薄板を拡散接合することによって一括形成できれば良く、金属薄板の材料は、銅に限られるものではなく、例えばステンレスや合金材料等のエッチング等によるパターン形成及び拡散接合に適するものであれば良い。また、ループヒートパイプ1の各寸法は、上述のものに限られるものではなく、要求される熱輸送量と熱輸送距離、配管高さ及び配管幅によって適宜最適化すれば良い。
なお、ループヒートパイプ1の形状、配管パターンは、上述のものに限られるものではない。また、ここでは、金属薄板として銅薄板を用いているが、金属薄板を拡散接合することによって一括形成できれば良く、金属薄板の材料は、銅に限られるものではなく、例えばステンレスや合金材料等のエッチング等によるパターン形成及び拡散接合に適するものであれば良い。また、ループヒートパイプ1の各寸法は、上述のものに限られるものではなく、要求される熱輸送量と熱輸送距離、配管高さ及び配管幅によって適宜最適化すれば良い。
上述のようにして作製されたループヒートパイプ1では、各金属薄板(銅薄板)8、9に形成された井桁パターン13、17をずらして接合した蒸発器2を用いるため、例えば溝加工のみの蒸発器(図14参照)と比較して、流体が通過する流路断面積を半分以下にする設計が可能になる。これにより、2倍以上の毛細管力が発生することになる。
なお、溝加工のみの蒸発器とは、各金属薄板に蒸発器の長さ方向へ延びる溝を形成したものである(図14参照)。ここでは、各溝幅は、上述の実施形態の井桁パターン構造13、17を構成する各凸部の間隔と同一になっている。
なお、溝加工のみの蒸発器とは、各金属薄板に蒸発器の長さ方向へ延びる溝を形成したものである(図14参照)。ここでは、各溝幅は、上述の実施形態の井桁パターン構造13、17を構成する各凸部の間隔と同一になっている。
ここで、図18は、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1、及び、溝加工のみの蒸発器(図14参照)を有するループヒートパイプにおける蒸発器温度(熱源温度)と入力電力(蒸発器に入力される熱量)との関係を示す図である。
なお、図18では、蒸発器温度(熱源温度)として、ループヒートパイプの蒸発器に流入した熱が凝縮器に移動した時の熱源部分の飽和温度を示している。また、図18中、実線Aは、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1における蒸発器温度(熱源温度)を示している。また、図18中、実線Bは、溝加工のみの蒸発器(図14参照)を有するループヒートパイプにおける蒸発器温度(熱源温度)を示している。
なお、図18では、蒸発器温度(熱源温度)として、ループヒートパイプの蒸発器に流入した熱が凝縮器に移動した時の熱源部分の飽和温度を示している。また、図18中、実線Aは、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1における蒸発器温度(熱源温度)を示している。また、図18中、実線Bは、溝加工のみの蒸発器(図14参照)を有するループヒートパイプにおける蒸発器温度(熱源温度)を示している。
図18に示すように、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1では、蒸発器2の毛細管力の向上によって、ループヒートパイプ1の起動性能が向上し、溝加工のみの蒸発器(図14参照)を有するループヒートパイプよりも蒸発器温度(熱源温度)が低温化することがわかる。
また、図19は、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1、及び、溝加工のみの蒸発器(図14参照)を有するループヒートパイプにおける熱輸送抵抗と入力電力(蒸発器に入力される熱量)との関係を示す図である。
なお、熱輸送抵抗は、蒸発器から凝縮器までの熱輸送の効率を表している。また、図19中、実線Aは、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1における熱輸送抵抗を示している。また、図19中、実線Bは、溝加工のみの蒸発器(図14参照)を有するループヒートパイプにおける熱輸送抵抗を示している。
なお、熱輸送抵抗は、蒸発器から凝縮器までの熱輸送の効率を表している。また、図19中、実線Aは、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1における熱輸送抵抗を示している。また、図19中、実線Bは、溝加工のみの蒸発器(図14参照)を有するループヒートパイプにおける熱輸送抵抗を示している。
図19に示すように、上述の実施形態のように井桁パターン構造13、17が設けられた蒸発器2(図1参照)を有するループヒートパイプ1では、溝加工のみの蒸発器(図14参照)を有するループヒートパイプと比較して、熱輸送抵抗が小さいため、効率的な熱輸送が可能であることがわかる。
したがって、本実施形態にかかるループヒートパイプ及びその製造方法並びに電子機器によれば、2つの板状部材8、9を用いて薄型化したループヒートパイプ1において、蒸発器2内で発生する毛細管力を向上させることができるという利点がある。
したがって、本実施形態にかかるループヒートパイプ及びその製造方法並びに電子機器によれば、2つの板状部材8、9を用いて薄型化したループヒートパイプ1において、蒸発器2内で発生する毛細管力を向上させることができるという利点がある。
なお、本発明は、上述した実施形態及び変形例に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能であり、適宜組み合わせることも可能である。
1 ループヒートパイプ
2 蒸発器
3 凝縮器
3A 凝縮管
3B 熱拡散プレート
4 蒸気管
5 液管
6 モバイル機器(電子機器)
7 発熱部品
8 第1板状部材
9 第2板状部材
10 第1凸部
11 第2凸部
12 第1凹部
13 井桁パターン構造(井桁パターン)
14 第3凸部
15 第4凸部
16 第2凹部
17 井桁パターン構造(井桁パターン)
18 くし歯状の蒸気流路
18A 複数の蒸気流路
18X 蒸気流路
19 くし歯状部分
19A 複数の部分
19X 毛細管力を発生する部分
20 第1連通溝
21 第2連通溝
22 液流入口
23 蒸気流出口
24、25 表面シート
26 内層シート
27 微細な溝
28 幅広溝
29 液管用溝(第1液管用溝;第2液管用溝)
30 第3連通溝
2 蒸発器
3 凝縮器
3A 凝縮管
3B 熱拡散プレート
4 蒸気管
5 液管
6 モバイル機器(電子機器)
7 発熱部品
8 第1板状部材
9 第2板状部材
10 第1凸部
11 第2凸部
12 第1凹部
13 井桁パターン構造(井桁パターン)
14 第3凸部
15 第4凸部
16 第2凹部
17 井桁パターン構造(井桁パターン)
18 くし歯状の蒸気流路
18A 複数の蒸気流路
18X 蒸気流路
19 くし歯状部分
19A 複数の部分
19X 毛細管力を発生する部分
20 第1連通溝
21 第2連通溝
22 液流入口
23 蒸気流出口
24、25 表面シート
26 内層シート
27 微細な溝
28 幅広溝
29 液管用溝(第1液管用溝;第2液管用溝)
30 第3連通溝
Claims (19)
- 液相の作動流体が蒸発する蒸発器と、
気相の作動流体が凝縮する凝縮器と、
前記蒸発器と前記凝縮器とを接続し、気相の作動流体が流れる蒸気管と、
前記凝縮器と前記蒸発器とを接続し、液相の作動流体が流れる液管とを備え、
前記蒸発器、前記凝縮器、前記蒸気管及び前記液管は、第1板状部材と第2板状部材とを接合した構造になっており、
前記第1板状部材は、前記蒸発器となる領域に、前記液管が接続されている側から前記蒸気管が接続されている側へ向かう長さ方向へ延びる複数の第1凸部と、前記長さ方向に交差する幅方向へ延びる複数の第2凸部と、前記第1凸部及び前記第2凸部によって仕切られた複数の第1凹部とを備え、
前記第2板状部材は、前記蒸発器となる領域に、前記長さ方向へ延びる複数の第3凸部及び前記幅方向へ延びる複数の第4凸部の少なくとも一方と、前記第3凸部及び前記第4凸部の少なくとも一方によって仕切られた複数の第2凹部とを備え、
前記第1板状部材と前記第2板状部材とは、前記蒸発器となる領域で、前記第1凹部と前記第3凸部及び前記第4凸部の少なくとも一方とが対向し、前記第1凹部と前記第3凸部及び前記第4凸部の少なくとも一方の両側の前記第2凹部とが連通するように接合されていることを特徴とするループヒートパイプ。 - 前記複数の第1凸部は、互いに平行に設けられており、
前記複数の第2凸部は、互いに平行に設けられており、かつ、前記第1凸部に直交するように設けられており、
前記複数の第3凸部を備える場合には、前記複数の第3凸部は、互いに平行に設けられており、かつ、前記第1凸部と平行に設けられており、
前記複数の第4凸部を備える場合には、前記複数の第4凸部は、互いに平行に設けられており、かつ、前記第2凸部と平行に設けられていることを特徴とする、請求項1に記載のループヒートパイプ。 - 前記複数の第1凸部は、互いに平行に設けられており、
前記複数の第2凸部は、互いに平行に設けられており、かつ、前記第1凸部に斜めに交差するように設けられており、
前記複数の第3凸部を備える場合には、前記複数の第3凸部は、互いに平行に設けられており、かつ、前記第1凸部と平行に設けられており、
前記複数の第4凸部を備える場合には、前記複数の第4凸部は、互いに平行に設けられており、かつ、前記第2凸部と平行に設けられていることを特徴とする、請求項1に記載のループヒートパイプ。 - 前記複数の第1凸部の間隔、前記複数の第2凸部の間隔、前記複数の第3凸部及び前記複数の第4凸部の少なくとも一方の間隔は、同一であることを特徴とする、請求項1~3のいずれか1項に記載のループヒートパイプ。
- 前記第2板状部材は、前記複数の第3凸部と、前記複数の第4凸部と、前記第3凸部及び前記第4凸部によって仕切られた前記複数の第2凹部とを備え、
前記第1凹部と前記第2凹部とが、同じサイズであることを特徴とする、請求項1~3のいずれか1項に記載のループヒートパイプ。 - 前記第1板状部材は、前記第1凹部の側面を構成する前記第1凸部及び前記第2凸部と前記第1凹部の底面とが同じ材料からなり、
前記第2板状部材は、前記第2凹部の側面を構成する前記第3凸部及び前記第4凸部の少なくとも一方と前記第2凹部の底面とが同じ材料からなることを特徴とする、請求項1~5のいずれか1項に記載のループヒートパイプ。 - 前記第1凹部の側面を構成する前記第1凸部及び前記第2凸部は、隣接する前記第1凹部間を連通する第1連通溝を備えることを特徴とする、請求項1~6のいずれか1項に記載のループヒートパイプ。
- 前記第2板状部材は、前記複数の第3凸部と、前記複数の第4凸部と、前記第3凸部及び前記第4凸部によって仕切られた前記複数の第2凹部とを備え、
前記第2凹部の側面を構成する前記第3凸部及び前記第4凸部は、隣接する前記第2凹部間を連通する第2連通溝を備えることを特徴とする、請求項7に記載のループヒートパイプ。 - 前記蒸発器は、前記液管が接続されている側から分岐されて延びており、液相の作動流体が浸透し、気相の作動流体となるくし歯状部分と、前記くし歯状部分に対向するように設けられ、前記蒸気管が接続されている側から分岐されて延びており、気相の作動流体が流れるくし歯状の蒸気流路とを備え、
前記第1板状部材は、前記くし歯状部分となる領域に、前記第1凸部、前記第2凸部、前記第1凹部を備え、
前記第2板状部材は、前記くし歯状部分となる領域に、前記第3凸部及び前記第4凸部の少なくとも一方、前記第2凹部を備えることを特徴とする、請求項1~8のいずれか1項に記載のループヒートパイプ。 - 前記くし歯状の蒸気流路は、分岐されている複数の蒸気流路のそれぞれの流路幅が前記複数の第1凸部の間隔よりも広いことを特徴とする、請求項9に記載のループヒートパイプ。
- 前記くし歯状部分の分岐されている複数の部分は、それぞれ、前記くし歯状の蒸気流路の分岐されている複数の蒸気流路のうち隣り合う2つの蒸気流路を連通する第3連通溝を備えることを特徴とする、請求項9又は10に記載のループヒートパイプ。
- 前記第3連通溝は、前記第1板状部材及び前記第2板状部材の少なくとも一方に設けられていることを特徴とする、請求項11に記載のループヒートパイプ。
- 前記第1板状部材は、前記液管となる領域に、前記長さ方向へ延びる複数の第1液管用凸部と、前記幅方向へ延びる複数の第2液管用凸部と、前記第1液管用凸部及び前記第2液管用凸部によって仕切られた複数の第1液管用凹部とを備え、
前記第2板状部材は、前記液管となる領域に、前記長さ方向へ延びる複数の第3液管用凸部及び前記幅方向へ延びる複数の第4液管用凸部の少なくとも一方と、前記第3液管用凸部及び前記第4液管用凸部の少なくとも一方によって仕切られた複数の第2液管用凹部とを備え、
前記第1板状部材と前記第2板状部材とは、前記液管となる領域で、前記第1液管用凹部と前記第3液管用凸部及び前記第4液管用凸部の少なくとも一方とが対向し、前記第1液管用凹部と前記第3液管用凸部及び前記第4液管用凸部の少なくとも一方の両側の前記第2液管用凹部とが連通するように接合されていることを特徴とする、請求項1~12のいずれか1項に記載のループヒートパイプ。 - 前記液管は、毛細管力を発生させうる液管用溝を備えることを特徴とする、請求項1~12のいずれか1項に記載のループヒートパイプ。
- 前記第1板状部材は、前記液管となる領域に、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝を有し、
前記第2板状部材は、前記液管となる領域に、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第2液管用溝を有し、
前記第1板状部材と前記第2板状部材とは、前記液管となる領域で、前記第1液管用溝を有する側と前記第2液管用溝を有する側とを対向させて接合されていることを特徴とする、請求項1~12のいずれか1項に記載のループヒートパイプ。 - 前記第1板状部材は、前記液管となる領域に、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝を有し、
前記第2板状部材は、前記液管となる領域に、前記液管となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝を有し、
前記第1板状部材と前記第2板状部材とは、前記液管となる領域で、前記第1液管用溝を有する側と前記第2液管用溝を有する側とを対向させて接合されていることを特徴とする、請求項1~12のいずれか1項に記載のループヒートパイプ。 - 発熱部品と、
前記発熱部品を冷却するループヒートパイプとを備え、
前記ループヒートパイプが、
液相の作動流体が蒸発する蒸発器と、
気相の作動流体が凝縮する凝縮器と、
前記蒸発器と前記凝縮器とを接続し、気相の作動流体が流れる蒸気管と、
前記凝縮器と前記蒸発器とを接続し、液相の作動流体が流れる液管とを備え、
前記蒸発器、前記凝縮器、前記蒸気管及び前記液管は、第1板状部材と第2板状部材とを接合した構造になっており、
前記第1板状部材は、前記蒸発器となる領域に、前記液管が接続されている側から前記蒸気管が接続されている側へ向かう長さ方向へ延びる複数の第1凸部と、前記長さ方向に交差する幅方向へ延びる複数の第2凸部と、前記第1凸部及び前記第2凸部によって仕切られた複数の第1凹部とを備え、
前記第2板状部材は、前記蒸発器となる領域に、前記長さ方向へ延びる複数の第3凸部及び前記幅方向へ延びる複数の第4凸部の少なくとも一方と、前記第3凸部及び前記第4凸部の少なくとも一方によって仕切られた複数の第2凹部とを備え、
前記第1板状部材と前記第2板状部材とは、前記蒸発器となる領域で、前記第1凹部と前記第3凸部及び前記第4凸部の少なくとも一方とが対向し、前記第1凹部と前記第3凸部及び前記第4凸部の少なくとも一方の両側の前記第2凹部とが連通するように接合されていることを特徴とする電子機器。 - 第1板状部材を加工して、蒸発器となる領域に、液管が接続されている側から蒸気管が接続されている側へ向かう長さ方向へ延びる複数の第1凸部と、前記長さ方向に交差する幅方向へ延びる複数の第2凸部と、前記第1凸部及び前記第2凸部によって仕切られた複数の第1凹部とを形成する工程と、
第2板状部材を加工して、前記蒸発器となる領域に、前記長さ方向へ延びる複数の第3凸部及び前記幅方向へ延びる複数の第4凸部の少なくとも一方と、前記第3凸部及び前記第4凸部の少なくとも一方によって仕切られた複数の第2凹部とを形成する工程と、
前記第1板状部材と前記第2板状部材とを、前記蒸発器となる領域で、前記第1凹部と前記第3凸部及び前記第4凸部の少なくとも一方とが対向し、前記第1凹部と前記第3凸部及び前記第4凸部の少なくとも一方の両側の前記第2凹部とが連通するように接合する工程とを含むことを特徴とするループヒートパイプの製造方法。 - 前記第1板状部材を加工する工程において、前記第1板状部材の前記液管となる領域に、前記長さ方向へ延びる複数の第1液管用凸部と、前記幅方向へ延びる複数の第2液管用凸部と、前記第1液管用凸部及び前記第2液管用凸部によって仕切られた複数の第1液管用凹部とを形成し、
前記第2板状部材を加工する工程において、前記第2板状部材の前記液管となる領域に、前記長さ方向へ延びる複数の第3液管用凸部及び前記幅方向へ延びる複数の第4液管用凸部の少なくとも一方と、前記第3液管用凸部及び前記第4液管用凸部の少なくとも一方によって仕切られた複数の第2液管用凹部とを形成し、
前記第1板状部材と前記第2板状部材とを接合する工程において、前記液管となる領域で、前記第1液管用凹部と前記第3液管用凸部及び前記第4液管用凸部の少なくとも一方とが対向し、前記第1液管用凹部と前記第3液管用凸部及び前記第4液管用凸部の少なくとも一方の両側の前記第2液管用凹部とが連通するように、前記第1板状部材と前記第2板状部材とを接合することを特徴とする、請求項18に記載のループヒートパイプの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018516232A JP6597892B2 (ja) | 2016-05-09 | 2016-05-09 | ループヒートパイプ及びその製造方法並びに電子機器 |
PCT/JP2016/063762 WO2017195254A1 (ja) | 2016-05-09 | 2016-05-09 | ループヒートパイプ及びその製造方法並びに電子機器 |
US16/180,648 US10420253B2 (en) | 2016-05-09 | 2018-11-05 | Loop heat pipe, manufacturing method thereof, and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/063762 WO2017195254A1 (ja) | 2016-05-09 | 2016-05-09 | ループヒートパイプ及びその製造方法並びに電子機器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/180,648 Continuation US10420253B2 (en) | 2016-05-09 | 2018-11-05 | Loop heat pipe, manufacturing method thereof, and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017195254A1 true WO2017195254A1 (ja) | 2017-11-16 |
Family
ID=60266446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/063762 WO2017195254A1 (ja) | 2016-05-09 | 2016-05-09 | ループヒートパイプ及びその製造方法並びに電子機器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10420253B2 (ja) |
JP (1) | JP6597892B2 (ja) |
WO (1) | WO2017195254A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018152550A (ja) * | 2016-12-21 | 2018-09-27 | レオナルド・ソチエタ・ペル・アツィオーニLEONARDO S.p.A. | 二相流体受動冷却システム、特に、航空電子機器等の電子機器を冷却するための二相流体受動冷却システム |
US11131511B2 (en) | 2018-05-29 | 2021-09-28 | Cooler Master Co., Ltd. | Heat dissipation plate and method for manufacturing the same |
US11320211B2 (en) | 2017-04-11 | 2022-05-03 | Cooler Master Co., Ltd. | Heat transfer device |
US11454454B2 (en) | 2012-03-12 | 2022-09-27 | Cooler Master Co., Ltd. | Flat heat pipe structure |
JP2023115878A (ja) * | 2022-02-08 | 2023-08-21 | 健治 大沢 | 薄型ウイック及び薄型ヒートパイプ |
DE102019110241B4 (de) | 2018-04-24 | 2024-02-08 | Toyota Jidosha Kabushiki Kaisha | Steckverbinder |
US11913725B2 (en) | 2018-12-21 | 2024-02-27 | Cooler Master Co., Ltd. | Heat dissipation device having irregular shape |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198375A1 (ja) * | 2017-04-28 | 2018-11-01 | 株式会社村田製作所 | ベーパーチャンバー |
JP6951267B2 (ja) * | 2018-01-22 | 2021-10-20 | 新光電気工業株式会社 | ヒートパイプ及びその製造方法 |
JP6400240B1 (ja) * | 2018-02-05 | 2018-10-03 | 新光電気工業株式会社 | ループ型ヒートパイプ及びその製造方法 |
JP6997008B2 (ja) * | 2018-02-27 | 2022-01-17 | 新光電気工業株式会社 | 平板型ループヒートパイプ |
US11193718B2 (en) * | 2019-01-18 | 2021-12-07 | Asia Vital Components (China) Co., Ltd. | Heat dissipation unit and heat dissipation device using same |
US20200409398A1 (en) * | 2019-06-25 | 2020-12-31 | Intel Corporation | Device, system and method for providing microchannels with porous sidewall structures |
EP3919850A1 (en) * | 2020-06-03 | 2021-12-08 | ABB Schweiz AG | Loop heat pipe for low voltage drives |
CN113883936A (zh) * | 2020-07-03 | 2022-01-04 | 台达电子工业股份有限公司 | 薄型均温板结构 |
US20220124945A1 (en) * | 2020-10-16 | 2022-04-21 | Honeywell International Inc. | Novel heat pipe configurations |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001063195A1 (fr) * | 2000-02-25 | 2001-08-30 | Fujitsu Limited | Caloduc mince et procede de fabrication correspondant |
JP2001336889A (ja) * | 2000-05-31 | 2001-12-07 | Ts Heatronics Co Ltd | プレート型ヒートパイプ及びその製造方法 |
JP2005518518A (ja) * | 2002-02-26 | 2005-06-23 | ミクロス・マニュファクチュアリング・インコーポレーテッド | 毛管蒸発器 |
JP2007315745A (ja) * | 2005-09-01 | 2007-12-06 | Fuchigami Micro:Kk | ヒートパイプ及びその製造方法 |
CN202329315U (zh) * | 2011-09-06 | 2012-07-11 | 北京奇宏科技研发中心有限公司 | 低压环路式热虹吸散热装置 |
JP2013257129A (ja) * | 2012-05-14 | 2013-12-26 | Fujitsu Ltd | 冷却装置 |
JP2015059693A (ja) * | 2013-09-18 | 2015-03-30 | 東芝ホームテクノ株式会社 | シート型ヒートパイプまたは携帯情報端末 |
JP2015183880A (ja) * | 2014-03-20 | 2015-10-22 | 富士通株式会社 | ループ型ヒートパイプとその製造方法、及び電子機器 |
WO2016051569A1 (ja) * | 2014-10-02 | 2016-04-07 | 富士通株式会社 | 蒸発器、冷却装置及び電子装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004190976A (ja) | 2002-12-12 | 2004-07-08 | Sony Corp | 熱輸送装置及び電子デバイス |
US8534348B2 (en) | 2005-09-01 | 2013-09-17 | Molex Incorporated | Heat pipe and method for manufacturing same |
JP2007266153A (ja) * | 2006-03-28 | 2007-10-11 | Sony Corp | プレート型熱輸送装置及び電子機器 |
US20090250196A1 (en) * | 2006-08-09 | 2009-10-08 | Batty J Clair | Relieved-channel, bonded heat exchanger |
JP5178274B2 (ja) | 2008-03-26 | 2013-04-10 | 日本モレックス株式会社 | ヒートパイプ、ヒートパイプの製造方法およびヒートパイプ機能付き回路基板 |
US20130032312A1 (en) * | 2011-08-04 | 2013-02-07 | Ching-Chung Wang | Vapor chamber capillary formation method and structure thereof |
US20140138056A1 (en) * | 2012-11-18 | 2014-05-22 | Chin-Hsing Horng | Low-profile composite heat pipe |
US20160209122A1 (en) * | 2015-01-20 | 2016-07-21 | Chaun-Choung Technology Corp. | Slim-type vapor chamber and capillary structure thereof |
-
2016
- 2016-05-09 WO PCT/JP2016/063762 patent/WO2017195254A1/ja active Application Filing
- 2016-05-09 JP JP2018516232A patent/JP6597892B2/ja active Active
-
2018
- 2018-11-05 US US16/180,648 patent/US10420253B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001063195A1 (fr) * | 2000-02-25 | 2001-08-30 | Fujitsu Limited | Caloduc mince et procede de fabrication correspondant |
JP2001336889A (ja) * | 2000-05-31 | 2001-12-07 | Ts Heatronics Co Ltd | プレート型ヒートパイプ及びその製造方法 |
JP2005518518A (ja) * | 2002-02-26 | 2005-06-23 | ミクロス・マニュファクチュアリング・インコーポレーテッド | 毛管蒸発器 |
JP2007315745A (ja) * | 2005-09-01 | 2007-12-06 | Fuchigami Micro:Kk | ヒートパイプ及びその製造方法 |
CN202329315U (zh) * | 2011-09-06 | 2012-07-11 | 北京奇宏科技研发中心有限公司 | 低压环路式热虹吸散热装置 |
JP2013257129A (ja) * | 2012-05-14 | 2013-12-26 | Fujitsu Ltd | 冷却装置 |
JP2015059693A (ja) * | 2013-09-18 | 2015-03-30 | 東芝ホームテクノ株式会社 | シート型ヒートパイプまたは携帯情報端末 |
JP2015183880A (ja) * | 2014-03-20 | 2015-10-22 | 富士通株式会社 | ループ型ヒートパイプとその製造方法、及び電子機器 |
WO2016051569A1 (ja) * | 2014-10-02 | 2016-04-07 | 富士通株式会社 | 蒸発器、冷却装置及び電子装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11454454B2 (en) | 2012-03-12 | 2022-09-27 | Cooler Master Co., Ltd. | Flat heat pipe structure |
JP2018152550A (ja) * | 2016-12-21 | 2018-09-27 | レオナルド・ソチエタ・ペル・アツィオーニLEONARDO S.p.A. | 二相流体受動冷却システム、特に、航空電子機器等の電子機器を冷却するための二相流体受動冷却システム |
JP7191511B2 (ja) | 2016-12-21 | 2022-12-19 | レオナルド・ソチエタ・ペル・アツィオーニ | 二相流体受動冷却システム、特に、航空電子機器等の電子機器を冷却するための二相流体受動冷却システム |
US11320211B2 (en) | 2017-04-11 | 2022-05-03 | Cooler Master Co., Ltd. | Heat transfer device |
DE102019110241B4 (de) | 2018-04-24 | 2024-02-08 | Toyota Jidosha Kabushiki Kaisha | Steckverbinder |
US11131511B2 (en) | 2018-05-29 | 2021-09-28 | Cooler Master Co., Ltd. | Heat dissipation plate and method for manufacturing the same |
US20220128313A1 (en) * | 2018-05-29 | 2022-04-28 | Cooler Master Co., Ltd. | Heat dissipation plate and method for manufacturing the same |
US11448470B2 (en) | 2018-05-29 | 2022-09-20 | Cooler Master Co., Ltd. | Heat dissipation plate and method for manufacturing the same |
US11680752B2 (en) | 2018-05-29 | 2023-06-20 | Cooler Master Co., Ltd. | Heat dissipation plate and method for manufacturing the same |
US11913725B2 (en) | 2018-12-21 | 2024-02-27 | Cooler Master Co., Ltd. | Heat dissipation device having irregular shape |
JP2023115878A (ja) * | 2022-02-08 | 2023-08-21 | 健治 大沢 | 薄型ウイック及び薄型ヒートパイプ |
JP7391407B2 (ja) | 2022-02-08 | 2023-12-05 | 健治 大沢 | 薄型ヒートパイプ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017195254A1 (ja) | 2019-02-21 |
JP6597892B2 (ja) | 2019-10-30 |
US20190075682A1 (en) | 2019-03-07 |
US10420253B2 (en) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6597892B2 (ja) | ループヒートパイプ及びその製造方法並びに電子機器 | |
US11536518B2 (en) | Fabrication method for loop heat pipe | |
JP6648824B2 (ja) | ループヒートパイプ及びその製造方法並びに電子機器 | |
JP6485075B2 (ja) | ループヒートパイプ及びループヒートパイプの製造方法 | |
JP4557055B2 (ja) | 熱輸送デバイス及び電子機器 | |
US10408546B2 (en) | Loop heat pipe | |
JP6233125B2 (ja) | ループ型ヒートパイプとその製造方法、及び電子機器 | |
JP6564879B2 (ja) | ベーパーチャンバー | |
US20180058767A1 (en) | Loop heat pipe | |
US11333443B2 (en) | Loop heat pipe | |
TWI757553B (zh) | 脈衝式均溫板 | |
US20100122798A1 (en) | Heat transport device, electronic apparatus, and heat transport device manufacturing method | |
US10502496B2 (en) | Micro vapor chamber | |
JP2009076650A (ja) | 相変化型ヒートスプレッダ、流路構造体、電子機器及び相変化型ヒートスプレッダの製造方法 | |
US11903167B2 (en) | Vapor chamber with condensate flow paths disposed on wall parts | |
JP2009024933A (ja) | 熱拡散装置及びその製造方法 | |
JP2014142143A (ja) | ヒートパイプ | |
US11262137B2 (en) | Loop-type heat pipe | |
JP2018076978A (ja) | ループヒートパイプ及び電子機器 | |
JP6162836B2 (ja) | 熱交換器 | |
JP6863058B2 (ja) | ヒートパイプ及び電子機器 | |
JP2006308263A (ja) | 熱交換装置 | |
JP7155869B2 (ja) | 冷却装置、電子機器及び冷却装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018516232 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16901603 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16901603 Country of ref document: EP Kind code of ref document: A1 |