Nothing Special   »   [go: up one dir, main page]

WO2017188029A1 - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus Download PDF

Info

Publication number
WO2017188029A1
WO2017188029A1 PCT/JP2017/015298 JP2017015298W WO2017188029A1 WO 2017188029 A1 WO2017188029 A1 WO 2017188029A1 JP 2017015298 W JP2017015298 W JP 2017015298W WO 2017188029 A1 WO2017188029 A1 WO 2017188029A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
frequency power
power supply
simulation
wave
Prior art date
Application number
PCT/JP2017/015298
Other languages
French (fr)
Japanese (ja)
Inventor
永関 一也
辰郎 大下
幸一 永海
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016132685A external-priority patent/JP6670697B2/en
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201780026498.0A priority Critical patent/CN109075065A/en
Priority to KR1020187030818A priority patent/KR20190002477A/en
Priority to US16/096,759 priority patent/US20190122863A1/en
Priority to KR1020217042169A priority patent/KR20220000909A/en
Publication of WO2017188029A1 publication Critical patent/WO2017188029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the embodiment of the present disclosure relates to a plasma processing apparatus.
  • a plasma processing apparatus generally includes a chamber body, a mounting table, and a high-frequency power source.
  • the chamber body provides its internal space as a chamber.
  • the chamber body is grounded.
  • the mounting table is provided in the chamber, and is configured to hold a workpiece mounted thereon.
  • the mounting table includes a lower electrode.
  • the high frequency power source is connected to the lower electrode.
  • plasma of a processing gas is generated in the chamber, and a high frequency for bias from a high frequency power supply is supplied to the lower electrode.
  • ions are accelerated by the potential difference between the potential of the lower electrode based on the high frequency for bias and the potential of the plasma, and the workpiece is irradiated with the accelerated ions.
  • Patent Document 1 proposes a technique using an adjustment mechanism that adjusts the ground capacity of the chamber.
  • the adjustment mechanism described in Patent Document 1 is configured to adjust the area ratio of the anode and the cathode facing the chamber, that is, the A / C ratio.
  • Etching which is a kind of plasma treatment for a workpiece, is required to form a shape with a higher aspect ratio on the workpiece.
  • Lowering the frequency of the high-frequency bias is one way to increase the energy of ions irradiated to the workpiece.
  • the frequency of the high frequency bias is lowered, the plasma potential is increased.
  • the plasma potential increases, the potential difference between the plasma and the chamber body increases, and the energy of ions irradiated to the chamber body increases. From this background, it is necessary to reduce the energy of ions irradiated to the chamber body.
  • a plasma processing apparatus in one aspect, includes a chamber main body, a mounting table, and a high frequency power supply unit.
  • the chamber body provides a chamber.
  • the chamber body is connected to ground potential.
  • the mounting table has a lower electrode and is provided in the chamber.
  • the high frequency power supply unit is electrically connected to the lower electrode.
  • the high frequency power supply unit generates an output wave for bias supplied to the lower electrode.
  • the high frequency power supply unit is configured to generate an output wave in which a high frequency positive voltage component of the fundamental frequency is reduced.
  • the plasma processing apparatus since the output wave with the positive voltage component lowered is supplied to the lower electrode, the plasma potential is lowered. Therefore, the potential difference between the plasma and the chamber body is reduced. As a result, the energy of ions irradiated to the chamber body is lowered. Therefore, the generation of particles from the chamber body is suppressed. Further, by reducing the frequency (fundamental frequency) of the output wave, it is possible to increase the energy of ions irradiated to the workpiece while reducing the energy of ions irradiated to the chamber body.
  • the high frequency power supply unit may include a plurality of high frequency power supplies and a combiner.
  • the plurality of high frequency power supplies are configured to generate a plurality of high frequencies having different frequencies that are n times or 2n times the fundamental frequency, respectively.
  • n is an integer of 1 or more.
  • the synthesizer is configured to synthesize a plurality of high frequencies to generate an output wave. According to this embodiment, it is possible to generate an output wave while suppressing loss of high-frequency power from a plurality of high-frequency power sources.
  • the high frequency power supply unit may include a high frequency power source that generates a high frequency of a fundamental frequency, and a half-wave rectifier configured to remove a high frequency positive voltage component from the high frequency power source. According to this embodiment, the positive voltage component is almost completely removed.
  • the plasma processing apparatus is a capacitively coupled plasma processing apparatus.
  • the plasma processing apparatus of this embodiment further includes an upper electrode and a first high frequency power source.
  • the upper electrode is provided above the lower electrode.
  • the first high frequency power source is connected to the upper electrode and is configured to generate a high frequency for plasma generation.
  • the area of the anode electrode is small and the A / C ratio is small. Therefore, in the plasma processing apparatus of this embodiment, the output wave can be used more advantageously.
  • the fundamental frequency is 1.4 MHz or less.
  • the plasma processing apparatus may further include a second high-frequency power source connected to the lower electrode.
  • the second high-frequency power source is configured to generate a high frequency for bias having a frequency higher than the fundamental frequency. According to the plasma processing apparatus of this embodiment, the above-described output wave or the high frequency for bias from the second high frequency power supply is selectively supplied to the lower electrode according to the process.
  • FIG. 3 is a diagram illustrating an output wave that can be generated by the high frequency power supply unit illustrated in FIG. 2. It is a figure which shows the high frequency power supply part which concerns on another embodiment. It is a figure which illustrates the output wave produced
  • generated by the high frequency power supply part shown in FIG. 6A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 1, and FIG. 6B is an irradiation of the chamber body 12 calculated in the simulation # 1. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 6A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 1
  • FIG. 6B is an irradiation of the chamber body 12 calculated in the simulation # 1. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 6A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 1
  • FIG. 6B
  • FIG. 7A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 2, and FIG. 7B shows the irradiation of the chamber body 12 calculated in the simulation # 2. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 8A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 3, and FIG. 8B is an irradiation on the chamber body 12 calculated in the simulation # 3. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 9A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 4, and FIG.
  • FIG. 9B is an irradiation on the chamber body 12 calculated in the simulation # 4. It is a figure which shows the energy distribution of ion to be performed. It is a figure which shows the incident angle of the ion calculated
  • FIG. 11A shows the energy distribution of ions irradiated on the workpiece calculated in simulation # 7, and FIG. 11B shows the irradiation of the chamber body 12 calculated in simulation # 7. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 12A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in simulation # 8, and FIG. 12B shows irradiation on the chamber body 12 calculated in simulation # 8.
  • FIG. 10 is a table showing the results of simulations # 9 to # 14.
  • 6 is a graph showing Eh / Ef calculated based on the results of simulations # 15 to # 30.
  • FIG. 15A is a diagram showing the energy distribution of ions irradiated to the workpiece calculated in simulation # 31, and FIG. 15B is an irradiation of the chamber body 12 calculated in simulation # 31.
  • FIG. 16A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 32, and FIG. 16B is an irradiation of the chamber body 12 calculated in the simulation # 32.
  • FIG. 21A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 33
  • FIG. 21B is an irradiation of the chamber body 12 calculated in the simulation # 33. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 22A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 34
  • FIG. 22B is an irradiation on the chamber body 12 calculated in the simulation # 34. It is a figure which shows the energy distribution of ion to be performed.
  • FIG. 1 is a diagram schematically showing a plasma processing apparatus according to an embodiment.
  • FIG. 1 schematically shows the structure of a longitudinal section of a plasma processing apparatus according to an embodiment.
  • a plasma processing apparatus 10 shown in FIG. 1 is a capacitively coupled plasma processing apparatus.
  • the plasma processing apparatus 10 can be used for plasma etching, for example.
  • the plasma processing apparatus 10 includes a chamber body 12.
  • the chamber body 12 has a substantially cylindrical shape.
  • the chamber body 12 provides its internal space as a chamber 12c.
  • the chamber body 12 is made of, for example, aluminum.
  • a film having plasma resistance is formed on the inner wall surface of the chamber body 12, that is, the wall surface defining the chamber 12c. This film may be a ceramic film such as a film formed by anodization or a film formed from yttrium oxide.
  • an opening 12g for conveying the workpiece W is provided on the side wall 12s of the chamber body 12.
  • the opening 12g can be opened and closed by a gate valve 14.
  • the chamber body 12 is connected to the ground potential.
  • the support portion 15 extends upward from the bottom of the chamber body 12.
  • the support portion 15 has a substantially cylindrical shape and is made of an insulating material such as quartz.
  • a mounting table 16 is provided in the chamber 12c.
  • the mounting table 16 is configured to hold the workpiece W on the upper surface thereof.
  • the workpiece W may have a disk shape like a wafer.
  • the mounting table 16 includes a lower electrode 18 and an electrostatic chuck 20. The mounting table 16 is supported by the support unit 15.
  • the lower electrode 18 includes a first plate 18a and a second plate 18b.
  • the first plate 18a and the second plate 18b are made of a metal such as aluminum, for example, and have a substantially disk shape.
  • the second plate 18b is provided on the first plate 18a and is electrically connected to the first plate 18a.
  • An electrostatic chuck 20 is provided on the second plate 18b.
  • the electrostatic chuck 20 has an insulating layer and an electrode built in the insulating layer.
  • a DC power source 22 is electrically connected to the electrode of the electrostatic chuck 20 via a switch 23.
  • the electrostatic chuck 20 When a DC voltage from the DC power supply 22 is applied to the electrode of the electrostatic chuck 20, the electrostatic chuck 20 generates an electrostatic force such as a Coulomb force.
  • the electrostatic chuck 20 attracts the workpiece W by the electrostatic force and holds the workpiece W.
  • a focus ring 24 is disposed on the periphery of the second plate 18b so as to surround the edge of the workpiece W and the electrostatic chuck 20.
  • the focus ring 24 is provided to improve the uniformity of plasma processing.
  • the focus ring 24 is made of a material appropriately selected according to the plasma processing, and can be made of, for example, quartz.
  • a flow path 18f is provided inside the second plate 18b. Refrigerant is supplied to the flow path 18f through a pipe 26a from a chiller unit provided outside the chamber body 12. The refrigerant supplied to the flow path 18f is returned to the chiller unit via the pipe 26b. Thus, the refrigerant is supplied to the flow path 18f so as to circulate in the flow path 18f.
  • the temperature of the refrigerant By controlling the temperature of the refrigerant, the temperature of the workpiece W supported by the electrostatic chuck 20 is controlled.
  • the plasma processing apparatus 10 is provided with a gas supply line 28.
  • the gas supply line 28 supplies the heat transfer gas from the heat transfer gas supply mechanism, for example, He gas, between the upper surface of the electrostatic chuck 20 and the back surface of the workpiece W.
  • the plasma processing apparatus 10 further includes an upper electrode 30.
  • the upper electrode 30 is provided above the mounting table 16 and is provided substantially parallel to the lower electrode 18.
  • the upper electrode 30 closes the upper opening of the chamber body 12 together with the member 32.
  • the member 32 has an insulating property.
  • the upper electrode 30 is supported on the upper portion of the chamber body 12 through the member 32.
  • the upper electrode 30 includes a top plate 34 and a support 36.
  • the top plate 34 faces the chamber 12c.
  • the top plate 34 is provided with a plurality of gas discharge holes 34a.
  • this top plate 34 is not limited, For example, it is comprised from the silicon
  • the top plate 34 may have a structure in which a plasma-resistant film is provided on the surface of an aluminum base material. This film may be a ceramic film such as a film formed by anodization or a film formed from yttrium oxide.
  • the support 36 supports the top plate 34 in a detachable manner, and may be made of a conductive material such as aluminum.
  • a gas diffusion chamber 36 a is provided inside the support 36.
  • a plurality of gas holes 36b extend downward from the gas diffusion chamber 36a, and the plurality of gas holes 36b communicate with the plurality of gas discharge holes 34a, respectively.
  • the support 36 is formed with a gas introduction port 36c that guides the processing gas to the gas diffusion chamber 36a, and a gas supply pipe 38 is connected to the gas introduction port 36c.
  • a gas source group 40 is connected to the gas supply pipe 38 via a valve group 42 and a flow rate controller group 44.
  • the gas source group 40 has a plurality of gas sources.
  • the valve group 42 includes a plurality of valves
  • the flow rate controller group 44 includes a plurality of flow rate controllers such as a mass flow controller.
  • the plurality of gas sources of the gas source group 40 are connected to the gas supply pipe 38 via the corresponding valve of the valve group 42 and the corresponding flow rate controller of the flow rate controller group 44, respectively.
  • the plasma processing apparatus 10 can supply gas from one or more gas sources selected from among a plurality of gas sources of the gas source group 40 into the chamber body 12 at individually adjusted flow rates. is there.
  • a baffle plate 48 is provided in the chamber 12 c and between the support portion 15 and the side wall 12 s of the chamber body 12.
  • the baffle plate 48 can be configured by, for example, coating a base material made of aluminum with ceramics such as yttrium oxide.
  • a number of through holes are formed in the baffle plate 48.
  • An exhaust device 50 is connected to the exhaust pipe 52.
  • the exhaust device 50 includes a vacuum pump such as a turbo molecular pump, and can depressurize the chamber 12c.
  • the plasma processing apparatus 10 further includes a high frequency power supply unit 60.
  • the high frequency power supply unit 60 is electrically connected to the lower electrode 18.
  • the high frequency power supply unit 60 generates a bias output wave supplied to the lower electrode 18.
  • the output wave generated by the high frequency power supply unit 60 is an output wave obtained by reducing the high frequency positive voltage component of the fundamental frequency.
  • the fundamental frequency may be 1.4 MHz or less in one embodiment. Details of the high-frequency power supply unit 60 will be described later.
  • the plasma processing apparatus 10 further includes a first high-frequency power source 62.
  • the first high frequency power supply 62 is a power supply that generates a first high frequency for plasma generation, and generates a high frequency having a frequency within a range of 27 to 100 MHz.
  • the first high frequency power supply 62 is connected to the upper electrode 30 via the matching unit 63.
  • the matching unit 63 has a circuit for matching the output impedance of the first high-frequency power source 62 with the input impedance on the load side (upper electrode 30 side in this embodiment).
  • the first high frequency power supply 62 may be connected to the lower electrode 18 via the matching unit 63. When the first high frequency power source 62 is connected to the lower electrode 18, the upper electrode 30 is connected to the ground potential.
  • the plasma processing apparatus 10 may further include a second high frequency power supply 64.
  • the second high frequency power supply 64 is a power supply that generates a second high frequency for bias for drawing ions into the workpiece W.
  • the frequency of the second high frequency is lower than the frequency of the first high frequency and higher than the fundamental frequency of the output wave generated by the high frequency power supply unit 60.
  • the second high frequency may be a frequency in the range of 3.2 kHz to 13.56 MHz.
  • the second high frequency power supply 64 is connected to the lower electrode 18 via the matching unit 65.
  • the matching unit 65 has a circuit for matching the output impedance of the second high-frequency power supply 64 with the input impedance on the load side (lower electrode 18 side).
  • an output wave from the high-frequency power supply unit 60 or a bias high frequency from the second high-frequency power supply 64 is applied to the lower electrode 18 depending on the process. It becomes possible to selectively supply to.
  • the plasma processing apparatus 10 may further include a control unit Cnt.
  • the control unit Cnt is a computer including a processor, a storage device, an input device, a display device, and the like, and controls each unit of the plasma processing apparatus 10. Specifically, the control unit Cnt executes a control program stored in the storage device, and controls each unit of the plasma processing apparatus 10 based on recipe data stored in the storage device. Thereby, the plasma processing apparatus 10 performs the process designated by the recipe data.
  • gas from a gas source selected from the plurality of gas sources in the gas source group 40 is supplied to the chamber 12c. Further, the exhaust device 50 depressurizes the chamber 12c. Then, the gas supplied to the chamber 12 c is excited by a high frequency electric field generated by a high frequency from the first high frequency power supply 62. Thereby, plasma is generated in the chamber 12c. Further, the bias output wave or the second high frequency is selectively supplied to the lower electrode 18. Thereby, the ions in the plasma are accelerated toward the workpiece W. The workpiece W is processed by the ions and / or radicals thus accelerated.
  • FIG. 2 is a diagram illustrating a high-frequency power supply unit according to an embodiment.
  • the high frequency power supply unit 60 ⁇ / b> A illustrated in FIG. 2 can be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10.
  • the high frequency power supply unit 60 ⁇ / b> A includes a plurality of high frequency power supplies 70, a plurality of matching units 72, and a combiner 74.
  • the plurality of high frequency power supplies 70 respectively generate a plurality of high frequencies having different frequencies that are n times or 2n times the fundamental frequency.
  • n is an integer of 1 or more.
  • the plurality of high-frequency power sources 70 includes at least a high-frequency power source that generates a high frequency of the fundamental frequency and a high-frequency power source that generates a high frequency having twice the fundamental frequency. Note that the number of the plurality of high-frequency power supplies 70 may be an arbitrary number of two or more.
  • the plurality of high frequency power supplies 70 are connected to the synthesizer 74 via the plurality of matching units 72.
  • Each of the plurality of matching units 72 has a circuit for matching the output impedance of the corresponding high-frequency power source among the plurality of high-frequency power sources 70 and the impedance on the load side.
  • the combiner 74 combines (that is, adds) a plurality of high frequencies transmitted from the plurality of high frequency power sources 70 via the plurality of matching units 72.
  • the synthesizer 74 supplies an output wave (synthetic wave) generated by synthesizing a plurality of high frequencies to the lower electrode 18.
  • the high frequency power supply unit 60A may further include a plurality of phase detectors 76 and a power supply control unit 78.
  • the plurality of phase detectors 76 are provided between the plurality of matching units 72 and the combiner 74. Each of the plurality of phase detectors 76 is configured to detect a phase of a high frequency transmitted from a corresponding high frequency power source through a corresponding matching unit 72 among the plurality of high frequency power sources 70.
  • the power supply control unit 78 controls the plurality of high frequency power supplies 70 so as to output a high frequency with a preset phase.
  • the power supply controller 78 also sets the high-frequency phases output from the plurality of high-frequency power supplies 70 to preset phases based on the phases detected by the plurality of phase detectors 76. To control.
  • This high frequency power supply unit 60A generates a pseudo half wave rectified wave as the output wave described above. That is, the high frequency power supply unit 60A generates an output wave (synthetic wave) in which a high frequency positive voltage component of the fundamental frequency is reduced by combining a plurality of high frequencies. Thereby, the high frequency power supply unit 60A generates an output wave (synthetic wave) having a waveform similar to the half-wave rectified waveform.
  • the high frequency power supply unit 60 ⁇ / b> A can generate an output wave (synthetic wave) while suppressing loss of high frequency power from the plurality of high frequency power supplies 70.
  • FIG. 3 is a diagram illustrating output waves that can be generated by the high-frequency power supply unit shown in FIG.
  • FIG. 3 shows the voltage of the output wave (synthetic wave) generated by synthesizing the high frequency RF1 having the fundamental frequency and the high frequency RF2 having a frequency twice the fundamental frequency.
  • the high frequency RF1 and the high frequency RF2 are both sine waves, the peak value (peak-to-peak voltage) of the high frequency RF2 is A times the peak value Vpp of the high frequency RF1, and the phase difference between the high frequency RF1 and the high frequency RF2 is 270 °.
  • the horizontal axis indicates time, and the vertical axis indicates the voltage of the output wave.
  • the voltage above 0V is a positive voltage
  • the voltage below 0V is a negative voltage
  • the fundamental wave indicates the high frequency RF1, that is, the high frequency of the fundamental frequency.
  • two high-frequency power sources that is, a high-frequency power source that generates a high-frequency RF1 having a fundamental frequency and a frequency that is twice the fundamental frequency are included.
  • a high-frequency power source that generates the high-frequency RF2 it is possible to generate an output wave (synthetic wave) that imitates the half-wave rectified waveform relatively well.
  • FIG. 4 is a diagram showing a high-frequency power supply unit according to another embodiment. 4 may be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10.
  • the high frequency power supply unit 60B includes a high frequency power supply 80, a matching unit 82, and a half-wave rectifier 84.
  • the high frequency power supply 80 generates a high frequency of the fundamental frequency.
  • a matching unit 82 is connected to the high-frequency power source 80.
  • the matching unit 82 has a circuit for matching the output impedance of the high-frequency power supply 80 with the impedance on the load side.
  • a half-wave rectifier 84 is connected between the node between the matching unit 82 and the lower electrode 18 and the ground.
  • the half-wave rectifier 84 is composed of a diode, for example.
  • the anode of the diode is connected to a node between the matching unit 82 and the lower electrode 18, and the cathode of the diode is connected to the ground.
  • a dummy load 86 may be provided between the cathode of the diode and the ground.
  • the dummy load 86 may be an element that converts high frequency into heat.
  • FIG. 5 is a diagram illustrating an output wave generated by the high frequency power supply unit.
  • the horizontal axis indicates time, and the vertical axis indicates the voltage of the output wave.
  • the voltage above 0V is a positive voltage
  • the voltage below 0V is a negative voltage.
  • the fundamental wave is a high frequency output from the high frequency power supply 80.
  • the high frequency power supply unit 60B when the high frequency voltage generated by the high frequency power supply 80 is a positive voltage, the high frequency is guided to the ground by the rectifying action of the half-wave rectifier 84.
  • the high frequency voltage generated by the high frequency power supply 80 is a negative voltage, the high frequency is supplied to the lower electrode 18. Therefore, according to the high-frequency power supply unit 60B, it is possible to generate an output wave having the half-wave rectified waveform shown in FIG. 5, that is, an output wave (half-wave) from which the positive voltage component is substantially completely removed. .
  • the output wave with the positive voltage component lowered is supplied to the lower electrode 18, the potential of the plasma generated in the chamber 12c is lowered. Therefore, the potential difference between the plasma and the chamber body 12 is reduced. As a result, the energy of ions irradiated onto the chamber body 12 is lowered. Therefore, generation of particles from the chamber body 12 is suppressed.
  • the frequency (fundamental frequency) of the output wave of the high frequency power supply unit 60 it is possible to increase the energy of ions irradiated to the workpiece while reducing the energy of ions irradiated to the chamber body. It is.
  • simulation # 1 and simulation # 2 will be described.
  • the energy distribution (IED: Ion Energy Distribution) of ions irradiated onto the workpiece W and the energy distribution (IED) of ions irradiated onto the chamber body 12 were obtained.
  • the calculation was performed with the setting in which the output wave LF1 (half wave) having a fundamental frequency of 400 kHz is supplied from the high frequency power supply unit 60 to the lower electrode.
  • the calculation was performed with a setting in which a high frequency LF2 (sine wave) having a frequency of 400 kHz was supplied to the lower electrode.
  • the maximum energy of ions irradiated on the workpiece W in both simulations is equal between Vpp of the output wave LF1 (half wave) in simulation # 1 and Vpp of high frequency LF2 (sine wave) in simulation # 2.
  • Vpp of the output wave LF1 (half wave) in simulation # 1 was set as follows.
  • the other settings of simulation # 1 and simulation # 2 were common settings shown below.
  • the A / C ratio is a value obtained by dividing the area of the anode in contact with the chamber by the area of the cathode in contact with the chamber.
  • FIG. 6A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 1
  • FIG. 6B shows the ions irradiated on the chamber body 12 calculated in the simulation # 1.
  • the energy distribution of is shown.
  • FIG. 7A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 2
  • FIG. 7B shows the ions irradiated on the chamber main body 12 calculated in the simulation # 2.
  • the energy distribution of is shown.
  • the maximum value of the energy of ions irradiated to the chamber body 12 in the simulation # 1 is the ion irradiated to the chamber body 12 in the simulation # 2. It was considerably lower than the maximum value of energy. Accordingly, by supplying the output wave LF1 (half wave) from the high frequency power supply unit 60 to the lower electrode 18 as a biasing high frequency, a high frequency that is a sine wave having the same frequency as the fundamental frequency of the output wave LF1 (half wave). It was confirmed that the energy of ions irradiated to the chamber body 12 can be greatly reduced as compared with the case where LF2 is supplied to the lower electrode 18.
  • simulation # 3 and simulation # 4 will be described.
  • the frequency distribution of plasma generated by the first high-frequency power source 62 is changed to 50 MHz from the setting of simulation # 1, and the energy distribution (IED) of ions irradiated on the workpiece W, and The energy distribution (IED) of ions irradiated on the chamber body 12 was determined.
  • the energy distribution (IED) of ions irradiated to the workpiece W is changed by changing the high frequency frequency for plasma generation of the first high frequency power supply 62 from the setting of simulation # 2 to 50 MHz.
  • the energy distribution (IED) of the ion irradiated to the chamber main body 12 was calculated
  • FIG. 8A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 3, and FIG. 8B shows the ions irradiated on the chamber body 12 calculated in the simulation # 3.
  • the energy distribution of is shown.
  • FIG. 9A shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 4, and FIG. 9B shows the ions irradiated on the chamber main body 12 calculated in the simulation # 4.
  • the energy distribution of is shown.
  • the maximum value of the energy of ions irradiated to the workpiece W in the simulation # 3 is irradiated to the workpiece W in the simulation # 4. It was equivalent to the maximum value of ion energy.
  • the maximum value of the energy of ions irradiated to the chamber main body 12 in the simulation # 3 is the ion irradiated to the chamber main body 12 in the simulation # 4. It was considerably lower than the maximum value of energy.
  • the effect of the high-frequency power source 60 that is, the reduction of the energy of ions irradiated to the workpiece W is suppressed, and the energy of ions irradiated to the chamber body 12 is suppressed. It has been confirmed that the effect of lowering is substantially independent of the high-frequency frequency for plasma generation of the first high-frequency power source 62.
  • simulation # 5 the incident angle of ions incident on the workpiece W was determined with the same settings as in simulation # 1.
  • simulation # 6 the incident angle of ions incident on the workpiece W was determined with the same settings as in simulation # 2.
  • FIG. 10 shows the incident angles of ions obtained in simulation # 5 and simulation # 6.
  • the horizontal axis indicates the period of the output wave LF1 (half wave) and the frequency of the high frequency LF2 (sine wave) of the high frequency power supply unit 60
  • the vertical axis indicates the incident angle of ions.
  • the incident angle of ions incident perpendicularly to the workpiece W is 0 °.
  • the same frequency as the fundamental frequency of the output wave LF1 (half wave) is obtained. It was confirmed that the incident angle of ions with respect to the workpiece W can be made closer to the vertical compared with the case where the high frequency LF2 which is a sine wave is supplied to the lower electrode 18.
  • simulation # 7 and simulation # 8 will be described.
  • the molecular weight of the gas supplied to the chamber 12c is changed to 160 from the setting of the simulation # 1, and the energy distribution (IED) of ions irradiated to the workpiece W and the chamber main body 12 are irradiated.
  • the ion energy distribution (IED) was determined.
  • the molecular weight of the gas supplied to the chamber 12c is changed to 160 from the setting of the simulation # 2, and the energy distribution (IED) of ions irradiated to the workpiece W and the chamber body 12 are irradiated.
  • the ion energy distribution (IED) was determined.
  • FIG. 11A shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 7
  • FIG. 11B shows the ions irradiated on the chamber body 12 calculated in the simulation # 7.
  • the energy distribution of is shown.
  • 12 (a) shows the energy distribution of the ions irradiated to the workpiece W calculated in the simulation # 8
  • FIG. 12 (b) shows the ions irradiated to the chamber body 12 calculated in the simulation # 8.
  • the energy distribution of is shown.
  • the maximum value of the energy of ions irradiated to the workpiece W in the simulation # 7 is irradiated to the workpiece W in the simulation # 8. It was almost the same as the maximum value of ion energy.
  • 11B and FIG. 12B are compared, the maximum value of the energy of ions irradiated to the chamber body 12 in simulation # 7 is the ion irradiated to the chamber body 12 in simulation # 8. It was considerably lower than the maximum value of energy.
  • the effect of the high-frequency power source 60 that is, the reduction of the energy of ions irradiated to the workpiece W is suppressed, and the chamber body 12 It has been confirmed that the effect of lowering the energy of ions irradiated on the substrate is substantially independent of the molecular weight of the gas.
  • simulations # 9 to # 14 will be described.
  • the energy distribution (IED) of ions irradiated to the workpiece W is changed by changing the A / C ratio to 3.5, 7, 10 from the setting of simulation # 1, and Then, the energy distribution (IED) of ions irradiated onto the chamber body 12 was determined.
  • the energy distribution (IED) of ions irradiated to the workpiece W is changed by changing the A / C ratio to 3.5, 7, and 10 from the setting of simulation # 2, and The energy distribution (IED) of ions irradiated on the chamber body 12 was determined.
  • E1 / E2 obtained in simulations # 9 to # 11 is considerably larger than E1 / E2 obtained in simulations # 12 to # 14. That is, in simulations # 9 to # 11 using the output wave LF1 (half wave) from the high frequency power supply unit 60 as the bias high frequency supplied to the lower electrode 18, the same as the fundamental frequency of the output wave LF1 (half wave). E1 / E2 was considerably larger than when high frequency LF2 which is a sine wave of frequency was supplied to lower electrode 18 (simulations # 12 to # 14).
  • the effect of the high-frequency power source 60 that is, the effect of suppressing the reduction of the energy of ions irradiated to the workpiece W and the energy of the ions irradiated to the chamber body 12 is A / C. It was confirmed that even if the ratio was considerably small, it was exhibited. For this reason, the effect of the high frequency power supply unit 60 is also exhibited in a plasma processing apparatus in which it is difficult to increase the A / C ratio, for example, in a plasma processing apparatus in which a high frequency for plasma generation is supplied to the upper electrode 30. It was confirmed.
  • simulation # 15 to simulation # 30 will be described.
  • the fundamental frequency of the output wave LF1 (half wave) of the high frequency power supply unit 60 is changed to 0.4 MHz, 0.8 MHz, 1.6 MHz, and 3.2 MHz from the setting of simulation # 1, respectively.
  • the maximum value Eh of the energy of ions irradiated on the chamber body 12 was obtained.
  • the molecular weight of the gas is changed to 160 from the setting of the simulation # 1, and the fundamental frequency of the output wave LF1 (half wave) of the high frequency power supply unit 60 is 0.4 MHz, 0.8 MHz, and 1.6 MHz.
  • the maximum value Eh of the energy of ions irradiated on the chamber body 12 was determined by changing the frequency to 3.2 MHz.
  • the frequency of the high frequency LF2 (sine wave) is changed to 0.4 MHz, 0.8 MHz, 1.6 MHz, and 3.2 MHz from the setting of simulation # 2, and the chamber body 12 is irradiated.
  • the maximum value Ef of the energy of ions to be obtained was determined.
  • the molecular weight of the gas is changed to 160 from the setting of simulation # 2
  • the frequency of the high frequency LF2 (sine wave) is set to 0.4 MHz, 0.8 MHz, 1.6 MHz, and 3.2 MHz, respectively.
  • Fig. 14 shows the results.
  • the horizontal axis represents the fundamental frequency of the output wave LF1 (half wave) and the frequency of the high frequency LF2 (sine wave), and the vertical axis represents Eh / Ef. If Eh / Ef is smaller than 1, the effect of the high frequency power supply unit 60 is exhibited. That is, if Eh / Ef is smaller than 1, the output wave LF1 (half wave) from the high frequency power supply unit 60 is supplied to the lower electrode 18 as a high frequency for biasing, so that a sine having the same frequency as the fundamental frequency of the output wave is obtained.
  • the energy of ions irradiated to the chamber body 12 is lowered.
  • the effect of the high frequency power supply unit 60 is advantageously exhibited when the fundamental frequency of the bias output wave is 1.4 MHz or less.
  • simulation # 31 and simulation # 32 performed for evaluation of the plasma processing apparatus of the embodiment will be described.
  • the high frequency power supply unit 60 and the first high frequency power supply 62 are connected to the lower electrode 18, and the calculation related to the plasma processing apparatus having the high frequency power supply unit 60A as the high frequency power supply unit 60 was performed.
  • the output wave from the high frequency power supply unit 60 has a high frequency RF1 having a fundamental frequency (400 kHz) and a peak value of the high frequency RF1 having a frequency (800 kHz) twice the fundamental frequency.
  • An output wave (synthetic wave) generated by synthesizing with the high-frequency RF 2 having a peak value A times that of A is used.
  • the phase of the high frequency RF1 and the high frequency RF2 was 270 °.
  • the peak value of high frequency RF2 was 0.23 times the peak value of high frequency RF1
  • the peak value of high frequency RF2 was 0.4 times the peak value of high frequency RF1.
  • the energy distribution (IED) of ions irradiated to the workpiece W and the energy distribution (IED) of ions irradiated to the chamber body 12 were obtained.
  • the other settings for simulation # 31 and simulation # 32 were the common settings shown below.
  • FIG. 15A shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 31, and FIG. 15B shows the ions irradiated on the chamber main body 12 calculated in the simulation # 31. The energy distribution of is shown.
  • FIG. 16A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 32, and FIG. 16B shows the ions irradiated on the chamber body 12 calculated in the simulation # 32. The energy distribution of is shown.
  • the maximum value of the energy of ions irradiated on the workpiece W in simulation # 31 and in simulation # 32 The maximum value of the energy of ions irradiated onto the workpiece W was equal to the maximum value of the energy of ions irradiated onto the workpiece W in simulation # 2. Further, comparing (b) of FIG. 7, (b) of FIG. 15, and (b) of FIG. 16, the maximum value of the energy of ions irradiated to the chamber body 12 in simulation # 31 and the simulation # 32 The maximum value of the energy of ions irradiated to the chamber body 12 was considerably lower than the maximum value of the energy of ions irradiated to the chamber body 12 in simulation # 2.
  • the effect of the high frequency power supply unit 60 that is, the reduction of the energy of ions irradiated to the workpiece W is suppressed, and the ions irradiated to the chamber body 12 are also suppressed. It has been confirmed that the effect of lowering the energy is exhibited.
  • the first output wave is an output wave in which a high-frequency positive voltage component having a fundamental frequency is reduced.
  • the second output wave is an output wave in which a high-frequency negative voltage component of the fundamental frequency is reduced.
  • FIG. 17 is a diagram showing a high-frequency power supply unit according to still another embodiment.
  • a high frequency power supply unit 60 ⁇ / b> C illustrated in FIG. 17 can be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10.
  • the high frequency power supply unit 60C is different from the high frequency power supply unit 60A in that a power supply control unit 78C is provided instead of the power supply control unit 78.
  • the high frequency power supply unit 60C is configured to selectively output the first output wave or the second output wave.
  • the first output wave is the same output wave as the above-described output wave generated by the high frequency power supply unit 60A, that is, an output wave (synthetic wave) generated by combining a plurality of high frequencies output from the plurality of high frequency power supplies 70. This is an output wave in which the positive voltage component of the high frequency of the fundamental frequency is reduced.
  • the second output wave is an output wave (combined wave) generated by combining a plurality of high frequencies output from a plurality of high frequency power supplies 70, and is an output wave in which the negative voltage component of the high frequency of the fundamental frequency is reduced. is there.
  • the power control unit 78C is controlled by the control unit Cnt.
  • the power controller 78C is preset for the first output wave to generate the first output wave.
  • a plurality of high frequency power supplies 70 are controlled so as to output a high frequency in phase. Further, the power supply control unit 78C sets the phase of the high frequency output from the plurality of high frequency power supplies 70 to a phase preset for the first output wave based on the phases detected by the plurality of phase detectors 76. The plurality of high frequency power supplies 70 are controlled.
  • the phase difference between the high frequency RF1 and the high frequency RF2 is 270 °.
  • the peak value of the high frequency RF2 is set to a peak value that is A times the peak value of the high frequency RF1. “A” is set to 0.23 or more and 0.4 or less.
  • the power supply control unit 78C when the power supply control unit 78C is controlled to generate the second output wave from the control unit Cnt, the power supply control unit 78C is preset for the second output wave in order to generate the second output wave.
  • the plurality of high-frequency power sources 70 are controlled so that a high frequency is output with the phase thus set. Further, the power supply controller 78C sets the phase of the high frequency output from the plurality of high frequency power supplies 70 to a phase preset for the second output wave based on the phases detected by the plurality of phase detectors 76.
  • the plurality of high frequency power supplies 70 are controlled.
  • FIG. 18 is a diagram illustrating output waves that can be generated by the high-frequency power supply unit shown in FIG. FIG. 18 shows the voltage of the second output wave (synthetic wave) generated by synthesizing the high frequency RF1 having the fundamental frequency and the high frequency RF2 having a frequency twice the fundamental frequency.
  • the high frequency RF1 and the high frequency RF2 are both sine waves, the peak value (peak-to-peak voltage) of the high frequency RF2 is A times the peak value Vpp of the high frequency RF1, and the phase difference between the high frequency RF1 and the high frequency RF2 is 90 °.
  • the horizontal axis indicates time, and the vertical axis indicates the voltage of the second output wave.
  • FIG. 18 shows the voltage of the second output wave.
  • the voltage above 0V is a positive voltage
  • the voltage below 0V is a negative voltage
  • the fundamental wave indicates the high frequency RF1, that is, the high frequency of the fundamental frequency.
  • the high frequency power supply unit 60C has two high frequency power supplies, that is, a high frequency power supply that generates a high frequency RF1 having a basic frequency and a basic frequency.
  • a high-frequency power source that generates a high-frequency RF2 having a double frequency, it is possible to generate a second output wave (synthetic wave) that imitates the half-wave rectified waveform from which the negative voltage component is removed relatively well. Is possible.
  • FIG. 19 is a diagram showing a high-frequency power supply unit according to still another embodiment.
  • a high frequency power supply unit 60 ⁇ / b> D illustrated in FIG. 19 may be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10.
  • the high frequency power supply unit 60D is different from the high frequency power supply unit 60B in that it further includes a half-wave rectifier 85, a switch 88, and a switch 89.
  • the high frequency power supply unit 60D is configured to selectively output the first output wave or the second output wave.
  • the first output wave is the same output wave as the above-described output wave generated by the high frequency power supply unit 60B, that is, an output wave (half wave) from which the high frequency positive voltage component output from the high frequency power supply 80 is substantially removed. It is.
  • the second output wave is an output wave (half wave) from which a high-frequency negative voltage component output from the high-frequency power supply 80 is substantially removed.
  • a switch 88 is provided between the node N1 between the matching unit 82 and the lower electrode 18 and the half-wave rectifier 84.
  • the switch 88 is composed of, for example, a field effect transistor (FET).
  • FET field effect transistor
  • a half-wave rectifier 85 is connected between another node N2 between the matching unit 82 and the lower electrode 18 and the ground.
  • the half-wave rectifier 85 is composed of a diode, for example.
  • the anode of the diode is connected to the ground, and the cathode of the diode is connected to the node N2 via the switch 89.
  • the switch 89 is composed of, for example, a field effect transistor (FET).
  • a dummy load 87 may be provided between the anode of the diode of the half-wave rectifier 85 and the ground.
  • the dummy load 87 may be an element that converts high frequency into heat.
  • the switch 88 and the switch 89 are controlled by the control unit Cnt. Specifically, when the first output wave is to be output to the high frequency power supply unit 60D, the switch is made so that the node N1 and the half-wave rectifier 84 are made conductive and the connection between the node N2 and the half-wave rectifier 85 is disconnected. 88 and switch 89 are controlled. When the second output wave is output to the high-frequency power supply unit 60D, the switch 88 and the switch are connected so that the connection between the node N1 and the half-wave rectifier 84 is disconnected and the node N2 and the half-wave rectifier 85 are made conductive. 89 is controlled.
  • FIG. 20 is a diagram illustrating a second output wave generated by the high frequency power supply unit shown in FIG.
  • the horizontal axis indicates time, and the vertical axis indicates the voltage of the second output wave.
  • the voltage above 0V is a positive voltage
  • the voltage below 0V is a negative voltage.
  • the fundamental wave is a high frequency output from the high frequency power supply 80.
  • the high frequency power supply unit 60D controlled to generate the second output wave when the high frequency voltage generated by the high frequency power supply 80 is a negative voltage, the high frequency is grounded by the rectifying action of the half-wave rectifier 85. Led.
  • the high frequency power supply 80 when the high frequency voltage generated by the high frequency power supply 80 is a positive voltage, the high frequency is supplied to the lower electrode 18. Therefore, according to the high frequency power supply unit 60D, the second output wave having the half-wave rectified waveform shown in FIG. 20, that is, the output wave (half-wave) from which the negative voltage component is substantially completely removed can be generated. Is possible.
  • simulation # 33 and simulation # 34 performed for evaluation of the plasma processing apparatus of the embodiment will be described.
  • the high frequency power supply unit 60 and the first high frequency power supply 62 are connected to the lower electrode 18, and calculations related to the plasma processing apparatus having the high frequency power supply unit 60D as the high frequency power supply unit 60 were performed.
  • the calculation was performed with the setting in which the second output wave (half wave) having a fundamental frequency of 400 kHz is supplied from the high frequency power supply unit 60 to the lower electrode.
  • simulation # 33 Vpp (wave of the second output wave is applied so that the workpiece W is irradiated with ions having substantially the same energy as the maximum energy of the ions irradiated on the workpiece W in simulation # 2. High value) was set.
  • Vpp of the second output wave is set to Vpp lower than Vpp of the second output wave of simulation # 33.
  • simulation # 33 and simulation # 34 the energy distribution (IED) of ions irradiated on the workpiece W and the energy distribution (IED) of ions irradiated on the chamber body 12 were obtained.
  • the other settings of simulation # 33 and simulation # 34 were common settings shown below.
  • 21 (a) shows the energy distribution of ions irradiated to the workpiece W calculated in simulation # 33
  • FIG. 21 (b) shows the ions irradiated to the chamber body 12 calculated in simulation # 33.
  • the energy distribution of is shown.
  • 22 (a) shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 34
  • FIG. 22 (b) shows the ions irradiated on the chamber body 12 calculated in the simulation # 34.
  • the energy distribution of is shown.
  • the Vpp (peak value) of the second output wave is set as described above. Therefore, as shown in FIGS. 7A and 21A, the workpiece is processed in the simulation # 33.
  • the maximum energy of ions irradiated to W was substantially equal to the maximum energy of ions irradiated to the workpiece W in simulation # 2.
  • FIG. 7B and FIG. 21B are compared, the energy of ions irradiated to the chamber body 12 in the simulation # 33 is the energy of ions irradiated to the chamber body 12 in the simulation # 2. It was considerably larger than.
  • the maximum energy of ions irradiated to the workpiece W in the simulation # 34 is the ion irradiated to the workpiece W in the simulation # 2. It was considerably smaller than the maximum energy.
  • the energy of ions irradiated to the chamber body 12 in the simulation # 34 is the energy of ions irradiated to the chamber body 12 in the simulation # 2. It was considerably larger than. Therefore, by supplying the second output wave from the high-frequency power supply unit 60 to the lower electrode 18 as a high frequency for biasing, the energy of ions irradiated to the workpiece W is reduced and the chamber body 12 is irradiated. It was confirmed that it is possible to increase the energy of generated ions.
  • the second output wave can be used for, for example, waferless dry cleaning, that is, cleaning of the inner wall surface of the chamber body 12 that is performed without placing a dummy wafer on the mounting table 16.
  • the plasma processing apparatus 10 is a capacitively coupled plasma processing apparatus
  • the high frequency power supply unit 60 can also be used in an inductively coupled plasma processing apparatus or a plasma processing apparatus using surface waves such as microwaves. Is possible.
  • the high frequency power supply unit 60C and the high frequency power supply unit 60D are configured to selectively output the first output wave or the second output wave, they are configured to output only the second output wave. May be.
  • the half-wave rectifier 84, the dummy load 86, the switch 88, and the switch 89 are removed from the high-frequency power supply unit 60D, and the half-wave rectifier 85 is a node. Connected directly to N2.
  • DESCRIPTION OF SYMBOLS 10 ... Plasma processing apparatus, 12 ... Chamber main body, 12c ... Chamber, 16 ... Mounting stand, 18 ... Lower electrode, 20 ... Electrostatic chuck, 30 ... Upper electrode, 50 ... Exhaust device, 60 ... High frequency power supply part, 62 ... First 1 high frequency power supply, 64... Second high frequency power supply, 60 A... High frequency power supply unit, 70... High frequency power supply, 72. 80: high frequency power supply, 82: matching unit, 84: half-wave rectifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

The present invention reduces energy of ions that are to be applied to a chamber main body. According to one embodiment of the present invention, a plasma treatment apparatus is provided with a chamber main body, a placing table, and a high-frequency power supply unit. The chamber main body provides a chamber. The chamber main body is connected to a ground potential. The placing table has a lower electrode, and is provided in the chamber. The high-frequency power supply unit is electrically connected to the lower electrode. The high-frequency power supply unit generates output waves for biasing, said output waves being to be supplied to the lower electrode. The high-frequency power supply unit is configured so as to generate the output waves wherein the positive voltage components of the voltage waveform of high-frequency waves at a fundamental frequency are reduced.

Description

プラズマ処理装置Plasma processing equipment
 本開示の実施形態は、プラズマ処理装置に関するものである。 The embodiment of the present disclosure relates to a plasma processing apparatus.
 半導体デバイスといった電子デバイスの製造においては、プラズマ処理装置が用いられている。プラズマ処理装置は、一般的に、チャンバ本体、載置台、及び、高周波電源を備えている。チャンバ本体は、その内部空間をチャンバとして提供している。チャンバ本体は接地されている。載置台は、チャンバ内に設けられており、その上に載置された被加工物を保持するよう構成されている。載置台は、下部電極を含んでいる。高周波電源は、下部電極に接続されている。このプラズマ処理装置では、チャンバ内において処理ガスのプラズマが生成され、高周波電源からのバイアス用の高周波が下部電極に供給される。このプラズマ処理装置では、バイアス用の高周波に基づく下部電極の電位とプラズマの電位との電位差によりイオンが加速され、加速されたイオンが被加工物に照射される。 Plasma processing apparatuses are used in the manufacture of electronic devices such as semiconductor devices. A plasma processing apparatus generally includes a chamber body, a mounting table, and a high-frequency power source. The chamber body provides its internal space as a chamber. The chamber body is grounded. The mounting table is provided in the chamber, and is configured to hold a workpiece mounted thereon. The mounting table includes a lower electrode. The high frequency power source is connected to the lower electrode. In this plasma processing apparatus, plasma of a processing gas is generated in the chamber, and a high frequency for bias from a high frequency power supply is supplied to the lower electrode. In this plasma processing apparatus, ions are accelerated by the potential difference between the potential of the lower electrode based on the high frequency for bias and the potential of the plasma, and the workpiece is irradiated with the accelerated ions.
 プラズマ処理装置では、チャンバ本体とプラズマとの間にも電位差が生じる。チャンバ本体とプラズマとの間の電位差が大きい場合には、チャンバ本体に照射されるイオンのエネルギーが高くなり、チャンバ本体からパーティクルが放出される。チャンバ本体から放出されたパーティクルは、載置台上に載置された被加工物を汚染する。このようなパーティクルの発生を防止するために、特許文献1では、チャンバの接地容量を調整する調整機構を利用する技術が提案されている。特許文献1に記載された調整機構は、チャンバに面するアノードとカソードの面積比率、即ちA/C比を調整するよう構成されている。A/C比が大きいほど、即ち、カソードの面積に対してアノードの面積が大きいほど、チャンバ本体とプラズマとの間の電位差が小さくなり、チャンバ本体に照射されるイオンのエネルギーが低くなる。チャンバ本体に照射されるイオンのエネルギーが低ければ、パーティクルの発生が抑制される。 In the plasma processing apparatus, a potential difference is also generated between the chamber body and the plasma. When the potential difference between the chamber main body and the plasma is large, the energy of ions irradiated to the chamber main body becomes high, and particles are emitted from the chamber main body. Particles released from the chamber main body contaminate the workpiece placed on the placing table. In order to prevent the generation of such particles, Patent Document 1 proposes a technique using an adjustment mechanism that adjusts the ground capacity of the chamber. The adjustment mechanism described in Patent Document 1 is configured to adjust the area ratio of the anode and the cathode facing the chamber, that is, the A / C ratio. The larger the A / C ratio, that is, the larger the anode area relative to the cathode area, the smaller the potential difference between the chamber body and the plasma, and the lower the energy of ions irradiated to the chamber body. If the energy of ions irradiated onto the chamber body is low, the generation of particles is suppressed.
特開2011-228694号公報JP 2011-228694 A
 被加工物に対するプラズマ処理の一種であるエッチングには、よりアスペクト比の高い形状を被加工物に形成することが求められるようになっている。アスペクト比の高い形状を被加工物に形成するためには、被加工物に照射されるイオンのエネルギーを高くする必要がある。バイアス用の高周波の周波数を低くすることは、被加工物に照射されるイオンのエネルギーを高くする策の一つである。しかしながら、バイアス用の高周波の周波数が低くなると、プラズマの電位が高くなる。プラズマの電位が高くなると、プラズマとチャンバ本体との電位差が大きくなり、チャンバ本体に照射されるイオンのエネルギーが高くなる。かかる背景から、チャンバ本体に照射されるイオンのエネルギーを低下させることが必要となっている。 2. Description of the Related Art Etching, which is a kind of plasma treatment for a workpiece, is required to form a shape with a higher aspect ratio on the workpiece. In order to form a shape with a high aspect ratio on a workpiece, it is necessary to increase the energy of ions irradiated to the workpiece. Lowering the frequency of the high-frequency bias is one way to increase the energy of ions irradiated to the workpiece. However, when the frequency of the high frequency bias is lowered, the plasma potential is increased. When the plasma potential increases, the potential difference between the plasma and the chamber body increases, and the energy of ions irradiated to the chamber body increases. From this background, it is necessary to reduce the energy of ions irradiated to the chamber body.
 一態様においては、プラズマ処理装置が提供される。プラズマ処理装置は、チャンバ本体、載置台、及び、高周波電源部を備える。チャンバ本体は、チャンバを提供する。チャンバ本体は、接地電位に接続されている。載置台は、下部電極を有しており、チャンバ内に設けられている。高周波電源部は、下部電極に電気的に接続されている。高周波電源部は、下部電極に供給されるバイアス用の出力波を生成する。高周波電源部は、基本周波数の高周波の正の電圧成分を低減させた出力波を発生するよう構成されている。 In one aspect, a plasma processing apparatus is provided. The plasma processing apparatus includes a chamber main body, a mounting table, and a high frequency power supply unit. The chamber body provides a chamber. The chamber body is connected to ground potential. The mounting table has a lower electrode and is provided in the chamber. The high frequency power supply unit is electrically connected to the lower electrode. The high frequency power supply unit generates an output wave for bias supplied to the lower electrode. The high frequency power supply unit is configured to generate an output wave in which a high frequency positive voltage component of the fundamental frequency is reduced.
 一態様に係るプラズマ処理装置では、正の電圧成分を低下させた出力波が下部電極に供給されるので、プラズマの電位が低くなる。したがって、プラズマとチャンバ本体との間の電位差が低くなる。結果的に、チャンバ本体に照射されるイオンのエネルギーが低くなる。故に、チャンバ本体からのパーティクルの発生が抑制される。また、出力波の周波数(基本周波数)を低くすることにより、チャンバ本体に照射されるイオンのエネルギーを低くしつつ、被加工物に照射されるイオンのエネルギーを高めることが可能である。 In the plasma processing apparatus according to one aspect, since the output wave with the positive voltage component lowered is supplied to the lower electrode, the plasma potential is lowered. Therefore, the potential difference between the plasma and the chamber body is reduced. As a result, the energy of ions irradiated to the chamber body is lowered. Therefore, the generation of particles from the chamber body is suppressed. Further, by reducing the frequency (fundamental frequency) of the output wave, it is possible to increase the energy of ions irradiated to the workpiece while reducing the energy of ions irradiated to the chamber body.
 一実施形態において、高周波電源部は、複数の高周波電源、及び、合成器を備え得る。複数の高周波電源は、基本周波数のn倍又は2n倍の互いに異なる周波数を有する複数の高周波をそれぞれ発生するよう構成されている。ここで、nは1以上の整数である。合成器は、複数の高周波を合成して出力波を生成するよう構成されている。この実施形態によれば、複数の高周波電源からの高周波の電力の損失を抑制しつつ、出力波を生成することが可能となる。 In one embodiment, the high frequency power supply unit may include a plurality of high frequency power supplies and a combiner. The plurality of high frequency power supplies are configured to generate a plurality of high frequencies having different frequencies that are n times or 2n times the fundamental frequency, respectively. Here, n is an integer of 1 or more. The synthesizer is configured to synthesize a plurality of high frequencies to generate an output wave. According to this embodiment, it is possible to generate an output wave while suppressing loss of high-frequency power from a plurality of high-frequency power sources.
 一実施形態において、高周波電源部は、基本周波数の高周波を発生する高周波電源と、高周波電源からの高周波の正の電圧成分を除去するように構成された半波整流器と、を備え得る。この実施形態によれば、正の電圧成分が略完全に除去される。 In one embodiment, the high frequency power supply unit may include a high frequency power source that generates a high frequency of a fundamental frequency, and a half-wave rectifier configured to remove a high frequency positive voltage component from the high frequency power source. According to this embodiment, the positive voltage component is almost completely removed.
 一実施形態において、プラズマ処理装置は、容量結合型のプラズマ処理装置である。この実施形態のプラズマ処理装置は、上部電極及び第1の高周波電源を更に備える。上部電極は、下部電極の上方に設けられている。第1の高周波電源は、上部電極に接続されており、プラズマ生成用の高周波を発生するよう構成されている。上部電極がプラズマ生成用の高周波が供給される電極であるプラズマ処理装置では、アノード電極の面積が小さく、A/C比が小さい。したがって、この実施形態のプラズマ処理装置では、上記出力波がより有利に用いられ得る。 In one embodiment, the plasma processing apparatus is a capacitively coupled plasma processing apparatus. The plasma processing apparatus of this embodiment further includes an upper electrode and a first high frequency power source. The upper electrode is provided above the lower electrode. The first high frequency power source is connected to the upper electrode and is configured to generate a high frequency for plasma generation. In the plasma processing apparatus in which the upper electrode is an electrode to which a high frequency for plasma generation is supplied, the area of the anode electrode is small and the A / C ratio is small. Therefore, in the plasma processing apparatus of this embodiment, the output wave can be used more advantageously.
 一実施形態において、基本周波数は、1.4MHz以下である。 In one embodiment, the fundamental frequency is 1.4 MHz or less.
 一実施形態において、プラズマ処理装置は、下部電極に接続された第2の高周波電源を更に備え得る。第2の高周波電源は、基本周波数よりも高い周波数のバイアス用の高周波を発生するよう構成されている。この実施形態のプラズマ処理装置によれば、プロセスに応じて、上述の出力波又は第2の高周波電源からのバイアス用の高周波が、下部電極に選択的に供給される。 In one embodiment, the plasma processing apparatus may further include a second high-frequency power source connected to the lower electrode. The second high-frequency power source is configured to generate a high frequency for bias having a frequency higher than the fundamental frequency. According to the plasma processing apparatus of this embodiment, the above-described output wave or the high frequency for bias from the second high frequency power supply is selectively supplied to the lower electrode according to the process.
 以上説明したように、チャンバ本体に照射されるイオンのエネルギーを低下させることが可能となる。 As described above, it is possible to reduce the energy of ions irradiated to the chamber body.
一実施形態に係るプラズマ処理装置を概略的に示す図である。It is a figure showing roughly the plasma treatment apparatus concerning one embodiment. 一実施形態に係る高周波電源部を示す図である。It is a figure which shows the high frequency power supply part which concerns on one Embodiment. 図2に示す高周波電源部が生成可能な出力波を例示する図である。FIG. 3 is a diagram illustrating an output wave that can be generated by the high frequency power supply unit illustrated in FIG. 2. 別の実施形態に係る高周波電源部を示す図である。It is a figure which shows the high frequency power supply part which concerns on another embodiment. 図4に示す高周波電源部によって生成される出力波を例示する図である。It is a figure which illustrates the output wave produced | generated by the high frequency power supply part shown in FIG. 図6の(a)は、シミュレーション#1において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図6の(b)は、シミュレーション#1において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。6A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 1, and FIG. 6B is an irradiation of the chamber body 12 calculated in the simulation # 1. It is a figure which shows the energy distribution of ion to be performed. 図7の(a)は、シミュレーション#2において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図7の(b)は、シミュレーション#2において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 7A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 2, and FIG. 7B shows the irradiation of the chamber body 12 calculated in the simulation # 2. It is a figure which shows the energy distribution of ion to be performed. 図8の(a)は、シミュレーション#3において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図8の(b)は、シミュレーション#3において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 8A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 3, and FIG. 8B is an irradiation on the chamber body 12 calculated in the simulation # 3. It is a figure which shows the energy distribution of ion to be performed. 図9の(a)は、シミュレーション#4において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図9の(b)は、シミュレーション#4において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 9A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 4, and FIG. 9B is an irradiation on the chamber body 12 calculated in the simulation # 4. It is a figure which shows the energy distribution of ion to be performed. シミュレーション#5及びシミュレーション#6において求めたイオンの入射角を示す図である。It is a figure which shows the incident angle of the ion calculated | required in simulation # 5 and simulation # 6. 図11の(a)は、シミュレーション#7において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図11の(b)は、シミュレーション#7において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 11A shows the energy distribution of ions irradiated on the workpiece calculated in simulation # 7, and FIG. 11B shows the irradiation of the chamber body 12 calculated in simulation # 7. It is a figure which shows the energy distribution of ion to be performed. 図12の(a)は、シミュレーション#8において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図12の(b)は、シミュレーション#8において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 12A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in simulation # 8, and FIG. 12B shows irradiation on the chamber body 12 calculated in simulation # 8. It is a figure which shows the energy distribution of ion to be performed. シミュレーション#9~#14の結果を示す表である。10 is a table showing the results of simulations # 9 to # 14. シミュレーション#15~#30の結果に基づいて算出したEh/Efを示すグラフである。6 is a graph showing Eh / Ef calculated based on the results of simulations # 15 to # 30. 図15の(a)は、シミュレーション#31において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図15の(b)は、シミュレーション#31において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 15A is a diagram showing the energy distribution of ions irradiated to the workpiece calculated in simulation # 31, and FIG. 15B is an irradiation of the chamber body 12 calculated in simulation # 31. It is a figure which shows the energy distribution of ion to be performed. 図16の(a)は、シミュレーション#32において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図16の(b)は、シミュレーション#32において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。FIG. 16A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 32, and FIG. 16B is an irradiation of the chamber body 12 calculated in the simulation # 32. It is a figure which shows the energy distribution of ion to be performed. 更に別の実施形態に係る高周波電源部を示す図である。It is a figure which shows the high frequency power supply part which concerns on another embodiment. 図17に示す高周波電源部が生成可能な第2の出力波を例示する図である。It is a figure which illustrates the 2nd output wave which the high frequency power supply part shown in Drawing 17 can generate. 更に別の実施形態に係る高周波電源部を示す図である。It is a figure which shows the high frequency power supply part which concerns on another embodiment. 図19に示す高周波電源部によって生成される第2の出力波を例示する図である。It is a figure which illustrates the 2nd output wave generated by the high frequency power supply part shown in FIG. 図21の(a)は、シミュレーション#33において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図21の(b)は、シミュレーション#33において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。21A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 33, and FIG. 21B is an irradiation of the chamber body 12 calculated in the simulation # 33. It is a figure which shows the energy distribution of ion to be performed. 図22の(a)は、シミュレーション#34において計算した被加工物に照射されるイオンのエネルギー分布を示す図であり、図22の(b)は、シミュレーション#34において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す図である。22A is a diagram showing the energy distribution of ions irradiated on the workpiece calculated in the simulation # 34, and FIG. 22B is an irradiation on the chamber body 12 calculated in the simulation # 34. It is a figure which shows the energy distribution of ion to be performed.
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Hereinafter, various embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 図1は、一実施形態に係るプラズマ処理装置を概略的に示す図である。図1には、一実施形態に係るプラズマ処理装置の縦断面の構造が概略的に示されている。図1に示すプラズマ処理装置10は、容量結合型のプラズマ処理装置である。プラズマ処理装置10は、例えば、プラズマエッチングのために用いることができる。 FIG. 1 is a diagram schematically showing a plasma processing apparatus according to an embodiment. FIG. 1 schematically shows the structure of a longitudinal section of a plasma processing apparatus according to an embodiment. A plasma processing apparatus 10 shown in FIG. 1 is a capacitively coupled plasma processing apparatus. The plasma processing apparatus 10 can be used for plasma etching, for example.
 プラズマ処理装置10は、チャンバ本体12を備えている。チャンバ本体12は、略円筒形状を有している。チャンバ本体12は、その内部空間をチャンバ12cとして提供している。チャンバ本体12は、例えばアルミニウムから構成されている。チャンバ本体12の内壁面、即ち、当該チャンバ12cを画成する壁面には、耐プラズマ性を有する膜が形成されている。この膜は、陽極酸化処理によって形成された膜、又は、酸化イットリウムから形成された膜といったセラミックス製の膜であり得る。また、チャンバ本体12の側壁12sには被加工物Wの搬送のための開口12gが設けられている。この開口12gはゲートバルブ14により開閉可能となっている。このチャンバ本体12は接地電位に接続されている。 The plasma processing apparatus 10 includes a chamber body 12. The chamber body 12 has a substantially cylindrical shape. The chamber body 12 provides its internal space as a chamber 12c. The chamber body 12 is made of, for example, aluminum. A film having plasma resistance is formed on the inner wall surface of the chamber body 12, that is, the wall surface defining the chamber 12c. This film may be a ceramic film such as a film formed by anodization or a film formed from yttrium oxide. Further, an opening 12g for conveying the workpiece W is provided on the side wall 12s of the chamber body 12. The opening 12g can be opened and closed by a gate valve 14. The chamber body 12 is connected to the ground potential.
 チャンバ12c内では、支持部15が、チャンバ本体12の底部から上方に延在している。支持部15は、略円筒形状を有しており、石英といった絶縁材料から形成されている。また、チャンバ12c内には、載置台16が設けられている。載置台16は、その上面において被加工物Wを保持するよう構成されている。被加工物Wは、ウエハのように円盤形状を有し得る。載置台16は、下部電極18及び静電チャック20を含んでいる。この載置台16は、支持部15によって支持されている。 In the chamber 12 c, the support portion 15 extends upward from the bottom of the chamber body 12. The support portion 15 has a substantially cylindrical shape and is made of an insulating material such as quartz. A mounting table 16 is provided in the chamber 12c. The mounting table 16 is configured to hold the workpiece W on the upper surface thereof. The workpiece W may have a disk shape like a wafer. The mounting table 16 includes a lower electrode 18 and an electrostatic chuck 20. The mounting table 16 is supported by the support unit 15.
 下部電極18は、第1プレート18a及び第2プレート18bを含んでいる。第1プレート18a及び第2プレート18bは、例えばアルミニウムといった金属から形成されており、略円盤形状を有している。第2プレート18bは、第1プレート18a上に設けられており、第1プレート18aに電気的に接続されている。 The lower electrode 18 includes a first plate 18a and a second plate 18b. The first plate 18a and the second plate 18b are made of a metal such as aluminum, for example, and have a substantially disk shape. The second plate 18b is provided on the first plate 18a and is electrically connected to the first plate 18a.
 第2プレート18b上には、静電チャック20が設けられている。静電チャック20は、絶縁層、及び、当該絶縁層内に内蔵された電極を有している。静電チャック20の電極には、直流電源22がスイッチ23を介して電気的に接続されている。静電チャック20の電極に直流電源22からの直流電圧が印加されると、静電チャック20はクーロン力等の静電力を発生する。静電チャック20は、この静電力により被加工物Wを吸着し、当該被加工物Wを保持する。 An electrostatic chuck 20 is provided on the second plate 18b. The electrostatic chuck 20 has an insulating layer and an electrode built in the insulating layer. A DC power source 22 is electrically connected to the electrode of the electrostatic chuck 20 via a switch 23. When a DC voltage from the DC power supply 22 is applied to the electrode of the electrostatic chuck 20, the electrostatic chuck 20 generates an electrostatic force such as a Coulomb force. The electrostatic chuck 20 attracts the workpiece W by the electrostatic force and holds the workpiece W.
 第2プレート18bの周縁部上には、被加工物Wのエッジ及び静電チャック20を囲むようにフォーカスリング24が配置されている。フォーカスリング24は、プラズマ処理の均一性を向上させるために設けられている。フォーカスリング24は、プラズマ処理に応じて適宜選択される材料から構成されており、例えば、石英から構成され得る。 A focus ring 24 is disposed on the periphery of the second plate 18b so as to surround the edge of the workpiece W and the electrostatic chuck 20. The focus ring 24 is provided to improve the uniformity of plasma processing. The focus ring 24 is made of a material appropriately selected according to the plasma processing, and can be made of, for example, quartz.
 第2プレート18bの内部には、流路18fが設けられている。流路18fには、チャンバ本体12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。流路18fに供給された冷媒は、配管26bを介してチラーユニットに戻される。このように、流路18fには、当該流路18f内を循環するよう、冷媒が供給される。この冷媒の温度を制御することにより、静電チャック20によって支持された被加工物Wの温度が制御される。 A flow path 18f is provided inside the second plate 18b. Refrigerant is supplied to the flow path 18f through a pipe 26a from a chiller unit provided outside the chamber body 12. The refrigerant supplied to the flow path 18f is returned to the chiller unit via the pipe 26b. Thus, the refrigerant is supplied to the flow path 18f so as to circulate in the flow path 18f. By controlling the temperature of the refrigerant, the temperature of the workpiece W supported by the electrostatic chuck 20 is controlled.
 また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャック20の上面と被加工物Wの裏面との間に供給する。 Further, the plasma processing apparatus 10 is provided with a gas supply line 28. The gas supply line 28 supplies the heat transfer gas from the heat transfer gas supply mechanism, for example, He gas, between the upper surface of the electrostatic chuck 20 and the back surface of the workpiece W.
 プラズマ処理装置10は、上部電極30を更に備えている。上部電極30は、載置台16の上方に設けられており、下部電極18に対して略平行に設けられている。上部電極30は、部材32と共にチャンバ本体12の上部開口を閉じている。部材32は、絶縁性を有している。上部電極30は、この部材32を介してチャンバ本体12の上部に支持されている。 The plasma processing apparatus 10 further includes an upper electrode 30. The upper electrode 30 is provided above the mounting table 16 and is provided substantially parallel to the lower electrode 18. The upper electrode 30 closes the upper opening of the chamber body 12 together with the member 32. The member 32 has an insulating property. The upper electrode 30 is supported on the upper portion of the chamber body 12 through the member 32.
 上部電極30は、天板34及び支持体36を含んでいる。天板34はチャンバ12cに面している。天板34には、複数のガス吐出孔34aが設けられている。この天板34は、限定されるものではないが、例えばシリコンから構成されている。或いは、天板34は、アルミニウム製の母材の表面に耐プラズマ性の膜を設けた構造を有し得る。なお、この膜は、陽極酸化処理によって形成された膜、又は、酸化イットリウムから形成された膜といったセラミックス製の膜であり得る。 The upper electrode 30 includes a top plate 34 and a support 36. The top plate 34 faces the chamber 12c. The top plate 34 is provided with a plurality of gas discharge holes 34a. Although this top plate 34 is not limited, For example, it is comprised from the silicon | silicone. Alternatively, the top plate 34 may have a structure in which a plasma-resistant film is provided on the surface of an aluminum base material. This film may be a ceramic film such as a film formed by anodization or a film formed from yttrium oxide.
 支持体36は、天板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。支持体36の内部には、ガス拡散室36aが設けられている。このガス拡散室36aからは、複数のガス孔36bが下方に延びており、当該複数のガス孔36bは、複数のガス吐出孔34aにそれぞれ連通している。また、支持体36には、ガス拡散室36aに処理ガスを導くガス導入口36cが形成されており、このガス導入口36cには、ガス供給管38が接続されている。 The support 36 supports the top plate 34 in a detachable manner, and may be made of a conductive material such as aluminum. A gas diffusion chamber 36 a is provided inside the support 36. A plurality of gas holes 36b extend downward from the gas diffusion chamber 36a, and the plurality of gas holes 36b communicate with the plurality of gas discharge holes 34a, respectively. The support 36 is formed with a gas introduction port 36c that guides the processing gas to the gas diffusion chamber 36a, and a gas supply pipe 38 is connected to the gas introduction port 36c.
 ガス供給管38には、バルブ群42及び流量制御器群44を介して、ガスソース群40が接続されている。ガスソース群40は、複数のガスソースを有している。バルブ群42は複数のバルブを含んでおり、流量制御器群44はマスフローコントローラといった複数の流量制御器を含んでいる。ガスソース群40の複数のガスソースはそれぞれ、バルブ群42の対応のバルブ及び流量制御器群44の対応の流量制御器を介して、ガス供給管38に接続されている。このプラズマ処理装置10は、ガスソース群40の複数のガスソースのうち選択された一以上のガスソースからのガスを、個別に調整された流量で、チャンバ本体12内に供給することが可能である。 A gas source group 40 is connected to the gas supply pipe 38 via a valve group 42 and a flow rate controller group 44. The gas source group 40 has a plurality of gas sources. The valve group 42 includes a plurality of valves, and the flow rate controller group 44 includes a plurality of flow rate controllers such as a mass flow controller. The plurality of gas sources of the gas source group 40 are connected to the gas supply pipe 38 via the corresponding valve of the valve group 42 and the corresponding flow rate controller of the flow rate controller group 44, respectively. The plasma processing apparatus 10 can supply gas from one or more gas sources selected from among a plurality of gas sources of the gas source group 40 into the chamber body 12 at individually adjusted flow rates. is there.
 チャンバ12c内、且つ、支持部15とチャンバ本体12の側壁12sとの間には、バッフルプレート48が設けられている。バッフルプレート48は、例えば、アルミニウム製の母材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。このバッフルプレート48には、多数の貫通孔が形成されている。バッフルプレート48の下方においては、排気管52がチャンバ本体12の底部に接続されている。この排気管52には、排気装置50が接続されている。排気装置50は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ12cを減圧することができる。 A baffle plate 48 is provided in the chamber 12 c and between the support portion 15 and the side wall 12 s of the chamber body 12. The baffle plate 48 can be configured by, for example, coating a base material made of aluminum with ceramics such as yttrium oxide. A number of through holes are formed in the baffle plate 48. Below the baffle plate 48, an exhaust pipe 52 is connected to the bottom of the chamber body 12. An exhaust device 50 is connected to the exhaust pipe 52. The exhaust device 50 includes a vacuum pump such as a turbo molecular pump, and can depressurize the chamber 12c.
 プラズマ処理装置10は、高周波電源部60を更に備えている。高周波電源部60は、下部電極18に電気的に接続されている。この高周波電源部60は、下部電極18に供給されるバイアス用の出力波を生成する。高周波電源部60によって生成される出力波は、基本周波数の高周波の正の電圧成分を低減させた出力波である。基本周波数は、一実施形態では、1.4MHz以下であり得る。この高周波電源部60の詳細については後述する。 The plasma processing apparatus 10 further includes a high frequency power supply unit 60. The high frequency power supply unit 60 is electrically connected to the lower electrode 18. The high frequency power supply unit 60 generates a bias output wave supplied to the lower electrode 18. The output wave generated by the high frequency power supply unit 60 is an output wave obtained by reducing the high frequency positive voltage component of the fundamental frequency. The fundamental frequency may be 1.4 MHz or less in one embodiment. Details of the high-frequency power supply unit 60 will be described later.
 一実施形態において、プラズマ処理装置10は、第1の高周波電源62を更に備える。第1の高周波電源62は、プラズマ生成用の第1の高周波を発生する電源であり、27~100MHzの範囲内の周波数を有する高周波を発生する。第1の高周波電源62は、整合器63を介して上部電極30に接続されている。整合器63は、第1の高周波電源62の出力インピーダンスと負荷側(この実施形態では上部電極30側)の入力インピーダンスを整合させるための回路を有している。なお、第1の高周波電源62は、整合器63を介して下部電極18に接続されていてもよい。第1の高周波電源62が下部電極18に接続されている場合には、上部電極30は接地電位に接続される。 In one embodiment, the plasma processing apparatus 10 further includes a first high-frequency power source 62. The first high frequency power supply 62 is a power supply that generates a first high frequency for plasma generation, and generates a high frequency having a frequency within a range of 27 to 100 MHz. The first high frequency power supply 62 is connected to the upper electrode 30 via the matching unit 63. The matching unit 63 has a circuit for matching the output impedance of the first high-frequency power source 62 with the input impedance on the load side (upper electrode 30 side in this embodiment). The first high frequency power supply 62 may be connected to the lower electrode 18 via the matching unit 63. When the first high frequency power source 62 is connected to the lower electrode 18, the upper electrode 30 is connected to the ground potential.
 一実施形態において、プラズマ処理装置10は、第2の高周波電源64を更に備え得る。第2の高周波電源64は、被加工物Wにイオンを引き込むためのバイアス用の第2の高周波を発生する電源である。第2の高周波の周波数は、第1の高周波の周波数よりも低く、且つ、高周波電源部60によって生成される出力波の基本周波数よりも高い周波数を有する。第2の高周波の周波数は、3.2kHz~13.56MHzの範囲内の周波数であり得る。第2の高周波電源64は、整合器65を介して下部電極18に接続されている。整合器65は、第2の高周波電源64の出力インピーダンスと負荷側(下部電極18側)の入力インピーダンスを整合させるための回路を有している。この第2の高周波電源64を高周波電源部60に加えて用いることにより、プロセスに応じて、高周波電源部60からの出力波又は第2の高周波電源64からのバイアス用の高周波を、下部電極18に選択的に供給することが可能となる。 In one embodiment, the plasma processing apparatus 10 may further include a second high frequency power supply 64. The second high frequency power supply 64 is a power supply that generates a second high frequency for bias for drawing ions into the workpiece W. The frequency of the second high frequency is lower than the frequency of the first high frequency and higher than the fundamental frequency of the output wave generated by the high frequency power supply unit 60. The second high frequency may be a frequency in the range of 3.2 kHz to 13.56 MHz. The second high frequency power supply 64 is connected to the lower electrode 18 via the matching unit 65. The matching unit 65 has a circuit for matching the output impedance of the second high-frequency power supply 64 with the input impedance on the load side (lower electrode 18 side). By using the second high-frequency power supply 64 in addition to the high-frequency power supply unit 60, an output wave from the high-frequency power supply unit 60 or a bias high frequency from the second high-frequency power supply 64 is applied to the lower electrode 18 depending on the process. It becomes possible to selectively supply to.
 一実施形態においては、プラズマ処理装置10は、制御部Cntを更に備え得る。制御部Cntは、プロセッサ、記憶装置、入力装置、表示装置等を備えるコンピュータであり、プラズマ処理装置10の各部を制御する。具体的に、制御部Cntは、記憶装置に記憶されている制御プログラムを実行し、当該記憶装置に記憶されているレシピデータに基づいてプラズマ処理装置10の各部を制御する。これにより、プラズマ処理装置10は、レシピデータによって指定されたプロセスを実行するようになっている。 In one embodiment, the plasma processing apparatus 10 may further include a control unit Cnt. The control unit Cnt is a computer including a processor, a storage device, an input device, a display device, and the like, and controls each unit of the plasma processing apparatus 10. Specifically, the control unit Cnt executes a control program stored in the storage device, and controls each unit of the plasma processing apparatus 10 based on recipe data stored in the storage device. Thereby, the plasma processing apparatus 10 performs the process designated by the recipe data.
 このプラズマ処理装置10を用いたプラズマ処理の実行の際には、ガスソース群40の複数のガスソースのうち選択されたガスソースからのガスが、チャンバ12cに供給される。また、排気装置50によってチャンバ12cが減圧される。そして、チャンバ12cに供給されたガスが、第1の高周波電源62からの高周波によって発生する高周波電界によって励起される。これにより、チャンバ12c内でプラズマが生成される。また、下部電極18にバイアス用の出力波又は第2の高周波が選択的に供給される。これにより、プラズマ中のイオンが被加工物Wに向けて加速される。このように加速されたイオン、及び/又は、ラジカルによって、被加工物Wが処理される。 When performing the plasma processing using the plasma processing apparatus 10, gas from a gas source selected from the plurality of gas sources in the gas source group 40 is supplied to the chamber 12c. Further, the exhaust device 50 depressurizes the chamber 12c. Then, the gas supplied to the chamber 12 c is excited by a high frequency electric field generated by a high frequency from the first high frequency power supply 62. Thereby, plasma is generated in the chamber 12c. Further, the bias output wave or the second high frequency is selectively supplied to the lower electrode 18. Thereby, the ions in the plasma are accelerated toward the workpiece W. The workpiece W is processed by the ions and / or radicals thus accelerated.
 以下、高周波電源部60の詳細について説明する。図2は、一実施形態に係る高周波電源部を示す図である。図2に示す高周波電源部60Aは、プラズマ処理装置10の高周波電源部60として採用され得る。高周波電源部60Aは、複数の高周波電源70、複数の整合器72、及び、合成器74を有している。複数の高周波電源70は、基本周波数のn倍又は2n倍の互いに異なる周波数を有する複数の高周波をそれぞれ発生する。ここで、nは1以上の整数である。複数の高周波電源70は、一実施形態では、基本周波数の高周波を発生する高周波電源、及び、基本周波数の2倍の周波数を有する高周波を発生する高周波電源を少なくとも含む。なお、複数の高周波電源70の個数は2以上の任意の個数であり得る。 Hereinafter, details of the high-frequency power supply unit 60 will be described. FIG. 2 is a diagram illustrating a high-frequency power supply unit according to an embodiment. The high frequency power supply unit 60 </ b> A illustrated in FIG. 2 can be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10. The high frequency power supply unit 60 </ b> A includes a plurality of high frequency power supplies 70, a plurality of matching units 72, and a combiner 74. The plurality of high frequency power supplies 70 respectively generate a plurality of high frequencies having different frequencies that are n times or 2n times the fundamental frequency. Here, n is an integer of 1 or more. In one embodiment, the plurality of high-frequency power sources 70 includes at least a high-frequency power source that generates a high frequency of the fundamental frequency and a high-frequency power source that generates a high frequency having twice the fundamental frequency. Note that the number of the plurality of high-frequency power supplies 70 may be an arbitrary number of two or more.
 複数の高周波電源70は、複数の整合器72を介して合成器74に接続されている。複数の整合器72の各々は、複数の高周波電源70のうち対応の高周波電源の出力インピーダンスと負荷側のインピーダンスとを整合させるための回路を有している。合成器74は、複数の高周波電源70から複数の整合器72を介して伝送される複数の高周波を合成(即ち、加算)する。合成器74は、複数の高周波を合成することによって生成した出力波(合成波)を、下部電極18に供給する。 The plurality of high frequency power supplies 70 are connected to the synthesizer 74 via the plurality of matching units 72. Each of the plurality of matching units 72 has a circuit for matching the output impedance of the corresponding high-frequency power source among the plurality of high-frequency power sources 70 and the impedance on the load side. The combiner 74 combines (that is, adds) a plurality of high frequencies transmitted from the plurality of high frequency power sources 70 via the plurality of matching units 72. The synthesizer 74 supplies an output wave (synthetic wave) generated by synthesizing a plurality of high frequencies to the lower electrode 18.
 一実施形態において、高周波電源部60Aは、複数の位相検出器76及び電源制御部78を更に有し得る。複数の位相検出器76は、複数の整合器72と合成器74との間に設けられている。複数の位相検出器76の各々は、複数の高周波電源70のうち対応の高周波電源から対応の整合器72を介して伝送される高周波の位相を検出するよう構成されている。電源制御部78は、予め設定された位相で高周波を出力させるよう、複数の高周波電源70を制御する。また、電源制御部78は、複数の位相検出器76によって検出された位相に基づき、複数の高周波電源70から出力される高周波の位相を予め設定された位相に設定するよう、複数の高周波電源70を制御する。 In one embodiment, the high frequency power supply unit 60A may further include a plurality of phase detectors 76 and a power supply control unit 78. The plurality of phase detectors 76 are provided between the plurality of matching units 72 and the combiner 74. Each of the plurality of phase detectors 76 is configured to detect a phase of a high frequency transmitted from a corresponding high frequency power source through a corresponding matching unit 72 among the plurality of high frequency power sources 70. The power supply control unit 78 controls the plurality of high frequency power supplies 70 so as to output a high frequency with a preset phase. The power supply controller 78 also sets the high-frequency phases output from the plurality of high-frequency power supplies 70 to preset phases based on the phases detected by the plurality of phase detectors 76. To control.
 この高周波電源部60Aは、上述した出力波として、疑似半波整流波を生成する。即ち、高周波電源部60Aは、複数の高周波の合成によって、基本周波数の高周波の正の電圧成分を低減させた出力波(合成波)を生成する。これにより、高周波電源部60Aは、半波整流波形に類似した波形を有する出力波(合成波)を生成する。この高周波電源部60Aは、複数の高周波電源70からの高周波の電力の損失を抑制しつつ、出力波(合成波)を生成することが可能である。 This high frequency power supply unit 60A generates a pseudo half wave rectified wave as the output wave described above. That is, the high frequency power supply unit 60A generates an output wave (synthetic wave) in which a high frequency positive voltage component of the fundamental frequency is reduced by combining a plurality of high frequencies. Thereby, the high frequency power supply unit 60A generates an output wave (synthetic wave) having a waveform similar to the half-wave rectified waveform. The high frequency power supply unit 60 </ b> A can generate an output wave (synthetic wave) while suppressing loss of high frequency power from the plurality of high frequency power supplies 70.
 図3は、図2に示す高周波電源部が生成可能な出力波を例示する図である。図3には、基本周波数の高周波RF1と当該基本周波数の2倍の周波数を有する高周波RF2の合成により生成される出力波(合成波)の電圧が示されている。高周波RF1及び高周波RF2は共に正弦波であり、高周波RF2の波高値(ピークツーピーク電圧)は高周波RF1の波高値VppのA倍であり、高周波RF1と高周波RF2の位相差は270°である。図3において、横軸は時間を示しており、縦軸は出力波の電圧を示している。図3において、0Vより上方の電圧は正の電圧であり、0Vより下方の電圧は負の電圧である。なお、図3において、基本波とは、高周波RF1、即ち基本周波数の高周波を示している。図3に示すように、「A」が0.23以上0.4以下であれば、二つの高周波電源、即ち、基本周波数の高周波RF1を発生する高周波電源と基本周波数の2倍の周波数を有する高周波RF2を発生する高周波電源を用いることにより、半波整流波形を比較的良好に模した出力波(合成波)を生成することが可能である。 FIG. 3 is a diagram illustrating output waves that can be generated by the high-frequency power supply unit shown in FIG. FIG. 3 shows the voltage of the output wave (synthetic wave) generated by synthesizing the high frequency RF1 having the fundamental frequency and the high frequency RF2 having a frequency twice the fundamental frequency. The high frequency RF1 and the high frequency RF2 are both sine waves, the peak value (peak-to-peak voltage) of the high frequency RF2 is A times the peak value Vpp of the high frequency RF1, and the phase difference between the high frequency RF1 and the high frequency RF2 is 270 °. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the voltage of the output wave. In FIG. 3, the voltage above 0V is a positive voltage, and the voltage below 0V is a negative voltage. In FIG. 3, the fundamental wave indicates the high frequency RF1, that is, the high frequency of the fundamental frequency. As shown in FIG. 3, when “A” is 0.23 or more and 0.4 or less, two high-frequency power sources, that is, a high-frequency power source that generates a high-frequency RF1 having a fundamental frequency and a frequency that is twice the fundamental frequency are included. By using a high-frequency power source that generates the high-frequency RF2, it is possible to generate an output wave (synthetic wave) that imitates the half-wave rectified waveform relatively well.
 図4は、別の実施形態に係る高周波電源部を示す図である。図4に示す高周波電源部60Bは、プラズマ処理装置10の高周波電源部60として採用され得る。高周波電源部60Bは、高周波電源80、整合器82、及び、半波整流器84を有している。高周波電源80は、基本周波数の高周波を発生する。高周波電源80には整合器82が接続されている。整合器82は、高周波電源80の出力インピーダンスと負荷側のインピーダンスとを整合させるための回路を有している。また、整合器82と下部電極18との間のノードとグランドとの間には半波整流器84が接続されている。半波整流器84は、例えばダイオードから構成されている。ダイオードのアノードは整合器82と下部電極18との間のノードに接続されており、ダイオードのカソードはグランドに接続されている。なお、ダイオードのカソードとグランドとの間には、ダミー負荷86が設けられていてもよい。ダミー負荷86は、高周波を熱に変換する素子であり得る。 FIG. 4 is a diagram showing a high-frequency power supply unit according to another embodiment. 4 may be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10. The high frequency power supply unit 60B includes a high frequency power supply 80, a matching unit 82, and a half-wave rectifier 84. The high frequency power supply 80 generates a high frequency of the fundamental frequency. A matching unit 82 is connected to the high-frequency power source 80. The matching unit 82 has a circuit for matching the output impedance of the high-frequency power supply 80 with the impedance on the load side. A half-wave rectifier 84 is connected between the node between the matching unit 82 and the lower electrode 18 and the ground. The half-wave rectifier 84 is composed of a diode, for example. The anode of the diode is connected to a node between the matching unit 82 and the lower electrode 18, and the cathode of the diode is connected to the ground. A dummy load 86 may be provided between the cathode of the diode and the ground. The dummy load 86 may be an element that converts high frequency into heat.
 図5は、高周波電源部によって生成される出力波を例示する図である。図5において、横軸は時間を示しており、縦軸は出力波の電圧を示している。図5において、0Vより上方の電圧は正の電圧であり、0Vより下方の電圧は負の電圧である。なお、図5において、基本波とは、高周波電源80が出力する高周波である。高周波電源部60Bでは、高周波電源80によって生成される高周波の電圧が正の電圧であるときに、半波整流器84の整流作用により、高周波はグランドに導かれる。一方、高周波電源80によって生成される高周波の電圧が負の電圧であるときには、高周波は下部電極18に供給される。したがって、高周波電源部60Bによれば、図5に示す半波整流波形を有する出力波、即ち、正の電圧成分が略完全に除去された出力波(半波)を生成することが可能である。 FIG. 5 is a diagram illustrating an output wave generated by the high frequency power supply unit. In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates the voltage of the output wave. In FIG. 5, the voltage above 0V is a positive voltage, and the voltage below 0V is a negative voltage. In FIG. 5, the fundamental wave is a high frequency output from the high frequency power supply 80. In the high frequency power supply unit 60B, when the high frequency voltage generated by the high frequency power supply 80 is a positive voltage, the high frequency is guided to the ground by the rectifying action of the half-wave rectifier 84. On the other hand, when the high frequency voltage generated by the high frequency power supply 80 is a negative voltage, the high frequency is supplied to the lower electrode 18. Therefore, according to the high-frequency power supply unit 60B, it is possible to generate an output wave having the half-wave rectified waveform shown in FIG. 5, that is, an output wave (half-wave) from which the positive voltage component is substantially completely removed. .
 以上説明したプラズマ処理装置10によれば、正の電圧成分を低下させた出力波が下部電極18に供給されるので、チャンバ12c内において生成されるプラズマの電位が低くなる。したがって、プラズマとチャンバ本体12との間の電位差が低くなる。結果的に、チャンバ本体12に照射されるイオンのエネルギーが低くなる。故に、チャンバ本体12からのパーティクルの発生が抑制される。また、高周波電源部60の出力波の周波数(基本周波数)を低くすることにより、チャンバ本体に照射されるイオンのエネルギーを低くしつつ、被加工物に照射されるイオンのエネルギーを高めることが可能である。 According to the plasma processing apparatus 10 described above, since the output wave with the positive voltage component lowered is supplied to the lower electrode 18, the potential of the plasma generated in the chamber 12c is lowered. Therefore, the potential difference between the plasma and the chamber body 12 is reduced. As a result, the energy of ions irradiated onto the chamber body 12 is lowered. Therefore, generation of particles from the chamber body 12 is suppressed. In addition, by reducing the frequency (fundamental frequency) of the output wave of the high frequency power supply unit 60, it is possible to increase the energy of ions irradiated to the workpiece while reducing the energy of ions irradiated to the chamber body. It is.
 以下、実施形態のプラズマ処理装置の評価のために行った幾つかのシミュレーションについて説明する。以下に説明するシミュレーションでは、高周波電源部60及び第1の高周波電源62が下部電極18に接続され、高周波電源部60として高周波電源部60Bを有するプラズマ処理装置に関する計算を行った。 Hereinafter, some simulations performed for the evaluation of the plasma processing apparatus of the embodiment will be described. In the simulation described below, a calculation was performed regarding a plasma processing apparatus in which the high-frequency power source 60 and the first high-frequency power source 62 are connected to the lower electrode 18 and the high-frequency power source 60 has the high-frequency power source 60B.
 まず、シミュレーション#1及びシミュレーション#2について説明する。シミュレーション#1及びシミュレーション#2では、被加工物Wに照射されるイオンのエネルギー分布(IED:Ion Energy Distribution)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。シミュレーション#1では、高周波電源部60から400kHzの基本周波数の出力波LF1(半波)が下部電極に供給される設定で計算を行った。シミュレーション#2では400kHzの周波数の高周波LF2(正弦波)が下部電極に供給される設定で計算を行った。また、シミュレーション#1における出力波LF1(半波)のVpp及びシミュレーション#2における高周波LF2(正弦波)のVppを、双方のシミュレーションにおいて被加工物Wに照射されるイオンの最大エネルギーが同等になるように設定した。なお、シミュレーション#1及びシミュレーション#2のその他の設定は以下に示す共通の設定であった。ここで、A/C比は、チャンバに接するアノードの面積をチャンバに接するカソードの面積で除した値である。 First, simulation # 1 and simulation # 2 will be described. In simulation # 1 and simulation # 2, the energy distribution (IED: Ion Energy Distribution) of ions irradiated onto the workpiece W and the energy distribution (IED) of ions irradiated onto the chamber body 12 were obtained. In the simulation # 1, the calculation was performed with the setting in which the output wave LF1 (half wave) having a fundamental frequency of 400 kHz is supplied from the high frequency power supply unit 60 to the lower electrode. In simulation # 2, the calculation was performed with a setting in which a high frequency LF2 (sine wave) having a frequency of 400 kHz was supplied to the lower electrode. In addition, the maximum energy of ions irradiated on the workpiece W in both simulations is equal between Vpp of the output wave LF1 (half wave) in simulation # 1 and Vpp of high frequency LF2 (sine wave) in simulation # 2. Was set as follows. The other settings of simulation # 1 and simulation # 2 were common settings shown below. Here, the A / C ratio is a value obtained by dividing the area of the anode in contact with the chamber by the area of the cathode in contact with the chamber.
<シミュレーション#1~#2の共通の設定>
・チャンバ12cの直径:30mm
・上部電極30と載置台16との間の距離:20mm
・チャンバ12cの圧力:30mTorr(4Pa)
・A/C比:7
・チャンバ12cに供給されるガスの分子量:40
・第1の高周波電源62の高周波の周波数:100MHz
<Common settings for simulations # 1 and # 2>
-Diameter of chamber 12c: 30mm
-Distance between the upper electrode 30 and the mounting table 16: 20 mm
-Pressure in the chamber 12c: 30 mTorr (4 Pa)
-A / C ratio: 7
-Molecular weight of gas supplied to the chamber 12c: 40
The high frequency of the first high frequency power supply 62: 100 MHz
 図6の(a)に、シミュレーション#1において計算した被加工物Wに照射されるイオンのエネルギー分布を、図6の(b)に、シミュレーション#1において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。図7の(a)に、シミュレーション#2において計算した被加工物Wに照射されるイオンのエネルギー分布を、図7の(b)に、シミュレーション#2において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。 FIG. 6A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 1, and FIG. 6B shows the ions irradiated on the chamber body 12 calculated in the simulation # 1. The energy distribution of is shown. FIG. 7A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 2, and FIG. 7B shows the ions irradiated on the chamber main body 12 calculated in the simulation # 2. The energy distribution of is shown.
 図6の(a)及び図7の(a)に示すように、シミュレーション#1において被加工物Wに照射されるイオンの最大エネルギーとシミュレーション#2において被加工物Wに照射されるイオンの最大エネルギーは略同等である。したがって、高周波電源部60からバイアス用の高周波として下部電極18に供給する出力波LF1(半波)のVppを調整することにより、当該出力波LF1(半波)の基本周波数と同じ周波数の正弦波である高周波LF2(正弦波)を下部電極18に供給する場合に被加工物Wに照射されるイオンのエネルギーと同等のエネルギーを有するイオンを被加工物Wに照射することが可能であることが確認された。また、図6の(b)と図7の(b)を比較すると、シミュレーション#1においてチャンバ本体12に照射されたイオンのエネルギーの最大値は、シミュレーション#2においてチャンバ本体12に照射されたイオンのエネルギーの最大値よりも相当に低くなっていた。したがって、高周波電源部60からの出力波LF1(半波)をバイアス用の高周波として下部電極18に供給することにより、当該出力波LF1(半波)の基本周波数と同じ周波数の正弦波である高周波LF2を下部電極18に供給する場合に比して、チャンバ本体12に照射されるイオンのエネルギーを大きく低下させることが可能であることが確認された。 As shown in FIGS. 6A and 7A, the maximum energy of ions irradiated on the workpiece W in simulation # 1 and the maximum energy of ions irradiated on the workpiece W in simulation # 2. The energy is almost the same. Therefore, by adjusting the Vpp of the output wave LF1 (half wave) supplied from the high frequency power supply unit 60 to the lower electrode 18 as a high frequency for bias, a sine wave having the same frequency as the fundamental frequency of the output wave LF1 (half wave). When the high frequency LF2 (sinusoidal wave) is supplied to the lower electrode 18, the workpiece W can be irradiated with ions having energy equivalent to the energy of ions irradiated to the workpiece W. confirmed. Further, comparing FIG. 6B and FIG. 7B, the maximum value of the energy of ions irradiated to the chamber body 12 in the simulation # 1 is the ion irradiated to the chamber body 12 in the simulation # 2. It was considerably lower than the maximum value of energy. Accordingly, by supplying the output wave LF1 (half wave) from the high frequency power supply unit 60 to the lower electrode 18 as a biasing high frequency, a high frequency that is a sine wave having the same frequency as the fundamental frequency of the output wave LF1 (half wave). It was confirmed that the energy of ions irradiated to the chamber body 12 can be greatly reduced as compared with the case where LF2 is supplied to the lower electrode 18.
 次いで、シミュレーション#3及びシミュレーション#4について説明する。シミュレーション#3では、シミュレーション#1の設定から第1の高周波電源62のプラズマ生成用の高周波の周波数を50MHzに変更して、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。また、シミュレーション#4では、シミュレーション#2の設定から第1の高周波電源62のプラズマ生成用の高周波の周波数を50MHzに変更して、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。 Next, simulation # 3 and simulation # 4 will be described. In simulation # 3, the frequency distribution of plasma generated by the first high-frequency power source 62 is changed to 50 MHz from the setting of simulation # 1, and the energy distribution (IED) of ions irradiated on the workpiece W, and The energy distribution (IED) of ions irradiated on the chamber body 12 was determined. Further, in simulation # 4, the energy distribution (IED) of ions irradiated to the workpiece W is changed by changing the high frequency frequency for plasma generation of the first high frequency power supply 62 from the setting of simulation # 2 to 50 MHz. And the energy distribution (IED) of the ion irradiated to the chamber main body 12 was calculated | required.
 図8の(a)に、シミュレーション#3において計算した被加工物Wに照射されるイオンのエネルギー分布を、図8の(b)に、シミュレーション#3において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。図9の(a)に、シミュレーション#4において計算した被加工物Wに照射されるイオンのエネルギー分布を、図9の(b)に、シミュレーション#4において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。 FIG. 8A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 3, and FIG. 8B shows the ions irradiated on the chamber body 12 calculated in the simulation # 3. The energy distribution of is shown. FIG. 9A shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 4, and FIG. 9B shows the ions irradiated on the chamber main body 12 calculated in the simulation # 4. The energy distribution of is shown.
 図8の(a)及び図9の(a)に示すように、シミュレーション#3において被加工物Wに照射されたイオンのエネルギーの最大値は、シミュレーション#4において被加工物Wに照射されたイオンのエネルギーの最大値と同等であった。また、図8の(b)と図9の(b)を比較すると、シミュレーション#3においてチャンバ本体12に照射されたイオンのエネルギーの最大値は、シミュレーション#4においてチャンバ本体12に照射されたイオンのエネルギーの最大値よりも相当に低くなっていた。したがって、シミュレーション#1~#4の結果から、高周波電源部60の効果、即ち、被加工物Wに照射されるイオンのエネルギーの低下を抑制し、且つ、チャンバ本体12に照射されるイオンのエネルギーを低下させるという効果は、第1の高周波電源62のプラズマ生成用の高周波の周波数に略依存しないことが確認された。 As shown in FIGS. 8A and 9A, the maximum value of the energy of ions irradiated to the workpiece W in the simulation # 3 is irradiated to the workpiece W in the simulation # 4. It was equivalent to the maximum value of ion energy. Further, comparing FIG. 8B and FIG. 9B, the maximum value of the energy of ions irradiated to the chamber main body 12 in the simulation # 3 is the ion irradiated to the chamber main body 12 in the simulation # 4. It was considerably lower than the maximum value of energy. Therefore, from the results of simulations # 1 to # 4, the effect of the high-frequency power source 60, that is, the reduction of the energy of ions irradiated to the workpiece W is suppressed, and the energy of ions irradiated to the chamber body 12 is suppressed. It has been confirmed that the effect of lowering is substantially independent of the high-frequency frequency for plasma generation of the first high-frequency power source 62.
 次に、シミュレーション#5及びシミュレーション#6について説明する。シミュレーション#5では、シミュレーション#1と同様の設定で、被加工物Wに入射するイオンの入射角を求めた。また、シミュレーション#6では、シミュレーション#2と同様の設定で、被加工物Wに入射するイオンの入射角を求めた。 Next, simulation # 5 and simulation # 6 will be described. In simulation # 5, the incident angle of ions incident on the workpiece W was determined with the same settings as in simulation # 1. In simulation # 6, the incident angle of ions incident on the workpiece W was determined with the same settings as in simulation # 2.
 図10に、シミュレーション#5及びシミュレーション#6において求めたイオンの入射角を示す。図10において、横軸は、高周波電源部60の出力波LF1(半波)の周期及び高周波LF2(正弦波)の周期を示しており、縦軸はイオンの入射角を示している。なお、被加工物Wに垂直に入射するイオンの入射角は0°である。図10に示すように、高周波電源部60からの出力波LF1(半波)をバイアス用の高周波として下部電極18に供給することにより、当該出力波LF1(半波)の基本周波数と同じ周波数の正弦波である高周波LF2を下部電極18に供給する場合に比して、被加工物Wに対するイオンの入射角をより垂直に近づけることが可能であることが確認された。 FIG. 10 shows the incident angles of ions obtained in simulation # 5 and simulation # 6. In FIG. 10, the horizontal axis indicates the period of the output wave LF1 (half wave) and the frequency of the high frequency LF2 (sine wave) of the high frequency power supply unit 60, and the vertical axis indicates the incident angle of ions. In addition, the incident angle of ions incident perpendicularly to the workpiece W is 0 °. As shown in FIG. 10, by supplying the output wave LF1 (half wave) from the high frequency power supply unit 60 to the lower electrode 18 as a high frequency for bias, the same frequency as the fundamental frequency of the output wave LF1 (half wave) is obtained. It was confirmed that the incident angle of ions with respect to the workpiece W can be made closer to the vertical compared with the case where the high frequency LF2 which is a sine wave is supplied to the lower electrode 18.
 次に、シミュレーション#7及びシミュレーション#8について説明する。シミュレーション#7では、シミュレーション#1の設定からチャンバ12cに供給されるガスの分子量を160に変更して、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。シミュレーション#8では、シミュレーション#2の設定からチャンバ12cに供給されるガスの分子量を160に変更し、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。 Next, simulation # 7 and simulation # 8 will be described. In the simulation # 7, the molecular weight of the gas supplied to the chamber 12c is changed to 160 from the setting of the simulation # 1, and the energy distribution (IED) of ions irradiated to the workpiece W and the chamber main body 12 are irradiated. The ion energy distribution (IED) was determined. In the simulation # 8, the molecular weight of the gas supplied to the chamber 12c is changed to 160 from the setting of the simulation # 2, and the energy distribution (IED) of ions irradiated to the workpiece W and the chamber body 12 are irradiated. The ion energy distribution (IED) was determined.
 図11の(a)に、シミュレーション#7において計算した被加工物Wに照射されるイオンのエネルギー分布を、図11の(b)に、シミュレーション#7において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。図12の(a)に、シミュレーション#8において計算した被加工物Wに照射されるイオンのエネルギー分布を、図12の(b)に、シミュレーション#8において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。 FIG. 11A shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 7, and FIG. 11B shows the ions irradiated on the chamber body 12 calculated in the simulation # 7. The energy distribution of is shown. 12 (a) shows the energy distribution of the ions irradiated to the workpiece W calculated in the simulation # 8, and FIG. 12 (b) shows the ions irradiated to the chamber body 12 calculated in the simulation # 8. The energy distribution of is shown.
 図11の(a)及び図12の(a)に示すように、シミュレーション#7において被加工物Wに照射されたイオンのエネルギーの最大値は、シミュレーション#8において被加工物Wに照射されたイオンのエネルギーの最大値と略同等であった。また、図11の(b)と図12の(b)を比較すると、シミュレーション#7においてチャンバ本体12に照射されたイオンのエネルギーの最大値は、シミュレーション#8においてチャンバ本体12に照射されたイオンのエネルギーの最大値よりも相当に低くなっていた。したがって、シミュレーション#1~#2及びシミュレーション#7~#8の結果から、高周波電源部60の効果、即ち、被加工物Wに照射されるイオンのエネルギーの低下を抑制し、且つ、チャンバ本体12に照射されるイオンのエネルギーを低下させるという効果は、ガスの分子量に略依存しないことが確認された。 As shown in FIG. 11A and FIG. 12A, the maximum value of the energy of ions irradiated to the workpiece W in the simulation # 7 is irradiated to the workpiece W in the simulation # 8. It was almost the same as the maximum value of ion energy. 11B and FIG. 12B are compared, the maximum value of the energy of ions irradiated to the chamber body 12 in simulation # 7 is the ion irradiated to the chamber body 12 in simulation # 8. It was considerably lower than the maximum value of energy. Therefore, from the results of simulations # 1 to # 2 and simulations # 7 to # 8, the effect of the high-frequency power source 60, that is, the reduction of the energy of ions irradiated to the workpiece W is suppressed, and the chamber body 12 It has been confirmed that the effect of lowering the energy of ions irradiated on the substrate is substantially independent of the molecular weight of the gas.
 次に、シミュレーション#9~#14について説明する。シミュレーション#9~#11ではそれぞれ、シミュレーション#1の設定からA/C比を、3.5、7、10に変更して、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。シミュレーション#12~#14では、シミュレーション#2の設定からA/C比を、3.5、7、10に変更して、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。そして、シミュレーション#9~#14のそれぞれにおいて、被加工物Wに照射されるイオンのエネルギーの最大値E1を、チャンバ本体12に照射されるイオンのエネルギーの最大値E2で除した値、即ち、E1/E2を求めた。なお、E1/E2が大きいほど、被加工物Wに照射されるイオンのエネルギーが高く、且つ、チャンバ本体12に照射されるイオンのエネルギーは低い。また、一般的には、A/C比が小さいほど、プラズマの電位が高くなるので、E1/E2は小さくなる傾向がある。 Next, simulations # 9 to # 14 will be described. In simulations # 9 to # 11, the energy distribution (IED) of ions irradiated to the workpiece W is changed by changing the A / C ratio to 3.5, 7, 10 from the setting of simulation # 1, and Then, the energy distribution (IED) of ions irradiated onto the chamber body 12 was determined. In simulations # 12 to # 14, the energy distribution (IED) of ions irradiated to the workpiece W is changed by changing the A / C ratio to 3.5, 7, and 10 from the setting of simulation # 2, and The energy distribution (IED) of ions irradiated on the chamber body 12 was determined. In each of simulations # 9 to # 14, a value obtained by dividing the maximum value E1 of the ion energy irradiated to the workpiece W by the maximum value E2 of the ion energy irradiated to the chamber body 12, that is, E1 / E2 was determined. As E1 / E2 is larger, the energy of ions irradiated to the workpiece W is higher and the energy of ions irradiated to the chamber body 12 is lower. In general, the smaller the A / C ratio, the higher the plasma potential, so E1 / E2 tends to be smaller.
 シミュレーション#9~#14の結果を、図13の表に示す。図13に示すように、シミュレーション#9~#11において求めたE1/E2は、シミュレーション#12~#14において求めたE1/E2よりも相当に大きかった。即ち、下部電極18に供給するバイアス用の高周波として高周波電源部60からの出力波LF1(半波)を用いたシミュレーション#9~#11では、当該出力波LF1(半波)の基本周波数と同じ周波数の正弦波である高周波LF2を下部電極18に供給する場合(シミュレーション#12~#14)に比して、E1/E2は相当に大きかった。したがって、高周波電源部60の効果、即ち、被加工物Wに照射されるイオンのエネルギーの低下を抑制し、且つ、チャンバ本体12に照射されるイオンのエネルギーを低下させるという効果は、A/C比が相当に小さくても、発揮されることが確認された。このことから、A/C比を大きくすることが困難なプラズマ処理装置、例えば、プラズマ生成用の高周波が上部電極30に供給されるプラズマ処理装置においても、高周波電源部60の効果が発揮されることが確認された。 Results of simulations # 9 to # 14 are shown in the table of FIG. As shown in FIG. 13, E1 / E2 obtained in simulations # 9 to # 11 is considerably larger than E1 / E2 obtained in simulations # 12 to # 14. That is, in simulations # 9 to # 11 using the output wave LF1 (half wave) from the high frequency power supply unit 60 as the bias high frequency supplied to the lower electrode 18, the same as the fundamental frequency of the output wave LF1 (half wave). E1 / E2 was considerably larger than when high frequency LF2 which is a sine wave of frequency was supplied to lower electrode 18 (simulations # 12 to # 14). Therefore, the effect of the high-frequency power source 60, that is, the effect of suppressing the reduction of the energy of ions irradiated to the workpiece W and the energy of the ions irradiated to the chamber body 12 is A / C. It was confirmed that even if the ratio was considerably small, it was exhibited. For this reason, the effect of the high frequency power supply unit 60 is also exhibited in a plasma processing apparatus in which it is difficult to increase the A / C ratio, for example, in a plasma processing apparatus in which a high frequency for plasma generation is supplied to the upper electrode 30. It was confirmed.
 次に、シミュレーション#15~シミュレーション#30について説明する。シミュレーション#15~シミュレーション#18では、シミュレーション#1の設定から高周波電源部60の出力波LF1(半波)の基本周波数を0.4MHz、0.8MHz、1.6MHz、3.2MHzにそれぞれ変更して、チャンバ本体12に照射されるイオンのエネルギーの最大値Ehを求めた。シミュレーション#19~#22では、シミュレーション#1の設定からガスの分子量を160に変更し、高周波電源部60の出力波LF1(半波)の基本周波数を0.4MHz、0.8MHz、1.6MHz、3.2MHzにそれぞれ変更して、チャンバ本体12に照射されるイオンのエネルギーの最大値Ehを求めた。シミュレーション#23~シミュレーション#26では、シミュレーション#2の設定から高周波LF2(正弦波)の周波数を0.4MHz、0.8MHz、1.6MHz、3.2MHzにそれぞれ変更して、チャンバ本体12に照射されるイオンのエネルギーの最大値Efを求めた。シミュレーション#27~シミュレーション#30では、シミュレーション#2の設定からガスの分子量を160に変更し、高周波LF2(正弦波)の周波数を0.4MHz、0.8MHz、1.6MHz、3.2MHzにそれぞれ変更して、チャンバ本体12に照射されるイオンのエネルギーの最大値Efを求めた。そして、シミュレーション#15のEhをシミュレーション#23のEfで除した値、シミュレーション#16のEhをシミュレーション#24のEfで除した値、シミュレーション#17のEhをシミュレーション#25のEfで除した値、シミュレーション#18のEhをシミュレーション#26のEfで除した値、シミュレーション#19のEhをシミュレーション#27のEfで除した値、シミュレーション#20のEhをシミュレーション#28のEfで除した値、シミュレーション#21のEhをシミュレーション#29のEfで除した値、及び、シミュレーション#22のEhをシミュレーション#30のEfで除した値を求めた。 Next, simulation # 15 to simulation # 30 will be described. In simulation # 15 to simulation # 18, the fundamental frequency of the output wave LF1 (half wave) of the high frequency power supply unit 60 is changed to 0.4 MHz, 0.8 MHz, 1.6 MHz, and 3.2 MHz from the setting of simulation # 1, respectively. Thus, the maximum value Eh of the energy of ions irradiated on the chamber body 12 was obtained. In the simulations # 19 to # 22, the molecular weight of the gas is changed to 160 from the setting of the simulation # 1, and the fundamental frequency of the output wave LF1 (half wave) of the high frequency power supply unit 60 is 0.4 MHz, 0.8 MHz, and 1.6 MHz. The maximum value Eh of the energy of ions irradiated on the chamber body 12 was determined by changing the frequency to 3.2 MHz. In simulation # 23 to simulation # 26, the frequency of the high frequency LF2 (sine wave) is changed to 0.4 MHz, 0.8 MHz, 1.6 MHz, and 3.2 MHz from the setting of simulation # 2, and the chamber body 12 is irradiated. The maximum value Ef of the energy of ions to be obtained was determined. In simulation # 27 to simulation # 30, the molecular weight of the gas is changed to 160 from the setting of simulation # 2, and the frequency of the high frequency LF2 (sine wave) is set to 0.4 MHz, 0.8 MHz, 1.6 MHz, and 3.2 MHz, respectively. It changed and calculated | required the maximum value Ef of the energy of the ion irradiated to the chamber main body 12. FIG. A value obtained by dividing Eh of simulation # 15 by Ef of simulation # 23, a value obtained by dividing Eh of simulation # 16 by Ef of simulation # 24, a value obtained by dividing Eh of simulation # 17 by Ef of simulation # 25, A value obtained by dividing Eh of simulation # 18 by Ef of simulation # 26, a value obtained by dividing Eh of simulation # 19 by Ef of simulation # 27, a value obtained by dividing Eh of simulation # 20 by Ef of simulation # 28, simulation # A value obtained by dividing Eh of 21 by Ef of simulation # 29 and a value obtained by dividing Eh of simulation # 22 by Ef of simulation # 30 were obtained.
 図14に結果を示す。図14のグラフにおいて、横軸は出力波LF1(半波)の基本周波数及び高周波LF2(正弦波)の周波数を表しており、縦軸は、Eh/Efを表している。なお、Eh/Efが1より小さければ、高周波電源部60の効果が発揮されている。即ち、Eh/Efが1より小さければ、高周波電源部60からの出力波LF1(半波)をバイアス用の高周波として下部電極18に供給することにより、当該出力波の基本周波数と同じ周波数の正弦波である高周波LF2を下部電極18に供給する場合に比して、チャンバ本体12に照射されるイオンのエネルギーが低下している。図14を参照すると、バイアス用の出力波の基本周波数が1.4MHz以下のときに、高周波電源部60の効果が有利に発揮されることが確認された。 Fig. 14 shows the results. In the graph of FIG. 14, the horizontal axis represents the fundamental frequency of the output wave LF1 (half wave) and the frequency of the high frequency LF2 (sine wave), and the vertical axis represents Eh / Ef. If Eh / Ef is smaller than 1, the effect of the high frequency power supply unit 60 is exhibited. That is, if Eh / Ef is smaller than 1, the output wave LF1 (half wave) from the high frequency power supply unit 60 is supplied to the lower electrode 18 as a high frequency for biasing, so that a sine having the same frequency as the fundamental frequency of the output wave is obtained. Compared with the case where the high frequency LF2 which is a wave is supplied to the lower electrode 18, the energy of ions irradiated to the chamber body 12 is lowered. Referring to FIG. 14, it was confirmed that the effect of the high frequency power supply unit 60 is advantageously exhibited when the fundamental frequency of the bias output wave is 1.4 MHz or less.
 以下、実施形態のプラズマ処理装置の評価のために行ったシミュレーション#31及びシミュレーション#32について説明する。シミュレーション#31及びシミュレーション#32では、高周波電源部60及び第1の高周波電源62が下部電極18に接続され、高周波電源部60として高周波電源部60Aを有するプラズマ処理装置に関する計算を行った。シミュレーション#31及びシミュレーション#32においては、高周波電源部60からの出力波として、基本周波数(400kHz)の高周波RF1と、当該基本周波数の2倍の周波数(800kHZ)を有し且つ高周波RF1の波高値のA倍の波高値を有する高周波RF2との合成により生成される出力波(合成波)を用いた。高周波RF1と高周波RF2の位相は270°であった。シミュレーション#31では、高周波RF2の波高値は高周波RF1の波高値の0.23倍であり、シミュレーション#32では、高周波RF2の波高値は高周波RF1の波高値の0.4倍であった。シミュレーション#31及びシミュレーション#32では、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。なお、シミュレーション#31及びシミュレーション#32のその他の設定は以下に示す共通の設定であった。 Hereinafter, simulation # 31 and simulation # 32 performed for evaluation of the plasma processing apparatus of the embodiment will be described. In the simulation # 31 and the simulation # 32, the high frequency power supply unit 60 and the first high frequency power supply 62 are connected to the lower electrode 18, and the calculation related to the plasma processing apparatus having the high frequency power supply unit 60A as the high frequency power supply unit 60 was performed. In the simulation # 31 and the simulation # 32, the output wave from the high frequency power supply unit 60 has a high frequency RF1 having a fundamental frequency (400 kHz) and a peak value of the high frequency RF1 having a frequency (800 kHz) twice the fundamental frequency. An output wave (synthetic wave) generated by synthesizing with the high-frequency RF 2 having a peak value A times that of A is used. The phase of the high frequency RF1 and the high frequency RF2 was 270 °. In simulation # 31, the peak value of high frequency RF2 was 0.23 times the peak value of high frequency RF1, and in simulation # 32, the peak value of high frequency RF2 was 0.4 times the peak value of high frequency RF1. In simulation # 31 and simulation # 32, the energy distribution (IED) of ions irradiated to the workpiece W and the energy distribution (IED) of ions irradiated to the chamber body 12 were obtained. The other settings for simulation # 31 and simulation # 32 were the common settings shown below.
<シミュレーション#31~#32の共通の設定>
・チャンバ12cの直径:30mm
・上部電極30と載置台16との間の距離:20mm
・チャンバ12cの圧力:30mTorr(4Pa)
・A/C比:7
・チャンバ12cに供給されるガスの分子量:40
・第1の高周波電源62の高周波の周波数:100MHz
<Common settings for simulations # 31 to # 32>
-Diameter of chamber 12c: 30mm
-Distance between the upper electrode 30 and the mounting table 16: 20 mm
-Pressure in the chamber 12c: 30 mTorr (4 Pa)
-A / C ratio: 7
-Molecular weight of gas supplied to the chamber 12c: 40
The high frequency of the first high frequency power supply 62: 100 MHz
 図15の(a)に、シミュレーション#31において計算した被加工物Wに照射されるイオンのエネルギー分布を、図15の(b)に、シミュレーション#31において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。図16の(a)に、シミュレーション#32において計算した被加工物Wに照射されるイオンのエネルギー分布を、図16の(b)に、シミュレーション#32において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。 FIG. 15A shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 31, and FIG. 15B shows the ions irradiated on the chamber main body 12 calculated in the simulation # 31. The energy distribution of is shown. FIG. 16A shows the energy distribution of ions irradiated on the workpiece W calculated in the simulation # 32, and FIG. 16B shows the ions irradiated on the chamber body 12 calculated in the simulation # 32. The energy distribution of is shown.
 図7の(a)、図15の(a)、及び、図16の(a)に示すように、シミュレーション#31において被加工物Wに照射されたイオンのエネルギーの最大値及びシミュレーション#32において被加工物Wに照射されたイオンのエネルギーの最大値は、シミュレーション#2において被加工物Wに照射されたイオンのエネルギーの最大値と同等であった。また、図7の(b)、図15の(b)、及び、図16の(b)を比較すると、シミュレーション#31においてチャンバ本体12に照射されたイオンのエネルギーの最大値及びシミュレーション#32においてチャンバ本体12に照射されたイオンのエネルギーの最大値は、シミュレーション#2においてチャンバ本体12に照射されたイオンのエネルギーの最大値よりも相当に低くなっていた。したがって、高周波電源部60Aが採用される場合にも、高周波電源部60の効果、即ち、被加工物Wに照射されるイオンのエネルギーの低下を抑制し、且つ、チャンバ本体12に照射されるイオンのエネルギーを低下させるという効果が発揮されることが確認された。 As shown in FIG. 7A, FIG. 15A, and FIG. 16A, the maximum value of the energy of ions irradiated on the workpiece W in simulation # 31 and in simulation # 32 The maximum value of the energy of ions irradiated onto the workpiece W was equal to the maximum value of the energy of ions irradiated onto the workpiece W in simulation # 2. Further, comparing (b) of FIG. 7, (b) of FIG. 15, and (b) of FIG. 16, the maximum value of the energy of ions irradiated to the chamber body 12 in simulation # 31 and the simulation # 32 The maximum value of the energy of ions irradiated to the chamber body 12 was considerably lower than the maximum value of the energy of ions irradiated to the chamber body 12 in simulation # 2. Therefore, even when the high frequency power supply unit 60A is employed, the effect of the high frequency power supply unit 60, that is, the reduction of the energy of ions irradiated to the workpiece W is suppressed, and the ions irradiated to the chamber body 12 are also suppressed. It has been confirmed that the effect of lowering the energy is exhibited.
 以下、高周波電源部60として採用され得る幾つかの別の高周波電源部について説明する。以下に説明する幾つかの別の高周波電源部は、第1の出力波又は第2の出力波を選択的に出力するように構成されている。第1の出力波は、基本周波数の高周波の正の電圧成分を低減させた出力波である。第2の出力波は、基本周波数の高周波の負の電圧成分を低減させた出力波である。 Hereinafter, some other high-frequency power supply units that can be employed as the high-frequency power supply unit 60 will be described. Some other high-frequency power supply units described below are configured to selectively output the first output wave or the second output wave. The first output wave is an output wave in which a high-frequency positive voltage component having a fundamental frequency is reduced. The second output wave is an output wave in which a high-frequency negative voltage component of the fundamental frequency is reduced.
 図17は、更に別の実施形態に係る高周波電源部を示す図である。図17に示す高周波電源部60Cは、プラズマ処理装置10の高周波電源部60として採用され得る。高周波電源部60Cは、電源制御部78に代えて電源制御部78Cを有する点において高周波電源部60Aと異なっている。 FIG. 17 is a diagram showing a high-frequency power supply unit according to still another embodiment. A high frequency power supply unit 60 </ b> C illustrated in FIG. 17 can be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10. The high frequency power supply unit 60C is different from the high frequency power supply unit 60A in that a power supply control unit 78C is provided instead of the power supply control unit 78.
 高周波電源部60Cは、第1の出力波又は第2の出力波を選択的に出力するように構成されている。第1の出力波は、高周波電源部60Aによって生成される上述の出力波と同一の出力波、即ち、複数の高周波電源70から出力される複数の高周波の合成によって生成される出力波(合成波)であり、基本周波数の高周波の正の電圧成分を低減させた出力波である。第2の出力波は、複数の高周波電源70から出力される複数の高周波の合成によって生成される出力波(合成波)であり、基本周波数の高周波の負の電圧成分を低減させた出力波である。 The high frequency power supply unit 60C is configured to selectively output the first output wave or the second output wave. The first output wave is the same output wave as the above-described output wave generated by the high frequency power supply unit 60A, that is, an output wave (synthetic wave) generated by combining a plurality of high frequencies output from the plurality of high frequency power supplies 70. This is an output wave in which the positive voltage component of the high frequency of the fundamental frequency is reduced. The second output wave is an output wave (combined wave) generated by combining a plurality of high frequencies output from a plurality of high frequency power supplies 70, and is an output wave in which the negative voltage component of the high frequency of the fundamental frequency is reduced. is there.
 電源制御部78Cは、制御部Cntによって制御される。電源制御部78Cは、制御部Cntから第1の出力波を発生するよう制御されている場合には、第1の出力波の生成のために、当該第1の出力波用に予め設定された位相で高周波を出力させるよう、複数の高周波電源70を制御する。また、電源制御部78Cは、複数の位相検出器76によって検出された位相に基づき、複数の高周波電源70から出力される高周波の位相を第1の出力波用に予め設定された位相に設定するよう、複数の高周波電源70を制御する。 The power control unit 78C is controlled by the control unit Cnt. When the power controller 78C is controlled to generate the first output wave from the controller Cnt, the power controller 78C is preset for the first output wave to generate the first output wave. A plurality of high frequency power supplies 70 are controlled so as to output a high frequency in phase. Further, the power supply control unit 78C sets the phase of the high frequency output from the plurality of high frequency power supplies 70 to a phase preset for the first output wave based on the phases detected by the plurality of phase detectors 76. The plurality of high frequency power supplies 70 are controlled.
 なお、基本周波数の高周波RF1と当該基本周波数の2倍の周波数を有する高周波RF2の合成により第1の出力波(合成波)を生成する場合には、高周波RF1と高周波RF2の位相差は270°に設定され、高周波RF2の波高値は高周波RF1の波高値のA倍の波高値に設定される。「A」は、0.23以上0.4以下に設定される。 When the first output wave (synthetic wave) is generated by synthesizing the high frequency RF1 having the fundamental frequency and the high frequency RF2 having a frequency twice the basic frequency, the phase difference between the high frequency RF1 and the high frequency RF2 is 270 °. The peak value of the high frequency RF2 is set to a peak value that is A times the peak value of the high frequency RF1. “A” is set to 0.23 or more and 0.4 or less.
 また、電源制御部78Cは、制御部Cntから第2の出力波を発生するよう制御されている場合には、第2の出力波の生成のために、当該第2の出力波用に予め設定された位相で高周波を出力させるよう、複数の高周波電源70を制御する。また、電源制御部78Cは、複数の位相検出器76によって検出された位相に基づき、複数の高周波電源70から出力される高周波の位相を第2の出力波用に予め設定された位相に設定するよう、複数の高周波電源70を制御する。 Further, when the power supply control unit 78C is controlled to generate the second output wave from the control unit Cnt, the power supply control unit 78C is preset for the second output wave in order to generate the second output wave. The plurality of high-frequency power sources 70 are controlled so that a high frequency is output with the phase thus set. Further, the power supply controller 78C sets the phase of the high frequency output from the plurality of high frequency power supplies 70 to a phase preset for the second output wave based on the phases detected by the plurality of phase detectors 76. The plurality of high frequency power supplies 70 are controlled.
 図18は、図17に示す高周波電源部が生成可能な出力波を例示する図である。図18には、基本周波数の高周波RF1と当該基本周波数の2倍の周波数を有する高周波RF2の合成により生成される第2の出力波(合成波)の電圧が示されている。高周波RF1及び高周波RF2は共に正弦波であり、高周波RF2の波高値(ピークツーピーク電圧)は高周波RF1の波高値VppのA倍であり、高周波RF1と高周波RF2の位相差は90°である。図18において、横軸は時間を示しており、縦軸は第2の出力波の電圧を示している。図18において、0Vより上方の電圧は正の電圧であり、0Vより下方の電圧は負の電圧である。なお、図18において、基本波とは、高周波RF1、即ち基本周波数の高周波を示している。図18に示すように、「A」が0.23以上0.4以下であれば、高周波電源部60Cは、二つの高周波電源、即ち、基本周波数の高周波RF1を発生する高周波電源と基本周波数の2倍の周波数を有する高周波RF2を発生する高周波電源を用いることにより、負の電圧成分を除去した半波整流波形を比較的良好に模した第2の出力波(合成波)を生成することが可能である。 FIG. 18 is a diagram illustrating output waves that can be generated by the high-frequency power supply unit shown in FIG. FIG. 18 shows the voltage of the second output wave (synthetic wave) generated by synthesizing the high frequency RF1 having the fundamental frequency and the high frequency RF2 having a frequency twice the fundamental frequency. The high frequency RF1 and the high frequency RF2 are both sine waves, the peak value (peak-to-peak voltage) of the high frequency RF2 is A times the peak value Vpp of the high frequency RF1, and the phase difference between the high frequency RF1 and the high frequency RF2 is 90 °. In FIG. 18, the horizontal axis indicates time, and the vertical axis indicates the voltage of the second output wave. In FIG. 18, the voltage above 0V is a positive voltage, and the voltage below 0V is a negative voltage. In FIG. 18, the fundamental wave indicates the high frequency RF1, that is, the high frequency of the fundamental frequency. As shown in FIG. 18, if “A” is 0.23 or more and 0.4 or less, the high frequency power supply unit 60C has two high frequency power supplies, that is, a high frequency power supply that generates a high frequency RF1 having a basic frequency and a basic frequency. By using a high-frequency power source that generates a high-frequency RF2 having a double frequency, it is possible to generate a second output wave (synthetic wave) that imitates the half-wave rectified waveform from which the negative voltage component is removed relatively well. Is possible.
 図19は、更に別の実施形態に係る高周波電源部を示す図である。図19に示す高周波電源部60Dは、プラズマ処理装置10の高周波電源部60として採用され得る。高周波電源部60Dは、半波整流器85、スイッチ88、及び、スイッチ89を更に備えている点において高周波電源部60Bと異なっている。 FIG. 19 is a diagram showing a high-frequency power supply unit according to still another embodiment. A high frequency power supply unit 60 </ b> D illustrated in FIG. 19 may be employed as the high frequency power supply unit 60 of the plasma processing apparatus 10. The high frequency power supply unit 60D is different from the high frequency power supply unit 60B in that it further includes a half-wave rectifier 85, a switch 88, and a switch 89.
 高周波電源部60Dは、第1の出力波又は第2の出力波を選択的に出力するように構成されている。第1の出力波は、高周波電源部60Bによって生成される上述の出力波と同一の出力波、即ち、高周波電源80から出力される高周波の正の電圧成分を略除去した出力波(半波)である。第2の出力波は、高周波電源80から出力される高周波の負の電圧成分を略除去した出力波(半波)である。 The high frequency power supply unit 60D is configured to selectively output the first output wave or the second output wave. The first output wave is the same output wave as the above-described output wave generated by the high frequency power supply unit 60B, that is, an output wave (half wave) from which the high frequency positive voltage component output from the high frequency power supply 80 is substantially removed. It is. The second output wave is an output wave (half wave) from which a high-frequency negative voltage component output from the high-frequency power supply 80 is substantially removed.
 高周波電源部60Dでは、整合器82と下部電極18との間のノードN1と半波整流器84との間に、スイッチ88が設けられている。スイッチ88は、例えば電界効果トランジスタ(FET)から構成される。また、高周波電源部60Dでは、整合器82と下部電極18との間の別のノードN2とグランドとの間に、半波整流器85が接続されている。半波整流器85は、例えばダイオードから構成されている。ダイオードのアノードはグランドに接続されており、ダイオードのカソードはスイッチ89を介してノードN2に接続されている。スイッチ89は、例えば電界効果トランジスタ(FET)から構成される。なお、半波整流器85のダイオードのアノードとグランドとの間には、ダミー負荷87が設けられていてもよい。ダミー負荷87は、高周波を熱に変換する素子であり得る。 In the high frequency power supply unit 60D, a switch 88 is provided between the node N1 between the matching unit 82 and the lower electrode 18 and the half-wave rectifier 84. The switch 88 is composed of, for example, a field effect transistor (FET). In the high frequency power supply unit 60D, a half-wave rectifier 85 is connected between another node N2 between the matching unit 82 and the lower electrode 18 and the ground. The half-wave rectifier 85 is composed of a diode, for example. The anode of the diode is connected to the ground, and the cathode of the diode is connected to the node N2 via the switch 89. The switch 89 is composed of, for example, a field effect transistor (FET). A dummy load 87 may be provided between the anode of the diode of the half-wave rectifier 85 and the ground. The dummy load 87 may be an element that converts high frequency into heat.
 スイッチ88及びスイッチ89は制御部Cntによって制御される。具体的には、高周波電源部60Dに第1の出力波を出力させる場合には、ノードN1と半波整流器84とを導通させ、ノードN2と半波整流器85との接続を切断するよう、スイッチ88及びスイッチ89が制御される。また、高周波電源部60Dに第2の出力波を出力させる場合には、ノードN1と半波整流器84との接続を切断し、ノードN2と半波整流器85とを導通させるよう、スイッチ88及びスイッチ89が制御される。 The switch 88 and the switch 89 are controlled by the control unit Cnt. Specifically, when the first output wave is to be output to the high frequency power supply unit 60D, the switch is made so that the node N1 and the half-wave rectifier 84 are made conductive and the connection between the node N2 and the half-wave rectifier 85 is disconnected. 88 and switch 89 are controlled. When the second output wave is output to the high-frequency power supply unit 60D, the switch 88 and the switch are connected so that the connection between the node N1 and the half-wave rectifier 84 is disconnected and the node N2 and the half-wave rectifier 85 are made conductive. 89 is controlled.
 図20は、図19に示す高周波電源部によって生成される第2の出力波を例示する図である。図20において、横軸は時間を示しており、縦軸は第2の出力波の電圧を示している。図20において、0Vより上方の電圧は正の電圧であり、0Vより下方の電圧は負の電圧である。なお、図20において、基本波とは、高周波電源80が出力する高周波である。第2の出力波を発生するよう制御された高周波電源部60Dでは、高周波電源80によって生成される高周波の電圧が負の電圧であるときに、半波整流器85の整流作用により、高周波はグランドに導かれる。一方、高周波電源80によって生成される高周波の電圧が正の電圧であるときには、高周波は下部電極18に供給される。したがって、高周波電源部60Dによれば、図20に示す半波整流波形を有する第2の出力波、即ち、負の電圧成分が略完全に除去された出力波(半波)を生成することが可能である。 FIG. 20 is a diagram illustrating a second output wave generated by the high frequency power supply unit shown in FIG. In FIG. 20, the horizontal axis indicates time, and the vertical axis indicates the voltage of the second output wave. In FIG. 20, the voltage above 0V is a positive voltage, and the voltage below 0V is a negative voltage. In FIG. 20, the fundamental wave is a high frequency output from the high frequency power supply 80. In the high frequency power supply unit 60D controlled to generate the second output wave, when the high frequency voltage generated by the high frequency power supply 80 is a negative voltage, the high frequency is grounded by the rectifying action of the half-wave rectifier 85. Led. On the other hand, when the high frequency voltage generated by the high frequency power supply 80 is a positive voltage, the high frequency is supplied to the lower electrode 18. Therefore, according to the high frequency power supply unit 60D, the second output wave having the half-wave rectified waveform shown in FIG. 20, that is, the output wave (half-wave) from which the negative voltage component is substantially completely removed can be generated. Is possible.
 以下、実施形態のプラズマ処理装置の評価のために行ったシミュレーション#33及びシミュレーション#34について説明する。シミュレーション#33及びシミュレーション#34では、高周波電源部60及び第1の高周波電源62が下部電極18に接続され、高周波電源部60として高周波電源部60Dを有するプラズマ処理装置に関する計算を行った。シミュレーション#33及びシミュレーション#34では、高周波電源部60から400kHzの基本周波数の第2の出力波(半波)が下部電極に供給される設定で計算を行った。なお、シミュレーション#33では、シミュレーション#2において被加工物Wに照射されたイオンの最大エネルギーと略同一のエネルギーのイオンが被加工物Wに照射されるよう、第2の出力波のVpp(波高値)を設定した。シミュレーション#34では、第2の出力波のVppを、シミュレーション#33の第2の出力波のVppよりも低いVppに設定した。シミュレーション#33及びシミュレーション#34では、被加工物Wに照射されるイオンのエネルギー分布(IED)、及び、チャンバ本体12に照射されるイオンのエネルギー分布(IED)を求めた。なお、シミュレーション#33及びシミュレーション#34のその他の設定は以下に示す共通の設定であった。 Hereinafter, simulation # 33 and simulation # 34 performed for evaluation of the plasma processing apparatus of the embodiment will be described. In simulation # 33 and simulation # 34, the high frequency power supply unit 60 and the first high frequency power supply 62 are connected to the lower electrode 18, and calculations related to the plasma processing apparatus having the high frequency power supply unit 60D as the high frequency power supply unit 60 were performed. In simulation # 33 and simulation # 34, the calculation was performed with the setting in which the second output wave (half wave) having a fundamental frequency of 400 kHz is supplied from the high frequency power supply unit 60 to the lower electrode. In simulation # 33, Vpp (wave of the second output wave is applied so that the workpiece W is irradiated with ions having substantially the same energy as the maximum energy of the ions irradiated on the workpiece W in simulation # 2. High value) was set. In simulation # 34, Vpp of the second output wave is set to Vpp lower than Vpp of the second output wave of simulation # 33. In simulation # 33 and simulation # 34, the energy distribution (IED) of ions irradiated on the workpiece W and the energy distribution (IED) of ions irradiated on the chamber body 12 were obtained. The other settings of simulation # 33 and simulation # 34 were common settings shown below.
<シミュレーション#33~#34の共通の設定>
・チャンバ12cの直径:30mm
・上部電極30と載置台16との間の距離:20mm
・チャンバ12cの圧力:30mTorr(4Pa)
・A/C比:7
・チャンバ12cに供給されるガスの分子量:40
・第1の高周波電源62の高周波の周波数:100MHz
<Common settings for simulations # 33 to # 34>
-Diameter of chamber 12c: 30mm
-Distance between the upper electrode 30 and the mounting table 16: 20 mm
-Pressure in the chamber 12c: 30 mTorr (4 Pa)
-A / C ratio: 7
-Molecular weight of gas supplied to the chamber 12c: 40
The high frequency of the first high frequency power supply 62: 100 MHz
 図21の(a)に、シミュレーション#33において計算した被加工物Wに照射されるイオンのエネルギー分布を、図21の(b)に、シミュレーション#33において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。図22の(a)に、シミュレーション#34において計算した被加工物Wに照射されるイオンのエネルギー分布を、図22の(b)に、シミュレーション#34において計算したチャンバ本体12に照射されるイオンのエネルギー分布を示す。 21 (a) shows the energy distribution of ions irradiated to the workpiece W calculated in simulation # 33, and FIG. 21 (b) shows the ions irradiated to the chamber body 12 calculated in simulation # 33. The energy distribution of is shown. 22 (a) shows the energy distribution of the ions irradiated on the workpiece W calculated in the simulation # 34, and FIG. 22 (b) shows the ions irradiated on the chamber body 12 calculated in the simulation # 34. The energy distribution of is shown.
 シミュレーション#33においては上述したように第2の出力波のVpp(波高値)を設定したので、図7の(a)及び図21の(a)に示すように、シミュレーション#33において被加工物Wに照射されるイオンの最大エネルギーは、シミュレーション#2において被加工物Wに照射されるイオンの最大エネルギーと略同等であった。一方、図7の(b)と図21の(b)とを比較すると、シミュレーション#33においてチャンバ本体12に照射されるイオンのエネルギーは、シミュレーション#2においてチャンバ本体12に照射されるイオンのエネルギーよりも相当に大きくなっていた。したがって、高周波電源部60からの第2の出力波をバイアス用の高周波として下部電極18に供給することにより、当該第2の出力波の基本周波数と同じ周波数の正弦波である高周波を下部電極18に供給する場合に比して、チャンバ本体12に照射されるイオンのエネルギーを大きくすることが可能であることが確認された。 In the simulation # 33, the Vpp (peak value) of the second output wave is set as described above. Therefore, as shown in FIGS. 7A and 21A, the workpiece is processed in the simulation # 33. The maximum energy of ions irradiated to W was substantially equal to the maximum energy of ions irradiated to the workpiece W in simulation # 2. On the other hand, when FIG. 7B and FIG. 21B are compared, the energy of ions irradiated to the chamber body 12 in the simulation # 33 is the energy of ions irradiated to the chamber body 12 in the simulation # 2. It was considerably larger than. Therefore, by supplying the second output wave from the high frequency power supply unit 60 to the lower electrode 18 as a biasing high frequency, a high frequency which is a sine wave having the same frequency as the fundamental frequency of the second output wave is applied to the lower electrode 18. It was confirmed that the energy of ions irradiated on the chamber body 12 can be increased as compared with the case of supplying to the chamber.
 また、図7の(a)及び図22の(a)に示すように、シミュレーション#34において被加工物Wに照射されるイオンの最大エネルギーはシミュレーション#2において被加工物Wに照射されるイオンの最大エネルギーよりも相当に小さくなっていた。一方、図7の(b)と図22の(b)とを比較すると、シミュレーション#34においてチャンバ本体12に照射されるイオンのエネルギーは、シミュレーション#2においてチャンバ本体12に照射されるイオンのエネルギーよりも相当に大きくなっていた。したがって、高周波電源部60からの第2の出力波をバイアス用の高周波として下部電極18に供給することにより、被加工物Wに照射されるイオンのエネルギーを小さくし、且つ、チャンバ本体12に照射されるイオンのエネルギーを大きくすることが可能であることが確認された。 Further, as shown in FIGS. 7A and 22A, the maximum energy of ions irradiated to the workpiece W in the simulation # 34 is the ion irradiated to the workpiece W in the simulation # 2. It was considerably smaller than the maximum energy. On the other hand, when FIG. 7B and FIG. 22B are compared, the energy of ions irradiated to the chamber body 12 in the simulation # 34 is the energy of ions irradiated to the chamber body 12 in the simulation # 2. It was considerably larger than. Therefore, by supplying the second output wave from the high-frequency power supply unit 60 to the lower electrode 18 as a high frequency for biasing, the energy of ions irradiated to the workpiece W is reduced and the chamber body 12 is irradiated. It was confirmed that it is possible to increase the energy of generated ions.
 以上のシミュレーション#33及びシミュレーション#34の結果から、第2の出力波の利用により、載置台16に照射されるイオンのエネルギーを抑制しつつ、チャンバ本体12に照射されるイオンのエネルギーを高めることが可能であることが分かる。したがって、第2の出力波は、例えばウエハレスドライクリーニング、即ち、載置台16上にダミーウエハを載置せずに行われるチャンバ本体12の内壁面のクリーニングに利用可能である。 From the results of the simulation # 33 and the simulation # 34 described above, by using the second output wave, the energy of ions irradiated to the chamber body 12 is increased while the energy of ions irradiated to the mounting table 16 is suppressed. It is understood that is possible. Therefore, the second output wave can be used for, for example, waferless dry cleaning, that is, cleaning of the inner wall surface of the chamber body 12 that is performed without placing a dummy wafer on the mounting table 16.
 以上、種々の実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。例えば、プラズマ処理装置10は容量結合型のプラズマ処理装置であったが、高周波電源部60は、誘導結合のプラズマ処理装置、又は、マイクロ波といった表面波を用いるプラズマ処理装置においても、利用することが可能である。 Although various embodiments have been described above, various modifications can be made without being limited to the above-described embodiments. For example, although the plasma processing apparatus 10 is a capacitively coupled plasma processing apparatus, the high frequency power supply unit 60 can also be used in an inductively coupled plasma processing apparatus or a plasma processing apparatus using surface waves such as microwaves. Is possible.
 また、高周波電源部60C及び高周波電源部60Dは、第1の出力波又は第2の出力波を選択的に出力するよう構成されていたが、第2の出力波のみを出力するよう構成されていてもよい。第2の出力波のみを出力するように構成される場合に、高周波電源部60Dからは、半波整流器84、ダミー負荷86、スイッチ88、及び、スイッチ89が取り除かれ、半波整流器85はノードN2に直接的に接続される。 Moreover, although the high frequency power supply unit 60C and the high frequency power supply unit 60D are configured to selectively output the first output wave or the second output wave, they are configured to output only the second output wave. May be. When configured to output only the second output wave, the half-wave rectifier 84, the dummy load 86, the switch 88, and the switch 89 are removed from the high-frequency power supply unit 60D, and the half-wave rectifier 85 is a node. Connected directly to N2.
 10…プラズマ処理装置、12…チャンバ本体、12c…チャンバ、16…載置台、18…下部電極、20…静電チャック、30…上部電極、50…排気装置、60…高周波電源部、62…第1の高周波電源、64…第2の高周波電源、60A…高周波電源部、70…高周波電源、72…整合器、74…合成器、76…位相検出器、78…電源制御部、60B…高周波電源部、80…高周波電源、82…整合器、84…半波整流器。 DESCRIPTION OF SYMBOLS 10 ... Plasma processing apparatus, 12 ... Chamber main body, 12c ... Chamber, 16 ... Mounting stand, 18 ... Lower electrode, 20 ... Electrostatic chuck, 30 ... Upper electrode, 50 ... Exhaust device, 60 ... High frequency power supply part, 62 ... First 1 high frequency power supply, 64... Second high frequency power supply, 60 A... High frequency power supply unit, 70... High frequency power supply, 72. 80: high frequency power supply, 82: matching unit, 84: half-wave rectifier.

Claims (7)

  1.  チャンバを提供するチャンバ本体であり、接地電位に接続された該チャンバ本体と、
     下部電極を有し、前記チャンバ内に設けられた載置台と、
     前記下部電極に電気的に接続された高周波電源部であり、前記下部電極に供給されるバイアス用の出力波を生成する、該高周波電源部と、
    を備え、
     前記高周波電源部は、基本周波数の高周波の正の電圧成分を低減させた前記出力波を発生するよう構成されている、
    プラズマ処理装置。
    A chamber body providing a chamber, the chamber body connected to ground potential;
    A mounting table having a lower electrode and provided in the chamber;
    A high-frequency power source electrically connected to the lower electrode, and generates a bias output wave supplied to the lower electrode;
    With
    The high-frequency power supply unit is configured to generate the output wave in which a high-frequency positive voltage component at a fundamental frequency is reduced.
    Plasma processing equipment.
  2.  前記高周波電源部は、
      前記基本周波数のn倍又は2n倍の互いに異なる周波数を有する複数の高周波をそれぞれ発生する複数の高周波電源であり、nは1以上の整数である、該複数の高周波電源と、
      前記複数の高周波を合成して前記出力波を生成する合成器と、
     を有する、請求項1に記載のプラズマ処理装置。
    The high frequency power supply unit is
    A plurality of high-frequency power sources that respectively generate a plurality of high-frequency powers having different frequencies n times or 2n times the basic frequency, and n is an integer equal to or greater than 1,
    A synthesizer that synthesizes the plurality of high frequencies to generate the output wave;
    The plasma processing apparatus according to claim 1, comprising:
  3.  前記高周波電源部は、
      前記基本周波数の高周波を発生する高周波電源と、
      前記高周波電源からの前記高周波の正の電圧成分を除去するように構成された半波整流器と、
     を有する、請求項1に記載のプラズマ処理装置。
    The high frequency power supply unit is
    A high frequency power source for generating a high frequency of the fundamental frequency;
    A half-wave rectifier configured to remove the high-frequency positive voltage component from the high-frequency power source;
    The plasma processing apparatus according to claim 1, comprising:
  4.  前記プラズマ処理装置は、容量結合型のプラズマ処理装置であり、
     前記下部電極の上方に設けられた上部電極と、
     前記上部電極に接続された第1の高周波電源であり、プラズマ生成用の高周波を発生する、該第1の高周波電源と、
    を更に備える、請求項1~3の何れか一項に記載のプラズマ処理装置。
    The plasma processing apparatus is a capacitively coupled plasma processing apparatus,
    An upper electrode provided above the lower electrode;
    A first high frequency power source connected to the upper electrode, which generates a high frequency for plasma generation; and
    The plasma processing apparatus according to any one of claims 1 to 3, further comprising:
  5.  前記基本周波数は、1.4MHz以下である、請求項1~4の何れか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 4, wherein the fundamental frequency is 1.4 MHz or less.
  6.  前記下部電極に接続された第2の高周波電源であり、前記基本周波数よりも高い周波数のバイアス用の高周波を発生する、該第2の高周波電源を更に備える、請求項1~5の何れか一項に記載のプラズマ処理装置。 The second high-frequency power source connected to the lower electrode, further comprising the second high-frequency power source that generates a high frequency for bias having a frequency higher than the fundamental frequency. The plasma processing apparatus according to item.
  7.  前記高周波電源部は、前記出力波である第1の出力波又は前記基本周波数の高周波の負の電圧成分を低減させた第2の出力波を選択的に前記下部電極に供給するよう構成されている、請求項1~6の何れか一項に記載のプラズマ処理装置。 The high frequency power supply unit is configured to selectively supply a first output wave as the output wave or a second output wave in which a negative voltage component of a high frequency of the fundamental frequency is reduced to the lower electrode. The plasma processing apparatus according to any one of claims 1 to 6.
PCT/JP2017/015298 2016-04-28 2017-04-14 Plasma treatment apparatus WO2017188029A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780026498.0A CN109075065A (en) 2016-04-28 2017-04-14 Plasma processing apparatus
KR1020187030818A KR20190002477A (en) 2016-04-28 2017-04-14 Plasma processing apparatus
US16/096,759 US20190122863A1 (en) 2016-04-28 2017-04-14 Plasma processing apparatus
KR1020217042169A KR20220000909A (en) 2016-04-28 2017-04-14 Plasma processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016090810 2016-04-28
JP2016-090810 2016-04-28
JP2016132685A JP6670697B2 (en) 2016-04-28 2016-07-04 Plasma processing equipment
JP2016-132685 2016-07-04

Publications (1)

Publication Number Publication Date
WO2017188029A1 true WO2017188029A1 (en) 2017-11-02

Family

ID=60160361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015298 WO2017188029A1 (en) 2016-04-28 2017-04-14 Plasma treatment apparatus

Country Status (2)

Country Link
KR (1) KR20220000909A (en)
WO (1) WO2017188029A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158307A1 (en) * 2021-01-19 2022-07-28 東京エレクトロン株式会社 Plasma treatment method and plasma treatment device
WO2022158305A1 (en) * 2021-01-19 2022-07-28 東京エレクトロン株式会社 Plasma processing method and plasma processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148534A (en) * 1990-10-12 1992-05-21 Sony Corp Dry etching method
JPH10241895A (en) * 1996-11-04 1998-09-11 Applied Materials Inc Improvement of plasma process efficiency by filtering plasma sheath generation harmonic
JP2000269198A (en) * 1999-03-19 2000-09-29 Toshiba Corp Method and apparatus for plasma treatment
JP2001267296A (en) * 2000-03-14 2001-09-28 Hitachi Ltd Plasma treatment system
JP2005116187A (en) * 2003-10-02 2005-04-28 Matsushita Electric Ind Co Ltd Method and apparatus for generating plasma and for generating ozone
JP2006165390A (en) * 2004-12-09 2006-06-22 Hitachi High-Technologies Corp Semiconductor manufacturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781808B2 (en) 2010-03-31 2015-09-24 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148534A (en) * 1990-10-12 1992-05-21 Sony Corp Dry etching method
JPH10241895A (en) * 1996-11-04 1998-09-11 Applied Materials Inc Improvement of plasma process efficiency by filtering plasma sheath generation harmonic
JP2000269198A (en) * 1999-03-19 2000-09-29 Toshiba Corp Method and apparatus for plasma treatment
JP2001267296A (en) * 2000-03-14 2001-09-28 Hitachi Ltd Plasma treatment system
JP2005116187A (en) * 2003-10-02 2005-04-28 Matsushita Electric Ind Co Ltd Method and apparatus for generating plasma and for generating ozone
JP2006165390A (en) * 2004-12-09 2006-06-22 Hitachi High-Technologies Corp Semiconductor manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158307A1 (en) * 2021-01-19 2022-07-28 東京エレクトロン株式会社 Plasma treatment method and plasma treatment device
WO2022158305A1 (en) * 2021-01-19 2022-07-28 東京エレクトロン株式会社 Plasma processing method and plasma processing device

Also Published As

Publication number Publication date
KR20220000909A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
JP6670697B2 (en) Plasma processing equipment
CN109411322B (en) Plasma processing method and plasma processing apparatus
JP6449674B2 (en) Plasma processing method and plasma processing apparatus
JP7061922B2 (en) Plasma processing method and plasma processing equipment
JP6423706B2 (en) Plasma processing equipment
TWI553729B (en) Plasma processing method
KR20210020134A (en) Substrate treatment method
JP6715129B2 (en) Plasma processing device
KR102302313B1 (en) Method of adsorbing target object on mounting table and plasma processing apparatus
JP2013125892A (en) Plasma processing apparatus
JP7154119B2 (en) Control method and plasma processing apparatus
US20160086773A1 (en) Plasma processing apparatus
WO2017188029A1 (en) Plasma treatment apparatus
KR20210045927A (en) Plasma processing apparatus and plasma processing method
JP2021068880A (en) Suction method, placing platform, and plasma processing device
TW202306441A (en) Plasma processing apparatus
KR20210097027A (en) Plasma processing apparatus and plasma processing method
JP7433271B2 (en) Substrate processing equipment and control method for the substrate processing equipment
JP7412620B2 (en) Plasma treatment method and plasma treatment device
JP2014075281A (en) Plasma processing apparatus and temperature control method
JP2022087334A (en) Plasma processing method and plasma processing apparatus
JP2021015930A (en) Plasma processing method and plasma processing apparatus
JP2023013666A (en) Plasma processing apparatus and processing method
JP2021158264A (en) Substrate processing device, substrate processing system, control method of substrate processing device, and control method of substrate processing system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187030818

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789314

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789314

Country of ref document: EP

Kind code of ref document: A1