Nothing Special   »   [go: up one dir, main page]

WO2022158305A1 - Plasma processing method and plasma processing device - Google Patents

Plasma processing method and plasma processing device Download PDF

Info

Publication number
WO2022158305A1
WO2022158305A1 PCT/JP2022/000252 JP2022000252W WO2022158305A1 WO 2022158305 A1 WO2022158305 A1 WO 2022158305A1 JP 2022000252 W JP2022000252 W JP 2022000252W WO 2022158305 A1 WO2022158305 A1 WO 2022158305A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
plasma processing
upper electrode
gas
voltage
Prior art date
Application number
PCT/JP2022/000252
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 池田
崇央 進藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022158305A1 publication Critical patent/WO2022158305A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • An exemplary embodiment of the present disclosure relates to a plasma processing method and a plasma processing apparatus.
  • Patent Document 1 discloses a plasma processing apparatus using VHF waves as a type of plasma processing apparatus. VHF waves are applied to a radio frequency electrode to generate a plasma from the gas within the chamber.
  • the present disclosure provides a technique for uniforming the plasma density distribution within the chamber.
  • a plasma processing method includes step (a) of periodically applying a negative voltage to an upper electrode of a plasma processing apparatus.
  • the plasma processing method further includes step (b) of introducing an electromagnetic wave into the chamber of the plasma processing apparatus to generate plasma from the process gas within the chamber.
  • the electromagnetic waves are VHF waves or UHF waves.
  • An electromagnetic wave is introduced into the chamber so as to form a standing wave within the chamber along the lower surface of the upper electrode. Electromagnetic waves are introduced into the chamber only during the period in which the negative voltage is applied to the upper electrode.
  • FIG. 1 is a flow diagram of a plasma processing method according to one exemplary embodiment; 1 schematically illustrates a plasma processing apparatus according to one exemplary embodiment; FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2; FIG. 2 is an example timing chart related to the plasma processing method shown in FIG. 1; FIG. 2 is a timing chart of another example related to the plasma processing method shown in FIG. 1; FIG. FIG. 2 schematically illustrates a plasma processing apparatus according to another exemplary embodiment; FIG. 2 is a timing chart of still another example related to the plasma processing method shown in FIG. 1; FIG. FIG. 2 is a timing chart of still another example related to the plasma processing method shown in FIG. 1; FIG.
  • a plasma processing method includes step (a) of periodically applying a negative voltage to an upper electrode of a plasma processing apparatus.
  • the plasma processing method further includes step (b) of introducing an electromagnetic wave into the chamber of the plasma processing apparatus to generate plasma from the process gas within the chamber.
  • the electromagnetic waves are VHF waves or UHF waves.
  • An electromagnetic wave is introduced into the chamber so as to form a standing wave within the chamber along the lower surface of the upper electrode. Electromagnetic waves are introduced into the chamber only during the period in which the negative voltage is applied to the upper electrode.
  • the thickness of the sheath directly below the upper electrode increases. If the thickness of the sheath directly below the upper electrode is large, the wavelength of the electromagnetic wave along the lower surface of the upper electrode will be longer.
  • the electromagnetic wave is introduced into the chamber when the thickness of the sheath directly under the upper electrode is large, so the wavelength of the electromagnetic wave along the lower surface of the upper electrode becomes longer, and the plasma density in the chamber increases. The distribution is homogenized.
  • the negative voltage may be generated by shaping the waveform of the high frequency voltage to suppress the positive voltage contained in the high frequency voltage.
  • the electromagnetic wave may be introduced into the chamber during each period during which the negative voltage has an absolute value equal to or greater than half the maximum absolute value of the negative voltage.
  • the introduction of electromagnetic waves into the chamber begins at time t1 and ends at time t2 within each period in which a negative voltage is applied to the upper electrode.
  • Time points t1 and t2 satisfy t0 ⁇ t1 ⁇ t2 ⁇ t3 and satisfy t1-t0>(1/6)(t3-t0) and t3-t2>(1/6)(t3-t0) may
  • t0 and t3 are the start and end times of each period in which the negative voltage is applied to the upper electrode, respectively.
  • the negative voltage may be a negative DC voltage applied periodically to the upper electrode.
  • a positive DC voltage may be applied to the top electrode during periods when the negative voltage is not applied to the top electrode.
  • the absolute value of the negative DC voltage may be greater than the absolute value of the positive DC voltage.
  • the length of time DN during which the negative DC voltage is applied and the length of time DP during which the positive DC voltage is applied satisfy the following formula (1): good. may be satisfied.
  • VP is the level of the positive DC voltage applied to the top electrode
  • T e is the electron temperature in the plasma generated in the chamber.
  • the plasma processing method may further include supplying source gas into the chamber.
  • the process gas may be a reducing gas that reduces the source material deposited on the substrate from the source gas in the chamber.
  • the source gas and process gas may be simultaneously supplied into the chamber during the period in which the electromagnetic waves are introduced into the chamber.
  • the supply of the raw material gas into the chamber may be performed during the period when the electromagnetic wave is not introduced into the chamber, and stopped during the period when the electromagnetic wave is introduced into the chamber.
  • a plasma processing apparatus in another exemplary embodiment, includes a chamber, a substrate support, an upper electrode, a first power supply, and a second power supply.
  • a substrate support is provided within the chamber.
  • the upper electrode is provided above the substrate support.
  • a first power supply is configured to periodically apply a negative voltage to the upper electrode.
  • a second power supply is configured to generate electromagnetic waves to generate a plasma from the process gas within the chamber.
  • the electromagnetic wave which may be a VHF wave or a UHF wave, is introduced into the chamber to form a standing wave within the chamber along the lower surface of the upper electrode.
  • the second power supply is configured to introduce electromagnetic waves into the chamber only during periods in which the negative voltage is applied to the upper electrode.
  • the plasma processing apparatus further comprises an introduction section.
  • the lead-in portion may be formed from a dielectric material and may be provided along the outer periphery of the upper electrode so as to lead the electromagnetic wave therethrough into the chamber.
  • the top electrode may form a showerhead that introduces process gases into the chamber.
  • the first power supply may be configured to generate a high frequency voltage.
  • the plasma processing apparatus may further comprise a waveform shaper.
  • the waveform shaper is configured to shape the waveform of the high frequency voltage to suppress positive voltages contained in the high frequency voltage.
  • the first power supply may be configured to periodically apply a negative DC voltage to the upper electrode as the negative voltage.
  • FIG. 1 is a flow diagram of a plasma processing method according to one exemplary embodiment.
  • the plasma processing method (hereinafter referred to as "method MT") shown in FIG. 1 is performed using a plasma processing apparatus.
  • FIG. 2 is a diagram schematically showing a plasma processing apparatus according to one exemplary embodiment.
  • Method MT can be performed using the plasma processing apparatus 1 shown in FIG.
  • the plasma processing apparatus 1 is a parallel plate type plasma processing apparatus.
  • the plasma processing apparatus 1 is configured to generate plasma using electromagnetic waves.
  • the electromagnetic waves are VHF waves or UHF waves.
  • the band of VHF waves is 30 MHz to 300 MHz, and the band of UHF waves is 300 MHz to 3 GHz.
  • the plasma processing apparatus 1 includes a chamber 10.
  • Chamber 10 defines an interior space.
  • a substrate W is processed within the interior space of the chamber 10 .
  • the chamber 10 has an axis AX as its central axis.
  • the axis AX is an axis extending in the vertical direction.
  • chamber 10 may include chamber body 12 .
  • the chamber body 12 has a substantially cylindrical shape and is open at its upper portion. Chamber body 12 provides the sidewalls and bottom of chamber 10 .
  • the chamber body 12 is made of metal such as aluminum.
  • the chamber body 12 is grounded.
  • a side wall of the chamber body 12 provides a passage 12p.
  • the substrate W passes through the passageway 12p when being transported between the inside and outside of the chamber 10.
  • the passage 12p can be opened and closed by a gate valve 12v.
  • a gate valve 12 v is provided along the side wall of the chamber body 12 .
  • the chamber 10 may further include a top wall 14 .
  • Top wall 14 is formed from a metal such as aluminum.
  • the upper wall 14 closes the upper opening of the chamber main body 12 together with a cover conductor which will be described later.
  • the upper wall 14 is grounded together with the chamber body 12 .
  • Exhaust system 16 includes a pressure controller, such as an automatic pressure control valve, and a vacuum pump, such as a turbomolecular pump.
  • the plasma processing apparatus 1 further includes a substrate support section 18 .
  • a substrate support 18 is provided within the chamber 10 .
  • the substrate support 18 is configured to support the substrate W placed thereon.
  • the substrate W is placed on the substrate support 18 in a substantially horizontal state.
  • the substrate support section 18 may be supported by a support member 19 .
  • Support member 19 extends upwardly from the bottom of chamber 10 .
  • Substrate support 18 and support member 19 may be formed from a dielectric such as aluminum nitride.
  • the plasma processing apparatus 1 further includes an upper electrode 20 .
  • the upper electrode 20 is made of metal such as aluminum.
  • the upper electrode 20 is provided above the substrate support portion 18 .
  • the upper electrode 20 constitutes a ceiling that defines the internal space of the chamber 10 .
  • the upper electrode 20 may have a substantially disk shape.
  • the upper electrode 20 has an axis AX as its central axis.
  • the upper electrode 20 constitutes a showerhead.
  • the upper electrode 20 can have a hollow structure.
  • the upper electrode 20 provides a plurality of gas holes 20h.
  • a plurality of gas holes 20 h are open toward the internal space of the chamber 10 .
  • Top electrode 20 further provides a gas diffusion chamber 20c therein.
  • a plurality of gas holes 20h are connected to the gas diffusion chamber 20c and extend downward from the gas diffusion chamber 20c.
  • the plasma processing apparatus 1 may further include a gas supply pipe 22.
  • the gas supply pipe 22 is a cylindrical pipe.
  • the gas supply pipe 22 is made of metal such as aluminum.
  • the gas supply pipe 22 extends vertically above the upper electrode 20 .
  • the gas supply pipe 22 has an axis AX as its central axis.
  • the lower end of the gas supply pipe 22 is connected to the upper center of the upper electrode 20 .
  • the top center of the top electrode 20 provides the gas inlet.
  • the inlet is connected to the gas diffusion chamber 20c.
  • a gas supply pipe 22 supplies gas to the upper electrode 20 . Gas from the gas supply pipe 22 is introduced into the chamber 10 through the inlet of the upper electrode 20 and the gas diffusion chamber 20c through the plurality of gas holes 20h.
  • the plasma processing apparatus 1 may further include a gas supply section 24 , a gas supply section 26 and a gas supply section 28 .
  • the gas supply section 24 is connected to the gas supply pipe 22 .
  • the gas supply section 24 includes a gas source 24s, a primary valve 24v1, a flow controller 24c, and a secondary valve 24v2.
  • the gas source 24s is a source of raw material gas.
  • the source gas can be a silicon-containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) or a metal-containing gas such as a metal halide gas (eg, TiCl4 gas).
  • the gas source 24s is connected to the gas supply pipe 22 via a primary valve 24v1, a flow controller 24c, and a secondary valve 24v2.
  • the gas supply section 26 is connected to the gas supply pipe 22 .
  • the gas supply section 26 includes a gas source 26s, a primary valve 26v1, a flow controller 26c, and a secondary valve 26v2.
  • Gas source 26s is a source of process gas.
  • the process gas may be any gas selected to process the substrate W with species from the plasma generated therefrom.
  • the process gas may be a reducing gas that reduces the source material deposited on the substrate W from the source gas.
  • the process gas may be a reducing gas such as NH3 gas, N2 gas, H2 gas.
  • the gas source 26s is connected to the gas supply pipe 22 via a primary valve 26v1, a flow controller 26c, and a secondary valve 26v2.
  • the gas supply unit 28 is connected to the gas supply pipe 22 .
  • the gas supply section 28 includes a gas source 28s, a primary valve 28v1, a flow controller 28c, and a secondary valve 28v2.
  • Gas source 28s is a source of inert gas.
  • the inert gas can be a noble gas such as Ar gas.
  • the gas source 28s is connected to the gas supply pipe 22 via a primary valve 28v1, a flow controller 28c, and a secondary valve 28v2.
  • the upper electrode 20 may be provided below the upper wall 14 .
  • the space between top electrode 20 and top wall 14 forms part of waveguide 30 .
  • Waveguide 30 also includes a space provided by gas supply tube 22 between gas supply tube 22 and top wall 14 .
  • the plasma processing apparatus 1 may further include an introduction section 32 .
  • Lead-in 32 is formed from a dielectric such as aluminum oxide.
  • the introduction part 32 is provided along the outer circumference of the upper electrode 20 so as to introduce electromagnetic waves into the chamber 10 from there.
  • the introduction part 32 has an annular shape. The introduction part 32 closes the gap between the upper electrode 20 and the chamber body 12 and is connected to the waveguide 30 .
  • FIG. 3 is a cross-sectional view taken along line III--III of FIG.
  • the gas supply pipe 22 described above may include an annular flange 22f in a part of its longitudinal direction.
  • the collar portion 22f radially protrudes from the other portion 22a of the gas supply pipe 22. As shown in FIG.
  • the plasma processing apparatus 1 may further include an electromagnetic wave supply path 36 .
  • the supply line 36 includes a conductor 36c.
  • a conductor 36 c of the supply path 36 is connected to the gas supply pipe 22 .
  • one end of the conductor 36c is connected to the collar portion 22f.
  • the plasma processing apparatus 1 further includes a power supply 40 (second power supply).
  • the other end of the conductor 36c may be connected to the power supply 40 via the matching device 40m.
  • the power supply 40 is a generator of electromagnetic waves.
  • the matching box 40m has an impedance matching circuit.
  • the impedance matching circuit is configured to match the impedance of the load of power supply 40 to the output impedance of power supply 40 .
  • the impedance matching circuit has a variable impedance.
  • the impedance matching circuit can be, for example, a ⁇ -type circuit.
  • An electromagnetic wave from the power supply 40 is introduced into the chamber 10 so as to form a standing wave inside the chamber 10 along the lower surface of the upper electrode 20 .
  • the electromagnetic wave from the power source 40 passes through the matching device 40m, the supply path 36 (conductor 36c), the gas supply pipe 22, and the waveguide 30 around the upper electrode 20, from the introduction part 32 to the chamber 10. introduced within.
  • the electromagnetic waves excite the process gas from gas supply 26 in chamber 10 to generate plasma.
  • the plasma processing apparatus 1 may further include a cover conductor 44 and a dielectric portion 46.
  • the cover conductor 44 has a substantially cylindrical shape.
  • a cover conductor 44 surrounds the gas supply tube 22 above the chamber 10 .
  • the cover conductor 44 is connected to the gas supply pipe 22 at its upper end 44t. That is, the upper end 44 t of the cover conductor 44 closes the space between the cover conductor 44 and the gas supply pipe 22 .
  • a lower end of the cover conductor 44 is connected to the chamber 10 . In one embodiment, the lower end of cover conductor 44 may be connected to top wall 14 .
  • a cover conductor 44 may surround the conductor 36c. A space between the cover conductor 44 and the conductor 36c may be filled with a dielectric. This dielectric may be integrated with the dielectric portion 46 .
  • the dielectric portion 46 is made of a dielectric.
  • the dielectric portion 46 is made of, for example, polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the dielectric portion 46 is provided between a portion of the gas supply pipe 22 in the longitudinal direction and the cover conductor 44 .
  • the dielectric portion 46 radially extends from a portion of the gas supply pipe 22 in the longitudinal direction to the inner surface of the cover conductor 44 and extends circumferentially so as to surround the portion of the gas supply pipe 22 in the longitudinal direction. May be extended.
  • the dielectric portion 46 may be provided upward from the lower surface 22b of the collar portion 22f. That is, the vertical position of the lower end of the dielectric portion 46 may be the same as the vertical position of the lower surface 22b of the collar portion 22f.
  • a region between the lower surface 22b of the collar portion 22f and the upper end 44t of the cover conductor 44 in the space between the gas supply pipe 22 and the cover conductor 44 is a dielectric material.
  • the portion 46 may be filled.
  • the plasma processing apparatus 1 further includes a power supply 50 (first power supply).
  • Power supply 50 is configured to periodically apply a negative voltage to upper electrode 20 .
  • FIG. 4 and 5 will be referred to together with FIG. 2 below.
  • FIG. 4 is an example timing chart related to the plasma processing method shown in FIG.
  • FIG. 5 is a timing chart of another example related to the plasma processing method shown in FIG. 4 and 5, "LF" represents the high frequency voltage generated by the power supply 50.
  • FIG. A solid line representing the high-frequency voltage LF represents a negative voltage
  • a broken line representing the high-frequency voltage LF represents a positive voltage. 4 and 5
  • "ON" indicates that the corresponding gas is being supplied into the chamber 10
  • "OFF" indicates that the supply of the corresponding gas into the chamber 10 is stopped. indicates that
  • power supply 50 is a high frequency power supply and generates high frequency voltage LF as shown in FIGS.
  • the frequency of the high frequency voltage LF may be 400 kHz or higher and 13.56 MHz or lower.
  • the power supply 50 is connected to the upper electrode 20 through a matching box 50m.
  • the matching box 50m has an impedance matching circuit.
  • the impedance matching circuit is configured to match the impedance of the load of power supply 50 to the output impedance of power supply 50 .
  • the impedance matching circuit has a variable impedance.
  • the negative voltage of the high frequency voltage LF from the power supply 50 is applied to the upper electrode 20 .
  • a negative voltage is periodically applied to the upper electrode 20 .
  • the plasma processing apparatus 1 may further include a waveform shaper 50s.
  • the waveform shaper 50s is configured to shape the waveform of the high frequency voltage LF so as to suppress the positive voltage contained in the high frequency voltage LF.
  • the negative voltage of the high frequency voltage LF from the power supply 50 is applied to the upper electrode 20 .
  • wave shaper 50s may include a diode.
  • the anode of the diode of the waveform shaper 50 s is connected to the electrical path between the power supply 50 (or the matching device 50 m) and the upper electrode 20 .
  • the cathode of the diode of the waveform shaper 50s is connected to the ground.
  • the power supply 40 described above introduces electromagnetic waves into the chamber 10 only during the period PN in which the negative voltage is applied to the upper electrode 20 within the period CP of the high frequency voltage LF.
  • power supply 40 may be configured to introduce electromagnetic waves into chamber 10 only during periods P A within periods P N .
  • Period PA may be a period during which the negative voltage from power supply 50 has an absolute value equal to or greater than half the maximum absolute value of the negative voltage. Period PA starts at time t1 and ends at time t2.
  • Time points t1 and t2 satisfy t0 ⁇ t1 ⁇ t2 ⁇ t3 and satisfy t1-t0>(1/6)(t3-t0) and t3-t2>(1/6)(t3-t0) may
  • t0 and t3 are the start and end times of the period PN , respectively.
  • the plasma processing apparatus 1 may further include a controller 60 .
  • the control unit 60 may be a computer including a processor, a storage unit such as a memory, an input device, a display device, a signal input/output interface, and the like.
  • the controller 60 controls each part of the plasma processing apparatus 1 .
  • a storage unit of the control unit 60 stores a control program and recipe data.
  • the control program is executed by the processor of the control unit 60 in order to perform various processes in the plasma processing apparatus 1.
  • the processor of the controller 60 executes the control program and controls each part of the plasma processing apparatus 1 according to the recipe data.
  • the method MT can be performed in the plasma processing apparatus 1 by controlling each section of the plasma processing apparatus 1 by the controller 60 .
  • the method MT includes steps STa and STb.
  • step STa a negative voltage is applied to the upper electrode 20 periodically.
  • the negative voltage is generated and applied to the top electrode 20 by shaping the waveform of the high frequency voltage LF from the power supply 50 to suppress the positive voltage.
  • step STb electromagnetic waves from the power supply 40 are introduced into the chamber 10 to generate plasma from the processing gas.
  • An electromagnetic wave is introduced into chamber 10 to form a standing wave along the lower surface of upper electrode 20 .
  • Electromagnetic waves are introduced into the chamber 10 only during the period PN during which the negative voltage from the power supply 50 is applied to the upper electrode 20 . In one embodiment, the electromagnetic waves are introduced into the chamber 10 only during the period PA mentioned above.
  • the processing gas is supplied from the gas supply unit 26 into the chamber 10 at least during the period when the step STb is performed. That is, the processing gas is supplied into the chamber 10 at least while the electromagnetic wave from the power supply 40 is being introduced into the chamber 10 .
  • the process gas and inert gas may be continuously supplied into the chamber 10 while the method MT is being performed.
  • a process gas and an inert gas are supplied into the chamber 10 from a gas supply 26 and a gas supply 28, respectively.
  • the raw material gas may be continuously supplied into the chamber 10 while the method MT is being performed. That is, the processing gas and the source gas may be simultaneously supplied into the chamber 10 while the electromagnetic wave from the power supply 40 is being introduced into the chamber 10 .
  • the raw material gas is supplied during the period when the electromagnetic wave from the power supply 40 is not introduced into the chamber 10, and during the period when the electromagnetic wave from the power supply 40 is introduced into the chamber 10. may be stopped.
  • a conductive film can be formed on the substrate W by the method MT when the negative voltage applied to the upper electrode 20 is generated from the high frequency voltage LF.
  • a silicon - containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) can be used as the source gas, and a reducing gas such as H2 gas can be used as the process gas.
  • a metal - containing gas such as a metal halide gas (eg, TiCl4 gas) can be used as the source gas, and a reducing gas such as H2 gas can be used as the process gas.
  • the film is formed on the substrate W by a plasma-enhanced chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • ALD plasma-assisted atomic layer deposition
  • electromagnetic waves are introduced into chamber 10 only during the period in which the negative voltage is applied to upper electrode 20 .
  • the thickness of the sheath directly below the upper electrode 20 increases.
  • the wavelength of the electromagnetic wave along the lower surface of the upper electrode 20 becomes longer and approaches the wavelength of the electromagnetic wave under vacuum. Since the electromagnetic wave from the power supply 40 is introduced into the chamber 10 when its wavelength is lengthened along the lower surface of the upper electrode 20, the plasma density distribution in the chamber 10 is made uniform.
  • a negative voltage is applied to the upper electrode 20 . That is, since the application of positive voltage to the upper electrode 20 is suppressed, the increase in plasma potential is suppressed. By suppressing the rise in the plasma potential, damage to the substrate W and the chamber 10 by ions is reduced, and a process using high-density plasma becomes possible.
  • FIG. 6 is a schematic diagram of a plasma processing apparatus according to another exemplary embodiment. 7 and 8 will be referred to along with FIG. 6 in the following description.
  • FIGS. 7 and 8 are a timing chart of still another example related to the plasma processing method shown in FIG. 7 and 8, "DCV" represents the voltage generated by power supply 50B. 7 and 8, "ON” indicates that the corresponding gas is being supplied into the chamber 10, and “OFF” indicates that the supply of the corresponding gas into the chamber 10 is stopped. indicates that
  • a plasma processing apparatus 1B shown in FIG. Other configurations of the plasma processing apparatus 1B may be the same as corresponding configurations of the plasma processing apparatus 1B.
  • the power supply 50B is configured to periodically generate a negative DC voltage VN as the negative voltage applied to the upper electrode 20.
  • the frequency that defines the period CP at which the power supply 50B applies the negative DC voltage VN to the upper electrode 20 may be 400 kHz or more and 13.56 MHz or less.
  • the power supply 50B applies a negative DC voltage VN to the upper electrode 20 during the period PN within the cycle CP.
  • the power supply 40 introduces electromagnetic waves into the chamber 10 only during the period PN during which the negative DC voltage VN is applied to the upper electrode 20.
  • the power supply 50B may apply the positive DC voltage VP to the upper electrode 20 during periods other than the period PN .
  • the absolute value of the negative DC voltage VN applied to the upper electrode 20 by the power supply 50B may be greater than the absolute value of the positive DC voltage VP applied to the upper electrode 20 by the power supply 50B.
  • the absolute value of the negative DC voltage VN applied to the upper electrode 20 by the power supply 50B may be 200V or more.
  • the absolute value of the positive DC voltage VP applied to the upper electrode 20 by the power supply 50B may be 50V or less, for example, about 10V.
  • the length of time D N during which the negative DC voltage VN is applied to the upper electrode 20 and the length of time D P during which the positive DC voltage V P is applied to the upper electrode 20 are (1) may be satisfied.
  • the charge amount QP accumulated in the upper electrode 20 while the positive DC voltage VP is being applied within each period CP is expressed by the following equation (2).
  • I e , e, n e , A, v e , and T e are, respectively, the plasma electron current, the elementary charge, the plasma electron density, the area of the lower surface of the upper electrode 20, the electron average velocity generated in the chamber, is the electron temperature in the plasma.
  • the charge amount QN accumulated in the upper electrode 20 while the negative DC voltage VN is being applied within each period CP is expressed by the following equation (3).
  • I i , u B , and n s are the plasma ion current, Bohm velocity, and electron density at the edge of the plasma sheath (boundary between plasma sheath and bulk plasma), respectively.
  • v e and u B are represented by the following formulas (4) and (5). where M is the ion mass.
  • Equation (1) is derived from this equation (6).
  • step STa a negative DC voltage VN is periodically applied to the upper electrode 20 .
  • a positive DC voltage VP may be applied to the upper electrode 20 during periods when the negative DC voltage VN is not applied to the upper electrode 20 .
  • step STb electromagnetic waves from the power supply 40 are introduced into the chamber 10 to generate plasma from the processing gas.
  • An electromagnetic wave is introduced into chamber 10 to form a standing wave along the lower surface of upper electrode 20 .
  • Electromagnetic waves are introduced into the chamber 10 only during the period PN during which the negative DC voltage VN from the power supply 50B is applied to the upper electrode 20 .
  • the processing gas is supplied from the gas supply unit 26 into the chamber 10 at least during the period when the step STb is performed.
  • the process gas can be any gas that processes the substrate W.
  • the process gas and inert gas may be continuously supplied into the chamber 10 while the method MT is being performed.
  • a process gas and an inert gas are supplied into the chamber 10 from a gas supply 26 and a gas supply 28, respectively.
  • the raw material gas may be continuously supplied into the chamber 10 while the method MT is being performed. That is, the processing gas and the source gas may be simultaneously supplied into the chamber 10 while the electromagnetic wave from the power supply 40 is being introduced into the chamber 10 .
  • the raw material gas is supplied during the period when the electromagnetic wave from the power supply 40 is not introduced into the chamber 10, and during the period when the electromagnetic wave from the power supply 40 is introduced into the chamber 10. may be stopped.
  • a conductive film or insulating film may be formed on the substrate W by the method MT.
  • a silicon - containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) can be used as the source gas, and a processing gas such as H2 gas can be used as the processing gas.
  • a reducing gas can be used.
  • a metal - containing gas such as a metal halide gas (e.g., TiCl4 gas) can be used as the raw material gas, and H2 gas can be used as the processing gas.
  • a metal - containing gas such as a metal halide gas (e.g., TiCl4 gas) can be used as the raw material gas, and H2 gas can be used as the processing gas.
  • a metal - containing gas such as a metal halide gas (e.g., TiCl4 gas) can be used as the raw material gas, and H2 gas can be used as the processing gas.
  • a silicon-containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) can be used as the source gas, and a processing gas such as N2 gas or NH3 gas can be used. Any reducing gas can be used.
  • a silicon-containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas)
  • a processing gas such as N2 gas or NH3 gas
  • Any reducing gas can be used.
  • Plasma processing apparatus 10... Chamber, 18... Substrate support, 20... Upper electrode, 40... Power supply, 50... Power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

The disclosed plasma processing method includes a step (a) for periodically applying a negative voltage to an upper electrode of a plasma processing device. This plasma processing method further includes a step (b) for introducing electromagnetic waves into a chamber of the plasma processing device in order to generate plasma inside the chamber from a processing gas. The electromagnetic waves are VHF waves or UHF waves. The electromagnetic waves are introduced into the chamber so as to form a standing wave inside the chamber along a lower surface of the upper electrode. The electromagnetic waves are introduced into the chamber only during the period in which the negative voltage is being applied to the upper electrode.

Description

プラズマ処理方法及びプラズマ処理装置Plasma processing method and plasma processing apparatus
 本開示の例示的実施形態は、プラズマ処理方法及びプラズマ処理装置に関するものである。 An exemplary embodiment of the present disclosure relates to a plasma processing method and a plasma processing apparatus.
 プラズマ処理装置が基板に対するプラズマ処理で用いられている。下記の特許文献1は、プラズマ処理装置の一種としてVHF波を用いるプラズマ処理装置を開示している。VHF波は、チャンバ内でガスからプラズマを生成するために、高周波電極に供給される。 Plasma processing equipment is used for plasma processing of substrates. Patent Document 1 below discloses a plasma processing apparatus using VHF waves as a type of plasma processing apparatus. VHF waves are applied to a radio frequency electrode to generate a plasma from the gas within the chamber.
特開2001-274099号公報JP-A-2001-274099
 本開示は、チャンバ内でのプラズマの密度の分布を均一化する技術を提供する。 The present disclosure provides a technique for uniforming the plasma density distribution within the chamber.
 一つの例示的実施形態において、プラズマ処理方法が提供される。プラズマ処理方法は、プラズマ処理装置の上部電極に負の電圧を周期的に印加する工程(a)を含む。プラズマ処理方法は、プラズマ処理装置のチャンバ内で処理ガスからプラズマを生成するためにチャンバ内に電磁波を導入する工程(b)を更に含む。電磁波は、VHF波又はUHF波である。電磁波は、上部電極の下面に沿ってチャンバ内で定在波を形成するようにチャンバ内に導入される。電磁波は、負の電圧が上部電極に印加されている期間内でのみチャンバ内に導入される。 In one exemplary embodiment, a plasma processing method is provided. The plasma processing method includes step (a) of periodically applying a negative voltage to an upper electrode of a plasma processing apparatus. The plasma processing method further includes step (b) of introducing an electromagnetic wave into the chamber of the plasma processing apparatus to generate plasma from the process gas within the chamber. The electromagnetic waves are VHF waves or UHF waves. An electromagnetic wave is introduced into the chamber so as to form a standing wave within the chamber along the lower surface of the upper electrode. Electromagnetic waves are introduced into the chamber only during the period in which the negative voltage is applied to the upper electrode.
 一つの例示的実施形態によれば、チャンバ内でのプラズマの密度の分布を均一化することが可能となる。 According to one exemplary embodiment, it is possible to homogenize the plasma density distribution within the chamber.
一つの例示的実施形態に係るプラズマ処理方法の流れ図である。1 is a flow diagram of a plasma processing method according to one exemplary embodiment; 一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。1 schematically illustrates a plasma processing apparatus according to one exemplary embodiment; FIG. 図2のIII-III線に沿ってとった断面図である。3 is a cross-sectional view taken along line III-III of FIG. 2; FIG. 図1に示すプラズマ処理方法に関連する一例のタイミングチャートである。2 is an example timing chart related to the plasma processing method shown in FIG. 1; 図1に示すプラズマ処理方法に関連する別の例のタイミングチャートである。FIG. 2 is a timing chart of another example related to the plasma processing method shown in FIG. 1; FIG. 別の例示的実施形態に係るプラズマ処理装置を概略的に示す図である。FIG. 2 schematically illustrates a plasma processing apparatus according to another exemplary embodiment; 図1に示すプラズマ処理方法に関連する更に別の例のタイミングチャートである。FIG. 2 is a timing chart of still another example related to the plasma processing method shown in FIG. 1; FIG. 図1に示すプラズマ処理方法に関連する更に別の例のタイミングチャートである。FIG. 2 is a timing chart of still another example related to the plasma processing method shown in FIG. 1; FIG.
 以下、種々の例示的実施形態について説明する。 Various exemplary embodiments are described below.
 一つの例示的実施形態において、プラズマ処理方法が提供される。プラズマ処理方法は、プラズマ処理装置の上部電極に負の電圧を周期的に印加する工程(a)を含む。プラズマ処理方法は、プラズマ処理装置のチャンバ内で処理ガスからプラズマを生成するためにチャンバ内に電磁波を導入する工程(b)を更に含む。電磁波は、VHF波又はUHF波である。電磁波は、上部電極の下面に沿ってチャンバ内で定在波を形成するようにチャンバ内に導入される。電磁波は、負の電圧が上部電極に印加されている期間内でのみチャンバ内に導入される。 In one exemplary embodiment, a plasma processing method is provided. The plasma processing method includes step (a) of periodically applying a negative voltage to an upper electrode of a plasma processing apparatus. The plasma processing method further includes step (b) of introducing an electromagnetic wave into the chamber of the plasma processing apparatus to generate plasma from the process gas within the chamber. The electromagnetic waves are VHF waves or UHF waves. An electromagnetic wave is introduced into the chamber so as to form a standing wave within the chamber along the lower surface of the upper electrode. Electromagnetic waves are introduced into the chamber only during the period in which the negative voltage is applied to the upper electrode.
 負の電圧が上部電極に印加されている期間においては、上部電極の直下におけるシースの厚さが大きくなる。上部電極の直下におけるシースの厚さが大きい場合には、上部電極の下面に沿った電磁波の波長が長くなる。上記実施形態では、上部電極の直下におけるシースの厚さが大きいときに電磁波がチャンバ内に導入されるので、上部電極の下面に沿った電磁波の波長が長くなり、チャンバ内でのプラズマの密度の分布が均一化される。 During the period in which the negative voltage is applied to the upper electrode, the thickness of the sheath directly below the upper electrode increases. If the thickness of the sheath directly below the upper electrode is large, the wavelength of the electromagnetic wave along the lower surface of the upper electrode will be longer. In the above embodiment, the electromagnetic wave is introduced into the chamber when the thickness of the sheath directly under the upper electrode is large, so the wavelength of the electromagnetic wave along the lower surface of the upper electrode becomes longer, and the plasma density in the chamber increases. The distribution is homogenized.
 一つの例示的実施形態において、負の電圧は、高周波電圧に含まれる正の電圧を抑制するように、該高周波電圧の波形を整形することにより、生成されてもよい。 In one exemplary embodiment, the negative voltage may be generated by shaping the waveform of the high frequency voltage to suppress the positive voltage contained in the high frequency voltage.
 一つの例示的実施形態において、電磁波は、負の電圧が該負の電圧の最大の絶対値の半値以上の絶対値を有する各期間において、チャンバ内に導入されてもよい。 In one exemplary embodiment, the electromagnetic wave may be introduced into the chamber during each period during which the negative voltage has an absolute value equal to or greater than half the maximum absolute value of the negative voltage.
 電磁波のチャンバ内への導入は、負の電圧が上部電極に印加される各期間内で、時点t1から開始され、時点t2で終了される。時点t1及びt2は、t0<t1<t2<t3を満たし、且つ、t1-t0>(1/6)(t3-t0)及びt3-t2>(1/6)(t3-t0)を満たしていてもよい。ここで、t0、t3はそれぞれ、負の電圧が上部電極に印加される各期間の開始時点、終了時点である。 The introduction of electromagnetic waves into the chamber begins at time t1 and ends at time t2 within each period in which a negative voltage is applied to the upper electrode. Time points t1 and t2 satisfy t0<t1<t2<t3 and satisfy t1-t0>(1/6)(t3-t0) and t3-t2>(1/6)(t3-t0) may Here, t0 and t3 are the start and end times of each period in which the negative voltage is applied to the upper electrode, respectively.
 一つの例示的実施形態において、負の電圧は、上部電極に周期的に印加される負の直流電圧であってもよい。 In one exemplary embodiment, the negative voltage may be a negative DC voltage applied periodically to the upper electrode.
 一つの例示的実施形態において、負の電圧が上部電極に印加されていない期間において、正の直流電圧が上部電極に印加されてもよい。 In one exemplary embodiment, a positive DC voltage may be applied to the top electrode during periods when the negative voltage is not applied to the top electrode.
 一つの例示的実施形態において、負の直流電圧の絶対値は、正の直流電圧の絶対値よりも大きくてもよい。 In one exemplary embodiment, the absolute value of the negative DC voltage may be greater than the absolute value of the positive DC voltage.
 一つの例示的実施形態において、負の直流電圧が印加される期間の時間長Dと正の直流電圧が印加される期間の時間長Dは、下記の式(1)を満たしていてもよい。
Figure JPOXMLDOC01-appb-M000002
を満たしていてもよい。ここで、Vは上部電極に印加される正の直流電圧のレベルであり、Tはチャンバ内で生成されるプラズマにおける電子温度である。
In one exemplary embodiment, the length of time DN during which the negative DC voltage is applied and the length of time DP during which the positive DC voltage is applied satisfy the following formula (1): good.
Figure JPOXMLDOC01-appb-M000002
may be satisfied. where VP is the level of the positive DC voltage applied to the top electrode and T e is the electron temperature in the plasma generated in the chamber.
 一つの例示的実施形態において、プラズマ処理方法は、チャンバ内に原料ガスを供給する工程を更に含んでいてもよい。処理ガスは、チャンバ内で基板上に原料ガスから付着した原料を還元させる還元ガスであってもよい。 In one exemplary embodiment, the plasma processing method may further include supplying source gas into the chamber. The process gas may be a reducing gas that reduces the source material deposited on the substrate from the source gas in the chamber.
 一つの例示的実施形態において、原料ガスと処理ガスは、電磁波がチャンバ内に導入されている期間において、チャンバ内に同時に供給されてもよい。 In one exemplary embodiment, the source gas and process gas may be simultaneously supplied into the chamber during the period in which the electromagnetic waves are introduced into the chamber.
 一つの例示的実施形態において、原料ガスのチャンバ内への供給は、電磁波がチャンバ内に導入されてない期間において行われ、電磁波が前記チャンバ内に導入されている期間において停止されてもよい。 In one exemplary embodiment, the supply of the raw material gas into the chamber may be performed during the period when the electromagnetic wave is not introduced into the chamber, and stopped during the period when the electromagnetic wave is introduced into the chamber.
 別の例示的実施形態においては、プラズマ処理装置が提供される。プラズマ処理装置は、チャンバ、基板支持部、上部電極、第1の電源、及び第2の電源を備える。基板支持部は、チャンバ内に設けられている。上部電極は、基板支持部の上方に設けられている。第1の電源は、上部電極に負の電圧を周期的に印加するように構成されている。第2の電源は、チャンバ内で処理ガスからプラズマを生成するために電磁波を発生するように構成されている。電磁波は、VHF波又はUHF波であり、上部電極の下面に沿ってチャンバ内で定在波を形成するようにチャンバ内に導入される。第2の電源は、負の電圧が上部電極に印加されている期間内でのみチャンバ内に電磁波を導入するように構成されている。 In another exemplary embodiment, a plasma processing apparatus is provided. A plasma processing apparatus includes a chamber, a substrate support, an upper electrode, a first power supply, and a second power supply. A substrate support is provided within the chamber. The upper electrode is provided above the substrate support. A first power supply is configured to periodically apply a negative voltage to the upper electrode. A second power supply is configured to generate electromagnetic waves to generate a plasma from the process gas within the chamber. The electromagnetic wave, which may be a VHF wave or a UHF wave, is introduced into the chamber to form a standing wave within the chamber along the lower surface of the upper electrode. The second power supply is configured to introduce electromagnetic waves into the chamber only during periods in which the negative voltage is applied to the upper electrode.
 一つの例示的実施形態において、プラズマ処理装置は、導入部を更に備える。導入部は、誘電体から形成されており、電磁波をそこからチャンバ内に導入するように上部電極の外周に沿って設けられていてもよい。上部電極は、処理ガスをチャンバ内に導入するシャワーヘッドを構成していてもよい。 In one exemplary embodiment, the plasma processing apparatus further comprises an introduction section. The lead-in portion may be formed from a dielectric material and may be provided along the outer periphery of the upper electrode so as to lead the electromagnetic wave therethrough into the chamber. The top electrode may form a showerhead that introduces process gases into the chamber.
 一つの例示的実施形態において、第1の電源は、高周波電圧を発生するように構成されていてもよい。プラズマ処理装置は、波形整形器を更に備えていてもよい。波形整形器は、高周波電圧に含まれる正の電圧を抑制するように高周波電圧の波形を整形するよう構成される。 In one exemplary embodiment, the first power supply may be configured to generate a high frequency voltage. The plasma processing apparatus may further comprise a waveform shaper. The waveform shaper is configured to shape the waveform of the high frequency voltage to suppress positive voltages contained in the high frequency voltage.
 一つの例示的実施形態において、第1の電源は、負の電圧として負の直流電圧を上部電極に周期的に印加するように構成されていてもよい。 In one exemplary embodiment, the first power supply may be configured to periodically apply a negative DC voltage to the upper electrode as the negative voltage.
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Various exemplary embodiments are described in detail below with reference to the drawings. In addition, suppose that the same code|symbol is attached|subjected to the part which is the same or equivalent in each drawing.
 図1は、一つの例示的実施形態に係るプラズマ処理方法の流れ図である。図1に示すプラズマ処理方法(以下、「方法MT」という)は、プラズマ処理装置を用いて行われる。 FIG. 1 is a flow diagram of a plasma processing method according to one exemplary embodiment. The plasma processing method (hereinafter referred to as "method MT") shown in FIG. 1 is performed using a plasma processing apparatus.
 図2は、一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。方法MTは、図2に示すプラズマ処理装置1を用いて行われ得る。プラズマ処理装置1は、平行平板型のプラズマ処理装置である。プラズマ処理装置1は、電磁波によりプラズマを生成するように構成されている。電磁波は、VHF波又はUHF波である。VHF波の帯域は30MHz~300MHzであり、UHF波の帯域は300MHz~3GHzである。 FIG. 2 is a diagram schematically showing a plasma processing apparatus according to one exemplary embodiment. Method MT can be performed using the plasma processing apparatus 1 shown in FIG. The plasma processing apparatus 1 is a parallel plate type plasma processing apparatus. The plasma processing apparatus 1 is configured to generate plasma using electromagnetic waves. The electromagnetic waves are VHF waves or UHF waves. The band of VHF waves is 30 MHz to 300 MHz, and the band of UHF waves is 300 MHz to 3 GHz.
 プラズマ処理装置1は、チャンバ10を備えている。チャンバ10は、内部空間を画成している。基板Wはチャンバ10の内部空間の中で処理される。チャンバ10は、その中心軸線として軸線AXを有している。軸線AXは、鉛直方向に延びる軸線である。 The plasma processing apparatus 1 includes a chamber 10. Chamber 10 defines an interior space. A substrate W is processed within the interior space of the chamber 10 . The chamber 10 has an axis AX as its central axis. The axis AX is an axis extending in the vertical direction.
 一実施形態においては、チャンバ10は、チャンバ本体12を含んでいてもよい。チャンバ本体12は、略円筒形状を有しており、その上部において開口されている。チャンバ本体12は、チャンバ10の側壁及び底部を提供している。チャンバ本体12は、アルミニウムのような金属から形成されている。チャンバ本体12は、接地されている。 In one embodiment, chamber 10 may include chamber body 12 . The chamber body 12 has a substantially cylindrical shape and is open at its upper portion. Chamber body 12 provides the sidewalls and bottom of chamber 10 . The chamber body 12 is made of metal such as aluminum. The chamber body 12 is grounded.
 チャンバ本体12の側壁は、通路12pを提供している。基板Wは、チャンバ10の内部と外部との間で搬送されるときに、通路12pを通過する。通路12pは、ゲートバルブ12vによって開閉可能である。ゲートバルブ12vは、チャンバ本体12の側壁に沿って設けられている。 A side wall of the chamber body 12 provides a passage 12p. The substrate W passes through the passageway 12p when being transported between the inside and outside of the chamber 10. As shown in FIG. The passage 12p can be opened and closed by a gate valve 12v. A gate valve 12 v is provided along the side wall of the chamber body 12 .
 チャンバ10は、上壁14を更に含んでいてもよい。上壁14は、アルミニウムのような金属から形成されている。上壁14は、後述するカバー導体と共にチャンバ本体12の上部の開口を閉じている。上壁14は、チャンバ本体12と共に接地されている。 The chamber 10 may further include a top wall 14 . Top wall 14 is formed from a metal such as aluminum. The upper wall 14 closes the upper opening of the chamber main body 12 together with a cover conductor which will be described later. The upper wall 14 is grounded together with the chamber body 12 .
 チャンバ10の底部は、排気口を提供している。排気口は、排気装置16に接続されている。排気装置16は、自動圧力制御弁のような圧力制御器及びターボ分子ポンプのような真空ポンプを含んでいる。 The bottom of chamber 10 provides an exhaust port. The exhaust port is connected to an exhaust device 16 . Exhaust system 16 includes a pressure controller, such as an automatic pressure control valve, and a vacuum pump, such as a turbomolecular pump.
 プラズマ処理装置1は、基板支持部18を更に備える。基板支持部18は、チャンバ10内に設けられている。基板支持部18は、その上に載置される基板Wを支持するように構成されている。基板Wは、略水平な状態で基板支持部18上に載置される。基板支持部18は、支持部材19によって支持されていてもよい。支持部材19は、チャンバ10の底部から上方に延びている。基板支持部18及び支持部材19は、窒化アルミニウム等の誘電体から形成され得る。 The plasma processing apparatus 1 further includes a substrate support section 18 . A substrate support 18 is provided within the chamber 10 . The substrate support 18 is configured to support the substrate W placed thereon. The substrate W is placed on the substrate support 18 in a substantially horizontal state. The substrate support section 18 may be supported by a support member 19 . Support member 19 extends upwardly from the bottom of chamber 10 . Substrate support 18 and support member 19 may be formed from a dielectric such as aluminum nitride.
 プラズマ処理装置1は、上部電極20を更に備える。上部電極20は、アルミニウムのような金属から形成されている。上部電極20は、基板支持部18の上方に設けられている。上部電極20は、チャンバ10の内部空間を画成する天部を構成している。上部電極20は、略円盤形状を有し得る。上部電極20は、その中心軸線として軸線AXを有している。 The plasma processing apparatus 1 further includes an upper electrode 20 . The upper electrode 20 is made of metal such as aluminum. The upper electrode 20 is provided above the substrate support portion 18 . The upper electrode 20 constitutes a ceiling that defines the internal space of the chamber 10 . The upper electrode 20 may have a substantially disk shape. The upper electrode 20 has an axis AX as its central axis.
 一実施形態において、上部電極20は、シャワーヘッドを構成している。上部電極20は、中空構造を有し得る。上部電極20は、複数のガス孔20hを提供している。複数のガス孔20hは、チャンバ10の内部空間に向けて開口している。上部電極20は、その中にガス拡散室20cを更に提供している。複数のガス孔20hは、ガス拡散室20cに接続しており、ガス拡散室20cから下方に延びている。 In one embodiment, the upper electrode 20 constitutes a showerhead. The upper electrode 20 can have a hollow structure. The upper electrode 20 provides a plurality of gas holes 20h. A plurality of gas holes 20 h are open toward the internal space of the chamber 10 . Top electrode 20 further provides a gas diffusion chamber 20c therein. A plurality of gas holes 20h are connected to the gas diffusion chamber 20c and extend downward from the gas diffusion chamber 20c.
 プラズマ処理装置1は、ガス供給管22を更に備えていてもよい。ガス供給管22は、円筒形状の管である。ガス供給管22は、アルミニウムのような金属から形成されている。ガス供給管22は、上部電極20の上方において、鉛直方向に延在している。ガス供給管22は、その中心軸線として軸線AXを有している。ガス供給管22の下端は、上部電極20の上部中央に接続している。上部電極20の上部中央は、ガスの入口を提供している。入口は、ガス拡散室20cに接続している。ガス供給管22は、ガスを上部電極20に供給する。ガス供給管22からのガスは、上部電極20の入口及びガス拡散室20cを介して、複数のガス孔20hからチャンバ10内に導入される。 The plasma processing apparatus 1 may further include a gas supply pipe 22. The gas supply pipe 22 is a cylindrical pipe. The gas supply pipe 22 is made of metal such as aluminum. The gas supply pipe 22 extends vertically above the upper electrode 20 . The gas supply pipe 22 has an axis AX as its central axis. The lower end of the gas supply pipe 22 is connected to the upper center of the upper electrode 20 . The top center of the top electrode 20 provides the gas inlet. The inlet is connected to the gas diffusion chamber 20c. A gas supply pipe 22 supplies gas to the upper electrode 20 . Gas from the gas supply pipe 22 is introduced into the chamber 10 through the inlet of the upper electrode 20 and the gas diffusion chamber 20c through the plurality of gas holes 20h.
 一実施形態において、プラズマ処理装置1は、ガス供給部24、ガス供給部26、及びガス供給部28を更に備えていてもよい。ガス供給部24は、ガス供給管22に接続されている。ガス供給部24は、ガスソース24s、一次バルブ24v1、流量制御器24c、及び二次バルブ24v2を含んでいる。ガスソース24sは、原料ガスのソースである。原料ガスは、シランガス(例えば、SiHガス又はトリメチルシランガス)のようなシリコン含有ガス又はハロゲン化金属ガス(例えば、TiClガス)のような金属含有ガスであり得る。ガスソース24sは、一次バルブ24v1、流量制御器24c、及び二次バルブ24v2を介してガス供給管22に接続されている。 In one embodiment, the plasma processing apparatus 1 may further include a gas supply section 24 , a gas supply section 26 and a gas supply section 28 . The gas supply section 24 is connected to the gas supply pipe 22 . The gas supply section 24 includes a gas source 24s, a primary valve 24v1, a flow controller 24c, and a secondary valve 24v2. The gas source 24s is a source of raw material gas. The source gas can be a silicon-containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) or a metal-containing gas such as a metal halide gas (eg, TiCl4 gas). The gas source 24s is connected to the gas supply pipe 22 via a primary valve 24v1, a flow controller 24c, and a secondary valve 24v2.
 ガス供給部26は、ガス供給管22に接続されている。ガス供給部26は、ガスソース26s、一次バルブ26v1、流量制御器26c、及び二次バルブ26v2を含んでいる。ガスソース26sは、処理ガスのソースである。処理ガスは、それから生成されるプラズマからの化学種を用いて基板Wを処理するために選択された如何なるガスであってもよい。一実施形態では、処理ガスは、基板W上に原料ガスから付着した原料を還元させる還元ガスであってもよい。処理ガスは、NHガス、Nガス、Hガスのような還元ガスであってもよい。ガスソース26sは、一次バルブ26v1、流量制御器26c、及び二次バルブ26v2を介してガス供給管22に接続されている。 The gas supply section 26 is connected to the gas supply pipe 22 . The gas supply section 26 includes a gas source 26s, a primary valve 26v1, a flow controller 26c, and a secondary valve 26v2. Gas source 26s is a source of process gas. The process gas may be any gas selected to process the substrate W with species from the plasma generated therefrom. In one embodiment, the process gas may be a reducing gas that reduces the source material deposited on the substrate W from the source gas. The process gas may be a reducing gas such as NH3 gas, N2 gas, H2 gas. The gas source 26s is connected to the gas supply pipe 22 via a primary valve 26v1, a flow controller 26c, and a secondary valve 26v2.
 ガス供給部28は、ガス供給管22に接続されている。ガス供給部28は、ガスソース28s、一次バルブ28v1、流量制御器28c、及び二次バルブ28v2を含んでいる。ガスソース28sは、不活性ガスのソースである。不活性ガスは、Arガスのような希ガスであり得る。ガスソース28sは、一次バルブ28v1、流量制御器28c、及び二次バルブ28v2を介してガス供給管22に接続されている。 The gas supply unit 28 is connected to the gas supply pipe 22 . The gas supply section 28 includes a gas source 28s, a primary valve 28v1, a flow controller 28c, and a secondary valve 28v2. Gas source 28s is a source of inert gas. The inert gas can be a noble gas such as Ar gas. The gas source 28s is connected to the gas supply pipe 22 via a primary valve 28v1, a flow controller 28c, and a secondary valve 28v2.
 一実施形態において、上部電極20は、上壁14の下方に設けられていてもよい。この実施形態において、上部電極20と上壁14との間の空間は、導波路30の一部を構成している。導波路30は、ガス供給管22が、ガス供給管22と上壁14との間に提供している空間も含む。 In one embodiment, the upper electrode 20 may be provided below the upper wall 14 . In this embodiment, the space between top electrode 20 and top wall 14 forms part of waveguide 30 . Waveguide 30 also includes a space provided by gas supply tube 22 between gas supply tube 22 and top wall 14 .
 プラズマ処理装置1は、導入部32を更に備えていてもよい。導入部32は、酸化アルミニウムのような誘電体から形成されている。導入部32は、そこからチャンバ10内に電磁波を導入するように上部電極20の外周に沿って設けられている。導入部32は、環形状を有する。導入部32は、上部電極20とチャンバ本体12との間の間隙を閉じており、導波路30に繋がっている。 The plasma processing apparatus 1 may further include an introduction section 32 . Lead-in 32 is formed from a dielectric such as aluminum oxide. The introduction part 32 is provided along the outer circumference of the upper electrode 20 so as to introduce electromagnetic waves into the chamber 10 from there. The introduction part 32 has an annular shape. The introduction part 32 closes the gap between the upper electrode 20 and the chamber body 12 and is connected to the waveguide 30 .
 以下、図2と共に、図3を参照する。図3は、図2のIII-III線に沿ってとった断面図である。上述したガス供給管22は、その長手方向の一部において、環状の鍔部22fを含んでいてもよい。鍔部22fは、ガス供給管22の他の部分22aから径方向に突き出している。 Below, FIG. 3 will be referred to along with FIG. FIG. 3 is a cross-sectional view taken along line III--III of FIG. The gas supply pipe 22 described above may include an annular flange 22f in a part of its longitudinal direction. The collar portion 22f radially protrudes from the other portion 22a of the gas supply pipe 22. As shown in FIG.
 プラズマ処理装置1は、電磁波の供給路36を更に備えていてもよい。供給路36は、導体36cを含んでいる。供給路36の導体36cは、ガス供給管22に接続されている。具体的に、導体36cの一端は、鍔部22fに接続されている。 The plasma processing apparatus 1 may further include an electromagnetic wave supply path 36 . The supply line 36 includes a conductor 36c. A conductor 36 c of the supply path 36 is connected to the gas supply pipe 22 . Specifically, one end of the conductor 36c is connected to the collar portion 22f.
 プラズマ処理装置1は、電源40(第2の電源)を更に備えている。導体36cの他端は、整合器40mを介して、電源40に接続されていてもよい。電源40は、電磁波の発生器である。整合器40mは、インピーダンス整合回路を有する。インピーダンス整合回路は、電源40の負荷のインピーダンスを、電源40の出力インピーダンスに整合させるように構成される。インピーダンス整合回路は、可変インピーダンスを有する。インピーダンス整合回路は、例えばπ型の回路であり得る。 The plasma processing apparatus 1 further includes a power supply 40 (second power supply). The other end of the conductor 36c may be connected to the power supply 40 via the matching device 40m. The power supply 40 is a generator of electromagnetic waves. The matching box 40m has an impedance matching circuit. The impedance matching circuit is configured to match the impedance of the load of power supply 40 to the output impedance of power supply 40 . The impedance matching circuit has a variable impedance. The impedance matching circuit can be, for example, a π-type circuit.
 電源40からの電磁波は、上部電極20の下面に沿ってチャンバ10内で定在波を形成するようにチャンバ10内に導入される。プラズマ処理装置1では、電源40からの電磁波は、整合器40m、供給路36(導体36c)、ガス供給管22、及び上部電極20の周りの導波路30を介して、導入部32からチャンバ10内に導入される。この電磁波は、ガス供給部26からの処理ガスをチャンバ10内で励起させて、プラズマを生成させる。 An electromagnetic wave from the power supply 40 is introduced into the chamber 10 so as to form a standing wave inside the chamber 10 along the lower surface of the upper electrode 20 . In the plasma processing apparatus 1, the electromagnetic wave from the power source 40 passes through the matching device 40m, the supply path 36 (conductor 36c), the gas supply pipe 22, and the waveguide 30 around the upper electrode 20, from the introduction part 32 to the chamber 10. introduced within. The electromagnetic waves excite the process gas from gas supply 26 in chamber 10 to generate plasma.
 一実施形態において、プラズマ処理装置1は、カバー導体44及び誘電体部46を更に備えていてもよい。カバー導体44は、略円筒形状を有している。カバー導体44は、チャンバ10の上方で、ガス供給管22を囲んでいる。カバー導体44は、その上端44tにおいてガス供給管22に接続されている。即ち、カバー導体44の上端44tは、カバー導体44とガス供給管22との間の空間を閉じている。カバー導体44の下端は、チャンバ10に接続されている。一実施形態では、カバー導体44の下端は、上壁14に接続されていてもよい。カバー導体44は、導体36cを囲んでいてもよい。カバー導体44と導体36cとの間の空間は、誘電体で埋められていてもよい。この誘電体は、誘電体部46と一体化されていてもよい。 In one embodiment, the plasma processing apparatus 1 may further include a cover conductor 44 and a dielectric portion 46. The cover conductor 44 has a substantially cylindrical shape. A cover conductor 44 surrounds the gas supply tube 22 above the chamber 10 . The cover conductor 44 is connected to the gas supply pipe 22 at its upper end 44t. That is, the upper end 44 t of the cover conductor 44 closes the space between the cover conductor 44 and the gas supply pipe 22 . A lower end of the cover conductor 44 is connected to the chamber 10 . In one embodiment, the lower end of cover conductor 44 may be connected to top wall 14 . A cover conductor 44 may surround the conductor 36c. A space between the cover conductor 44 and the conductor 36c may be filled with a dielectric. This dielectric may be integrated with the dielectric portion 46 .
 誘電体部46は、誘電体から形成されている。誘電体部46は、例えばポリテトラフルオロエチレン(PTFE)から形成されている。誘電体部46は、ガス供給管22の長手方向における一部分とカバー導体44との間に設けられている。誘電体部46は、ガス供給管22の長手方向における一部分からカバー導体44の内面まで径方向に沿って延在し、ガス供給管22の長手方向における当該一部分を囲むように周方向に沿って延在していてもよい。一実施形態において、誘電体部46は、鍔部22fの下面22bから上方に設けられていてもよい。即ち、誘電体部46の下端の鉛直方向における位置は、鍔部22fの下面22bの鉛直方向における位置と同一であってもよい。一実施形態においては、図2に示すように、ガス供給管22とカバー導体44との間の空間のうち鍔部22fの下面22bとカバー導体44の上端44tとの間の領域が、誘電体部46で埋められていてもよい。 The dielectric portion 46 is made of a dielectric. The dielectric portion 46 is made of, for example, polytetrafluoroethylene (PTFE). The dielectric portion 46 is provided between a portion of the gas supply pipe 22 in the longitudinal direction and the cover conductor 44 . The dielectric portion 46 radially extends from a portion of the gas supply pipe 22 in the longitudinal direction to the inner surface of the cover conductor 44 and extends circumferentially so as to surround the portion of the gas supply pipe 22 in the longitudinal direction. May be extended. In one embodiment, the dielectric portion 46 may be provided upward from the lower surface 22b of the collar portion 22f. That is, the vertical position of the lower end of the dielectric portion 46 may be the same as the vertical position of the lower surface 22b of the collar portion 22f. In one embodiment, as shown in FIG. 2, a region between the lower surface 22b of the collar portion 22f and the upper end 44t of the cover conductor 44 in the space between the gas supply pipe 22 and the cover conductor 44 is a dielectric material. The portion 46 may be filled.
 プラズマ処理装置1は、電源50(第1の電源)を更に備えている。電源50は、上部電極20に負の電圧を周期的に印加するように構成されている。以下、図2と共に、図4及び図5を参照する。図4は、図1に示すプラズマ処理方法に関連する一例のタイミングチャートである。図5は、図1に示すプラズマ処理方法に関連する別の例のタイミングチャートである。図4及び図5において、「LF」は、電源50によって発生される高周波電圧を表している。高周波電圧LFを表す実線は負の電圧を表しており、高周波電圧LFを表す破線は正の電圧を表している。また、図4及び図5において、「ON」は、対応のガスがチャンバ10内に供給されていることを示しており、「OFF」は、対応のガスのチャンバ10内への供給が停止されていることを示している。 The plasma processing apparatus 1 further includes a power supply 50 (first power supply). Power supply 50 is configured to periodically apply a negative voltage to upper electrode 20 . 4 and 5 will be referred to together with FIG. 2 below. FIG. 4 is an example timing chart related to the plasma processing method shown in FIG. FIG. 5 is a timing chart of another example related to the plasma processing method shown in FIG. 4 and 5, "LF" represents the high frequency voltage generated by the power supply 50. FIG. A solid line representing the high-frequency voltage LF represents a negative voltage, and a broken line representing the high-frequency voltage LF represents a positive voltage. 4 and 5, "ON" indicates that the corresponding gas is being supplied into the chamber 10, and "OFF" indicates that the supply of the corresponding gas into the chamber 10 is stopped. indicates that
 一実施形態において、電源50は、高周波電源であり、図4及び図5に示すように高周波電圧LFを発生する。高周波電圧LFの周波数は、400kHz以上、13.56MHz以下であり得る。この実施形態において、電源50は、整合器50mを介して上部電極20に接続されている。整合器50mは、インピーダンス整合回路を有する。インピーダンス整合回路は、電源50の負荷のインピーダンスを、電源50の出力インピーダンスに整合させるように構成される。インピーダンス整合回路は、可変インピーダンスを有する。 In one embodiment, power supply 50 is a high frequency power supply and generates high frequency voltage LF as shown in FIGS. The frequency of the high frequency voltage LF may be 400 kHz or higher and 13.56 MHz or lower. In this embodiment, the power supply 50 is connected to the upper electrode 20 through a matching box 50m. The matching box 50m has an impedance matching circuit. The impedance matching circuit is configured to match the impedance of the load of power supply 50 to the output impedance of power supply 50 . The impedance matching circuit has a variable impedance.
 プラズマ処理装置1では、電源50からの高周波電圧LFのうち負の電圧が上部電極20に印加される。これにより、負の電圧が、上部電極20に周期的に印加される。図2に示すように、プラズマ処理装置1は、波形整形器50sを更に備えていてもよい。波形整形器50sは、高周波電圧LFに含まれる正の電圧を抑制するように高周波電圧LFの波形を整形するよう構成されている。この波形整形器50sによる正の電圧の抑制の結果、電源50からの高周波電圧LFのうち負の電圧が上部電極20に印加される。一実施形態において、波形整形器50sは、ダイオードを含んでいてもよい。波形整形器50sのダイオードのアノードは、電源50(又は整合器50m)と上部電極20との間の電気的パスに接続されている。波形整形器50sのダイオードのカソードは、グランドに接続されている。 In the plasma processing apparatus 1 , the negative voltage of the high frequency voltage LF from the power supply 50 is applied to the upper electrode 20 . Thereby, a negative voltage is periodically applied to the upper electrode 20 . As shown in FIG. 2, the plasma processing apparatus 1 may further include a waveform shaper 50s. The waveform shaper 50s is configured to shape the waveform of the high frequency voltage LF so as to suppress the positive voltage contained in the high frequency voltage LF. As a result of suppressing the positive voltage by the waveform shaper 50 s, the negative voltage of the high frequency voltage LF from the power supply 50 is applied to the upper electrode 20 . In one embodiment, wave shaper 50s may include a diode. The anode of the diode of the waveform shaper 50 s is connected to the electrical path between the power supply 50 (or the matching device 50 m) and the upper electrode 20 . The cathode of the diode of the waveform shaper 50s is connected to the ground.
 上述した電源40は、図4及び図5に示すように、高周波電圧LFの周期CP内で負の電圧が上部電極20に印加される期間P内でのみ、電磁波をチャンバ10内に導入するように構成されている。一実施形態において、電源40は、期間P内の期間Pにおいてのみ、電磁波をチャンバ10内に導入するように構成されていてもよい。期間Pは、電源50からの負の電圧が当該負の電圧の最大の絶対値の半値以上の絶対値を有する期間であってもよい。期間Pは時点t1で開始され、時点t2で終了される。時点t1及びt2は、t0<t1<t2<t3を満たし、且つ、t1-t0>(1/6)(t3-t0)及びt3-t2>(1/6)(t3-t0)を満たしていてもよい。ここで、t0、t3はそれぞれ、期間Pの開始時点、終了時点である。 As shown in FIGS. 4 and 5, the power supply 40 described above introduces electromagnetic waves into the chamber 10 only during the period PN in which the negative voltage is applied to the upper electrode 20 within the period CP of the high frequency voltage LF. is configured as In one embodiment, power supply 40 may be configured to introduce electromagnetic waves into chamber 10 only during periods P A within periods P N . Period PA may be a period during which the negative voltage from power supply 50 has an absolute value equal to or greater than half the maximum absolute value of the negative voltage. Period PA starts at time t1 and ends at time t2. Time points t1 and t2 satisfy t0<t1<t2<t3 and satisfy t1-t0>(1/6)(t3-t0) and t3-t2>(1/6)(t3-t0) may Here, t0 and t3 are the start and end times of the period PN , respectively.
 一実施形態において、プラズマ処理装置1は、制御部60を更に備えていてもよい。制御部60は、プロセッサ、メモリといった記憶部、入力装置、表示装置、信号の入出力インターフェイス等を備えるコンピュータであり得る。制御部60は、プラズマ処理装置1の各部を制御する。制御部60の記憶部には、制御プログラム及びレシピデータが格納されている。制御プログラムは、プラズマ処理装置1で各種処理を実行するために、制御部60のプロセッサによって実行される。制御部60のプロセッサは、制御プログラムを実行し、レシピデータに従ってプラズマ処理装置1の各部を制御する。方法MTは、制御部60によるプラズマ処理装置1の各部の制御により、プラズマ処理装置1において行われ得る。 In one embodiment, the plasma processing apparatus 1 may further include a controller 60 . The control unit 60 may be a computer including a processor, a storage unit such as a memory, an input device, a display device, a signal input/output interface, and the like. The controller 60 controls each part of the plasma processing apparatus 1 . A storage unit of the control unit 60 stores a control program and recipe data. The control program is executed by the processor of the control unit 60 in order to perform various processes in the plasma processing apparatus 1. FIG. The processor of the controller 60 executes the control program and controls each part of the plasma processing apparatus 1 according to the recipe data. The method MT can be performed in the plasma processing apparatus 1 by controlling each section of the plasma processing apparatus 1 by the controller 60 .
 以下、再び図1を参照し、プラズマ処理装置1が用いられる場合を例にとって、方法MTについて説明する。図1に示すように、方法MTは、工程STa及び工程STbを含む。工程STaでは、負の電圧が上部電極20に周期的に印加される。一実施形態では、負の電圧は、正の電圧を抑制するように電源50からの高周波電圧LFの波形を整形することにより生成されて、上部電極20に印加される。 Hereinafter, referring to FIG. 1 again, the method MT will be described by taking the case where the plasma processing apparatus 1 is used as an example. As shown in FIG. 1, the method MT includes steps STa and STb. In step STa, a negative voltage is applied to the upper electrode 20 periodically. In one embodiment, the negative voltage is generated and applied to the top electrode 20 by shaping the waveform of the high frequency voltage LF from the power supply 50 to suppress the positive voltage.
 工程STbでは、電源40からの電磁波が、処理ガスからプラズマを生成するために、チャンバ10内に導入される。電磁波は、上部電極20の下面に沿って定在波を形成するようにチャンバ10内に導入される。電磁波は、電源50からの負の電圧が上部電極20に印加されている期間P内でのみチャンバ10内に導入される。一実施形態では、電磁波は、上述の期間P内でのみチャンバ10内に導入される。 In step STb, electromagnetic waves from the power supply 40 are introduced into the chamber 10 to generate plasma from the processing gas. An electromagnetic wave is introduced into chamber 10 to form a standing wave along the lower surface of upper electrode 20 . Electromagnetic waves are introduced into the chamber 10 only during the period PN during which the negative voltage from the power supply 50 is applied to the upper electrode 20 . In one embodiment, the electromagnetic waves are introduced into the chamber 10 only during the period PA mentioned above.
 方法MTでは、少なくとも工程STbが行われる期間において、ガス供給部26からの処理ガスがチャンバ10内に供給される。即ち、処理ガスは、少なくとも電源40からの電磁波がチャンバ10内に導入されている期間において、チャンバ10内に供給される。 In the method MT, the processing gas is supplied from the gas supply unit 26 into the chamber 10 at least during the period when the step STb is performed. That is, the processing gas is supplied into the chamber 10 at least while the electromagnetic wave from the power supply 40 is being introduced into the chamber 10 .
 図4及び図5に示すように、処理ガス及び不活性ガスが、方法MTが行われている間、連続的にチャンバ10内に供給されてもよい。処理ガス及び不活性ガスはそれぞれ、ガス供給部26及びガス供給部28からチャンバ10内に供給される。 As shown in FIGS. 4 and 5, the process gas and inert gas may be continuously supplied into the chamber 10 while the method MT is being performed. A process gas and an inert gas are supplied into the chamber 10 from a gas supply 26 and a gas supply 28, respectively.
 また、図4に示すように、原料ガスが、方法MTが行われている間、連続的にチャンバ10内に供給されてもよい。即ち、処理ガス及び原料ガスは、電源40からの電磁波がチャンバ10内に導入されている期間において、チャンバ10内に同時に供給されてもよい。 Further, as shown in FIG. 4, the raw material gas may be continuously supplied into the chamber 10 while the method MT is being performed. That is, the processing gas and the source gas may be simultaneously supplied into the chamber 10 while the electromagnetic wave from the power supply 40 is being introduced into the chamber 10 .
 或いは、図5に示すように、原料ガスの供給は、電源40からの電磁波がチャンバ10内に導入されてない期間において行われ、電源40からの電磁波がチャンバ10内に導入されている期間において停止されてもよい。 Alternatively, as shown in FIG. 5, the raw material gas is supplied during the period when the electromagnetic wave from the power supply 40 is not introduced into the chamber 10, and during the period when the electromagnetic wave from the power supply 40 is introduced into the chamber 10. may be stopped.
 上部電極20に印加される負の電圧が高周波電圧LFから生成される場合には、方法MTによって、導電性を有する膜が基板W上に形成され得る。この場合には、原料ガスとして、シランガス(例えば、SiHガス又はトリメチルシランガス)のようなシリコン含有ガスを用いることができ、処理ガスとして、Hガスのような還元ガスを用いることができる。或いは、原料ガスとして、ハロゲン化金属ガス(例えば、TiClガス)のような金属含有ガスを用いることができ、処理ガスとして、Hガスのような還元ガスを用いることができる。方法MTが図4に示すタイミングチャートに従って行われる場合には、膜は、プラズマ支援化学気相成長(CVD)法により基板W上に形成される。方法MTが図5に示すタイミングチャートに従って行われる場合には、膜は、プラズマ支援原子層堆積(ALD)法により基板W上に形成される。 A conductive film can be formed on the substrate W by the method MT when the negative voltage applied to the upper electrode 20 is generated from the high frequency voltage LF. In this case, a silicon - containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) can be used as the source gas, and a reducing gas such as H2 gas can be used as the process gas. Alternatively, a metal - containing gas such as a metal halide gas (eg, TiCl4 gas) can be used as the source gas, and a reducing gas such as H2 gas can be used as the process gas. When the method MT is performed according to the timing chart shown in FIG. 4, the film is formed on the substrate W by a plasma-enhanced chemical vapor deposition (CVD) method. When the method MT is performed according to the timing chart shown in FIG. 5, the film is formed on the substrate W by a plasma-assisted atomic layer deposition (ALD) method.
 上述したように、電磁波は、負の電圧が上部電極20に印加されている期間内でのみチャンバ10内に導入される。負の電圧が上部電極20に印加されている期間においては、上部電極20の直下におけるシースの厚さが大きくなる。上部電極20の直下におけるシースの厚さが大きい場合には、上部電極20の下面に沿った電磁波の波長が長くなり、真空下での電磁波の波長に近付く。電源40からの電磁波は、上部電極20の下面に沿ったその波長が長くなる状態のときにチャンバ10内に導入されるので、チャンバ10内でのプラズマの密度の分布が均一化される。 As described above, electromagnetic waves are introduced into chamber 10 only during the period in which the negative voltage is applied to upper electrode 20 . During the period in which the negative voltage is applied to the upper electrode 20, the thickness of the sheath directly below the upper electrode 20 increases. When the thickness of the sheath directly below the upper electrode 20 is large, the wavelength of the electromagnetic wave along the lower surface of the upper electrode 20 becomes longer and approaches the wavelength of the electromagnetic wave under vacuum. Since the electromagnetic wave from the power supply 40 is introduced into the chamber 10 when its wavelength is lengthened along the lower surface of the upper electrode 20, the plasma density distribution in the chamber 10 is made uniform.
 また、電源50からの高周波電圧LFのうち正の電圧が抑制されることにより、負の電圧が上部電極20に印加される。即ち、上部電極20に対する正の電圧の印加が抑制されるので、プラズマ電位の上昇が抑制される。プラズマ電位の上昇が抑制されることにより、基板W及びチャンバ10へのイオンによるダメージが軽減され、且つ、高密度のプラズマを用いたプロセスが可能になる。 Also, by suppressing the positive voltage of the high-frequency voltage LF from the power supply 50 , a negative voltage is applied to the upper electrode 20 . That is, since the application of positive voltage to the upper electrode 20 is suppressed, the increase in plasma potential is suppressed. By suppressing the rise in the plasma potential, damage to the substrate W and the chamber 10 by ions is reduced, and a process using high-density plasma becomes possible.
 以下、図6を参照して、別の例示的実施形態に係るプラズマ処理装置について説明する。図6は、別の例示的実施形態に係るプラズマ処理装置を概略的に示す図である。以下の説明では、図6と共に図7及び図8を参照する。図7及び図8の各々は、図1に示すプラズマ処理方法に関連する更に別の例のタイミングチャートである。図7及び図8において、「DCV」は、電源50Bによって発生される電圧を表している。また、図7及び図8において、「ON」は、対応のガスがチャンバ10内に供給されていることを示しており、「OFF」は、対応のガスのチャンバ10内への供給が停止されていることを示している。 A plasma processing apparatus according to another exemplary embodiment will be described below with reference to FIG. FIG. 6 is a schematic diagram of a plasma processing apparatus according to another exemplary embodiment. 7 and 8 will be referred to along with FIG. 6 in the following description. Each of FIGS. 7 and 8 is a timing chart of still another example related to the plasma processing method shown in FIG. 7 and 8, "DCV" represents the voltage generated by power supply 50B. 7 and 8, "ON" indicates that the corresponding gas is being supplied into the chamber 10, and "OFF" indicates that the supply of the corresponding gas into the chamber 10 is stopped. indicates that
 図6に示すプラズマ処理装置1Bは、電源50の代わりに電源50Bを備えている。プラズマ処理装置1Bの他の構成は、プラズマ処理装置1の対応の構成と同一であり得る。電源50Bは、上部電極20に印加される負の電圧として負の直流電圧Vを周期的に発生するように構成されている。電源50Bが負の直流電圧Vを上部電極20に印加する周期CPを規定する周波数は、400kHz以上、13.56MHz以下であり得る。電源50Bは、負の直流電圧Vを周期CP内の期間Pにおいて上部電極20に印加する。なお、プラズマ処理装置1Bにおいても、電源40は、負の直流電圧Vが上部電極20に印加されている期間P内でのみ、電磁波をチャンバ10内に導入する。 A plasma processing apparatus 1B shown in FIG. Other configurations of the plasma processing apparatus 1B may be the same as corresponding configurations of the plasma processing apparatus 1B. The power supply 50B is configured to periodically generate a negative DC voltage VN as the negative voltage applied to the upper electrode 20. FIG. The frequency that defines the period CP at which the power supply 50B applies the negative DC voltage VN to the upper electrode 20 may be 400 kHz or more and 13.56 MHz or less. The power supply 50B applies a negative DC voltage VN to the upper electrode 20 during the period PN within the cycle CP. Also in the plasma processing apparatus 1B, the power supply 40 introduces electromagnetic waves into the chamber 10 only during the period PN during which the negative DC voltage VN is applied to the upper electrode 20. FIG.
 一実施形態において、電源50Bは、期間P以外の期間において、正の直流電圧Vを上部電極20に印加してもよい。電源50Bが上部電極20に印加する負の直流電圧Vの絶対値は、電源50Bが上部電極20に印加する正の直流電圧Vの絶対値よりも大きくてもよい。例えば、電源50Bが上部電極20に印加する負の直流電圧Vの絶対値は、200V以上であってもよい。また、電源50Bが上部電極20に印加する正の直流電圧Vの絶対値は、50V以下、例えば約10Vであってもよい。 In one embodiment, the power supply 50B may apply the positive DC voltage VP to the upper electrode 20 during periods other than the period PN . The absolute value of the negative DC voltage VN applied to the upper electrode 20 by the power supply 50B may be greater than the absolute value of the positive DC voltage VP applied to the upper electrode 20 by the power supply 50B. For example, the absolute value of the negative DC voltage VN applied to the upper electrode 20 by the power supply 50B may be 200V or more. Also, the absolute value of the positive DC voltage VP applied to the upper electrode 20 by the power supply 50B may be 50V or less, for example, about 10V.
 一実施形態においては、負の直流電圧Vが上部電極20に印加される期間の時間長Dと正の直流電圧Vが上部電極20に印加される期間の時間長Dは、上記の式(1)を満たしていてもよい。 In one embodiment, the length of time D N during which the negative DC voltage VN is applied to the upper electrode 20 and the length of time D P during which the positive DC voltage V P is applied to the upper electrode 20 are (1) may be satisfied.
 ここで、各周期CP内において正の直流電圧Vが印加されている間に上部電極20に蓄積される電荷量Qは、下記の式(2)で表される。
Figure JPOXMLDOC01-appb-M000003
ここで、I、e、n、A、v、Tはそれぞれ、プラズマ電子電流、素電荷、プラズマ電子密度、上部電極20の下面の面積、電子平均速度、チャンバ内で生成されるプラズマにおける電子温度である。
Here, the charge amount QP accumulated in the upper electrode 20 while the positive DC voltage VP is being applied within each period CP is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000003
where I e , e, n e , A, v e , and T e are, respectively, the plasma electron current, the elementary charge, the plasma electron density, the area of the lower surface of the upper electrode 20, the electron average velocity generated in the chamber, is the electron temperature in the plasma.
 また、各周期CP内において負の直流電圧Vが印加されている間に上部電極20に蓄積される電荷量Qは、下記の式(3)で表される。
Figure JPOXMLDOC01-appb-M000004
ここで、I、u、nはそれぞれ、プラズマイオン電流、ボーム速度、プラズマシースの端部(プラズマシースとバルクプラズマとの境界)での電子密度である。
Also, the charge amount QN accumulated in the upper electrode 20 while the negative DC voltage VN is being applied within each period CP is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000004
where I i , u B , and n s are the plasma ion current, Bohm velocity, and electron density at the edge of the plasma sheath (boundary between plasma sheath and bulk plasma), respectively.
 また、v及びuは、下記の式(4)及び式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
ここで、Mは、イオン質量である。
Moreover, v e and u B are represented by the following formulas (4) and (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
where M is the ion mass.
 また、各周期CPにおいて上部電極20における電荷量がゼロになる条件、即ち、式(2)で表されるQと式(3)で表されるQが等しいとの条件と、式(2)~式(5)から、下記の式(6)が導かれる。
Figure JPOXMLDOC01-appb-M000007
この式(6)から上記の式(1)が導かれる。時間長Dと時間長Dが式(1)を満たす場合には、各周期CPにおいて、上部電極20における蓄積電荷量がゼロになる。
Further, the condition that the amount of charge in the upper electrode 20 becomes zero in each period CP, that is, the condition that QP expressed by Equation (2) and QN expressed by Equation (3) are equal, and Equation ( From 2) to (5), the following formula (6) is derived.
Figure JPOXMLDOC01-appb-M000007
The above equation (1) is derived from this equation (6). When the time length DN and the time length DP satisfy the formula (1), the accumulated charge amount in the upper electrode 20 becomes zero in each period CP.
 以下、再び図1を参照し、プラズマ処理装置1Bが用いられる場合を例にとって、方法MTについて説明する。工程STaでは、負の直流電圧Vが上部電極20に周期的に印加される。負の直流電圧Vが上部電極20に印加されていない期間においては、正の直流電圧Vが上部電極20に印加されてもよい。 Hereinafter, referring to FIG. 1 again, the method MT will be described taking the case where the plasma processing apparatus 1B is used as an example. In step STa , a negative DC voltage VN is periodically applied to the upper electrode 20 . A positive DC voltage VP may be applied to the upper electrode 20 during periods when the negative DC voltage VN is not applied to the upper electrode 20 .
 工程STbでは、電源40からの電磁波が、処理ガスからプラズマを生成するために、チャンバ10内に導入される。電磁波は、上部電極20の下面に沿って定在波を形成するようにチャンバ10内に導入される。電磁波は、電源50Bからの負の直流電圧Vが上部電極20に印加されている期間P内でのみチャンバ10内に導入される。 In step STb, electromagnetic waves from the power supply 40 are introduced into the chamber 10 to generate plasma from the processing gas. An electromagnetic wave is introduced into chamber 10 to form a standing wave along the lower surface of upper electrode 20 . Electromagnetic waves are introduced into the chamber 10 only during the period PN during which the negative DC voltage VN from the power supply 50B is applied to the upper electrode 20 .
 方法MTでは、少なくとも工程STbが行われる期間において、ガス供給部26からの処理ガスがチャンバ10内に供給される。処理ガスは、基板Wを処理する任意のガスであり得る。 In the method MT, the processing gas is supplied from the gas supply unit 26 into the chamber 10 at least during the period when the step STb is performed. The process gas can be any gas that processes the substrate W. FIG.
 図7及び図8に示すように、処理ガス及び不活性ガスが、方法MTが行われている間、連続的にチャンバ10内に供給されてもよい。処理ガス及び不活性ガスはそれぞれ、ガス供給部26及びガス供給部28からチャンバ10内に供給される。 As shown in FIGS. 7 and 8, the process gas and inert gas may be continuously supplied into the chamber 10 while the method MT is being performed. A process gas and an inert gas are supplied into the chamber 10 from a gas supply 26 and a gas supply 28, respectively.
 また、図7に示すように、原料ガスが、方法MTが行われている間、連続的にチャンバ10内に供給されてもよい。即ち、処理ガス及び原料ガスは、電源40からの電磁波がチャンバ10内に導入されている期間において、チャンバ10内に同時に供給されてもよい。 Further, as shown in FIG. 7, the raw material gas may be continuously supplied into the chamber 10 while the method MT is being performed. That is, the processing gas and the source gas may be simultaneously supplied into the chamber 10 while the electromagnetic wave from the power supply 40 is being introduced into the chamber 10 .
 或いは、図8に示すように、原料ガスの供給は、電源40からの電磁波がチャンバ10内に導入されてない期間において行われ、電源40からの電磁波がチャンバ10内に導入されている期間において停止されてもよい。 Alternatively, as shown in FIG. 8, the raw material gas is supplied during the period when the electromagnetic wave from the power supply 40 is not introduced into the chamber 10, and during the period when the electromagnetic wave from the power supply 40 is introduced into the chamber 10. may be stopped.
 上部電極20に印加される負の電圧が負の直流電圧である場合には、方法MTによって、導電性を有する膜又は絶縁膜が基板W上に形成されてもよい。導電性を有する膜が形成される場合には、原料ガスとして、シランガス(例えば、SiHガス又はトリメチルシランガス)のようなシリコン含有ガスを用いることができ、処理ガスとして、Hガスのような還元ガスを用いることができる。或いは、導電性を有する膜が形成される場合には、原料ガスとして、ハロゲン化金属ガス(例えば、TiClガス)のような金属含有ガスを用いることができ、処理ガスとして、Hガスのような還元ガスを用いることができる。絶縁膜が形成される場合には、原料ガスとして、シランガス(例えば、SiHガス又はトリメチルシランガス)のようなシリコン含有ガスを用いることができ、処理ガスとして、Nガス又はNHガスのような還元ガスを用いることができる。方法MTが図7に示すタイミングチャートに従って行われる場合には、膜は、プラズマ支援化学気相成長(CVD)法により基板W上に形成される。方法MTが図8に示すタイミングチャートに従って行われる場合には、膜は、プラズマ支援原子層堆積(ALD)法により基板W上に形成される。 If the negative voltage applied to the upper electrode 20 is a negative DC voltage, a conductive film or insulating film may be formed on the substrate W by the method MT. When a conductive film is formed, a silicon - containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) can be used as the source gas, and a processing gas such as H2 gas can be used as the processing gas. A reducing gas can be used. Alternatively, when a conductive film is to be formed, a metal - containing gas such as a metal halide gas (e.g., TiCl4 gas) can be used as the raw material gas, and H2 gas can be used as the processing gas. Such a reducing gas can be used. When an insulating film is formed, a silicon-containing gas such as silane gas (eg, SiH4 gas or trimethylsilane gas) can be used as the source gas, and a processing gas such as N2 gas or NH3 gas can be used. Any reducing gas can be used. When the method MT is performed according to the timing chart shown in FIG. 7, the film is formed on the substrate W by a plasma-enhanced chemical vapor deposition (CVD) method. When the method MT is performed according to the timing chart shown in FIG. 8, the film is formed on the substrate W by a plasma-assisted atomic layer deposition (ALD) method.
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。 Although various exemplary embodiments have been described above, various additions, omissions, substitutions, and modifications may be made without being limited to the exemplary embodiments described above. Also, elements from different embodiments can be combined to form other embodiments.
 以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。 From the foregoing description, it will be appreciated that various embodiments of the present disclosure have been set forth herein for purposes of illustration, and that various changes may be made without departing from the scope and spirit of the present disclosure. Will. Therefore, the various embodiments disclosed herein are not intended to be limiting, with a true scope and spirit being indicated by the following claims.
 1…プラズマ処理装置、10…チャンバ、18…基板支持部、20…上部電極、40…電源、50…電源。 1... Plasma processing apparatus, 10... Chamber, 18... Substrate support, 20... Upper electrode, 40... Power supply, 50... Power supply.

Claims (15)

  1.  プラズマ処理装置の上部電極に負の電圧を周期的に印加する工程と、
     前記プラズマ処理装置のチャンバ内で処理ガスからプラズマを生成するために該チャンバ内に電磁波を導入する工程であり、該電磁波は、VHF波又はUHF波であり、前記上部電極の下面に沿って前記チャンバ内で定在波を形成するように前記チャンバ内に導入される、該工程と、
    を含み、
     前記電磁波は、前記負の電圧が前記上部電極に印加されている期間内でのみ前記チャンバ内に導入される、プラズマ処理方法。
    periodically applying a negative voltage to the upper electrode of the plasma processing apparatus;
    a step of introducing an electromagnetic wave into the chamber of the plasma processing apparatus to generate plasma from a processing gas in the chamber, the electromagnetic wave being a VHF wave or a UHF wave, along the lower surface of the upper electrode; introduced into the chamber to form a standing wave within the chamber;
    including
    The plasma processing method, wherein the electromagnetic wave is introduced into the chamber only during a period in which the negative voltage is applied to the upper electrode.
  2.  前記負の電圧は、高周波電圧に含まれる正の電圧を抑制するように該高周波電圧の波形を整形することにより、生成される、請求項1に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the negative voltage is generated by shaping the waveform of the high frequency voltage so as to suppress the positive voltage contained in the high frequency voltage.
  3.  前記電磁波は、前記負の電圧が該負の電圧の最大の絶対値の半値以上の絶対値を有する各期間において、前記チャンバ内に導入される、請求項2に記載のプラズマ処理方法。 3. The plasma processing method according to claim 2, wherein said electromagnetic wave is introduced into said chamber in each period in which said negative voltage has an absolute value equal to or greater than half the maximum absolute value of said negative voltage.
  4.  前記電磁波の前記チャンバ内への導入は、前記負の電圧が前記上部電極に印加される各期間内で、時点t1から開始され、時点t2で終了され、
     前記時点t1及びt2は、t0<t1<t2<t3を満たし、且つ、t1-t0>(1/6)(t3-t0)及びt3-t2>(1/6)(t3-t0)を満たし、
     ここで、前記t0、前記t3はそれぞれ、前記負の電圧が前記上部電極に印加される各期間の開始時点、終了時点である、
    請求項2に記載のプラズマ処理方法。
    introduction of the electromagnetic wave into the chamber begins at time t1 and ends at time t2 within each period in which the negative voltage is applied to the top electrode;
    The time points t1 and t2 satisfy t0<t1<t2<t3, and satisfy t1-t0>(1/6)(t3-t0) and t3-t2>(1/6)(t3-t0) ,
    Here, t0 and t3 are the start and end points of each period in which the negative voltage is applied to the upper electrode, respectively.
    The plasma processing method according to claim 2.
  5.  前記負の電圧は、前記上部電極に周期的に印加される負の直流電圧である、請求項1に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein said negative voltage is a negative DC voltage periodically applied to said upper electrode.
  6.  前記負の電圧が前記上部電極に印加されていない期間において、正の直流電圧が前記上部電極に印加される、請求項5に記載のプラズマ処理方法。 The plasma processing method according to claim 5, wherein a positive DC voltage is applied to the upper electrode during a period in which the negative voltage is not applied to the upper electrode.
  7.  前記負の直流電圧の絶対値は、前記正の直流電圧の絶対値よりも大きい、請求項6に記載のプラズマ処理方法。 The plasma processing method according to claim 6, wherein the absolute value of said negative DC voltage is greater than the absolute value of said positive DC voltage.
  8.  前記負の直流電圧が印加される期間の時間長Dと前記正の直流電圧が印加される期間の時間長Dは、
    Figure JPOXMLDOC01-appb-M000001
    を満たし、ここで、Vは前記正の直流電圧のレベルであり、Tは前記チャンバ内で生成されるプラズマにおける電子温度である、
    請求項7に記載のプラズマ処理方法。
    The time length DN of the period during which the negative DC voltage is applied and the time length DP of the period during which the positive DC voltage is applied are
    Figure JPOXMLDOC01-appb-M000001
    where V P is the level of the positive DC voltage and T e is the electron temperature in the plasma generated in the chamber.
    The plasma processing method according to claim 7.
  9.  前記チャンバ内に原料ガスを供給する工程を更に含み、
     前記処理ガスは、前記チャンバ内で基板上に前記原料ガスから付着した原料を還元させる還元ガスである、
    請求項1~8の何れか一項に記載のプラズマ処理方法。
    further comprising supplying a raw material gas into the chamber;
    The processing gas is a reducing gas that reduces the raw material deposited on the substrate from the raw material gas in the chamber.
    The plasma processing method according to any one of claims 1 to 8.
  10.  前記原料ガスと前記処理ガスは、前記電磁波が前記チャンバ内に導入されている期間において、前記チャンバ内に同時に供給される、請求項9に記載のプラズマ処理方法。 The plasma processing method according to claim 9, wherein said raw material gas and said processing gas are simultaneously supplied into said chamber while said electromagnetic wave is being introduced into said chamber.
  11.  前記原料ガスの前記チャンバ内への供給は、前記電磁波が前記チャンバ内に導入されてない期間において行われ、前記電磁波が前記チャンバ内に導入されている期間において停止される、請求項9に記載のプラズマ処理方法。 10. The supply of the raw material gas into the chamber according to claim 9, wherein the supply of the raw material gas into the chamber is performed during a period in which the electromagnetic wave is not introduced into the chamber, and is stopped during a period in which the electromagnetic wave is introduced into the chamber. plasma treatment method.
  12.  チャンバと、
     前記チャンバ内に設けられた基板支持部と、
     前記基板支持部の上方に設けられた上部電極と、
     前記上部電極に負の電圧を周期的に印加するように構成された第1の電源と、
     前記チャンバ内で処理ガスからプラズマを生成するために電磁波を発生するように構成された第2の電源であり、前記電磁波は、VHF波又はUHF波であり、前記上部電極の下面に沿って前記チャンバ内で定在波を形成するように前記チャンバ内に導入される、該第2の電源と、
     を備え、
     前記第2の電源は、前記負の電圧が前記上部電極に印加されている期間内でのみ前記チャンバ内に前記電磁波を導入するように構成されている、
    プラズマ処理装置。
    a chamber;
    a substrate support provided within the chamber;
    an upper electrode provided above the substrate support;
    a first power supply configured to periodically apply a negative voltage to the upper electrode;
    a second power supply configured to generate electromagnetic waves to generate a plasma from a process gas within the chamber, the electromagnetic waves being VHF waves or UHF waves; the second power source introduced into the chamber to form a standing wave within the chamber;
    with
    The second power supply is configured to introduce the electromagnetic wave into the chamber only during a period in which the negative voltage is applied to the upper electrode.
    Plasma processing equipment.
  13.  誘電体から形成されており、前記電磁波をそこから前記チャンバ内に導入するように前記上部電極の外周に沿って設けられた導入部を更に備え、
     前記上部電極は、前記処理ガスを前記チャンバ内に導入するシャワーヘッドを構成している、
    請求項12に記載のプラズマ処理装置。
    further comprising an introduction section formed from a dielectric material and provided along the perimeter of the upper electrode to introduce the electromagnetic wave therefrom into the chamber;
    the upper electrode forms a showerhead that introduces the process gas into the chamber;
    The plasma processing apparatus according to claim 12.
  14.  前記第1の電源は、高周波電圧を発生するように構成されており、
     前記高周波電圧に含まれる正の電圧を抑制するように前記高周波電圧の波形を整形するよう構成された波形整形器を更に備える、
    請求項12又は13に記載のプラズマ処理装置。
    The first power supply is configured to generate a high frequency voltage,
    further comprising a waveform shaper configured to shape the waveform of the high-frequency voltage so as to suppress positive voltages contained in the high-frequency voltage;
    The plasma processing apparatus according to claim 12 or 13.
  15.  前記第1の電源は、前記負の電圧として負の直流電圧を前記上部電極に周期的に印加するように構成されている、請求項12又は13に記載のプラズマ処理装置。 14. The plasma processing apparatus according to claim 12, wherein said first power supply is configured to periodically apply a negative DC voltage to said upper electrode as said negative voltage.
PCT/JP2022/000252 2021-01-19 2022-01-06 Plasma processing method and plasma processing device WO2022158305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006253A JP2022110695A (en) 2021-01-19 2021-01-19 Plasma processing method and plasma processing apparatus
JP2021-006253 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158305A1 true WO2022158305A1 (en) 2022-07-28

Family

ID=82548857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000252 WO2022158305A1 (en) 2021-01-19 2022-01-06 Plasma processing method and plasma processing device

Country Status (2)

Country Link
JP (1) JP2022110695A (en)
WO (1) WO2022158305A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205823A (en) * 2009-03-02 2010-09-16 Tokyo Electron Ltd Plasma treatment apparatus
JP2013122966A (en) * 2011-12-09 2013-06-20 Tokyo Electron Ltd Plasma processing method and plasma processing device
WO2017188029A1 (en) * 2016-04-28 2017-11-02 東京エレクトロン株式会社 Plasma treatment apparatus
WO2018101065A1 (en) * 2016-11-30 2018-06-07 東京エレクトロン株式会社 Plasma treatment device
JP2019216182A (en) * 2018-06-13 2019-12-19 東京エレクトロン株式会社 Deposition device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205823A (en) * 2009-03-02 2010-09-16 Tokyo Electron Ltd Plasma treatment apparatus
JP2013122966A (en) * 2011-12-09 2013-06-20 Tokyo Electron Ltd Plasma processing method and plasma processing device
WO2017188029A1 (en) * 2016-04-28 2017-11-02 東京エレクトロン株式会社 Plasma treatment apparatus
WO2018101065A1 (en) * 2016-11-30 2018-06-07 東京エレクトロン株式会社 Plasma treatment device
JP2019216182A (en) * 2018-06-13 2019-12-19 東京エレクトロン株式会社 Deposition device

Also Published As

Publication number Publication date
JP2022110695A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
KR100583606B1 (en) Mixed frequency cvd process and apparatus
EP1401014B1 (en) Plasma processing device, and method of cleaning the same
KR100900595B1 (en) Method and apparatus to confine plasma and to enhance flow conductance
EP1672093B1 (en) Film-forming apparatus and film-forming method
US11004662B2 (en) Temperature controlled spacer for use in a substrate processing chamber
US20050124166A1 (en) In situ application of etch back for improved deposition into high-aspect-ratio features
US10968513B2 (en) Plasma film-forming apparatus and substrate pedestal
US11387134B2 (en) Process kit for a substrate support
US20120241090A1 (en) Plasma processing apparatus
CN113939893B (en) Panel with curved surface
US10553409B2 (en) Method of cleaning plasma processing apparatus
KR101971773B1 (en) Substrate processing apparatus
US6016765A (en) Plasma processing apparatus
WO2022158305A1 (en) Plasma processing method and plasma processing device
WO2022158307A1 (en) Plasma treatment method and plasma treatment device
US20210043427A1 (en) Plasma processing apparatus
US20220028666A1 (en) Processing apparatus and plasma processing method
US20220344134A1 (en) Process kit for a substrate support
KR100755116B1 (en) Method for fabricating pecvd silicon nitride
KR20220117149A (en) Etching method and plasma processing apparatus
US20150110973A1 (en) Plasma processing apparatus and plasma processing method
US20180294139A1 (en) Gas phase particle reduction in pecvd chamber
JP7450475B2 (en) plasma processing equipment
US20220351981A1 (en) Etching method, plasma processing apparatus, substrate processing system, and program
JP7278896B2 (en) Plasma processing method and plasma processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742429

Country of ref document: EP

Kind code of ref document: A1