WO2017168581A1 - 発光装置 - Google Patents
発光装置 Download PDFInfo
- Publication number
- WO2017168581A1 WO2017168581A1 PCT/JP2016/060200 JP2016060200W WO2017168581A1 WO 2017168581 A1 WO2017168581 A1 WO 2017168581A1 JP 2016060200 W JP2016060200 W JP 2016060200W WO 2017168581 A1 WO2017168581 A1 WO 2017168581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- layer
- conductive layer
- insulating layer
- emitting device
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 337
- 239000000758 substrate Substances 0.000 claims description 46
- 238000005192 partition Methods 0.000 claims description 45
- 239000012044 organic layer Substances 0.000 claims description 39
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 description 20
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000004642 Polyimide Substances 0.000 description 8
- 239000011247 coating layer Substances 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 8
- 230000005525 hole transport Effects 0.000 description 7
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 229910001182 Mo alloy Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- -1 polyethylene naphthalate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BSUHXFDAHXCSQL-UHFFFAOYSA-N [Zn+2].[W+4].[O-2].[In+3] Chemical compound [Zn+2].[W+4].[O-2].[In+3] BSUHXFDAHXCSQL-UHFFFAOYSA-N 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- COLNWNFTWHPORY-UHFFFAOYSA-M lithium;8-hydroxyquinoline-2-carboxylate Chemical compound [Li+].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 COLNWNFTWHPORY-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
Definitions
- the present invention relates to a light emitting device.
- the light emitting device has a substrate and a plurality of light emitting units on the substrate.
- Each light emitting unit includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode. More specifically, the light emitting device has a first conductive layer extending in the first direction and a second conductive layer extending in a second direction orthogonal to the first direction.
- the first conductive layer has a portion overlapping the second conductive layer.
- the second conductive layer has a portion overlapping the first conductive layer.
- the above-described portion of the first conductive layer functions as the first electrode of the light emitting unit.
- the above-described portion of the second conductive layer functions as the second electrode of the light emitting unit.
- Patent Document 1 describes an insulating layer for defining each side of a light emitting portion.
- the insulating layer is on the substrate and the first conductive layer.
- the insulating layer is made of polyimide, for example.
- the insulating layer has an opening that exposes a part of the first conductive layer (a portion that functions as the first electrode of the light emitting portion).
- the second conductive layer is located on the insulating layer and on the opening so that a part of the second conductive layer (a part functioning as the second electrode of the light emitting unit) overlaps with the opening.
- each side of the light emitting unit is defined by the edge of the opening.
- an insulating layer having an opening may be formed in order to define an edge (side) of the light emitting portion.
- the present inventor examined it became clear that the substance which degrades a light emission part may propagate through the above-mentioned insulating layer.
- the present invention even if an insulating layer is used to demarcate the sides of the light emitting portion, it is an example to suppress a substance that deteriorates the light emitting portion from being widely propagated through the insulating layer. As mentioned.
- the invention described in claim 1 A substrate, An insulating layer on the substrate; A plurality of light emitting portions exposed from the insulating layer on the substrate, each having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode; With The light emitting unit intersects the first side defined by the insulating layer, the second side defined by the insulating layer on the side opposite to the first side, and the first side and the second side.
- the light emitting device has a third side extending in a direction and exposed from the insulating layer.
- FIG. 3 It is a top view which shows the light-emitting device which concerns on embodiment. It is the figure which removed the coating layer from FIG. FIG. 3 is a view in which a second conductive layer and a partition wall are removed from FIG. 2. It is the figure which removed the insulating layer from FIG. FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. FIG. 3 is a sectional view taken along line BB in FIG. FIG. 3 is a cross-sectional view taken along the line CC of FIG. FIG. 3 is a DD sectional view of FIG. 2. It is the figure which expanded the opening shown in FIG. It is a figure which shows the modification of FIG. It is a figure which shows the 1st modification of FIG. It is a figure which shows the 2nd modification of FIG. 1 is a plan view showing a light emitting device according to Example 1.
- FIG. 3 It is a figure which removed the coating layer from FIG.
- FIG. 3 is a view in which a second conductive layer and
- FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment.
- FIG. 2 is a view in which the covering layer 200 is removed from FIG.
- FIG. 3 is a diagram in which the second conductive layer 130a and the partition 160 are removed from FIG.
- FIG. 4 is a diagram in which the insulating layer 150 is removed from FIG.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB in FIG. 7 is a cross-sectional view taken along the line CC of FIG.
- FIG. 8 is a sectional view taken along the line DD of FIG.
- FIG. 9 is an enlarged view of the opening 152 shown in FIG.
- the light emitting device 10 includes a substrate 100, an insulating layer 150, and a plurality of light emitting units 140.
- the insulating layer 150 is on the substrate 100.
- the plurality of light emitting units 140 are exposed from the insulating layer 150 on the substrate 100.
- each light emitting unit 140 is on the substrate 100.
- Each light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
- the organic layer 120 is between the first electrode 110 and the second electrode 130.
- each light emitting unit 140 has a first side 142, a second side 144, a third side 146, and a fourth side 148.
- the first side 142 is defined by the insulating layer 150.
- the second side 144 is on the side opposite to the first side 142 and is defined by the insulating layer 150.
- the third side 146 extends in the direction intersecting the first side 142 and the second side 144 (the Y direction in the drawing) and is exposed from the insulating layer 150.
- the fourth side 148 is on the side opposite to the third side 146 and is exposed from the insulating layer 150.
- the light emitting units 140 adjacent to each other are arranged such that the third side 146 of one light emitting unit 140 and the fourth side 148 of the other light emitting unit 140 face each other.
- the substrate 100 is exposed from the insulating layer 150 between the light emitting units 140 adjacent to each other.
- the insulating layer 150 includes a first region 150a and a second region 150b.
- the first region 150a has a first edge 152a.
- the second region 150b has a second edge 152b.
- the first edge 152a and the second edge 152b are opposed to each other.
- the first edge 152 a is a part (third edge) of the edge of the opening 152 of the insulating layer 150
- the second edge 152 b is the other edge of the opening 152 of the insulating layer 150.
- Part (fourth edge) A first side 142 of each light emitting unit 140 in the opening 152 is defined by a first edge 152a.
- the second side 144 of each light emitting unit 140 in the opening 152 is defined by the second edge 152b. Details will be described below.
- the light emitting device 10 is a display.
- the light emitting device 10 includes a substrate 100, a conductive layer 170, a conductive layer 180, an insulating layer 150, an organic layer 120a, a second conductive layer 130a, a partition wall 160, and a coating layer 200.
- the substrate 100 has a first surface 102 and a second surface 104.
- the second surface 104 is on the opposite side of the first surface 102 and is the back surface of the substrate 100.
- the shape of the first surface 102 is a rectangle.
- the shape of the first surface 102 may be a polygon other than a rectangle, for example.
- the light emitting device 10 may be either bottom emission or top emission.
- the substrate 100 is made of a translucent material (for example, glass or resin).
- the light emitting device 10 is top emission, the light from the plurality of light emitting units 140 is emitted from above the first surface 102 of the substrate 100.
- the substrate 100 may be made of the above-described translucent material or may be made of a material that does not have translucency.
- the substrate 100 may have flexibility or may not have flexibility.
- the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
- the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
- the substrate 100 is flexible and includes a resin
- the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
- the first surface 102 (preferably both the first surface 102 and the second surface 104) of the substrate 100 may be covered with an inorganic barrier film (eg, SiN x or SiON). In this case, even if the substrate 100 includes a material (for example, resin) having a high water vapor transmission rate, the water vapor is prevented from reaching the first surface 102 of the substrate 100.
- an inorganic barrier film eg, SiN x or SiON
- the plurality of conductive layers 170 are on the first surface 102 of the substrate 100.
- the plurality of conductive layers 170 include a plurality of conductive layers 170a and a plurality of conductive layers 170b.
- Each conductive layer 170 a includes a first conductive layer 110 a and a first wiring 114.
- the first conductive layer 110a is a part of the conductive layer 170a.
- the first wiring 114 is another part of the conductive layer 170a.
- the first conductive layer 110a and the first wiring 114 are connected to each other.
- Each conductive layer 170 b includes a second wiring 134.
- the first terminal 112 is located at one end of the first wiring 114. A potential is applied to the first terminal 112. Thereby, the potential of the first terminal 112 is applied to the first conductive layer 110a (first electrode 110) through the first wiring 114.
- the second terminal 132 is located at one end of the second wiring 134. A potential is applied to the second terminal 132. Thereby, the potential of the second terminal 132 is applied to the second conductive layer 130a (second electrode 130) through the second wiring 134.
- each conductive layer 170 There is a conductive layer 180 on the top surface of each conductive layer 170.
- the electric resistance of the conductive layer 180 is lower than the electric resistance of the conductive layer 170. Thereby, the voltage drop between the first terminal 112 and the first electrode 110 and the voltage drop between the second terminal 132 and the second electrode 130 can be suppressed.
- the conductive layer 180 is positioned so as not to overlap the light emitting unit 140. For this reason, the conductive layer 180 does not need to have translucency.
- the conductive layer 180 is made of, for example, Al or Ag.
- the conductive layer 180 may include, for example, a Mo alloy layer on the top surface of the first conductive layer 110a, an Al alloy layer on the Mo alloy layer, and a Mo alloy layer on the Al alloy layer.
- the plurality of first conductive layers 110a are arranged in the first direction (X direction in the figure).
- Each first conductive layer 110a extends in a second direction (specifically, the Y direction in the figure) that intersects the first direction (specifically, orthogonal to the first direction).
- the insulating layer 150 is on the first surface 102 of the substrate 100 and on the plurality of first conductive layers 110a.
- the insulating layer 150 includes a photosensitive resin (for example, polyimide).
- the insulating layer 150 has a plurality of openings 152.
- the plurality of openings 152 are arranged in the second direction (Y direction in the figure).
- Each opening 152 extends in the first direction (X direction in the figure).
- the opening 152 exposes a part of the first conductive layer 110a. This part of the first conductive layer 110 a functions as the first electrode 110 of the light emitting unit 140.
- the opening 152 has a first edge 152a and a second edge 152b.
- the first edge 152a and the second edge 152b face each other and extend in the first direction (X direction in the figure).
- the first edge 152a and the second edge 152b intersect with the plurality of first conductive layers 110a.
- the plurality of first electrodes 110 are exposed between the first edge 152a and the second edge 152b.
- the insulating layer 150 is not located between the light emitting units 140 adjacent to each other. For this reason, it is suppressed that the substance which degrades the light emission part 140 propagates via the light emission part 140 between the light emission parts 140 which mutually adjoin.
- the first edge 152 a and the second edge 152 b are defined by the lower end of the inner surface of the opening 152.
- the opening 152 in the cross section perpendicular to the first direction (the X direction in FIGS. 1 to 4), has a first inner surface and a second inner surface.
- the second inner surface is on the opposite side of the first inner surface.
- the first inner side surface of the opening 152 is inclined so that the upper end of the first inner side surface is located outside the lower end of the first inner side surface.
- the second inner side surface of the opening 152 is inclined so that the upper end of the second inner side surface is located outside the lower end of the second inner side surface.
- the first edge 152a is the lower end of the first inner surface.
- the second edge 152b is the lower end of the second inner surface.
- the insulating layer 150 has an opening 154. As shown in FIG. 7, the second conductive layer 130 a is connected to the second wiring 134 through the opening 154.
- the partition wall 160 is on the insulating layer 150.
- the partition 160 includes a photosensitive resin (for example, polyimide).
- the plurality of partition walls 160 are arranged in the second direction (Y direction in the figure).
- Each partition wall 160 extends in the first direction (X direction in the figure).
- the width of the upper surface of the partition wall 160 is wider than the width of the lower surface of the partition wall 160 in a cross section perpendicular to the first direction (the X direction in FIGS. 1 to 4). More specifically, in the cross section perpendicular to the first direction (the X direction in FIGS. 1 to 4), the partition wall 160 has a first side surface and a second side surface.
- the second side surface is on the opposite side of the first inner surface.
- the first side surface of the partition wall 160 is inclined so that the upper end of the first side surface is located outside the lower end of the first side surface.
- the second side surface of the partition wall 160 is inclined so that the upper end of the second side surface is located outside the lower end of the second side surface.
- the lower surface of the partition wall 160 is in contact with the upper surface of the insulating layer 150 in any region.
- the first surface 102 of the substrate 100 is not exposed from the insulating layer 150 in any region below the lower surface of the partition wall 160.
- the insulating layer 150 includes polyimide
- the substrate 100 includes glass
- the adhesion strength between the lower surface of the partition wall 160 and the upper surface of the insulating layer 150 is It becomes higher than the adhesion strength between the one surface 102.
- the entire lower surface of the partition wall 160 is firmly adhered to the upper surface of the insulating layer 150.
- the organic layer 120a is on the first surface 102 of the substrate 100, on the plurality of first conductive layers 110a, and on the insulating layer 150.
- the plurality of organic layers 120a are arranged in the second direction (Y direction in FIGS. 1 to 4).
- the organic layers 120a adjacent to each other face each other with the partition wall 160 interposed therebetween.
- a part of the organic layer 120a overlaps a part (first electrode 110) of the first conductive layer 110a. This part of the organic layer 120 a functions as the organic layer 120 of the light emitting unit 140.
- the organic layer 120 a is not in contact with the partition wall 160.
- a substance that degrades the organic layer 120a can be prevented from propagating from the partition wall 160 to the organic layer 120a.
- the partition 160 may contain a substance (for example, water) that degrades the organic layer 120a.
- this material may propagate from the organic layer 120 a to the partition wall 160.
- the partition 160 includes the above-described substance, it is possible to suppress the propagation of the substance to the organic layer 120a.
- the organic layer 120 b is on the upper surface of the partition wall 160.
- the material included in the organic layer 120b is the same as the material included in the organic layer 120a.
- the organic layer 120 a and the organic layer 120 b are formed by depositing an organic layer on the first surface 102 of the substrate 100 and the partition 160. In this case, the organic layer is separated into the organic layer 120 a and the organic layer 120 b by the partition wall 160.
- the organic layer 120a has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
- the total thickness of the organic layer 120a is, for example, not less than 50 nm and not more than 200 nm. Holes move in the hole injection layer and the hole transport layer.
- the thickness of the hole injection layer is, for example, not less than 50 nm and not more than 100 nm.
- the thickness of the hole transport layer is thinner than the thickness of the hole injection layer.
- the thickness of the hole transport layer is, for example, 20 nm or more and 50 nm or less.
- the color of light from the light emitting layer is, for example, red, green, or blue.
- electrons are transported.
- the thickness of the electron transport layer is, for example, 5 nm or more and 100 nm or less.
- the electron injection layer is made of an alkali metal compound (for example, LiF), a metal oxide (for example, aluminum oxide) or a metal complex (for example, lithium 8-hydroxyquinolate (Liq)).
- the thickness of the electron injection layer is, for example, not less than 0.1 nm and not more than 10 nm.
- One of the hole injection layer and the hole transport layer may be omitted.
- One of the electron transport layer and the electron injection layer may be omitted.
- the hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are formed by, for example, a coating process. Specifically, for example, the hole injection layer, the hole transport layer, and the light emitting layer are formed by a coating process.
- the electron transport layer and the electron injection layer are formed by vapor deposition.
- the second conductive layer 130a is on the organic layer 120a.
- a plurality of second conductive layers 130a are arranged in the second direction (Y direction in the figure).
- Each second conductive layer 130a extends in the first direction (X direction in the figure).
- the second conductive layers 130a adjacent to each other are opposed to each other with the partition wall 160 interposed therebetween.
- a part of the second conductive layer 130a overlaps a part of the first conductive layer 110a (first electrode 110). This part of the second conductive layer 130 a functions as the second electrode 130 of the light emitting unit 140.
- the conductive layer 130 b is provided on the upper surface of the partition wall 160.
- the material included in the conductive layer 130b is the same as the material included in the second conductive layer 130a.
- the second conductive layer 130 a and the conductive layer 130 b are formed by depositing a conductive layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the conductive layer is separated into the second conductive layer 130 a and the conductive layer 130 b by the partition 160.
- the first conductive layer 110a is a conductive layer having translucency. In this case, the second conductive layer 130a does not need to have translucency.
- the second conductive layer 130a is a light-transmitting conductive layer. In this case, the first conductive layer 110a does not need to have translucency.
- the first conductive layer 110a and the second conductive layer 130a are light-transmitting conductive layers
- the first conductive layer 110a and the second conductive layer 130a include, for example, a metal oxide, and more specifically, for example, It contains ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide) or ZnO (Zinc Oxide).
- the first conductive layer 110a and the second conductive layer 130a are conductive layers that do not have translucency
- the first conductive layer 110a and the second conductive layer 130a include, for example, Al, Au, Ag, Pt, Mg, Sn, A metal selected from the first group consisting of Zn and In or an alloy of a metal selected from the first group is included.
- the covering layer 200 covers the insulating layer 150, the plurality of light emitting portions 140, and the plurality of partition walls 160.
- the coating layer 200 seals the insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160.
- the covering layer 200 is formed by ALD (Atomic Layer Deposition). Accordingly, the covering layer 200 continuously covers the side surfaces and the upper surface of the insulating layer 150, the light emitting unit 140, and the partition wall 160.
- the covering layer 200 includes, for example, an insulating material, more specifically, for example, a metal oxide.
- the covering layer 200 includes, for example, a titanium oxide layer and an aluminum oxide layer. In this case, the aluminum oxide layer is on the titanium oxide layer or below the titanium oxide layer.
- the thickness of the coating layer 200 is, for example, not less than 50 nm and not more than 300 nm.
- the covering layer 200 may be formed by, for example, CVD (Chemical Vapor Deposition) or sputtering.
- the covering layer 200 includes, for example, a SiO 2 layer or a SiN layer.
- the film thickness of the coating layer 200 is, for example, not less than 10 nm and not more than 1000 nm.
- the covering layer 200 may be covered with a resin layer.
- the resin layer is provided to protect the covering layer 200.
- the resin layer contains, for example, an epoxy resin or an acrylic resin.
- the planar shape of the light emitting unit 140 is a rectangle, and has a first side 142, a second side 144, a third side 146, and a fourth side 148.
- the second side 144 is on the opposite side of the first side 142.
- the third side 146 and the fourth side 148 are between the first side 142 and the second side 144.
- the fourth side 148 is on the opposite side of the third side 146.
- the first side 142 and the second side 144 of the light emitting unit 140 are defined by the opening 152 of the insulating layer 150, and the third side of the light emitting unit 140 is shown in FIGS. 6 and 9.
- 146 and the fourth side 148 are defined by the first conductive layer 110a (first electrode 110).
- the first edge 152a of the insulating layer 150 includes a portion intersecting the first electrode 110 (first conductive layer 110a), and the second edge 152b of the insulating layer 150 is A portion intersecting with one electrode 110 (first conductive layer 110a) is included.
- the first side 142 is defined by the aforementioned portion of the first edge 152a.
- the second side 144 is defined by the above-described portion of the second edge 152b.
- the first conductive layer 110a has an edge 116 (end) and an edge 118 (end).
- the edge 116 and the edge 118 extend in the second direction (Y direction in the figure).
- the edge 116 includes a portion that intersects the opening 152
- the edge 118 includes a portion that intersects the opening 152.
- Third side 146 is defined by the aforementioned portion of edge 116.
- the fourth side 148 is defined by the aforementioned portion of the edge 118.
- a method for manufacturing the light emitting device 10 will be described.
- a conductive layer is formed on the first surface 102 of the substrate 100, and this conductive layer is patterned.
- a plurality of conductive layers 170 (first conductive layer 110a, first wiring 114, and second wiring 134) are formed.
- a conductive layer 180 is formed on the upper surface of each conductive layer 170.
- the insulating layer 150 is formed on the first surface 102 of the substrate 100 and the plurality of conductive layers 170. Next, a plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150.
- a plurality of partition walls 160 are formed on the insulating layer 150.
- an organic layer is formed on the insulating layer 150 and the plurality of partition walls 160. Accordingly, the organic layer is separated into the organic layer 120a and the organic layer 120b by the partition 160.
- a conductive layer is formed over the insulating layer 150 and the plurality of partition walls 160. Accordingly, the conductive layer is separated into the second conductive layer 130a and the conductive layer 130b by the partition 160.
- the coating layer 200 is formed by ALD on the first surface 102 of the substrate 100, the insulating layer 150, and the plurality of partition walls 160.
- the insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160 are sealed by the covering layer 200.
- the insulating layer 150 is not positioned between the light emitting units 140 arranged in the first direction (X direction in the drawing). For this reason, it is suppressed that the substance which degrades the light emission part 140 which propagates the insulating layer 150 propagates to the 3rd edge
- the above-described substances that degrade the light emitting unit 140 may be generated outside the region including the plurality of light emitting units 140 arranged in a matrix, for example, due to ultraviolet rays. It became clear that there was sex. Further examination by the present inventors has revealed that the above-described substances tend to propagate widely in the insulating layer 150 when the insulating layer 150 contains a photosensitive resin (eg, polyimide). This is presumed to be because the photosensitive resin functions to propagate the above-described substances. Further examination by the present inventor has revealed that the above-described substances tend to propagate widely in the insulating layer 150 when the coating layer 200 is formed by ALD.
- a photosensitive resin eg, polyimide
- the above substances are prevented from being discharged to the outside of the insulating layer 150.
- the insulating layer 150 includes polyimide and the covering layer 200 is formed by ALD, the above-described substances are prevented from propagating to the light emitting unit 140 through the insulating layer 150. it can.
- FIG. 10 is a diagram showing a modification of FIG.
- an insulating layer 150 is formed between two light emitting units 140 adjacent to each other so that the third side 146 of one light emitting unit 140 and the fourth side 148 of the other light emitting unit 140 are exposed. May be.
- the width of the insulating layer 150 between the light emitting units 140 adjacent to each other is narrow. That is, the insulating layer 150 is formed between the light emitting units 140 so as to be separated from the third side 146 of one light emitting unit 140 and the fourth side 148 of the other light emitting unit 140. For this reason, it can suppress that the substance which degrades the light emission part 140 propagates to the light emission part 140 through the insulating layer 150 between the light emission parts 140 adjacent to each other.
- FIG. 11 is a diagram showing a first modification of FIG. As shown in this figure, the opening 152 of the insulating layer 150 may be connected to a region outside the insulating layer 150. Also in this modified example, similarly to the embodiment, a substance that degrades the light emitting unit 140 is suppressed from propagating to the light emitting unit 140 through the insulating layer 150.
- FIG. 12 is a diagram showing a second modification of FIG.
- the plurality of openings 152 are arranged in the first direction (X direction in the figure).
- a plurality of light emitting portions 140 are arranged in the first direction (X direction in the figure).
- the opening 152 shown in FIG. 3 is separated into a plurality of openings 152 along the first direction (X direction in the drawing).
- FIG. 13 is a plan view showing the light emitting device 10 according to the first embodiment.
- the light emitting device 10 according to this example is the same as the light emitting device 10 according to the embodiment except for the following points.
- the light emitting device 10 includes a first potential supply unit 192 and a second potential supply unit 194.
- the first potential supply unit 192 provides a first potential.
- the second potential supply unit 194 provides a second potential.
- the first potential and the second potential are, for example, a power supply potential and a ground potential, respectively, or a ground potential and a power supply potential.
- a part of the first conductive layer 110a (third first conductive layer) among the plurality of first conductive layers 110a is electrically connected to the first potential supply unit 192 through the first wiring 114. .
- some other first conductive layers 110a (the first first conductive layer and the second first conductive layer) of the plurality of first conductive layers 110a are connected to the first potential supply unit 192. It is not electrically connected to and is electrically floating.
- the first conductive layer 110a (first first conductive layer) at one end of the plurality of first conductive layers 110a and the first conductive layer 110a (first step) at the other end of the plurality of first conductive layers 110a. 2 first conductive layer) is electrically floating.
- a plurality of first conductive layers 110a (first first conductive layers) between the first conductive layer 110a at one end and the first conductive layer 110a at the other end are the first potential supply unit. 192 is electrically connected.
- a part of the second conductive layer 130a (third second conductive layer) among the plurality of second conductive layers 130a is electrically connected to the second potential supply unit 194 through the second wiring 134.
- the other second conductive layer 130a (the first second conductive layer and the second second conductive layer) of the plurality of second conductive layers 130a is connected to the second potential supply unit 194. It is not electrically connected to and is electrically floating.
- the second conductive layer 130a (first second conductive layer) at one end of the plurality of second conductive layers 130a and the second conductive layer 130a (first step) at the other end of the plurality of second conductive layers 130a. 2nd conductive layer) is electrically floating.
- a plurality of second conductive layers 130a (first second conductive layers) between the second conductive layer 130a at one end and the second conductive layer 130a at the other end described above are the second potential supply unit. 194 is electrically connected.
- the first surface 102 of the substrate 100 includes a region 102a and a region 102b.
- the region 102b surrounds the region 102a.
- the first conductive layer 110a at one end of the plurality of first conductive layers 110a, the first conductive layer 110a at the other end of the plurality of first conductive layers 110a, and the first conductive layer 110a at one end of the plurality of second conductive layers 130a.
- the light emitting unit 140 that is electrically connected to one of the second conductive layer 130a and the second conductive layer 130a at one end of the plurality of second conductive layers 130a is located.
- a potential for causing the organic layer 120 to emit light is not applied to the light emitting unit 140 in the region 102b.
- the light emitting unit 140 in the region 102b functions as a dummy light emitting unit.
- a potential for causing the organic layer 120 to emit light is applied to the light emitting unit 140 in the region 102a.
- the light-emitting portion 140 (first light-emitting portion) in the region 102a includes the first electrode 110 and the second conductive layer 130a (third second conductive layer) of the first conductive layer 110a (third first conductive layer). Layer) of the second electrode 130.
- the volume of the insulating layer 150 surrounding the light emitting portion 140 located in the region 102b is larger than the volume of the insulating layer 150 surrounding the light emitting portion 140 located in the region 102a, and thus contains a large amount of a substance that degrades the light emitting portion 140. Guessed.
- the light emitting unit 140 located outside of the plurality of light emitting units 140 arranged in a matrix is a dummy. Therefore, it is possible to suppress a difference in the progress of deterioration between the light emitting units 140 located outside of the light emitting units 140 in the region 102a and the other light emitting units 140. This is because the light emitting portion 140 in the region 102a is separated from the insulating layer 150 located outside the region 102b by the light emitting portion 140 (dummy light emitting portion) in the region 102b.
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
各発光部(140)は、第1辺(142)、第2辺(144)、第3辺(146)及び第4辺(148)を有している。第1辺(142)は、絶縁層(150)によって画定されている。第2辺(144)は、第1辺(142)とは反対側にあって絶縁層(150)によって画定されている。第3辺(146)は、第1辺(142)と第2辺(144)に交差する方向(図中Y方向)に延伸して絶縁層(150)から露出している。第4辺(148)は、第3辺(146)とは反対側にあって絶縁層(150)から露出している。
Description
本発明は、発光装置に関する。
近年、有機層を有する発光装置が開発されている。このような発光装置は、例えばディスプレイに用いられることがある。この場合、発光装置は、基板及び基板上の複数の発光部を有している。各発光部は、第1電極、第2電極及び第1電極と第2電極の間の有機層を有している。より詳細には、発光装置は、第1方向に延伸する第1導電層及び第1方向に直交する第2方向に延伸する第2導電層を有している。第1導電層は、第2導電層と重なる部分を有する。第2導電層は、第1導電層と重なる部分を有する。第1導電層の上記した部分は発光部の第1電極として機能する。第2導電層の上記した部分は発光部の第2電極として機能する。
特許文献1には、発光部の各辺を画定するための絶縁層が記載されている。絶縁層は、基板上及び第1導電層上にある。絶縁層は、例えばポリイミドからなる。絶縁層は、第1導電層の一部(発光部の第1電極として機能する部分)を露出する開口を有している。第2導電層は、第2導電層の一部(発光部の第2電極として機能する部分)が開口と重なるように、絶縁層上及び開口上に位置する。この場合、発光部の各辺は、開口の縁によって画定される。
上記したように、発光装置では、発光部の縁(辺)を画定するために、開口を有する絶縁層が形成されることがある。一方、本発明者が検討したところ、発光部を劣化させる物質が上記した絶縁層を伝搬する可能性があることが明らかとなった。
本発明が解決しようとする課題としては、発光部の辺を画定するために絶縁層を用いたとしても、発光部を劣化させる物質が絶縁層を介して広く伝搬することを抑制することが一例として挙げられる。
請求項1に記載の発明は、
基板と、
前記基板上の絶縁層と、
前記基板上で前記絶縁層から露出し、各々が第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する複数の発光部と、
を備え、
前記発光部は、前記絶縁層によって画定された第1辺、前記第1辺とは反対側にあって前記絶縁層によって画定された第2辺及び前記第1辺と前記第2辺に交差する方向に延伸して前記絶縁層から露出した第3辺を有する発光装置である。
基板と、
前記基板上の絶縁層と、
前記基板上で前記絶縁層から露出し、各々が第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する複数の発光部と、
を備え、
前記発光部は、前記絶縁層によって画定された第1辺、前記第1辺とは反対側にあって前記絶縁層によって画定された第2辺及び前記第1辺と前記第2辺に交差する方向に延伸して前記絶縁層から露出した第3辺を有する発光装置である。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
図1は、実施形態に係る発光装置10を示す平面図である。図2は、図1から被覆層200を取り除いた図である。図3は、図2から第2導電層130a及び隔壁160を取り除いた図である。図4は、図3から絶縁層150を取り除いた図である。図5は、図2のA-A断面図である。図6は、図2のB-B断面図である。図7は、図2のC-C断面図である。図8は、図2のD-D断面図である。図9は、図3に示した開口152を拡大した図である。
図2に示すように、発光装置10は、基板100、絶縁層150及び複数の発光部140を備えている。図5及び図8に示すように、絶縁層150は、基板100上にある。図3に示すように、複数の発光部140は、基板100上で絶縁層150から露出している。図5及び図6に示すように、各発光部140は、基板100上にある。各発光部140は、第1電極110、有機層120及び第2電極130を有する。有機層120は、第1電極110と第2電極130の間にある。図9に示すように、各発光部140は、第1辺142、第2辺144、第3辺146及び第4辺148を有している。第1辺142は、絶縁層150によって画定されている。第2辺144は、第1辺142とは反対側にあって絶縁層150によって画定されている。第3辺146は、第1辺142と第2辺144に交差する方向(図中Y方向)に延伸して絶縁層150から露出している。第4辺148は、第3辺146とは反対側にあって絶縁層150から露出している。
図9に示す例において、互いに隣接する発光部140は、一方の発光部140の第3辺146と他方の発光部140の第4辺148が互いに対向するように並んでいる。基板100は、互いに隣接する発光部140の間で絶縁層150から露出している。より具体的には、図9に示す例では、絶縁層150は、第1領域150a及び第2領域150bを含んでいる。第1領域150aは、第1縁152aを有する。第2領域150bは、第2縁152bを有する。第1縁152aと第2縁152bは互いに対向している。図9に示す例において、第1縁152aは、絶縁層150の開口152の縁の一部(第3縁)であり、第2縁152bは、絶縁層150の開口152の縁の他の一部(第4縁)である。開口152内の各発光部140の第1辺142は、第1縁152aによって画定されている。開口152内の各発光部140の第2辺144は、第2縁152bによって画定されている。以下、詳細に説明する。
図1~図9に示す例において、発光装置10は、ディスプレイである。発光装置10は、基板100、導電層170、導電層180、絶縁層150、有機層120a、第2導電層130a、隔壁160及び被覆層200を有している。
図5~図8に示すように、基板100は、第1面102及び第2面104を有している。第2面104は、第1面102の反対側にあり、基板100の裏面である。図1~図4に示す例では、第1面102の形状は、矩形である。ただし、第1面102の形状は、例えば矩形以外の多角形であってもよい。
発光装置10は、ボトムエミッション及びトップエミッションのいずれであってもよい。発光装置10がボトムエミッションである場合、複数の発光部140からの光は、基板100の第2面104から出射される。この場合、基板100は、透光性の材料(例えばガラス又は樹脂)からなる。これに対して、発光装置10がトップエミッションである場合、複数の発光部140からの光は、基板100の第1面102の上方から出射される。この場合、基板100は、上記した透光性の材料からなってもよいし、又は透光性を有しない材料からなってもよい。
基板100は、可撓性を有していてもよいし、又は可撓性を有していなくてもよい。基板100が可撓性を有する場合、基板100の厚さは、例えば10μm以上1000μm以下である。基板100が可撓性を有し、かつガラスを含む場合、基板100の厚さは、例えば200μm以下である。基板100が可撓性を有し、かつ樹脂を含む場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)又はポリイミドを含む。なお、基板100の第1面102(好ましくは、第1面102及び第2面104の双方)は、無機バリア膜(例えばSiNx又はSiON)により覆われていてもよい。この場合、基板100が水蒸気透過率の高い材料(例えば樹脂)を含んでいても、水蒸気が基板100の第1面102よりも上に達することが抑制される。
図1~図4に示すように、複数の導電層170は、基板100の第1面102上にある。複数の導電層170は、複数の導電層170a及び複数の導電層170bを含んでいる。各導電層170aは、第1導電層110a及び第1配線114を含む。第1導電層110aは、導電層170aの一部である。第1配線114は、導電層170aの他の一部である。第1導電層110aと第1配線114は、互いに接続している。各導電層170bは、第2配線134を含む。
第1配線114の一端には、第1端子112が位置している。第1端子112には、電位が与えられる。これにより、第1端子112の電位は、第1配線114を介して第1導電層110a(第1電極110)に与えられる。第2配線134の一端には、第2端子132が位置している。第2端子132には、電位が与えられる。これにより、第2端子132の電位は、第2配線134を介して第2導電層130a(第2電極130)に与えられる。
各導電層170の上面上には、導電層180がある。導電層180の電気抵抗は、導電層170の電気抵抗よりも低い。これにより、第1端子112と第1電極110の間の電圧降下及び第2端子132と第2電極130の間の電圧降下を抑制することができる。導電層180は、発光部140と重ならないように位置している。このため、導電層180は、透光性を有する必要がない。具体的には、導電層180は、例えばAl又はAgからなる。その他の例として、導電層180は、例えば第1導電層110aの上面上のMo合金層、Mo合金層上のAl合金層及びAl合金層上のMo合金層を含んでいてもよい。
図4に示すように、複数の第1導電層110aは、第1方向(図中、X方向)に並んでいる。各第1導電層110aは、第1方向に交わる(具体的には、第1方向に直交する)第2方向(図中、Y方向)に延伸している。
図5及び図8に示すように、絶縁層150は、基板100の第1面102上及び複数の第1導電層110a上にある。絶縁層150は、感光性樹脂(例えばポリイミド)を含んでいる。図3に示すように、絶縁層150は、複数の開口152を有する。複数の開口152は、第2方向(図中、Y方向)に並んでいる。各開口152は、第1方向(図中、X方向)に延伸している。開口152は、第1導電層110aの一部を露出している。第1導電層110aのこの一部は、発光部140の第1電極110として機能する。
より詳細には、図9に示すように、開口152は、第1縁152a及び第2縁152bを有する。第1縁152a及び第2縁152bは、互いに対向しており、第1方向(図中、X方向)に延伸している。第1縁152a及び第2縁152bは、複数の第1導電層110aと交差している。第1縁152aと第2縁152bの間では複数の第1電極110が露出する。言い換えると、互いに隣接する発光部140の間には、絶縁層150が位置していない。このため、発光部140を劣化させる物質が、互いに隣接する発光部140の間で発光部140を介して伝搬することが抑制される。
なお、図5に示すように、第1縁152a及び第2縁152bは、開口152の内側面の下端によって画定されている。詳細には、図5に示すように、第1方向(図1~図4のX方向)に垂直な断面において、開口152は、第1内側面及び第2内側面を有する。第2内側面は、第1内側面の反対側にある。開口152の第1内側面は、第1内側面の上端が第1内側面の下端よりも外側に位置するように傾いている。開口152の第2内側面は、第2内側面の上端が第2内側面の下端よりも外側に位置するように傾いている。第1縁152aは、第1内側面の下端である。第2縁152bは、第2内側面の下端である。
絶縁層150は、開口154を有する。図7に示すように、第2導電層130aは、開口154を介して第2配線134に接続している。
図5、図7及び図8に示すように、隔壁160は、絶縁層150上にある。隔壁160は、感光性樹脂(例えばポリイミド)を含んでいる。図2に示すように、複数の隔壁160が第2方向(図中、Y方向)に並んでいる。各隔壁160は、第1方向(図中、X方向)に延伸している。図5及び図7に示すように、第1方向(図1~図4のX方向)に垂直な断面において、隔壁160の上面の幅は、隔壁160の下面の幅よりも広い。より詳細には、第1方向(図1~図4のX方向)に垂直な断面において、隔壁160は、第1側面及び第2側面を有している。第2側面は、第1内側面の反対側にある。隔壁160の第1側面は、第1側面の上端が第1側面の下端よりも外側に位置するように傾いている。隔壁160の第2側面は、第2側面の上端が第2側面の下端よりも外側に位置するように傾いている。
なお、図2に示す例では、隔壁160の下面は、どの領域においても、絶縁層150の上面に接している。言い換えると、隔壁160の下面下では、どの領域においても、基板100の第1面102が絶縁層150から露出していない。例えば隔壁160がポリイミドを含み、絶縁層150がポリイミドを含み、基板100がガラスを含む場合、隔壁160の下面と絶縁層150の上面の間の密着強度は、隔壁160の下面と基板100の第1面102の間の密着強度よりも高くなる。このような場合、図2に示す例では、隔壁160の下面全体が絶縁層150の上面に強固に密着する。
図5~図7に示すように、有機層120aは、基板100の第1面102上、複数の第1導電層110a上及び絶縁層150上にある。図5に示すように、複数の有機層120aが第2方向(図1~図4のY方向)に並んでいる。互いに隣接する有機層120aは、隔壁160を挟んで互いに対向している。図5及び図6に示すように、有機層120aの一部は、第1導電層110aの一部(第1電極110)と重なっている。有機層120aのこの一部は、発光部140の有機層120として機能する。
なお、図5に示すように、有機層120aは、隔壁160とは接していない。この場合、有機層120aを劣化させる物質が隔壁160から有機層120aに伝搬することを抑制することができる。詳細には、隔壁160は、有機層120aを劣化させる物質(例えば、水)を含んでいることがある。この場合、有機層120aが隔壁160と接していると、この物質が有機層120aから隔壁160に伝搬することがある。これに対して図5及び図7に示す例では、隔壁160が上記した物質を含んでいたとしても、この物質が有機層120aに伝搬することを抑制することができる。
図5及び図8に示すように、隔壁160の上面上には、有機層120bがある。有機層120bに含まれる材料は、有機層120aに含まれる材料と同一である。有機層120a及び有機層120bは、基板100の第1面102上及び隔壁160上に有機層を堆積することにより形成される。この場合、有機層は、隔壁160によって有機層120aと有機層120bに分離される。
有機層120aは、例えば正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を有している。有機層120a全体の厚さは、例えば50nm以上200nm以下である。正孔注入層内及び正孔輸送層内では、正孔が移動する。正孔注入層の厚さは、例えば50nm以上100nm以下である。正孔輸送層の厚さは、正孔注入層の厚さよりも薄い。正孔輸送層の厚さは、例えば20nm以上50nm以下である。発光層では、電子と正孔が再結合する。これにより、発光層からは、光が発せられる。発光層からの光の色は、例えば赤、緑又は青である。電子輸送層では、電子が輸送される。電子輸送層の厚さは、例えば5nm以上100nm以下である。電子注入層は、アルカリ金属化合物(例えばLiF)、金属酸化物(例えば酸化アルミニウム)又は金属錯体(例えばリチウム8-ヒドロキシキノレート(Liq))からなる。電子注入層の厚さは、例えば0.1nm以上10nm以下である。
なお、正孔注入層及び正孔輸送層の一方はなくてもよい。電子輸送層及び電子注入層の一方はなくてもよい。
正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層は、例えば塗布プロセスにより形成される。具体的には、例えば正孔注入層、正孔輸送層及び発光層は、塗布プロセスにより形成され。電子輸送層及び電子注入層は、蒸着により形成される。
図5~図6に示すように、第2導電層130aは、有機層120a上にある。図2に示すように、複数の第2導電層130aが第2方向(図中、Y方向)に並んでいる。各第2導電層130aは、第1方向(図中、X方向)に延伸している。互いに隣接する第2導電層130aは、隔壁160を挟んで互いに対向している。図5及び図6に示すように、第2導電層130aの一部は、第1導電層110aの一部(第1電極110)と重なっている。第2導電層130aのこの一部は、発光部140の第2電極130として機能する。
図5、図7及び図8に示すように、隔壁160の上面上には、導電層130bがある。導電層130bに含まれる材料は、第2導電層130aに含まれる材料と同一である。第2導電層130a及び導電層130bは、基板100の第1面102上及び隔壁160上に導電層を堆積することにより形成される。この場合、導電層は、隔壁160によって第2導電層130aと導電層130bに分離される。
発光装置10がボトムエミッションである場合、第1導電層110aは、透光性を有する導電層である。この場合、第2導電層130aは、透光性を有する必要はない。これに対して、発光装置10がトップエミッションである場合、第2導電層130aは、透光性を有する導電層である。この場合、第1導電層110aは、透光性を有する必要はない。
第1導電層110a及び第2導電層130aが透光性を有する導電層である場合、第1導電層110a及び第2導電層130aは、例えば金属酸化物を含み、より具体的には、例えばITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)又はZnO(Zinc Oxide)を含んでいる。
第1導電層110a及び第2導電層130aが透光性を有しない導電層である場合、第1導電層110a及び第2導電層130aは、例えばAl、Au、Ag、Pt、Mg、Sn、Zn及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金を含んでいる。
図5~図8に示すように、被覆層200は、絶縁層150、複数の発光部140及び複数の隔壁160を覆っている。これにより、被覆層200は、絶縁層150、複数の発光部140及び複数の隔壁160を封止している。より具体的には、本図に示す例では、被覆層200は、ALD(Atomic Layer Deposition)によって形成されている。これにより、被覆層200は、絶縁層150、発光部140並びに隔壁160の側面及び上面を連続して覆っている。被覆層200は、例えば絶縁材料、より具体的には例えば金属酸化物を含んでいる。被覆層200は、例えば酸化チタン層及び酸化アルミニウム層を含んでいる。この場合、酸化アルミニウム層は、酸化チタン層上又は酸化チタン層下にある。被覆層200の厚さは、例えば50nm以上300nm以下である。
なお、被覆層200は、例えばCVD(Chemical Vapor Deposition)又はスパッタにより形成してもよい。この場合、被覆層200は、例えばSiO2層又はSiN層を含んでいる。この場合、被覆層200の膜厚は、例えば10nm以上1000nm以下である。
被覆層200は、樹脂層により覆われていてもよい。樹脂層は、被覆層200を保護するために設けられている。樹脂層は、例えばエポキシ樹脂又はアクリル樹脂を含んでいる。
次に、複数の発光部140のレイアウトについて説明する。図2に示すように、各発光部140は、第1方向に並ぶ複数の第1導電層110aと第2方向に並ぶ複数の第2導電層130aの交点上に位置している。これにより、複数の発光部140は、第2方向(図中、Y方向)に並ぶm個の行及び第1方向(図中、X方向)に並ぶn個の列を含むm×nの行列状(本図に示す例では、m=4、n=5)に並んでいる。
図9に示すように、発光部140の平面形状は、矩形であり、第1辺142、第2辺144、第3辺146及び第4辺148を有している。第2辺144は、第1辺142の反対側にある。第3辺146と第4辺148は、第1辺142と第2辺144の間にある。第4辺148は、第3辺146の反対側にある。
図5及び図9示すように、発光部140の第1辺142及び第2辺144は、絶縁層150の開口152によって画定され、図6及び図9示すように、発光部140の第3辺146及び第4辺148は、第1導電層110a(第1電極110)によって画定されている。詳細には、図9に示すように、絶縁層150の第1縁152aは、第1電極110(第1導電層110a)と交差する部分を含み、絶縁層150の第2縁152bは、第1電極110(第1導電層110a)と交差する部分を含む。第1辺142は、第1縁152aの上記した部分によって画定されている。第2辺144は、第2縁152bの上記した部分によって画定されている。図9に示すように、第1導電層110aは、縁116(端)及び縁118(端)を有している。縁116及び縁118は、第2方向(図中、Y方向)に延伸している。縁116は、開口152と交差する部分を含み、縁118は、開口152と交差する部分を含む。第3辺146は、縁116の上記した部分によって画定されている。第4辺148は、縁118の上記した部分によって画定されている。
図3に示す例では、開口152の第1縁152a及び第2縁152bは、第1列から第n列(本図に示す例では、n=5)までのすべての第1導電層110aと交差している。このため、基板100の第1面102上のどの領域においても、第1方向(図中、X方向)に互いに隣接する発光部140の間には、絶縁層150が位置していない。このため、発光部140を劣化させる物質が、第1方向(図中、X方向)に互いに隣接する発光部140の間で絶縁層150を介して伝搬することを抑制することができる。
次に、発光装置10の製造方法について説明する。まず、基板100の第1面102上に導電層を形成し、この導電層をパターニングする。これにより、複数の導電層170(第1導電層110a、第1配線114及び第2配線134)が形成される。次いで、各導電層170の上面上に導電層180を形成する。
次いで、基板100の第1面102上及び複数の導電層170上に絶縁層150を形成する。次いで、絶縁層150に複数の開口152及び複数の開口154を形成する。
次いで、絶縁層150上に複数の隔壁160を形成する。
次いで、絶縁層150上及び複数の隔壁160上に有機層を形成する。これにより、有機層は、隔壁160によって有機層120a及び有機層120bに分離される。
次いで、絶縁層150上及び複数の隔壁160上に導電層を形成する。これにより、導電層は、隔壁160によって第2導電層130a及び導電層130bに分離される。
次いで、基板100の第1面102上、絶縁層150上及び複数の隔壁160上に被覆層200をALDにより形成する。これにより、絶縁層150、複数の発光部140及び複数の隔壁160は、被覆層200によって封止される。
以上、本実施形態によれば、発光部140の発光領域が狭くなることを抑制することができる。詳細には、本発明者が検討したところ、発光部140を劣化させる物質が絶縁層150を伝搬する可能性があることが明らかとなった。本実施形態では、第1方向(図中、X方向)に並ぶ複数の発光部140の間に絶縁層150が位置しない。このため、絶縁層150を伝搬する発光部140を劣化させる物質が有機層120を介して開口152内の複数の発光部140の第3辺146及び第4辺148へ伝搬することを抑制することができる。このため、本実施形態では、発光部140の発光領域が狭くなることを抑制することができる。
なお、本発明者が検討したところ、発光部140を劣化させる上記した物質は、行列状に配置された複数の発光部140を含む領域の外側において、例えば紫外線に起因して発生している可能性があることが明らかとなった。本発明者がさらに検討したところ、上記した物質は、絶縁層150が感光性樹脂(例えばポリイミド)を含んでいる場合、絶縁層150内で広く伝搬する傾向があることが明らかとなった。これは、感光性樹脂が、上記した物質を伝搬させるように機能しているためであると推定される。本発明者がさらに検討したところ、上記した物質は、被覆層200がALDにより形成されている場合、絶縁層150内で広く伝搬する傾向があることが明らかとなった。これは、被覆層200がALDにより形成されている場合、絶縁層150の表面が高い気密性で封止されるためであると推定される。この場合、上記した物質が絶縁層150の外側に排出されることが阻害される。本実施形態においては、絶縁層150がポリイミドを含み、かつ被覆層200がALDにより形成されていても、上記した物質が絶縁層150内を介し、発光部140へ伝搬することを抑制することができる。
図10は、図9の変形例を示す図である。本図に示すように、互いに隣接する2つの発光部140の間では、一方の発光部140の第3辺146及び他方の発光部140の第4辺148が露出するように絶縁層150が形成されていてもよい。この場合、互いに隣接する発光部140の間における絶縁層150の幅は狭いものとなる。即ち、一方の発光部140の第3辺146及び他方の発光部140の第4辺148から離間されるように発光部140の間における絶縁層150は形成されている。このため、発光部140を劣化させる物質が、互いに隣接する発光部140の間の絶縁層150を介して発光部140へ伝搬することを抑制することができる。
図11は、図3の第1の変形例を示す図である。本図に示すように、絶縁層150の開口152は、絶縁層150の外側の領域に繋がっていてもよい。本変形例においても、実施形態と同様にして、発光部140を劣化させる物質が絶縁層150を介して発光部140へ伝搬することが抑制される。
図12は、図3の第2の変形例を示す図である。本図に示す例では、複数の開口152が第1方向(図中、X方向)に並んでいる。各開口152内では、複数の発光部140が第1方向(図中、X方向)に並んでいる。言い換えると、本図に示す例では、図3に示した開口152が第1方向(図中、X方向)に沿って複数の開口152に分離している。本図に示す例においても、各開口152内では、発光部140を劣化させる物質が、互いに隣接する発光部140の間で絶縁層150を介して伝搬することを抑制することができる。
図13は、実施例1に係る発光装置10を示す平面図である。本実施例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
発光装置10は、第1電位供給部192及び第2電位供給部194を有している。第1電位供給部192は、第1電位を与える。第2電位供給部194は、第2電位を与える。第1電位及び第2電位は、例えばそれぞれ、電源電位及び接地電位であり、又は接地電位及び電源電位である。
複数の第1導電層110aのうちの一部の第1導電層110a(第3の第1導電層)は、第1配線114を介して第1電位供給部192に電気的に接続している。これに対して、複数の第1導電層110aのうちの他の一部の第1導電層110a(第1の第1導電層及び第2の第1導電層)は、第1電位供給部192に電気的に接続しておらず、電気的に浮遊している。本図に示す例では、複数の第1導電層110aの一端の第1導電層110a(第1の第1導電層)及び複数の第1導電層110aのもう一端の第1導電層110a(第2の第1導電層)が電気的に浮遊している。これに対して、上記した一端の第1導電層110aと上記したもう一端の第1導電層110aの間の複数の第1導電層110a(第1の第1導電層)が第1電位供給部192に電気的に接続している。
複数の第2導電層130aのうちの一部の第2導電層130a(第3の第2導電層)は、第2配線134を介して第2電位供給部194に電気的に接続している。これに対して、複数の第2導電層130aのうちの他の一部の第2導電層130a(第1の第2導電層及び第2の第2導電層)は、第2電位供給部194に電気的に接続しておらず、電気的に浮遊している。本図に示す例では、複数の第2導電層130aの一端の第2導電層130a(第1の第2導電層)及び複数の第2導電層130aのもう一端の第2導電層130a(第2の第2導電層)が電気的に浮遊している。これに対して、上記した一端の第2導電層130aと上記したもう一端の第2導電層130aの間の複数の第2導電層130a(第1の第2導電層)が第2電位供給部194に電気的に接続している。
本図に示すように、基板100の第1面102は、領域102a及び領域102bを含んでいる。領域102bは、領域102aを囲んでいる。領域102b上には、複数の第1導電層110aの一端の第1導電層110a、複数の第1導電層110aのもう一端の第1導電層110a、複数の第2導電層130aの一端の第2導電層130a及び複数の第2導電層130aの一端の第2導電層130aのいずれかに電気的に接続する発光部140が位置している。領域102b内の発光部140には、有機層120を発光させるための電位が与えられていない。言い換えると、領域102b内の発光部140は、ダミー発光部として機能している。これに対して、領域102a内の発光部140には、有機層120を発光させるための電位が与えられている。言い換えると、領域102a内の発光部140(第1発光部)は、第1導電層110a(第3の第1導電層)の第1電極110及び第2導電層130a(第3の第2導電層)の第2電極130を有している。
なお、本発明者が検討したところ、行列状に配置された複数の発光部140のうち外側に位置する発光部140の劣化が顕著であることが明らかになった。即ち、行列状に配置された複数の発光部140のうち外側に位置する発光部140と、それ以外の発光部140とにおいて劣化の進行に差があることが明らかになった。領域102bに位置する発光部140を囲む絶縁層150の体積は、領域102aに位置する発光部140を囲む絶縁層150の体積よりも大きいため、発光部140を劣化させる物質を多く含むためだと推測される。
本図に示す例においては、行列状に配置された複数の発光部140のうち外側に位置する発光部140はダミーとなっている。そのため領域102a内の発光部140のうち外側に位置する発光部140とそれ以外の発光部140との劣化の進行の差を抑制することができる。これは、領域102a内の発光部140は領域102bの発光部140(ダミー発光部)によって、領域102b外に位置する絶縁層150から離間されているためである。
以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
Claims (11)
- 基板と、
前記基板上の絶縁層と、
前記基板上で前記絶縁層から露出し、各々が第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する複数の発光部と、
を備え、
前記発光部は、前記絶縁層によって画定された第1辺、前記第1辺とは反対側にあって前記絶縁層によって画定された第2辺及び前記第1辺と前記第2辺に交差する方向に延伸して前記絶縁層から露出した第3辺を有する発光装置。 - 請求項1に記載の発光装置において、
前記発光部は、前記第3辺とは反対側にあって前記絶縁層から露出した第4辺を有する発光装置。 - 請求項1又は2に記載の発光装置において、
隣接する前記発光部の間に位置する領域は前記絶縁層から露出している発光装置。 - 請求項3に記載の発光装置において、
前記絶縁層は、第1縁を有する第1領域及び前記第1縁に対向する第2縁を有する第2領域を含み、
前記第1辺は、前記第1縁によって画定され、
前記第2辺は、前記第2縁によって画定されている発光装置。 - 請求項4に記載の発光装置において、
前記絶縁層は、前記発光部を露出する開口を有し、
前記開口は、第3縁及び前記第3縁に対向する第4縁を有し、
前記絶縁層の前記第1縁は、前記開口の前記第3縁であり、
前記絶縁層の前記第2縁は、前記開口の前記第4縁である発光装置。 - 請求項1~5のいずれか一項に記載の発光装置において、
第1方向に並ぶ複数の第1導電層と、
前記基板上及び前記複数の第1導電層上において、前記第1方向に直交する第2方向に並ぶ複数の第2導電層と、
を備え、
前記絶縁層は、前記基板上及び前記複数の第1導電層上にあり、
前記絶縁層の第1縁及び第2縁は、前記第1導電層と交差し、
前記複数の第2導電層は、前記基板上、前記複数の第1導電層上及び前記絶縁層上にあり、
前記第1導電層は、前記第2導電層と重なる部分を含み、
前記第2導電層は、前記第1導電層と重なる部分を含み、
前記発光部の前記第1電極は、前記第1導電層の前記部分であり、
前記発光部の前記第2電極は、前記第2導電層の前記部分である発光装置。 - 請求項6に記載の発光装置において、
前記第3辺、前記第4辺は前記第1導電層の端によって画定されている発光装置。 - 請求項6又は7に記載の発光装置において、
前記絶縁層上の複数の隔壁を備え、
前記複数の隔壁は、前記第2方向に並び、
互いに隣接する第2導電層は、前記隔壁を挟んで互いに対向している発光装置。 - 請求項8に記載の発光装置において、
前記絶縁層、前記複数の発光部及び前記複数の隔壁を覆う被覆層を備える発光装置。 - 請求項9に記載の発光装置において、
前記被覆層は、酸化チタン層及び酸化アルミニウム層を含む発光装置。 - 請求項6~10のいずれか一項に記載の発光装置において、
第1電位を与える第1電位供給部と、
第2電位を与える第2電位供給部と、
を備え、
前記複数の第1導電層は、第1の第1導電層、第2の第1導電層及び前記第1の第1導電層と前記第2の第1導電層の間の第3の第1導電層を含み、
前記複数の第2導電層は、第1の第2導電層、第2の第2導電層及び前記第1の第2導電層と前記第2の第2導電層の間の第3の第2導電層を含み、
前記第3の第1導電層は、前記第1電位供給部に電気的に接続し、
前記第1の第1導電層は、電気的に浮遊し、
前記第2の第1導電層は、電気的に浮遊し、
前記第3の第2導電層は、前記第2電位供給部に電気的に接続し、
前記第1の第2導電層は、電気的に浮遊し、
前記第2の第2導電層は、電気的に浮遊し、
前記複数の発光部のうちの第1発光部は、前記第3の第1導電層の前記第1電極及び前記第3の第2導電層の前記第2電極を有する発光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/060200 WO2017168581A1 (ja) | 2016-03-29 | 2016-03-29 | 発光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/060200 WO2017168581A1 (ja) | 2016-03-29 | 2016-03-29 | 発光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017168581A1 true WO2017168581A1 (ja) | 2017-10-05 |
Family
ID=59962702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060200 WO2017168581A1 (ja) | 2016-03-29 | 2016-03-29 | 発光装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017168581A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345178A (ja) * | 2000-03-27 | 2001-12-14 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2005093402A (ja) * | 2003-09-19 | 2005-04-07 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2007280920A (ja) * | 2006-04-05 | 2007-10-25 | Daewoo Electronics Corp | 有機電界発光素子及びその製造方法 |
JP2011171243A (ja) * | 2010-02-22 | 2011-09-01 | Dainippon Printing Co Ltd | 有機エレクトロルミネッセンス素子およびその製造方法 |
JP2012014859A (ja) * | 2010-06-29 | 2012-01-19 | Tdk Micro Device Corp | 有機el表示装置 |
JP2015108836A (ja) * | 2008-01-30 | 2015-06-11 | オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH | カプセル封入ユニットを有する装置 |
-
2016
- 2016-03-29 WO PCT/JP2016/060200 patent/WO2017168581A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345178A (ja) * | 2000-03-27 | 2001-12-14 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2005093402A (ja) * | 2003-09-19 | 2005-04-07 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2007280920A (ja) * | 2006-04-05 | 2007-10-25 | Daewoo Electronics Corp | 有機電界発光素子及びその製造方法 |
JP2015108836A (ja) * | 2008-01-30 | 2015-06-11 | オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH | カプセル封入ユニットを有する装置 |
JP2011171243A (ja) * | 2010-02-22 | 2011-09-01 | Dainippon Printing Co Ltd | 有機エレクトロルミネッセンス素子およびその製造方法 |
JP2012014859A (ja) * | 2010-06-29 | 2012-01-19 | Tdk Micro Device Corp | 有機el表示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016115472A (ja) | 有機発光デバイス | |
WO2017168581A1 (ja) | 発光装置 | |
JP2017182912A (ja) | 発光装置 | |
JP2023139318A (ja) | 発光装置 | |
WO2016157321A1 (ja) | 発光装置 | |
JP6701383B2 (ja) | 発光装置 | |
WO2017158767A1 (ja) | 発光装置 | |
JP2016119201A (ja) | 発光装置 | |
JP6776329B2 (ja) | 発光装置、電子機器及び発光装置の製造方法 | |
WO2017163347A1 (ja) | 発光装置 | |
JP6661373B2 (ja) | 発光装置 | |
JP6700309B2 (ja) | 発光装置 | |
JP2016186911A (ja) | 発光装置 | |
JP6924023B2 (ja) | 発光装置 | |
JP2018133274A (ja) | 発光装置 | |
JP2016157645A (ja) | 発光装置 | |
JP2017123239A (ja) | 発光装置 | |
WO2018062272A1 (ja) | 発光装置 | |
WO2017163374A1 (ja) | 発光装置の製造方法及び発光装置 | |
WO2016129114A1 (ja) | 発光装置及び発光装置の製造方法 | |
WO2017183118A1 (ja) | 発光装置 | |
WO2017094087A1 (ja) | 発光装置 | |
WO2018062273A1 (ja) | 発光装置 | |
JP2015046263A (ja) | 発光装置 | |
WO2017187639A1 (ja) | 発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16896801 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16896801 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |