Nothing Special   »   [go: up one dir, main page]

WO2017164683A1 - Organic solar cell and method for manufacturing same - Google Patents

Organic solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2017164683A1
WO2017164683A1 PCT/KR2017/003174 KR2017003174W WO2017164683A1 WO 2017164683 A1 WO2017164683 A1 WO 2017164683A1 KR 2017003174 W KR2017003174 W KR 2017003174W WO 2017164683 A1 WO2017164683 A1 WO 2017164683A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
organic solar
barrier layer
substrate
electrode
Prior art date
Application number
PCT/KR2017/003174
Other languages
French (fr)
Korean (ko)
Inventor
김광수
문정열
조근상
갈진하
박홍관
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170036345A external-priority patent/KR20170113193A/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2017164683A1 publication Critical patent/WO2017164683A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic solar cell having improved durability, stability and performance, and a method of manufacturing the same.
  • Solar cells are devices that convert light energy into electrical energy using the photovoltaic effect.
  • various flexible devices have attracted attention as next-generation electric and electronic devices, and solar cells are also required to satisfy the flexibility of such devices.
  • Organic thin film solar cells (hereinafter referred to as "organic solar cells”) can satisfy the flexibility of the flexible device, and has the advantage that can significantly reduce the material cost compared to inorganic solar cells.
  • the organic solar cell has an advantage that the low-cost large-area device can be manufactured through spin coating, screen printing, inkjet, microcontact printing, etc. due to the easy processability of the organic material of the material.
  • the various polymers constituting the organic solar cell have a significant decrease in physical properties when contacted with oxygen and moisture, resulting in a problem of rapidly decreasing the efficiency of the solar cell. Therefore, when manufacturing the organic solar cell, it is necessary to block the organic solar cell module which can exhibit the function of the organic solar cell independently from the external environment containing oxygen and moisture, and generally, one or both surfaces of the optical transparent adhesive (The organic solar cell module is protected from oxygen and moisture by laminating and sealing a transparent barrier film coated with an optical clear adhesive (OCA).
  • OCA optical clear adhesive
  • the oxygen and moisture present in the empty space formed by the step between the substrate and the module are not limited to the module and are not located on the substrate.
  • the pressure applied during the laminating process adversely affects the internal interface of the organic solar cell of the multilayer thin film structure, which causes degradation of performance, lifespan, and reliability of the organic solar cell.
  • Korean Patent Laid-Open Publication No. 10-2016-0000192 includes a film border portion in which a first barrier film and a second barrier film are bonded to each other, and a portion of the film border portion is formed between the first barrier film and the second barrier film.
  • a solar cell module package formed in a concave-convex shape in the horizontal direction of the adhesive film to increase the adhesion to suppress the penetration of moisture and oxygen.
  • the patent improves the sealing performance of the solar cell to some extent, but its effect is not sufficient, and a lot of time and cost are required due to the addition of processing and processing steps of the barrier film. Therefore, it is necessary to further develop an organic solar cell having excellent reliability and performance by effectively inhibiting penetration of external moisture and oxygen.
  • the substrate includes a unit module positioned on the substrate between the battery module and the second barrier layer and has a first barrier layer formed over the entire surface of the substrate.
  • Part of the module is not located in the upper part, that is, the empty space between the unit module is filled with oxygen and moisture is not included in the organic solar cell has excellent efficiency and reliability, it can be confirmed that the process stability can be improved It was.
  • an object of the present invention is to provide an organic solar cell having excellent durability, stability and performance.
  • the present invention is a substrate; A battery module in which a plurality of unit modules are formed in a predetermined pattern on the substrate; A first barrier layer including the plurality of unit modules and formed over the entire surface of the substrate; And it provides an organic solar cell comprising a second barrier layer formed on the first barrier layer.
  • the organic solar cell of the present invention includes a unit module disposed on a substrate, and includes a first barrier layer formed over the entire surface of the organic solar cell to prevent moisture and oxygen from being contained in the organic solar cell.
  • the present invention provides an organic solar cell having excellent durability and driving efficiency by buffering the pressure applied to the organic solar cell to prevent adverse effects on the interface between the photoactive layer and the hole transport layer having poor adhesion.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic solar cell according to the prior art.
  • FIG. 2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the structure of an organic solar cell according to another embodiment of the present invention.
  • each cell that absorbs light and converts it into electrical energy is arranged in a predetermined pattern to form a single unit. It's called a module.
  • one module may be separated by itself, and each of these modules may constitute one organic solar cell. At this time, since the power generated by one module is weak, most of the modules are connected to form an organic solar cell.
  • the conventional organic solar cell 100 arranges a plurality of unit modules 2 on a substrate 1 in a predetermined pattern and then seals the barrier layer 4 by laminating it.
  • the barrier layer 4 includes an adhesive layer 4-1 including an optically transparent adhesive on one surface.
  • This method may provide an effect of simplifying the sealing process, but the barrier layer 4 is adhered only to the top surface of the battery module and is not adhered to the unit module 2 and the substrate 1 so that the By the arrangement and the step between the substrate 1 and the unit module 2, a constant empty space A is formed. In this case, moisture and oxygen present in the empty space A are included in the organic solar cell as it is, thereby degrading the performance and lifespan of the organic solar cell.
  • the pressure applied when the barrier layer 4 is laminated causes a problem of interfacial bonding between organic solar cells having a multilayer thin film structure. Specifically, as the pressure is applied during the laminating process and the pressure is released, the bonding failure between the photoactive layer and the hole transport layer having poor interfacial adhesion force occurs in the organic solar cell, thereby degrading the performance and lifespan of the organic solar cell.
  • the present invention includes a unit module located on the substrate and has a first barrier layer formed over the entire surface of the substrate, thereby removing the empty space (A of FIG. 1) formed during the sealing of the conventional organic solar cell, thereby forming the inside of the organic solar cell.
  • the first barrier layer serves as a buffer layer to buffer the pressure applied when the second barrier layer is formed, thereby improving reliability of durability, stability, and the like of the organic solar cell.
  • FIG. 2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
  • an organic solar cell 200 includes a substrate 10; A battery module in which a plurality of unit modules 20 are formed in a predetermined pattern on the substrate 10; A first barrier layer 30 including the plurality of unit modules 20 and formed over the entire upper surface of the substrate 10; And a second barrier layer 40 formed on the first barrier layer 30.
  • the substrate 10 is not particularly limited as long as it is a material having transparency so that light can be transmitted.
  • the substrate 10 may be a glass substrate or a plastic substrate, preferably a flexible substrate.
  • the flexible substrate is preferably a polymer flexible substrate
  • the polymer flexible substrate may include polyethylene terephthalate (PET), polyethylene sulfone (PES), polyethylene naphthalate (PEN), polycarbonate (PC), and polymethylmethacrylate.
  • PMMA Acrylate
  • PI polyimide
  • EVA ethylene vinyl acetate
  • APET polypropylene terephthalate
  • PPT polyethylene terephthalate glycerol
  • PCTG polycyclohexylenedimethylene Terephthalate
  • TAC modified triacetylcellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • DCPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • CPD dicyclopentadiene polymer
  • PAR polyarylate
  • PAR polyetherimide
  • the shape of the substrate 10 may be a polygon such as a circle or a triangle, a square.
  • the substrate 10 may have a transmittance of at least 70% or more, specifically 80% or more, in the visible light wavelength range of about 400 to 750 nm.
  • the thickness of the substrate 10 is not particularly limited and may be appropriately determined depending on the intended use, but may be 1 to 500 ⁇ m.
  • the unit module 20 functions as an independent battery for converting light passing through the substrate 10 into electrical energy, wherein the unit module 20 includes two or more organic solar cell cells, and the organic solar cell
  • the cell includes a first electrode, a second electrode, and a photoactive layer interposed therebetween.
  • the organic solar cell may have a normal structure or an inverted structure.
  • the first electrode is a positive electrode
  • the second electrode is a negative electrode
  • the first electrode is a negative electrode
  • the second electrode is a positive electrode
  • the organic solar cell may further include a hole transport layer and an electron transport layer as necessary.
  • the first electrode may be an anode or a cathode.
  • the organic solar cell manufactured according to the embodiment of the present invention has an inverted structure, and thus the first electrode layer is a cathode.
  • the first electrode is formed on the substrate described above, and serves as a path for light passing through the substrate to reach the photoactive layer, and thus has a high transparency and uses a conductive material having a high work function of about 4.5 eV or more and a low resistance. It is preferable.
  • the first electrode may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), indium tin zinc oxide (Indium Tin Zinc Oxide); ITZO), Ga-doped Zinc Oxide (GZO), Al-doped Zinc Oxide (AZO), F-doped Tin Oxide (FTO), Zinc Oxide (Zinc) Tin Oxide (ZTO), Indium Gallium Oxide (IGO), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3 and combinations thereof electrode; Organic transparent electrodes such as conductive polymers, graphene thin films, graphene oxide thin films, and carbon nanotube thin films; Alternatively, an organic-inorganic bonded transparent electrode such as a carbon nanotube thin film bonded to a metal may be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGZO indium gallium zinc oxide
  • the thickness of the first electrode may be 10 to 3000 nm.
  • the first electrode may be formed on a substrate according to a conventional method.
  • the cathode may be formed on one surface of the substrate by thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical vapor deposition, or a similar method.
  • the method may also be used to pretreat the surface of the substrate.
  • the second electrode may be a cathode or an anode. In one embodiment of the present invention, the second electrode layer is an anode.
  • the second electrode is a metal electrode layer having a low work function
  • the metal is, for example, silver (Ag), copper (Cu), gold (Au), platinum (Pt), titanium (Ti), aluminum ( Metal particles such as Al), nickel (Ni), zirconium (Zr), iron (Fe), and manganese (Mn); Or a precursor containing the metal element, for example, silver nitrate (AgNO 3 ), Cu (HAFC) 2 (Cu (hexafluoroacetylacetonate) 2 ), Cu (HAFC) (1,5-Cyclooctanediene), Cu (HAFC) (1, 5-Dimethylcyclooctanediene), Cu (HAFC) (4-Methyl-1-pentene), Cu (HAFC) (Vinylcyclohexane), Cu (HAFC) (DMB), Cu (TMHD) 2 (Cu (tetramethylheptanedionate) 2 ), DMAH ( dimethylaluminum hydride
  • the thickness of the second electrode may be 10 to 5000 nm.
  • the second electrode may be formed by a conventional method known in the art. For example, it may be formed through screen printing, gravure printing, gravure offset printing, thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical deposition, and the like.
  • the photoactive layer is positioned between the first electrode and the second electrode described above, and those known in the art may be used without limitation.
  • the photoactive layer has a bulk heterojunction (BHJ) structure in which a hole acceptor and an electron acceptor are mixed. It is also possible to use a bilayer type.
  • BHJ bulk heterojunction
  • the hole acceptor is an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material.
  • the electrically conductive polymer is a polythiophene, polyphenylene vinylene, polyfluorene, polypyrrole. ), Copolymers thereof, and derivatives thereof.
  • the organic low molecular weight semiconductor material is any one selected from the group consisting of pentacene, anthracene, tetratracene, perylene, oligothiophene, derivatives thereof, and combinations thereof It can be one.
  • the hole receptor is poly-3-hexylthiophene (P3HT), poly-3-octylthiophene (poly-3-octylthiophene, P3OT), polyparaphenylenevinylene [poly- p-phenylene vinylene, PPV], poly (dioctylfluorene) [poly (9,9′-dioctylfluorene)], poly (2-methoxy, 5- (2-ethyl-hexyloxy) -1,4- Phenylenevinylene) [poly (2-methoxy, 5- (2-ethyl-hexyloxy) -1,4-phenylene vinylene, MEH-PPV], poly (2-methyl, 5- (3 ', 7'-dimethyl Octyloxy))-1,4-phenylenevinylene [poly (2-methyl, 5- (3 ', 7'-dimethyloctyloxy))-1,4-phenyleneviny
  • the electron acceptor is a fullerene derivative such as fullerene (C 60 ), C 70 , C 76 , C 78 , C 80 , C 82 , C 84 , CdS, CdSe, CdTe, ZnSe, (6,6) -phenyl- C61-butyric acid methyl ester [(6,6) -phenyl-C61-butyric acid methyl ester; PCBM], (6,6) -phenyl-C71-butyric acid methyl ester [(6,6) -phenyl-C71-butyric acid methyl ester; C70-PCBM], (6,6) -thienyl-C61-butyric acid methyl ester [(6,6) -thienyl-C61-butyric acid methyl ester; ThCBM], carbon nanotubes, and combinations thereof.
  • fullerene C 60
  • the electron acceptor (6,6) -phenyl -C 61 - butyric rigs Acid methyl ester ((6,6) -phenyl-C 61 -butyric acid methyl ester, PCBM), (6,6) - phenyl- C 71 - butyric rigs Acid methyl ester ((6,6) -phenyl-C 71 -butyric acid methyl ester, C 70 -PCBM), (6,6) - thienyl -C 61 - butyric rigs Acid methyl ester (( 6,6) -thienyl-C 61 -butyric acid methyl ester (ThCBM) and carbon nanotubes may include one or more selected from the group consisting of.
  • the composition for forming the photoactive layer more preferably comprises a mixture of P3HT and PCBM as the electron acceptor, the mixing weight ratio of the P3HT and PCBM is 1: 0.1 to 1: 2, preferably 1: 1.5 to 1: 2.
  • the organic solar cell may further include an electron transport layer between the first electrode and the photoactive layer, and a hole transport layer between the photoactive layer and the second electrode.
  • the electron transport layer allows electrons generated in the photoactive layer to be easily transferred to the adjacent first electrode.
  • the electron transport layer may be used a known material without limitation, for example, aluminum tris (8-hydroxyquinoline), Alq 3 , lithium fluoride (LiF), lithium complex (8) -hydroxy-quinolinato lithium (Liq), a nonconjugated polymer, a nonconjugated polymer electrolyte, a conjugated polymer electrolyte, or an n-type metal oxide.
  • the n-type metal oxide may be, for example, TiO x , ZnO or Cs 2 CO 3 .
  • a self-assembled thin film of a metal layer may be used as the electron transporting layer.
  • the hole transport layer helps to move holes generated in the photoactive layer to the adjacent second electrode.
  • the hole transport layer may be a known material without limitation, and, for example, poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrenesulfonate) (PSS), polyaniline, phthalocyanine, pentacene, poly Diphenyl acetylene, poly (t-butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, copper phthalocyanine (Cu-PC) poly (bistrifluoromethyl) acetylene, polybis (t-butyldiphenyl ) Acetylene, poly (trimethylsilyl) diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, polymethoxyphenylacetylene, polymethylphenylacetylene, poly (t-butyl) phenyl And one or more hole transport materials selected from ace
  • one second electrode forms an electrically connected structure with a first electrode of a neighboring cell. Accordingly, the plurality of organic solar cells included in one unit module are electrically connected in series. Take the structure
  • a plurality of unit modules 20 including the above-described organic solar cell are disposed on the substrate 10 in a predetermined pattern, and the unit modules 20 are continuously spaced by a predetermined pitch. Located.
  • the pitch between the unit modules 20 may be 1 to 5,000 ⁇ m, preferably 50 to 2,000 ⁇ m.
  • the pattern of the unit module 20 may be one or more forms selected from the group consisting of stripes, grids, waves, zigzag, rhombus, circle and polygon.
  • the first barrier layer 30 includes the plurality of unit modules 20 and is formed over the entire surface of the substrate 10.
  • the first barrier layer 30 is formed in close contact with the exposed portion of the substrate 10 in which the above-described unit module 20 and the unit module 20 are not disposed.
  • the void space formed by the step between the substrates is removed to completely block the inflow of water and oxygen into the organic solar cell.
  • the first barrier 30 serves to protect the organic solar cell constituting the unit module 20 by buffering the pressure applied during the stacking of the second barrier layer 40 to be described later. Accordingly, the organic solar cell according to the present invention can secure improved durability, stability and performance compared to the conventional organic solar cell.
  • the first barrier layer 30 is a liquid barrier material that is curable through heat or light, and the material is not particularly limited.
  • the liquid barrier material may be used without particular limitation as long as it can be prepared in a liquid state by melting or dissolving it in a solvent.
  • the first barrier layer 30 may be formed by applying and curing a coating composition including a thermosetting resin or a thermoplastic resin having a viscosity in the range of 1,000 to 4,000 cps.
  • thermosetting resin For example, a polyurethane, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, a diallyl phthalate resin, a silicone resin, an epoxy resin, etc. are mentioned.
  • thermoplastic resin examples include polyethylene, polypropylene, polyisoprene, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polybutadiene, styrene resin, impact resistant polystyrene, acrylonitrile-styrene resin (AS Resin), acrylonitrile-butadiene-styrene resin (ABS resin), methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene resin (MABS resin), acrylo Nitrile-acrylic rubber-styrene resin (AAS resin), polymethyl (meth) acrylate, polycarbonate, modified polyphenylene ether (PPE), polyamide, polyphenylene sulfide, polyimide, polyether ether ketone, Polysulfone, polyarylate, polyetherketone, polyethernitrile, polythio
  • the coating composition for forming the first barrier layer 30 may further include various additives if necessary.
  • the additive may be a crosslinking agent, a crosslinking accelerator, a coupling agent, an ultraviolet absorber, a reinforcing agent, an antioxidant, an antioxidant, a viscosity modifier, conductive particles, and the like.
  • the first barrier layer 30 is formed through a wet coating process of applying a coating composition to form a coating film.
  • the coating is selected from slot die coating method, bar coating method, Meyer bar coating method, spin coating method, comma coating method, curtain coating method, micro gravure coating method, inkjet coating method, spray coating method or doctor blade coating method and the like. It can be formed through one or more methods.
  • a curing process using heat or light is performed, wherein the temperature or time may vary depending on the material of the first barrier layer 30.
  • the first barrier layer 30 may have an adhesive force through curing, in which case the second barrier layer to be described later does not need a separate adhesive layer to thin the organic solar cell and It has the advantage of flexibility.
  • the total thickness of the first barrier layer 30 from the top of the substrate may be a thickness of the battery module + 1 to 50 ⁇ m, preferably a thickness of the battery module + 5 to 40 ⁇ m.
  • the first barrier layer may have a thickness of 6 to 150 ⁇ m, preferably 10 to 140 ⁇ m, from the top of the substrate.
  • the first barrier layer 30 may be formed in a thickness of 1 to 50 ⁇ m range, preferably 5 to 40 ⁇ m from the top of the battery module. If the thickness of the first barrier layer 30 from the top of the battery module is less than 1 ⁇ m, the upper surface of the first barrier layer 30 is difficult to planarize and the above-described effects cannot be obtained. On the contrary, when the thickness exceeds 50 ⁇ m, the thickness of the organic solar cell is increased and cracks are generated during the manufacturing process, thereby degrading quality and performance.
  • the second barrier layer 40 is formed on the first barrier layer 30 and seals the battery module on the substrate to block the external environment including oxygen and moisture.
  • the second barrier layer 40 may use a conventional material known in the art to which the present invention pertains, and is not particularly limited.
  • the second barrier layer 40 may be made of an insulating material made of a transparent polymer, and polyethylene terephthalate (PET), polycarbonate (PC), or the like may be used.
  • the thickness of the second barrier layer 40 may be 25 to 50 ⁇ m. When the thickness of the second barrier layer 40 falls within the above range, a sufficient sealing effect may be ensured.
  • the second barrier layer 40 is formed through a laminating process, and the laminating process uses a conventional method known in the art.
  • FIG. 3 is a cross-sectional view schematically showing the structure of an organic solar cell according to another embodiment of the present invention.
  • an organic solar cell 300 is disposed between the first barrier layer 30 and the second barrier layer 40 of the organic solar cell 200 of FIG. 2.
  • the adhesive layer 41 further includes.
  • the adhesive layer 41 is for firmly attaching the first barrier layer 30 and the second barrier layer 40, and is not particularly limited as long as the adhesive layer 41 has transparency and adhesiveness.
  • the adhesive layer 41 may include pressure sensitive adhesives (PSA), optical transparent adhesives (OCA), or the like.
  • the thickness of the adhesive layer 41 may be 10 to 50 ⁇ m.
  • the substrate 10, the unit module 20, the first barrier layer 30 and the second barrier layer 40 of the organic solar cell 300 according to another embodiment of the present invention are in one embodiment of the present invention As described above.
  • the organic solar cell according to the present invention includes a unit module on a substrate and has a first barrier layer formed over the entire surface of the organic solar cell, thereby effectively blocking external oxygen and moisture as compared to the conventional organic solar cell, thereby resulting in an organic solar cell.
  • the performance and life of the organic solar cell is improved.
  • the first barrier layer serves as a buffer layer to buffer the pressure applied when the second barrier layer is formed, the organic solar cell may exhibit excellent durability and stability.
  • ten unit modules including ten organic solar cells in which an anode, an electron transport layer, a photoactive layer, a hole transport layer, and a cathode are stacked in series on a substrate are arranged at a pitch of 2,000 ⁇ m.
  • an epoxy resin liquid barrier material (LP655, LP655) was coated over the entire surface of the substrate to form a first barrier layer 30 ⁇ m higher than the unit module.
  • An organic solar cell was manufactured by attaching a second barrier layer (50 ⁇ m thick) having an adhesive layer (50 ⁇ m thick) formed on an upper portion of the first barrier layer.
  • An organic solar cell was manufactured in the same manner as in Example 1, except that the first barrier layer of Example 1 was not formed.
  • Example 1 In order to test the reliability of the organic solar cells manufactured in Example 1 and Comparative Example 1, a light soaking (L.S.) test was performed. Specifically, the same solar light was irradiated to the organic solar cell, and the power conversion efficiency (PCE) was evaluated over time.
  • L.S. light soaking

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to an organic solar cell and a method for manufacturing the same and, more particularly, to an organic solar cell and a method for manufacturing the same, the organic solar cell comprising: a substrate; a cell module including multiple unit modules arranged on the substrate to form a predetermined pattern; a first barrier layer including the multiple unit modules and formed over the entire surface of the substrate; and a second barrier layer formed on the first barrier layer. The organic solar cell according to the present invention can effectively block external moisture and oxygen and can improve the durability thereof, and thus, the performance and reliability thereof can be significantly improved.

Description

유기태양전지 및 이의 제조방법Organic solar cell and manufacturing method thereof
본 출원은 2016년 3월 25일자 한국 특허 출원 제10-2016-0036328호 및 2017년 3월 22일자 한국 특허 출원 제10-2017-0036345호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0036328 filed March 25, 2016 and Korean Patent Application No. 10-2017-0036345 filed March 22, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 내구성, 안정성 및 성능이 향상된 유기태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to an organic solar cell having improved durability, stability and performance, and a method of manufacturing the same.
태양전지는 광기전력 효과(photovoltaic effect)를 이용하여 빛 에너지를 전기적 에너지로 변환하는 장치이다. 최근 들어 정보 전자산업의 급속한 발전과 함께 차세대 전기전자 소자로서 다양한 유연성(flexible) 소자가 주목을 받고 있으며, 그에 따라 태양전지도 그러한 소자의 유연성을 충족시키도록 요구되고 있다.Solar cells are devices that convert light energy into electrical energy using the photovoltaic effect. In recent years, with the rapid development of the information electronics industry, various flexible devices have attracted attention as next-generation electric and electronic devices, and solar cells are also required to satisfy the flexibility of such devices.
유기박막 태양전지(이하 “유기태양전지”라 함)는 유연성 소자의 유연성을 충족시킬 수 있으며, 무기계 태양전지에 비해 소재 비용의 대폭적인 절감이 가능한 장점을 갖는다. 또한, 유기태양전지는 그 재료가 되는 유기물의 손쉬운 가공성으로 인하여 스핀 코팅, 스크린 프린팅, 잉크젯, 미세접촉 프린팅법 등을 통하여 저가의 대면적 소자 제작이 가능한 장점을 갖는다.Organic thin film solar cells (hereinafter referred to as "organic solar cells") can satisfy the flexibility of the flexible device, and has the advantage that can significantly reduce the material cost compared to inorganic solar cells. In addition, the organic solar cell has an advantage that the low-cost large-area device can be manufactured through spin coating, screen printing, inkjet, microcontact printing, etc. due to the easy processability of the organic material of the material.
그러나, 유기태양전지를 구성하는 다양한 고분자는 산소 및 수분과 접촉시 그 물성이 현저히 저하되며 결국 태양전지의 효율을 급감시키는 문제를 야기한다. 따라서, 유기태양전지의 제작시 각각 독립적으로 유기태양전지의 기능을 발휘할 수 있는 유기태양전지 모듈을 산소 및 수분을 포함하는 외부 환경으로부터 차단시킬 필요가 있으며, 일반적으로 일면 또는 양면에 광학 투명 접착제(Optical Clear Adhesive, OCA)가 도포된 투명 베리어(barrier) 필름을 라미네이팅하여 밀봉함으로써 유기태양전지 모듈을 산소 및 수분으로부터 보호하고 있다.However, the various polymers constituting the organic solar cell have a significant decrease in physical properties when contacted with oxygen and moisture, resulting in a problem of rapidly decreasing the efficiency of the solar cell. Therefore, when manufacturing the organic solar cell, it is necessary to block the organic solar cell module which can exhibit the function of the organic solar cell independently from the external environment containing oxygen and moisture, and generally, one or both surfaces of the optical transparent adhesive ( The organic solar cell module is protected from oxygen and moisture by laminating and sealing a transparent barrier film coated with an optical clear adhesive (OCA).
그러나, 베리어 필름을 통해 유기태양전지를 밀봉하는 경우 모듈 상면에 국한되어 기판 상에 모듈이 위치하지 않고 기판과 모듈 사이의 단차에 의해 형성된 빈 공간에 존재하는 산소 및 수분이 유기태양전지 내부에 그대로 포함되게 되며, 라미네이팅 과정에서 가해지는 압력이 다층 박막 구조의 유기태양전지 셀 내부 계면에 악영향을 미쳐 유기태양전지의 성능, 수명, 신뢰성 등의 저하 문제가 발생한다.However, when sealing the organic solar cell through the barrier film, the oxygen and moisture present in the empty space formed by the step between the substrate and the module are not limited to the module and are not located on the substrate. The pressure applied during the laminating process adversely affects the internal interface of the organic solar cell of the multilayer thin film structure, which causes degradation of performance, lifespan, and reliability of the organic solar cell.
이에 유기태양전지의 밀봉성을 개선하기 위해 다양한 방법들이 연구되고 있다.Accordingly, various methods have been studied to improve the sealing property of organic solar cells.
일례로, 대한민국 공개특허 제10-2016-0000192호는 제1 베리어 필름과 제2 베리어 필름이 서로 접착된 필름테두리부를 포함하고, 상기 필름테두리부의 일부는 상기 제1 베리어 필름과 제2 베리어 필름 간의 접착력을 증가시켜 수분 및 산소의 침투를 억제하도록 상기 접착필름부의 수평방향으로 요철모양으로 형성된 태양전지 모듈 패키지를 개시하고 있다.For example, Korean Patent Laid-Open Publication No. 10-2016-0000192 includes a film border portion in which a first barrier film and a second barrier film are bonded to each other, and a portion of the film border portion is formed between the first barrier film and the second barrier film. Disclosed is a solar cell module package formed in a concave-convex shape in the horizontal direction of the adhesive film to increase the adhesion to suppress the penetration of moisture and oxygen.
상기 특허는 태양전지의 밀봉 성능을 어느 정도 개선하였으나 그 효과가 충분치 않고 베리어 필름의 가공, 공정 단계의 추가로 인해 많은 시간과 비용이 요구된다. 따라서, 외부의 수분 및 산소의 침투를 효과적으로 억제하여 우수한 신뢰성 및 성능을 가지는 유기태양전지의 개발이 더욱 필요한 실정이다.The patent improves the sealing performance of the solar cell to some extent, but its effect is not sufficient, and a lot of time and cost are required due to the addition of processing and processing steps of the barrier film. Therefore, it is necessary to further develop an organic solar cell having excellent reliability and performance by effectively inhibiting penetration of external moisture and oxygen.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허 제10-2016-0000192호(2016.01.04), 태양전지 모듈 패키지 및 그 제조방법Republic of Korea Patent Publication No. 10-2016-0000192 (2016.01.04), solar cell module package and manufacturing method
본 발명자들은 상기한 문제점을 해결하고자 다각적으로 연구를 수행한 결과, 전지모듈과 제2베리어층 사이에 기판 상에 위치하는 단위 모듈을 포함하며 기판 전면에 걸쳐 형성된 제1베리어층을 구비하는 경우 기판 상에 모듈이 위치하지 않는 부분 즉, 단위 모듈 사이의 빈 공간이 메워짐으로써 유기태양전지 내부에 산소 및 수분이 포함되지 않아 우수한 효율 및 신뢰성을 가질 수 있고, 공정 안정성을 향상시킬 수 있음을 확인하였다.The inventors have conducted various studies to solve the above problems, and have found that the substrate includes a unit module positioned on the substrate between the battery module and the second barrier layer and has a first barrier layer formed over the entire surface of the substrate. Part of the module is not located in the upper part, that is, the empty space between the unit module is filled with oxygen and moisture is not included in the organic solar cell has excellent efficiency and reliability, it can be confirmed that the process stability can be improved It was.
이에 본 발명의 목적은 우수한 내구성, 안정성 및 성능을 가지는 유기태양전지를 제공하는 것이다.Accordingly, an object of the present invention is to provide an organic solar cell having excellent durability, stability and performance.
상기 목적을 달성하기 위해, 본 발명은 기판; 상기 기판 상에 복수 개의 단위 모듈이 소정의 패턴을 이루며 배치된 전지모듈; 상기 복수 개의 단위 모듈을 포함하며, 상기 기판 전면에 걸쳐 형성된 제1베리어층; 및 상기 제1베리어층 상에 형성된 제2베리어층을 포함하는 유기태양전지를 제공한다.In order to achieve the above object, the present invention is a substrate; A battery module in which a plurality of unit modules are formed in a predetermined pattern on the substrate; A first barrier layer including the plurality of unit modules and formed over the entire surface of the substrate; And it provides an organic solar cell comprising a second barrier layer formed on the first barrier layer.
본 발명의 유기태양전지는 기판 상에 배치된 단위 모듈을 포함하며 기판 전면에 걸쳐 형성된 제1베리어층을 포함하는 것에 의해 유기태양전지 내부에 수분과 산소가 포함되는 것을 방지하며, 의 라미네이팅 과정에서 유기태양전지에 가해지는 압력을 완충시켜 접착상태가 취약한 광활성층과 정공수송층의 계면에 악영향을 미치는 것을 방지함으로써 우수한 내구성 및 구동효율을 가지는 유기태양전지를 제공한다.The organic solar cell of the present invention includes a unit module disposed on a substrate, and includes a first barrier layer formed over the entire surface of the organic solar cell to prevent moisture and oxygen from being contained in the organic solar cell. The present invention provides an organic solar cell having excellent durability and driving efficiency by buffering the pressure applied to the organic solar cell to prevent adverse effects on the interface between the photoactive layer and the hole transport layer having poor adhesion.
도 1은 종래기술에 의한 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing the structure of an organic solar cell according to the prior art.
도 2는 본 발명의 일 구현예에 따른 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
도 3은 본 발명의 다른 일 구현예에 따른 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.3 is a cross-sectional view schematically showing the structure of an organic solar cell according to another embodiment of the present invention.
도 4는 본 발명의 실시예 및 비교예에 따른 유기태양전지의 성능 평가 결과를 나타낸 그래프이다.4 is a graph showing the results of performance evaluation of the organic solar cell according to the embodiment and the comparative example of the present invention.
이하, 첨부된 도면을 참고하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 본 발명을 설명하기에 앞서 관련된 공지기능 및 구성에 대한 구체적 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 설명은 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Prior to describing the present invention, if it is determined that a detailed description of related known functions and configurations may unnecessarily obscure the subject matter of the present invention, the description thereof will be omitted.
아래 설명과 도면은 당업자가 설명되는 장치와 방법을 용이하게 실시할 수 있도록 특정 실시예를 예시한다. 다른 실시예는 구조적, 논리적으로 다른 변형을 포함할 수 있다. 개별 구성 요소와 기능은 명확히 요구되지 않는 한, 일반적으로 선택될 수 있으며, 과정의 순서는 변할 수 있다. 몇몇 실시예의 부분과 특징은 다른 실시예에 포함되거나 다른 실시예로 대체될 수 있다.The following description and drawings illustrate specific embodiments to enable those skilled in the art to easily implement the described apparatus and methods. Other embodiments may incorporate other structural and logical variations. Individual components and functions may be generally selected unless explicitly required, and the order of the processes may vary. Portions and features of some embodiments may be included in, or replaced by, other embodiments.
본 명세서에서 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본 명세서에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present specification, when a part "contains" a certain component, this means that the component may further include other components, except for the case where there is no description to the contrary.
일반적으로, 유기태양전지는 빛을 흡수하여 전기 에너지로 변환시키는 각각의 셀(cell)이 소정의 패턴으로 여러 개가 배열되어 하나의 단위를 이루게 되며, 이와 같이 여러 개의 셀이 모여서 이루어진 하나의 단위를 모듈(module)이라고 부른다.In general, in the organic solar cell, each cell that absorbs light and converts it into electrical energy is arranged in a predetermined pattern to form a single unit. It's called a module.
따라서 유기태양전지에서 하나의 모듈은 그 자체로 분리될 수 있으며, 이러한 모듈은 각각 하나의 유기태양전지를 구성할 수 있다. 이때 하나의 모듈에서 발생하는 전력은 미약하므로 대부분 다수의 모듈을 연결하여 유기태양전지를 구성하게 된다.Therefore, in an organic solar cell, one module may be separated by itself, and each of these modules may constitute one organic solar cell. At this time, since the power generated by one module is weak, most of the modules are connected to form an organic solar cell.
도 1은 종래기술에 의한 유기태양전지의 구조를 개략적으로 나타낸 단면도이다. 도 1에 도시한 바와 같이, 종래 유기태양전지(100)는 기판(1) 상에 다수의 단위 모듈(2)을 소정의 패턴으로 배치한 후 베리어층(4)을 라미네이팅하여 밀봉한다. 이때 베리어층(4)은 일면에 광학 투명 접착제를 포함하는 접착층(4-1)을 포함한다. 이러한 방법은 밀봉 공정이 단순화되는 효과를 제공할 수 있으나, 상기 베리어층(4)이 전지 모듈 상면에만 접착되고 상기 단위 모듈(2) 및 기판(1)에 밀착되지 않아 상기 단위 모듈(2)의 배치와 상기 기판(1)과 단위 모듈(2) 간의 단차에 의해 일정한 빈 공간(A)이 형성된다. 이 경우 상기 빈 공간(A)에 존재하는 수분과 산소는 그대로 유기태양전지 내부에 포함되게 되어 유기태양전지의 성능 및 수명 저하를 저하시킨다.1 is a cross-sectional view schematically showing the structure of an organic solar cell according to the prior art. As shown in FIG. 1, the conventional organic solar cell 100 arranges a plurality of unit modules 2 on a substrate 1 in a predetermined pattern and then seals the barrier layer 4 by laminating it. At this time, the barrier layer 4 includes an adhesive layer 4-1 including an optically transparent adhesive on one surface. This method may provide an effect of simplifying the sealing process, but the barrier layer 4 is adhered only to the top surface of the battery module and is not adhered to the unit module 2 and the substrate 1 so that the By the arrangement and the step between the substrate 1 and the unit module 2, a constant empty space A is formed. In this case, moisture and oxygen present in the empty space A are included in the organic solar cell as it is, thereby degrading the performance and lifespan of the organic solar cell.
또한, 상기 베리어층(4)을 라미네이팅시 가해지는 압력은 다층 박막 구조를 갖는 유기태양전지 셀의 계면간 접합 문제를 야기한다. 구체적으로, 라미네이팅 과정에서 압력이 가해졌다가 해소됨에 따라 유기태양전지 셀에서 계면접착력이 취약한 광활성층과 정공수송층 사이의 접합 불량이 발생하고, 이로 인해 유기태양전지의 성능, 수명 등이 저하된다.In addition, the pressure applied when the barrier layer 4 is laminated causes a problem of interfacial bonding between organic solar cells having a multilayer thin film structure. Specifically, as the pressure is applied during the laminating process and the pressure is released, the bonding failure between the photoactive layer and the hole transport layer having poor interfacial adhesion force occurs in the organic solar cell, thereby degrading the performance and lifespan of the organic solar cell.
이에 본 발명에서는 기판 상에 위치하는 단위 모듈을 포함하며 기판 전면에 걸쳐 형성된 제1베리어층을 구비함으로써 종래 유기태양전지의 밀봉시 형성되는 빈 공간(도 1의 A)을 제거하여 유기태양전지 내부에 수분 및 산소가 전혀 포함되지 않아 유기태양전지의 성능 및 수명을 개선시킬 수 있다. 이에 더해서, 상기 제1베리어층은 제2베리어층 형성시 가해지는 압력을 완충시키는 버퍼층 역할을 하여 유기태양전지의 내구성, 안정성 등의 신뢰성을 향상시킨다.Accordingly, the present invention includes a unit module located on the substrate and has a first barrier layer formed over the entire surface of the substrate, thereby removing the empty space (A of FIG. 1) formed during the sealing of the conventional organic solar cell, thereby forming the inside of the organic solar cell. Does not contain any moisture and oxygen can improve the performance and life of the organic solar cell. In addition, the first barrier layer serves as a buffer layer to buffer the pressure applied when the second barrier layer is formed, thereby improving reliability of durability, stability, and the like of the organic solar cell.
도 2는 본 발명의 일 구현예에 따른 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.2 is a cross-sectional view schematically showing the structure of an organic solar cell according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 구현예에 따른 유기태양전지(200)는 기판(10); 상기 기판(10) 상부에 복수 개의 단위 모듈(20)이 소정의 패턴을 이루며 배치된 전지모듈; 상기 복수 개의 단위 모듈(20)을 포함하며, 상기 기판(10) 상부 전면에 걸쳐 형성된 제1베리어층(30); 및 상기 제1베리어층(30) 상에 형성된 제2베리어층(40)을 포함한다.2, an organic solar cell 200 according to an embodiment of the present invention includes a substrate 10; A battery module in which a plurality of unit modules 20 are formed in a predetermined pattern on the substrate 10; A first barrier layer 30 including the plurality of unit modules 20 and formed over the entire upper surface of the substrate 10; And a second barrier layer 40 formed on the first barrier layer 30.
상기 기판(10)은 광이 투과될 수 있도록 투명성을 갖는 소재라면 특별히 한정되지 않고 사용할 수 있다.The substrate 10 is not particularly limited as long as it is a material having transparency so that light can be transmitted.
예를 들어, 상기 기판(10)은 유리 기판 또는 플라스틱 기판이 사용될 수 있으며, 바람직하게는 유연 기판이 사용될 수 있다. For example, the substrate 10 may be a glass substrate or a plastic substrate, preferably a flexible substrate.
일례로, 상기 유연 기판은 고분자 유연 기판인 것이 바람직하며, 상기 고분자 유연 기판으로는 폴리에틸렌테레프탈레이트 (PET), 폴리에틸렌설폰(PES), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드(PI), 에틸렌비닐아세테이트(EVA), 아몰포스 폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀폴리머(COP), 사이클로올레핀코폴리머(COC), 디사이클로펜타디엔폴리머(DCPD), 사이클로펜타디엔폴리머(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 폴리다이메틸실론세인(PDMS), 실리콘 수지, 불소 수지 및 변성 에폭시 수지로 이루어지는 군으로부터 선택되는 1종 이상 고분자를 사용할 수 있다.For example, the flexible substrate is preferably a polymer flexible substrate, and the polymer flexible substrate may include polyethylene terephthalate (PET), polyethylene sulfone (PES), polyethylene naphthalate (PEN), polycarbonate (PC), and polymethylmethacrylate. Acrylate (PMMA), polyimide (PI), ethylene vinyl acetate (EVA), amorphous polyethylene terephthalate (APET), polypropylene terephthalate (PPT), polyethylene terephthalate glycerol (PETG), polycyclohexylenedimethylene Terephthalate (PCTG), modified triacetylcellulose (TAC), cycloolefin polymer (COP), cycloolefin copolymer (COC), dicyclopentadiene polymer (DCPD), cyclopentadiene polymer (CPD), polyarylate ( PAR), polyetherimide (PEI), polydimethylsiloncene (PDMS), silicone resin, fluorine resin, and modified epoxy resin selected from the group consisting of 1 Or more polymers can be used.
상기 기판(10)의 형태는 원형 또는 삼각형, 사각형 등의 다각형이 사용될 수 있다.The shape of the substrate 10 may be a polygon such as a circle or a triangle, a square.
또한, 상기 기판(10)은 약 400 내지 750 ㎚의 가시광선 파장 영역에서 적어도 70 % 이상, 구체적으로는 80 % 이상의 투과율을 갖는 것이 좋다.In addition, the substrate 10 may have a transmittance of at least 70% or more, specifically 80% or more, in the visible light wavelength range of about 400 to 750 nm.
상기 기판(10)의 두께는 특별히 한정되지 않으며 사용 용도에 따라 적절히 결정될 수 있는데 일례로 1 내지 500 ㎛일 수 있다.The thickness of the substrate 10 is not particularly limited and may be appropriately determined depending on the intended use, but may be 1 to 500 μm.
상기 단위 모듈(20)은 상기 기판(10)을 통과한 빛을 전기에너지로 변환시키는 독립된 전지 기능을 하며, 이때 단위 모듈(20)은 2개 이상의 유기태양전지 셀을 포함하며, 상기 유기태양전지 셀은 제1전극, 제2전극 및 이들 사이에 개재되는 광활성층을 포함한다.The unit module 20 functions as an independent battery for converting light passing through the substrate 10 into electrical energy, wherein the unit module 20 includes two or more organic solar cell cells, and the organic solar cell The cell includes a first electrode, a second electrode, and a photoactive layer interposed therebetween.
상기 유기태양전지 셀은 노말(normal) 구조 또는 인버티드(inverted) 구조일 수 있다.The organic solar cell may have a normal structure or an inverted structure.
상기 유기태양전지 셀이 노말 구조인 경우 상기 제1전극은 양극(positive electrode)이며, 상기 제2전극은 음극(negative electrode)이다.When the organic solar cell has a normal structure, the first electrode is a positive electrode, and the second electrode is a negative electrode.
상기 유기태양전지 셀이 인버티드 구조인 경우 상기 제1전극은 음극(negative electrode)이며, 상기 제2전극은 양극(positive electrode)이다.When the organic solar cell has an inverted structure, the first electrode is a negative electrode, and the second electrode is a positive electrode.
또한, 상기 유기태양전지 셀은 필요에 따라 정공수송층 및 전자수송층을 추가로 포함할 수 있다.In addition, the organic solar cell may further include a hole transport layer and an electron transport layer as necessary.
상기 제1전극은 양극 또는 음극일 수 있다. 본 발명의 일 구현예에 따라 제조된 유기태양전지 셀은 인버티드 구조이며 이에 따라 상기 제1전극층은 음극이다.The first electrode may be an anode or a cathode. The organic solar cell manufactured according to the embodiment of the present invention has an inverted structure, and thus the first electrode layer is a cathode.
상기 제1전극은 전술한 기판 상에 형성되며 상기 기판를 통과한 빛이 광활성층에 도달할 수 있도록 하는 경로가 되므로 높은 투명도를 가지고 약 4.5 eV 이상의 높은 일함수와 낮은 저항을 갖는 전도성 물질을 사용하는 것이 바람직하다. The first electrode is formed on the substrate described above, and serves as a path for light passing through the substrate to reach the photoactive layer, and thus has a high transparency and uses a conductive material having a high work function of about 4.5 eV or more and a low resistance. It is preferable.
상기 제1전극은 산화인듐주석(Indium Tin Oxide; ITO), 산화인듐아연(Indium Zinc Oxide; IZO), 산화인듐갈륨아연(Indium Gallium Zinc Oxide; IGZO), 산화인듐주석아연(Indium Tin Zinc Oxide; ITZO), 갈륨도핑 산화아연(Ga-doped Zinc Oxide; GZO), 알루미늄도핑 산화아연(Al-doped Zinc Oxide; AZO), 불소도핑 산화주석(F-doped Tin Oxide; FTO), 산화아연주석(Zinc Tin Oxide; ZTO), 산화인듐갈륨(Indium Gallium Oxide; IGO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 및 이들의 조합으로 이루어진 군에서 선택되는 금속산화물 투명 전극; 전도성 고분자, 그래핀(graphene) 박막, 그래핀 산화물(graphene oxide) 박막, 탄소나노튜브 박막과 같은 유기 투명전극; 또는 금속이 결합된 탄소나노튜브 박막과 같은 유-무기 결합 투명전극 등을 사용할 수 있다.The first electrode may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), indium tin zinc oxide (Indium Tin Zinc Oxide); ITZO), Ga-doped Zinc Oxide (GZO), Al-doped Zinc Oxide (AZO), F-doped Tin Oxide (FTO), Zinc Oxide (Zinc) Tin Oxide (ZTO), Indium Gallium Oxide (IGO), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3 and combinations thereof electrode; Organic transparent electrodes such as conductive polymers, graphene thin films, graphene oxide thin films, and carbon nanotube thin films; Alternatively, an organic-inorganic bonded transparent electrode such as a carbon nanotube thin film bonded to a metal may be used.
상기 제1전극의 두께는 10 내지 3000 ㎚일 수 있다.The thickness of the first electrode may be 10 to 3000 nm.
상기 제1전극은 전술한 기판 상에 통상의 방법에 따라 형성될 수 있다. 구체적으로 상기 음극은 기판의 일면에 음극 형성용 조성물을 열 기상 증착, 전자 빔 증착, RF 또는 마그네트론 스퍼터링, 화학적 증착 또는 이와 유사한 방법을 통해 형성할 수 있다. The first electrode may be formed on a substrate according to a conventional method. In detail, the cathode may be formed on one surface of the substrate by thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical vapor deposition, or a similar method.
이때 상기 제1전극의 형성에 앞서 선택적으로 기판에 대하여 O2 플라즈마 처리법, UV/오존 세척, 산 또는 알칼리 용액을 이용한 표면 세척, 질소 플라즈마 처리법 및 코로나 방전 세척으로 이루어진 군에서 선택되는 적어도 어느 하나의 방법을 이용하여 상기 기판의 표면을 전처리할 수도 있다.At least one selected from the group consisting of O 2 plasma treatment, UV / ozone cleaning, surface cleaning using an acid or alkali solution, nitrogen plasma treatment and corona discharge cleaning for the substrate prior to the formation of the first electrode. The method may also be used to pretreat the surface of the substrate.
상기 제2전극은 음극 또는 양극일 수 있다. 본 발명의 일 구현예에서 상기 제2전극층은 양극이다.The second electrode may be a cathode or an anode. In one embodiment of the present invention, the second electrode layer is an anode.
상기 제2전극은 통상적으로 낮은 일함수를 갖는 금속 전극층으로, 상기 금속은 예를 들면, 은(Ag), 구리(Cu), 금(Au), 백금(Pt), 티타늄(Ti), 알루미늄(Al), 니켈(Ni), 지르코늄(Zr), 철(Fe), 망간(Mn) 등의 금속 입자; 또는 상기 금속원소를 포함하는 전구체, 예를 들면 질산은(AgNO3), Cu(HAFC)2 (Cu(hexafluoroacetylacetonate)2), Cu(HAFC)(1,5-Cyclooctanediene), Cu(HAFC)(1,5-Dimethylcyclooctanediene), Cu(HAFC)(4-Methyl-1-pentene), Cu(HAFC)(Vinylcyclohexane), Cu(HAFC)(DMB), Cu(TMHD)2(Cu (tetramethylheptanedionate)2), DMAH(dimethylaluminum hydride), TMEDA(tetramethylethylenediamine), DMEAA(dimethylethylamine alane, NMe2Et·AlH3), TMA(trimethylaluminum), TEA(triethylaluminum), TBA(triisobutylaluminum), TDMAT(tetra(dimethylamino)titanium), TDEAT(tetra(dimethylamino)titanium) 등 일 수 있으나, 이에 제한되는 것은 아니다. The second electrode is a metal electrode layer having a low work function, and the metal is, for example, silver (Ag), copper (Cu), gold (Au), platinum (Pt), titanium (Ti), aluminum ( Metal particles such as Al), nickel (Ni), zirconium (Zr), iron (Fe), and manganese (Mn); Or a precursor containing the metal element, for example, silver nitrate (AgNO 3 ), Cu (HAFC) 2 (Cu (hexafluoroacetylacetonate) 2 ), Cu (HAFC) (1,5-Cyclooctanediene), Cu (HAFC) (1, 5-Dimethylcyclooctanediene), Cu (HAFC) (4-Methyl-1-pentene), Cu (HAFC) (Vinylcyclohexane), Cu (HAFC) (DMB), Cu (TMHD) 2 (Cu (tetramethylheptanedionate) 2 ), DMAH ( dimethylaluminum hydride, TMEDA (tetramethylethylenediamine), DMEAA (dimethylethylamine alane, NMe 2 EtAlH 3 ), TMA (trimethylaluminum), TEA (triethylaluminum), TBA (triisobutylaluminum), TDMAT (tetra (dimethylamino) titanium), TDEAT (tetra (tetra dimethylamino) titanium) and the like, but is not limited thereto.
상기 제2전극의 두께는 10 내지 5000 ㎚일 수 있다.The thickness of the second electrode may be 10 to 5000 nm.
상기 제2전극은 본 발명이 속하는 기술분야에 알려진 통상의 방법으로 형성될 수 있다. 예를 들어, 스크린 프린팅, 그라비어 프린팅, 그라비어 오프셋(Gravure-offset) 프린팅, 열 기상 증착, 전자 빔 증착, RF 또는 마그네트론 스퍼터링, 화학적 증착 등의 방법을 통하여 형성될 수 있다.The second electrode may be formed by a conventional method known in the art. For example, it may be formed through screen printing, gravure printing, gravure offset printing, thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical deposition, and the like.
상기 광활성층은 전술한 제1전극 및 제2전극 사이에 위치하며, 해당 기술 분야에서 공지된 것을 제한없이 사용할 수 있다. The photoactive layer is positioned between the first electrode and the second electrode described above, and those known in the art may be used without limitation.
일례로, 광활성층은 정공수용체(hole acceptor)와 전자수용체(electron acceptor)가 혼합되어 존재하는 BHJ(bulk heterojunction) 구조이다. 또한, 이중층(bilayer) 타입을 사용할 수 있다.For example, the photoactive layer has a bulk heterojunction (BHJ) structure in which a hole acceptor and an electron acceptor are mixed. It is also possible to use a bilayer type.
상기 정공수용체는 전기 전도성 고분자 또는 유기 저분자 반도체 물질 등과 같은 유기 반도체로서, 상기 전기 전도성 고분자는 폴리티오펜(polythiophene), 폴리페닐렌비닐렌(polyphenylene vinylene), 폴리플루오렌(polyfluorene), 폴리피롤(polypyrrole), 이들의 공중합체 및 이들의 유도체로 이루어진 군에서 선택되는 어느 하나일 수 있다. 상기 유기 저분자 반도체 물질은 펜타센(pentacene), 안트라센(anthracene), 테트라센(tetracene), 퍼릴렌(perylene), 올리고티오펜(oligothiophene), 이들의 유도체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The hole acceptor is an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material. The electrically conductive polymer is a polythiophene, polyphenylene vinylene, polyfluorene, polypyrrole. ), Copolymers thereof, and derivatives thereof. The organic low molecular weight semiconductor material is any one selected from the group consisting of pentacene, anthracene, tetratracene, perylene, oligothiophene, derivatives thereof, and combinations thereof It can be one.
바람직하게, 상기 정공수용체는 폴리-3-헥실티오펜[poly-3-hexylthiophene, P3HT], 폴리-3-옥틸티오펜[poly-3-octylthiophene, P3OT], 폴리파라페닐렌비닐렌[poly-p-phenylene vinylene, PPV], 폴리(디옥틸플루오렌)[poly(9,9′-dioctylfluorene)], 폴리(2-메톡시,5-(2-에틸-헥실옥시)-1,4-페닐렌비닐렌)[poly(2-methoxy,5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene, MEH-PPV], 폴리(2-메틸,5-(3′,7′-디메틸옥틸옥시))-1,4-페닐렌비닐렌[poly(2-methyl,5-(3′,7′-dimethyloctyloxy))-1,4-phenylene vinylene, MDMOPPV] 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.Preferably, the hole receptor is poly-3-hexylthiophene (P3HT), poly-3-octylthiophene (poly-3-octylthiophene, P3OT), polyparaphenylenevinylene [poly- p-phenylene vinylene, PPV], poly (dioctylfluorene) [poly (9,9′-dioctylfluorene)], poly (2-methoxy, 5- (2-ethyl-hexyloxy) -1,4- Phenylenevinylene) [poly (2-methoxy, 5- (2-ethyl-hexyloxy) -1,4-phenylene vinylene, MEH-PPV], poly (2-methyl, 5- (3 ', 7'-dimethyl Octyloxy))-1,4-phenylenevinylene [poly (2-methyl, 5- (3 ', 7'-dimethyloctyloxy))-1,4-phenylene vinylene, MDMOPPV] and combinations thereof It may be any one selected.
상기 전자수용체는 풀러렌(fullerene, C60), C70, C76, C78, C80, C82, C84 등의 풀러렌 유도체, CdS, CdSe, CdTe, ZnSe, (6,6)-페닐-C61-부티릭에시드 메틸에스테르[(6,6)-phenyl-C61-butyric acid methyl ester; PCBM], (6,6)-페닐-C71-부티릭에시드메틸에스테르[(6,6)-phenyl-C71-butyric acid methyl ester; C70-PCBM], (6,6)-티에닐-C61-부티릭에시드 메틸에스테르[(6,6)-thienyl-C61-butyric acid methyl ester; ThCBM], 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The electron acceptor is a fullerene derivative such as fullerene (C 60 ), C 70 , C 76 , C 78 , C 80 , C 82 , C 84 , CdS, CdSe, CdTe, ZnSe, (6,6) -phenyl- C61-butyric acid methyl ester [(6,6) -phenyl-C61-butyric acid methyl ester; PCBM], (6,6) -phenyl-C71-butyric acid methyl ester [(6,6) -phenyl-C71-butyric acid methyl ester; C70-PCBM], (6,6) -thienyl-C61-butyric acid methyl ester [(6,6) -thienyl-C61-butyric acid methyl ester; ThCBM], carbon nanotubes, and combinations thereof.
바람직하게 상기 전자수용체는 (6,6)-페닐-C61-부티릭에시드 메틸에스테르((6,6)-phenyl-C61-butyric acid methyl ester, PCBM), (6,6)-페닐-C71-부티릭에시드 메틸에스테르((6,6)-phenyl-C71-butyric acid methyl ester, C70-PCBM), (6,6)-티에닐-C61-부티릭에시드 메틸에스테르((6,6)-thienyl-C61-butyric acid methyl ester, ThCBM) 및 탄소나노튜브로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.Preferably, the electron acceptor (6,6) -phenyl -C 61 - butyric rigs Acid methyl ester ((6,6) -phenyl-C 61 -butyric acid methyl ester, PCBM), (6,6) - phenyl- C 71 - butyric rigs Acid methyl ester ((6,6) -phenyl-C 71 -butyric acid methyl ester, C 70 -PCBM), (6,6) - thienyl -C 61 - butyric rigs Acid methyl ester (( 6,6) -thienyl-C 61 -butyric acid methyl ester (ThCBM) and carbon nanotubes may include one or more selected from the group consisting of.
이때 상기 광활성층 형성용 조성물은 정공수용체로서 P3HT와 전자수용체로서 PCBM의 혼합물을 포함하는 것이 더욱 바람직하고, 이때 상기 P3HT와 PCBM의 혼합 중량 비율은 1:0.1 내지 1:2, 바람직하게는 1:1.5 내지 1:2일 수 있다.At this time, the composition for forming the photoactive layer more preferably comprises a mixture of P3HT and PCBM as the electron acceptor, the mixing weight ratio of the P3HT and PCBM is 1: 0.1 to 1: 2, preferably 1: 1.5 to 1: 2.
본 발명의 일 구현예에 따르면, 상기 유기태양전지 셀은 상기 제1전극과 광활성층 사이에 전자수송층을, 상기 광활성층과 제2전극 사이에 정공수송층을 추가로 포함할 수 있다.According to the exemplary embodiment of the present invention, the organic solar cell may further include an electron transport layer between the first electrode and the photoactive layer, and a hole transport layer between the photoactive layer and the second electrode.
상기 전자수송층은 광활성층에서 생성된 전자가 인접한 제1전극으로 용이하게 전달되도록 한다.The electron transport layer allows electrons generated in the photoactive layer to be easily transferred to the adjacent first electrode.
상기 전자수송층은 공지된 재료를 제한없이 사용할 수 있으며, 일례로서, 알루미늄 트리스(8-하이드록시퀴놀린)(aluminium tris(8-hydroxyquinoline), Alq3), 리튬플로라이드(LiF), 리튬착체(8-hydroxy-quinolinato lithium, Liq), 비공액 고분자, 비공액 고분자 전해질, 공액 고분자 전해질, 또는 n-형 금속 산화물 등과 같은 재료를 사용하여 형성할 수 있다. 상기 n-형 금속 산화물은 일례로, TiOx, ZnO 또는 Cs2CO3 일 수 있다. 또한, 상기 전자 수송층으로 금속층의 자기조립 박막을 사용할 수 있다.The electron transport layer may be used a known material without limitation, for example, aluminum tris (8-hydroxyquinoline), Alq 3 , lithium fluoride (LiF), lithium complex (8) -hydroxy-quinolinato lithium (Liq), a nonconjugated polymer, a nonconjugated polymer electrolyte, a conjugated polymer electrolyte, or an n-type metal oxide. The n-type metal oxide may be, for example, TiO x , ZnO or Cs 2 CO 3 . In addition, a self-assembled thin film of a metal layer may be used as the electron transporting layer.
상기 정공수송층은 광활성층에서 생성된 정공을 인접한 제2전극으로 이동시키는 것을 돕는 역할을 한다.The hole transport layer helps to move holes generated in the photoactive layer to the adjacent second electrode.
상기 정공수송층은 공지된 재료를 제한없이 사용할 수 있으며, 일례로서, 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리(스티렌설포네이트)(PSS), 폴리아닐린, 프탈로시아닌, 펜타센, 폴리디페닐 아세틸렌, 폴리(t-부틸)디페닐아세틸렌, 폴리(트리플루오로메틸)디페닐아세틸렌, 구리 프탈로시아닌(Cu-PC) 폴리(비스트리플루오로메틸)아세틸렌, 폴리비스(t-부틸디페닐)아세틸렌, 폴리(트리메틸실릴) 디페닐아세틸렌, 폴리(카르바졸)디페닐아세틸렌, 폴리디아세틸렌, 폴리페닐아세틸렌, 폴리피리딘아세틸렌, 폴리메톡시페닐아세틸렌, 폴리메틸페닐아세틸렌, 폴리(t-부틸)페닐아세틸렌, 폴리니트로페닐아세틸렌, 폴리(트리플루오로메틸)페닐아세틸렌, 폴리(트리메틸실릴)페닐아세틸렌 및 이들의 유도체로부터 선택되는 1종 이상의 정공전달물질을 포함할 수 있다.The hole transport layer may be a known material without limitation, and, for example, poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrenesulfonate) (PSS), polyaniline, phthalocyanine, pentacene, poly Diphenyl acetylene, poly (t-butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, copper phthalocyanine (Cu-PC) poly (bistrifluoromethyl) acetylene, polybis (t-butyldiphenyl ) Acetylene, poly (trimethylsilyl) diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, polymethoxyphenylacetylene, polymethylphenylacetylene, poly (t-butyl) phenyl And one or more hole transport materials selected from acetylene, polynitrophenylacetylene, poly (trifluoromethyl) phenylacetylene, poly (trimethylsilyl) phenylacetylene and derivatives thereof.
상기 유기태양전지 셀에서 하나의 제2전극은 이웃하는 셀의 제1전극과 전기적으로 연결된 구조를 이루게 되며, 이에 따라 하나의 단위 모듈에 포함되는 복수 개의 유기태양전지 셀은 서로 전기적으로 직렬 연결되는 구조를 취한다.In the organic solar cell, one second electrode forms an electrically connected structure with a first electrode of a neighboring cell. Accordingly, the plurality of organic solar cells included in one unit module are electrically connected in series. Take the structure
전술한 유기태양전지 셀을 포함하는 단위 모듈(20)은 상기 기판(10) 상에 복수 개가 소정의 패턴으로 배치되며, 이때 단위 모듈(20)은 일정 피치(pitch)만큼의 간격을 두고 연속하여 위치한다.A plurality of unit modules 20 including the above-described organic solar cell are disposed on the substrate 10 in a predetermined pattern, and the unit modules 20 are continuously spaced by a predetermined pitch. Located.
통상적으로 단위 모듈(20) 간 피치는 1 내지 5,000 ㎛, 바람직하게는 50 내지 2,000 ㎛일 수 있다.Typically the pitch between the unit modules 20 may be 1 to 5,000 μm, preferably 50 to 2,000 μm.
또한, 상기 단위 모듈(20)의 패턴은 줄무늬, 모눈, 물결, 지그재그, 마름모, 원형 및 다각형으로 이루어진 군으로부터 선택된 1종 이상의 형태일 수 있다.In addition, the pattern of the unit module 20 may be one or more forms selected from the group consisting of stripes, grids, waves, zigzag, rhombus, circle and polygon.
상기 제1베리어층(30)은 상기 복수 개의 단위 모듈(20)을 포함하며, 상기 기판(10) 전면에 걸쳐 형성된다.The first barrier layer 30 includes the plurality of unit modules 20 and is formed over the entire surface of the substrate 10.
특히, 상기 제1베리어층(30)은 전술한 단위 모듈(20) 및 단위 모듈(20)이 배치되지 않은 기판(10)의 노출 부분에 밀착되어 형성됨으로써 종래 유기태양전지의 밀봉 공정에서 모듈과 기판 사이의 단차에 의해 형성되는 빈 공간을 제거하여 유기태양전지 내부로의 수분 및 산소의 유입을 완전히 차단한다. 또한, 상기 제1베리어(30) 후술하는 제2베리어층(40)의 적층시 가해지는 압력을 완충시켜 상기 단위 모듈(20)을 구성하는 유기태양전지 셀을 보호하는 역할을 한다. 이에 따라, 본 발명에 따른 유기태양전지는 종래 유기태양전지에 비해 개선된 내구성, 안정성 및 성능을 확보할 수 있다.In particular, the first barrier layer 30 is formed in close contact with the exposed portion of the substrate 10 in which the above-described unit module 20 and the unit module 20 are not disposed. The void space formed by the step between the substrates is removed to completely block the inflow of water and oxygen into the organic solar cell. In addition, the first barrier 30 serves to protect the organic solar cell constituting the unit module 20 by buffering the pressure applied during the stacking of the second barrier layer 40 to be described later. Accordingly, the organic solar cell according to the present invention can secure improved durability, stability and performance compared to the conventional organic solar cell.
상기 제1베리어층(30)은 액상의 베리어 소재로 열 또는 광을 통해 경화 가능한 재질로서, 그 재질은 특별히 한정하지는 않는다.The first barrier layer 30 is a liquid barrier material that is curable through heat or light, and the material is not particularly limited.
이때 상기 액상의 베리어 소재는 용융시키거나 용매에 용해시켜 액상으로 제조할 수 있는 것이라면 특별한 제한없이 사용될 수 있다.In this case, the liquid barrier material may be used without particular limitation as long as it can be prepared in a liquid state by melting or dissolving it in a solvent.
일례로, 상기 제1베리어층(30)은 1,000 내지 4,000 cps 범위의 점도를 가지는 열경화성 수지 또는 열가소성 수지를 포함하는 코팅 조성물을 도포 및 경화하여 형성할 수 있다. For example, the first barrier layer 30 may be formed by applying and curing a coating composition including a thermosetting resin or a thermoplastic resin having a viscosity in the range of 1,000 to 4,000 cps.
상기 열경화성 수지로는 공지된 것을 사용할 수 있고, 예를 들어 폴리우레탄, 페놀 수지, 멜라민 수지, 요소 수지, 불포화 폴리에스테르 수지, 디알릴프탈레이트 수지, 실리콘 수지, 에폭시 수지 등을 들 수 있다. 상기 열가소성 수지로는 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리이소푸렌, 폴리에스테르 (폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등), 폴리부타디엔, 스티렌 수지, 내충격성 폴리스티렌, 아크릴로니트릴-스티렌 수지(AS 수지), 아크릴로니트릴-부타디엔-스티렌 수지(ABS 수지), 메틸메타크릴레이트-부타디엔-스티렌 수지(MBS 수지), 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 수지(MABS 수지), 아크릴로니트릴-아크릴 고무-스티렌 수지(AAS 수지), 폴리메틸(메트)아크릴레이트, 폴리카르보네이트, 변성 폴리페닐렌에테르(PPE), 폴리아미드, 폴리페닐렌술피드, 폴리이미드, 폴리에테르에테르케톤, 폴리술폰, 폴리아릴레이트, 폴리에테르케톤, 폴리에테르니트릴, 폴리티오에테르술폰, 폴리에테르술폰, 폴리벤즈이미다졸, 폴리카르보디이미드, 폴리아미드이미드, 폴리에테르이미드, 액정 중합체, 복합 플라스틱 등을 들 수 있다. 또한, 상기 제1베리어층(30)의 형성을 위한 코팅 조성물은 필요한 경우 여러 첨가제를 더욱 포함할 수 있다. 일례로, 상기 첨가제로는 가교제, 가교 촉진제, 커플링제, 자외선 흡수제, 보강제, 산화 방지제, 노화 방지제, 점도 조절제, 전도성 입자 등이 가능하다.A well-known thing can be used as said thermosetting resin, For example, a polyurethane, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, a diallyl phthalate resin, a silicone resin, an epoxy resin, etc. are mentioned. Examples of the thermoplastic resin include polyethylene, polypropylene, polyisoprene, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polybutadiene, styrene resin, impact resistant polystyrene, acrylonitrile-styrene resin (AS Resin), acrylonitrile-butadiene-styrene resin (ABS resin), methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene resin (MABS resin), acrylo Nitrile-acrylic rubber-styrene resin (AAS resin), polymethyl (meth) acrylate, polycarbonate, modified polyphenylene ether (PPE), polyamide, polyphenylene sulfide, polyimide, polyether ether ketone, Polysulfone, polyarylate, polyetherketone, polyethernitrile, polythioethersulfone, polyethersulfone, polybenzimidazole, polycarbo Already it may be mentioned DE, polyamideimide, polyetherimide, liquid crystal polymers, composite plastics and the like. In addition, the coating composition for forming the first barrier layer 30 may further include various additives if necessary. For example, the additive may be a crosslinking agent, a crosslinking accelerator, a coupling agent, an ultraviolet absorber, a reinforcing agent, an antioxidant, an antioxidant, a viscosity modifier, conductive particles, and the like.
상기 제1베리어층(30)은 코팅 조성물을 도포하여 도막을 형성하는 습식 코팅 공정을 통해 형성한다. 이때 도포는 슬롯 다이 코팅법, 바 코팅법, 메이어바 코팅법, 스핀 코팅법, 콤마 코팅법, 커튼 코팅법, 마이크로 그라비아 코팅법, 잉크젯 코팅법, 스프레이 코팅법 또는 닥터 블레이드 코팅법 등으로부터 선택되는 1종 이상의 방법을 통하여 형성할 수 있다.The first barrier layer 30 is formed through a wet coating process of applying a coating composition to form a coating film. At this time, the coating is selected from slot die coating method, bar coating method, Meyer bar coating method, spin coating method, comma coating method, curtain coating method, micro gravure coating method, inkjet coating method, spray coating method or doctor blade coating method and the like. It can be formed through one or more methods.
전술한 조성물을 도포하여 도막을 형성한 후, 열 또는 광을 이용한 경화 공정이 수행되며, 이때 온도 또는 시간은 제1베리어층(30)의 재질에 따라 달라질 수 있다.After applying the above-described composition to form a coating film, a curing process using heat or light is performed, wherein the temperature or time may vary depending on the material of the first barrier layer 30.
본 발명의 일 구현예에 있어서, 상기 제1베리어층(30)은 경화를 통해 접착력을 가질 수 있으며, 이 경우 후술하는 제2베리어층은 별도의 접착층이 필요하지 않게 되어 유기태양전지의 박막화 및 유연화에 이점을 가진다.In one embodiment of the present invention, the first barrier layer 30 may have an adhesive force through curing, in which case the second barrier layer to be described later does not need a separate adhesive layer to thin the organic solar cell and It has the advantage of flexibility.
상기 기판 상부로부터 제1베리어층(30)의 전체 두께는 전지모듈의 두께+1 내지 50 ㎛, 바람직하게는 전지모듈의 두께+5 내지 40 ㎛일 수 있다.The total thickness of the first barrier layer 30 from the top of the substrate may be a thickness of the battery module + 1 to 50 ㎛, preferably a thickness of the battery module + 5 to 40 ㎛.
통상적으로 유기태양전지의 전지모듈 두께가 5 내지 100 ㎛이므로, 상기 제1배리어층은 기판 상부로부터 6 내지 150 ㎛, 바람직하게는 10 내지 140 ㎛의 두께를 가질 수 있다. Typically, since the thickness of the battery module of the organic solar cell is 5 to 100 μm, the first barrier layer may have a thickness of 6 to 150 μm, preferably 10 to 140 μm, from the top of the substrate.
구체적으로, 상기 제1베리어층(30)은 전지모듈 상부로부터 1 내지 50 ㎛ 범위의 두께, 바람직하게는 5 내지 40 ㎛의 두께로 형성될 수 있다. 만약 상기 제1베리어층(30)의 전지모듈 상부로부터의 두께가 1 ㎛ 미만인 경우 제1베리어층(30)의 상부면이 평탄화되기 어렵고 전술한 효과를 얻을 수 없다. 이와 반대로 50 ㎛를 초과하는 경우 유기태양전지의 두께를 증가시키고 제조공정 중 크랙(crack)이 발생하여 품질, 성능이 저하되는 문제가 발생한다.Specifically, the first barrier layer 30 may be formed in a thickness of 1 to 50 ㎛ range, preferably 5 to 40 ㎛ from the top of the battery module. If the thickness of the first barrier layer 30 from the top of the battery module is less than 1 μm, the upper surface of the first barrier layer 30 is difficult to planarize and the above-described effects cannot be obtained. On the contrary, when the thickness exceeds 50 μm, the thickness of the organic solar cell is increased and cracks are generated during the manufacturing process, thereby degrading quality and performance.
상기 제2베리어층(40)은 제1베리어층(30) 상에 형성되며 상기 기판 상에 전지모듈을 밀봉하여 산소 및 수분을 포함하는 외부 환경으로부터 차단시키는 역할을 한다.The second barrier layer 40 is formed on the first barrier layer 30 and seals the battery module on the substrate to block the external environment including oxygen and moisture.
상기 제2베리어층(40)은 본 발명이 속하는 기술분야에 알려진 통상의 재질을 사용할 수 있으며, 특별히 제한하지 않는다. 예를 들어, 상기 제2베리어층(40)은 투명 고분자 재질의 절연성 소재로 이루어질 수 있으며, 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC) 등을 사용할 수 있다.The second barrier layer 40 may use a conventional material known in the art to which the present invention pertains, and is not particularly limited. For example, the second barrier layer 40 may be made of an insulating material made of a transparent polymer, and polyethylene terephthalate (PET), polycarbonate (PC), or the like may be used.
상기 제2베리어층(40)의 두께는 25 내지 50 ㎛일 수 있다. 상기 제2베리어층(40)의 두께가 전술한 범위 내에 해당하는 경우 충분한 밀봉 효과를 확보할 수 있다.The thickness of the second barrier layer 40 may be 25 to 50 μm. When the thickness of the second barrier layer 40 falls within the above range, a sufficient sealing effect may be ensured.
상기 제2베리어층(40)은 라미네이팅 공정을 통해 형성되며, 상기 라미네이팅 공정은 본 발명이 속하는 기술분야에 알려진 통상의 방법을 이용한다.The second barrier layer 40 is formed through a laminating process, and the laminating process uses a conventional method known in the art.
도 3은 본 발명의 다른 일 구현예에 따른 유기태양전지의 구조를 개략적으로 나타낸 단면도이다.3 is a cross-sectional view schematically showing the structure of an organic solar cell according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 다른 일 구현예에 따른 유기태양전지(300)는 상기 도 2의 유기태양전지(200)의 제1베리어층(30)과 제2베리어층(40) 사이에 접착층(41)을 추가로 포함한다.Referring to FIG. 3, an organic solar cell 300 according to another embodiment of the present invention is disposed between the first barrier layer 30 and the second barrier layer 40 of the organic solar cell 200 of FIG. 2. The adhesive layer 41 further includes.
상기 접착층(41)은 제1베리어층(30)과 제2베리어층(40)을 견고히 부착하기 위한 것으로, 투명성 및 접착성을 갖는 것이라면 특별히 제한되지 않는다. The adhesive layer 41 is for firmly attaching the first barrier layer 30 and the second barrier layer 40, and is not particularly limited as long as the adhesive layer 41 has transparency and adhesiveness.
상기 접착층(41)은 감압 접착제(Pressure Sensitive Adhesives, PSA), 광학 투명 접착제(OCA) 등을 포함할 수 있다.The adhesive layer 41 may include pressure sensitive adhesives (PSA), optical transparent adhesives (OCA), or the like.
상기 접착층(41)의 두께는 10 내지 50 ㎛일 수 있다.The thickness of the adhesive layer 41 may be 10 to 50 ㎛.
본 발명의 다른 일 구현예에 따른 유기태양전지(300)의 기판(10), 단위 모듈(20), 제1베리어층(30) 및 제2베리어층(40)은 본 발명의 일 구현예에서 전술한 바와 같다.The substrate 10, the unit module 20, the first barrier layer 30 and the second barrier layer 40 of the organic solar cell 300 according to another embodiment of the present invention are in one embodiment of the present invention As described above.
본 발명에 따른 유기태양전지는 기판 상에 단위 모듈을 포함하며 기판 전면에 걸쳐 형성된 제1베리어층을 구비함에 따라 종래 유기태양전지에 비해 외부의 산소 및 수분을 효과적으로 차단할 수 있어 이로 인한 유기태양전지의 결함 발생을 방지하여 유기태양전지의 성능 및 수명을 향상시킨다. 또한, 상기 제1베리어층이 제2베리어층 형성시 가해지는 압력을 완충시키는 버퍼층 역할을 하기 때문에 유기태양전지이 우수한 내구성과 안정성을 나타낼 수 있다.The organic solar cell according to the present invention includes a unit module on a substrate and has a first barrier layer formed over the entire surface of the organic solar cell, thereby effectively blocking external oxygen and moisture as compared to the conventional organic solar cell, thereby resulting in an organic solar cell. By preventing the occurrence of defects, the performance and life of the organic solar cell is improved. In addition, since the first barrier layer serves as a buffer layer to buffer the pressure applied when the second barrier layer is formed, the organic solar cell may exhibit excellent durability and stability.
이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by the following examples. The following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.
실시예Example 1: 유기태양전지의 제조 1: Fabrication of Organic Solar Cell
종래의 기술에 따라 통상의 방법으로 기판 위에 양극, 전자수송층, 광활성층, 정공수송층, 및 음극이 적층된 10개의 유기태양전지 셀을 직렬로 포함하는 단위 모듈 10개를 2,000 ㎛ 피치로 배치하였다. According to the prior art, ten unit modules including ten organic solar cells in which an anode, an electron transport layer, a photoactive layer, a hole transport layer, and a cathode are stacked in series on a substrate are arranged at a pitch of 2,000 μm.
이어서, 상기 기판 상의 단위 모듈을 포함하며 기판 전면에 걸쳐 에폭시계 수지 액상 베리어 소재(Delo사 제조, LP655)를 도포하여 단위 모듈보다 30 ㎛ 높게 제1베리어층을 을 형성하였다. Subsequently, an epoxy resin liquid barrier material (LP655, LP655) was coated over the entire surface of the substrate to form a first barrier layer 30 μm higher than the unit module.
상기 제1베리어층 상부에 하부에 접착층(두께 50 ㎛)이 형성된 제2베리어층(두께 50 ㎛)을 접착시켜서 유기태양전지를 제조하였다.An organic solar cell was manufactured by attaching a second barrier layer (50 μm thick) having an adhesive layer (50 μm thick) formed on an upper portion of the first barrier layer.
비교예Comparative example 1: 유기태양전지의 제조 1: Fabrication of Organic Solar Cell
상기 실시예 1의 제1베리어층을 형성하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기태양전지를 제조하였다.An organic solar cell was manufactured in the same manner as in Example 1, except that the first barrier layer of Example 1 was not formed.
시험예Test Example 1: 유기태양전지의 성능 평가 1: Performance Evaluation of Organic Solar Cell
상기 실시예 1 및 비교예 1에서 제조된 유기태양전지의 신뢰성을 테스트 하기 위하여 L.S.(Light Soaking) 테스트를 실시하였다. 구체적으로, 유기태양전지에 동일한 태양광을 조사하고, 시간 경과에 따른 전력변환효율(PCE)을 평가하였다.In order to test the reliability of the organic solar cells manufactured in Example 1 and Comparative Example 1, a light soaking (L.S.) test was performed. Specifically, the same solar light was irradiated to the organic solar cell, and the power conversion efficiency (PCE) was evaluated over time.
평가는 초기 전력변환효율 E0로 하고, 시간 경과 후의 효율을 E1이라 하였을 때, (E1/E0)*100 값으로 측정하였으며, 초기 전력변환효율이 장시간 유지되는 것이 바람직한 것이며, 평가 결과는 도 4에 나타내었다.When the initial power conversion efficiency of the evaluation E0, and the efficiency after the time elapsed to E1 was measured by (E1 / E0) * 100 value, it is preferable that the initial power conversion efficiency is maintained for a long time, the evaluation result is shown in FIG. Indicated.
그 결과 도 4에서 확인되는 바와 같이, 실시예 1의 유기태양전지는 약 1,000시간 이상 우수한 특성을 유지함을 확인하였다. As a result, as confirmed in Figure 4, it was confirmed that the organic solar cell of Example 1 maintains excellent characteristics for about 1,000 hours or more.
반면, 비교예 1에서 제조된 유기태양전지의 경우는 도 4에서 확인되는 바와 같이, (E1/E0)*100 값이 60% 정도로 유지되어 본 발명의 실시예 1과 비교하여 낮은 전력변환효율(Power Conversion Efficiency: PCE)을 나타냈다.On the other hand, in the case of the organic solar cell manufactured in Comparative Example 1, the (E1 / E0) * 100 value is maintained at about 60% as shown in Figure 4, compared to the embodiment 1 of the present invention, the low power conversion efficiency ( Power Conversion Efficiency (PCE).
[부호의 설명][Description of the code]
1, 10: 기판 2, 20: 단위 모듈1, 10: substrate 2, 20: unit module
30: 제1베리어층 4, 40: 제2베리어층30: first barrier layer 4, 40: second barrier layer
4-1, 41: 접착층 100, 200, 300: 유기태양전지4-1, 41: adhesive layer 100, 200, 300: organic solar cell
A: 빈 공간A: empty space

Claims (11)

  1. 기판;Board;
    상기 기판 상부에 소정의 패턴을 이루며 배치된 복수 개의 단위 모듈로 이루어진 전지모듈;A battery module comprising a plurality of unit modules arranged in a predetermined pattern on the substrate;
    상기 복수 개의 단위 모듈을 포함하며, 상기 기판 상부 전면에 걸쳐 형성된 제1베리어층; 및 A first barrier layer including the plurality of unit modules and formed over the entire upper surface of the substrate; And
    상기 제1베리어층 상에 형성된 제2베리어층을 포함하는 유기태양전지.An organic solar cell comprising a second barrier layer formed on the first barrier layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 기판 상부로부터 제1베리어층의 전체 두께는 상기 전지모듈의 두께+1 내지 50 ㎛인 유기태양전지.The total thickness of the first barrier layer from the upper substrate is an organic solar cell of the thickness of the battery module + 1 to 50㎛.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1베리어층은 기판 상부를 기준으로 6 내지 150 ㎛ 범위의 두께를 가지는 유기태양전지.The first barrier layer is an organic solar cell having a thickness in the range of 6 to 150 ㎛ based on the substrate.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1베리어층은 전지모듈 상부를 기준으로 1 내지 50 ㎛ 범위의 두께를 가지는 유기태양전지.The first barrier layer is an organic solar cell having a thickness in the range of 1 to 50 ㎛ with respect to the top of the battery module.
  5. 제1항에 있어서,The method of claim 1,
    상기 복수 개의 단위 모듈은 1 내지 5,000 ㎛ 범위의 피치를 갖도록 배치되는 유기태양전지.The plurality of unit modules are disposed to have a pitch in the range of 1 to 5,000 ㎛.
  6. 제1항에 있어서,The method of claim 1,
    상기 패턴은 줄무늬, 모눈, 물결, 지그재그, 마름모, 원형 및 다각형으로 이루어진 군으로부터 선택된 1종 이상의 형태인 유기태양전지.The pattern is an organic solar cell of at least one type selected from the group consisting of stripes, grids, waves, zigzag, rhombus, circle and polygon.
  7. 제1항에 있어서,The method of claim 1,
    상기 기판은 유연 기판인 유기태양전지.The substrate is an organic solar cell is a flexible substrate.
  8. 제1항에 있어서,The method of claim 1,
    상기 단위 모듈은 제1전극, 제2전극 및 광활성층을 포함하는 복수 개의 유기태양전지 셀을 포함하는 유기태양전지.The unit module includes an organic solar cell including a plurality of organic solar cells including a first electrode, a second electrode, and a photoactive layer.
  9. 제1항에 있어서,The method of claim 1,
    상기 제1베리어층은 1,000 내지 4,000 cps 범위의 점도를 가지는 열경화성 수지 또는 열가소성 수지를 포함하는 코팅 조성물을 도포 및 경화하여 형성하는 유기태양전지.The first barrier layer is formed by applying and curing a coating composition comprising a thermosetting resin or a thermoplastic resin having a viscosity in the range of 1,000 to 4,000 cps.
  10. 제1항에 있어서,The method of claim 1,
    상기 제2베리어층은 투명 고분자 재질을 포함하는 유기태양전지.The second barrier layer is an organic solar cell comprising a transparent polymer material.
  11. 제1항에 있어서,The method of claim 1,
    상기 제1베리어층과 제2베리어층 사이에 접착층을 추가로 포함하는 유기태양전지.An organic solar cell further comprising an adhesive layer between the first barrier layer and the second barrier layer.
PCT/KR2017/003174 2016-03-25 2017-03-24 Organic solar cell and method for manufacturing same WO2017164683A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0036328 2016-03-25
KR20160036328 2016-03-25
KR1020170036345A KR20170113193A (en) 2016-03-25 2017-03-22 Organic solar cell and method for manufacturing the same
KR10-2017-0036345 2017-03-22

Publications (1)

Publication Number Publication Date
WO2017164683A1 true WO2017164683A1 (en) 2017-09-28

Family

ID=59899611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003174 WO2017164683A1 (en) 2016-03-25 2017-03-24 Organic solar cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017164683A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130647A (en) * 2006-11-17 2008-06-05 Toppan Printing Co Ltd Backseat for solar-cell module, and solar-cell module using the backseat
JP2008186763A (en) * 2007-01-31 2008-08-14 Fujimori Kogyo Co Ltd Dye-sensitized solar cell panel sheet and its manufacturing method
KR20120082350A (en) * 2009-08-27 2012-07-23 선파워 코포레이션 Module level solution to solar cell polarization using an encapsulant with opened uv transmission curve
KR101509887B1 (en) * 2013-06-04 2015-04-07 현대자동차주식회사 Roof panel having solar cells
KR20160000192A (en) * 2014-06-24 2016-01-04 코오롱인더스트리 주식회사 Photovoltaics module package and the manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130647A (en) * 2006-11-17 2008-06-05 Toppan Printing Co Ltd Backseat for solar-cell module, and solar-cell module using the backseat
JP2008186763A (en) * 2007-01-31 2008-08-14 Fujimori Kogyo Co Ltd Dye-sensitized solar cell panel sheet and its manufacturing method
KR20120082350A (en) * 2009-08-27 2012-07-23 선파워 코포레이션 Module level solution to solar cell polarization using an encapsulant with opened uv transmission curve
KR101509887B1 (en) * 2013-06-04 2015-04-07 현대자동차주식회사 Roof panel having solar cells
KR20160000192A (en) * 2014-06-24 2016-01-04 코오롱인더스트리 주식회사 Photovoltaics module package and the manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100973018B1 (en) Photovoltaic component and production method therefor
CN102804440B (en) Organic electronic device and manufacture method thereof
US7638807B2 (en) Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
US10411221B2 (en) Organic electronic device and fabrication method thereof
WO2010150648A1 (en) Organic electronics panel and method for producing the same
WO2013180361A1 (en) Functional layer for organic electron device containing non-conjugated polymer having amine group, and organic electron device containing same
WO2014200312A1 (en) Organic photovoltaic cell and method for manufacturing same
US20210366662A1 (en) Solar cell module
US20120298174A1 (en) Organic thin film solar cell
WO2016060154A1 (en) Solar cell
KR20160111850A (en) Method for Manufacturing Transparent Electrode of Surface Energy Controlling of Metal Mesh, and Organic Photovoltaic Cell Having The Transparent Electrode Manufactured by The Same
WO2010107261A2 (en) Solar cell and a production method therefor
KR101253529B1 (en) Encapsulation film and organic electroic device comprising the same
WO2011158874A1 (en) Organic thin film solar cell
JP5444743B2 (en) Organic photoelectric conversion element
KR20110049832A (en) Electronic components with integrated encapsulation
WO2010110590A2 (en) Solar cell, and method for producing same
WO2013100675A1 (en) Organic light-emitting diode and manufacturing method thereof
JP2010147276A (en) Organic photoelectric conversion element
JP5298961B2 (en) Manufacturing method of organic photoelectric conversion element
WO2017164683A1 (en) Organic solar cell and method for manufacturing same
JP5932928B2 (en) Photoelectric conversion device
JP2012129229A (en) Organic electronics panel manufacturing method
KR102220780B1 (en) Flexible device, and method for manufacturing the same
KR20170113193A (en) Organic solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770653

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770653

Country of ref document: EP

Kind code of ref document: A1