WO2017159078A1 - スイッチング電源装置 - Google Patents
スイッチング電源装置 Download PDFInfo
- Publication number
- WO2017159078A1 WO2017159078A1 PCT/JP2017/003278 JP2017003278W WO2017159078A1 WO 2017159078 A1 WO2017159078 A1 WO 2017159078A1 JP 2017003278 W JP2017003278 W JP 2017003278W WO 2017159078 A1 WO2017159078 A1 WO 2017159078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- circuit
- phase
- inrush current
- switching
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
- H02M7/062—Avoiding or suppressing excessive transient voltages or currents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/145—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/155—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M7/1555—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
- H02M7/1557—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit with automatic control of the output voltage or current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a switching power supply device.
- Patent Document 1 a power supply device that converts AC power from a plurality of phases of AC power into DC power is known (see, for example, Patent Document 1).
- the present invention provides a switching power supply device that can reduce costs and reduce the size of the device.
- the switching power supply device includes a plurality of power supply circuits, a switching circuit, an inrush current prevention circuit, and a control circuit.
- the plurality of power supply circuits include a first power supply circuit and a second power supply circuit, and respectively correspond to a plurality of phases of the multiphase AC power supply.
- the switching circuit is configured to be able to switch a phase connected to the second power supply circuit to a phase corresponding to the first power supply circuit or a phase corresponding to the second power supply circuit.
- the inrush current prevention circuit is provided on the power line on the negative side of the multiphase AC power supply and at a position on the multiphase AC power supply side from the connection point to which the plurality of power supply circuits are connected, respectively, and prevents the inrush current.
- the control circuit controls the switching circuit and the inrush current prevention circuit.
- the control circuit controls the switching circuit so as to switch the phase connected to the second power supply circuit to a phase corresponding to the first power supply circuit, and causes the inrush current prevention circuit to function, so that the capacitor included in the power supply circuit
- the structure which performs initial charge of is taken.
- the control circuit controls the switching circuit to switch the phase connected to the second power supply circuit to the phase corresponding to the second power supply circuit when the initial charging of the capacitor is completed, and the inrush current A configuration for turning off the prevention circuit is adopted.
- the circuit diagram which shows the case where the switching power supply which concerns on Embodiment 1 of this invention is connected with a single phase alternating current power supply The flowchart which shows the operation example of the switching power supply which concerns on Embodiment 1 of this invention.
- the circuit diagram which shows the case where the switching power supply which concerns on Embodiment 1 of this invention is connected with a two-phase alternating current power supply The circuit diagram which shows the case where the switching power supply which concerns on Embodiment 1 of this invention is connected with a two-phase alternating current power supply
- the circuit diagram which shows the structural example of the switching power supply device which concerns on the comparative example of Embodiment 1 of this invention The circuit diagram which shows the case where the switching power supply which concerns on Embodiment 2 of this invention is connected with a single phase alternating current power supply
- the circuit diagram which shows the case where the switching power supply which concerns on Embodiment 2 of this invention is connected with a two-phase alternating current power supply The circuit diagram which shows the case where the switching power supply which concerns
- FIG. 1 is a circuit diagram illustrating a configuration example of the switching power supply device 100.
- the switching power supply device 100 may be used, for example, for a charging device of a vehicle (for example, an electric vehicle or a hybrid vehicle) or may be used for other devices.
- the switching power supply device 100 is a device that converts alternating current power from an alternating current power source into direct current and outputs the direct current to the high voltage battery 20.
- a single-phase AC power supply 10a is illustrated as an example, but a two-phase AC power supply 10b (see FIGS. 3 and 4) may be used.
- the high-power battery 20 is, for example, a battery for driving a vehicle motor.
- An example of the high-power battery 20 is a lithium ion battery.
- the switching power supply device 100 includes a power supply circuit 1a, a power supply circuit 1b, a switching circuit 7, an inrush current prevention circuit 12, and a control circuit 17.
- the switching power supply apparatus 100 has two power supply circuits (1a, 1b) in order to support a two-phase AC power supply.
- Each of the power supply circuit 1a and the power supply circuit 1b has a power supply filter 2, an AC / DC converter 3, and a DC / DC converter 6.
- AC power is input to the power filter 2 from the single-phase AC power supply 10a or the two-phase AC power supply 10b.
- the power supply filter 2 prevents noise intrusion and noise outflow to the power supply line.
- the AC / DC converter 3 is provided after the power supply filter 2.
- the AC / DC converter 3 converts AC power from the power supply filter 2 into DC power and outputs the DC power to the DC / DC converter 6.
- the AC / DC converter 3 includes an electrolytic capacitor 4 that is initially charged (precharge), and a voltmeter 5 that measures the voltage of the electrolytic capacitor 4. The voltage value measured by the voltmeter 5 is output to the control circuit 17.
- the DC / DC converter 6 is provided in the subsequent stage of the AC / DC converter 3.
- the DC / DC converter 6 transforms the DC voltage from the AC / DC converter 3 into another DC voltage and outputs it to the high voltage battery 20.
- the switching circuit 7 includes a first mode in which only the power supply circuit 1a is driven when the AC power supply is a single-phase AC power supply 10a, and a power supply circuit 1a and a power supply circuit 1b when the AC power supply is a two-phase AC power supply 10b. This is a circuit for switching the second mode to be driven.
- the switching circuit 7 is a power supply circuit (for example, 1b) that does not correspond to any one phase (for example, L1) of the multiple-phase AC power supply (for example, 10b) among the plurality of power supply circuits 1a and 1b.
- the phase connected to the power supply circuit can be switched to any one phase of the multiple-phase AC power supply or a phase (for example, L2) corresponding to the power supply circuit.
- the switching circuit 7 includes a switching relay 8, a coil 9, and a drive circuit 11.
- the drive circuit 11 switches on / off of the switching relay 8 in accordance with a control signal from the control circuit 17.
- This control signal is a signal indicating either turning on the switching relay 8 or turning off the switching relay 8.
- the switching relay 8 is turned off as shown in FIG. 1 when the switching relay 8 is connected to one power supply line L1 branched at the branch point n2.
- the ON state of the switching relay 8 means a state in which the switching relay 8 is connected to the power line L2, as shown in FIG.
- the branch point n2 is a point (position) on the power supply line L1 (first phase) on the plus side.
- the inrush current prevention circuit 12 is provided on the single-phase AC power supply 10a side from the junction (connection point) n3 between the minus side line of the power supply circuit 1a and the minus side line of the power supply circuit 1b, and limits the inrush current.
- the junction point n3 is a point (position) on the negative power supply line N.
- the inrush current prevention circuit 12 includes an inrush current limiting circuit 13 composed of a fuse and an inrush current limiting resistor, an inrush prevention relay 14, a coil 15, and a drive circuit 16.
- the drive circuit 16 switches on / off of the inrush prevention relay 14 in accordance with a control signal from the control circuit 17.
- This control signal is a signal indicating that either the inrush prevention relay 14 is turned on or the inrush prevention relay 14 is turned off.
- FIG. 1 as an example, a case where the inrush prevention relay 14 is off is shown.
- FIG. 4 as an example, the case where the inrush prevention relay 14 is on is shown.
- the control circuit 17 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the control circuit 17 controls the switching circuit 7 so as to switch the phase connected to the power supply circuit (for example, 1b) not corresponding to any one phase (for example, L1) to any one phase, and rushes
- the current prevention circuit 12 is made to function (the inrush prevention relay 14 is turned off), and the electrolytic capacitor 4 included in the power supply circuit (for example, 1a, 1b) is initially charged. Then, when the initial charging of the electrolytic capacitor 4 is completed, the control circuit 17 switches the phase connected to the power circuit not corresponding to any one phase to the phase (for example, L2) corresponding to the power circuit.
- the switching circuit 7 is controlled, and the inrush current prevention circuit 12 is turned off (the inrush prevention relay 14 is turned on). Details of the control processing by the control circuit 17 will be described later with reference to FIG.
- FIG. 2 is a flowchart illustrating an operation example of the switching power supply apparatus 100.
- the operation described below is started, for example, when the AC power supply is turned on. At this time, both the switching relay 8 and the inrush prevention relay 14 are off.
- control circuit 17 determines the specification of the connected AC power supply (step S100). Specifically, the control circuit 17 determines whether the AC power source is a single-phase AC power source 10a or a two-phase AC power source 10b.
- control circuit 17 performs control so as to charge (initial charge) the electrolytic capacitor 4 of the AC / DC converter 3 in accordance with the determined specifications of the AC power supply (step S101).
- the inrush prevention relay 14 since the inrush prevention relay 14 is off, the power supplied from the single-phase AC power supply 10a is supplied to the power supply circuit 1a via the power supply line L1, and the inrush current of the inrush current limiting circuit 13 is supplied. Supplied to the limiting resistor. Thereby, the electrolytic capacitor 4 of the power supply circuit 1a can be charged (initial charge) while preventing an inrush current from flowing through the power supply circuit 1a.
- n1 is a neutral point.
- the power supplied from the two-phase AC power supply 10b is supplied to the power supply circuit 1a and the power supply circuit 1b via the power supply line L1, This is supplied to the inrush current limiting resistor of the inrush current limiting circuit 13.
- the power supply circuit 1a, the power supply circuit 1b, and the inrush current limiting circuit 13 are connected between the neutral point n1 of the two-phase AC power supply 10b and the first phase (L1).
- the inrush current limiting resistor of the inrush current limiting circuit 13 charges (initially charges) the electrolytic capacitor 4 of the power circuit 1a and the power circuit 1b while preventing the inrush current from flowing through the power circuit 1a and the power circuit 1b. be able to.
- control circuit 17 receives the voltage value of the electrolytic capacitor 4 measured by the voltmeter 5.
- control circuit 17 determines whether or not the initial charging of the electrolytic capacitor 4 is completed by comparing the voltage value received from the voltmeter 5 with a preset threshold value (step S102).
- step S102 determines that the initial charging has not been completed (step S102: NO). In this case, the flow returns to step S102.
- step S102 determines that the initial charging is completed. In this case, the flow proceeds to step S103.
- step S100 when the specification of the AC power source determined in step S100 is the single-phase AC power source 10a (step S103: single phase), the control circuit 17 controls the inrush prevention relay 14 to be turned on (step S105). At this time, the switching relay 8 remains controlled to be turned off. And only the power supply circuit 1a is driven and the high-power battery 20 is charged (first mode).
- each of the power supply circuit 1a and the power supply circuit 1b has a circuit configuration corresponding to each phase.
- control circuit 17 controls the inrush prevention relay 14 to be turned on (step S105). Thereby, both power supply circuits 1a and 1b are driven, and the high-power battery 20 is charged (second mode).
- FIG. 5 shows a configuration example of the switching power supply apparatus 101 as a comparative example of the first embodiment.
- the same components as those in FIGS. 1, 3, and 4 are assigned the same reference numerals, and descriptions thereof are omitted.
- an inrush current prevention circuit 12 is provided in each of the power supply circuit 1a and the power supply circuit 1b.
- inrush current prevention circuits 12 since a plurality of inrush current prevention circuits 12 are required, there is a problem that the cost increases and the switching power supply device 101 becomes large.
- one inrush current prevention circuit 12 is provided downstream from the junction n3, and the AC power supply is the single-phase AC power supply 10a, or two AC power supplies are used. In any case where the phase AC power supply 10b is used, one inrush current prevention circuit 12 is used. Therefore, cost can be reduced and the switching power supply apparatus 100 can be reduced in size.
- FIG. 6 is a circuit diagram illustrating a configuration example of the switching power supply apparatus 200.
- the switching power supply apparatus 200 has a configuration (1a to 1c) having three power supply circuits in order to cope with a three-phase AC power supply.
- the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
- Switching power supply device 200 may be used, for example, for a charging device of a vehicle (for example, an electric vehicle or a hybrid vehicle) or may be used for other devices.
- the switching power supply device 200 is different from the switching power supply device 100 shown in FIG. 1 in that a power supply circuit 1c and a switching circuit 7a are added.
- the power supply circuit 1c has the same configuration as the power supply circuits 1a and 1b.
- the switching circuit 7 a has the same configuration as the switching circuit 7, and the on / off state of the switching relay 8 is controlled by the control circuit 17.
- the switching relay 8 of the switching circuit 7a When the switching relay 8 of the switching circuit 7a is in the OFF state, it is connected to one power supply line L1 branched at the branch point n2. On the other hand, in the ON state of the switching relay 8 of the switching circuit 7a, the switching relay 8 is connected to the power supply line L3 as shown in FIG.
- the inrush current prevention circuit 12 is provided on the AC power supply side from the junction (connection point) n3 of the negative side line of the power supply circuit 1a, the negative side line of the power supply circuit 1b, and the negative side line of the power supply circuit 1c. Restrict.
- the negative side lines of the power supply circuits 1a to 1c are connected at one junction (connection point) n3.
- connection point connection point
- the negative side line of the power supply circuit 1a and the negative side of the power supply circuit 1b are connected.
- the first connection point to which the line is connected may be different from the second connection point to which the negative line of the power supply circuit 1b is connected to the negative line of the power supply circuit 1c.
- the inrush current prevention circuit 12 is provided on the AC power supply side with respect to the first connection point and the second connection point.
- the switching circuits 7 and 7a cause the power supply circuits 1a and 1b when the first mode described in the first embodiment, the second mode, and the AC power supply are the three-phase AC power supply 10c. And the third mode in which 1c is driven.
- the control circuit 17 determines the specification of the connected AC power supply (step S100). Specifically, the control circuit 17 determines whether the AC power source is a single-phase AC power source 10a, a two-phase AC power source 10b, or a three-phase AC power source 10c.
- control circuit 17 performs control so as to charge (initial charge) the electrolytic capacitor 4 of the AC / DC converter 3 in accordance with the determined specifications of the AC power supply (step S101).
- the inrush prevention relay 14 since the inrush prevention relay 14 is off, the power supplied from the single-phase AC power supply 10a is supplied to the power supply circuit 1a via the power supply line L1, and the inrush current of the inrush current limiting circuit 13 is supplied. Supplied to the limiting resistor. Thereby, the electrolytic capacitor 4 of the power supply circuit 1a can be charged (initial charge) while preventing an inrush current from flowing through the power supply circuit 1a.
- the specification of the AC power supply is the two-phase AC power supply 10b
- control is performed so that the electrolytic capacitor 4 of the AC / DC converter 3 of each of the power supply circuit 1a and the power supply circuit 1b is initially charged.
- the switching relay 8 of the switching circuit 7, the switching relay 8 of the switching circuit 7a, and the inrush prevention relay 14 are off as shown in FIG.
- the switching relay 8 and the inrush prevention relay 14 of the switching circuit 7 are off, the power supplied from the two-phase AC power supply 10b is supplied to the power supply circuit 1a and the power supply circuit 1b via the power supply line L1.
- the current is supplied to the inrush current limiting resistor of the inrush current limiting circuit 13.
- the electrolytic capacitor 4 of the power supply circuit 1a and the power supply circuit 1b can be charged (initial charge) while preventing an inrush current from flowing through the power supply circuit 1a and the power supply circuit 1b.
- the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c are controlled so as to perform initial charging of the electrolytic capacitor 4 of the AC / DC converter 3.
- the switching relay 8 of the switching circuit 7, the switching relay 8 of the switching circuit 7a, and the inrush prevention relay 14 are off as shown in FIG.
- the switching relay 8 of the switching circuit 7, the switching relay 8 of the switching circuit 7a, and the inrush prevention relay 14 are off, the power supplied from the three-phase AC power supply 10c passes through the power supply line L1.
- the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c they are supplied to the inrush current limiting resistor of the inrush current limiting circuit 13.
- the power supply circuit 1a, the power supply circuit 1b, the power supply circuit 1c, and the inrush current limiting circuit 13 are connected between the neutral point n1 of the three-phase AC power supply 10c and the first phase (L1).
- the inrush current limiting resistor of the inrush current limiting circuit 13 prevents the inrush current from flowing through the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c, and the electrolytic capacitors 4 of the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c. Can be charged (initial charge).
- control circuit 17 receives the voltage value of the electrolytic capacitor 4 measured by the voltmeter 5.
- step S102 Since the operation in step S102 is the same as that in the first embodiment, description thereof is omitted here.
- step S100 when the specification of the AC power source determined in step S100 is the single-phase AC power source 10a (step S103: single phase), the control circuit 17 controls the inrush prevention relay 14 to be turned on (step S105). At this time, the switching relay 8 of the switching circuit 7 and the switching relay 8 of the switching circuit 7a are both controlled to be off. And only the power supply circuit 1a is driven and the high-power battery 20 is charged (first mode).
- step S100 When the specification of the AC power source determined in step S100 is, for example, the two-phase AC power source 10b (step S103: multiple phases), the control circuit 17 controls the switching relay 8 of the switching circuit 7 to be turned on as shown in FIG. Then, the inrush prevention relay 14 is controlled to be turned on (step S105). At this time, as shown in FIG. 8, the switching relay 8 of the switching circuit 7a remains controlled to be turned off. Thereby, both power supply circuits 1a and 1b are driven, and the high-power battery 20 is charged (second mode).
- step S104 When the AC power supply determined in step S100 is, for example, a three-phase AC power supply 10c (step S103: multiple phases), the control circuit 17 switches the switching relay 8 and the switching circuit 7a of the switching circuit 7 as shown in FIG. Are switched on (step S104).
- each of the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c has a circuit configuration corresponding to each phase.
- the power supply circuit 1a is connected between the neutral point n1 and the first phase (L1) of the three-phase AC power supply 10c
- the power supply circuit 1b is connected between the neutral point n1 and the second phase (L2).
- the power supply circuit 1c is connected between the sex point n1 and the third phase (L3).
- control circuit 17 controls the inrush prevention relay 14 to be turned on (step S105). Thereby, all of the power supply circuits 1a, 1b, and 1c are driven, and the high-power battery 20 is charged (third mode).
- FIG. 11 shows a configuration example of the switching power supply apparatus 201 as a comparative example of the second embodiment.
- the same components as those in FIGS. 6 to 10 are denoted by the same reference numerals, and description thereof will be omitted.
- the inrush current prevention circuit 12 is provided in each of the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c.
- the inrush current prevention circuit 12 since a plurality of inrush current prevention circuits 12 are required, there is a problem that the cost increases and the switching power supply device 201 becomes large.
- the switching power supply device 200 of the present embodiment when one inrush current prevention circuit 12 is provided downstream from the junction n3 and the AC power source is the single-phase AC power source 10a, the AC power source is a two-phase AC power source. In the case of the power source 10b and the case where the AC power source is the three-phase AC power source 10c, one inrush current prevention circuit 12 is used. Therefore, the cost can be reduced and the switching power supply device 200 can be downsized.
- the case where the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c are connected to L1 (first phase) when performing initial charging of the capacitor has been described as an example.
- the power supply circuit 1a, the power supply circuit 1b, and the power supply circuit 1c are configured to be connected to L2 (second phase) or L3 (third phase) when the capacitor is initially charged. Also good. That is, when the capacitor is initially charged, a configuration in which a plurality of power supply circuits (1a to 1c) are connected between any one phase and the neutral point n1 may be used.
- the present invention can be applied to a power supply device that converts AC power from an AC power source into DC power.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
スイッチング電源装置は、第1の電源回路と第2の電源回路とを含み複数相交流電源の複数の相にそれぞれ対応する複数の電源回路と、切替回路と、突入電流防止回路と、制御回路と、を含む。制御回路は、第2の電源回路に接続される相を第1の電源回路に対応する相に切り替えるように切替回路を制御し、かつ、突入電流防止回路を機能させて、電源回路が有する電解コンデンサの初期充電を行う。初期充電の完了後、制御回路は、第2の電源回路に接続される相を第2の電源回路に対応する相に切り替えるように切替回路を制御し、かつ、突入電流防止回路をオフさせる。
Description
本発明は、スイッチング電源装置に関する。
従来、複数相の交流電源からの交流電力を直流電力に変換する電源装置が知られている(例えば、特許文献1参照)。
本発明は、コストを低減でき、装置を小型化できるスイッチング電源装置を提供する。
本発明の一態様に係るスイッチング電源装置は、複数の電源回路と、切替回路と、突入電流防止回路と、制御回路と、を含む。複数の電源回路は、第1の電源回路と第2の電源回路とを含み、複数相交流電源の複数の相にそれぞれ対応する。切替回路は、第2の電源回路に接続される相を、第1の電源回路が対応する相、または、第2の電源回路が対応する相に切り替え可能に構成される。突入電流防止回路は、複数相交流電源のマイナス側の電源ライン上で、かつ、複数の電源回路がそれぞれ接続される接続点よりも複数相交流電源側の位置に設けられ、突入電流を防止する。制御回路は、切替回路および突入電流防止回路を制御する。制御回路は、第2の電源回路に接続される相を第1の電源回路に対応する相に切り替えるように切替回路を制御し、かつ、突入電流防止回路を機能させて、電源回路が有するコンデンサの初期充電を行う構成を採る。さらに、制御回路は、コンデンサの初期充電が完了した場合に、第2の電源回路に接続される相を第2の電源回路に対応する相に切り替えるように切替回路を制御し、かつ、突入電流防止回路をオフさせる構成を採る。
本発明によれば、コストを低減でき、装置を小型化できるスイッチング電源装置を提供することができる。
本発明の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。複数相の交流電源から交流電力を入力可能な電源装置では、各相に、突入電流から回路を保護するための突入電流防止回路を設けた場合、コストが増加し、電源装置が大型化するという問題がある。
以下、本発明の各実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
まず、図1を用いて、本実施の形態のスイッチング電源装置100の構成の一例について説明する。図1は、スイッチング電源装置100の構成例を示す回路図である。スイッチング電源装置100は、例えば、車両(例えば、電気自動車またはハイブリッド自動車)の充電装置に用いられてもよいし、その他の装置に用いられてもよい。
まず、図1を用いて、本実施の形態のスイッチング電源装置100の構成の一例について説明する。図1は、スイッチング電源装置100の構成例を示す回路図である。スイッチング電源装置100は、例えば、車両(例えば、電気自動車またはハイブリッド自動車)の充電装置に用いられてもよいし、その他の装置に用いられてもよい。
スイッチング電源装置100は、交流電源からの交流電力を直流に変換し、強電バッテリ20へ出力する装置である。図1では例として、単相交流電源10aを図示しているが、二相交流電源10b(図3、図4参照)であってもよい。強電バッテリ20は、例えば車両のモータの駆動用のバッテリである。強電バッテリ20としては、例えばリチウムイオンバッテリが挙げられる。
スイッチング電源装置100は、電源回路1a、電源回路1b、切替回路7、突入電流防止回路12、および制御回路17を有する。スイッチング電源装置100は、二相交流電源に対応するために電源回路を2つ有する(1a、1b)構成となっている。
電源回路1aおよび電源回路1bの各々は、電源フィルタ2、AC/DCコンバータ3、DC/DCコンバータ6を有する。
電源フィルタ2には、単相交流電源10aまたは二相交流電源10bから、交流電力が入力される。電源フィルタ2は、電源ラインへのノイズ侵入とノイズ流出を防止する。
AC/DCコンバータ3は、電源フィルタ2の後段に設けられる。AC/DCコンバータ3は、電源フィルタ2からの交流電力を直流電力に変換し、DC/DCコンバータ6へ出力する。
また、AC/DCコンバータ3は、初期充電(プレチャージ)が行われる電解コンデンサ4と、電解コンデンサ4の電圧を計測する電圧計5とを有する。電圧計5で計測された電圧値は、制御回路17へ出力される。
DC/DCコンバータ6は、AC/DCコンバータ3の後段に設けられる。DC/DCコンバータ6は、AC/DCコンバータ3からの直流電圧を別の直流電圧に変圧し、強電バッテリ20へ出力する。
切替回路7は、交流電源が単相交流電源10aである場合に電源回路1aのみが駆動する第1のモードと、交流電源が二相交流電源10bである場合に電源回路1aおよび電源回路1bが駆動する第2のモードとを切り替える回路である。言い換えると、切替回路7は、複数の電源回路1a、1bのうちの複数相交流電源(例えば、10b)の任意の1相(例えば、L1)に対応しない電源回路(例えば、1b)において、当該電源回路に接続される相を、複数相交流電源の任意の1相、または、当該電源回路が対応する相(例えば、L2)に切り替えることができる。
切替回路7は、切替リレー8、コイル9、駆動回路11を有する。駆動回路11は、制御回路17からの制御信号に応じて、切替リレー8のオン/オフを切り替える。この制御信号は、切替リレー8をオンにする旨、または、切替リレー8をオフにする旨のいずれかを示す信号である。
切替リレー8のオフとは、図1に示すように、切替リレー8が、分岐点n2で分岐した一方の電源ラインL1と接続される状態をいう。一方、切替リレー8のオンとは、図4に示すように、切替リレー8が電源ラインL2と接続される状態をいう。なお、分岐点n2は、プラス側の電源ラインL1(第1相)上の点(位置)である。
突入電流防止回路12は、電源回路1aのマイナス側ラインと電源回路1bのマイナス側ラインとの合流点(接続点)n3より単相交流電源10a側に設けられ、突入電流を制限する。合流点n3は、マイナス側の電源ラインN上の点(位置)である。
突入電流防止回路12は、ヒューズおよび突入電流制限抵抗からなる突入電流制限回路13、突入防止リレー14、コイル15、駆動回路16を有する。駆動回路16は、制御回路17からの制御信号に応じて、突入防止リレー14のオン/オフを切り替える。この制御信号は、突入防止リレー14をオンにする旨、または、突入防止リレー14をオフにする旨のいずれかを示す信号である。なお、図1では例として、突入防止リレー14がオフである場合が示されている。図4では例として、突入防止リレー14がオンである場合が示されている。
制御回路17は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される。
例えば、制御回路17は、任意の1相(例えば、L1)に対応しない電源回路(例えば、1b)に接続される相を任意の1相に切り替えるように切替回路7を制御し、かつ、突入電流防止回路12を機能させて(突入防止リレー14をオフにし)、電源回路(例えば、1a、1b)が有する電解コンデンサ4の初期充電を行う。そして、制御回路17は、電解コンデンサ4の初期充電が完了した場合に、任意の1相に対応しない電源回路に接続される相を当該電源回路が対応する相(例えば、L2)に切り替えるように切替回路7を制御し、かつ、突入電流防止回路12をオフ(突入防止リレー14をオン)させる。なお、制御回路17による制御処理の詳細については、図2を用いて後述する。
以上、スイッチング電源装置100の構成の一例について説明した。
次に、図2を用いて、スイッチング電源装置100の動作の一例について説明する。図2は、スイッチング電源装置100の動作例を示すフローチャートである。以下に説明する動作は、例えば、交流電源の投入時に開始される。このとき、切替リレー8および突入防止リレー14はともにオフである。
まず、制御回路17は、接続された交流電源の仕様を判定する(ステップS100)。具体的には、制御回路17は、交流電源が、単相交流電源10aであるか、または、二相交流電源10bであるかを判定する。
次に、制御回路17は、判定した交流電源の仕様に応じて、AC/DCコンバータ3の電解コンデンサ4の充電(初期充電)を行うように制御する(ステップS101)。
具体的には、交流電源の仕様が単相交流電源10aである場合、電源回路1aのAC/DCコンバータ3の電解コンデンサ4の初期充電を行うように制御する。このときの切替リレー8および突入防止リレー14は、図1に示すように、オフである。
このとき、突入防止リレー14がオフであるため、単相交流電源10aから供給される電力は、電源ラインL1を経由して、電源回路1aに供給されるとともに、突入電流制限回路13の突入電流制限抵抗に供給される。これにより、電源回路1aに突入電流が流れることを防止しつつ電源回路1aの電解コンデンサ4の充電(初期充電)を行うことができる。
一方、交流電源の仕様が二相交流電源10bである場合、電源回路1aおよび電源回路1bそれぞれのAC/DCコンバータ3の電解コンデンサ4の初期充電を行うように制御する。このときの切替リレー8および突入防止リレー14は、図3に示すように、オフである。なお、図3において、n1は、中性点である。
このとき、切替リレー8および突入防止リレー14がオフであるため、二相交流電源10bから供給される電力は、電源ラインL1を経由して、電源回路1aおよび電源回路1bに供給されるとともに、突入電流制限回路13の突入電流制限抵抗に供給される。言い換えると、二相交流電源10bの中性点n1と第1相(L1)間に電源回路1a、電源回路1bおよび突入電流制限回路13が接続された回路構成となる。そして、突入電流制限回路13の突入電流制限抵抗により、電源回路1aおよび電源回路1bに突入電流が流れることを防止しつつ電源回路1aおよび電源回路1bの電解コンデンサ4の充電(初期充電)を行うことができる。
上記制御の後、制御回路17は、電圧計5により測定された電解コンデンサ4の電圧値を受け取る。
次に、制御回路17は、電圧計5から受け取った電圧値と予め設定された閾値とを比較することで、電解コンデンサ4の初期充電が完了したか否かを判定する(ステップS102)。
例えば、電圧計5からの電圧値が閾値に達していない場合、制御回路17は、初期充電が完了していないと判定する(ステップS102:NO)。この場合、フローはステップS102へ戻る。
一方、例えば、電圧計5からの電圧値が閾値に達した場合、制御回路17は、初期充電が完了したと判定する(ステップS102:YES)。この場合、フローはステップS103へ進む。
ここで、ステップS100で判定した交流電源の仕様が単相交流電源10aである場合(ステップS103:単相)、制御回路17は、突入防止リレー14をオンに制御する(ステップS105)。このとき、切替リレー8はオフに制御されたままである。そして、電源回路1aのみが駆動され、強電バッテリ20の充電が行われる(第1のモード)。
一方、ステップS100で判定した交流電源の仕様が複数相(例えば、二相交流電源10b)である場合(ステップS103:複数相)、制御回路17は、図4に示すように、切替リレー8をオンに制御する(ステップS104)。これにより、電源回路1aおよび電源回路1bそれぞれが各相に対応する回路構成となる。言い換えると、二相交流電源10bの中性点n1と第1相(L1)間に電源回路1aが接続され、中性点n1と第2相(L2)間に電源回路1bが接続された回路構成となる。
そして、制御回路17は、突入防止リレー14をオンに制御する(ステップS105)。これにより、電源回路1a、1bの両方が駆動され、強電バッテリ20の充電が行われる(第2のモード)。
以上、スイッチング電源装置100の動作の一例について説明した。
ここで、本実施の形態1の比較例としてのスイッチング電源装置101の構成例を、図5に示す。なお、図5において、図1、図3、図4と同一の構成要素には同一符号を付し、それらの説明については省略する。
図5に示すように、スイッチング電源装置101では、電源回路1aと電源回路1bのそれぞれに突入電流防止回路12が設けられている。このような構成では、複数の突入電流防止回路12が必要となるため、コストが増加し、スイッチング電源装置101が大型化してしまうという問題がある。
これに対し、本実施の形態のスイッチング電源装置100では、合流点n3より下流側に1つの突入電流防止回路12を設け、交流電源が単相交流電源10aである場合、または、交流電源が二相交流電源10bである場合のいずれにおいても、1つの突入電流防止回路12が用いられる構成とした。従って、コストを低減でき、スイッチング電源装置100を小型化できる。
(実施の形態2)
次に、図6を用いて、本実施の形態のスイッチング電源装置200の構成の一例について説明する。図6は、スイッチング電源装置200の構成例を示す回路図である。スイッチング電源装置200では、三相交流電源に対応するために電源回路を3つ有する(1a~1c)構成となっている。なお、図6において、図1と同一の構成要素には同一符号を付し、それらの説明については省略する。
次に、図6を用いて、本実施の形態のスイッチング電源装置200の構成の一例について説明する。図6は、スイッチング電源装置200の構成例を示す回路図である。スイッチング電源装置200では、三相交流電源に対応するために電源回路を3つ有する(1a~1c)構成となっている。なお、図6において、図1と同一の構成要素には同一符号を付し、それらの説明については省略する。
スイッチング電源装置200は、例えば、車両(例えば、電気自動車またはハイブリッド自動車)の充電装置に用いられてもよいし、その他の装置に用いられてもよい。
スイッチング電源装置200は、図1に示したスイッチング電源装置100と比べて、電源回路1cおよび切替回路7aが追加された点が異なる。電源回路1cは、電源回路1a、1bと同じ構成である。また、切替回路7aは、切替回路7と同じ構成であり、制御回路17により切替リレー8のオン/オフを制御される。
切替回路7aの切替リレー8がオフ状態では、分岐点n2で分岐した一方の電源ラインL1と接続される。一方、切替回路7aの切替リレー8のオン状態では、図10に示すように切替リレー8が電源ラインL3と接続される。
また、図6では例として、単相交流電源10aに接続された場合を図示しているが、二相交流電源10b(図7、図8参照)に接続されてもよいし、三相交流電源10c(図9、図10参照)に接続されてもよい。
突入電流防止回路12は、電源回路1aのマイナス側ライン、電源回路1bのマイナス側ライン、および電源回路1cのマイナス側ラインの合流点(接続点)n3より交流電源側に設けられ、突入電流を制限する。
なお、図6では、1点の合流点(接続点)n3において、電源回路1a~1cのマイナス側ラインが接続されているが、例えば、電源回路1aのマイナス側ラインと電源回路1bのマイナス側ラインが接続する第1接続点と、電源回路1bのマイナス側ラインと電源回路1cのマイナス側ラインが接続する第2接続点は、異なってもよい。この場合、突入電流防止回路12は、第1接続点および第2接続点よりも交流電源側に設けられる。
本実施の形態では、切替回路7、7aにより、実施の形態1で説明した第1のモードと、第2のモードと、交流電源が三相交流電源10cである場合に電源回路1a、1b、および1cが駆動する第3のモードとに切り替えられる。
以上、スイッチング電源装置200の構成の一例について説明した。
次に、図2を用いて、本実施の形態のスイッチング電源装置200の動作の一例について説明する。以下に説明する動作は、例えば、交流電源の投入時に開始される。このとき、切替回路7の切替リレー8、切替回路7aの切替リレー8、および突入防止リレー14は、オフである。
まず、制御回路17は、接続された交流電源の仕様を判定する(ステップS100)。具体的には、制御回路17は、交流電源が、単相交流電源10aであるか、二相交流電源10bであるか、または、三相交流電源10cであるかを判定する。
次に、制御回路17は、判定した交流電源の仕様に応じて、AC/DCコンバータ3の電解コンデンサ4の充電(初期充電)を行うように制御する(ステップS101)。
具体的には、交流電源の仕様が単相交流電源10aである場合、電源回路1aのAC/DCコンバータ3の電解コンデンサ4の初期充電を行うように制御する。このとき、切替回路7の切替リレー8、切替回路7aの切替リレー8、および突入防止リレー14は、図6に示すように、オフである。
このとき、突入防止リレー14がオフであるため、単相交流電源10aから供給される電力は、電源ラインL1を経由して、電源回路1aに供給されるとともに、突入電流制限回路13の突入電流制限抵抗に供給される。これにより、電源回路1aに突入電流が流れることを防止しつつ電源回路1aの電解コンデンサ4の充電(初期充電)を行うことができる。
また、交流電源の仕様が二相交流電源10bである場合、電源回路1aおよび電源回路1bそれぞれのAC/DCコンバータ3の電解コンデンサ4の初期充電を行うように制御する。このとき、切替回路7の切替リレー8、切替回路7aの切替リレー8、および突入防止リレー14は、図7に示すように、オフである。
このとき、切替回路7の切替リレー8および突入防止リレー14がオフであるため、二相交流電源10bから供給される電力は、電源ラインL1を経由して、電源回路1aおよび電源回路1bに供給されるとともに、突入電流制限回路13の突入電流制限抵抗に供給される。これにより、電源回路1aおよび電源回路1bに突入電流が流れることを防止しつつ電源回路1aおよび電源回路1bの電解コンデンサ4の充電(初期充電)を行うことができる。
また、交流電源の仕様が三相交流電源10cである場合、電源回路1a、電源回路1b、および電源回路1cそれぞれのAC/DCコンバータ3の電解コンデンサ4の初期充電を行うように制御する。このとき、切替回路7の切替リレー8、切替回路7aの切替リレー8、および突入防止リレー14は、図9に示すように、オフである。
このとき、切替回路7の切替リレー8、切替回路7aの切替リレー8、および突入防止リレー14がオフであるため、三相交流電源10cから供給される電力は、電源ラインL1を経由して、電源回路1a、電源回路1bおよび電源回路1cに供給されるとともに、突入電流制限回路13の突入電流制限抵抗に供給される。言い換えると、三相交流電源10cの中性点n1と第1相(L1)間に電源回路1a、電源回路1b、電源回路1cおよび突入電流制限回路13が接続された回路構成となる。そして、突入電流制限回路13の突入電流制限抵抗により、電源回路1a、電源回路1bおよび電源回路1cに突入電流が流れることを防止しつつ電源回路1a、電源回路1bおよび電源回路1cの電解コンデンサ4の充電(初期充電)を行うことができる。
上記制御の後、制御回路17は、電圧計5により測定された電解コンデンサ4の電圧値を受け取る。
ステップS102の動作は、上記実施の形態1と同様であるので、ここでの説明は省略する。
ここで、ステップS100で判定した交流電源の仕様が単相交流電源10aである場合(ステップS103:単相)、制御回路17は、突入防止リレー14をオンに制御する(ステップS105)。このとき、切替回路7の切替リレー8および切替回路7aの切替リレー8はともにオフに制御されたままである。そして、電源回路1aのみが駆動され、強電バッテリ20の充電が行われる(第1のモード)。
ステップS100で判定した交流電源の仕様が例えば二相交流電源10bである場合(ステップS103:複数相)、制御回路17は、図8に示すように、切替回路7の切替リレー8をオンに制御し(ステップS104)、突入防止リレー14をオンに制御する(ステップS105)。なお、このとき、図8に示すように、切替回路7aの切替リレー8はオフに制御されたままである。これにより、電源回路1a、1bの両方が駆動され、強電バッテリ20の充電が行われる(第2のモード)。
ステップS100で判定した交流電源の仕様が例えば三相交流電源10cである場合(ステップS103:複数相)、制御回路17は、図10に示すように、切替回路7の切替リレー8および切替回路7aの切替リレー8をともにオンに制御する(ステップS104)。これにより、電源回路1a、電源回路1bおよび電源回路1cそれぞれが各相に対応する回路構成となる。言い換えると、三相交流電源10cの中性点n1と第1相(L1)間に電源回路1aが接続され、中性点n1と第2相(L2)間に電源回路1bが接続され、中性点n1と第3相(L3)間に電源回路1cが接続された回路構成となる。
そして、制御回路17は、突入防止リレー14をオンに制御する(ステップS105)。これにより、電源回路1a、1b、1cの全てが駆動され、強電バッテリ20の充電が行われる(第3のモード)。
以上、スイッチング電源装置200の動作の一例について説明した。
ここで、本実施の形態2の比較例としてのスイッチング電源装置201の構成例を、図11に示す。なお、図11において、図6~図10と同一の構成要素には同一符号を付し、それらの説明については省略する。
図11に示すように、スイッチング電源装置201では、電源回路1a、電源回路1b、および電源回路1cのそれぞれに突入電流防止回路12が設けられている。このような構成では、複数の突入電流防止回路12が必要となるため、コストが増加し、スイッチング電源装置201が大型化してしまうという問題がある。
これに対し、本実施の形態のスイッチング電源装置200では、合流点n3より下流側に1つの突入電流防止回路12を設け、交流電源が単相交流電源10aである場合、交流電源が二相交流電源10bである場合、交流電源が三相交流電源10cである場合のいずれにおいても、1つの突入電流防止回路12が用いられる構成とした。従って、コストを低減でき、スイッチング電源装置200を小型化できる。
以上、本発明の各実施の形態について説明したが、本発明は上記各実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
例えば、上記実施の形態では、コンデンサの初期充電を行う際に、電源回路1a、電源回路1b、および電源回路1cがL1(第1相)に接続される場合を例示して説明したが、これに限らず、コンデンサの初期充電を行う際に、電源回路1a、電源回路1b、および電源回路1cがL2(第2相)、または、L3(第3相)に接続されるように構成されてもよい。すなわち、コンデンサの初期充電を行う際には、任意の1相と中性点n1間に、複数の電源回路(1a~1c)が接続される構成であればよい。
本発明は、交流電源からの交流電力を直流電力に変換する電源装置に適用できる。
1a,1b,1c 電源回路
2 電源フィルタ
3 AC/DCコンバータ
4 電解コンデンサ
5 電圧計
6 DC/DCコンバータ
7,7a 切替回路
8 切替リレー
9,15 コイル
10a 単相交流電源
10b 二相交流電源
10c 三相交流電源
11,16 駆動回路
12 突入電流防止回路
13 突入電流制限回路
14 突入防止リレー
17 制御回路
20 強電バッテリ
100,101,200,201 スイッチング電源装置
2 電源フィルタ
3 AC/DCコンバータ
4 電解コンデンサ
5 電圧計
6 DC/DCコンバータ
7,7a 切替回路
8 切替リレー
9,15 コイル
10a 単相交流電源
10b 二相交流電源
10c 三相交流電源
11,16 駆動回路
12 突入電流防止回路
13 突入電流制限回路
14 突入防止リレー
17 制御回路
20 強電バッテリ
100,101,200,201 スイッチング電源装置
Claims (4)
- 第1の電源回路と第2の電源回路とを含み、複数相交流電源の複数の相にそれぞれ対応する複数の電源回路と、
前記第2の電源回路に接続される相を、前記第1の電源回路が対応する相、または、前記第2の電源回路が対応する相に切り替え可能な切替回路と、
前記複数相交流電源のマイナス側の電源ライン上で、かつ、前記複数の電源回路がそれぞれ接続される接続点よりも前記複数相交流電源側の位置に設けられ、突入電流を防止する突入電流防止回路と、
前記切替回路および前記突入電流防止回路を制御する制御回路と、を備え、
前記制御回路は、
前記第2の電源回路に接続される相を前記第1の電源回路に対応する相に切り替えるように前記切替回路を制御し、かつ、前記突入電流防止回路を機能させて、前記電源回路が備えるコンデンサの初期充電を行い、
前記コンデンサの初期充電が完了した場合に、前記第2の電源回路に接続される相を前記第2の電源回路に対応する相に切り替えるように前記切替回路を制御し、かつ、前記突入電流防止回路をオフさせる、
スイッチング電源装置。 - 前記複数の電源回路の各々は、
交流電力を直流電力に変換するAC/DCコンバータと、前記AC/DCコンバータから出力された直流電圧を変圧するDC/DCコンバータとを有し、
前記AC/DCコンバータは、
前記コンデンサと、前記コンデンサの電圧を計測する電圧計とを有し、
前記制御回路は、
前記電圧計からの電圧値に基づいて、前記コンデンサに対する初期充電が完了したか否かを判定する、
請求項1に記載のスイッチング電源装置。 - 前記第1の電源回路は、前記複数相交流電源の第1相に対応し、
前記第2の電源回路は、前記複数相交流電源の第2相に対応し、
前記制御回路は、
前記交流電源が単相交流電源である場合、
前記初期充電の際、前記単相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路に供給されるとともに、前記突入電流防止回路が備える突入電流制限抵抗に供給されるように、前記切替回路および前記突入電流防止回路を制御し、
前記初期充電の完了後、前記単相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されないように、前記切替回路および前記突入電流防止回路を制御し、
前記交流電源が二相交流電源である場合、
前記初期充電の際、前記二相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路および前記第2の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されるように、前記切替回路および前記突入電流防止回路を制御し、
前記初期充電の完了後、前記二相交流電源から供給される電力が、前記第1相を経由して前記第1の電源回路に供給され、かつ、前記第2相を経由して前記第2の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されないように、前記切替回路および前記突入電流防止回路を制御する、
請求項2に記載のスイッチング電源装置。 - 前記複数の電源回路は、
第3の電源回路をさらに含み、
前記第1の電源回路は、前記複数相交流電源の第1相に対応し、
前記第2の電源回路は、前記複数相交流電源の第2相に対応し、
前記第3の電源回路は、前記複数相交流電源の第3相に対応し、
前記制御回路は、
前記交流電源が単相交流電源である場合、
前記初期充電の際、前記単相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路に供給されるとともに、前記突入電流防止回路が備える突入電流制限抵抗に供給されるように、前記切替回路および前記突入電流防止回路を制御し、
前記初期充電の完了後、前記単相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されないように、前記切替回路および前記突入電流防止回路を制御し、
前記交流電源が二相交流電源である場合、
前記初期充電の際、前記二相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路および前記第2の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されるように、前記切替回路および前記突入電流防止回路を制御し、
前記初期充電の完了後、前記二相交流電源から供給される電力が、前記第1相を経由して前記第1の電源回路に供給され、かつ、前記第2相を経由して前記第2の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されないように、前記切替回路および前記突入電流防止回路を制御し、
前記交流電源が三相交流電源である場合、
前記初期充電の際、前記三相交流電源から供給される電力が、前記第1相を経由して、前記第1の電源回路、前記第2の電源回路、および前記第3の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されるように、前記切替回路および前記突入電流防止回路を制御し、
前記初期充電の完了後、前記三相交流電源から供給される電力が、前記第1相を経由して前記第1の電源回路に供給され、かつ、前記第2相を経由して前記第2の電源回路に供給され、かつ、前記第3相を経由して前記第3の電源回路に供給されるとともに、前記突入電流制限抵抗に供給されないように、前記切替回路および前記突入電流防止回路を制御する、
請求項2に記載のスイッチング電源装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/072,138 US10270360B2 (en) | 2016-03-16 | 2017-01-31 | Switching power supply device |
DE112017001340.2T DE112017001340B4 (de) | 2016-03-16 | 2017-01-31 | Schaltnetzteil |
CN201780015717.5A CN108713287B (zh) | 2016-03-16 | 2017-01-31 | 开关电源装置 |
US16/351,266 US10587205B2 (en) | 2016-03-16 | 2019-03-12 | Switching power supply device including an inrush current prevention circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016052201A JP6643678B2 (ja) | 2016-03-16 | 2016-03-16 | スイッチング電源装置 |
JP2016-052201 | 2016-03-16 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/072,138 A-371-Of-International US10270360B2 (en) | 2016-03-16 | 2017-01-31 | Switching power supply device |
US16/351,266 Continuation US10587205B2 (en) | 2016-03-16 | 2019-03-12 | Switching power supply device including an inrush current prevention circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159078A1 true WO2017159078A1 (ja) | 2017-09-21 |
Family
ID=59852214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003278 WO2017159078A1 (ja) | 2016-03-16 | 2017-01-31 | スイッチング電源装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10270360B2 (ja) |
JP (1) | JP6643678B2 (ja) |
CN (1) | CN108713287B (ja) |
DE (1) | DE112017001340B4 (ja) |
WO (1) | WO2017159078A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019170457A1 (de) * | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Wechselstromladevorrichtung für ein kraftfahrzeug und verfahren zum betreiben einer wechselstromladevorrichtung für ein kraftfahrzeug |
WO2019170476A1 (de) * | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Wechselstromladevorrichtung für ein kraftfahrzeug und verfahren zum betreiben einer wechselstromladevorrichtung für ein kraftfahrzeug und kraftfahrzeug |
WO2019170475A1 (de) * | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Wechselstromladevorrichtung für ein kraftfahrzeug und verfahren zum betreiben einer wechselstromladevorrichtung für ein kraftfahrzeug |
EP3874587A1 (en) * | 2018-10-30 | 2021-09-08 | MAHLE International GmbH | On-board chargers (obc) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10530173B2 (en) * | 2017-09-21 | 2020-01-07 | Delta Electronics (Shanghai) Co., Ltd. | Charging device and control method therefor |
JP6873892B2 (ja) * | 2017-12-22 | 2021-05-19 | パナソニックIpマネジメント株式会社 | スイッチング電源装置 |
US11498147B2 (en) * | 2018-05-01 | 2022-11-15 | Illinois Tool Works Inc. | Single phase input detection and power source protection |
KR102528230B1 (ko) * | 2018-07-18 | 2023-05-03 | 현대자동차주식회사 | 전기 자동차의 충전 장치 |
SI3636376T1 (sl) | 2018-10-12 | 2022-01-31 | Dallan S.P.A. | Naprava za lasersko ali plazemsko rezanje kosov iz ploščatega materiala |
JP2020162277A (ja) * | 2019-03-26 | 2020-10-01 | パナソニックIpマネジメント株式会社 | 電源装置および車両 |
CN113767564B (zh) | 2019-03-26 | 2024-08-23 | 松下汽车电子系统株式会社 | 电源装置、车辆及切换控制装置 |
JP7352771B2 (ja) * | 2019-08-21 | 2023-09-29 | パナソニックIpマネジメント株式会社 | 洗濯機 |
US10855169B1 (en) * | 2019-09-10 | 2020-12-01 | Lear Corporation | Configurable multi-phase charger |
CN110837237B (zh) * | 2019-10-17 | 2021-03-30 | 北京南瑞怡和环保科技有限公司 | 一种火灾采集控制装置 |
JP2021069211A (ja) * | 2019-10-24 | 2021-04-30 | パナソニックIpマネジメント株式会社 | スイッチング電源装置、車両および制御方法 |
JP7398667B2 (ja) | 2020-03-11 | 2023-12-15 | パナソニックIpマネジメント株式会社 | スイッチング装置、スイッチング電源装置、及び車両 |
JP7386431B2 (ja) * | 2020-03-30 | 2023-11-27 | パナソニックIpマネジメント株式会社 | スイッチング装置、スイッチング電源装置、及び車両 |
US11652403B2 (en) * | 2020-08-21 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Switching power source device, vehicle, and control method |
JP2022137719A (ja) | 2021-03-09 | 2022-09-22 | パナソニックIpマネジメント株式会社 | 電源装置、車両および制御方法 |
EP4122750A1 (en) * | 2021-07-21 | 2023-01-25 | ABB E-mobility B.V. | Electric vehicle charging arrangement and respective method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127876A (ja) * | 1990-09-19 | 1992-04-28 | Toshiba Lighting & Technol Corp | 電源装置 |
JP2012010507A (ja) * | 2010-06-25 | 2012-01-12 | Mitsubishi Electric Corp | 直流電源装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6603675B1 (en) * | 2002-01-17 | 2003-08-05 | Abb Ab | Apparatus and a method for voltage conversion |
JP4238935B1 (ja) | 2007-08-28 | 2009-03-18 | ダイキン工業株式会社 | 直接形交流電力変換装置 |
JP4240141B1 (ja) * | 2007-10-09 | 2009-03-18 | ダイキン工業株式会社 | 直接形交流電力変換装置 |
US7830036B2 (en) | 2008-09-30 | 2010-11-09 | Rockwell Automation Technologies, Inc. | Power electronic module pre-charge system and method |
US8492928B2 (en) * | 2010-03-18 | 2013-07-23 | American Power Conversion Corporation | AC-to-DC conversion |
IN2014DN07469A (ja) * | 2012-02-15 | 2015-04-24 | Schneider Electric It Corp | |
JP5569583B2 (ja) * | 2012-12-21 | 2014-08-13 | 株式会社安川電機 | マトリクスコンバータ |
CN204498009U (zh) * | 2015-02-09 | 2015-07-22 | 顾建国 | 高压双向绝缘电源变换器 |
US9954427B2 (en) * | 2015-11-06 | 2018-04-24 | Wisconsin Alumni Research Foundation | Converter control using reduced link capacitor |
-
2016
- 2016-03-16 JP JP2016052201A patent/JP6643678B2/ja active Active
-
2017
- 2017-01-31 WO PCT/JP2017/003278 patent/WO2017159078A1/ja active Application Filing
- 2017-01-31 CN CN201780015717.5A patent/CN108713287B/zh active Active
- 2017-01-31 US US16/072,138 patent/US10270360B2/en active Active
- 2017-01-31 DE DE112017001340.2T patent/DE112017001340B4/de active Active
-
2019
- 2019-03-12 US US16/351,266 patent/US10587205B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127876A (ja) * | 1990-09-19 | 1992-04-28 | Toshiba Lighting & Technol Corp | 電源装置 |
JP2012010507A (ja) * | 2010-06-25 | 2012-01-12 | Mitsubishi Electric Corp | 直流電源装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019170457A1 (de) * | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Wechselstromladevorrichtung für ein kraftfahrzeug und verfahren zum betreiben einer wechselstromladevorrichtung für ein kraftfahrzeug |
WO2019170476A1 (de) * | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Wechselstromladevorrichtung für ein kraftfahrzeug und verfahren zum betreiben einer wechselstromladevorrichtung für ein kraftfahrzeug und kraftfahrzeug |
WO2019170475A1 (de) * | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Wechselstromladevorrichtung für ein kraftfahrzeug und verfahren zum betreiben einer wechselstromladevorrichtung für ein kraftfahrzeug |
CN111801243A (zh) * | 2018-03-08 | 2020-10-20 | 纬湃科技有限责任公司 | 用于机动车辆的交流充电装置和用于运行机动车辆所用的交流充电装置的方法 |
CN111801242A (zh) * | 2018-03-08 | 2020-10-20 | 纬湃科技有限责任公司 | 用于机动车辆的交流充电装置、用于运行机动车辆所用的交流充电装置的方法和机动车辆 |
US11277020B2 (en) | 2018-03-08 | 2022-03-15 | Vitesco Technologies GmbH | Motor vehicle having an AC charging device with a precharge circuit for a smoothing capacitor |
US11285825B2 (en) | 2018-03-08 | 2022-03-29 | Vitesco Technologies GmbH | Alternating-current charging device for a motor vehicle, and method for operating an alternating-current charging device for a motor vehicle |
US11351869B2 (en) | 2018-03-08 | 2022-06-07 | Vitesco Technologies GmbH | Alternating-current charging device for a motor vehicle |
CN111801242B (zh) * | 2018-03-08 | 2023-11-07 | 纬湃科技有限责任公司 | 机动车辆的交流充电装置及其运行方法和机动车辆 |
EP3874587A1 (en) * | 2018-10-30 | 2021-09-08 | MAHLE International GmbH | On-board chargers (obc) |
US11881760B2 (en) | 2018-10-30 | 2024-01-23 | Mahle International Gmbh | On-board chargers (OBC) |
Also Published As
Publication number | Publication date |
---|---|
DE112017001340T5 (de) | 2018-11-22 |
JP2017169350A (ja) | 2017-09-21 |
US10270360B2 (en) | 2019-04-23 |
CN108713287A (zh) | 2018-10-26 |
US20190036462A1 (en) | 2019-01-31 |
US20190214920A1 (en) | 2019-07-11 |
US10587205B2 (en) | 2020-03-10 |
DE112017001340B4 (de) | 2024-01-04 |
CN108713287B (zh) | 2020-05-05 |
JP6643678B2 (ja) | 2020-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017159078A1 (ja) | スイッチング電源装置 | |
JP6503636B2 (ja) | モータ制御装置 | |
US11411410B2 (en) | Charging device | |
WO2016147413A1 (ja) | コンバータユニットシステム及びコンバータユニット | |
JPWO2019123608A1 (ja) | 電力変換システム | |
US10924027B2 (en) | Switching power supply device | |
EP3420618B1 (en) | Method to reduce inrush currents in a transformer-less rectifier uninterruptible power supply system | |
JP5805118B2 (ja) | 電力変換装置 | |
JP6884922B2 (ja) | 電力変換装置 | |
JP2006340466A (ja) | Pwmコンバータ制御装置 | |
KR101036387B1 (ko) | 삼상모터의 정역회전 제어장치 | |
US11652423B2 (en) | Switching power supply device, vehicle, and control method | |
JP2020202600A (ja) | 電力変換装置及びその制御方法 | |
JP7063745B2 (ja) | 電源システム | |
CN115666997A (zh) | 电源系统及电源系统的控制方法 | |
JP6285290B2 (ja) | 電力変換装置 | |
JP4774961B2 (ja) | 無停電電源装置 | |
KR102112209B1 (ko) | 전기자동차의 강제방전방법 | |
JP5774525B2 (ja) | バッテリ充電装置 | |
CN116915075A (zh) | 电源系统 | |
JP2024141632A (ja) | 電力変換装置 | |
JP6681670B2 (ja) | インバータシステム、インバータ装置およびインバータシステムの制御方法 | |
JP2019009934A (ja) | 充放電装置 | |
JP2015231330A5 (ja) | ||
JP2015023601A (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766086 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17766086 Country of ref document: EP Kind code of ref document: A1 |