WO2017141661A1 - 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法 - Google Patents
負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法 Download PDFInfo
- Publication number
- WO2017141661A1 WO2017141661A1 PCT/JP2017/002851 JP2017002851W WO2017141661A1 WO 2017141661 A1 WO2017141661 A1 WO 2017141661A1 JP 2017002851 W JP2017002851 W JP 2017002851W WO 2017141661 A1 WO2017141661 A1 WO 2017141661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- particles
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
- C01B33/325—After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/08—Carbonates; Bicarbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/86—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material, a mixed negative electrode active material, a negative electrode for a non-aqueous electrolyte secondary battery, a lithium ion secondary battery, and a method for producing a negative electrode active material.
- This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
- lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
- the above lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator together with an electrolyte, and the negative electrode includes a negative electrode active material involved in a charge / discharge reaction.
- the negative electrode active material when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge / discharge, and therefore, it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
- silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).
- Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
- the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7).
- the present invention has been made in view of the above-described problems.
- the present invention provides a negative electrode active material capable of improving initial charge / discharge characteristics and cycle characteristics, and the negative electrode active material. It is an object to provide a mixed negative electrode active material containing a material, a negative electrode having a negative electrode active material layer formed of the negative electrode active material, and a lithium ion secondary battery using the negative electrode active material of the present invention. . It is another object of the present invention to provide a method for producing the negative electrode active material of the present invention capable of improving the initial charge / discharge characteristics and cycle characteristics.
- the present invention provides a negative electrode active material including negative electrode active material particles, wherein the negative electrode active material particles include a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6). Containing silicon compound particles, wherein the silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 , the negative electrode active material particles include Li 2 CO 3 and LiOH on the surface, The content of Li 2 CO 3 is 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles, and the content of LiOH is that of the negative electrode active material particles.
- a negative electrode active material that is 0.01% by mass to 5.00% by mass with respect to the mass.
- the negative electrode active material particles have a pH of 10 to 10 when the negative electrode active material particles are dispersed in pure water so that the mass ratio of the negative electrode active material particles to the pure water is 1:20 and filtered. 13 is preferable.
- the silicon compound particles have a half-value width (2 ⁇ ) of a diffraction peak caused by an Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more and a crystallite size corresponding to the crystal plane. Is preferably 7.5 nm or less.
- the negative electrode active material in which the silicon compound particles have the above-described silicon crystallinity is used as the negative electrode active material of the lithium ion secondary battery, better cycle characteristics and initial charge / discharge characteristics can be obtained.
- the silicon compound particles have a larger amount of Si and Li 2 SiO 3 based on the SiO 2 component, a negative electrode active material that can sufficiently obtain an effect of improving battery characteristics by inserting Li is obtained.
- a test cell comprising a negative electrode containing a mixture of the negative electrode active material and the carbon-based active material and counter lithium is prepared, and in the test cell, charging is performed such that current is inserted so that lithium is inserted into the negative electrode active material.
- 30 times of charge / discharge consisting of discharge through which current flows so as to desorb lithium from the negative electrode active material, and the discharge capacity Q in each charge / discharge is differentiated by the potential V of the negative electrode with respect to the counter lithium.
- the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery. Moreover, if the said peak expresses by charge / discharge within 30 times, it will become a negative electrode active material in which a stable bulk is formed.
- the average thickness of the carbon material is preferably 10 nm or more and 5000 nm or less.
- the present invention includes the above mixed negative electrode active material, and the ratio of the mass of the negative electrode active material to the total mass of the negative electrode active material and the carbon-based active material is 6
- a negative electrode for a non-aqueous electrolyte secondary battery characterized by being at least mass%.
- the present invention provides a lithium ion secondary battery using a negative electrode containing the above negative electrode active material.
- a lithium ion secondary battery using a negative electrode containing such a negative electrode active material has high capacity and good cycle characteristics and initial charge / discharge characteristics.
- the content of 2 CO 3 is the not more than the negative electrode active 5.00 wt% 0.01 wt% with respect to the mass of the material particles, and the content of the LiOH is the mass of the anode active material particles Negative electrode active material, wherein the negative electrode active material particles of 0.01% by mass or more and 5.00% by mass or less are produced, and the produced negative electrode active material particles are used to produce a negative electrode active material.
- a manufacturing method is provided.
- the negative electrode active material By producing the negative electrode active material in this way, it is possible to produce a negative electrode active material that has high capacity and good cycle characteristics and initial charge / discharge characteristics when used as a negative electrode active material for a lithium ion secondary battery. it can.
- the step of generating lithium nitride on the surface of the negative electrode active material particles is performed by bringing the negative electrode active material particles, a lithium compound, and nitrogen into contact with each other in a dispersion, or the negative electrode active material particles and LiH. Is preferably performed by mixing and heating.
- the negative electrode active material of the present invention When the negative electrode active material of the present invention is used as a negative electrode active material for a secondary battery, a high capacity and good cycle characteristics and initial charge / discharge characteristics can be obtained. Moreover, the same effect is acquired also in the mixed negative electrode active material material containing this negative electrode active material, a negative electrode, and a lithium ion secondary battery. Moreover, if it is a manufacturing method of the negative electrode active material of this invention, when it uses as a negative electrode active material of a secondary battery, the negative electrode active material which has a favorable cycling characteristic and an initial stage charge / discharge characteristic can be manufactured.
- FIG. 1 It is sectional drawing which shows the structure of the negative electrode for nonaqueous electrolyte secondary batteries of this invention. It is an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when modified by a redox method. It is an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when modified by a thermal doping method. It is a figure which shows an example of the titration curve in neutralization titration of a filtrate. It is a figure showing the structural example (laminate film type) of the lithium secondary battery of this invention. It is a graph showing the relationship between the ratio of the silicon type active material particle with respect to the total amount of a negative electrode active material, and the increase rate of the battery capacity of a secondary battery.
- the inventors of the present invention have made extensive studies in order to obtain a negative electrode active material that has a high battery capacity and good cycle characteristics and initial efficiency when used in a secondary battery, and has reached the present invention.
- the negative electrode active material of the present invention includes negative electrode active material particles.
- the negative electrode active material particles contain silicon compound particles containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
- the silicon compound particles contain at least one lithium silicate of Li 2 SiO 3 and Li 4 SiO 4 .
- the negative electrode active material particles include Li 2 CO 3 and LiOH on the surface, and the content of Li 2 CO 3 is 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles.
- the LiOH content is 0.01% by mass to 5.00% by mass with respect to the mass of the negative electrode active material particles.
- FIG. 1 shows a cross-sectional configuration of a negative electrode for a nonaqueous electrolyte secondary battery (hereinafter also referred to as “negative electrode”) according to an embodiment of the present invention.
- the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11.
- the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
- the negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength.
- Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
- the pH of the filtrate obtained by dispersing and filtering the negative electrode active material particles in pure water so that the mass ratio of the negative electrode active material particles and pure water is 1:20 is 10 to 13. It is preferable. With such a negative electrode active material, the stability in the slurry used at the time of preparing the negative electrode is high, so that the initial efficiency and cycle characteristics of the secondary battery can be further improved.
- the amount of each of Li and Si in the filtrate can be measured by, for example, inductively coupled plasma emission spectroscopy (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS).
- ICP-OES inductively coupled plasma emission spectroscopy
- ICP-MS inductively coupled plasma mass spectrometry
- the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery. Moreover, if it is a negative electrode active material which the said peak expresses by charge / discharge within 30 times, it can be judged that the stable bulk is formed.
- lithium nitride is generated on the surface of the negative electrode active material particles.
- Li 2 CO 3 and LiOH are generated on the surface of the negative electrode active material particles by washing the negative electrode active material particles having lithium nitride generated on the surface with a solution containing water.
- the content of Li 2 CO 3 is 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles
- the content of LiOH is the negative electrode active material particles.
- the negative electrode active material particles of 0.01% by mass or more and 5.00% by mass or less with respect to the mass of are produced.
- the negative electrode active material is manufactured using the produced negative electrode active material particles.
- lithium can be inserted by first immersing silicon oxide particles in a solution A in which lithium is dissolved in an ether solvent.
- the solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
- silicon oxide particles may be immersed in this solution A while bubbling N 2 .
- the amount of lithium nitride produced can be controlled by adjusting the N 2 implantation time, bubbling timing, and atmosphere.
- the atmosphere at this time is preferably an inert atmosphere such as Ar or N 2 .
- active lithium can be desorbed from the silicon oxide particles by immersing the silicon oxide particles in a solution B containing a polycyclic aromatic compound or a derivative thereof.
- a solvent of the solution B for example, an ether solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amine solvent, or a mixed solvent thereof can be used.
- the inert atmosphere containing nitrogen for example, a mixed gas of Ar and N 2 can be used. Subsequently, by washing the negative electrode active material particles with, for example, four times the equivalent amount of water, lithium carbonate and lithium hydroxide are generated on the surface of the negative electrode active material particles.
- a negative electrode active material is produced. And after mixing a negative electrode active material with other materials, such as a negative electrode binder and a conductive support agent, and making a negative electrode mixture, an organic solvent or water is added and it is set as a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, you may perform a heat press etc. as needed.
- a negative electrode can be produced as described above.
- a laminated film type lithium ion secondary battery 20 shown in FIG. 5 is one in which a wound electrode body 21 is accommodated mainly in a sheet-like exterior member 25. This wound body has a separator between a positive electrode and a negative electrode and is wound. There is also a case where a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
- the positive electrode lead 22 is attached to the positive electrode
- the negative electrode lead 23 is attached to the negative electrode.
- the outermost peripheral part of the electrode body is protected by a protective tape.
- the positive and negative electrode leads are led out in one direction from the inside of the exterior member 25 to the outside.
- the positive electrode lead 22 is formed of a conductive material such as aluminum
- the negative electrode lead 23 is formed of a conductive material such as nickel or copper.
- the negative electrode has the same configuration as the above-described negative electrode 10 for a lithium ion secondary battery in FIG. 1.
- the negative electrode has negative electrode active material layers 12 on both surfaces of the current collector 11.
- the negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. This is because the deposition of lithium metal on the negative electrode can be suppressed.
- the halogenated chain carbonate ester is a chain carbonate ester having halogen as a constituent element (at least one hydrogen is replaced by halogen).
- the halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is replaced by a halogen).
- halogenated chain carbonate examples include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate.
- halogenated cyclic carbonate examples include 4-fluoro-1,3-dioxolane-2-one, 4,5-difluoro-1,3-dioxolane-2-one, and the like.
- the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
- unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
- the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
- the acid anhydride include propanedisulfonic acid anhydride.
- a negative electrode is produced using the negative electrode active material manufactured with the manufacturing method of said negative electrode active material of this invention, and a lithium ion secondary battery is manufactured using this produced negative electrode.
- a positive electrode is produced using the positive electrode material described above.
- a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry.
- the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
- the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed, or heating or compression may be repeated a plurality of times.
- a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operating procedure as the production of the negative electrode 10 for lithium ion secondary batteries described above.
- An adhesion film is inserted between the positive electrode lead and the negative electrode lead and the exterior member.
- a predetermined amount of the adjusted electrolytic solution is introduced from the release portion, and vacuum impregnation is performed. After impregnation, the release part is bonded by a vacuum heat fusion method. As described above, the laminated film type lithium ion secondary battery 20 can be manufactured.
- Example 1-1 The laminate film type lithium ion secondary battery 20 shown in FIG. 5 was produced by the following procedure.
- solution B naphthalene was dissolved in THF.
- Solution B of Example 1-1 was prepared by dissolving naphthalene in a THF solvent at a concentration of 2 mol / L.
- the temperature of the solution when dipping the silicon compound particles was 20 ° C., and the dipping time was 20 hours. Thereafter, silicon compound particles were collected by filtration.
- Li 2 CO 3 and LiOH were generated on the surface of the negative electrode active material particles by washing the negative electrode active material particles with a solution containing water. Specifically, the negative electrode active material particles were washed with a mixed solution of ethanol and water to generate lithium carbonate and lithium hydroxide on the surface of the negative electrode active material particles.
- the negative electrode active material particles and the carbon-based active material were blended at a mass ratio of 1: 9 to prepare a mixed negative electrode active material.
- the carbon-based active material a mixture of natural graphite and artificial graphite coated with a pitch layer at a mass ratio of 5: 5 was used.
- the median diameter of the carbon-based active material was 20 ⁇ m.
- the prepared mixed negative electrode active material conductive additive 1 (carbon nanotube, CNT), conductive additive 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR).
- SBR styrene butadiene rubber
- CMC carboxymethylcellulose
- said SBR and CMC are negative electrode binders (negative electrode binder).
- Table 1 shows the evaluation results of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2.
- Examples 3-1 to 3-4 A secondary battery was fabricated under the same conditions as in Example 1-2, except that the Li 2 CO 3 content with respect to the mass of the negative electrode active material particles and the LiOH content with respect to the mass of the negative electrode active material particles were changed as shown in Table 3. Fabricated and evaluated for cycle characteristics and initial efficiency. The contents of Li 2 CO 3 and LiOH with respect to the mass of the negative electrode active material particles were controlled by adjusting the amount of lithium nitride generated on the surface of the negative electrode active material particles. The amount of lithium nitride was adjusted by changing the N 2 implantation time, bubbling timing, and atmosphere during lithium doping in the solution A 1 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、Li2SiO3及びLi4SiO4のうち少なくとも1種以上を含有し、前記負極活物質粒子は、Li2CO3及びLiOHを表面に含み、前記Li2CO3の含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下のものであることを特徴とする負極活物質である。これにより、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極活物質が提供される。
Description
本発明は、負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法に関する。
近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
また、初回充放電効率を改善するためにSi相、SiO2、MyO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiOx(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
上述したように、近年、電子機器に代表される小型のモバイル機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初回効率及びサイクル特性が望まれている。しかしながら、炭素系活物質を用いたリチウムイオン二次電池と同等の初回効率及びサイクル安定性を示す負極活物質を提案するには至っていなかった。
本発明は前述のような問題に鑑みてなされたもので、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極活物質、この負極活物質を含む混合負極活物質材料、この負極活物質材料で形成した負極活物質層を有する負極電極、及び、本発明の負極活物質を用いたリチウムイオン二次電池を提供することを目的とする。また、初期充放電特性及びサイクル特性を向上させることが可能な本発明の負極活物質を製造する方法を提供することも目的とする。
上記目的を達成するために、本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、Li2SiO3及びLi4SiO4のうち少なくとも1種以上を含有し、前記負極活物質粒子は、Li2CO3及びLiOHを表面に含み、前記Li2CO3の含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下のものであることを特徴とする負極活物質を提供する。
本発明の負極活物質は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO2成分部を予めリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。さらに、負極活物質表面にLi2CO3及びLiOHが存在することで、Liが拡散しやすいため、電子伝導性が向上する。ここで、Li2CO3及びLiOHの含有量がそれぞれ0.01質量%未満であると、Liが拡散する際に媒体とするLiの量が少なすぎるため、電子伝導性が悪化する。また、Li2CO3及びLiOHの含有量がそれぞれ5.00質量%より大きいと、これらのLi化合物の量が多すぎるため、電子伝導性が悪化する。すなわち、Li2CO3及びLiOHの含有量がそれぞれ0.01質量%以上5.00質量%以下であると、良好な電子伝導性が得られるため、充放電に最適な表面状態が得られる。その結果、二次電池の初期効率及びサイクル特性が向上する。
このとき、前記負極活物質粒子は、該負極活物質粒子を純水に前記負極活物質粒子と前記純水の質量比が1:20となるように分散させ濾過した濾過液のpHが10~13となるものであることが好ましい。
このような負極活物質であれば、負極作製時に用いるスラリー中での安定性が高いものとなるため、二次電池の初期効率及びサイクル特性をより向上させることができる。
またこのとき、前記負極活物質粒子は、該負極活物質粒子を純水に分散させ濾過した濾過液に含まれる、LiとSiのモル比MLi/MSiが、10≧MLi/MSi≧0.5の関係となるものであることが好ましい。
MLi/MSi≧0.5であれば、Liが拡散するための媒体となるLiが十分な量存在すると言えるため、電子伝導性がより向上する。また、10≧MLi/MSiであれば、Li化合物の量がより適切であると言えるため、電子伝導性がより向上する。よって、10≧MLi/MSi≧0.5を満たす場合、二次電池の初期効率及びサイクル特性をより向上させることができる負極活物質となる。
また、前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。
ケイ素化合物粒子が上記のケイ素結晶性を有する負極活物質をリチウムイオン二次電池の負極活物質として用いれば、より良好なサイクル特性及び初期充放電特性が得られる。
また、本発明の負極活物質は、前記ケイ素化合物粒子において、29Si-MAS-NMR スペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO2領域のピーク強度値Bが、A>Bという関係を満たすものであることが好ましい。
ケイ素化合物粒子において、SiO2成分を基準としてSi及びLi2SiO3の量がより多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる負極活物質となる。
また、前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。
V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、上記ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成される負極活物質となる。
また、前記負極活物質粒子はメジアン径が1.0μm以上15μm以下であることが好ましい。
メジアン径が1.0μm以上であれば、質量当たりの表面積の増加により電池不可逆容量が増加することを抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。
このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られる。
また、前記炭素材の平均厚さは10nm以上5000nm以下であることが好ましい。
炭素材の平均厚さが10nm以上であれば導電性向上が得られる。また、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池に用いることにより、ケイ素化合物粒子を十分な量確保できるので、電池容量の低下を抑制することができる。
上記の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料を提供する。
このように、負極活物質層を形成する材料として、本発明の負極活物質(ケイ素系負極活物質)とともに炭素系活物質を含むことで、負極活物質層の導電性を向上させることができるとともに、充電に伴う膨張応力を緩和することが可能となる。また、ケイ素負極系活物質を炭素系活物質に混合することで電池容量を増加させることができる。
また、上記目的を達成するために、本発明は、上記の混合負極活物質材料を含み、前記負極活物質と前記炭素系活物質の質量の合計に対する、前記負極活物質の質量の割合が6質量%以上であることを特徴とする非水電解質二次電池用負極を提供する。
上記の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、負極活物質(ケイ素系負極活物質)の質量の割合が6質量%以上であれば、電池容量をより向上させることが可能となる。
また、上記目的を達成するために、本発明は、上記の混合負極活物質材料で形成された負極活物質層と、負極集電体とを有し、前記負極活物質層は前記負極集電体上に形成されており、前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする非水電解質二次電池用負極を提供する。
このように、負極電極を構成する負極集電体が、炭素及び硫黄を上記のような量で含むことで、充電時の負極電極の変形を抑制することができる。
また、上記目的を達成するために、本発明は、上記の負極活物質を含む負極を用いたものであることを特徴とするリチウムイオン二次電池を提供する。
このような負極活物質を含む負極を用いたリチウムイオン二次電池であれば、高容量であるとともに良好なサイクル特性及び初期充放電特性が得られる。
また、上記目的を達成するために、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、前記ケイ素化合物粒子にリチウムを挿入する工程とを含み、負極活物質粒子を作製し、さらに、前記負極活物質粒子の表面に窒化リチウムを生成する工程と、前記表面に窒化リチウムが生成された負極活物質粒子を水を含む溶液で洗浄することで、Li2CO3及びLiOHを前記負極活物質粒子の表面に生成する工程とにより前記Li2CO3の含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下の前記負極活物質粒子を作製し、該作製した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法を提供する。
このように負極活物質を製造することで、リチウムイオン二次電池の負極活物質として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
このとき、前記負極活物質粒子の表面に窒化リチウムを生成する工程は、前記負極活物質粒子とリチウム化合物と窒素とを分散液中で接触させることによって行い、又は、前記負極活物質粒子とLiHとを混合し、加熱することによって行うことが好ましい。
本発明では、このようにして、上記の含有量でLi2CO3及びLiOHを含む負極活物質粒子をより確実に作製できる。
また、上記目的を達成するために、本発明は、上記の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造することを特徴とするリチウムイオン二次電池の製造方法を提供する。
上記のように製造された負極活物質を用いることにより、高容量であるとともに良好なサイクル特性及び初期充放電特性を有するリチウムイオン二次電池を製造することができる。
本発明の負極活物質は、二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、この負極活物質を含む混合負極活物質材料、負極、及びリチウムイオン二次電池においても同様の効果が得られる。また、本発明の負極活物質の製造方法であれば、二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性及びサイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等の初期充放電特性及びサイクル特性を有する負極活物質を提案するには至っていなかった。
そこで、本発明者らは、二次電池に用いた場合、高電池容量となるとともに、サイクル特性及び初回効率が良好となる負極活物質を得るために鋭意検討を重ね、本発明に至った。
本発明の負極活物質は、負極活物質粒子を含む。そして、負極活物質粒子は、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する。このケイ素化合物粒子は、Li2SiO3及びLi4SiO4のうち少なくとも1種以上のリチウムシリケートを含有している。そして、負極活物質粒子は、Li2CO3及びLiOHを表面に含み、Li2CO3の含有量が、負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、LiOHの含有量が、負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下のものである。
このような負極活物質は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO2成分部を予めリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。さらに、負極活物質表面にLi2CO3及びLiOHが存在することで、Liが拡散しやすいため、電子伝導性が向上する。ここで、Li2CO3及びLiOHの含有量がそれぞれ0.01質量%未満であると、Liが拡散する際に媒体とするLiの量が少なすぎるため、電子伝導性が悪化する。また、Li2CO3及びLiOHの含有量がそれぞれ5.00質量%より大きいと、これらのLi化合物が多過ぎるため、電子伝導性が悪化する。これらのLi化合物は負極活物質粒子の表面で膜として存在することができるが、この場合、Li2CO3及びLiOHの含有量がそれぞれ5.00質量%より大きいと膜が厚すぎるということになる。すなわち、Li2CO3及びLiOHの含有量がそれぞれ0.01質量%以上5.00質量%以下であると、良好な電子伝導性が得られるため、充放電に最適な表面状態が得られる。その結果、二次電池の初期効率及びサイクル特性が向上する。
<非水電解質二次電池用負極>
まず、非水電解質二次電池用負極について説明する。図1は本発明の一実施形態における非水電解質二次電池用負極(以下、「負極」とも呼称する)の断面構成を表している。
まず、非水電解質二次電池用負極について説明する。図1は本発明の一実施形態における非水電解質二次電池用負極(以下、「負極」とも呼称する)の断面構成を表している。
[負極の構成]
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。
また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。
[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子はケイ素化合物(SiOx:0.5≦x≦1.6)を含有するケイ素化合物粒子を含む。
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子はケイ素化合物(SiOx:0.5≦x≦1.6)を含有するケイ素化合物粒子を含む。
また、負極活物質層12は、本発明の負極活物質と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
また、本発明の負極は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、負極活物質(ケイ素系負極活物質)の質量の割合が6質量%以上であることが好ましい。本発明の負極活物質と炭素系活物質の質量の合計に対する、本発明の負極活物質の質量の割合が6質量%以上であれば、電池容量を確実に向上させることが可能となる。
また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiOx:0.5≦x≦1.6)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
また、本発明の負極活物質において、ケイ素化合物粒子は、Li2SiO3及びLi4SiO4のうち少なくとも1種以上を含有している。このようなものは、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO2成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。
また、ケイ素化合物粒子のバルク内部にLi4SiO4、Li2SiO3は少なくとも1種以上存在することで電池特性が向上するが、上記2種類のLi化合物を共存させる場合に電池特性がより向上する。なお、これらのリチウムシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)又はXPS(X-ray photoelectron spectroscopy:X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
また、ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。ケイ素化合物粒子におけるケイ素化合物のケイ素結晶性は低いほどよく、特に、Si結晶の存在量が少なければ、電池特性を向上でき、さらに、安定的なLi化合物が生成できる。
また、本発明の負極活物質は、ケイ素化合物粒子において、29Si-MAS-NMRスペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO2領域のピーク強度値Bが、A>Bという関係を満たすことが好ましい。ケイ素化合物粒子において、SiO2成分を基準とした場合にケイ素成分又はLi2SiO3の量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。なお、29Si-MAS-NMRの測定条件は上記と同様でよい。
また、本発明の負極活物質において、負極活物質粒子は、表層部に炭素材を含むことが好ましい。負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質を二次電池の負極活物質として用いた際に、電池特性を向上させることができる。
また、負極活物質粒子の表層部の炭素材の平均厚さは、10nm以上5000nm以下であることが好ましい。炭素材の平均厚さが10nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。
この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。
炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。
また、負極活物質粒子のメジアン径(D50:累積体積が50%となる時の粒子径)が1.0μm以上15μm以下であることが好ましい。メジアン径が上記の範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、粒子が割れにくくなるからである。メジアン径が1.0μm以上であれば、質量当たりの表面積を小さくでき、電池不可逆容量の増加を抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
また、本発明の負極活物質では、負極活物質粒子を純水に負極活物質粒子と純水の質量比が1:20となるように分散させ濾過した濾過液のpHが10~13となるものであることが好ましい。このような負極活物質であれば、負極作製時に用いるスラリー中での安定性が高いものとなるため、二次電池の初期効率及びサイクル特性をより向上させることができる。
またこのとき、負極活物質粒子は、負極活物質粒子を純水に分散させ濾過した濾過液に含まれる、LiとSiのモル比MLi/MSiが、10≧MLi/MSi≧0.5の関係となるものであることが好ましい。MLi/MSi≧0.5であれば、Liが拡散するための媒体となるLiが十分な量存在すると言えるため、電子伝導性がより向上する。また、10≧MLi/MSiであれば、Li化合物の量がより適切であると言えるため、電子伝導性がより向上する。よって、10≧MLi/MSi≧0.5を満たす場合、二次電池の初期効率及びサイクル特性をより向上させることができる負極活物質となる。
上記の濾過液中のLiとSiのそれぞれの物質量は、例えば、誘導結合プラズマ発光分光法(ICP-OES)や誘導結合プラズマ質量分析(ICP-MS)により測定でき、その測定値からモル比MLi/MSiを算出できる。
また、本発明の負極活物質(ケイ素系活物質)は、該ケイ素系活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、ケイ素系活物質にリチウムを挿入するよう電流を流す充電と、ケイ素系活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを対極リチウムを基準とする負極電極の電位Vで微分した微分値dQ/dVと電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、30回以内の充放電で上記ピークが発現する負極活物質であれば、安定したバルクが形成されるものであると判断できる。
また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素材料を混合した後に、有機溶剤や水などに分散させ塗布する方法である。
[負極の製造方法]
負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にリチウムを挿入する。これにより、負極活物質粒子を作製する。また、ケイ素化合物粒子に炭素材を被覆してからケイ素化合物粒子にリチウムを挿入しても良い。
負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にリチウムを挿入する。これにより、負極活物質粒子を作製する。また、ケイ素化合物粒子に炭素材を被覆してからケイ素化合物粒子にリチウムを挿入しても良い。
次に、負極活物質粒子の表面に窒化リチウムを生成する。なお、ケイ素化合物粒子にリチウムを挿入するのと同時に負極活物質粒子の表面に窒化リチウムを生成しても良い。次に、表面に窒化リチウムが生成された負極活物質粒子を、水を含む溶液で洗浄することで、Li2CO3及びLiOHを負極活物質粒子の表面に生成する。以上の工程により、Li2CO3の含有量が、負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、LiOHの含有量が、負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下の負極活物質粒子を作製する。そして、作製した負極活物質粒子を用いて、負極活物質を製造する。
より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。
発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で制御できる。
ここで、ケイ素化合物粒子の表層に炭素材の層を生成しても良い。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。
先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは950℃以下である。分解温度を1200℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、CnHm組成においてn≦3であることが望ましい。n≦3であれは、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。
次に、上記のように作製したケイ素活物質粒子を含む負極活物質粒子に、Liを挿入し、Li2SiO3、Li4SiO4のうち少なくとも1種以上を含有させる。Liの挿入は、酸化還元法により行うことが好ましい。
酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aに酸化珪素粒子を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませても良い。また、この溶液AにN2をバブリングしながら酸化珪素粒子を浸漬しても良い。このようにすることで、酸化珪素粒子にリチウムを挿入するのと同時に、酸化珪素粒子の表面に窒化リチウム(Li3N)を生成することができる。窒化リチウムの生成量は、N2の打ち込み時間、バブリングのタイミング、雰囲気を調整することで制御できる。このときの雰囲気は、Ar又はN2等の不活性雰囲気とすることが好ましい。
リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bに酸化珪素粒子を浸漬することで、酸化珪素粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又はこれらの混合溶媒を使用できる。
さらに、溶液Bに浸漬した後、アルコール系溶媒、カルボン酸系溶媒、水、又はこれらの混合溶媒を含む溶液Cに酸化珪素粒子を浸漬することで、酸化珪素粒子から活性なリチウムをより多く脱離できる。また、溶液Cの代わりに、溶質として分子中にキノイド構造を持つ化合物を含み、溶媒としてエーテル系溶媒、ケトン系溶媒、エステル系溶媒、又はこれらの混合溶媒を含む溶液C’を用いても良い。また、溶液B、C、C’への酸化珪素粒子の浸漬は繰り返し行っても良い。このようにして、リチウムの挿入後、活性なリチウムを脱離すれば、より耐水性の高い負極活物質となる。その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は純水などで洗浄する方法などで洗浄しても良い。
また、熱ドープ法によって、負極活物質粒子にLiを挿入しても良い。熱ドープ法による改質では、例えば、負極活物質粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄してもよい。
なお、熱ドープ法によって改質を行った場合、ケイ素化合物粒子から得られる29Si-MAS-NMRスペクトルは酸化還元法を用いた場合とは異なる。図2に酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例を示す。図2において、-75ppm近辺に与えられるピークがLi2SiO3に由来するピークであり、-80~-100ppmに与えられるピークがSiに由来するピークである。また、-110ppm付近に現れるピークがSiO2に由来するピークである。なお、-80~-100ppmにかけて、Li2SiO3、Li4SiO4以外のLiシリケートのピークを有する場合もある。
また、図3に熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例を示す。図3において、-75ppm近辺に与えられるピークがLi2SiO3に由来するピークであり、-80~-100ppmに与えられるピークがSiに由来するピークである。また、-110ppm付近に現れるピークがSiO2に由来するピークである。なお、-80~-100ppmにかけて、Li2SiO3、Li4SiO4以外のLiシリケートのピークを有する場合もある。なお、XPSスペクトルから、Li4SiO4のピークを確認できる。
また、負極活物質粒子の表面に窒化リチウムを生成し、その後、表面に窒化リチウムが生成された負極活物質粒子を、水を含む溶液で洗浄することで、Li2CO3及びLiOHを負極活物質粒子の表面に生成する。負極活物質粒子の表面に窒化リチウムを生成することは、Li挿入工程と別に行うこともできるが、同時に行うこともできる。ここで、負極活物質粒子の表面に窒化リチウムを生成する工程は、負極活物質粒子とリチウム化合物と窒素とを分散液中で接触させることによって行うことができるし、又は、負極活物質粒子とLiHとを混合し、加熱することによって行うこともできる。
例えば、以下の手順により窒化リチウムの生成、Li2CO3及びLiOHの生成を行っても良い。まず、窒素を含む不活性雰囲気中で、LiHと負極活物質粒子を混合する。その後、例えば730℃程度の温度で加熱し、焼成させる。これにより、窒化リチウム(Li3N)を負極活物質粒子の表面に斑に生成できる。また、このとき同時に、負極活物質粒子に含まれるケイ素化合物粒子へのリチウムの挿入も起きる。このような処理によって、負極活物質粒子の表面に窒化リチウムを生成する工程とケイ素化合物粒子にリチウムを挿入する工程とを同時に行っても良い。なお、窒素を含む不活性雰囲気としては、例えば、ArとN2の混合気体を用いることができる。続いて、負極活物質粒子に対して、例えば4倍当量の水により負極活物質粒子の洗浄を行うことで、負極活物質粒子の表面に炭酸リチウムと水酸化リチウムが生成する。
以上の工程により、Li2CO3の含有量が、負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、LiOHの含有量が、負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下の負極活物質粒子を作製することが可能である。
負極活物質粒子の表面に残存するLiOH及びLi2CO3のそれぞれの含有量は、中和滴定により以下のように算出することができる。例えば、まず、負極活物質粒子及び純水を1:20の質量比でビーカーに計り取り混合し、マグネットスタラーを用いて負極活物質粒子を5分間分散させる。次いで、該分散液をろ過する。次いで、得られた濾過液5mlを0.1N塩酸で滴定して、第1終点(pH7.5;a(ml))、第2終点(pH5.0;b(ml))を求め、下記計算式でLiOH及びLi2CO3のそれぞれの含有量を算出できる。ここで、中和滴定曲線の一例を図4に示す。
(Li2CO3含有量)={純水量(g)/濾過液量(g)}×2×(b/1000)×(塩酸滴定液の規定度×ファクター)×(1/2)×(Li2CO3の分子量)×(100(%)/試料量(g))
(LiOH含有量)={純水量(g)/濾過液量(g)}×((a-b)/1000)×(塩酸滴定液の規定度×ファクター)×(LiOHの分子量)×(100(%)/試料量(g))
(Li2CO3含有量)={純水量(g)/濾過液量(g)}×2×(b/1000)×(塩酸滴定液の規定度×ファクター)×(1/2)×(Li2CO3の分子量)×(100(%)/試料量(g))
(LiOH含有量)={純水量(g)/濾過液量(g)}×((a-b)/1000)×(塩酸滴定液の規定度×ファクター)×(LiOHの分子量)×(100(%)/試料量(g))
以上のように作製した負極活物質粒子を用いて、負極活物質を製造する。そして、負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。
<リチウムイオン二次電池>
次に、本発明のリチウムイオン二次電池について説明する。本発明のリチウムイオン二次電池は、本発明の負極活物質を含む負極を用いたものである。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
次に、本発明のリチウムイオン二次電池について説明する。本発明のリチウムイオン二次電池は、本発明の負極活物質を含む負極を用いたものである。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
[ラミネートフィルム型のリチウムイオン二次電池の構成]
図5に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
図5に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
正負極リードは、例えば、外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。
外装部材25は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LixM1O2あるいはLiyM2PO4で表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnuPO4(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。
[負極]
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などが挙げられる。
電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造する。
本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造する。
最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。
次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける(図5参照)。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体21を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池20を製造することができる。
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1-1)
以下の手順により、図5に示したラミネートフィルム型のリチウムイオン二次電池20を作製した。
以下の手順により、図5に示したラミネートフィルム型のリチウムイオン二次電池20を作製した。
最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
次に負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOxのxの値は0.5であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。
続いて、ケイ素化合物粒子に酸化還元法によりリチウムを挿入し改質した。まず、ケイ素化合物粒子を、リチウム片と、直鎖ポリフェニレン化合物であるビフェニルとをテトラヒドロフラン(以下、THFとも呼称する)に溶解させた溶液(溶液A1)に浸漬した。この際に、N2を溶液A1にバブリングした。実施例1-1の溶液A1は、THF溶媒にビフェニルを1mol/Lの濃度で溶解させた後に、このTHFとビフェニルの混合液に対して10質量%の質量分のリチウム片を加えることで作製した。また、ケイ素化合物粒子を浸漬する際の溶液の温度は20℃で、浸漬時間は10時間とした。その後、ケイ素化合物粒子を濾取した。以上の処理により、ケイ素化合物粒子にリチウムを挿入した。
次に、THFにナフタレンを溶解させた溶液(溶液B)に、リチウム挿入後のケイ素化合物粒子を浸漬した。実施例1-1の溶液Bは、THF溶媒にナフタレンを2mol/Lの濃度で溶解させて作製した。また、ケイ素化合物粒子を浸漬する際の溶液の温度は20℃、浸漬時間は20時間とした。その後、ケイ素化合物粒子を濾取した。
次に、溶液Bに接触させた後のケイ素化合物粒子を、THFにp-ベンゾキノンを1mol/Lの濃度で溶解させた溶液(溶液C)に浸漬した。浸漬時間は2時間とした。その後、ケイ素化合物粒子を濾取した。
次に、ケイ素化合物粒子を洗浄処理し、洗浄処理後のケイ素化合物粒子を減圧下で乾燥処理した。このようにして、表面に窒化リチウムを含む負極活物質粒子を得た。
次に、この負極活物質粒子を、水を含む溶液で洗浄することで、Li2CO3及びLiOHを負極活物質粒子の表面に生成した。具体的には、エタノールと水の混合溶液で負極活物質粒子を洗浄して、負極活物質粒子の表面に炭酸リチウムと水酸化リチウムを生成した。
ここで作製した負極活物質粒子の一部を取り出し、負極活物質粒子の表面に存在する炭酸リチウムと水酸化リチウムの量を測定した。より具体的には、まず取り出した負極活物質粒子と純水を質量比1:20でビーカーに計り取り混合し、マグネットスタラーを用いて負極活物質粒子を5分間分散させた。次いで、該分散液をろ過した。このとき、濾過液のpHは12.2であった。また、濾過液に含まれるLiとSiのモル比MLi/MSiが6.1であった。次いで、濾過液5mlを0.1N塩酸で滴定して、第1終点(pH7.5)、第2終点(pH5.0)を求め、LiOH及びLi2CO3のそれぞれの含有量を算出した。その結果、Li2CO3の含有量が、負極活物質粒子の質量に対して0.45質量%であり、LiOHの含有量が、負極活物質粒子の質量に対して0.65質量%であった。
次に、この負極活物質粒子と、炭素系活物質を1:9の質量比で配合し、混合負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。
次に、作製した混合負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。
また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cm2であった。
次に、溶媒(4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF6)を溶解させて電解液を調製した。この場合には、溶媒の組成を堆積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。
以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。
サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。
初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。
(実施例1-2~実施例1-3、比較例1-1、1-2)
ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1-1~1-3、比較例1-1、1-2における、SiOxで表されるケイ素化合物のxの値を表1中に示した。
ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1-1~1-3、比較例1-1、1-2における、SiOxで表されるケイ素化合物のxの値を表1中に示した。
このとき、実施例1-1~1-3及び比較例1-1、1-2の負極活物質粒子は以下のような性質を有していた。負極活物質粒子のメジアン径は4μmであった。ケイ素化合物粒子の内部には、Li2SiO3及びLi4SiO4が含まれていた。また、ケイ素化合物は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が2.257°であり、そのSi(111)結晶面に起因する結晶子サイズは3.77nmであった。
また、上記の全ての実施例及び比較例において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域のピークが発現した。また、上記全ての実施例、比較例で、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、-96~-150ppmで与えられるSiO2領域のピーク強度値Bとの関係がA>Bであった。
また、負極活物質粒子に含まれる炭素材の平均厚さは100nmであった。
また、上記のように作製した負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を評価した。より具体的には、まず、対極Liで0Vまで定電流定電圧充電を行い、電流密度が0.05mA/cm2に達した時点で充電を終止させた。その後、1.2Vまで定電流放電を行った。この時の電流密度は0.2mA/cm2であった。この充放電を30回繰り返し、各充放電において得られたデータから、縦軸を容量の変化率(dQ/dV)、横軸を電圧(V)としてグラフを描き、Vが0.4~0.55(V)の範囲にピークが得られるかを確認した。その結果、SiOxのxが0.5以下である実施例1-1及び比較例1では、上記ピークが得られなかった。その他の実施例、比較例では、30回以内の充放電において上記ピークは得られ、上記ピークが初めて発現した充放電から30回目の充放電まで、全ての充放電において上記ピークが得られた。
実施例1-1~1-3、比較例1-1、1-2の評価結果を表1に示す。
表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲外の場合、電池特性が悪化した。例えば、比較例1-1に示すように、酸素が十分にない場合(x=0.3)、初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例1-2に示すように、酸素量が多い場合(x=1.8)は導電性の低下が生じ実質的にケイ素酸化物の容量が発現しないため、評価を停止した。
(実施例2-1、実施例2-2)
ケイ素化合物粒子の内部に含ませるリチウムシリケートの種類を表2のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。酸化還元法では溶液への浸漬時間と撹拌条件を調整することで、負極活物質粒子中のリチウムシリケートの種類を調整した。
ケイ素化合物粒子の内部に含ませるリチウムシリケートの種類を表2のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。酸化還元法では溶液への浸漬時間と撹拌条件を調整することで、負極活物質粒子中のリチウムシリケートの種類を調整した。
(比較例2-1)
ケイ素化合物粒子にリチウムの挿入を行わなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
ケイ素化合物粒子にリチウムの挿入を行わなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
実施例2-1、実施例2-2、比較例2-1の結果を表2に示す。
ケイ素化合物がLi2SiO3、Li4SiO4のような安定したリチウムシリケートを含むことで、容量維持率、初期効率が向上した。特に、Li2SiO3とLi4SiO4の両方のリチウムシリケートを含む場合に、容量維持率、初期効率がより向上した。一方で、改質を行わず、ケイ素化合物にリチウムを含ませなかった比較例2-1では容量維持率、初期効率が低下した。
(実施例3-1~3-4)
負極活物質粒子の質量に対するLi2CO3の含有量及び負極活物質粒子の質量に対するLiOHの含有量を表3のように変えたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。負極活物質粒子の質量に対するLi2CO3及びLiOHのそれぞれの含有量は、負極活物質粒子の表面に生成する窒化リチウムの量を調整することで制御した。なお、窒化リチウムの量は、上記溶液A1におけるN2の打ち込み時間、バブリングのタイミング、リチウムドープ時の雰囲気を変えることで調整した。
負極活物質粒子の質量に対するLi2CO3の含有量及び負極活物質粒子の質量に対するLiOHの含有量を表3のように変えたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。負極活物質粒子の質量に対するLi2CO3及びLiOHのそれぞれの含有量は、負極活物質粒子の表面に生成する窒化リチウムの量を調整することで制御した。なお、窒化リチウムの量は、上記溶液A1におけるN2の打ち込み時間、バブリングのタイミング、リチウムドープ時の雰囲気を変えることで調整した。
(実施例3-5~3-8)
負極活物質粒子の改質方法を熱ドープ法に変更し、かつ、負極活物質粒子の質量に対するLi2CO3の含有量及び負極活物質粒子の質量に対するLiOHの含有量を表3のように変えたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。熱ドープ法は以下のように行った。まず、炭素材の被覆後の負極活物質粒子を、Ar及びN2の混合雰囲気下でLiH粉と負極活物質粒子を十分に混ぜ、封止を行い、封止した容器ごと撹拌して均一化した。その後、700℃~750℃の範囲で加熱し改質を行った。また、一部の活性なLiをケイ素化合物から脱離するために、加熱後の負極活物質粒子を十分に冷却し、その後、アルコールで洗浄した。以上の処理により、負極活物質粒子にリチウムを挿入した。この熱ドープの際に、負極活物質粒子の表面には窒化リチウムが生成された。その後、実施例1-2と同様に、この負極活物質粒子を、水を含む溶液で洗浄することでLi2CO3及びLiOHを負極活物質粒子の表面に生成した。
負極活物質粒子の改質方法を熱ドープ法に変更し、かつ、負極活物質粒子の質量に対するLi2CO3の含有量及び負極活物質粒子の質量に対するLiOHの含有量を表3のように変えたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。熱ドープ法は以下のように行った。まず、炭素材の被覆後の負極活物質粒子を、Ar及びN2の混合雰囲気下でLiH粉と負極活物質粒子を十分に混ぜ、封止を行い、封止した容器ごと撹拌して均一化した。その後、700℃~750℃の範囲で加熱し改質を行った。また、一部の活性なLiをケイ素化合物から脱離するために、加熱後の負極活物質粒子を十分に冷却し、その後、アルコールで洗浄した。以上の処理により、負極活物質粒子にリチウムを挿入した。この熱ドープの際に、負極活物質粒子の表面には窒化リチウムが生成された。その後、実施例1-2と同様に、この負極活物質粒子を、水を含む溶液で洗浄することでLi2CO3及びLiOHを負極活物質粒子の表面に生成した。
(比較例3-1)
負極活物質の表面にLi2CO3及びLiOHを生成しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。この場合、負極活物質粒子の改質を行わなかった。
負極活物質の表面にLi2CO3及びLiOHを生成しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。この場合、負極活物質粒子の改質を行わなかった。
(比較例3-2)
表3に示すようにLi2CO3の含有量及びLiOHの含有量をいずれも5.0質量%より大きくしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
表3に示すようにLi2CO3の含有量及びLiOHの含有量をいずれも5.0質量%より大きくしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(比較例3-3、3-4)
負極活物質粒子の改質方法を熱ドープ法に変更し、かつ、Li2CO3の含有量及びLiOHの含有量のいずれかを5.0質量%より大きくしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
負極活物質粒子の改質方法を熱ドープ法に変更し、かつ、Li2CO3の含有量及びLiOHの含有量のいずれかを5.0質量%より大きくしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
さらに、実施例3-1~3-8、比較例3-1~3-4では、各々の負極合剤スラリーの安定性を測定するため、作製した負極合剤スラリーの一部を二次電池の作製用のものとは別に30g取り出し、20℃で保存し、負極合剤スラリー作製後から、5時間後、10時間後、24時間後、48時間後、72時間後、及び1週間後のガス発生状況を確認した。また、実施例1-2で作製した負極合剤スラリーも同様の手順でガス発生状況を確認した。
表3に示すように、Li2CO3の含有量及びLiOHの含有量がいずれも負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下という条件を満たす実施例3-1~3-8では、この条件を満たさない比較例3-1~3-4に比べ、容量維持率及び初期効率が向上した。
また、表3に示すように、pHが10~13の範囲内であれば、pHがこの範囲外の比較例3-3よりも負極合剤スラリーを作製してからガスが発生する迄の時間が長くなり、安定した負極合剤スラリーとなった。なお、比較例3-1では、負極活物質粒子の改質を行っていないため、ガスは発生しなかった。
また、表3に示すように、モル比MLi/MSiが、10≧MLi/MSi≧0.5の関係を満たす場合、Li2CO3の含有量及びLiOHの含有量が適切な量となるため、初期効率及びサイクル特性がより向上した。
(実施例4-1~4-9)
ケイ素化合物粒子のSi結晶子の結晶性を表4のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。なお、ケイ素化合物粒子中のSi結晶子の結晶性は、原料の気化温度の変更、又は、ケイ素化合物粒子の生成後の熱処理で制御できる。実施例4-9では半値幅を20°以上と算出しているが、解析ソフトを用いフィッティングした結果であり、実質的にピークは得られていない。よって、実施例4-9のケイ素化合物は、実質的に非晶質であると言える。
ケイ素化合物粒子のSi結晶子の結晶性を表4のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。なお、ケイ素化合物粒子中のSi結晶子の結晶性は、原料の気化温度の変更、又は、ケイ素化合物粒子の生成後の熱処理で制御できる。実施例4-9では半値幅を20°以上と算出しているが、解析ソフトを用いフィッティングした結果であり、実質的にピークは得られていない。よって、実施例4-9のケイ素化合物は、実質的に非晶質であると言える。
特に半値幅が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い容量維持率が得られた。なかでも、ケイ素化合物が非晶質である場合には、最も良い特性が得られた。
(実施例5-1)
ケイ素化合物をSi及びLiシリケート領域の最大ピーク強度値Aと上記SiO2領域に由来するピーク強度値Bとの関係がA<Bのものとしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。この場合、改質時にリチウムの挿入量を減らすことで、Li2SiO3の量を減らし、Li2SiO3に由来するピークの強度Aを小さくした。
ケイ素化合物をSi及びLiシリケート領域の最大ピーク強度値Aと上記SiO2領域に由来するピーク強度値Bとの関係がA<Bのものとしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。この場合、改質時にリチウムの挿入量を減らすことで、Li2SiO3の量を減らし、Li2SiO3に由来するピークの強度Aを小さくした。
表5から分かるように、ピーク強度の関係がA>Bである場合の方が、電池特性が向上した。
(実施例6-1)
上記試験セルにおける30回の充放電で得られたV-dQ/dV曲線において、いずれの充放電でもVが0.40V~0.55Vの範囲にピークが得られなかった負極活物質を用いた以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
上記試験セルにおける30回の充放電で得られたV-dQ/dV曲線において、いずれの充放電でもVが0.40V~0.55Vの範囲にピークが得られなかった負極活物質を用いた以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
放電カーブ形状がより鋭く立ち上がるためには、ケイ素化合物(SiOx)において、ケイ素(Si)と同様の放電挙動を示す必要がある。30回の充放電で上記の範囲にピークが発現しない、ケイ素化合物は比較的緩やかな放電カーブとなるため、二次電池にした際に、若干初期効率が低下する結果となった。ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成され、容量維持率及び初期効率が向上した。
(実施例7-1~7-6)
負極活物質粒子のメジアン径を表7のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
負極活物質粒子のメジアン径を表7のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
負極活物質粒子のメジアン径が0.5μm以上であれば、維持率が向上した。これは、負極活物質粒子の質量当たりの表面積が大すぎず、副反応が起きる面積を小さくできたためと考えられる。一方、メジアン径が15μm以下であれば、充電時に粒子が割れ難く、充放電時に新生面によるSEI(固体電解質界面)が生成し難いため、可逆Liの損失を抑制することができる。また、負極活物質粒子のメジアン径が15μm以下であれば、充電時のケイ素化合物粒子の膨張量が大きくならないため、膨張による負極活物質層の物理的、電気的破壊を防止できる。
(実施例8-1)
ケイ素化合物粒子の表面に炭素材を被覆しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
ケイ素化合物粒子の表面に炭素材を被覆しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(実施例8-2~8-5)
ケイ素化合物粒子の表面に被覆された炭素材の平均厚さを変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
ケイ素化合物粒子の表面に被覆された炭素材の平均厚さを変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
表8からわかるように、炭素材を有する場合、維持率、初期効率が向上する。中でも炭素材の平均厚さが10nm以上で導電性が特に向上するため、容量維持率及び初期効率を向上させることができる。一方、炭素材の平均厚さが5000nm以下であれば、電池設計上、ケイ素化合物粒子の量を十分に確保できるため、電池容量の低下を防止できる。
(実施例9-1)
負極活物質中のケイ素系活物質粒子の質量の割合を変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
負極活物質中のケイ素系活物質粒子の質量の割合を変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
図6に、負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフを示す。図6中のAで示すグラフは、本発明の負極の負極活物質において、ケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。一方、図6中のBで示すグラフは、Liをドープしていないケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している(参考例)。図6から分かるように、ケイ素化合物の割合が6質量%以上となると、電池容量の増加率は従来に比べて大きくなり、体積エネルギー密度が、特に顕著に増加する。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
Claims (16)
- 負極活物質粒子を含む負極活物質であって、
前記負極活物質粒子は、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
前記ケイ素化合物粒子は、Li2SiO3及びLi4SiO4のうち少なくとも1種以上を含有し、
前記負極活物質粒子は、Li2CO3及びLiOHを表面に含み、
前記Li2CO3の含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下のものであることを特徴とする負極活物質。 - 前記負極活物質粒子は、該負極活物質粒子を純水に前記負極活物質粒子と前記純水の質量比が1:20となるように分散させ濾過した濾過液のpHが10~13となるものであることを特徴とする請求項1に記載の負極活物質。
- 前記負極活物質粒子は、該負極活物質粒子を純水に分散させ濾過した濾過液に含まれる、LiとSiのモル比MLi/MSiが、10≧MLi/MSi≧0.5の関係となるものであることを特徴とする請求項1又は請求項2に記載の負極活物質。
- 前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の負極活物質。
- 前記ケイ素化合物粒子において、29Si-MAS-NMR スペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO2領域のピーク強度値Bが、A>Bという関係を満たすものであることを特徴とする請求項1から請求項4のいずれか1項に記載の負極活物質。
- 前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることを特徴とする請求項1から請求項5のいずれか1項に記載の負極活物質。
- 前記負極活物質粒子はメジアン径が1.0μm以上15μm以下であることを特徴とする請求項1から請求項6のいずれか1項に記載の負極活物質。
- 前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項7のいずれか1項に記載の負極活物質。
- 前記炭素材の平均厚さは10nm以上5000nm以下であることを特徴とする請求項8に記載の負極活物質。
- 請求項1から請求項9のいずれか1項に記載の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料。
- 請求項10に記載の混合負極活物質材料を含み、前記負極活物質と前記炭素系活物質の質量の合計に対する、前記負極活物質の質量の割合が6質量%以上であることを特徴とする非水電解質二次電池用負極。
- 請求項10に記載の混合負極活物質材料で形成された負極活物質層と、
負極集電体とを有し、
前記負極活物質層は前記負極集電体上に形成されており、
前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする非水電解質二次電池用負極。 - 負極として、請求項1から請求項9のいずれか1項に記載の負極活物質を含む負極を用いたものであることを特徴とするリチウムイオン二次電池。
- ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、
ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子にリチウムを挿入する工程と
を含み、負極活物質粒子を作製し、
さらに、前記負極活物質粒子の表面に窒化リチウムを生成する工程と、
前記表面に窒化リチウムが生成された負極活物質粒子を水を含む溶液で洗浄することで、Li2CO3及びLiOHを前記負極活物質粒子の表面に生成する工程と
により前記Li2CO3の含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下の前記負極活物質粒子を作製し、
該作製した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法。 - 前記負極活物質粒子の表面に窒化リチウムを生成する工程は、前記負極活物質粒子とリチウム化合物と窒素とを分散液中で接触させることによって行い、又は、前記負極活物質粒子とLiHとを混合し、加熱することによって行うことを特徴とする請求項14に記載の負極活物質の製造方法。
- 請求項14又は請求項15に記載の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造することを特徴とするリチウムイオン二次電池の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17752924.5A EP3404750B1 (en) | 2016-02-15 | 2017-01-27 | Method for producing negative electrode active material |
CN201780011304.XA CN108701824B (zh) | 2016-02-15 | 2017-01-27 | 负极活性物质、混合负极活性物质、二次电池用负极、二次电池、及负极活性物质的制造 |
US16/074,286 US11316147B2 (en) | 2016-02-15 | 2017-01-27 | Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing negative electrode active material |
KR1020187023076A KR20180114035A (ko) | 2016-02-15 | 2017-01-27 | 부극 활물질, 혼합 부극 활물질 재료, 비수전해질 이차 전지용 부극, 리튬 이온 이차 전지 및 부극 활물질의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-026356 | 2016-02-15 | ||
JP2016026356A JP7078346B2 (ja) | 2016-02-15 | 2016-02-15 | 負極活物質及びリチウムイオン二次電池の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017141661A1 true WO2017141661A1 (ja) | 2017-08-24 |
Family
ID=59625836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002851 WO2017141661A1 (ja) | 2016-02-15 | 2017-01-27 | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11316147B2 (ja) |
EP (1) | EP3404750B1 (ja) |
JP (1) | JP7078346B2 (ja) |
KR (1) | KR20180114035A (ja) |
CN (1) | CN108701824B (ja) |
TW (1) | TWI753878B (ja) |
WO (1) | WO2017141661A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020003687A1 (ja) * | 2018-06-25 | 2020-01-02 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112016006923T5 (de) * | 2016-06-03 | 2019-02-14 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Materials für die negative Elektrode einer Batterie, Lithium-Ionen-Batterie und Festkörperbatterie |
CN109612978B (zh) * | 2018-10-30 | 2022-02-25 | 欣旺达电子股份有限公司 | 锂离子电池电极膜片补锂量检测方法 |
EP3902036A4 (en) * | 2018-12-19 | 2022-02-23 | DIC Corporation | SILICON NANOPARTICLES, NON-AQUEOUS RECHARGEABLE BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL COMPRISING SUCH SILICON NANOPARTICLES, AND RECHARGEABLE BATTERY |
CN112310402B (zh) * | 2020-12-24 | 2021-03-26 | 上海瑞浦青创新能源有限公司 | 一种硅复合材料的制备及含其的负极片 |
JP7457671B2 (ja) * | 2021-05-13 | 2024-03-28 | 信越化学工業株式会社 | 負極活物質及びその製造方法 |
EP4268298A1 (en) * | 2021-08-13 | 2023-11-01 | LG Energy Solution, Ltd. | Negative electrode active material, negative electrode including same, secondary battery including same and method for preparing negative electrode active material |
CN113725422B (zh) * | 2021-09-08 | 2023-12-12 | 四川星耀新能源科技有限公司 | 一种硅碳复合负极材料及其制备方法、锂离子电池 |
KR102539805B1 (ko) | 2022-04-01 | 2023-06-08 | 에스케이온 주식회사 | 이차전지용 음극 활물질 및 이의 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059213A (ja) * | 2005-08-24 | 2007-03-08 | Toshiba Corp | 非水電解質電池および負極活物質 |
WO2014049992A1 (ja) * | 2012-09-27 | 2014-04-03 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池 |
JP2014532267A (ja) * | 2011-10-24 | 2014-12-04 | エルジー・ケム・リミテッド | 負極活物質の製造方法、その負極活物質、及びそれを備えるリチウム二次電池 |
JP2015002036A (ja) * | 2013-06-14 | 2015-01-05 | 信越化学工業株式会社 | 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法 |
JP2015149224A (ja) * | 2014-02-07 | 2015-08-20 | 信越化学工業株式会社 | 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池 |
JP2015198038A (ja) * | 2014-04-02 | 2015-11-09 | 信越化学工業株式会社 | 非水電解質二次電池用負極及び非水電解質二次電池 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2997741B2 (ja) | 1992-07-29 | 2000-01-11 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
DE4241276A1 (de) * | 1992-12-08 | 1994-06-09 | Hambitzer Guenther Dr Rer Nat | Verfahren zum Herstellen einer Elektrode für elektrochemische Zellen, Elektrode und wiederaufladbares Element auf Basis einer solchen Elektrode |
JPH1173966A (ja) | 1997-07-01 | 1999-03-16 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池およびその正極活物質の製造法 |
JP2001185127A (ja) | 1999-12-24 | 2001-07-06 | Fdk Corp | リチウム2次電池 |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP4367311B2 (ja) | 2004-10-18 | 2009-11-18 | ソニー株式会社 | 電池 |
JP4994634B2 (ja) | 2004-11-11 | 2012-08-08 | パナソニック株式会社 | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
JP4911990B2 (ja) | 2006-02-27 | 2012-04-04 | 三洋電機株式会社 | リチウム二次電池用負極及びその製造方法並びにリチウム二次電池 |
JP2008177346A (ja) | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP5108355B2 (ja) | 2007-03-30 | 2012-12-26 | パナソニック株式会社 | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
KR100913177B1 (ko) | 2007-09-17 | 2009-08-19 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질 및 이의 제조 방법 |
JP5196149B2 (ja) | 2008-02-07 | 2013-05-15 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP5555978B2 (ja) | 2008-02-28 | 2014-07-23 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池 |
JP5329858B2 (ja) | 2008-07-10 | 2013-10-30 | 株式会社東芝 | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
JP5666378B2 (ja) * | 2010-05-24 | 2015-02-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池用負極活物質並びに非水電解質二次電池用負極材、非水電解質二次電池用負極、非水電解質二次電池 |
JP6203053B2 (ja) * | 2010-11-25 | 2017-09-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 遷移金属複合酸化物前駆体の製造方法 |
CN107611347A (zh) | 2013-08-21 | 2018-01-19 | 信越化学工业株式会社 | 负极活性物质及其材料及其制造方法、负极电极、锂离子二次电池及其制造方法 |
JP5870129B2 (ja) * | 2014-02-12 | 2016-02-24 | 株式会社大阪チタニウムテクノロジーズ | リチウムイオン二次電池の負極用粉末、およびその製造方法 |
CN107293701A (zh) * | 2016-03-31 | 2017-10-24 | 比亚迪股份有限公司 | 一种锂离子电池负极活性材料及其制备方法、负极和包含该负极的锂离子电池 |
US10256459B1 (en) * | 2017-09-18 | 2019-04-09 | Nanotek Instruments, Inc. | Surface-stabilized and prelithiated anode active materials for lithium batteries and production method |
US10673063B2 (en) * | 2017-09-21 | 2020-06-02 | Global Graphene Group, Inc. | Process for prelithiating an anode active material for a lithium battery |
-
2016
- 2016-02-15 JP JP2016026356A patent/JP7078346B2/ja active Active
-
2017
- 2017-01-27 CN CN201780011304.XA patent/CN108701824B/zh active Active
- 2017-01-27 US US16/074,286 patent/US11316147B2/en active Active
- 2017-01-27 WO PCT/JP2017/002851 patent/WO2017141661A1/ja active Application Filing
- 2017-01-27 KR KR1020187023076A patent/KR20180114035A/ko not_active Application Discontinuation
- 2017-01-27 EP EP17752924.5A patent/EP3404750B1/en active Active
- 2017-02-08 TW TW106104015A patent/TWI753878B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059213A (ja) * | 2005-08-24 | 2007-03-08 | Toshiba Corp | 非水電解質電池および負極活物質 |
JP2014532267A (ja) * | 2011-10-24 | 2014-12-04 | エルジー・ケム・リミテッド | 負極活物質の製造方法、その負極活物質、及びそれを備えるリチウム二次電池 |
WO2014049992A1 (ja) * | 2012-09-27 | 2014-04-03 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池 |
JP2015002036A (ja) * | 2013-06-14 | 2015-01-05 | 信越化学工業株式会社 | 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法 |
JP2015149224A (ja) * | 2014-02-07 | 2015-08-20 | 信越化学工業株式会社 | 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池 |
JP2015198038A (ja) * | 2014-04-02 | 2015-11-09 | 信越化学工業株式会社 | 非水電解質二次電池用負極及び非水電解質二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3404750A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020003687A1 (ja) * | 2018-06-25 | 2020-01-02 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN108701824B (zh) | 2022-03-11 |
US20210193990A1 (en) | 2021-06-24 |
CN108701824A (zh) | 2018-10-23 |
US11316147B2 (en) | 2022-04-26 |
KR20180114035A (ko) | 2018-10-17 |
JP7078346B2 (ja) | 2022-05-31 |
EP3404750A4 (en) | 2019-06-26 |
EP3404750B1 (en) | 2024-03-06 |
TWI753878B (zh) | 2022-02-01 |
EP3404750A1 (en) | 2018-11-21 |
JP2017147057A (ja) | 2017-08-24 |
TW201742299A (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7265668B2 (ja) | リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム | |
JP6592603B2 (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
JP6535581B2 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池 | |
JP6445956B2 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池 | |
WO2017141661A1 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法 | |
WO2017145853A1 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 | |
JP6422847B2 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 | |
US11005095B2 (en) | Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material | |
JP6507106B2 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 | |
JP6460960B2 (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 | |
KR102235909B1 (ko) | 부극 활물질, 혼합 부극 활물질 재료 및 부극 활물질의 제조 방법 | |
WO2017183286A1 (ja) | 負極活物質、混合負極活物質材料、負極活物質の製造方法 | |
JP2018049811A (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
JP2017199657A (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
JP2017188319A (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
WO2018051710A1 (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
JP2017147058A (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法 | |
JP2017147055A (ja) | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 | |
JP6746526B2 (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17752924 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017752924 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017752924 Country of ref document: EP Effective date: 20180814 |