Nothing Special   »   [go: up one dir, main page]

WO2017038607A1 - カンプトテシン類高分子誘導体を含有する医薬組成物 - Google Patents

カンプトテシン類高分子誘導体を含有する医薬組成物 Download PDF

Info

Publication number
WO2017038607A1
WO2017038607A1 PCT/JP2016/074762 JP2016074762W WO2017038607A1 WO 2017038607 A1 WO2017038607 A1 WO 2017038607A1 JP 2016074762 W JP2016074762 W JP 2016074762W WO 2017038607 A1 WO2017038607 A1 WO 2017038607A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pharmaceutical preparation
camptothecin derivative
block copolymer
glutamic acid
Prior art date
Application number
PCT/JP2016/074762
Other languages
English (en)
French (fr)
Inventor
青木 進
眞也 藤田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to EP16841639.4A priority Critical patent/EP3345654A4/en
Priority to US15/752,923 priority patent/US10543281B2/en
Priority to AU2016314090A priority patent/AU2016314090A1/en
Priority to RU2018102756A priority patent/RU2726415C2/ru
Priority to CN201680048457.7A priority patent/CN107921040A/zh
Priority to KR1020187001777A priority patent/KR20180039628A/ko
Priority to CA2995053A priority patent/CA2995053A1/en
Priority to JP2017537793A priority patent/JP6735759B2/ja
Publication of WO2017038607A1 publication Critical patent/WO2017038607A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • A61K31/787Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a pharmaceutical preparation composition having improved preparation stability of a polymerized camptothecin derivative in which a camptothecin derivative is bound to a polymer carrier.
  • the polymerized camptothecin derivative has the property of forming nanoparticles by associating with a plurality of the molecules in an aqueous solution.
  • the technology relates to a pharmaceutical formulation excellent in storage stability in which nanoparticle-forming properties are maintained over a long period of time.
  • a pharmacologically active compound is allowed to act on an appropriate site in a living body at an appropriate concentration and time.
  • a cell-killing antitumor agent when a cell-killing antitumor agent is systemically administered by intravenous administration or the like, it is widely distributed throughout the body and exhibits cell growth inhibitory action.
  • the pharmacological activity is exhibited without distinction between cancer cells and normal cells, it is said that the effect on normal cells causes serious side effects. Therefore, a technique for delivering an antitumor agent to a tumor site is important for reducing side effects. Therefore, there is a need for a pharmacokinetic control method for selectively delivering an antitumor agent to tumor tissue and causing it to act at an appropriate drug concentration and drug sensitization time.
  • a method for controlling pharmacokinetics a method utilizing pharmacokinetic properties based on molecular weight is known. That is, when a biocompatible polymer substance is administered in blood, renal excretion is suppressed and the blood half-life is maintained long. Furthermore, since the tumor tissue has a high tissue permeability of the polymer substance and its recovery mechanism is not sufficiently constructed, the polymer substance can be relatively distributed and accumulated in the tumor tissue at a high concentration. Are known. Therefore, development of a polymerized antitumor agent in which a biocompatible polymer substance is used as a polymer carrier and an antitumor agent is bound to the polymer carrier is underway.
  • Patent Document 1 discloses a pharmaceutical product in which 7-ethyl-10-hydroxycamptothecin is bound to the block copolymer.
  • Patent Document 2 block copolymer conjugates of cytidine antitumor agents
  • Patent Document 3 block copolymer conjugates of combretastatin A4
  • Patent Document 4 block copolymers of HSP90 inhibitors A coalesced conjugate
  • block copolymer conjugates of antitumor agents are polymerized antitumor agents in which the hydroxyl group of the antitumor agent and the side chain carboxylic acid of the block copolymer are combined by an ester bond.
  • prodrugs that exhibit an antitumor activity effect when administered in vivo by releasing the antitumor agent by cleaving the ester bond at a constant rate.
  • the antitumor agent binding region is associated with the hydrophobic interaction in an aqueous solution.
  • the associative aggregate by this polymerized antitumor agent can be detected by light scattering measurement using laser light or the like, and the physical properties of the associative aggregate can be measured by the value of the scattered light intensity. That is, the physical properties of the associative aggregate can be defined using the scattered light intensity as a measurement value.
  • These polymerized antitumor agents having these associative properties behave as nanoparticles generated based on associative properties in vivo, exhibit the pharmacokinetics as described above, and are distributed at a high concentration in tumor tissues. By releasing the antitumor agent, a high antitumor effect is exhibited. Therefore, in these polymerized antitumor agents, the associative property of forming nanoparticles is an important factor for exerting the performance.
  • the drug-polymer-bonded drug as described above is a drug that aims at high pharmacological activity and reduction of side effects by pharmacokinetics based on the molecular weight of the polymer carrier and releasing the bonded drug slowly as an active substance. .
  • a drug-polymer-bonded drug is required to be a preparation excellent in storage stability in which the molecular weight of the polymer carrier is small when stored as a preparation, that is, low molecular weight is suppressed.
  • Patent Documents 5 and 6 include a conjugate of a polysaccharide having a carboxyl group and a camptothecin derivative, a sugar or a sugar alcohol, and a pH adjuster, as preparations in consideration of storage stability. It discloses that the pharmaceutical preparation suppresses the molecular weight change of the polymer carrier and the release of the camptothecin derivative.
  • the drug-polymer-bonded pharmaceuticals described in Patent Documents 5 and 6 are considered not to form a strong association, and the molecular weight of the polymer carrier is considered to be a performance exerting factor.
  • the polymerized camptothecin derivative has an associative property, and an associative aggregate is formed with a plurality of the polymerized camptothecin derivatives in an aqueous solution to form nanoparticles, which is an important factor in performance.
  • the present inventor uses a saccharide as an additive in a polymerized camptothecin derivative comprising a block copolymer in which a polyglutamic acid segment containing a glutamic acid unit having a polyethylene glycol segment and a camptothecin derivative bound to each other, thereby forming an aggregated aggregate
  • a saccharide as an additive in a polymerized camptothecin derivative comprising a block copolymer in which a polyglutamic acid segment containing a glutamic acid unit having a polyethylene glycol segment and a camptothecin derivative bound to each other, thereby forming an aggregated aggregate
  • the inventors have found that pharmaceutical preparations with controlled nanoparticle formation and excellent storage stability can be obtained, and the present invention has been completed. That is, this application makes the following inventions a summary.
  • a pharmaceutical preparation comprising a block copolymer in which a polyethylene glycol segment and a polyglutamic acid segment containing a glutamic acid unit to which a camptothecin derivative is bound and a saccharide are linked, and a saccharide,
  • the block copolymer has the general formula (1) [Wherein R 1 represents a hydrogen atom or an optionally substituted carbon number (C1-C6) alkyl group, A represents a carbon number (C1-C6) alkylene group, and R 2 represents a hydrogen atom.
  • R 3 represents a hydroxyl group and / or —N (R 6 ) CONH (R 7 ), and R 6 and R 7 may be the same or different and may be substituted with a tertiary amino group (C1 to C8) represents an alkyl group
  • R 4 is selected from the group consisting of a hydrogen atom, an optionally substituted (C1 to C6) alkyl group, and an optionally substituted silyl group.
  • the polyglutamic acid segment is a polyglutamic acid segment in which a glutamic acid unit to which a camptothecin derivative is bound and a glutamic acid unit to which an R 3 group is bound are independently and randomly arranged. Segment structure.
  • the pharmaceutical preparation is a physical property that forms an aggregate of a plurality of the block copolymers in an aqueous solution, and the pharmaceutical preparation was stored for 4 weeks at 40 ° C. under light shielding. Later, a pharmaceutical preparation in which the aggregated light intensity change rate of the pharmaceutical preparation is 20% or less.
  • a block copolymer in which a polyglutamic acid segment including a glutamic acid unit in which a polyethylene glycol segment and a camptothecin derivative are bonded is linked to the polyglutamic acid segment to which a relatively hydrophobic camptothecin derivative is bonded in an aqueous solution. Based on hydrophobic interaction, it exhibits associative properties and forms nanoparticles that are associative aggregates of a plurality of the block copolymers. This is administered to a living body, and the block copolymer is pharmacokinetically as the associative aggregate. The camptothecin derivative bound thereto is released at a constant rate to exert pharmacological activity. It is a medicinal product.
  • the physical properties of the block copolymer, which is a polymerized camptothecin derivative, formed into nanoparticles by the formation of associative aggregates are important factors for performance.
  • the associative aggregate can be evaluated for aggregate formation by measuring scattered light intensity using laser light.
  • the block copolymer has a measured value of several thousand to several hundred thousand cps as a scattered light intensity value, and is recognized as an associative aggregate.
  • the present invention provides a pharmaceutical preparation that uses the intensity of scattered light from a laser beam as an indicator of associative aggregate-forming property and has little change in association-forming performance.
  • the present invention provides a highly stable pharmaceutical formulation in which the nanoparticle formation property, which is an important factor in performance, is controlled and stably maintained under storage of the formulation, in the pharmaceutical formulation containing the polymerized camptothecin derivative. It can be prepared.
  • the present invention is a pharmaceutical preparation containing the block copolymer and a saccharide, but when the preparation is made into an aqueous solution according to the acidity of the block copolymer, the type of saccharide used, and the content of each.
  • the pH of the liquid may fluctuate.
  • the pH of the aqueous solution of the pharmaceutical preparation is preferably in the range of 3.0 to 6.0.
  • the type and dose of the block copolymer and / or saccharide may be adjusted as appropriate, and in some cases, a pH adjuster may be used.
  • the saccharide is one or more sugars and sugar alcohols selected from the group consisting of maltose, glucose, lactose, fructose, trehalose, sucrose, mannitol, sorbitol, inositol, xylitol, and magnesium gluconate.
  • the pharmaceutical preparation according to any one of [3].
  • the block copolymer in which a polyglutamic acid segment containing a glutamic acid unit to which a polyethylene glycol segment and a camptothecin derivative are bound according to the present invention is linked is a performance in which nanoparticle formation by an associated aggregate is important in exerting a medicinal effect.
  • the pharmaceutical preparation of the present invention can provide a pharmaceutical preparation having excellent storage stability with respect to its association performance in a pharmaceutical preparation comprising the block copolymer that forms an association as an active ingredient. That is, a pharmaceutical preparation that maintains the desired association performance under storage of the preparation, can be used as a desired camptothecin derivative-bound associative nanoparticle former, and is guaranteed to be effective as a pharmaceutical product. Can be provided.
  • the present invention provides a block copolymer in which long-term stability is ensured as a pharmaceutical product of a block copolymer in which a polyethylene glycol segment and a polyglutamic acid segment containing a glutamic acid unit bound to a camptothecin derivative are linked.
  • a saccharide as an additive, after the pharmaceutical preparation was stored at 40 ° C. for 4 weeks under light shielding, the formation rate of the association of the pharmaceutical preparation was small, and the formation of the association was stably maintained.
  • a pharmaceutical preparation containing the block copolymer could be prepared. The present invention is described in detail below.
  • the present invention relates to a block copolymer in which a polyglutamic acid segment containing a glutamic acid unit having a polyethylene glycol segment and a camptothecin derivative bound to each other is linked, and the following general formula (1) [Wherein R 1 represents a hydrogen atom or an optionally substituted carbon number (C1-C6) alkyl group, A represents a carbon number (C1-C6) alkylene group, and R 2 represents a hydrogen atom.
  • R 3 represents a hydroxyl group and / or N (R 6 ) CONH (R 7 ), and the R 6 and the R 7 may be the same or different and may be substituted with a tertiary amino group ( C1-C8) represents an alkyl group
  • R 4 is selected from the group consisting of a hydrogen atom, an optionally substituted carbon number (C1-C6) alkyl group, and an optionally substituted silyl group.
  • R 5 is not a hydrogen atom or a substituent
  • the polyglutamic acid segment is a polyglutamic acid segment in which a glutamic acid unit to which a camptothecin derivative is bound and a glutamic acid unit to which an R 3 group is bound are independently and randomly arranged, and the proportion of e is 0 to 99%. Structure. ] Is used.
  • the block copolymer is a block copolymer in which a polyethylene glycol segment and a polyglutamic acid segment containing a glutamic acid unit in which a camptothecin derivative is ester-bonded to a side chain are linked via an appropriate linking group.
  • the carbon number (C1 to C6) alkyl group optionally having substituent (s) in R 1 is a linear, branched or cyclic carbon number (C1 to C6) optionally having substituent (s).
  • An alkyl group is mentioned. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, n-propyl group, neo-pentyl group, cyclopentyl group, n-hexyl group, Examples include a cyclohexyl group.
  • substituents which may have include mercapto group, hydroxyl group, halogen atom, nitro group, cyano group, carbocyclic or heterocyclic aryl group, alkylthio group, arylthio group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl Group, arylsulfonyl group, sulfamoyl group, alkoxy group, aryloxy group, acyloxy group, alkoxycarbonyloxy group, carbamoyloxy group, substituted or unsubstituted amino group, acylamino group, alkoxycarbonylamino group, ureido group, sulfonylamino group, Examples thereof include a sulfamoylamino group, a formyl group, an acyl group, a carboxy group, an alkoxycarbonyl group, a carbamoyl group, and a si
  • the substitution position on the aromatic ring may be the ortho position, the meta position, or the para position.
  • An amino group, a dialkylamino group, an alkoxy group, a carboxyl group, and a formyl group are preferred.
  • R 1 is preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, benzyl group, 2,2-dimethoxyethyl group, 2,2 -Diethoxyethyl group and 2-formylethyl group can be mentioned.
  • An unsubstituted linear, branched or cyclic carbon number (C1-C4) alkyl group is preferred.
  • a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group and the like are prefer
  • the polyethylene glycol segment preferably has a molecular weight of 2 kilodaltons to 20 kilodaltons, more preferably 4 kilodaltons to 15 kilodaltons. That is, t in the general formula (1) which is the number of unit repeating structures of an ethyleneoxy group; (—OCH 2 CH 2 ) group is an integer of 45 to 450. Preferably, t is an integer from 90 to 340.
  • the molecular weight of the polyethylene glycol segment is the peak top molecular weight determined by the GPC method using a polyethylene glycol standard product.
  • A is an alkylene group having a carbon number (C1 to C6).
  • a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and the like can be given.
  • preferred is an ethylene group or trimethylene group, and particularly preferred is a trimethylene group.
  • the polyglutamic acid segment of the polymer compound of the present invention represented by the general formula (1) has a structure in which glutamic acid units are polymerized in an ⁇ -amide bond type.
  • the amino acid polymerization structure may partially include a glutamic acid unit polymerized in a ⁇ -amide bond type.
  • each glutamic acid unit may be L-type or D-type, or they may be mixed.
  • the total number of glutamic acid units in the general formula (1) is represented by d + e and is an integer of 6 to 60.
  • d + e is 8-40.
  • the average molecular weight of the polyglutamic acid segment depends on the structure of the camptothecin derivative to be bound and the R 3 group, which will be described later, and the amount of the linking group, but is 0.6 kilodalton to 15 kilodalton, preferably 0.8 kilodalton to 10 kilodaltons.
  • the total number of glutamic acid units in the polyglutamic acid segment can be determined by a method for calculating the number of glutamic acid units by 1 H-NMR, an amino acid analysis method, an acid-base titration method for a side chain carboxy group, or the like. It is preferable to employ the number of glutamic acid units determined by acid-base titration of the side chain carboxy group using the camptothecin derivative and the polyglutamic acid segment before the R 3 group is bonded to the side chain.
  • the carbon number (C1-C6) acyl group which may have a substituent in R 2 is a linear, branched or cyclic carbon number (C1-C6) acyl which may have a substituent.
  • Groups. Examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group and the like.
  • substituent a hydroxyl group, a halogen atom, an amino group, an alkylamino group, a dialkylamino group, an alkoxy group, an aryl group, or the like may be provided.
  • formyl group acetyl group, trichloroacetyl group, trifluoroacetyl group, propionyl group, pivaloyl group, benzylcarbonyl group, phenethylcarbonyl group, and the like can be mentioned.
  • a linear, branched or cyclic (C1-C4) acyl group which may have a substituent is preferable, and an acetyl group, a trichloroacetyl group and a trifluoroacetyl group are preferable.
  • the carbon number (C1-C6) which may have a substituent in R 2 (C1-C6)
  • the alkoxycarbonyl group may have a linear, branched or cyclic carbon number (C1-C6) which may have a substituent.
  • An alkoxycarbonyl group is mentioned.
  • a hydroxyl group, a halogen atom, an amino group, an alkylamino group, a dialkylamino group, an alkoxy group, an aryl group, or the like may be provided.
  • Preferable examples include methoxycarbonyl group, ethoxycarbonyl group, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group and the like.
  • R 2 is preferably a linear, branched or cyclic (C1-C4) acyl group which may have a hydrogen atom or a substituent.
  • R 2 is particularly preferably a hydrogen atom, an acetyl group, a trichloroacetyl group, or a trifluoroacetyl group.
  • R 3 is a hydroxyl group and / or —N (R 6 ) CONH (R 7 ). That is, the glutamic acid unit whose side chain carboxy group is R 3 is a glutamic acid unit whose side chain is unmodified and / or a glutamic acid unit in which a urea derivative is bound to the side chain.
  • R 6 and R 7 may be the same, different, or a linear, branched, or cyclic (C1-C8) alkyl group that may be substituted with a tertiary amino group.
  • the C 6 -C 8 alkyl group in R 6 and R 7 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, a cyclopropyl group, a cyclohexyl group, An n-octyl group and the like can be mentioned.
  • Examples of the linear, branched or cyclic (C1-C8) alkyl group optionally substituted with a tertiary amino group include a 2-dimethylaminoethyl group, a 3-dimethylaminopropyl group, and the like. it can.
  • R 6 and R 7 are preferably an ethyl group, an isopropyl group, a cyclohexyl group, and a 3-dimethylaminopropyl group. More preferably, when R 6 and R 7 are both isopropyl groups, R 6 and R 7 are both cyclohexyl groups, or R 6 and R 7 are ethyl and 3-dimethylaminopropyl groups Can be mentioned.
  • —N (R 6 ) CONH (R 7 ) in R 3 uses a carbodiimide-based condensing agent when synthesizing a block copolymer to which a camptothecin derivative according to general formula (1) is bonded. It is a glutamic acid side chain modifying group produced as a by-product. Accordingly, R 6 and R 7 are the same as the alkyl substituent of the carbodiimide condensing agent used. That is, when diisopropylcarbodiimide (DIPCI) is used as the carbodiimide condensing agent, both R 6 and R 7 are isopropyl groups.
  • DIPCI diisopropylcarbodiimide
  • R 6 and R 7 are mixed substituents of an ethyl group and a 3-dimethylaminopropyl group.
  • R 3 is an ethyl group and the R 7 is a 3-dimethylaminopropyl group, and vice versa, and these are —N (R 6 ) CONH ( R 7 ) group may also be used.
  • R 3 may be a hydroxyl group. That is, the polyglutamic acid segment in the present invention may include a free glutamic acid unit to which neither the camptothecin derivative nor the —N (R 6 ) CONH (R 7 ) group is bonded.
  • the R 3 is a hydroxyl group.
  • the side chain carboxylic acid in the glutamic acid unit is shown in a free acid form, but may be in the form of a salt that can be used as a pharmaceutical, in the form of an alkali metal or alkaline earth metal salt form.
  • the alkali metal salt or alkaline earth metal salt include lithium salt, sodium salt, potassium salt, magnesium salt, and calcium salt.
  • the pharmaceutical preparation of the present invention When used for parenteral administration as an anticancer agent, it is prepared as a solution in a pharmaceutically acceptable solution.
  • the form of the free glutamic acid unit depends on the pH of the solution and the presence of a salt such as a buffer solution, and can take any form of glutamate.
  • the block copolymer represented by the general formula (1) has a camptothecin derivative in the side chain carboxy group of the polyglutamic acid segment by an ester bond.
  • the camptothecin derivative is a camptothecin derivative having a hydroxyl group for the ester bond at the 10-position, and further having an R 4 group at the 7-position and an R 5 group at the 9-position.
  • Each of R 4 and R 5 may be a hydrogen atom, but any one of R 4 and R 5 is preferably a substituent other than a hydrogen atom.
  • R 4 is a hydrogen atom, an optionally substituted carbon number (C1-C6) alkyl group or an optionally substituted silyl group.
  • the carbon number (C1 to C6) alkyl group optionally having substituent (s) in R 4 is a linear, branched or cyclic carbon number (C1 to C6) alkyl optionally having substituent (s).
  • substituent a hydroxyl group, a halogen atom, an amino group, an alkylamino group, a dialkylamino group, an alkoxy group, an aryl group, or the like may be provided.
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, benzyl group and the like can be mentioned.
  • a linear, branched or cyclic (C1-C4) alkyl group which may have a substituent is preferable, and an ethyl group is particularly preferable.
  • Examples of the silyl group which may have a substituent in R 4 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a triisopropylsilyl group, a t-butyldiphenylsilyl group, and the like.
  • a t-butyldimethylsilyl group is preferred.
  • R 4 is preferably a hydrogen atom or an unsubstituted (C1-C6) alkyl group.
  • a hydrogen atom or an ethyl group is particularly preferred.
  • R 5 represents a hydrogen atom or an optionally substituted carbon number (C1 to C6) alkyl group.
  • the carbon number (C1 to C6) alkyl group optionally having substituent (s) for R 5 is a linear, branched or cyclic carbon number (C1 to C6) alkyl optionally having substituent (s).
  • substituent a hydroxyl group, a halogen atom, an amino group, an alkylamino group, a dialkylamino group, an alkoxy group, an aryl group, or the like may be provided.
  • R 5 is preferably a hydrogen atom or a C1-C6 alkyl group having an amino group.
  • a hydrogen atom or a dimethylaminomethyl group is particularly preferred.
  • the camptothecin derivative bonded in the general formula (1) is preferably a binding residue of 7-ethyl-10-hydroxycamptothecin and / or nogitecan (9-dimethylaminomethyl-10-hydroxycamptothecin). That is, it is preferable that 7-ethyl-10-hydroxycamptothecin in which R 4 is an ethyl group and R 5 is a hydrogen atom is an ester-bonded residue. Alternatively, it is preferable that R 4 is a hydrogen atom and R 5 is a dimethylaminomethyl group, a binding residue formed by ester bonding of nogitecan (9-dimethylaminomethyl-10-hydroxycamptothecin). Particularly preferably, it is a binding residue in which 7-ethyl-10-hydroxycamptothecin in which R 4 is an ethyl group and R 5 is a hydrogen atom is ester-bonded.
  • the block copolymer described in the general formula (1) of the present invention preferably comprises a plurality of camptothecin derivatives.
  • the camptothecin derivative bonded to the same molecular chain of the block copolymer may be the same compound or a plurality of types of compounds may be mixed.
  • it is preferable that the camptothecin derivative bonded in the same molecular chain of the block copolymer is the same compound.
  • each of the glutamic acid segments includes a glutamic acid unit in which a camptothecin derivative is bonded to a side chain carboxy group, and a glutamic acid unit in which the R 3 group is bonded to a side chain carboxy group. It exists independently in a random arrangement.
  • the R 3 group may be a hydroxyl group and / or —N (R 6 ) CONH (R 7 )
  • the glutamic acid unit to which the camptothecin derivative is bound the aforementioned —N (R 6 ) CONH (R 7 ) Is a polyglutamic acid segment in which a glutamic acid unit to which is bound and a glutamic acid unit whose side chain is a free carboxy group or a salt thereof are present independently in a random arrangement.
  • the glutamic acid unit to which the camptothecin derivative is bound is an essential segment structure.
  • the glutamic acid unit to which the camptothecin derivative is bound is represented by d, and occupies 1 to 100% of the total number of polymerized glutamic acid segments.
  • the abundance ratio of d in the polyglutamic acid segment is preferably 20 to 70%.
  • the binding amount of the camptothecin derivative determines the content of the active ingredient in the use of the block copolymer as a pharmaceutical product, and greatly affects the pharmacokinetics in vivo after administration, and exhibits drug efficacy and side effects. Involved.
  • the R 3 group-bonded glutamic acid unit has an arbitrary segment configuration.
  • the glutamic acid unit to which the camptothecin derivative is not bound is the R 3 group-bound glutamic acid unit.
  • the abundance of the R 3 group-bonded glutamic acid unit is represented by e, and occupies 0 to 99% of the total number of polymerization of the glutamic acid segment.
  • the abundance ratio of e in the polyglutamic acid segment is preferably 30 to 80%.
  • the content of the camptothecin derivative is preferably 10 to 60% by mass.
  • the content of the camptothecin derivative can be measured by quantitatively analyzing the camptothecin derivative released by cleaving the ester bond bonded to the glutamic acid unit by hydrolysis. More preferably, the content of the camptothecin derivative is 10 to 50% by mass, and particularly preferably 15 to 40% by mass.
  • the R 3 group is a hydroxyl group and / or —N (R 6 ) CONH (R 7 ).
  • the —N (R 6 ) CONH (R 7 ) is an arbitrary substituent, and the glutamic acid unit to which the camptothecin derivative is not bonded preferably has a hydroxyl group as a main substituent.
  • the abundance ratio of glutamic acid units in which R 3 is a hydroxyl group is preferably 15 to 60%, and R 3 is —N (R 6 ) CONH (R 7 ).
  • the presence ratio of a certain glutamic acid unit is preferably 0 to 50%.
  • the content of the —N (R 6 ) CONH (R 7 ) group is preferably 1 to 15% by mass
  • the content of the N (R 6 ) CONH (R 7 ) group is measured by cleaving the amide bond bonded to the glutamic acid unit by hydrolysis and quantitatively analyzing the free urea residue, or 1 H— NMR by can be determined by measuring the N (R 6) CONH (R 7) group content. More preferably, the content of the —N (R 6 ) CONH (R 7 ) group is 2 to 10% by mass.
  • the said block copolymer which concerns on General formula (1) of this invention is a physical property which forms an associative aggregate in aqueous solution.
  • it can be set as appropriate depending on the balance between the hydrophilicity of the polyethylene glycol segment and the hydrophobicity of the polyglutamic acid segment.
  • the block copolymer in which t of the polyethylene glycol segment in the general formula (1) is an integer of 90 to 340 and (d + e) of the total number of glutamic acid units is an integer of 8 to 40 is used, and the camptothecin derivative is The block copolymer having an abundance of bound glutamic acid units, d, in the polyglutamic acid segment of 20 to 70% is used.
  • the block copolymer can be prepared by bonding a camptothecin derivative having a hydroxyl group at the 10-position to a “block copolymer in which a polyethylene glycol segment and a free polyglutamic acid segment are linked” by an esterification reaction.
  • a block copolymer to which the camptothecin derivative according to the present invention is bonded can be prepared by binding reaction of the —N (R 6 ) CONH (R 7 ) group related to R 3 .
  • the bonding reaction method of the camptothecin derivative having a hydroxyl group at the 10-position and any of the —N (R 6 ) CONH (R 7 ) groups is not particularly limited, and the camptothecin derivative having a hydroxyl group at the 10-position is first selected.
  • a bonding reaction may be performed, and then the —N (R 6 ) CONH (R 7 ) group may be subjected to a bonding reaction, a reverse process thereof, or a bonding reaction at the same time.
  • the construction method of the “block copolymer in which a polyethylene glycol segment and a free polyglutamic acid segment are linked” includes a method of binding a polyethylene glycol segment and a polyglutamic acid segment, a method of successively polymerizing polyglutamic acid to the polyethylene glycol segment, and the like. Any method may be used.
  • the camptothecin derivative is 7-ethyl-10-hydroxycamptothecin, the 10-position hydroxyl group of the camptothecin derivative and the glutamic acid of the block copolymer.
  • An example in which the carboxy group of the segment is ester-bonded will be described.
  • bonding block copolymer can be manufactured by the method disclosed by international publication WO2004 / 039869. The production method described in this document will be outlined below.
  • the method for synthesizing the above-mentioned “block copolymer in which a polyethylene glycol segment and a free polyglutamic acid segment are linked” is obtained by adding N-carbonylglutamic anhydride to a polyethylene glycol compound modified with an alkoxy group at one end and an amino group at the other end.
  • part to the one end side of a polyethyleneglycol segment can be mentioned.
  • the carboxyl group of the glutamic acid side chain is preferably a glutamic acid derivative modified with an appropriate carboxylic acid protecting group.
  • the carboxylic acid protecting group is not particularly limited, but an ester protecting group is preferable. More specifically, a polyethylene glycol segment having a methoxy group modified at one end and an amino group modified at the other end is sequentially reacted with ⁇ -benzyl-N-carbonylglutamic acid anhydride, followed by subsequent polymerization to a polyethylene glycol segment. And a method of preparing a block copolymer having a polyglutamic acid segment. At this time, the number of glutamic acid polymerization of the polyglutamic acid segment can be controlled by adjusting the use equivalent of ⁇ -benzyl-N-carbonylglutamic acid anhydride.
  • the “block copolymer in which the polyethylene glycol segment and the polyglutamic acid segment are linked” can be prepared.
  • Examples of the deprotection reaction of the benzyl group include a hydrolysis reaction under an alkaline condition and a hydrogenation reduction reaction.
  • 7-ethyl-10-hydroxycamptothecin is subjected to a condensation reaction in the presence of a carbodiimide condensing agent on the “block copolymer in which a polyethylene glycol segment and a free polyglutamic acid segment are linked”.
  • a carbodiimide condensing agent on the “block copolymer in which a polyethylene glycol segment and a free polyglutamic acid segment are linked”.
  • 7-ethyl-10-hydroxycamptothecin and —N (R 6 ) CONH (R 7 ) group can be simultaneously bonded to the block copolymer, which is an advantageous reaction.
  • the amount of the camptothecin derivative bound can be controlled by adjusting the equivalent of 7-ethyl-10-hydroxycamptothecin used.
  • the amount of —N (R 6 ) CONH (R 7 ) group introduced can be controlled by adjusting the use equivalent of the carbodiimide condensing agent. Except for the camptothecin derivative and the glutamic acid unit to which the —N (R 6 ) CONH (R 7 ) group is bonded, the remaining glutamic acid unit whose side chain carboxy group is not chemically modified is a glutamic acid unit in which R 3 is a hydroxyl group; Become. The amount of glutamic acid unit in which the R 3 is a hydroxyl group can be controlled by the equivalent of the camptothecin derivative and the carbodiimide condensing agent.
  • the carbodiimide condensing agent to be used can be used without particular limitation as long as it is a condensing agent capable of ester-linking the camptothecin derivative to the side chain carboxy group of the glutamic acid unit.
  • Preferred examples include dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPCI), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC).
  • DCC dicyclohexylcarbodiimide
  • DIPCI diisopropylcarbodiimide
  • WSC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • a reaction aid such as N, N-dimethylaminopyridine (DMAP) may be used.
  • R 6 and R 7 are cyclohexyl groups.
  • R 6 and R 7 are isopropyl groups.
  • WSC is used, the R 6 6 and R 7 are a mixture of ethyl and 3-dimethylaminopropyl groups.
  • a block copolymer to which the camptothecin derivative according to the present invention is bound can be synthesized by appropriately passing through a purification step.
  • a purification step it is preferable to remove the residual amine component with a cation exchange resin or the like and prepare the side chain hydroxyl group of polyglutamic acid in a free acid form.
  • the block copolymer to which the camptothecin derivative represented by the general formula (1) is bound has the ability to gradually dissociate and continue to release the camptothecin derivative in a phosphate buffered saline (PBS) solution.
  • PBS phosphate buffered saline
  • the camptothecin derivative is 7-ethyl-10-hydroxycamptothecin and is an ester conjugate with a hydroxyl group at position 10
  • 7-ethyl-10-hydroxycamptothecin is released slowly. It has physical properties to be released.
  • a low molecular drug generally used in clinical practice shows the maximum blood concentration of a drug immediately after administration, and is then discharged from the body relatively quickly.
  • camptothecin derivative-binding block copolymer releases 7-ethyl-10-hydroxycamptothecin, which is an active ingredient, in a sustained release manner, so that the blood concentration of the active ingredient is significantly increased in the blood after administration. It is a preparation characterized by having a continuous blood concentration transition.
  • the polyethylene glycol segment in the camptothecin derivative-bonded block copolymer is hydrophilic.
  • the polyglutamic acid segment includes a hydrophobic camptothecin derivative, the polyglutamic acid segment has an association property based on the hydrophobic interaction between the polyglutamic acid segments in an aqueous solution. For this reason, in the aqueous solution of the block copolymer, a hydrophobic polyglutamic acid segment forms a core portion of an associative aggregate, and a hydrophilic polyethylene glycol segment surrounds the periphery thereof to form an outer shell to form a shell layer. The formed core-shell type micelle-like aggregates are formed.
  • the micelle-like aggregate can confirm the formation of the aggregate by measuring the scattered light intensity using a laser beam or the like, and the aggregate formation ability can be evaluated based on the scattered light intensity value.
  • the scattered light intensity can be used as it is as a physical property value for forming an associative aggregate.
  • the aqueous solution of the block copolymer shows, for example, several thousand to several hundred thousand cps as the scattered light intensity value in the aqueous solution of the block copolymer of 0.01 to 100 mg / mL, and is recognized as an associative aggregate.
  • the molecular weight of the associative aggregate based on a high molecular weight standard such as polyethylene glycol can be estimated.
  • the aqueous solution of the block copolymer is an associative aggregate having a total molecular weight of 1 million or more. Therefore, it is considered that the nanoparticles are formed by associating a plurality of the block copolymers of several tens to several hundreds of molecules. Further, the aqueous solution of the block copolymer has physical properties that form nanoparticle bodies of several nanometers to several hundred nanometers according to particle size analysis by dynamic light scattering analysis.
  • the block copolymer that forms nanoparticles as associative aggregates in an aqueous solution is distributed in the body in the state of the associative nanoparticles in blood when administered in vivo.
  • High molecular weight compounds and nanoparticulate bodies are significantly different in in vivo pharmacokinetic behavior and tissue distribution compared to conventionally used low molecular weight drugs. Therefore, the camptothecin derivative-bound block copolymer that forms associative nanoparticles is determined in terms of internal retention and tissue distribution according to the associated molecular weight and particle size of the nanoparticles, and in particular, stays and distributes in tumor tissue. It is known.
  • the camptothecin derivative-binding block copolymer is pharmacologically different from conventional low molecular weight camptothecin preparations in terms of pharmacological effects and side effect expression characteristics, and can provide a new clinical treatment method for camptothecin derivatives. It is a neoplastic preparation. Therefore, the block copolymer is a nanoparticle controlled to have a desired associated molecular weight and particle size formed by a specific associative property, thereby obtaining favorable pharmacokinetics and tissue distribution as an antitumor agent. Essentially, formation of nanoparticles having a desired associated molecular weight and particle size is an important quality control item for exhibiting its performance.
  • the present invention is characterized in that a saccharide is used as an additive in a pharmaceutical preparation comprising the block copolymer as an active ingredient.
  • a saccharide is used as an additive in a pharmaceutical preparation comprising the block copolymer as an active ingredient.
  • monosaccharides and disaccharides used as pharmaceutical additives and sugar alcohols can be used.
  • Monosaccharides and disaccharides include maltose, glucose, lactose, fructose, trehalose, sucrose, arabinose, isomaltose, galactosamine, galactose, xylose, glucosamine, gentiobiose, cordobiose, cellobiose, sophorose, thioglucose, tulanose, deoxyribose, nigerose , Palatinose, fucose, mannose, melibiose, rhamnose, laminaribiose and the like.
  • sugar alcohols include mannitol, sorbitol, inositol, xylitol, magnesium gluconate, maltitol, meglumine, and the like.
  • the saccharide additive used can be used without particular limitation as long as it is a purity used as a pharmaceutical preparation. Only one of these may be used, or a mixture thereof may be used.
  • Examples of the saccharide in the present invention include one or more monosaccharides and disaccharides selected from the group consisting of maltose, glucose, lactose, fructose, trehalose, sucrose, mannitol, sorbitol, inositol, xylitol, magnesium gluconate, and sugar alcohols.
  • These saccharides are saccharide additives that can maintain their associative properties for a long period in a pharmaceutical preparation containing the block copolymer as an active ingredient.
  • Particularly preferred are monosaccharides and disaccharides, and it is preferable to use one or more selected from the group consisting of maltose, glucose, lactose, fructose, trehalose and sucrose.
  • the saccharide is preferably used in an amount of 10 to 500 parts by mass with respect to 1 part by mass of the camptothecin derivative content of the block copolymer. If the saccharide is in a dose lower than 10 parts by mass relative to the camptothecin derivative, there is a concern that the stabilizing effect of maintaining the association property of the block copolymer cannot be sufficiently obtained.
  • the upper limit of the amount of the saccharide used is not particularly problematic from the viewpoint of the stabilizing effect, but is preferably about 500 parts by mass from the validity of the dose as a pharmaceutical preparation.
  • the saccharide is preferably used in an amount of 2 to 100 parts by mass with respect to 1 part by mass of the block copolymer. More preferably, it is 4 to 100 parts by mass with respect to 1 part by mass of the block copolymer, and particularly preferably 4 to 60 parts by mass.
  • the present invention relates to a pharmaceutical preparation containing the camptothecin derivative-bound block copolymer as an active ingredient, and an invention relating to a pharmaceutical unit preparation in which the block copolymer is filled in a predetermined dosage form with an arbitrary content.
  • a pharmaceutical formulation that can withstand long-term storage is usually considered in consideration of the chemical stability of the active ingredient using additives that are pharmaceutically acceptable.
  • the nanoparticle-forming property in an aqueous solution is an important quality control item, so the stability of the nanoparticle-forming property was also considered. It is necessary to formulate a formulation.
  • the aggregate formation of a pharmaceutical preparation comprising the camptothecin derivative-bonded block copolymer of the present invention as an active ingredient is, for example, the formation of the aggregate using a measuring instrument capable of measuring the intensity of laser scattered light as an index. Sex can be evaluated.
  • a measuring instrument capable of measuring the intensity of laser scattered light as an index. Sex can be evaluated.
  • an aqueous solution of the pharmaceutical preparation containing a camptothecin derivative-binding block copolymer may be used as a measurement sample, and the measured value of the scattered light intensity of the sample may be used as a physical property value of the aggregate formation property.
  • a measuring instrument for scattered light intensity analysis for example, a dynamic light scattering photometer DLS-8000DL manufactured by Otsuka Electronics Co., Ltd. can be used.
  • the pharmaceutical preparation As a method for evaluating the storage stability of a pharmaceutical preparation comprising the camptothecin derivative-binding block copolymer as an active ingredient, the pharmaceutical preparation is stored at 40 ° C. for 4 weeks under light shielding, and the scattered light intensity analysis of the pharmaceutical preparation is performed. The degree of change in the scattered light intensity value is evaluated as the rate of change in the aggregate formation.
  • the pharmaceutical preparation comprising the camptothecin derivative-bonded block copolymer of the present invention as an active ingredient has an aggregate formation change ratio of 20 when the pharmaceutical preparation is stored at 40 ° C. for 4 weeks under light shielding. % Or less.
  • the rate of change in aggregate formation in the present invention is the absolute increase / decrease rate of the measured scattered light intensity after storage for 4 weeks at 40 ° C. relative to the initial scattered light intensity value of the pharmaceutical preparation containing the block copolymer. Value.
  • the aggregate formation change ratio is determined by the type and dose of the saccharide used. Therefore, the pharmaceutical preparation according to the present invention can be prepared by appropriately adjusting the type and dose of saccharides using the scattered light intensity analysis value as an index.
  • the pharmaceutical preparation of the present invention preferably has an aggregate formation change ratio of 10% or less.
  • the pharmaceutical preparation of the present invention has the effect of exhibiting chemical stability in which the release of the bound camptothecin derivative of the block copolymer is suppressed. That is, in the pharmaceutical preparation, the free camptothecin derivative produced by dissociation of the bound camptothecin derivative corresponds to an impurity and it is desired to reduce it as much as possible.
  • the pharmaceutical preparation of the present invention has excellent chemical stability that suppresses dissociation of the bound camptothecin derivative, suppresses a decrease in the active ingredient content, and has excellent performance in storage stability of the preparation.
  • camptothecin derivative release change ratio When the pharmaceutical preparation of the present invention was evaluated for camptothecin derivative release change ratio using the free amount of the camptothecin derivative of the block copolymer as an index, when the pharmaceutical preparation was stored at 40 ° C. for 4 weeks under light shielding, The camptothecin derivative binding change ratio of the block copolymer is 8.0 times or less.
  • the camptothecin derivative release ratio is expressed as the ratio of the camptothecin derivative release rate after storage at 40 ° C. for 4 weeks with respect to the initial camptothecin derivative release rate.
  • the amount of camptothecin derivative released can be quantitatively analyzed by high performance liquid chromatography (HPLC) using the pharmaceutical preparation as a sample.
  • HPLC high performance liquid chromatography
  • the camptothecin derivative release change ratio is determined by the type and dose of the saccharide used. Therefore, the pharmaceutical preparation according to the present invention can be prepared by appropriately adjusting the type and dose of sugars using the amount of free camptothecin derivative as an index.
  • the pharmaceutical preparation of the present invention preferably has a camptothecin derivative release change ratio of 5.0 times or less.
  • the pharmaceutical preparation As a pharmaceutical preparation comprising the camptothecin derivative-bonded block copolymer of the present invention as an active ingredient, in order to prepare a pharmaceutical preparation having a low rate of change in aggregates and excellent in storage stability of the preparation, the pharmaceutical preparation is used in the camptothecin derivative content concentration.
  • the pH of the aqueous solution is preferably 3.0 to 6.0.
  • use of a pH adjuster can be mentioned.
  • any acid that can be used as a pharmaceutical additive can be used without any particular limitation.
  • hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, tartaric acid, malic acid, mesylic acid, tosyl examples thereof include acid and besylic acid.
  • a buffering agent containing these acidic additives as a main component and containing an alkali metal salt, an alkaline earth metal salt, or an ammonium salt may be used.
  • Hydrochloric acid, phosphoric acid, citric acid, and tartaric acid are preferable, and it is preferable to use them in an appropriate amount so that the aqueous pH of the pharmaceutical preparation is set to 3.0 to 5.0.
  • the pharmaceutical preparation of the present invention is preferably a preparation that is administered intravascularly for injection or infusion, and is preferably an injectable preparation that can be administered intravenously.
  • the preparation form is preferably a lyophilized preparation, an injection solution preparation that can be diluted at the time of use to prepare an injection solution, a diluted solution preparation that can be administered as it is, and the like. That is, in the case of administration as a pharmaceutical product, water, physiological saline, 5% glucose or mannitol aqueous solution, water-soluble organic solvent (for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc.) A solvent or a mixed solvent thereof) or the like.
  • a lyophilized preparation is preferred.
  • the pharmaceutical preparation of the present invention may contain commonly used pharmaceutically acceptable additives.
  • additives include binders, lubricants, disintegrants, solvents, excipients, solubilizers, dispersants, stabilizers, suspending agents, preservatives, soothing agents, pigments, and fragrances. it can.
  • an aqueous solution of a camptothecin derivative-binding block copolymer which is a pharmaceutically active ingredient, is prepared together with an arbitrary additive for preparations, and the aqueous solution is adjusted to have a pH adjusted.
  • This is preferably subjected to filtration sterilization, and then dispensed into a preparation vial and freeze-dried to prepare a freeze-dried preparation.
  • a pH adjusting agent may be used, and the active ingredient itself is adjusted by using the camptothecin derivative-binding block copolymer containing a glutamic acid unit having a free carboxylic acid side chain as an active ingredient. Also good.
  • an aqueous solution is prepared in the block copolymer together with a saccharide additive for preparation. Thereafter, as a drug solution with adjusted pH, it is preferably subjected to filtration sterilization, and then dispensed into a preparation container to prepare an injection solution preparation.
  • a pH adjuster may be used, or the pH may be adjusted with the active ingredient itself.
  • the pharmaceutical preparation has a low rate of change in scattered light intensity analyzed in the aqueous solution even when stored at 40 ° C. for 4 weeks under light shielding, is stable in the aggregate formation rate, has low liberation of camptothecin derivatives, and is stable in the active ingredient. It is an excellent pharmaceutical preparation.
  • a pharmaceutical preparation containing the camptothecin derivative-binding block copolymer of the present invention as an active ingredient can be used as a pharmaceutical preparation containing a camptothecin derivative as an active ingredient. It is particularly preferable to use it as an antitumor agent for cancer chemotherapy.
  • the use of the pharmaceutical preparation of the present invention is not particularly limited as long as the camptothecin derivative has a therapeutic effect, and specifically, small cell lung cancer, non-small cell lung cancer, cervical cancer, ovarian cancer, gastric cancer, colorectal Examples include cancer, breast cancer, squamous cell carcinoma, malignant lymphoma, childhood malignant solid tumor, pancreatic cancer, multiple myeloma and the like.
  • the dosage of the pharmaceutical preparation of the present invention can be naturally changed depending on the sex, age, physiological state, disease state, etc. of the patient, but parenterally, usually 0.01 to 500 mg / day as the camptothecin derivative per adult day.
  • m 2 body surface area
  • preferably 0.1 to 250 mg / m 2 is administered.
  • Administration by injection is preferably performed in veins, arteries, affected areas (tumor areas) and the like.
  • a methoxypolyethylene glycol-polyglutamic acid block copolymer (the number of polymers having a molecular weight of 12 kilodalton modified with a methoxypolyethyleneglycol structural part in which one end is a methyl group and the other end is an aminopropyl group and an N-terminal is an acetyl group
  • EHC 7-ethyl-10-hydroxycamptothecin
  • DIPCI diisopropylcarbodiimide
  • DMAP N, N-dimethylaminopyridine
  • Example 1 Using water for injection, a drug solution having an EHC content of 1 mg / mL and a maltose content of 50 mg / mL was prepared using water for injection. The solution was adjusted to pH 4 with phosphoric acid, sterilized and filtered, filled in 3 mL glass vials and lyophilized. Thereafter, it was sealed with a rubber stopper to give Example 1.
  • Example 2 A drug solution with a glucose content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. The freeze-dried preparation was sealed with a rubber stopper to give Example 2.
  • Example 3 A drug solution having a lactose content of 50 mg / mL was prepared in the same manner as in Example 1, and lyophilized. The freeze-dried preparation was sealed with a rubber stopper to give Example 3.
  • Example 4 A drug solution with a fructose content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. This freeze-dried preparation was sealed with a rubber stopper to give Example 4.
  • Example 5 A drug solution with a trehalose content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. The freeze-dried preparation was sealed with a rubber stopper to give Example 5.
  • Example 6 A drug solution with a sucrose content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. This freeze-dried preparation was sealed with a rubber stopper to give Example 6.
  • Example 7 A drug solution having a mannitol content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. The freeze-dried preparation was sealed with a rubber stopper to give Example 7.
  • Example 8 A drug solution having a sorbitol content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. This lyophilized preparation was sealed with a rubber stopper to give Example 8.
  • Example 9 A drug solution having an inositol content of 50 mg / mL was prepared in the same manner as in Example 1, and lyophilized. This freeze-dried preparation was sealed with a rubber stopper to give Example 9.
  • Example 10 A drug solution having a xylitol content of 50 mg / mL was prepared in the same manner as in Example 1, and lyophilized. The freeze-dried preparation was sealed with a rubber stopper to give Example 10.
  • Example 11 A drug solution having a magnesium gluconate content of 50 mg / mL was prepared by the same method as in Example 1, and lyophilized. The freeze-dried preparation was sealed with a rubber stopper to give Example 11.
  • Example 12 Using water for injection, a drug solution having an EHC content of 1 mg / mL and a maltose content of 50 mg / mL was prepared using water for injection. The solution was adjusted to pH 3 with phosphoric acid, sterilized and filtered, filled in 3 mL glass vials and lyophilized. Thereafter, it was sealed with a rubber stopper to give Example 12.
  • Example 13 Using water for injection, a drug solution having an EHC content of 1 mg / mL and a maltose content of 50 mg / mL was prepared using water for injection. The solution was adjusted to pH 5 with phosphoric acid, sterilized and filtered, filled in 3 mL glass vials and lyophilized. Then, it sealed with the rubber stopper and set it as Example 13.
  • Example 14 Using water for injection, a chemical solution of Compound 1 having an EHC content of 1 mg / mL and a maltose content of 25 mg / mL was prepared. The solution was adjusted to pH 4 with phosphoric acid, sterilized and filtered, filled in 3 mL glass vials and lyophilized. Thereafter, it was sealed with a rubber stopper to give Example 14.
  • Example 15 Using water for injection, a chemical solution of Compound 1 having an EHC content of 1 mg / mL and a maltose content of 100 mg / mL was prepared. The solution was adjusted to pH 4 with phosphoric acid, sterilized and filtered, filled in 3 mL glass vials and lyophilized. Thereafter, it was sealed with a rubber stopper to give Example 15.
  • Comparative Example 1 A drug solution containing 1 mg / mL of Compound 1 as an EHC content was prepared using water for injection. The solution was adjusted to pH 4 with phosphoric acid, sterilized and filtered, filled in 3 mL glass vials and lyophilized. Thereafter, it was sealed with a rubber stopper to obtain Comparative Example 1.
  • Test Example 1 Change in scattered light intensity of associative aggregates of Examples and Comparative Examples under storage conditions at 40 ° C. for 4 weeks
  • 3 mL of water for injection was added to the formulations immediately after freeze-drying in Examples 1 to 15 and Comparative Example 1, A 1 mg / mL solution was prepared for each EHC content. The pH of this solution was measured. Thereafter, 3 mL of water for injection was further added. The amount of scattered light of the associative aggregate in this solution was measured by a static light scattering method (SLS method). This was the amount of scattered light at the initial stage. Measurement equipment and measurement conditions are shown below.
  • SLS method static light scattering method
  • Example 1 3 mL of water for injection was added to each Example and the comparative example, and solution pH was measured. Thereafter, the same sample preparation as that at the initial time was performed, and the amount of scattered light of associative aggregates in the solution of each freeze-dried preparation was measured. Table 1 summarizes the measurement results of the solution pH and the amount of scattered light at the initial time, and the solution pH and the amount of scattered light after storage at 40 ° C. for 4 weeks.
  • Test Example 2 Formulation stability test (camptothecin derivative release ratio) The freeze-dried preparations of Examples 1 to 15 and Comparative Example were stored at 40 ° C. for 4 weeks under light shielding. Thereafter, free EHC of each pharmaceutical composition was quantitatively analyzed by HPLC method to evaluate the formulation stability. The results are summarized in Table 2. The degree of free EHC was expressed as the ratio of change in free EHC obtained by dividing the amount of free EHC after storage at 40 ° C. for 4 weeks by the initial value. The measurement results are summarized in Table 2.
  • compound 1 which is an EHC-bonded block copolymer, is inhibited from dissociation of EHC by addition of sugar alcohols and sugar derivatives such as mannitol, sorbitol, inositol, xylitol, magnesium gluconate and the like. It is preferable as a stabilized preparation.
  • sugar alcohols and sugar derivatives such as mannitol, sorbitol, inositol, xylitol, magnesium gluconate and the like.
  • saccharides such as maltose, glucose, lactose, fructose, trehalose, sucrose and the like
  • the dissociation of EHC is further suppressed, which is more preferable as a stabilized preparation. Further, it was shown that a remarkable stabilizing effect was exhibited at an addition amount of saccharide, sugar alcohol and sugar derivative of 5 to 21 times by mass with respect to Compound 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 水溶液中で会合してナノ粒子形成性を有するカンプトテシン誘導体を高分子担体に結合させた高分子化カンプトテシン誘導体を含有する医薬製剤であって、製剤的に安定性が向上された医薬製剤組成物を提供することを課題とする。特に、重要因子であるナノ粒子形成性とカンプトテシン誘導体結合安定性が維持され保存安定性に優れた医薬製剤を提供することを課題とする。 【解決手段】 ポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントが連結したブロック共重合体、及び糖類を含有する医薬製剤であって、前記医薬製剤は水溶液中で会合体を形成し、前記医薬製剤を遮光下40℃で4週間保存した後、前記医薬製剤の該会合体の散乱光強度変化率が20%以下である医薬製剤。

Description

カンプトテシン類高分子誘導体を含有する医薬組成物
 本発明は、カンプトテシン誘導体を高分子担体に結合させた高分子化カンプトテシン誘導体の、製剤安定性を向上させた医薬製剤組成物に関する。該高分子化カンプトテシン誘導体は、水溶液中において複数の該分子同士による会合性を有してナノ粒子を形成する物性を有する。このようなナノ粒子形成性を有する高分子化カンプトテシン誘導体を含有する医薬製剤において、ナノ粒子形成性が長期に亘り維持される保存安定性に優れた医薬製剤に関する技術である。
 医薬品の薬効を有効に発現させるためには、薬理活性化合物を生体内の適切な部位に適切な濃度及び時間で作用させることが求められる。特に殺細胞性抗腫瘍剤は、静脈内投与等によって全身投与された場合に、全身へ広範に分布して細胞増殖阻害作用を発揮する。この際、癌細胞と正常細胞の区別がなく薬理活性作用が発揮されるため、正常細胞に対する作用により重篤な副作用をもたらすと言われている。したがって、副作用の低減のためには、抗腫瘍剤を腫瘍患部へ送達する技術が重要である。そこで、抗腫瘍剤を腫瘍組織へ選択的に送達し、適切な薬剤濃度及び薬剤感作時間で作用させるための薬物動態の制御方法が求められている。
 薬物動態を制御する方法として、分子量に基づく薬物動態特性を利用する方法が知られている。すなわち、生体適合性高分子物質を血中投与すると、腎排泄が抑制され、血中半減期が長く維持される。更に、腫瘍組織は高分子物質の組織透過性が高く、またその回収機構が十分に構築されていないことから、高分子物質は相対的に腫瘍組織内に高濃度に分布して蓄積することが知られている。そこで、生体適合性高分子物質を高分子担体として、これに抗腫瘍剤を結合させた、高分子化抗腫瘍剤の開発が行われている。
 高分子化抗腫瘍剤として、ポリエチレングリコールセグメントとポリグルタミン酸セグメントを連結させたブロック共重合体を高分子担体として、該ポリグルタミン酸セグメントの側鎖カルボン酸に、様々な抗腫瘍剤を結合させた高分子化抗腫瘍剤が報告されている。特許文献1には、該ブロック共重合体に7-エチル-10-ヒドロキシカンプトテシンを結合させた医薬品が開示されている。また、他の抗腫瘍剤としてシチジン系抗腫瘍剤のブロック共重合体結合体(特許文献2)、コンブレタスタチンA4のブロック共重合体結合体(特許文献3)、HSP90阻害剤のブロック共重合体結合体(特許文献4)などが知られている。これらの高分子化抗腫瘍剤は、有効成分として用いられている低分子の抗腫瘍性化合物と比較して、抗腫瘍効果が増強されることが記載されている。
 これら抗腫瘍剤のブロック共重合体結合体は、該抗腫瘍剤の水酸基と該ブロック共重合体の側鎖カルボン酸がエステル結合により結合体とした高分子化抗腫瘍剤である。これらは、生体内に投与されると該エステル結合が一定速度で開裂して抗腫瘍剤を遊離させることで、抗腫瘍活性作用を発揮させるプロドラッグである。
 また、これらの抗腫瘍剤が結合したブロック共重合体は、該抗腫瘍剤が結合したブロック領域が疎水性である場合は、水溶液中において該抗腫瘍剤結合領域が疎水性相互作用に基づく会合性を示し、複数の該ブロック共重合体同士による会合性凝集体を形成する物性を有する。
 この高分子化抗腫瘍剤による会合性凝集体は、レーザー光等を用いた光散乱測定により検出でき、その散乱光強度の値により該会合性凝集体の物性を測定することができる。すなわち、散乱光強度を測定値として会合性凝集体の物性規定ができる。
 これらの会合性を有する高分子化抗腫瘍剤は、生体内において会合性に基づき生成するナノ粒子として挙動して、前記のような薬物動態を発揮して腫瘍組織へ高濃度で分布し、そこで抗腫瘍剤を遊離させることにより、高い抗腫瘍効果が発揮されるものである。したがって、これらの高分子化抗腫瘍剤は、ナノ粒子化される会合性がその性能発揮のための重要因子である。
 前述したような薬剤-高分子結合医薬品は、高分子担体の分子量に基づく薬物動態と、結合薬剤を活性体として徐放的に放出させることにより、高い薬理活性と副作用の低減を図る医薬品である。このため、このような薬剤-高分子結合医薬品は、製剤として保存した状態において高分子担体の分子量変化が少ない、すなわち低分子化を抑制した保存安定性に優れた製剤とする必要がある。
 薬剤-高分子結合医薬品において、保存安定性を考慮した製剤として、例えば、特許文献5及び6に、カルボキシル基を有する多糖類とカンプトテシン誘導体の結合体を、糖又は糖アルコール及びpH調整剤を含む医薬製剤とすることで、高分子担体の分子量変化やカンプトテシン誘導体の遊離を抑制することを開示している。
 しかしながら、特許文献5及び6に記載の薬剤-高分子結合医薬品は、強固な会合体を形成しないと考えられ、高分子担体の分子量が性能発揮因子であると思われる。このため、該担体の化学結合の開裂といった化学的分解反応による低分子化が課題であり、この抑制を目的とするものである。しかしながら、会合性凝集体によるナノ粒子化による高分子化を性能管理因子とするブロック共重合体による高分子化抗腫瘍剤について、ナノ粒子形成能を制御することを課題とした安定な医薬製剤は知られていない。
国際公開第2004/039869号 国際公開第2008/056596号 国際公開第2008/010463号 国際公開第2008/041610号 国際公開第2002/005855号 特表2005-523329号公報
 本発明は、カンプトテシン誘導体を高分子担体に結合させた高分子化カンプトテシン誘導体の、ナノ粒子形成性が長期に亘って維持された製剤的に安定性が向上した医薬製剤組成物を提供することを課題とする。特に該高分子化カンプトテシン誘導体は会合性を有し、水溶液中において複数の該高分子化カンプトテシン誘導体と会合性凝集体を形成し、ナノ粒子を形成することが性能上の重要因子である。このようなナノ粒子形成性の高分子化カンプトテシン誘導体を含有する医薬製剤において、会合体ナノ粒子形成性を指標とした保存安定性に優れた医薬製剤を提供することを課題とする。
 本発明者はポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントが連結したブロック共重合体による高分子化カンプトテシン誘導体において、糖類を添加剤として用いることで、会合性凝集体形成によるナノ粒子の形成性が制御され、保存安定性に優れた医薬製剤が得られることを見出し、発明を完成させるに至った。すなわち、本願は以下の発明を要旨とする。
[1] ポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントとが連結したブロック共重合体及び糖類を含有する医薬製剤であって、
前記ブロック共重合体が、一般式(1)
Figure JPOXMLDOC01-appb-C000002
[式中、Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示し、Aは炭素数(C1~C6)アルキレン基であり、Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アシル基及び置換基を有していてもよい炭素数(C1~C6)アルコキシカルボニル基からなる群から選択される1種を示し、Rは水酸基及び/または-N(R)CONH(R)を示し、前記R及び前記Rは同一でも異なっていてもよく三級アミノ基で置換されていてもよい炭素数(C1~C8)アルキル基を示し、Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アルキル基及び置換基を有していてもよいシリル基からなる群から選択される1種を示し、Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示し、tは45~450の整数を示し、d及びeはそれぞれ整数であり、d+eは6~60の整数を示し、d+eに対するdの割合が1~100%、eの割合が0~99%であり、前記ポリグルタミン酸セグメントは、カンプトテシン誘導体が結合したグルタミン酸ユニットとR基が結合したグルタミン酸ユニットがそれぞれ独立して、ランダムに配列したポリグルタミン酸セグメント構造である。]で表されるブロック共重合体であり、前記医薬製剤は、水溶液中において複数の前記ブロック共重合体による会合体を形成する物性であり、前記医薬製剤を遮光下40℃で4週間保存した後において、前記医薬製剤の前記会合体の散乱光強度変化率が20%以下である医薬製剤。
 本発明に係るポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントが連結したブロック共重合体は、水溶液中において、相対的に疎水性であるカンプトテシン誘導体が結合した該ポリグルタミン酸セグメントが疎水性相互作用に基づき会合性を示し、複数の該ブロック共重合体による会合性凝集体であるナノ粒子を形成する。これは、生体内に投与され、当該ブロック共重合体は前記会合性凝集体として体内動態し、ここから結合しているカンプトテシン誘導体を一定の速度で遊離させて、薬理活性を発揮させることを指向した医薬品である。このため、高分子化カンプトテシン誘導体である該ブロック共重合体は、会合性凝集体形成によりナノ粒子化される物性が性能発揮のための重要因子である。該会合性凝集体は、レーザー光を用いた散乱光強度測定により会合体形成性を評価することができる。通常、該ブロック共重合体は散乱光強度値として数千~数10万cpsの測定値が得られ、会合性凝集体であることが認められる。本発明は、レーザー光による散乱光強度を会合性凝集体形成性の指標として用い、会合体形成性能変化が少ない医薬製剤を提供するものである。したがって、本発明は、該高分子化カンプトテシン誘導体を含む医薬製剤において、性能上の重要因子であるナノ粒子形成性が制御され、製剤保存下において安定的に維持される高い安定性の医薬製剤を調製することができるものである。
[2] 前記医薬製剤を前記カンプトテシン誘導体含量濃度で1mg/mLの水溶液とした場合における、該水溶液のpHが3.0~6.0である、前記[1]に記載の医薬製剤。
[3] pH調整剤を含有する前記[1]又は[2]に記載の医薬製剤。
 本発明は、前記ブロック共重合体及び糖類を含有する医薬製剤であるが、そのブロック共重合体の酸性度や用いる糖類の種類、並びにそれぞれの含有量に応じて、該製剤を水溶液にした場合のpHが変動する可能性がある。該高分子化カンプトテシン誘導体を含む医薬製剤において、性能上の重要因子であるナノ粒子形成性が制御され、製剤保存下において安定的に維持される高い安定性の医薬製剤とするためには、該医薬製剤の水溶液のpHが3.0~6.0の範囲である事が好ましい。好適なpH範囲に調整するために、該ブロック共重合体及び/又は糖類の種類並びに用量を適宜調整すれば良く、場合によっては、pH調整剤を用いても良い。
[4] 前記糖類が、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロース、マンニトール、ソルビトール、イノシトール、キシリトール、グルコン酸マグネシウムからなる群から選択される1種以上の糖及び糖アルコールである、前記[1]~[3]の何れか一項に記載の医薬製剤。
[5] 前記糖類が、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロースからなる群から選択される1種以上の糖及び糖アルコールである、前記[1]~[4]の何れか一項に記載の医薬製剤。
[6] 前記ブロック共重合体のカンプトテシン誘導体含有量が1重量部に対し、前記糖類を10~500質量部含有する前記[1]~[5]の何れか一項に記載の医薬製剤。
[7] 凍結乾燥製剤である前記[1]~[6]の何れか一項に記載の医薬製剤。
 本発明に係るポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントが連結したブロック共重合体は、会合凝集体によるナノ粒子形成が薬効発揮において重要な性能であり、製剤保存期間中に亘り、所望の会合体の形成能を維持できることが重要である。本発明の医薬製剤は、会合体形成する該ブロック共重合体を有効成分とする医薬製剤において、その会合性能に関する保存安定性に優れた医薬製剤を提供することができる。すなわち、製剤保存下において、該ブロック共重合体は所望の会合性能が維持され、所望のカンプトテシン誘導体結合型の会合性ナノ粒子形成体として用いることでき、医薬品としての有効性が保証される医薬製剤を提供することができる。
 本発明は、ポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントとが連結したブロック共重合体の医薬品として長期安定性が保証された医薬製剤を調製するに当たり、前記ブロック共重合体に糖類を添加剤として用いることにより、前記医薬製剤を遮光下40℃で4週間保存した後において、前記医薬製剤の該会合体の形成変化率が少なく、該会合体形成が安定に維持された該ブロック共重合体を含有する医薬製剤を調製できた。以下に本発明について詳細に説明する。
 本発明は、ポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントが連結したブロック共重合体であって、下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
[式中、Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示し、Aは炭素数(C1~C6)アルキレン基であり、Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アシル基及び置換基を有していてもよい炭素数(C1~C6)アルコキシカルボニル基からなる群から選択される1種を示し、Rは水酸基及び/又はN(R)CONH(R)を示し、前記R及び前記Rは同一でも異なっていてもよく三級アミノ基で置換されていてもよい炭素数(C1~C8)アルキル基を示し、Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アルキル基及び置換基を有していてもよいシリル基からなる群から選択される1種を示し、Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示し、tは45~450の整数を示し、d及びeはそれぞれ整数であり、d+eは6~60の整数を示し、d+eに対するdの割合が1~100%、eの割合が0~99%であり、前記ポリグルタミン酸セグメントは、カンプトテシン誘導体が結合したグルタミン酸ユニットとR基が結合したグルタミン酸ユニットがそれぞれ独立して、ランダムに配列したポリグルタミン酸セグメント構造である。]で表されるブロック共重合体を用いる。
 該ブロック共重合体は、ポリエチレングリコールセグメントとカンプトテシン誘導体が側鎖にエステル結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントとが適当な結合基を介して連結したブロック共重合体である。
 前記Rにおける置換基を有していてもよい炭素数(C1~C6)アルキル基とは、置換基を有していてもよい直鎖状、分岐状又は環状の炭素数(C1~C6)アルキル基が挙げられる。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-プロピル基、neo-ペンチル基、シクロペンチル基、n-へキシル基、シクロへキシル基等が挙げられる。
 前記有していても良い置換基としては、メルカプト基、水酸基、ハロゲン原子、ニトロ基、シアノ基、炭素環若しくは複素環アリール基、アルキルチオ基、アリールチオ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、アルコキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニルオキシ基、カルバモイルオキシ基、置換又は無置換アミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基、スルホニルアミノ基、スルファモイルアミノ基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、カルバモイル基又はシリル基等を挙げることができる。芳香環上の置換位置は、オルト位でも、メタ位でも、パラ位でも良い。アミノ基、ジアルキルアミノ基、アルコキシ基、カルボキシル基、ホルミル基が好ましい。
 該Rとして好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ベンジル基、2,2-ジメトキシエチル基、2,2-ジエトキシエチル基、2-ホルミルエチル基が挙げられる。無置換の直鎖状、分岐状又は環状の炭素数(C1~C4)アルキル基が好ましい。特にメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基等が好ましい。
 一般式(1)において、ポリエチレングリコールセグメントは、そのセグメントにおけるポリエチレングリコール部分は分子量2キロダルトン~20キロダルトンのものを用いることが好ましく、4キロダルトン~15キロダルトンがより好ましい。すなわち、エチレンオキシ基;(-OCHCH)基の単位繰り返し構造数である一般式(1)のtは45~450の整数である。好ましくは、tは90~340の整数である。なお、ポリエチレングリコールセグメントの分子量は、ポリエチレングリコール標準品を用いたGPC法により求められるピークトップ分子量を用いる。
 ポリエチレングリコールセグメントとポリグルタミン酸セグメントをつなぐ結合基である一般式(1)におけるAは、炭素数(C1~C6)のアルキレン基である。例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等を挙げることができる。中でも、好ましくはエチレン基又はトリメチレン基であり、特に好ましくはトリメチレン基である。
 一般式(1)で表される本発明の高分子化合物のポリグルタミン酸セグメントは、グルタミン酸ユニットがα‐アミド結合型で重合した構造である。しかしながら、該アミノ酸重合構造において、γ‐アミド結合型で重合したグルタミン酸ユニットが一部において含まれていても良い。該ポリグルタミン酸セグメントにおいて、各グルタミン酸ユニットはL型でもD型でも、それらが混在していてもよい。
 一般式(1)におけるグルタミン酸ユニット総数はd+eで表され、6~60の整数である。好ましくはd+eが8~40である。したがって、該ポリグルタミン酸セグメントの平均分子量は、後述する結合するカンプトテシン誘導体及びR基の構造及び結合基量に依存するが、0.6キロダルトン~15キロダルトン、好ましくは0.8キロダルトン~10キロダルトンである。
 前記ポリグルタミン酸セグメントのグルタミン酸ユニット総数は、H-NMRによるグルタミン酸ユニット数の算出法、アミノ酸分析法、側鎖カルボキシ基の酸-塩基滴定法等により求めることができる。側鎖にカンプトテシン誘導体及び前記R基を結合させる前のポリグルタミン酸セグメントを用い、側鎖カルボキシ基を酸-塩基滴定法することにより求められるグルタミン酸ユニット数を採用することが好ましい。
 Rにおける置換基を有していてもよい炭素数(C1~C6)アシル基とは、置換基を有していてもよい直鎖状、分岐状又は環状の炭素数(C1~C6)アシル基が挙げられる。例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基等が挙げられる。
 置換基としては、水酸基、ハロゲン原子、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アルコキシ基、アリール基等を具備していても良い。
 好ましくは、ホルミル基、アセチル基、トリクロロアセチル基、トリフルオロアセチル基、プロピオニル基、ピバロイル基、ベンジルカルボニル基、フェネチルカルボニル基、等が挙げられる。置換基を有していてもよい直鎖状、分岐状又は環状の炭素数(C1~C4)アシル基が好ましく、アセチル基、トリクロロアセチル基、トリフルオロアセチル基が好ましい。
 Rにおける置換基を有していてもよい炭素数(C1~C6)アルコキシカルボニル基としては、置換基を有していてもよい直鎖状、分岐状又は環状の炭素数(C1~C6)アルコキシカルボニル基が挙げられる。置換基としては、水酸基、ハロゲン原子、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アルコキシ基、アリール基等を具備していても良い。
 好ましくは、メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基等が挙げられる。
 該Rは、水素原子若しくは置換基を有していてもよい直鎖状、分岐状又は環状の炭素数(C1~C4)アシル基を用いることが好ましい。Rとしては水素原子、アセチル基、トリクロロアセチル基、トリフルオロアセチル基が特に好ましい。
 一般式(1)において、Rは水酸基及び/又は-N(R)CONH(R)である。すなわち、側鎖カルボキシ基が該Rであるグルタミン酸ユニットは、側鎖が未修飾のグルタミン酸ユニット及び/又は側鎖にウレア誘導体が結合したグルタミン酸ユニットである。
 該R及びRは、同一でも異なっていてもよく三級アミノ基で置換されていても良い直鎖状、分岐状または環状の炭素数(C1~C8)アルキル基である。該R及びRにおける炭素数(C1~C8)アルキル基とは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、シクロプロピル基、シクロヘキシル基、n-オクチル基等が挙げられる。
 三級アミノ基で置換されていても良い直鎖状、分岐状または環状の炭素数(C1~C8)アルキル基とは、2-ジメチルアミノエチル基、3-ジメチルアミノプロピル基等を挙げることができる。
 該R及びRはとしては、好ましくはエチル基、イソプロピル基、シクロへキシル基、3-ジメチルアミノプロピル基が挙げられる。より好ましくは、該R及びRがいずれもイソプロピル基、該R及びRがいずれもシクロへキシル基、又は該R及びRがエチル基と3-ジメチルアミノプロピル基である場合を挙げることができる。
 後述するように該Rにおける-N(R)CONH(R)は、一般式(1)に係るカンプトテシン誘導体が結合したブロック共重合体を合成する際に、カルボジイミド系縮合剤を用いることにより副生するグルタミン酸側鎖修飾基である。したがって、該R及びRは用いたカルボジイミド系縮合剤のアルキル置換基と同一となる。すなわち、カルボジイミド縮合剤として、ジイソプロピルカルボジイミド(DIPCI)を用いた場合、該R及びRは何れもイソプロピル基となる。1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)を用いた場合、該R及びRはエチル基及び3-ジメチルアミノプロピル基の混合置換基となる。この場合、該Rがエチル基で該Rが3-ジメチルアミノプロピル基である場合と、その逆である場合が存在し、これらが一分子中に混在した-N(R)CONH(R)基であっても良い。
 一般式(1)において、Rは水酸基であっても良い。すなわち、本発明におけるポリグルタミン酸セグメントは、カンプトテシン誘導体及び前記-N(R)CONH(R)基の何れもが結合していない遊離型グルタミン酸ユニットが存在して良い。該Rは水酸基である該グルタミン酸ユニットにおける側鎖カルボン酸は、遊離酸型で示されるが、医薬品として使用し得る塩の態様であってもよく、アルカリ金属又はアルカリ土類金属塩型の形態も本発明として含まれる。アルカリ金属塩又はアルカリ土類金属塩の塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩が挙げられる。本発明の医薬製剤が、抗癌剤として非経口投与にて供せられる場合、医薬品として許容される溶解液にて溶液調製される。その場合は、該遊離型グルタミン酸ユニットの態様は、その溶液のpH及び緩衝溶液等の塩の存在に依存し、任意のグルタミン酸塩の態様を取り得る。
 一般式(1)で示されるブロック共重合体はポリグルタミン酸セグメントの側鎖カルボキシ基にカンプトテシン誘導体をエステル結合にて具備している。該カンプトテシン誘導体は、10位に前記エステル結合に供せられる水酸基を有し、更に7位にR基及び9位にR基を備えているカンプトテシン誘導体である。R及びRは何れも水素原子であっても良いが、該R及びRは何れか一方が、水素原子以外の置換基であることが好ましい。
 該Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アルキル基又は置換基を有していてもよいシリル基である。
 Rにおける置換基を有していてもよい炭素数(C1~C6)アルキル基としては、置換基を有していてもよい直鎖状、分岐状または環状の炭素数(C1~C6)アルキル基が挙げられる。置換基としては、水酸基、ハロゲン原子、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アルコキシ基、アリール基等を具備していても良い。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ベンジル基等が挙げられる。置換基を有していてもよい直鎖状、分岐状または環状の炭素数(C1~C4)アルキル基が好ましく、特にエチル基が好ましい。
 Rにおける置換基を有していてもよいシリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、t-ブチルジフェニルシリル基等が挙げられる。t-ブチルジメチルシリル基が好ましい。
 該Rとしては、水素原子又は無置換の炭素数(C1~C6)アルキル基が好ましい。水素原子又はエチル基が特に好ましい。
 Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示す。
 Rにおける置換基を有していてもよい炭素数(C1~C6)アルキル基としては、置換基を有していてもよい直鎖状、分岐状または環状の炭素数(C1~C6)アルキル基が挙げられる。置換基としては、水酸基、ハロゲン原子、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アルコキシ基、アリール基等を具備していても良い。例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ベンジル基、ジメチルアミノメチル基等が挙げられる。
 該Rとしては、水素原子又はアミノ基を有する炭素数(C1~C6)アルキル基が好ましい。水素原子又はジメチルアミノメチル基が特に好ましい。
 一般式(1)において結合しているカンプトテシン誘導体としては、7-エチル-10-ヒドロキシカンプトテシン及び/又はノギテカン(9-ジメチルアミノメチル-10-ヒドロキシカンプトテシン)の結合残基であることが好ましい。すなわち、前記Rがエチル基であり、前記Rが水素原子である7-エチル-10-ヒドロキシカンプトテシンがエステル結合した結合残基であることが好ましい。若しくは、前記Rが水素原子であり、前記Rがジメチルアミノメチル基であるノギテカン(9-ジメチルアミノメチル-10-ヒドロキシカンプトテシン)がエステル結合した結合残基であることが好ましい。特に好ましくは、前記Rがエチル基であり、前記Rが水素原子である7-エチル-10-ヒドロキシカンプトテシンがエステル結合した結合残基である。
 本発明の一般式(1)に記載のブロック共重合体は、好ましくは複数のカンプトテシン誘導体を具備するものである。その場合、該ブロック共重合体の同一分子鎖に結合する該カンプトテシン誘導体は、同一化合物であっても、複数種類の化合物が混在していても良い。しかしながら、該ブロック共重合体の同一分子鎖において結合するカンプトテシン誘導体は、同一化合物であることが好ましい。
 一般式(1)において、前記ポリグルタミン酸セグメントは各グルタミン酸ユニットにおいて、側鎖カルボキシ基にカンプトテシン誘導体が結合しているグルタミン酸ユニット、側鎖カルボキシ基に前記R基が結合しているグルタミン酸ユニットがそれぞれ独立して、ランダムな配置にて存在するものである。該R基は水酸基及び/又は-N(R)CONH(R)であっても良いことから、カンプトテシン誘導体が結合しているグルタミン酸ユニット、前記-N(R)CONH(R)が結合しているグルタミン酸ユニット、及び側鎖が遊離カルボキシ基またはその塩であるグルタミン酸ユニットがそれぞれ独立して、ランダムな配置にて存在するポリグルタミン酸セグメントである。
 本発明は、前記カンプトテシン誘導体が結合したグルタミン酸ユニットは必須のセグメント構成である。一般式(1)において該カンプトテシン誘導体が結合したグルタミン酸ユニットはdでその存在量が表され、グルタミン酸セグメントの総重合数における1~100%を占める。該dのポリグルタミン酸セグメント中の存在比率は、20~70%であることが好ましい。該カンプトテシン誘導体の結合量は、当該ブロック共重合体の医薬品としての使用の際において、有効成分の含有量を決定し、且つ投与後の生体内における薬物動態に大きく影響して薬効や副作用の発現に関わる。
 一方、前記R基結合グルタミン酸ユニットは任意のセグメント構成である。すなわち、前記カンプトテシン誘導体が結合していないグルタミン酸ユニットが当該R基結合グルタミン酸ユニットである。一般式(1)において該R基結合グルタミン酸ユニットはeでその存在量が表され、該グルタミン酸セグメントの総重合数における0~99%を占める。該eのポリグルタミン酸セグメント中の存在比率は、30~80%であることが好ましい。
 また、一般式(1)に係るブロック共重合体において、カンプトテシン誘導体の含有率は10~60質量%であることが好ましい。該カンプトテシン誘導体の含有量は、グルタミン酸ユニットに結合しているエステル結合を加水分解により開裂させて遊離したカンプトテシン誘導体を定量分析することで測定することができる。より好ましくは、カンプトテシン誘導体含有率が10~50質量%であり、15~40質量%であることが特に好ましい。
 該R基は水酸基及び/又は-N(R)CONH(R)である。該-N(R)CONH(R)は任意の置換基であり、前記カンプトテシン誘導体が結合していないグルタミン酸ユニットは、水酸基が主な置換基であることが好ましい。ポリグルタミン酸セグメントのグルタミン酸総重合数(d+e)において、Rが水酸基であるグルタミン酸ユニットの存在比率は15~60%であることが好ましく、Rが-N(R)CONH(R)であるグルタミン酸ユニットの存在比率は0~50%であることが好ましい。
 R基は-N(R)CONH(R)基である場合、該-N(R)CONH(R)基の含有率は1~15質量%であることが好ましい、該-N(R)CONH(R)基の含有量は、グルタミン酸ユニットに結合しているアミド結合を加水分解により開裂させて遊離ウレア残基を定量分析することで測定する方法、またはH-NMRにより該N(R)CONH(R)基含有率を測定することで求めることができる。より好ましくは、該-N(R)CONH(R)基の含有率が2~10質量%である。
 なお、本発明の一般式(1)に係る前記ブロック共重合体は、水溶液中で会合性凝集体を形成する物性である。安定な会合性凝集体形成能を得るためには、前記ポリエチレングリコールセグメントの親水性と、前記ポリグルタミン酸セグメントの疎水性のバランスにより、適宜設定することができる。好ましくは、一般式(1)におけるポリエチレングリコールセグメントのtが90~340の整数であり、グルタミン酸ユニット総数の(d+e)が8~40の整数である該ブロック共重合体を用い、前記カンプトテシン誘導体が結合したグルタミン酸ユニットの存在量であるdのポリグルタミン酸セグメント中の存在比率が20~70%である該ブロック共重合体を用いることである。
 次に、本発明における一般式(1)で示されるブロック共重合体の製造方法について、例を挙げて説明する。
 当該ブロック共重合体は、「ポリエチレングリコールセグメントと遊離型ポリグルタミン酸セグメントが連結したブロック共重合体」に、10位に水酸基を有するカンプトテシン誘導体をエステル化反応により結合させることで調製することができる。任意に、Rに係る-N(R)CONH(R)基を結合反応させることで、本発明に係るカンプトテシン誘導体が結合したブロック共重合体を調製することができる。この10位に水酸基を有するカンプトテシン誘導体と、任意の該-N(R)CONH(R)基の結合反応方法は特に限定されるものではなく、先に10位に水酸基を有するカンプトテシン誘導体を結合反応させ、その後、該-N(R)CONH(R)基を結合反応させても、その逆工程でも良く、同時に結合反応させても良い。
 前記「ポリエチレングリコールセグメントと遊離型ポリグルタミン酸セグメントが連結したブロック共重合体」の構築方法は、ポリエチレングリコールセグメントとポリグルタミン酸セグメントを結合させる方法、ポリエチレングリコールセグメントにポリグルタミン酸を遂次重合させる方法等が挙げられ、いずれの方法であっても良い。
 本発明における一般式(1)で示されるブロック共重合体の合成方法を、カンプトテシン誘導体が7-エチル-10-ヒドロキシカンプトテシンであって、該カンプトテシン誘導体の10位水酸基と該ブロック共重合体のグルタミン酸セグメントのカルボキシ基をエステル結合した例にて説明する。なお、当該カンプトテシン誘導体結合ブロック共重合体は、国際公開WO2004/039869号に開示される方法により製造することができる。以下に、この文献に記載の製造方法を概説する。
 前記「ポリエチレングリコールセグメントと遊離型ポリグルタミン酸セグメントが連結したブロック共重合体」の合成方法は、片末端にアルコキシ基、他方片末端にアミノ基が修飾されたポリエチレングリコール化合物に、N-カルボニルグルタミン酸無水物を順次反応させ、ポリエチレングリコールセグメントの方末端側にポリグルタミン酸構造部位を構築させる方法を挙げることができる。この場合、N-カルボニルグルタミン酸無水物において、グルタミン酸側鎖のカルボキシル基は適当なカルボン酸保護基で修飾したグルタミン酸誘導体であることが好ましい。当該カルボン酸保護基としては、特に限定されるものではないが、エステル保護基が好ましい。
 より具体的には、片末端にメトキシ基、他方片末端にアミノ基を修飾したポリエチレングリコール化合物に対し、γ-ベンジル-N-カルボニルグルタミン酸無水物を順次反応させ、遂次重合により、ポリエチレングリコールセグメントとポリグルタミン酸セグメントを有するブロック共重合体を調製する方法を挙げることができる。この際、γ-ベンジル-N-カルボニルグルタミン酸無水物の使用当量を調整することで、ポリグルタミン酸セグメントのグルタミン酸重合数を制御することができる。
 その後、適当な方法により、ポリグルタミン酸セグメントのベンジル基を脱保護することにより、該「ポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体」を調製できる。ベンジル基の脱保護反応としては、アルカリ条件による加水分解反応、水素添加還元反応が挙げられる。
 次に、前記「ポリエチレングリコールセグメントと遊離型ポリグルタミン酸セグメントが連結したブロック共重合体」に、7-エチル-10-ヒドロキシカンプトテシンを、カルボジイミド縮合剤の共存下で縮合反応させる。この方法を用いることにより、該ブロック共重合体に、7-エチル-10-ヒドロキシカンプトテシンと-N(R)CONH(R)基を同時に結合させることができるため、有利な反応である。なお、当該縮合反応において、7-エチル-10-ヒドロキシカンプトテシンの使用当量を調整することにより、該カンプトテシン誘導体の結合量を制御することができる。また、カルボジイミド縮合剤の使用当量を調整することにより、-N(R)CONH(R)基の導入量を制御することができる。
 該カンプトテシン誘導体及び該-N(R)CONH(R)基の結合したグルタミン酸ユニットを除く、側鎖カルボキシ基が化学修飾されていない残部グルタミン酸ユニットが、前記Rが水酸基であるグルタミン酸ユニットとなる。カンプトテシン誘導体及びカルボジイミド縮合剤の使用当量により、該Rが水酸基であるグルタミン酸ユニット量を制御することができる。
 なお、用いられるカルボジイミド縮合剤は、前記カンプトテシン誘導体をグルタミン酸ユニットの側鎖カルボキシ基にエステル結合させることができる縮合剤であれば、特に限定することなく用いることができる。好ましくは、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCI)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)を挙げることができる。上記縮合反応の際に、N,N-ジメチルアミノピリジン(DMAP)等の反応補助剤を用いてもよい。なお、カルボジイミド縮合剤としてDCCを用いた場合、該R及びRはシクロヘキシル基であり、DIPCIを用いた場合、該R及びRはイソプロピル基であり、WSCを用いた場合、該R及びRはエチル基と3-ジメチルアミノプロピル基の混合物となる。
 上記反応により、「ポリエチレングリコールセグメントと遊離型ポリグルタミン酸セグメントが連結したブロック共重合体」のグルタミン酸側鎖に対し、適当量の7-エチル-10-ヒドロキシカンプトテシン、並びにRとして任意の置換基である-N(R)CONH(R)基を結合させた後、適宜、精製工程を経由することにより、本発明に係るカンプトテシン誘導体が結合したブロック共重合体を合成することができる。精製工程として、陽イオン交換樹脂等により残存アミン成分を除去するとともに、ポリグルタミン酸の側鎖水酸基体を遊離酸型に調製することが好ましい。
 一般式(1)で示されるカンプトテシン誘導体を結合したブロック共重合体は、リン酸緩衝生理食塩水(PBS)溶液中で徐々にカンプトテシン誘導体を解離し、放出し続ける性能を有する。例えば、該カンプトテシン誘導体が7-エチル-10-ヒドロキシカンプトテシンであって、10位の水酸基によるエステル結合体である場合、これを生体内に投与すると、7-エチル-10-ヒドロキシカンプトテシンを徐放的に放出させる物性を備える。一般的に臨床に用いられている低分子薬剤は、投与直後に薬剤の最高血中濃度を示し、その後比較的速やかに体外に排出される。これに対し、当該カンプトテシン誘導体結合ブロック共重合体は、有効成分である7-エチル-10-ヒドロキシカンプトテシンを徐放的に解離させるため、投与後の血中において有効成分の血中濃度をあまり上げず、持続的な血中濃度推移を示すことを特徴とする製剤である。
 また、当該カンプトテシン誘導体結合ブロック共重合体におけるポリエチレングリコールセグメントは、親水性である。一方、ポリグルタミン酸セグメントが疎水性のカンプトテシン誘導体を具備するため、水溶液中で該ポリグルタミン酸セグメント同士の疎水性相互作用に基づく会合性を有する。このため、該ブロック共重合体の水溶液は、疎水性のポリグルタミン酸セグメントが会合性凝集体によるコア部を形成し、その周りを親水性のポリエチレングリコールセグメントが覆って外殻をなしてシェル層を形成したコア‐シェル型のミセル様会合体を形成する。
 該ミセル様会合体は、レーザー光等を用いた散乱光強度測定により会合体形成を確認することができ、散乱光強度値に基づき会合体形成性を評価することができる。例えば、散乱光強度をそのまま用いて会合性凝集体の形成性の物性値として用いることができる。該ブロック共重合体の水溶液は、例えば該ブロック共重合体0.01~100mg/mLの水溶液における散乱光強度値として数千~数10万cpsを示し、会合性凝集体であることが認められる。また、散乱光強度から、ポリエチレングリコール等の高分子量標準品を基準とした該会合性凝集体の分子量を概算することがでる。該ブロック共重合体の水溶液は、総分子量として100万以上の会合性凝集体であることを算出することができる。したがって、該ナノ粒子は数10~数100分子の複数の該ブロック共重合体が会合して形成されると考えられる。また、該ブロック共重合体の水溶液は、動的光散乱分析による粒径分析によると、数ナノメートル~数100ナノメートルのナノ粒子体を形成する物性である。
 水溶液中で会合性凝集体としてナノ粒子を形成する前記ブロック共重合体は、生体内に投与されると、血中において前記の会合性ナノ粒子の状態で体内を分布する。高分子量の化合物やナノ粒子状物体は、従来用いられている低分子薬剤と比較して、生体内における薬物動態挙動や、組織分布が大きく異なる。したがって、会合性ナノ粒子を形成する前記カンプトテシン誘導体結合ブロック共重合体は、ナノ粒子の会合分子量や粒径に応じて体内滞留性や組織内分布が決定され、特に腫瘍組織において滞留して分布することが知られている。このことから、当該カンプトテシン誘導体結合ブロック共重合体は、従来の低分子カンプトテシン製剤とは薬学的に薬効発現特性及び、副作用発現特性が全く異なり、カンプトテシン誘導体の臨床上の新しい治療方法を提供できる抗腫瘍性製剤である。したがって、当該ブロック共重合体は、特定の会合性により形成される所望の会合分子量及び粒径に制御されたナノ粒子であることで、抗腫瘍剤として好ましい体内動態及び組織内分布を得ることが肝要であり、所望の会合分子量及び粒径のナノ粒子形成が、その性能発揮のための重要な品質管理項目として挙げられる。
 本発明は、前記ブロック共重合体を有効成分とする医薬製剤において、添加剤として糖類を用いることを特徴とする。該糖類は、医薬品添加剤として用いられる単糖類及び二糖類並びに糖アルコール類を用いることができる。
 単糖類及び二糖類としては、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロース、アラビノース、イソマルトース、ガラクトサミン、ガラクトース、キシロース、グルコサミン、ゲンチオビオース、コージビオース、セロビオース、ソホロース、チオグルコース、ツラノース、デオキシリボース、ニゲロース、パラチノース、フコース、マンノース、メリビオース、ラムノース、ラミナリビオース等が挙げられる。
 糖アルコール類としては、マンニトール、ソルビトール、イノシトール、キシリトール、グルコン酸マグネシウム、マルチトール、メグルミン等が挙げられる。
 用いられる糖類添加剤としては、医薬品製剤として用いられる純度であれば特に制限されることなく用いることができる。これらを1種のみ用いても良く、これらの混合物として用いても良い。
 本発明における糖類としては、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロース、マンニトール、ソルビトール、イノシトール、キシリトール、グルコン酸マグネシウムからなる群から選択される1種以上の単糖類及び二糖類並びに糖アルコール類を用いることが好ましい。これらの糖類は、当該ブロック共重合体を有効成分とする医薬製剤において、その会合性を長期間に亘り維持できる糖類添加剤である。特に好ましくは単糖類及び二糖類であり、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロースからなる群から選択される1種以上を用いることが好ましい。
 本発明の医薬製剤において、前記糖類は、前記ブロック共重合体のカンプトテシン誘導体含有量1質量部に対して、10~500質量部で用いることが好ましい。該糖類がカンプトテシン誘導体に対して10質量部より低用量であると、該ブロック共重合体の会合性維持の安定化効果が十分に得られない懸念がある。一方、安定化効果の点で、該糖類の使用量の上限は特に問題はないが、医薬製剤としての用量の妥当性から、500質量部程度にすることが好ましい。より好ましくは、前記ブロック共重合体のカンプトテシン誘導体含有量1質量部に対して、20~500質量部であり、20~300質量部で用いることが特に好ましい。
 また、前記糖類は、前記ブロック共重合体1質量部に対して2~100質量部で用いることが好ましい。より好ましくは、前記ブロック共重合体1質量部に対して、4~100質量部であり、4~60質量部で用いることが特に好ましい。
 本発明は、前記カンプトテシン誘導体結合ブロック共重合体を有効成分として含有する医薬製剤であり、該ブロック共重合体を、任意の含有量で所定の製剤形に充填された医薬単位製剤に関する発明である。
 医薬製剤を調製する場合、通常、医薬品として許容される添加剤を用い、有効成分の化学安定性を考慮して長期保存に耐用できるような製剤処方が検討される。本発明の前記カンプトテシン誘導体結合ブロック共重合体を有効成分とした医薬製剤の場合、水溶液とした際のナノ粒子形成性が重要品質管理項目であることから、ナノ粒子形成性の安定性も考慮した製剤化の処方を行う必要がある。
 本発明のカンプトテシン誘導体結合ブロック共重合体を有効成分とする医薬製剤の会合体形成性は、例えば、レーザー散乱光強度を計測できる測定機器により、その散乱光強度を指標に、該会合体の形成性を評価することができる。
 具体的には、カンプトテシン誘導体結合ブロック共重合体を含有する該医薬製剤の水溶液を測定試料として用い、該試料の散乱光強度の測定値を該会合体の形成性の物性値として用いてもよい。
 散乱光強度分析の測定機器としては、例えば、大塚電子社製ダイナミック光散乱光度計DLS-8000DLを用いて測定することができる。
 当該カンプトテシン誘導体結合ブロック共重合体を有効成分とする医薬製剤の保存安定性の評価方法として、該医薬製剤を遮光下、40℃で4週間保存して、該医薬製剤の散乱光強度分析を行い、その散乱光強度値の変化の程度を該会合体形成性の変化率と見なして評価する。
 本発明のカンプトテシン誘導体結合ブロック共重合体を有効成分とする医薬製剤は、該医薬製剤を遮光下、40℃で4週間保存した場合において、会合体分子量を指標とした会合体形成変化比率が20%以下であることを特徴とする。会合体形成性を特徴とする医薬品は、製剤の保存中に会合体形成性が著しく低下して、所望の会合性ナノ粒子が形成できない場合、当該カンプトテシン誘導体結合ブロック共重合体の有効性が低下する問題が生じる。このため、医薬品製剤として、保存状態下で会合体形成性が低下しない製剤であることが必要である。
 本発明における会合体形成変化率とは、該ブロック共重合体を含有する医薬製剤の散乱光強度値の初期値に対する、40℃で4週間保存した後の散乱光強度測定値の増減率の絶対値である。本発明において、会合体形成変化比率は、用いる糖類の種類及び用量により決定される。したがって、散乱光強度分析値を指標に、糖類の種類及び用量を適宜調整して、本発明に係る医薬製剤を調製することができる。本発明の医薬製剤は、会合体形成変化比率が10%以下であることがより好ましい。
 また、本発明の医薬製剤は、該ブロック共重合体の結合カンプトテシン誘導体の遊離が抑制された化学的安定性を示す効果を有する。すなわち、当該医薬製剤において、結合カンプトテシン誘導体が解離して生じる遊離カンプトテシン誘導体は、不純物に該当し極力低減することが望まれる。本発明の医薬製剤は、結合カンプトテシン誘導体の解離を抑制する化学的安定性に優れ、有効成分含量低下を抑制し、製剤保存安定性に優れた性能を有する。
 本発明の医薬製剤は、当該ブロック共重合体のカンプトテシン誘導体の遊離量を指標としたカンプトテシン誘導体遊離変化比率を評価した場合、該医薬製剤を遮光下、40℃で4週間保存した場合において、該ブロック共重合体のカンプトテシン誘導体結合変化比率が8.0倍以下である。前記カンプトテシン誘導体遊離比率はイニシャル時のカンプトテシン誘導体遊離率に対する40℃で4週間保存した後のカンプトテシン誘導体遊離率の比率で表す。なお、カンプトテシン誘導体の遊離量は、当該医薬製剤を試料として、高速液体クロマトグラフィー(HPLC)法により定量分析することができる。本発明において、カンプトテシン誘導体遊離変化比率は、用いる糖類の種類及び用量により決定される。したがって、遊離カンプトテシン誘導体量を指標に、糖類の種類及び用量を適宜調整して、本発明に係る医薬製剤を調製することができる。本発明の医薬製剤は、カンプトテシン誘導体遊離変化比率が5.0倍以下であることがより好ましい。
 本発明のカンプトテシン誘導体結合ブロック共重合体を有効成分とする医薬製剤として、会合体変化率が少ない製剤保存安定性に優れた医薬製剤を調製するためには、前記医薬製剤を前記カンプトテシン誘導体含量濃度で1mg/mLの水溶液とした場合における、該水溶液のpHが3.0~6.0であることが望ましい。
 本発明の医薬製剤を、pHを3.0~6.0にするためには、pH調整剤を使用することが挙げられる。pH調整剤としては、医薬品添加剤として用いることができる酸であれば、特に限定されることなく用いることができ、例えば塩酸、硫酸、リン酸、クエン酸、酒石酸、リンゴ酸、メシル酸、トシル酸、ベシル酸等を挙げることができる。これらの酸性添加剤を主成分として、これにアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩を含んだ緩衝剤を用いても良い。
 好ましくは、塩酸、リン酸、クエン酸、酒石酸であり、該医薬製剤の水溶液としてpHが3.0~5.0に設定されるよう適当な添加量にて用いることが好ましい。
 本発明の医薬製剤は、注射用又は点滴用の血管内投与される製剤であることが好ましく、静脈内投与できる注射用製剤であることが好ましい。製剤形としては、凍結乾燥製剤、用時に希釈して注射溶液を調製できる注射液製剤、そのまま投与可能な希釈溶液製剤等の製剤型であることが好ましい。
 すなわち、医薬品として投与する場合において、通常、水、生理食塩水、5%ブドウ糖又はマンニトール水溶液、水溶性有機溶媒(例えばグリセロール、エタノール、ジメチルスルホキシド、N-メチルピロリドン、ポリエチレングリコール、クレモフォア等の単一溶媒又はこれらの混合溶媒)等を用いて当該医薬製剤の溶液として使用される。
 当該カンプトテシン誘導体結合ブロック共重合体の化学的安定性及び会合体形成安定性を考慮すると、凍結乾燥製剤であることが好ましい。
 本発明の医薬製剤には、通常使用されている薬学的に許容される添加剤を含有しても良い。添加剤としては、例えば結合剤、滑沢剤、崩壊剤、溶剤、賦形剤、可溶化剤、分散剤、安定化剤、懸濁化剤、保存剤、無痛化剤、色素、香料が使用できる。
 凍結乾燥製剤とする場合は、医薬有効成分であるカンプトテシン誘導体結合ブロック共重合体を、任意の製剤用添加剤と共に水溶液を調製し、該水溶液のpHを調整された薬液とする。これを好ましくは濾過滅菌を施した後、製剤バイアルに分注し、凍結乾燥することで凍結乾燥製剤を作成することができる。pHの調整には、pH調整剤を用いても良く、有効成分として側鎖が遊離カルボン酸のグルタミン酸ユニットを含む該カンプトテシン誘導体結合ブロック共重合体を用いて、有効成分自体でpH調整を行っても良い。
 一方、注射液製剤とする場合は、該ブロック共重合体に製剤用糖類添加剤と共に水溶液を調製する。その後、pHを調整した薬液として、これを好ましくは濾過滅菌を施した後、製剤容器に分注することで、注射液製剤を作成することができる。pHの調整には、pH調整剤を用いても良く、有効成分自体でpH調整を行っても良い。
 当該医薬製剤は、遮光下、40℃で4週間保存しても該水溶液で分析される散乱光強度の変化率が小さく、会合体形成率において安定で、カンプトテシン誘導体の遊離が低く、主薬安定性に優れた医薬製剤である。
 本発明のカンプトテシン誘導体結合ブロック共重合体を有効成分として含有する医薬製剤は、カンプトテシン誘導体を有効成分とする医薬品として利用できる。特に癌化学療法のための抗腫瘍剤として用いることが好ましい。
 本発明の医薬製剤の用途は、該カンプトテシン誘導体が治療効果を奏する癌腫であれば特に限定されないが、具体的には小細胞肺癌、非小細胞肺癌、子宮頸癌、卵巣癌、胃癌、結腸直腸癌、乳癌、有棘細胞癌、悪性リンパ腫、小児悪性固形腫瘍、膵臓癌、多発性骨髄腫等が挙げられる。
 本発明の医薬製剤の投与量は、患者の性別、年齢、生理的状態、病態等により当然変更されうるが、非経口的に、通常、成人1日当たり、該カンプトテシン誘導体として0.01~500mg/m(体表面積)、好ましくは0.1~250mg/mを投与する。注射による投与は、静脈、動脈、患部(腫瘍部)等に行われることが好ましい。
[合成例1]
 一般式(1)においてR=メチル基、R=アセチル基、A=トリメチレン基、R=R=イソプロピル基、d+e=24、t=273、d+eに対するdの割合が44%、eの割合が56%(Rが水酸基であるグルタミン酸ユニット含有率が30%、-N(R)CONH(R)であるグルタミン酸ユニット含有率が26%)である7-エチル-10-ヒドロキシカンプトテシン結合ブロック共重合体(化合物1)の合成。
 国際公開WO2004/39869号の記載に基づき化合物1を合成した。すなわち、メトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体(分子量12キロダルトンの片末端がメチル基、他片末端がアミノプロピル基であるメトキシポリエチレングリコール構造部分とN末端がアセチル基で修飾された重合数が24のポリグルタミン酸構造部分であり、結合基がトリメチレン基であるブロック共重合体に、7-エチル-10-ヒドロキシカンプトテシン(EHC)をジイソプロピルカルボジイミド(DIPCI)及びN,N-ジメチルアミノピリジン(DMAP)を用いて反応させ、次いでイオン交換樹脂(ダウケミカル製ダウエックス50(H)にて処理し、凍結乾燥することで化合物1を得た。
 得られた化合物1を、水酸化ナトリウム水溶液を用い、室温にて10分間加水分解した後、遊離するEHCをHPLC法により定量分析してEHC含量を求めたところ、21.0質量%であった。
[実施例1]
 注射用水を用いて、化合物1をEHC含量として1mg/mL、マルトース含量として50mg/mLの薬液を調製した。その液にリン酸を用いてpHを4に調整した後、滅菌濾過し、ガラスバイアルに3mLずつ充填して凍結乾燥した。その後、ゴム栓にて密栓し、実施例1とした。
[実施例2]
 実施例1と同様の方法によりグルコース含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例2とした。
[実施例3]
 実施例1と同様の方法によりラクトース含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例3とした。
[実施例4]
 実施例1と同様の方法によりフルクトース含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例4とした。
[実施例5]
 実施例1と同様の方法によりトレハロース含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例5とした。
[実施例6]
 実施例1と同様の方法によりスクロース含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例6とした。
[実施例7]
 実施例1と同様の方法によりマンニトール含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例7とした。
[実施例8]
 実施例1と同様の方法によりソルビトール含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例8とした。
[実施例9]
 実施例1と同様の方法によりイノシトール含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例9とした。
[実施例10]
 実施例1と同様の方法によりキシリトール含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例10とした。
[実施例11]
 実施例1と同様の方法によりグルコン酸マグネシウム含量50mg/mLの薬液を調製し、凍結乾燥した。この凍結乾燥製剤をゴム栓にて密栓し,実施例11とした。
[実施例12]
 注射用水を用いて、化合物1をEHC含量として1mg/mL、マルトース含量として50mg/mLの薬液を調製した。その液にリン酸を用いてpHを3に調整した後、滅菌濾過し、ガラスバイアルに3mLずつ充填して凍結乾燥した。その後、ゴム栓にて密栓し、実施例12とした。
[実施例13]
 注射用水を用いて、化合物1をEHC含量として1mg/mL、マルトース含量として50mg/mLの薬液を調製した。その液にリン酸を用いてpHを5に調整した後、滅菌濾過し、ガラスバイアルに3mLずつ充填して凍結乾燥した。その後、ゴム栓にて密栓し、実施例13とした。
[実施例14]
 注射用水を用いて、化合物1をEHC含量として1mg/mL、マルトース含量として25mg/mLの薬液を調製した。その液にリン酸を用いてpHを4に調整した後、滅菌濾過し、ガラスバイアルに3mLずつ充填して凍結乾燥した。その後、ゴム栓にて密栓し、実施例14とした。
[実施例15]
 注射用水を用いて、化合物1をEHC含量として1mg/mL、マルトース含量として100mg/mLの薬液を調製した。その液にリン酸を用いてpHを4に調整した後、滅菌濾過し、ガラスバイアルに3mLずつ充填して凍結乾燥した。その後、ゴム栓にて密栓し、実施例15とした。
[比較例1]
 注射用水を用いて、化合物1をEHC含量として1mg/mL、の薬液を調製した。その液にリン酸を用いてpHを4に調整した後、滅菌濾過し、ガラスバイアルに3mLずつ充填して凍結乾燥した。その後、ゴム栓にて密栓し、比較例1とした。
試験例1:40℃/4週間保存条件下の実施例及び比較例の会合性凝集体の散乱光強度変化
 実施例1~15及び比較例1の凍結乾燥直後の製剤に注射用水3mLを加え、各EHC含量として1mg/mL溶液を調製した。この溶液のpHを測定した。その後、更に注射用水を3mL添加した。この溶液中の会合性凝集体の散乱光量を静的光散乱法(SLS法)により測定した。これをイニシャル時の散乱光量とした。測定機器及び測定条件を以下に示した。
 別に、実施例1~15及び比較例1の凍結乾燥製剤を、遮光下40℃で4週間保存した。その後、各実施例及び比較例に注射用水3mLを加え,溶液pHを測定した。その後、上記イニシャル時と同様の試料調製を行い、各凍結乾燥製剤の溶液中の会合性凝集体の散乱光量を測定した。
 イニシャル時の溶液pH及び散乱光量、並びに40℃/4週間保存後の溶液pH及び散乱光量の測定結果を表1にまとめた。
 測定機器及び測定条件
 光散乱光度計:DLS-8000DL(大塚電子社製)
 コントラローラ:LS-81(大塚電子社製)
ポンプコントラローラ:LS-82(大塚電子社製)
 高感度示差屈折計:DRM-3000(大塚電子社製)
 循環恒温槽:LAUDA E200
 波長:632.8nm(He-Ne)
 角度:90°
 Ph1:OPEN
 Ph2:SLIT
 ND Filter:10%
 ダストカット設定:10
Figure JPOXMLDOC01-appb-T000004
 試験例1の結果から、糖類、糖アルコール及び糖誘導体を添加した実施例1~15の散乱光量の変化率は40℃/4週間保存時点では14.2%以下で、添加剤なしの比較例1の散乱光量の変化率は40℃/4週間保存時点で24.7%と大きい。これより、糖類または糖アルコールを添加したことで、製剤保存下において、有効成分であるカンプトテシン誘導体結合ブロック共重合体の会合性凝集体の形成性に変化が少なく安定な製剤を調製できることが認められた。
試験例2;製剤安定性試験(カンプトテシン誘導体遊離比率)
 実施例1~15及び比較例の凍結乾燥製剤を遮光下、40℃で4週間保存した。その後、各医薬組成物の遊離EHCをHPLC法により定量分析し、製剤安定性を評価した。結果を表2にまとめた。なお遊離EHCの度合いは40℃で4週間保存した後の遊離EHC量をイニシャル時の値で割った遊離EHC変化比率として表した。測定結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000005
 試験例2の結果から、EHCを結合させたブロック共重合体である化合物1は、マンニトール、ソルビトール、イノシトール、キシリトール、グルコン酸マグネシウムなどの糖アルコール及び糖誘導体の添加により、EHCの解離が抑制され、安定化製剤として好ましい。マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロースなどの糖類の添加により、EHCの解離がより抑制され、安定化製剤としてより好ましい。また、化合物1に対して糖類、糖アルコール及び糖誘導体を5~21質量倍の添加量において、顕著な安定化効果を奏することが示された。

Claims (7)

  1.  ポリエチレングリコールセグメントとカンプトテシン誘導体が結合したグルタミン酸ユニットを含むポリグルタミン酸セグメントとが連結したブロック共重合体及び糖類を含有する医薬製剤であって、
    前記ブロック共重合体は、一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示し、Aは炭素数(C1~C6)アルキレン基であり、Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アシル基及び置換基を有していてもよい炭素数(C1~C6)アルコキシカルボニル基からなる群から選択される1種を示し、Rは水酸基及び/または-N(R)CONH(R)を示し、前記R及び前記Rは同一でも異なっていてもよく三級アミノ基で置換されていてもよい炭素数(C1~C8)アルキル基を示し、Rは水素原子、置換基を有していてもよい炭素数(C1~C6)アルキル基及び置換基を有していてもよいシリル基からなる群から選択される1種を示し、Rは水素原子又は置換基を有していてもよい炭素数(C1~C6)アルキル基を示し、tは45~450の整数を示し、d及びeはそれぞれ整数であり、d+eは6~60の整数を示し、d+eに対するdの割合が1~100%、eの割合が0~99%であり、前記ポリグルタミン酸セグメントは、カンプトテシン誘導体が結合したグルタミン酸ユニットとR基が結合したグルタミン酸ユニットがそれぞれ独立して、ランダムに配列したポリグルタミン酸セグメント構造である。]で表されるブロック共重合体であり、
    前記医薬製剤は、水溶液中において複数の前記ブロック共重合体による会合体を形成する物性であり、前記医薬製剤を遮光下40℃で4週間保存した後において、前記医薬製剤の前記会合体の散乱光強度変化率が20%以下である医薬製剤。
  2.  前記医薬製剤を前記カンプトテシン誘導体含量濃度で1mg/mLの水溶液とした場合における、該水溶液のpHが3.0~6.0である、請求項1に記載の医薬製剤。
  3.  pH調整剤を含有する請求項1又は2に記載の医薬製剤。
  4.  前記糖類が、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロース、マンニトール、ソルビトール、イノシトール、キシリトール、グルコン酸マグネシウムからなる群から選択される1種以上の糖及び糖アルコールである、請求項1~3の何れか一項に記載の医薬製剤。
  5.  前記糖類が、マルトース、グルコース、ラクトース、フルクトース、トレハロース、スクロースからなる群から選択される1種以上の糖及び糖アルコールである、請求項4に記載の医薬製剤。
  6.  前記ブロック共重合体のカンプトテシン誘導体含有量が1質量部に対し、前記糖類を10~500質量部含有する請求項1~5の何れか一項に記載の医薬製剤。
  7.  凍結乾燥製剤である請求項1~6の何れか一項に記載の医薬製剤。
     
PCT/JP2016/074762 2015-09-03 2016-08-25 カンプトテシン類高分子誘導体を含有する医薬組成物 WO2017038607A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16841639.4A EP3345654A4 (en) 2015-09-03 2016-08-25 PHARMACEUTICAL COMPOSITION COMPRISING A CAMPTOTHECINPOLYMER DERIVATIVE
US15/752,923 US10543281B2 (en) 2015-09-03 2016-08-25 Pharmaceutical composition containing camptothecin polymer derivative
AU2016314090A AU2016314090A1 (en) 2015-09-03 2016-08-25 Pharmaceutical composition containing camptothecin polymer derivative
RU2018102756A RU2726415C2 (ru) 2015-09-03 2016-08-25 Фармацевтическая композиция, содержащая полимерное производное камптотецина
CN201680048457.7A CN107921040A (zh) 2015-09-03 2016-08-25 含有喜树碱类高分子衍生物的药物组合物
KR1020187001777A KR20180039628A (ko) 2015-09-03 2016-08-25 캄프토테신류 고분자 유도체를 함유하는 의약 조성물
CA2995053A CA2995053A1 (en) 2015-09-03 2016-08-25 Pharmaceutical composition containing camptothecin polymer derivative
JP2017537793A JP6735759B2 (ja) 2015-09-03 2016-08-25 カンプトテシン類高分子誘導体を含有する医薬組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-173755 2015-09-03
JP2015173755 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017038607A1 true WO2017038607A1 (ja) 2017-03-09

Family

ID=58187494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074762 WO2017038607A1 (ja) 2015-09-03 2016-08-25 カンプトテシン類高分子誘導体を含有する医薬組成物

Country Status (10)

Country Link
US (1) US10543281B2 (ja)
EP (1) EP3345654A4 (ja)
JP (1) JP6735759B2 (ja)
KR (1) KR20180039628A (ja)
CN (1) CN107921040A (ja)
AU (1) AU2016314090A1 (ja)
CA (1) CA2995053A1 (ja)
RU (1) RU2726415C2 (ja)
TW (1) TW201709935A (ja)
WO (1) WO2017038607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191843A1 (ja) * 2016-05-06 2017-11-09 一般財団法人バイオダイナミックス研究所 高分子化薬物含有医薬組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797182B2 (ja) * 2016-03-01 2020-12-09 日本化薬株式会社 カンプトテシン類高分子誘導体を含有する医薬製剤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005855A1 (fr) * 2000-07-13 2002-01-24 Daiichi Pharmaceutical Co., Ltd. Compositions pharmaceutiques contenant des composes dds
WO2004039869A1 (ja) * 2002-10-31 2004-05-13 Nippon Kayaku Kabushiki Kaisha カンプトテシン類の高分子誘導体
JP2005523329A (ja) * 2002-04-16 2005-08-04 田辺製薬株式会社 カンプトテシン誘導体含有水性製剤およびそれを凍結乾燥した医薬組成物
WO2011049042A1 (ja) * 2009-10-21 2011-04-28 日本化薬株式会社 腹腔内投与用の抗がん剤含有ブロック共重合体、ミセル調製物及びそれを有効成分とする癌治療薬

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489592A (zh) 2006-07-19 2009-07-22 日本化药株式会社 考布他汀的高分子量偶联物
JP5548364B2 (ja) 2006-10-03 2014-07-16 日本化薬株式会社 レゾルシノール誘導体の高分子結合体
US8334364B2 (en) 2006-11-06 2012-12-18 Nipon Kayaku Kabushiki Kaisha High-molecular weight derivative of nucleic acid antimetabolite
JP2011162569A (ja) 2008-05-23 2011-08-25 Nano Career Kk カンプトテシン高分子誘導体及びその用途
KR101650907B1 (ko) 2008-06-24 2016-08-24 나노캐리어 가부시키가이샤 시스플라틴 배위 화합물의 액체 조성물
JP6461088B2 (ja) * 2014-02-19 2019-01-30 日本化薬株式会社 高分子化カンプトテシン誘導体及び高分子化hsp90阻害剤誘導体を含む医薬組成物
AU2015369185B2 (en) * 2014-12-26 2020-10-22 Nippon Kayaku Kabushiki Kaisha Pharmaceutical preparation of camptothecin-containing polymer derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005855A1 (fr) * 2000-07-13 2002-01-24 Daiichi Pharmaceutical Co., Ltd. Compositions pharmaceutiques contenant des composes dds
JP2005523329A (ja) * 2002-04-16 2005-08-04 田辺製薬株式会社 カンプトテシン誘導体含有水性製剤およびそれを凍結乾燥した医薬組成物
WO2004039869A1 (ja) * 2002-10-31 2004-05-13 Nippon Kayaku Kabushiki Kaisha カンプトテシン類の高分子誘導体
WO2011049042A1 (ja) * 2009-10-21 2011-04-28 日本化薬株式会社 腹腔内投与用の抗がん剤含有ブロック共重合体、ミセル調製物及びそれを有効成分とする癌治療薬

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345654A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191843A1 (ja) * 2016-05-06 2017-11-09 一般財団法人バイオダイナミックス研究所 高分子化薬物含有医薬組成物
AU2017259576B2 (en) * 2016-05-06 2020-09-17 Biodynamic Research Foundation Polymerized drug-containing pharmaceutical composition
US11464866B2 (en) 2016-05-06 2022-10-11 Biodynamic Research Foundation Pharmaceutical composition containing macromolecular drug

Also Published As

Publication number Publication date
RU2018102756A (ru) 2019-10-07
KR20180039628A (ko) 2018-04-18
EP3345654A4 (en) 2019-05-08
TW201709935A (zh) 2017-03-16
AU2016314090A1 (en) 2018-02-15
CA2995053A1 (en) 2017-03-09
CN107921040A (zh) 2018-04-17
RU2018102756A3 (ja) 2019-10-07
JPWO2017038607A1 (ja) 2018-06-21
EP3345654A1 (en) 2018-07-11
RU2726415C2 (ru) 2020-07-14
US10543281B2 (en) 2020-01-28
JP6735759B2 (ja) 2020-08-05
US20180236091A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6590995B2 (ja) カンプトテシン類高分子誘導体の医薬製剤
JP4745664B2 (ja) カンプトテシン類の高分子誘導体
JP6735759B2 (ja) カンプトテシン類高分子誘導体を含有する医薬組成物
WO2011049042A1 (ja) 腹腔内投与用の抗がん剤含有ブロック共重合体、ミセル調製物及びそれを有効成分とする癌治療薬
JP6797182B2 (ja) カンプトテシン類高分子誘導体を含有する医薬製剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537793

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001777

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2995053

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016314090

Country of ref document: AU

Date of ref document: 20160825

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15752923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE