Nothing Special   »   [go: up one dir, main page]

WO2017020381A1 - 背光模组及背光模组的制备方法 - Google Patents

背光模组及背光模组的制备方法 Download PDF

Info

Publication number
WO2017020381A1
WO2017020381A1 PCT/CN2015/088426 CN2015088426W WO2017020381A1 WO 2017020381 A1 WO2017020381 A1 WO 2017020381A1 CN 2015088426 W CN2015088426 W CN 2015088426W WO 2017020381 A1 WO2017020381 A1 WO 2017020381A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
guide plate
light
light guide
module
Prior art date
Application number
PCT/CN2015/088426
Other languages
English (en)
French (fr)
Inventor
郑颖博
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2017020381A1 publication Critical patent/WO2017020381A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the invention relates to the field of flat display, in particular to a backlight module backlight module and a method for preparing the backlight module.
  • the liquid crystal display device includes a liquid crystal display panel and a backlight module, and the backlight module is disposed adjacent to the liquid crystal display panel for providing a surface light source for the liquid crystal display panel.
  • the backlight module usually includes a light source and a light guide plate. Light emitted from the light source enters the light incident surface of the light guide plate and enters the light guide plate. After being diffused by the light guide plate, the light is emitted from the light exit surface of the light guide plate.
  • the liquid crystal display panel provides a surface light source. Quantum dots can achieve better imaging color because they can emit monochromatic light with concentrated spectrum, which is very pure.
  • the quantum dot application has a quantum dot film in the backlight module.
  • the quantum dot film is cut and applied to the backlight module.
  • a certain range of the edge of the quantum dot film for example, about 1 mm
  • oxygen and water in the air resulting in failure of the edge of the quantum dot film after being cut.
  • the quality of the light emitted from the edge after the quantum dot film is cut is further affected, and the performance of the display screen of the liquid crystal display device is further affected.
  • the present invention provides a backlight module, the backlight module includes a light guide plate and a quantum dot module, the light guide plate includes a light incident surface and a light exit surface, and the quantum dot module is filled with quantum dots, and the quantum dot module Buried in the light guide plate, and the quantum dot module is disposed on a light incident surface of the light guide plate and the Between the light-emitting surfaces of the light guide plate.
  • the light guide plate further includes a bottom surface disposed opposite to the light emitting surface, wherein the light incident surface respectively intersects the light emitting surface and the light emitting surface;
  • the quantum dot module includes a first surface and a second surface, a third surface and a fourth surface, the first surface is disposed opposite to the second surface, the third surface is disposed opposite to the fourth surface, and the third surface is respectively associated with the first surface and The second surfaces intersect, the fourth surface intersecting the first surface and the second surface, respectively, the first surface being disposed adjacent to the light incident surface than the second surface, The third surface is disposed adjacent to the light exiting surface, and the fourth surface is disposed adjacent to the bottom surface.
  • the third surface protrudes from the light emitting surface of the light guide plate
  • the fourth surface protrudes from the bottom surface of the light guide plate.
  • the first surface is parallel to the light incident surface of the light guide plate.
  • the material of the substrate of the light guide plate and the material of the substrate of the quantum dot module are both PMMA.
  • the invention also provides a method for preparing a backlight module, and the method for preparing the backlight module comprises:
  • the accommodating groove is disposed between the light incident surface of the light guide plate and the light emitting surface of the light guide plate, wherein the light guide plate forms a notch, and the notch communicates with the receiving Slot and the outside world;
  • the step of “curing the quantum dot colloid to form a quantum dot module” includes:
  • the quantum dot colloid is cured from the end remote from the gap toward the gap to form the quantum dot module.
  • the step of "curing the quantum dot colloid to form a quantum dot module” is carried out in an environment of insulating water and oxygen.
  • the accommodating groove is formed on the light guide plate, and the accommodating groove is disposed between the light incident surface of the light guide plate and the light emitting surface of the light guide plate, and a gap is formed on the light guide plate.
  • the gap is connected between the accommodating groove and the outside, and the step of inserting the quantum dot by the notch into the accommodating groove.
  • the preparation method of the backlight module further includes:
  • the quantum dot powder is mixed into an acrylic resin to prepare a quantum dot suspension colloid
  • the quantum dot suspension colloid uniformly mixed is subjected to centrifugal defoaming treatment.
  • the step of “sealing the gap” includes:
  • a sealing gel is filled into the notch to seal the gap using a dispenser, the material of the sealing gel being the same as the material of the light guide plate.
  • the backlight module of the present invention embeds the quantum dot module in the light guide plate, and the quantum dot module is disposed between the light incident surface and the light exit surface of the light guide plate.
  • the quantum dot module is not exposed to the air, and thus is not reacted by oxygen and water vapor in the air, so that the quality of the light emitted through the backlight module is better, and further, the backlight is used.
  • the liquid crystal display device of the module has a better display screen.
  • FIG. 1 is a schematic structural view of a backlight module according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along line I-I of FIG. 1.
  • FIG. 3 is a schematic structural diagram of a backlight module according to another preferred embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view along line III-III of FIG. 3.
  • FIG. 5 is a flow chart of a method for fabricating a backlight module according to a preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a backlight module according to a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view along I-I of FIG.
  • the backlight module 10 includes a light guide plate 100 and a quantum dot module 200.
  • the light guide plate 100 includes a light incident surface 110 and a light exit surface 120.
  • the quantum dot module 200 is filled with quantum dots.
  • the quantum dot module 200 is buried in the light guide plate 100, and the quantum dot module 200 is included. It is disposed between the light incident surface 110 of the light guide plate 100 and the light emitting surface 120 of the light guide plate 100.
  • the side-lighting type backlight module that is, the light source in the backlight module is located on the side of the light guide plate 100, the side of the light guide plate 100 adjacent to the light source is the light-incident surface, and the side-in-light backlight module
  • the light incident surface of the light guide plate 100 intersects the light exit surface.
  • the light-incident surface 110 is located at one side of the light-guiding plate 100.
  • the light-guiding plate 100 further includes a bottom surface 130.
  • the light-incident surface 110 intersects the light-emitting surface 120 and the bottom surface 130, respectively. 120 is disposed opposite to the bottom surface 130.
  • the quantum dot module 200 is embedded in the light guide plate 100 , and the quantum dot module 200 is disposed between the light incident surface 110 of the light guide plate 100 and the light exit surface 120 of the light guide plate 100 .
  • the quantum dot module 200 described herein is embedded in the light guide plate 100, which means that the quantum dot film 200 is completely covered in the light guide plate 100.
  • the light guide plate 100 is applied to the side-lit backlight module as an example.
  • the light guide plate 100 can also be applied to a direct-type backlight module.
  • the direct-lit backlight module that is, the light source in the backlight module is disposed on the bottom surface of the light guide plate.
  • the bottom surface of the light guide plate 100 adjacent to the light source is also a light-incident surface
  • the direct-lit backlight module In the group, the light incident surface of the light guide plate is disposed opposite to the light emitting surface.
  • the quantum dot module 200 is also disposed between the light incident surface of the light guide plate 100 and the light exit surface of the light guide plate 100.
  • the light guide plate 100 is formed by an injection molding process, and the material of the light guide plate 100 is polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • a corresponding design can be made in the mold for preparing the light guide plate 100 to prepare the light guide plate 100 having the accommodating cavity, and the quantum dot module is embedded in the accommodating cavity of the light guide plate 100 200.
  • the PMMA material has strong hygroscopicity and has good airtightness. Therefore, selecting the material of the light guide plate 100 as PMMA can prevent the influence of moisture on the quantum dot module 200 to prevent the Quantum dot module 200 fails in reaction with water and oxygen. In addition, since the quantum dots are easily quenched by heat at high temperatures, the quantum dot module 200 is thermally deactivated.
  • the thermal conductivity of the PMMA material is weak, and the material of the light guide plate 100 is selected as PMMA. Therefore, when the light source is disposed adjacent to the light incident surface 110 of the light guide plate 100, the light guide plate 100 can be well. The heat emitted by the light source is isolated to avoid quenching of quantum dots in the quantum dot module 200 when heated. At the same time, the PMMA material has a good UV transmittance. Therefore, the light guide plate 100 is not suitable for yellowing and yellowing when the quantum dot module 200 is subsequently formed.
  • the material of the substrate in the quantum dot module 200 is the same as the material of the light guide plate 100, that is, the material of the quantum dot module 200 in the embodiment is also PMMA, and the refractive index of the PMMA substrate.
  • the stability is 1.49.
  • the material of the quantum dot module 200 and the material of the light guide plate 100 are the same, there is no refractive index difference between the quantum dot module 200 and the light guide plate 100. Therefore, light is from the light guide plate 100.
  • the material enters the quantum dot module 200 or is emitted from the quantum dot module 200 into the light guide plate 100 the light transmission path is not affected by the interface between the quantum dot module 200 and the light guide plate 200. Therefore, the light is not lost when the material of the light guide plate 100 enters the quantum dot module 200 or is emitted from the quantum dot module 200 into the light guide plate 100.
  • the quantum dot module 200 includes quantum dot powder.
  • a process of the quantum dot module 200 is simply described as follows.
  • the quantum dot powder is mixed in a substrate (for example, an acrylic resin, preferably, PMMA) to form a quantum dot suspension colloid, and the quantum dot suspension colloid is cured.
  • the process is followed by formation of a quantum dot module 200.
  • the curing process can be cured by irradiation with UV light.
  • the quantum dot module 200 can illuminate the quantum dots of the quantum dot module 200 to emit high-color solid light rays, and the light emitted by the light source and the high-color solid color light excited by the quantum dot module 200 are excited. The light is mixed to produce a high-color white light. Quantum dots, however, can be used to convert light rays emitted by light emitting diodes to produce light in the visible or infrared regions.
  • a quantum dot is a nanocrystal having a diameter smaller than a bulk radius of a bulk exciton. Due to the quantum confinement effect, the energy difference between the electronic states of a quantum dot is a function of both the composition and the physical size of the quantum dot.
  • Quantum dots absorb all wavelengths shorter than the absorption peak wavelength and emit light at longer wavelengths. 2nmCdSe quantum dots are emitted in the blue region of the visible spectrum, while 10nmCdSe quantum dots are in the visible spectrum Launched in the red area.
  • the application of quantum dots to display technology can produce high-quality red/green monochromatic light with concentrated spectrum and very pure color by means of quantum dots, completely surpassing the fluorescent light-emitting characteristics of conventional LED backlights to achieve better imaging color. Therefore, quantum dot display technology is regarded as the best solution to effectively improve the display color gamut value in the future, and it is a new technical wind vane in the global display industry.
  • the quantum dot module 200 includes a first surface 210, a second surface 220, a third surface 230, and a fourth surface 240.
  • the first surface 210 is disposed opposite to the second surface 220
  • the third surface 230 is disposed opposite to the fourth surface 240
  • the third surface 230 is respectively associated with the first surface 210 and the
  • the second surface 220 intersects the first surface 210 and the second surface 220, respectively, the first surface 210 is adjacent to the light incident surface compared to the second surface 220
  • the third surface 230 is disposed adjacent to the light emitting surface 120
  • the fourth bottom surface 240 is disposed adjacent to the bottom surface 130 .
  • the third surface 230 protrudes from the light emitting surface 120 of the light guide plate 100 , and/or the fourth surface 240 protrudes from the bottom surface 130 of the light guide plate 100 .
  • the third surface 230 protrudes from the light emitting surface 120 of the light guide plate 100, and the fourth surface 240 is flush with the bottom surface 130 of the light guide plate, thereby guiding the guide
  • the light panel 100 and the quantum dot module 200 form an inverted "T".
  • the area of the quantum dot module 200 adjacent to the light exit surface 120 is increased. Therefore, from the backlight module 10 When the light emitted by the light source enters the light guide plate 100, it can better interact with the quantum dots in the quantum dot module 200 to improve the performance of the light emitted from the quantum dot module 200.
  • the third surface 230 is flush with the light emitting surface 120 of the light guide plate 100 , and the fourth surface 240 protrudes from the bottom surface 130 of the light guide plate 100 .
  • the light guide plate 110 and the quantum dot module 200 form a "T" word.
  • the area of the quantum dot module 200 adjacent to the light exit surface 120 is increased, and therefore, the light source from the backlight module 10 is emitted.
  • the light enters the light guide plate 100 it can better interact with the quantum dots in the quantum dot module 200 to improve the performance of the light emitted from the quantum dot module 200.
  • the third surface 230 protrudes from the light emitting surface 120 of the light guide plate 100
  • the fourth surface 240 protrudes from the bottom surface 130 of the light guide plate 100 .
  • the light guide plate 110 and the quantum dot module 200 form a "ten" word.
  • the light guide plate 100 and the quantum dot module 200 is designed to be "ten"
  • the area of the quantum dot module 200 adjacent to the light emitting surface 120 is increased, and therefore, light emitted from the light source of the backlight module 10 enters the
  • the light guide plate 100 can better interact with the quantum dots in the quantum dot module 200 to improve the performance of light emitted from the quantum dot module 200.
  • the first surface 210 is parallel to the light incident surface 110 of the light guide plate 100.
  • the first surface 210 is parallel to the light incident surface 110 of the light guide plate 100, there is no between the light incident surface 110 of the light guide plate 100 and the first surface 210 of the quantum dot module 200.
  • An angle is formed to avoid entering the quantum dot module 200 due to the presence of an angle when the light entering from the light incident surface 110 of the light guide plate 100 re-enters the first surface 210 of the quantum dot module 200
  • the brightness of the portion of the rear light guide plate 100 is different.
  • the light guide plate 100 is integrally formed with the quantum dot module 200.
  • FIG. 3 is a schematic structural view of a backlight module according to another preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional structural view along III-III of FIG.
  • the backlight module 10 includes a light guide plate 100 and a quantum dot module 200.
  • the light guide plate 100 includes a light incident surface 110 and a light exit surface 120.
  • the quantum dot module 200 is filled with quantum dots.
  • the quantum dot module 200 is buried in the light guide plate 100, and the quantum dot module 200 is included. It is disposed between the light incident surface 110 of the light guide plate 100 and the light emitting surface 120 of the light guide plate 100.
  • the light guide plate 100 is applied to a side-lit backlight module as an example for description.
  • the side-lighting type backlight module that is, the light source in the backlight module is located on the side of the light guide plate 100, the side of the light guide plate 100 adjacent to the light source is the light-incident surface, and the side-in-light backlight module
  • the light incident surface of the light guide plate 100 intersects the light exit surface.
  • the light-incident surface 110 is located at one side of the light-guiding plate 100.
  • the light-guiding plate 100 further includes a bottom surface 130.
  • the light-incident surface 110 intersects the light-emitting surface 120 and the bottom surface 130, respectively. 120 is disposed opposite to the bottom surface 130.
  • the quantum dot module 200 is embedded in the light guide plate 100 , and the quantum dot module 200 is disposed between the light incident surface 110 of the light guide plate 100 and the light exit surface 120 of the light guide plate 100 .
  • the quantum dot module 200 described herein is embedded in the light guide plate 100, which means that the quantum dot film 200 is completely covered in the light guide plate 100.
  • the light guide plate 100 is applied to the side of the side light type in the above embodiment.
  • the optical module is described as an example.
  • the light guide plate 100 can also be applied to a direct type backlight module.
  • the direct-lit backlight module that is, the light source in the backlight module is disposed on the bottom surface of the light guide plate.
  • the bottom surface of the light guide plate 100 adjacent to the light source is also a light-incident surface, and the direct-lit backlight module In the group, the light incident surface of the light guide plate is disposed opposite to the light emitting surface.
  • the quantum dot module 200 is also disposed between the light incident surface of the light guide plate 100 and the light exit surface of the light guide plate 100.
  • the light guide plate 100 is formed by an injection molding process, and the material of the light guide plate 100 is polymethyl methacrylate. A corresponding design can be made in the mold for preparing the light guide plate 100 to prepare the light guide plate 100 having the accommodating cavity, and the quantum dot module is embedded in the accommodating cavity of the light guide plate 100 200.
  • the PMMA material has strong hygroscopicity and has good airtightness. Therefore, selecting the material of the light guide plate 100 as PMMA can prevent the influence of moisture on the quantum dot module 200 to prevent the The quantum dot module 200 fails in reaction with water and oxygen. In addition, since the quantum dots are easily quenched by heat at high temperatures, the quantum dot module 200 is thermally deactivated.
  • the thermal conductivity of the PMMA material is weak, and the material of the light guide plate 100 is selected as PMMA. Therefore, when the light source is disposed adjacent to the light incident surface 110 of the light guide plate 100, the light guide plate 100 can be well. The heat emitted by the light source is isolated to avoid quenching of quantum dots in the quantum dot module 200 when heated. At the same time, the PMMA material has a good UV transmittance. Therefore, the light guide plate 100 is not suitable for yellowing and yellowing when the quantum dot module 200 is subsequently formed.
  • the quantum dot module 200 includes quantum dot powder.
  • a process of the quantum dot module 200 is simply described as follows.
  • a quantum dot suspension colloid formed by mixing a quantum dot powder in a substrate for example, an acrylic resin, preferably, PMMA
  • a quantum dot suspension colloid is subjected to a curing process.
  • a quantum dot module 200 is formed.
  • the curing process can be cured by irradiation with UV light.
  • the quantum dot module 200 includes a first surface 210, a second surface 220, a third surface 230, and a fourth surface 240.
  • the first surface 210 is disposed opposite to the second surface 220
  • the third surface 230 is disposed opposite to the fourth surface 240
  • the third surface 230 is respectively associated with the first surface 210 and the
  • the second surface 220 intersects the first surface 210 and the second surface 220, respectively, the first surface 210 is adjacent to the light incident surface compared to the second surface 220 110, the third surface 230 is disposed adjacent to the light emitting surface 120, the fourth The bottom surface 240 is disposed adjacent to the bottom surface 130.
  • the third surface 230 protrudes from the light emitting surface 120 of the light guide plate 100 , and/or the fourth surface 240 protrudes from the bottom surface 130 of the light guide plate 100 .
  • the third surface 230 protrudes from the light emitting surface 120 of the light guide plate 100, and the fourth surface 240 is flush with the bottom surface 130 of the light guide plate, thereby the light guide plate 100 and the quantum Point module 200 forms an inverted "T".
  • the light guide plate 100 and the quantum dot module 200 as an inverted "T"
  • the area of the quantum dot module 200 adjacent to the light exit surface 120 is increased. Therefore, from the backlight module 10 When the light emitted by the light source enters the light guide plate 100, it can better interact with the quantum dots in the quantum dot module 200 to improve the performance of the light emitted from the quantum dot module 200.
  • the third surface 230 is flush with the light emitting surface 120 of the light guide plate 100 , and the fourth surface 240 protrudes from the bottom surface 130 of the light guide plate 100 .
  • the light guide plate 110 and the quantum dot module 200 form a "T" word.
  • the area of the quantum dot module 200 adjacent to the light exit surface 120 is increased, and therefore, the light source from the backlight module 10 is emitted.
  • the light enters the light guide plate 100 it can better interact with the quantum dots in the quantum dot module 200 to improve the performance of the light emitted from the quantum dot module 200.
  • the third surface 230 protrudes from the light emitting surface 120 of the light guide plate 100
  • the fourth surface 240 protrudes from the light guide plate 100 .
  • the light guide plate 110 and the quantum dot module 200 form a "ten" word.
  • the area of the quantum dot module 200 adjacent to the light emitting surface 120 is increased, and therefore, the light source from the backlight module 10 is emitted.
  • the light enters the light guide plate 100 it can better interact with the quantum dots in the quantum dot module 200 to improve the performance of the light emitted from the quantum dot module 200.
  • the first surface 210 is parallel to the light incident surface 110 of the light guide plate 100.
  • the first surface 210 is parallel to the light incident surface 110 of the light guide plate 100, there is no between the light incident surface 110 of the light guide plate 100 and the first surface 210 of the quantum dot module 200.
  • An angle is formed to avoid entering the quantum dot module 200 due to the presence of an angle when the light entering from the light incident surface 110 of the light guide plate 100 re-enters the first surface 210 of the quantum dot module 200
  • the brightness of the portion of the rear light guide plate 100 is different.
  • the light guide plate 100 is integrally formed with the quantum dot module 200.
  • the backlight module 100 further includes a light source 300, a reflective sheet 400, and an optical film 500.
  • the light source 300 is disposed adjacent to the light incident surface 110 of the light guide plate 100, and the light source 300 is configured to emit a first light.
  • the light emitted from the light source 300 enters one end of the light guide plate 100 through the light incident surface 110 of the light guide plate 100.
  • the first light passes through the quantum dot module 200 to form a second light, enters the remaining portion of the light guide plate 100, and exits through the light exit surface 120 of the light guide plate 100.
  • the light source 300 is a blue light emitting diode.
  • the first light emitted by the light source 300 is blue light, and the first light is used to excite the quantum dot module 200 to generate red and green light.
  • the blue light emitted by the light source 300 is mixed with the red-green light generated by the quantum dot module 200 to generate a high-color white second light.
  • the reflective sheet 400 is disposed adjacent to the bottom surface 130 of the light guide plate 100.
  • a first light emitted from the light source 300 and a second light generated after passing through the quantum dot module 200 enter a portion of the light guide plate 100, and a portion of the first light and a portion of the second light pass through the guide.
  • the bottom surface 130 of the light panel 100 is emitted. If a part of the first light or part of the second light passes through the bottom surface 130 of the light guide plate 100, the light emitted through the light exit surface 120 is reduced. The light emitted from the backlight module 10 to the display panel in the liquid crystal display device is reduced, thereby affecting the brightness of the display panel.
  • the reflective sheet 400 is disposed on the bottom surface 130 of the light guide plate 100 such that light emitted from the bottom surface 130 of the light guide plate 100 passes through the reflection of the reflective sheet 400 to enter the light guide plate again.
  • the light emitted through the light-emitting surface 120 is increased, thereby increasing the light emitted from the backlight module 10 to the display panel of the liquid crystal display device, thereby improving the brightness of the display panel.
  • the number of the optical films 500 is at least one, and the optical film 500 is disposed adjacent to the light-emitting surface 120.
  • the optical film 500 is a brightness enhancement film for improving the light extraction efficiency of the second light emitted to the display panel in the display device.
  • the brightness enhancement film may be a normal prism sheet, a multi-function prism sheet, a micro-lens film, a reflective polarizer, or the like.
  • the backlight module 10 of the present invention embeds the quantum dot module 200 in the light guide plate 100, and the quantum dot module 200 is disposed on the light incident surface 110 of the light guide plate 100. Between the illuminating surface 120 and the illuminating surface 120, the quantum dot module 200 is not exposed to the air and thus will not be empty. The oxygen in the gas reacts with the water vapor to make the quality of the light emitted through the backlight module 10 better. Further, the liquid crystal display device using the backlight module 10 has a better display screen.
  • FIG. 5 is a flow chart of a method for fabricating a backlight module according to a preferred embodiment of the present invention.
  • the method for preparing the backlight module includes, but is not limited to, the following steps.
  • a accommodating groove is formed on the light guide plate 100.
  • the accommodating groove is disposed between the light incident surface 110 of the light guide plate 100 and the light emitting surface 120 of the light guide plate 100. a notch that communicates with the receiving groove and the outside.
  • Step S102 filling the accommodating groove with the quantum dot colloid through the notch.
  • the quantum dot colloid is a colloid formed by mixing quantum dots into a substrate such as an acrylic resin, preferably PMMA.
  • Step S103 curing the quantum dot colloid to form a quantum dot module 200.
  • the gap may be away from the gap.
  • One end of the quantum dot colloid is cured in the direction of the gap to form the quantum dot module 200.
  • the step of curing the quantum dot colloid to form the quantum dot module 200 is performed in an environment that is insulated from water and oxygen so that oxygen and water vapor in the air affect the quantum dots.
  • Step S104 sealing the gap.
  • the gap can be sealed by a dispenser using a sealing gel, and then the sealing gel that seals the gap is cured.
  • the material of the sealing gel is the same as the material of the light guide plate, and the material of the sealing gel may be UV glue.
  • the substrate into which the quantum dots are incorporated is an acrylic resin
  • the following steps are further included between the step S101 and the step S102.
  • step I the quantum dot powder is mixed into the acrylic resin to form a quantum dot suspension colloid.
  • Step II shaking and stirring the quantum dot suspension colloid to uniformly mix the quantum dot powder In the acrylic resin.
  • step III the quantum dot suspension colloid uniformly mixed is subjected to centrifugal defoaming treatment.
  • the gas in the quantum dot suspension colloid can be discharged.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组(10),其中包括导光板(100)和量子点模块(200)。导光板包括入光面(110)和出光面(120)。量子点模块埋在导光板内并设置在导光板的入光面与出光面之间,量子点模块内填充有量子点。还公开了一种背光模组的制备方法。

Description

背光模组及背光模组的制备方法
本发明要求2015年8月4日递交的发明名称为“背光模组及背光模组的制备方法”的申请号201510472526.0的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及平面显示领域,尤其涉及一种背光模组背光模组及背光模组的制备方法。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)作为一种常见的电子装置,由于其具有功耗低、体积小、质量轻等特点,而备受用户的青睐。液晶显示装置包括液晶显示面板和背光模组,所述背光模组邻近所述液晶显示面板设置,用于为所述液晶显示面板提供面光源。所述背光模组中通常包括光源及导光板,自光源发出的光线进入自所述导光板的入光面进入到导光板中,经由导光板的扩散之后由导光板的出光面出射以为所述液晶显示面板提供面光源。量子点由于能够发射出能谱集中、非常纯正的单色光,能够实现更佳的成像色彩,因此有望能够超越传统的荧光粉的荧光灯而在背光模组中得到应用。目前,量子点应用在背光模组中有量子点膜,通常,将量子点膜裁切后应用于背光模组中。然而,由于量子点的不稳定性,量子点膜被裁切后边缘一定范围(比如,1mm左右)容易与空气中的氧气和水发生反应,从而导致量子点膜被裁切后的边缘失效,进而影响量子点膜被裁切后的边缘的射出的光线的质量,进一步地影响到液晶显示装置显示画面的性能。
发明内容
本发明提供一种背光模组,所述背光模组包括导光板及量子点模块,所述导光板包括入光面、出光面,所述量子点模块内填充有量子点,所述量子点模块内埋在所述导光板内,且所述量子点模块设置在所述导光板的入光面与所述 导光板的出光面之间。
其中,所述导光板还包括与所述出光面相对设置的底面,所述入光面分别与所述出光面及所述出光面相交;所述量子点模块包括第一表面、第二表面、第三表面及第四表面,所述第一表面与所述第二表面相对设置,所述第三表面与所述第四表面相对设置,且所述第三表面分别与所述第一表面以及所述第二表面相交,所述第四表面分别与所述第一表面以及所述第二表面相交,所述第一表面相较于所述第二表面邻近所述入光面设置,所述第三表面邻近所述出光面设置,所述第四表面邻近所述底面设置。
其中,所述第三表面凸出于所述导光板的所述出光面;
和/或,所述第四表面凸出于所述导光板的所述底面。
其中,所述第一表面与所述导光板的所述入光面平行。
其中,所述导光板的基材的材质及所述量子点模块的基材的材质均为PMMA。
本发明还提供了一种背光模组的制备方法,所述背光模组的制备方法包括:
在导光板上形成容置槽,所述容置槽设置在所述导光板的入光面和导光板的出光面之间,所述导光板上形成一缺口,所述缺口连通所述容置槽与外界;
通过所述缺口往所述容置槽内填入量子点胶体;
固化所述量子点胶体,形成量子点模块;
封住所述缺口。
其中,所述步骤“固化所述量子点胶体,形成量子点模块”包括:
自远离所述缺口的一端向所述缺口的方向固化所述量子点胶体,以形成所述量子点模块。
其中,所述步骤“固化所述量子点胶体,形成量子点模块”是在隔绝水氧的环境下进行的。
其中,在所述步骤“在导光板上形成容置槽,所述容置槽设置在所述导光板的入光面和导光板的出光面之间,所述导光板上形成一缺口,所述缺口连通所述容置槽与外界”与所述步骤“通过所述缺口往所述容置槽内填入量子点胶体”之间,所述背光模组的制备方法还包括:
将量子点粉体混合入丙烯酸树脂中,制成量子点悬浮胶体;
对所述量子点悬浮胶体进行震荡搅拌,以使量子点粉体均匀混合在所述丙烯酸树脂中;
对均匀混合的所述量子点悬浮胶体进行离心脱泡处理。
其中,所述步骤“封住所述缺口”包括:
使用点胶机将封口胶体填充进所述缺口以封住所述缺口,所述封口胶体的材料与所述导光板的材料相同。
相较于现有技术,本发明的背光模组将所述量子点模块内埋在所述导光板内,且所述量子点模块设置在所述导光板的入光面和出光面之间,所述量子点模块就不会暴露在空气中,因而不会被空气中的氧气和水蒸气发生反应,从而使得经由所述背光模组出射的光线的质量较好,进一步地,使用所述背光模组的液晶显示装置的具有较好的显示画面。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一较佳实施方式的背光模组的结构示意图。
图2为图1中沿I-I的剖面结构示意图。
图3为本发明另一较佳实施方式的背光模组的结构示意图。
图4为图3中沿III-III的剖面结构示意图。
图5为本发明一较佳实施方式的背光模组的制备方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1和图2,图1为本发明一较佳实施方式的背光模组的结构示意图;图2为图1中沿I-I的剖面结构示意图。所述背光模组10包括导光板100和量子点模块200。所述导光板100包括入光面110及出光面120,所述量子点模块200内填充有量子点,所述量子点模块200内埋在所述导光板100内,且所述量子点模块200设置在所述导光板100的入光面110与所述导光板100的出光面120之间。
在本实施方式中,以导光板100应用于侧入光式的背光模组为例进行说明。所谓侧入光式的背光模组,即背光模组中的光源位于导光板100的侧面,所述导光板100邻近所述光源的侧面即为入光面,在侧入光式的背光模组中,所述导光板100的所述入光面与所述出光面相交。所述入光面110位于所述导光板100的一侧,所述导光板100还包括底面130,所述入光面110分别与所述出光面120及所述底面130相交,所述出光面120与所述底面130相对设置。所述量子点模块200内埋在所述导光板100内,且所述量子点模块200设置在所述导光板100的所述入光面110及所述导光板100的出光面120之间。这里所述的量子点模块200内埋在所述导光板100内,是指,所述量子点膜200完全被包覆在所述导光板100内。
可以理解地,虽然上述实施方式中以所述导光板100应用于侧入光式的背光模组为例进行说明,在其他实施方式中,所述导光板100也可应用于直下式的背光模组中。所谓直下式的背光模组,即背光模组中的光源位于导光板的底面设置,此时,所述导光板100的邻近所述光源的底面也即为入光面,在直下式的背光模组中,所述导光板的所述入光面与所述出光面相对设置。当所述导光板应用于侧入光式的背光模组中时,所述量子点模块200也同样设置在所述导光板100的入光面与所述导光板100的出光面之间。
所述导光板100采用射出成型工艺来形成,形成所述导光板100的材料为聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)。可以在制备所述导光板100的模具中做出相应设计,以制备出具有容置腔的导光板100,所述在所述导光板100的所述容置腔中内埋所述量子点模块200。所述PMMA材料具有较强的吸湿性,具有较好的气密性,因此,将所述导光板100的材料选为PMMA,可以防止水汽对所述量子点模块200的影响,以防止所述量子点模块 200在与水和氧气发生反应而失效。此外,由于量子点在高温的情况下容易受热淬灭,从而导致量子点模块200受热失效。而所述PMMA材料的导热性能较弱,将所述导光板100的材料选为PMMA,因此,当光源邻近所述导光板100的入光面110设置时,所述导光板100能够很好地隔绝所述光源散发出来的热量,以避免所述量子点模块200中的量子点在受热时淬灭。同时,所述PMMA材料具有较好的UV穿透率,因此,所述导光板100在后续形成量子点模块200时不宜产生变黄而产生黄化现象。
优选地,所述量子点模块200中基材的材质和所述导光板100的材质相同,即在本实施方式中所述量子点模块200的材质也为PMMA,所述PMMA基材的折射率稳定为1.49。当所述量子点模块200的材质和所述导光板100的材质相同时,所述量子点模块200与所述导光板100之间没有折射率差,因此,光在自所述导光板100的材质进入到所述量子点模块200或者自所述量子点模块200出射到所述导光板100内时,光的传输路径不受所述量子点模块200与所述导光板200之间的界面的影响,因此,光在自所述导光板100的材质进入到所述量子点模块200或者自所述量子点模块200出射到所述导光板100内时的没有损耗。
所述量子点模块200包括量子点粉体。下面简单地将量子点模块200的一种制程描述如下,将量子点粉体混合在基材(比如,丙烯酸树脂,优选地,PMMA)中以形成的量子点悬浮胶体,量子点悬浮胶体经过固化制程之后以形成量子点模块200。举例而言,所述固化制程可以为通过UV光照射而固化。
通过光线照射所述量子点模块200可以激发所述量子点模块200内部的量子点发出高色度的纯色光线,光源发出的光线与所述量子点模块200内部被激发的高色度的纯色光线混光,从而生产了高色度的白光。而量子点,是可以被用来转换由发光二极管发射的光线光以生成可见或红外区域中的光。量子点是具有比散装(bulk)激子波尔半径小的直径的纳米晶体。归因于量子局限效应,量子点的电子态之间的能量差是量子点的组分和物理尺寸二者的函数。因此,可以通过改变量子点的物理尺寸来调谐和调整量子点的光学和光电子学属性。量子点吸收比吸收峰值波长更短的所有波长,并发射更长波长处的光。2nmCdSe量子点在可见光谱的蓝色区域中发射,而10nmCdSe量子点在可见光谱 的红色区域中发射。量子点应用到显示技术上,可以借助量子点发出能谱集中、非常纯正的高质量红/绿单色光,完全超越传统发光二极管背光的荧光粉发光特性,实现更佳的成像色彩。因此,量子点显示技术被视为未来高效提高显示色域值的最佳方案,更是全球显示行业新的技术风向标。
所述量子点模块200包括第一表面210、第二表面220、第三表面230及第四表面240。所述第一表面210与所述第二表面220相对设置,所述第三表面230与所述第四表面240相对设置,且所述第三表面230分别与所述第一表面210及所述第二表面220相交,所述第四表面240分别与所述第一表面210以及所述第二表面220相交,所述第一表面210相较于所述第二表面220邻近所述入光面110设置,所述第三表面230邻近所述出光面120设置,所述第四底面240邻近所述底面130设置。所述第三表面230凸出于所述导光板100的所述出光面120,和/或所述第四表面240凸出于所述导光板100的所述底面130。在一实施方式中,所述第三表面230凸出于所述导光板100的所述出光面120,所述第四表面240与所述导光板的底面130平齐,由此,所述导光板100及所述量子点模块200形成一个倒立的“T”字。通过将所述导光板100及所述量子点模块200设计成一个倒立的“T”字,所述量子点模块200邻近所述出光面120的面积增大,因此,自所述背光模组10的光源发出的光线进入到所述导光板100时能够更好地和所述量子点模块200中的量子点发生作用,以提高自所述量子点模块200后出射的光线的性能。
在另一实施方式中,所述第三表面230与所述导光板100的所述出光面120平齐,所述第四表面240凸出于所述导光板100的所述底面130。由此,所述导光板110及所述量子点模块200形成一个“T”字。通过将所述导光板100及所述量子点模块200设计成“T”字,所述量子点模块200邻近所述出光面120的面积增大,因此,自所述背光模组10的光源发出的光线进入到所述导光板100时能够更好地和所述量子点模块200中的量子点发生作用,以提高自所述量子点模块200后出射的光线的性能。
在另一实施方式中,所述第三表面230凸出于所述导光板100的所述出光面120,且所述第四表面240凸出于所述导光板100的所述底面130。由此,所述导光板110及所述量子点模块200形成一个“十”字。通过将所述导光板 100及所述量子点模块200设计成“十”字,所述量子点模块200邻近所述出光面120的面积增大,因此,自所述背光模组10的光源发出的光线进入到所述导光板100时能够更好地和所述量子点模块200中的量子点发生作用,以提高自所述量子点模块200后出射的光线的性能。
优选地,所述第一表面210与所述导光板100的所述入光面110平行。当所述第一表面210与所述导光板100的所述入光面110平行时,所述导光板100的所述入光面110与所述量子点模块200的第一表面210之间没有夹角,从而避免了自所述导光板100的所述入光面110进入的光线再进入所述量子点模块200的第一表面210时由于夹角的存在,而使得进入到量子点模块200后面的导光板100的部分的光线亮度的不同。
优选地,所述导光板100与所述量子点模块200一体成型。
下面对本发明另一较佳实施方式的背光模组进行介绍。请参阅图3,图3为本发明另一较佳实施方式的背光模组的结构示意图;图4为图3中沿III-III的剖面结构示意图。
所述背光模组10包括导光板100和量子点模块200。所述导光板100包括入光面110及出光面120,所述量子点模块200内填充有量子点,所述量子点模块200内埋在所述导光板100内,且所述量子点模块200设置在所述导光板100的入光面110与所述导光板100的出光面120之间。
以导光板100应用于侧入光式的背光模组为例进行说明。所谓侧入光式的背光模组,即背光模组中的光源位于导光板100的侧面,所述导光板100邻近所述光源的侧面即为入光面,在侧入光式的背光模组中,所述导光板100的所述入光面与所述出光面相交。所述入光面110位于所述导光板100的一侧,所述导光板100还包括底面130,所述入光面110分别与所述出光面120及所述底面130相交,所述出光面120与所述底面130相对设置。所述量子点模块200内埋在所述导光板100内,且所述量子点模块200设置在所述导光板100的所述入光面110及所述导光板100的出光面120之间。这里所述的量子点模块200内埋在所述导光板100内,是指,所述量子点膜200完全被包覆在所述导光板100内。
可以理解地,虽然上述实施方式中以所述导光板100应用于侧入光式的背 光模组为例进行说明,在其他实施方式中,所述导光板100也可应用于直下式的背光模组中。所谓直下式的背光模组,即背光模组中的光源位于导光板的底面设置,此时,所述导光板100的邻近所述光源的底面也即为入光面,在直下式的背光模组中,所述导光板的所述入光面与所述出光面相对设置。当所述导光板应用于侧入光式的背光模组中时,所述量子点模块200也同样设置在所述导光板100的入光面与所述导光板100的出光面之间。
所述导光板100采用射出成型工艺来形成,形成所述导光板100的材料为聚甲基丙烯酸甲酯。可以在制备所述导光板100的模具中做出相应设计,以制备出具有容置腔的导光板100,所述在所述导光板100的所述容置腔中内埋所述量子点模块200。所述PMMA材料具有较强的吸湿性,具有较好的气密性,因此,将所述导光板100的材料选为PMMA,可以防止水汽对所述量子点模块200的影响,以防止所述量子点模块200在与水和氧气发生反应而失效。此外,由于量子点在高温的情况下容易受热淬灭,从而导致量子点模块200受热失效。而所述PMMA材料的导热性能较弱,将所述导光板100的材料选为PMMA,因此,当光源邻近所述导光板100的入光面110设置时,所述导光板100能够很好地隔绝所述光源散发出来的热量,以避免所述量子点模块200中的量子点在受热时淬灭。同时,所述PMMA材料具有较好的UV穿透率,因此,所述导光板100在后续形成量子点模块200时不宜产生变黄而产生黄化现象。
所述量子点模块200包括量子点粉体。下面简单地将量子点模块200的一种制程描述如下,将量子点粉体混合在基材(比如,丙烯酸树脂,优选地,PMMA)中形成的量子点悬浮胶体,量子点悬浮胶体经过固化制程之后以形成量子点模块200。举例而言,所述固化制程可以为通过UV光照射而固化。
所述量子点模块200包括第一表面210、第二表面220、第三表面230及第四表面240。所述第一表面210与所述第二表面220相对设置,所述第三表面230与所述第四表面240相对设置,且所述第三表面230分别与所述第一表面210及所述第二表面220相交,所述第四表面240分别与所述第一表面210以及所述第二表面220相交,所述第一表面210相较于所述第二表面220邻近所述入光面110设置,所述第三表面230邻近所述出光面120设置,所述第四 底面240邻近所述底面130设置。所述第三表面230凸出于所述导光板100的所述出光面120,和/或所述第四表面240凸出于所述导光板100的所述底面130。所述第三表面230凸出于所述导光板100的所述出光面120,所述第四表面240与所述导光板的底面130平齐,由此,所述导光板100及所述量子点模块200形成一个倒立的“T”字。通过将所述导光板100及所述量子点模块200设计成一个倒立的“T”字,所述量子点模块200邻近所述出光面120的面积增大,因此,自所述背光模组10的光源发出的光线进入到所述导光板100时能够更好地和所述量子点模块200中的量子点发生作用,以提高自所述量子点模块200后出射的光线的性能。
在另一实施方式中,所述第三表面230与所述导光板100的所述出光面120平齐,所述第四表面240凸出于所述导光板100的所述底面130。由此,所述导光板110及所述量子点模块200形成一个“T”字。通过将所述导光板100及所述量子点模块200设计成“T”字,所述量子点模块200邻近所述出光面120的面积增大,因此,自所述背光模组10的光源发出的光线进入到所述导光板100时能够更好地和所述量子点模块200中的量子点发生作用,以提高自所述量子点模块200后出射的光线的性能。
在另一实施方式中,在另一实施方式中,所述第三表面230凸出于所述导光板100的所述出光面120,且所述第四表面240凸出于所述导光板100的所述底面130。由此,所述导光板110及所述量子点模块200形成一个“十”字。通过将所述导光板100及所述量子点模块200设计成“十”字,所述量子点模块200邻近所述出光面120的面积增大,因此,自所述背光模组10的光源发出的光线进入到所述导光板100时能够更好地和所述量子点模块200中的量子点发生作用,以提高自所述量子点模块200后出射的光线的性能。
优选地,所述第一表面210与所述导光板100的所述入光面110平行。当所述第一表面210与所述导光板100的所述入光面110平行时,所述导光板100的所述入光面110与所述量子点模块200的第一表面210之间没有夹角,从而避免了自所述导光板100的所述入光面110进入的光线再进入所述量子点模块200的第一表面210时由于夹角的存在,而使得进入到量子点模块200后面的导光板100的部分的光线亮度的不同。
优选地,所述导光板100与所述量子点模块200一体成型。
在本实施方式中,所述背光模组100还包括光源300、反射片400及光学膜片500。所述光源300邻近所述导光板100的所述入光面110设置,所述光源300用于发出第一光线。自所述光源300发出的光线经过所述导光板100的所述入光面110进入到所述导光板100的一端。所述第一光线经由所述量子点模块200之后形成第二光线,并进入到导光板100的其余部位,并经由所述导光板100的所述出光面120出射。在本实施方式中,所述光源300为蓝光发光二极管,因此,所述光源300发出的所述第一光线为蓝光,所述第一光线用于激发所述量子点模块200产生红绿光,所述光源300发出的蓝光与所述量子点模块200被激发产生的所述红绿光混光以产生高色度的白色的第二光线。
所述反射片400邻近所述导光板100的所述底面130设置。自所述光源300发出的第一光线及经由所述量子点模块200后产生的第二光线在进入到所述导光板100时,会有部分第一光线及部分第二光线会经过所述导光板100的所述底面130出射出去,若部分第一光线或部分第二光线经过所述导光板100的所述底面130出射出去的话,则经过所述出光面120出射的光线就会减少,进而使得所述背光模组10出射到液晶显示装置中的显示面板的光线减小,进而影响到所述显示面板的亮度。通过在所述导光板100的所述底面130设置所述反射片400,使得进过所述导光板100的所述底面130出射的光线经过所述反射片400的反射再次进入到所述导光板100内,进而经过所述出光面120出射的光线增多,从而增加了背光模组10出射到液晶显示装置中显示面板的光线,进而提高了所述显示面板的亮度。
所述光学膜片500的数量为至少一个,所述光学膜片500邻近所述出光面120设置。在本实施方式中,所述光学膜片500为增亮膜,所述增亮膜用于改善所述第二光线出射到显示装置中的显示面板的出光效率。所述增亮膜可以为一般棱镜片(normal prism sheet)、多功能棱镜片、micro-lens film与反射型偏光片(reflective polarizer)等。
相较于现有技术,本发明的背光模组10将所述量子点模块200内埋在所述导光板100内,且所述量子点模块200设置在所述导光板100的入光面110和出光面120之间,所述量子点模块200就不会暴露在空气中,因而不会被空 气中的氧气和水蒸气发生反应,从而使得经由所述背光模组10出射的光线的质量较好,进一步地,使用所述背光模组10的液晶显示装置的具有较好的显示画面。
下面结合前面对背光模组10的描述,对所述背光模组10的制备方法介绍如下。请参阅图5,图5为本发明一较佳实施方式的背光模组的制备方法的流程图。所述背光模组的制备方法包括但不仅限于以下步骤。
步骤S101,在导光板上100上形成容置槽,所述容置槽设置在所述导光板100的入光面110和导光板100的出光面120之间,所述导光板100上形成一缺口,所述缺口连通所述容置槽与外界。
步骤S102,通过所述缺口往所述容置槽内填入量子点胶体。优选地,所述量子点胶体为将量子点混入基材(比如,丙烯酸树脂,优选地,PMMA)中形成的胶体。
步骤S103,固化所述量子点胶体,形成量子点模块200。
由于量子点胶体在固化时体积发生收缩,为了避免量子点胶体在固化过程中体积发生收缩而产生空隙,优选地,固化所述量子点胶体,形成量子点模块200时,可以自远离所述缺口的一端向所述缺口的方向固化所述量子点胶体,以形成所述量子点模块200。当位于远离所述缺口一端的量子点胶体发生固化时,远离缺口一端的量子点胶体通过会发生沉降来填充远离缺口的一端的量子点胶体由于体积收缩而产生的空隙,从而避免了量子点胶体在固化过程中体积发生收缩而产生的空隙。
优选地,固化所述量子点胶体,形成量子点模块200的步骤在隔绝水氧的环境下进行的,以便空气中的氧气和水蒸气对量子点的影响。
步骤S104,封住所述缺口。在本实施方式中,可以通过点胶机使用封口胶体来封住所述缺口,然后对封住所述缺口的封口胶体进行固化。所述封口胶体的材料与所述导光板的的材料相同,所述封口胶体的材料可以为UV胶水。
优选地,当所述量子点融入的基材为丙烯酸树脂时,在所述步骤S101和所述步骤S102之间还包括如下步骤。
步骤I,将量子点粉体混合入所述丙烯酸树脂中,制成量子点悬浮胶体。
步骤II,对所述量子点悬浮胶体进行震荡搅拌,以使量子点粉体均匀混合 在所述丙烯酸树脂中。
步骤III,对均匀混合的所述量子点悬浮胶体进行离心脱泡处理。通过步骤III的处理,能够使得量子点悬浮胶体中的气体排出。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种背光模组,其中,所述背光模组包括导光板及量子点模块,所述导光板包括入光面、出光面,所述量子点模块内填充有量子点,所述量子点模块内埋在所述导光板内,且所述量子点模块设置在所述导光板的入光面与所述导光板的出光面之间。
  2. 如权利要求1所述的背光模组,其中,所述导光板还包括与所述出光面相对设置的底面,所述入光面分别与所述出光面及所述出光面相交;
    所述量子点模块包括第一表面、第二表面、第三表面及第四表面,所述第一表面与所述第二表面相对设置,所述第三表面与所述第四表面相对设置,且所述第三表面分别与所述第一表面以及所述第二表面相交,所述第四表面分别与所述第一表面以及所述第二表面相交,所述第一表面相较于所述第二表面邻近所述入光面设置,所述第三表面邻近所述出光面设置,所述第四表面邻近所述底面设置。
  3. 如权利要求2所述的背光模组,其中,所述第三表面凸出于所述导光板的所述出光面;
    和/或
    所述第四表面凸出于所述导光板的所述底面。
  4. 如权利要求2所述的背光模组,其中,所述第一表面与所述导光板的所述入光面平行。
  5. 如权利要求1所述的背光模组,其中,所述导光板的基材的材质及所述量子点模块的基材的材质均为PMMA。
  6. 一种背光模组的制备方法,其中,所述背光模组的制备方法包括:
    在导光板上形成容置槽,所述容置槽设置在所述导光板的入光面和导光板 的出光面之间,所述导光板上形成一缺口,所述缺口连通所述容置槽与外界;
    通过所述缺口往所述容置槽内填入量子点胶体;
    固化所述量子点胶体,形成量子点模块;
    封住所述缺口。
  7. 如权利要求6所述的背光模组的制备方法,其中,所述步骤“固化所述量子点胶体,形成量子点模块”包括:
    自远离所述缺口的一端向所述缺口的方向固化所述量子点胶体,以形成所述量子点模块。
  8. 如权利要求6所述的背光模组的制备方法,其中,所述步骤“固化所述量子点胶体,形成量子点模块”是在隔绝水氧的环境下进行的。
  9. 如权利要求6所述的背光模组的制备方法,其中,在所述步骤“在导光板上形成容置槽,所述容置槽设置在所述导光板的入光面和导光板的出光面之间,所述导光板上形成一缺口,所述缺口连通所述容置槽与外界”与所述步骤“通过所述缺口往所述容置槽内填入量子点胶体”之间,所述背光模组的制备方法包括:
    将量子点粉体混合入丙烯酸树脂中,制成量子点悬浮胶体;
    对所述量子点悬浮胶体进行震荡搅拌,以使量子点粉体均匀混合在所述丙烯酸树脂中;
    对均匀混合的所述量子点悬浮胶体进行离心脱泡处理。
  10. 如权利要求6所述的背光模组的制备方法,其中,所述步骤“封住所述缺口”包括:
    使用点胶机将封口胶体填充进所述缺口以封住所述缺口,所述封口胶体的材料与所述导光板的材料相同。
PCT/CN2015/088426 2015-08-04 2015-08-28 背光模组及背光模组的制备方法 WO2017020381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510472562.0A CN105090823B (zh) 2015-08-04 2015-08-04 背光模组及背光模组的制备方法
CN201510472562.0 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017020381A1 true WO2017020381A1 (zh) 2017-02-09

Family

ID=54571842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088426 WO2017020381A1 (zh) 2015-08-04 2015-08-28 背光模组及背光模组的制备方法

Country Status (2)

Country Link
CN (1) CN105090823B (zh)
WO (1) WO2017020381A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700242B (zh) * 2016-04-29 2019-04-05 深圳市华星光电技术有限公司 背光模组及双面液晶显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628580A (zh) * 2011-11-30 2012-08-08 友达光电股份有限公司 导光板结构、背光模块及其制造方法
CN102937268A (zh) * 2012-11-15 2013-02-20 京东方科技集团股份有限公司 一种导光板、背光模组和显示装置
KR20130024152A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 라이트 유닛 및 표시장치
CN103459549A (zh) * 2011-03-31 2013-12-18 松下电器产业株式会社 荧光薄膜以及显示薄膜
CN204345536U (zh) * 2014-12-26 2015-05-20 翰博高新材料(合肥)股份有限公司 一种侧入式背光模组的量子点材料导光板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730619A (zh) * 2015-03-27 2015-06-24 深圳市华星光电技术有限公司 导光板及具有该导光板的背光模块和液晶显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459549A (zh) * 2011-03-31 2013-12-18 松下电器产业株式会社 荧光薄膜以及显示薄膜
KR20130024152A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 라이트 유닛 및 표시장치
CN102628580A (zh) * 2011-11-30 2012-08-08 友达光电股份有限公司 导光板结构、背光模块及其制造方法
CN102937268A (zh) * 2012-11-15 2013-02-20 京东方科技集团股份有限公司 一种导光板、背光模组和显示装置
CN204345536U (zh) * 2014-12-26 2015-05-20 翰博高新材料(合肥)股份有限公司 一种侧入式背光模组的量子点材料导光板

Also Published As

Publication number Publication date
CN105090823B (zh) 2018-10-23
CN105090823A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
US10078166B2 (en) Light guide plate and manufacture method of light guide plate
TWI447450B (zh) 導光板結構、背光模組及其製造方法
TWI514044B (zh) 顯示裝置
US7954989B2 (en) Backlight module with diffusing particles and prism refractive structure
US20060072339A1 (en) Backlight module
US20180292594A1 (en) Backlight module and display apparatus
US10007054B2 (en) Backlight assembly and display device having the same
CN105319773A (zh) 一种背光模组和液晶显示设备
US10690834B2 (en) Backlight device and manufacturing method thereof
JP2007149665A (ja) 光源から離れた蛍光体を用いる照明システム
TW201033542A (en) Color converting member, method of manufacturing the same, light emitting device, and display device
KR20190141780A (ko) 백라이트 모듈용 광전환 필름, 백라이트 모듈 및 디스플레이 기기
WO2016197424A1 (zh) 背光模组及显示装置
CN108919558B (zh) 一种楔形基板的量子点彩膜结构
US20200057187A1 (en) Light guide plate and manufacturing method thereof, backlight module and display device
WO2018223807A1 (zh) 背光模组及显示装置
CN106299075A (zh) 一种量子点发光元件、背光模组和显示装置
CN105759504A (zh) 背光模组及液晶显示装置
TWI594466B (zh) Photoelectric device with radiation conversion element and method for manufacturing radiation conversion element
US10578791B2 (en) Light guide member and light source unit using the same
TWI621898B (zh) 光學構件及具有其之顯示裝置
US9897737B2 (en) Quantum dot backlight module
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
WO2017020381A1 (zh) 背光模组及背光模组的制备方法
TW200933087A (en) Illuminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900155

Country of ref document: EP

Kind code of ref document: A1