WO2017013959A1 - 基板搬送室、基板処理システム、及び基板搬送室内のガス置換方法 - Google Patents
基板搬送室、基板処理システム、及び基板搬送室内のガス置換方法 Download PDFInfo
- Publication number
- WO2017013959A1 WO2017013959A1 PCT/JP2016/066909 JP2016066909W WO2017013959A1 WO 2017013959 A1 WO2017013959 A1 WO 2017013959A1 JP 2016066909 W JP2016066909 W JP 2016066909W WO 2017013959 A1 WO2017013959 A1 WO 2017013959A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- transfer chamber
- substrate
- substrate transfer
- section
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67196—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67763—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
- H01L21/67766—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67763—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
- H01L21/67775—Docking arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67763—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
- H01L21/67778—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
Definitions
- the present invention relates to a substrate transfer chamber for transferring a substrate such as a semiconductor wafer, a substrate processing system including the substrate transfer chamber, and a gas replacement method in the substrate transfer chamber.
- a substrate processing system having a plurality of processing chambers is used to perform various types of processing on a substrate to be processed such as a semiconductor wafer.
- a substrate processing system includes a mounting unit that mounts a FOUP (Front Opening Unified Pod) as a transport container storing tens of substrates, a processing unit that performs predetermined processing on the substrate, A substrate transfer chamber interposed between the placement unit and the processing unit is provided.
- FOUP Front Opening Unified Pod
- a fan filter unit (FFU) for supplying clean air and clean gas such as nitrogen (N 2 ) gas, for example, is provided in the substrate transfer chamber at the ceiling of the transfer chamber.
- the substrate transfer chamber is configured to maintain a highly clean environment from which particles are removed by forming a downflow with clean gas to prevent particle contamination of the substrate and increasing the internal pressure.
- an operator may enter the substrate transfer chamber during maintenance or the like. Therefore, for example, before and after maintenance, it is necessary to replace the gas in the substrate transfer chamber.
- the gas in the substrate transfer chamber For example, before maintenance is to clean air from N 2 gas, after maintenance to N 2 gas from the clean air, it is necessary to replace the substrate transfer chamber of a gas, respectively.
- the time required for this gas replacement is preferably as short as possible from the viewpoint of shortening the stop time of the entire substrate processing system.
- the clean air substitution of the N 2 gas since it would require a large amount of N 2 gas to the substrate transfer chamber is filled with N 2 gas, it is desired also that reduction.
- variable volume mechanism that varies the volume in a load lock chamber that switches between vacuum and atmospheric pressure [for example, Japanese Patent Laying-Open No. 2005-333076] (Patent Document 3)].
- the variable volume mechanism in this proposal is provided with a dedicated actuator for displacing the movable plate.
- the substrate transfer chamber of the present invention is a substrate transfer chamber provided with a transfer device for transferring a substrate, a gas supply unit for supplying gas into the substrate transfer chamber, and a gas discharge unit for discharging gas in the substrate transfer chamber And a section variable device that changes the section of the gas circulation space in the substrate transport chamber in cooperation with the transport apparatus.
- the transfer device may be provided so as to be movable up and down, and the partition variable device is configured so that the gas distribution space in the substrate transfer chamber is interlocked with the lift operation of the transfer device. It is also possible to change the section.
- the section variable device may include a movable member that moves up and down in the substrate transfer chamber, and a telescopic member that expands and contracts in conjunction with the movable member.
- the movable member may be a rectifying plate having a plurality of openings and rectifying the gas flow.
- an engaging means for interlocking the partition variable device and the transfer device may be provided in either one or both of the partition variable device and the transfer device.
- the engagement means may be a mechanical mechanism, a suction mechanism, or an electrical adsorption mechanism.
- a substrate processing system includes a mounting unit that mounts a transfer container that stores a plurality of substrates, a processing unit that performs a predetermined process on the substrate, and a space between the mounting unit and the processing unit.
- a substrate transfer chamber interposed therebetween.
- the substrate transfer chamber supplies a gas into the substrate transfer chamber, and a transfer device that transfers the substrate between the transfer container placed on the placement unit and the processing unit.
- the gas replacement method in the substrate transfer chamber of the present invention is a gas replacement method in the substrate transfer chamber in which the gas in the substrate transfer chamber is replaced in the substrate transfer chamber that transfers the substrate.
- the substrate transfer chamber includes a transfer device that transfers the substrate, a gas supply unit that supplies a gas into the substrate transfer chamber, and a gas exhaust that discharges the gas inside the substrate transfer chamber. And a section variable device that changes the section of the gas circulation space in the substrate transport chamber in cooperation with the transport apparatus.
- the gas replacement method of the present invention includes a first step of reducing a volume of the gas circulation space by the partition variable device in a first exhaust state in which the amount of the gas discharged from the gas discharge unit is large. And a second exhaust state in which the amount of gas discharged from the gas discharge portion is relatively smaller than that in the first exhaust state, and the volume of the gas circulation space is increased by the partition variable device.
- the supply amount of the gas from the gas supply unit in the first step, may be a first supply state, and in the second step, The gas supply amount from the gas supply unit may be a second supply state that is relatively larger than the first supply state.
- the transfer device may be provided so as to be movable up and down.
- the section variable device changes the section of the gas circulation space in the substrate transfer chamber in conjunction with the lifting and lowering operation of the transfer apparatus, The volume of the gas circulation space may be reduced while the transfer device is raised, and the volume of the gas circulation space may be increased while the transfer device is lowered.
- FIG. 1 is a plan view showing a schematic configuration of a substrate processing system according to an embodiment of the present invention. It is explanatory drawing which shows schematic structure of an atmospheric pressure conveyance chamber. It is explanatory drawing which shows an example of the hardware constitutions of the control part in a substrate processing system. It is explanatory drawing which shows operation
- FIG. 5 is an explanatory diagram illustrating the operation of the variable section device following FIG. 4. It is explanatory drawing which shows an example of the connection structure of a division variable apparatus and an atmosphere side conveying apparatus. It is explanatory drawing which shows another example of the connection structure of a division variable apparatus and an atmosphere side conveying apparatus. It is explanatory drawing which shows another example of the connection structure of a division variable apparatus and an atmosphere side conveying apparatus. It is a timing chart in the gas replacement method which concerns on one embodiment of this invention.
- FIG. 1 is a plan view showing a schematic configuration of a substrate processing system according to the present embodiment.
- FIG. 2 is an explanatory diagram showing a schematic configuration of an atmospheric pressure transfer chamber in the substrate processing system of FIG.
- FIG. 2 shows a cross section of the inside of the atmospheric pressure transfer chamber and a part of the load port.
- the substrate processing system 1 performs predetermined operations such as a film formation process, a diffusion process, and an etching process on a semiconductor substrate (hereinafter referred to as “wafer”) W for manufacturing a semiconductor device, for example, with a plurality of continuous operations. It is an apparatus that performs processing.
- the substrate processing system 1 includes a plurality of process modules that perform predetermined processing on the wafer W.
- the substrate processing system 1 according to the present embodiment includes four process modules 10A, 10B, 10C, and 10D.
- Each of the process modules 10A, 10B, 10C, and 10D is configured to maintain its internal space in a predetermined reduced pressure atmosphere (vacuum state).
- the substrate processing system 1 further includes a vacuum transfer chamber 11.
- the vacuum transfer chamber 11 is configured so that it can be maintained in a predetermined reduced pressure atmosphere, like the processing chambers of the process modules 10A, 10B, 10C, and 10D.
- the vacuum transfer chamber 11 includes a vacuum side transfer device 21.
- the vacuum-side transfer device 21 is a device for transferring the wafer W between the process chambers of the process modules 10A, 10B, 10C, and 10D and load lock chambers 12A and 12B described later.
- the substrate processing system 1 further includes two load lock chambers 12A and 12B.
- the process modules 10A, 10B, 10C, 10D and the load lock chambers 12A, 12B are arranged adjacent to the vacuum transfer chamber 11, respectively.
- the load lock chambers 12A and 12B are configured so that the internal space can be switched between an atmospheric pressure state and a vacuum state.
- a substrate mounting table 13A on which the wafer W is mounted is provided in the load lock chamber 12B.
- a substrate mounting table 13B on which the wafer W is mounted is provided in the load lock chamber 12B.
- the substrate processing system 1 further includes a loader module 20 that loads the wafer W into the substrate processing system 1 and unloads the wafer W from the substrate processing system 1.
- the loader module 20 includes an atmospheric pressure transfer chamber 14 that is a substrate transfer chamber, an orienter 15 that is an apparatus for aligning the wafer W, and a plurality of load ports 18A, 18B, and 18C.
- the atmospheric pressure transfer chamber 14 has a rectangular shape whose horizontal cross section is long in one direction (left and right direction in FIG. 1), and is arranged so as to sandwich the load lock chambers 12 ⁇ / b> A and 12 ⁇ / b> B between the vacuum transfer chamber 11. Yes.
- One side surface of the atmospheric pressure transfer chamber 14 is adjacent to the load lock chambers 12A and 12B.
- the orienter 15 is connected to one end of the atmospheric pressure transfer chamber 14 in the longitudinal direction.
- the orienter 15 includes a rotating plate 16 that is rotated by a drive motor (not shown), and an optical sensor 17 that is provided at an outer peripheral position of the rotating plate 16 and detects a peripheral portion of the wafer W.
- the substrate processing system 1 includes three load ports 18A, 18B, and 18C.
- the load ports 18A, 18B, and 18C are disposed adjacent to the port opening 14a of the atmospheric pressure transfer chamber 14 on the side opposite to the side surface adjacent to the load lock chambers 12A and 12B.
- the load ports 18A, 18B, and 18C can each be loaded with a FOUP 19 that is a transfer container for the wafer W.
- FOUP 19 is a transfer container for the wafer W.
- the wafers W can be arranged in multiple stages at intervals in the vertical direction.
- each of the hoops 19 placed on the load ports 18A, 18B, and 18C has a main body 19a, an opening 19b provided in the main body 19a, and a detachable member that closes the opening 19b.
- a hoop door 19c which is an open / close door.
- the hoop door 19 c of the hoop 19 is held by the port door 57.
- the port door 57 is a constituent part of a hoop opener (not shown), and the hoop door 19c is detachably held by a drive mechanism (not shown) and is advanced or retracted in the X direction in FIG.
- the port door 57 holds the hoop door 19c closing the opening 19b of each hoop 19 at the advanced position.
- the port door 57 opens the opening 19b of the hoop 19 by retreating while holding the hoop door 19c. Further, the port door 57 advances while holding the hoop door 19 c and attaches the hoop door 19 c to the opening 19 b of the hoop 19. Thereafter, the port door 57 retreats with the hoop door 19c detached, thereby closing the opening 19b of each hoop 19 with the hoop door 19c.
- the substrate processing system 1 further includes an atmosphere-side transfer device 25 disposed in the atmospheric pressure transfer chamber 14.
- the atmosphere-side transfer device 25 is a device for transferring the wafer W between the hoops 19 of the load ports 18A, 18B, and 18C, the load lock chambers 12A and 12B, and the orienter 15.
- the atmosphere-side transfer device 25 includes a pair of transfer arms 26a and 26b arranged in two upper and lower stages, a fork 27a provided at the tip of the transfer arm 26a, and a tip of the transfer arm 26b.
- the forks 27a and 27b function as holding members that place and hold the wafer W thereon.
- the atmosphere-side transfer device 25 transfers the wafer W while the wafer W is placed on the forks 27a and 27b.
- Each of the transfer arms 26a and 26b is configured to bend and stretch and turn in the horizontal direction (X-axis direction and Y-axis direction in FIG. 2).
- each of the transfer arms 26a and 26 b of the atmosphere-side transfer device 25 is connected to an elevating unit 55 that moves up and down along a column 53 erected from the base 51 of the atmosphere-side transfer device 25. Accordingly, each of the transfer arms 26a and 26b is configured to be movable up and down in the vertical direction (Z-axis direction in FIG. 2).
- the atmospheric pressure transfer chamber 14 has a gas supply / discharge / circulation facility for supplying, for example, N 2 gas or clean air to the gas distribution space S1 in the down flow. Specifically, the atmospheric pressure transfer chamber 14 is provided adjacent to the gas introduction part 31 provided in the upper part, the gas discharge part 32 and the gas circulation discharge part 33 provided in the lower part, and the gas introduction part 31. FFU (Fan Filter Unit) 45.
- the gas introduction unit 31 takes in external air or a clean gas such as N 2 gas from the gas introduction port 31a.
- a pipe 34 is connected to the gas inlet 31a, and the pipe 34 is connected to an N 2 gas supply source 35A or an air inlet 35B.
- the N 2 gas supply source 35A is connected to a pipe 34A branched from the pipe 34.
- the pipe 34A is provided with a mass flow controller 36 and an on-off valve 37A for flow rate control.
- the air introduction port 35B is connected to a pipe 34B branched from the pipe 34, and an open / close valve 37B is provided in the pipe 34B.
- a circulation pipe 38 from the gas circulation discharge section 33 is connected to the circulation gas introduction port 31b.
- An exhaust pipe 39 is connected to the gas discharge unit 32 so that the gas can be exhausted to the outside of the atmospheric pressure transfer chamber 14 while controlling the flow rate via the variable flow rate valve 40.
- a circulation pipe 38 is connected to the gas outlet 33 a of the gas circulation outlet 33.
- the gas circulation discharge unit 33 is provided with an exhaust fan 41.
- the exhaust fan 41 circulates the gas inside the atmospheric pressure transfer chamber 14 from the gas discharge port 33 a of the gas circulation discharge unit 33 to the circulation gas introduction port 31 b of the gas introduction unit 31 through the circulation pipe 38.
- the FFU 45 includes a fan unit 47 and a filter unit 49 that are arranged in order from the upper side.
- the fan unit 47 includes a fan 47a that sends gas downward.
- the filter unit 49 collects dust in the gas that has passed through the fan unit 47.
- the FFU 45 flows into the atmospheric pressure transfer chamber 14 through the gas introduction unit 31 and flows out from the gas discharge unit 32 or the gas circulation discharge unit 33 through the gas circulation space S1 in which the atmosphere-side transfer device 25 is provided. Form a gas downflow.
- the FFU 45 collects and removes dust contained in the gas. Thereby, the inside of the atmospheric pressure transfer chamber 14 is maintained in a clean state.
- the substrate processing system 1 further includes a section variable device 60 that changes the section of the gas circulation space in the atmospheric pressure transfer chamber 14 in cooperation with the atmosphere-side transfer apparatus 25.
- a section variable device 60 that changes the section of the gas circulation space in the atmospheric pressure transfer chamber 14 in cooperation with the atmosphere-side transfer apparatus 25.
- two partition variable devices 60A and 60B are provided.
- the section variable device 60A is disposed on the right side and the section variable device 60B is disposed on the left side with respect to the load ports 18A to 18C with reference to the atmosphere-side transport device 25 disposed substantially in the center of the atmospheric pressure transport chamber 14. Yes.
- FIG. Details of the section variable device 60 will be described later.
- the substrate processing system 1 further includes gate valves G1A, G1B, G1C, G1D, G2A, and G2B.
- the gate valves G1A, G1B, G1C, G1D are respectively disposed between the vacuum transfer chamber 11 and the process modules 10A, 10B, 10C, 10D.
- the gate valves G2A and G2B are respectively disposed between the vacuum transfer chamber 11 and the load lock chambers 12A and 12B.
- the substrate processing system 1 further includes gate valves G3A and G3B.
- the gate valves G3A and G3B are disposed between the load lock chambers 12A and 12B and the atmospheric pressure transfer chamber 14, respectively. Each of these gate valves has a function of opening and closing an opening provided in a wall that partitions two adjacent spaces.
- the load ports 18 ⁇ / b> A to 18 ⁇ / b> C are “mounting units” on which a FOUP 19 that is a transfer container storing a plurality of wafers W is mounted.
- the four process modules 10A to 10D, the vacuum transfer chamber 11, and the two load lock chambers 12A and 12B constitute a “processing section” that performs a predetermined process on the wafer W.
- the atmospheric pressure transfer chamber 14 is a “substrate transfer chamber” interposed between the placement unit and the processing unit. Note that the vacuum transfer chamber 11 and the load lock chambers 12A and 12B are not essential components in the “processing unit”, and there may be an aspect in which these are not included.
- the controller 70 controls the operation of each component of the substrate processing system 1. That is, the overall control in the substrate processing system 1 and the control of each component (end device) constituting the process module 10, the vacuum transfer chamber 11, the load lock chambers 12A and 12B, the loader module 20, and the like are performed by the control unit 70. Done.
- the control unit 70 is typically a computer.
- FIG. 3 shows an example of the hardware configuration of the control unit 70.
- the control unit 70 includes a main control unit 201, an input device 202 such as a keyboard and a mouse, an output device 203 such as a printer, a display device 204, a storage device 205, an external interface 206, and a bus that connects these components to each other. 207.
- the main control unit 201 includes a CPU (central processing unit) 211, a RAM (random access memory) 212, and a ROM (read only memory) 213.
- the storage device 205 may be of any form as long as it can store information.
- the storage device 205 is a hard disk device or an optical disk device.
- the storage device 205 records information on a computer-readable recording medium 215 and reads information from the recording medium 215.
- the recording medium 215 may be in any form as long as it can store information, and is, for example, a hard disk, an optical disk, or a flash memory.
- the recording medium 215 may be a recording medium on which various processes performed in the process modules 10A to 10D of the substrate processing system 1 and a recipe for a gas replacement method in the atmospheric pressure transfer chamber 14 are recorded.
- control unit 70 controls the substrate processing system 1 so that the gas replacement method for the atmospheric pressure transfer chamber 14 is performed.
- the control unit 70 includes each component related to the gas replacement method (for example, the atmosphere-side transfer device 25, the mass flow controller 36, the opening / closing valves 37 ⁇ / b> A and 37 ⁇ / b> B, the flow rate variable valve 40, the FFU 45, The variable device 60 and the like).
- these are realized by the CPU 211 executing software (program) stored in the ROM 213 or the storage device 205 using the RAM 212 as a work area.
- section variable device 60 ⁇ Detailed structure of variable section device> Next, the section variable device 60 will be described in more detail with reference to FIGS. 2, 4, and 5. 4 and 5 are explanatory diagrams showing the section variable device 60 and its operation.
- the variable section device 60 has a plurality of openings and a rectangular baffle plate 61 as a whole, a rectangular frame 62 surrounding the periphery of the baffle plate 61, a bellows 63 connected below the frame 62, and a bellows 63. And a bellows support 64 having a lower end fixed thereto.
- the baffle plate 61 and the bellows 63 may be directly connected, and in that case, the frame 62 can be omitted.
- the baffle plate 61 which is a movable member that moves up and down in the atmospheric pressure transfer chamber 14, has a plurality of openings 61a. By passing gas through these openings 61a, the flow of gas in the atmospheric pressure transfer chamber 14 is changed. It functions as a straightening plate to be arranged.
- the baffle plate 61 may be made of metal such as SUS or aluminum, synthetic resin, or the like. As will be described later, the size of the gas circulation space S1 can be changed by displacing the baffle plate 61 up and down.
- the baffle plate 61 can be provided with an engaging means that is connected to the atmosphere-side transport device 25.
- the frame 62 is a metal frame such as SUS or aluminum, and connects the baffle plate 61 and the bellows 63.
- the frame 62 is provided with an engaging means that is connected to the atmosphere-side transport device 25.
- the engaging means is not limited to the frame 62, and may be provided on the transport arms 26a and 26b, or may be provided on both. The engaging means will be described later.
- the bellows 63 which is an elastic member, is a bellows structure made of metal such as SUS, synthetic resin, or elastomer, for example, and expands and contracts vertically in the atmospheric pressure transfer chamber 14 in accordance with the raising and lowering operations of the baffle plate 61 and the frame 62.
- the bellows 63 has a rectangular tube shape in accordance with the shapes of the baffle plate 61 and the frame 62.
- the bellows support portion 64 includes a wall member 64A that is erected in the vertical direction from the bottom wall 14b of the atmospheric pressure transfer chamber 14, and a shelf member 64B that protrudes in the horizontal direction from the side wall 14c of the atmospheric pressure transfer chamber 14. Yes.
- the wall member 64 ⁇ / b> A is provided with a plurality of through holes 64 ⁇ / b> A ⁇ b> 1 and has a function of rectifying the gas formed by the FFU 45.
- the shape of the baffle plate 61 and the frame 62 is not limited to a rectangle, and the shape of the bellows 63 is not limited to a rectangular tube. These shapes can be appropriately set according to the shape of the atmospheric pressure transfer chamber 14, the arrangement of the atmosphere-side transfer device 25, and the like.
- FIG. 4 shows a state where the transport arm 26 a of the atmosphere-side transport device 25 is lowered in the Z-axis direction and engaged with the frame 62 of the section variable device 60.
- the volume of the gas circulation space S ⁇ b> 1 inside the atmospheric pressure transfer chamber 14 is larger than the state of FIG. 5 described later.
- the space defined by the baffle plate 61 and the bellows 63 is an exhaust space S2, which is in direct communication with the gas discharge part 32 and the gas circulation discharge part 33.
- the gas circulation space S1 does not communicate with the gas discharge part 32 and the gas circulation discharge part 33 unless the opening 61a of the baffle plate 61 or the through hole 64A1 of the bellows support part 64 is interposed. Therefore, a differential pressure is generated between the gas circulation space S1 and the exhaust space S2 due to a pressure loss when the gas passes through the opening 61a of the baffle plate 61 or the through hole 64A1 of the bellows support portion 64. Therefore, the exhaust space S2 is distinguished from the gas circulation space S1 in which clean air or clean gas is circulated inside the atmospheric pressure transfer chamber 14 and maintained in a clean atmosphere.
- FIG. 5 shows that the transfer arm 26a of the atmosphere-side transfer device 25 is raised from the state of FIG. 4 and the frame 62 of the section variable device 60 engaged with the transfer arm 26a is raised in conjunction with the bellows 63. Shows the state. In the state of FIG. 5, the exhaust space S ⁇ b> 2 defined by the baffle plate 61 and the bellows 63 is enlarged compared to the state of FIG. 4, and the volume of the gas circulation space S ⁇ b> 1 inside the atmospheric pressure transfer chamber 14 is relatively large. Becomes smaller. Thus, the section variable device 60 changes the function of changing the section between the gas circulation space S1 and the exhaust space S2 in the atmospheric pressure transfer chamber 14, or changes the volumes of the gas circulation space S1 and the exhaust space S2. It has a function.
- the section variable device 60 is temporarily shown in a diagram in which the volume of the gas distribution space S1 is smaller than the state of FIG.
- the atmosphere of the gas circulation space S1 inside the atmospheric pressure transfer chamber 14 can be replaced in a short time.
- the engagement means for connecting the section variable device 60 and the atmospheric transport device 25 there are no particular limitations on the engagement means for connecting the section variable device 60 and the atmospheric transport device 25 as long as they can be switched between a state where they are reliably connected and a state where they are separated, and the configuration thereof is not limited. I will not.
- a mechanical mechanism such as a clamp or a hook, an electric suction mechanism such as an electrostatic chuck or an electromagnetic chuck, or a suction mechanism using pressure such as a vacuum chuck may be used.
- 6 to 8 show typical examples of the engaging means.
- the clamping device 101 shown in FIG. 6 is installed on the upper surface of the frame 62 of the variable section device 60.
- the clamp device 101 includes a pair of upper and lower contact members 102 and 103, a rotatable shaft 104 for moving the contact members 102 and 103 close to or away from each other, and a drive for driving the shaft 104. And a drive unit such as a motor (not shown).
- the contact member 102 is connected to the shaft 104.
- the clamp device 101 can rotate the contact member 102 having an L-shaped cross section on the upper side in a direction indicated by an arrow in FIG. 6 by rotating the shaft 104 by a drive unit (not shown).
- the transfer arm 26a or 26b of the atmosphere-side transfer device 25 is connected to the lower contact member. 103 is moved. Then, a part (or the whole) of the lower surface of the transfer arm 26 a or 26 b is brought into contact with the upper surface of the lower contact member 103. In this state, by rotating the shaft 104, the upper contact member 102 can be rotated, and the transfer arm 26a or 26b can be sandwiched and clamped between the contact member 102 and the contact member 103. By rotating the shaft 104 in the reverse direction, the contact member 102 is rotated to increase the distance from the contact member 103, and the clamp of the transport arm 26a or 26b is released.
- an electrostatic chuck mechanism that adsorbs the transfer arm 26a or 26b of the atmosphere-side transfer device 25 by electrostatic force typified by Coulomb force is adopted. You can also.
- the electrostatic chuck 110 shown in FIG. 7 includes an adsorption substrate 111 made of a dielectric, a first electrode 112a and a second electrode 112b embedded in the adsorption substrate 111, and the first electrode 112a and DC power supplies 113a and 113b for applying a DC voltage to the second electrode 112b are provided.
- the DC power supply 113a and the first electrode 112a, and the DC power supply 113b and the second electrode 112b are electrically connected by power supply lines 114a and 114b, respectively.
- the electrostatic chuck 110 applies a DC voltage to the first electrode 112a and the second electrode 112b in a state where the transport arm 26a or 26b is moved and brought close to the adsorption base material 111, for example. A part (or the whole) of the transfer arm 26a or 26b can be electrostatically adsorbed by the Coulomb force.
- the electrostatic chuck 110 can release the adsorption of the transfer arm 26a or 26b by stopping the application of voltage from the DC power sources 113a and 113b to the first electrode 112a and the second electrode 112b.
- the bipolar electrostatic chuck 110 having the pair of electrodes 112a and 112b is taken as an example, but a monopolar electrostatic chuck mechanism may be used.
- FIG. 8 shows a cross section of the frame 62 including the vacuum chuck 120.
- the vacuum chuck 120 includes a plurality of suction grooves 121 provided in the frame 62, an intake passage 122 connected to the suction grooves 121, and a vacuum pump 123 connected to an end of the intake passage 122.
- the vacuum pump 123 When the vacuum pump 123 is operated in a state where the lower surface of the transport arm 26a or 26b is in contact with the region (suction region) where the suction groove 121 of the frame 62 is formed, the inside of the suction groove 121 is maintained at a reduced pressure. . That is, since the inside of the suction groove 121 is hermetically sealed by the transfer arm 26 a or 26 b and is in a vacuum state, the transfer arm 26 a or 26 b is attracted to the frame 62. By stopping the operation of the vacuum pump 123 and opening a valve (not shown), the pressure in the suction groove 121 and the intake passage 122 rises to atmospheric pressure, and the adsorption of the transfer arm 26a or 26b to the frame 62 is released. Is done.
- a pressure gauge 124 can be provided in the intake passage 122. By measuring the pressure in the intake passage 122 with the pressure gauge 124, it is possible to detect whether or not there is a leak in which outside air enters the suction groove 121. If no leak has occurred, it means that the conveyance arm 26a or 26b and the frame 62 are reliably adsorbed. On the other hand, if a leak has occurred, it means that the suction between the transfer arm 26a or 26b and the frame 62 is insufficient, so that an operation failure in which the operation of the variable section device 60 is not normally performed is previously detected. I can grasp it. Thus, by performing a leak check using the pressure gauge 124, the reliability of the operation of the variable section device 60 can be improved.
- the engaging means illustrated in FIGS. 6 to 8 are merely representative examples, and the engaging means is not limited to these.
- the portion connected to the section variable device 60 is not limited to the transfer arm 26a or 26b, but may be forks 27a and 27b, or may be other parts as long as the vertical displacement is possible.
- the portion to be connected to the atmosphere-side transport device 25 is not limited to the frame 62, and for example, a connecting portion may be provided on the baffle plate 61 or the bellows 63, and if it can be moved up and down, Other sites may be used.
- FIG. 9 is a timing chart showing the operation of the atmosphere-side transfer device 25 and the bellows 63 when changing the gas in the atmospheric pressure transfer chamber 14, the volume change of the gas circulation space S1, the change of the gas exhaust amount and the gas supply amount. .
- the horizontal axis in FIG. 9 indicates time.
- a case where replacement of clean air with N 2 gas is performed will be described as an example.
- the atmosphere side transfer device 25 and the section variable device 60 are connected.
- the atmosphere-side transport device 25 is raised from time t1 to time t2.
- the bellows 63 of the section variable device 60 also extends. Accordingly, the volume of the gas circulation space S1 in the atmospheric pressure transfer chamber 14 gradually decreases. Conversely, the volume of the exhaust space S2 gradually increases.
- the N 2 gas supply source 35A introducing N 2 gas into the gas flow space S1 via the gas inlet 31a and FFU45 the gas inlet 31.
- the flow rate of N 2 gas can be controlled by the mass flow controller 36.
- exhaust is performed from the gas discharge unit 32 while the exhaust amount is controlled by the flow rate variable valve 40.
- the gas replacement speed is limited by the exhaust capacity. For example, among the three stages of large, medium, and small, the gas displacement is set to “large” and the supply of N 2 gas Set the amount to “Small”.
- the rising of the atmosphere-side transport device 25 stops and the extension of the bellows 63 of the section variable device 60 also stops. That is, the reduction of the volume of the gas circulation space S1 in the atmospheric pressure transfer chamber 14 and the expansion of the volume of the exhaust space S2 are stopped. At this time t2, the gas exhaust amount and the gas supply amount are switched to “medium”.
- the operations of the atmosphere side transfer device 25 and the variable section device 60 are stopped, and the gas exhaust space and the supply of N 2 gas are supplied while the volume of the gas circulation space S1 in the atmospheric pressure transfer chamber 14 is constant.
- the replacement of the gas in the atmospheric pressure transfer chamber 14 is continued.
- the progress of the gas replacement can be monitored by measuring the oxygen concentration, moisture concentration, etc. of the gas circulation space S1 in the atmospheric pressure transfer chamber 14. For example, when replacing clean air with N 2 gas, the end point of gas replacement can be determined depending on whether the oxygen concentration or moisture concentration in the atmospheric pressure transfer chamber 14 has reached a target value of about several ppm.
- the atmosphere-side transfer device 25 When the gas replacement is completed at time t3, the atmosphere-side transfer device 25 is lowered from time t3 to time t4. In conjunction with the atmosphere-side transport device 25, the bellows 63 of the section variable device 60 also contracts. Accordingly, the volume of the gas circulation space S1 in the atmospheric pressure transfer chamber 14 gradually increases. Conversely, the volume of the exhaust space S2 gradually decreases. During this period from time t3 to time t4, the gas replacement speed is limited by the gas supply capacity. For example, among the three stages of large, medium and small, the gas displacement is set to “small” and the N 2 gas The supply amount is set to “large”.
- the volume of the gas circulation space S1 in the atmospheric pressure transfer chamber 14 is changed by operating the partition variable device 60 twice by replacing the gas once.
- the gas replacement speed can be increased and the gas replacement throughput can be improved.
- the volume of the gas circulation space S1 of the atmospheric pressure transfer chamber 14 to increase the gas replacement speed, for example, when performing gas replacement by supplying N 2 gas or the like, the amount of use is reduced. Is possible.
- the gas distribution space S1 is cleaned from the time t1 through the air inlet 35B, the gas inlet 31a of the gas inlet 31 and the FFU 45. Except for introducing air, it can be carried out according to the above procedure.
- the partition replacement device 60 can improve the gas replacement throughput.
- the section of the gas circulation space S1 in the atmospheric pressure transfer chamber 14 is changed, and the volume of the gas circulation space S1 is increased.
- a variable section device 60 is provided that changes substantially by increasing or decreasing. Therefore, the throughput when the atmosphere in the atmospheric pressure transfer chamber 14 is replaced is improved, and the amount of clean gas such as N 2 gas can be reduced. Further, since the atmosphere-side transport device 25 is used as a drive source for the section variable device 60, it is not necessary to provide a dedicated actuator or the like, and the device configuration is not complicated.
- the substrate processing system 1 including the four process modules 10A to 10D, the two load lock chambers 12A and 12B, the one vacuum transfer chamber 11 and the one atmospheric pressure transfer chamber 14 is illustrated.
- the present invention can also be applied to substrate processing systems having other configurations.
- the substrate processing system is not limited to a semiconductor wafer as a processing target, and may be a processing target such as an FPD substrate or a solar panel substrate.
- the bellows 63 was used as an expansion-contraction member of the division variable apparatus 60, as another mechanism which has an expansion-contraction function similarly to the bellows 63, for example, rubber, cloth, paper, synthetic resin, etc. A cylindrical body or the like may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
まず、図1及び図2を参照して、本発明の一実施の形態に係る基板処理システムの構成について説明する。図1は、本実施の形態に係る基板処理システムの概略の構成を示す平面図である。図2は、図1の基板処理システムにおける大気圧搬送室の概略構成を示す説明図である。図2では、大気圧搬送室の内部とロードポートの一部分の断面を示している。
基板処理システム1は、ウエハWに対して所定の処理が行われる複数のプロセスモジュールを備えている。本実施の形態の基板処理システム1は、4つのプロセスモジュール10A,10B,10C,10Dを備えている。プロセスモジュール10A,10B,10C,10Dは、それぞれ、その内部空間を所定の減圧雰囲気(真空状態)に維持できるように構成されている。
基板処理システム1は、更に、真空搬送室11を備えている。真空搬送室11は、プロセスモジュール10A,10B,10C,10Dの各処理室と同様に、所定の減圧雰囲気に保持できるように構成されている。真空搬送室11は、真空側搬送装置21を備えている。真空側搬送装置21は、プロセスモジュール10A,10B,10C,10Dの各処理室と、後述するロードロック室12A,12Bとの間でウエハWの搬送を行うための装置である。
基板処理システム1は、更に、2つのロードロック室12A,12Bを備えている。プロセスモジュール10A,10B,10C,10Dとロードロック室12A,12Bは、それぞれ真空搬送室11に隣接するように配置されている。ロードロック室12A,12Bは、その内部空間を、大気圧状態と真空状態とに切り替えられるように構成されている。ロードロック室12A内には、ウエハWを載置する基板載置台13Aが配備されている。ロードロック室12B内には、ウエハWを載置する基板載置台13Bが配備されている。
基板処理システム1は、更に、基板処理システム1へのウエハWの搬入と基板処理システム1からのウエハWの搬出を行うローダーモジュール20を備えている。ローダーモジュール20は、基板搬送室である大気圧搬送室14、ウエハWの位置合わせを行う装置であるオリエンタ15、及び、複数のロードポート18A,18B,18Cを備えている。
大気圧搬送室14は、水平方向の断面が一方向(図1における左右方向)に長い矩形形状を有し、真空搬送室11との間にロードロック室12A,12Bを挟むように配置されている。大気圧搬送室14の1つの側面は、ロードロック室12A,12Bに隣接している。
オリエンタ15は、大気圧搬送室14の長手方向の一方の端部に連結されている。オリエンタ15は、図示しない駆動モータによって回転される回転板16と、この回転板16の外周位置に設けられ、ウエハWの周縁部を検出するための光学センサ17とを有している。
図1に示した例では、基板処理システム1は、3つのロードポート18A,18B,18Cを備えている。ロードポート18A,18B,18Cは、ロードロック室12A,12Bに隣接する側面とは反対側の大気圧搬送室14のポート用開口14aに隣接して配置されている。ロードポート18A,18B,18Cには、それぞれ、ウエハWの搬送容器であるフープ19を載置できるようになっている。各フープ19内には、ウエハWを、上下に間隔を空けて多段に配置できるようになっている。
基板処理システム1は、更に、大気圧搬送室14内に配置された大気側搬送装置25を備えている。大気側搬送装置25は、ロードポート18A,18B,18Cの各フープ19と、ロードロック室12A,12Bと、オリエンタ15との間でウエハWの搬送を行うための装置である。
大気圧搬送室14は、例えばN2ガスや清浄空気をその内部のガス流通空間S1にダウンフローで供給するガス供給・排出・循環設備を有している。具体的には、大気圧搬送室14は、上部に設けられたガス導入部31と、下部に設けられたガス排出部32及びガス循環用排出部33と、ガス導入部31に隣接して設けられたFFU(Fan Filter Unit)45と、を備えている。
基板処理システム1は、更に、大気側搬送装置25と協働して、大気圧搬送室14内におけるガスの流通空間の区画を変化させる区画可変装置60を有している。本実施の形態では、図1に示すように、2つの区画可変装置60A,60Bを備えている。大気圧搬送室14のほぼ中央に配置された大気側搬送装置25を基準に、ロードポート18A~18Cに向かって右側に区画可変装置60Aが配置され、同左側に区画可変装置60Bが配置されている。なお、2つの区画可変装置60A,60Bを区別しない場合は、区画可変装置60と表記することがある。区画可変装置60の詳細については後述する。
基板処理システム1は、更に、ゲートバルブG1A,G1B,G1C,G1D,G2A,G2Bを備えている。ゲートバルブG1A,G1B,G1C,G1Dは、それぞれ、真空搬送室11とプロセスモジュール10A,10B,10C,10Dとの間に配置されている。ゲートバルブG2A,G2Bは、それぞれ、真空搬送室11と、ロードロック室12A,12Bとの間に配置されている。基板処理システム1は、更に、ゲートバルブG3A,G3Bを備えている。ゲートバルブG3A,G3Bは、それぞれ、ロードロック室12A,12Bと大気圧搬送室14との間に配置されている。これらのゲートバルブは、いずれも、隣接する2つの空間を仕切る壁に設けられた開口部を開閉する機能を有している。
基板処理システム1において、ロードポート18A~18Cは、複数のウエハWを収納した搬送容器であるフープ19を載置する「載置部」である。また、4つのプロセスモジュール10A~10Dと、真空搬送室11と、2つのロードロック室12A,12Bは、ウエハWに対して所定の処理を施す「処理部」を構成している。大気圧搬送室14は、これら載置部と処理部との間に介在する「基板搬送室」である。なお、真空搬送室11とロードロック室12A,12Bは「処理部」に必須の構成ではなく、これらを含めない態様もあり得る。
制御部70は、基板処理システム1の各構成部の動作を制御する。すなわち、基板処理システム1における全体の制御や、プロセスモジュール10、真空搬送室11、ロードロック室12A,12B、ローダーモジュール20などを構成する各構成部(エンドデバイス)の制御は、制御部70によって行われる。
次に、図2、図4、図5を参照しながら、区画可変装置60について、さらに詳細に説明する。図4及び図5は、区画可変装置60と、その動作を示す説明図である。
大気圧搬送室14で昇降変位する可動部材であるバッフル板61は、複数の開口61aを有しており、これらの開口61aにガスを通過させることによって、大気圧搬送室14のガスの流れを整える整流板として機能するものである。バッフル板61は、例えばSUS、アルミニウムなどの金属や合成樹脂などによって構成されていてもよい。後述するように、バッフル板61を上下に変位させることによって、ガス流通空間S1の大きさを変化させることができる。なお、フレーム62を設けない場合は、大気側搬送装置25と連結する係合手段をバッフル板61に設けることができる。
フレーム62は、例えばSUS、アルミニウムなどの金属の枠体であり、バッフル板61とベローズ63とを連結する。本実施の形態では、フレーム62に、大気側搬送装置25と連結する係合手段が設けられている。係合手段は、フレーム62に限らず、搬送アーム26a,26bに設けられていてもよいし、両方に設けてもよい。係合手段については後述する。
伸縮部材であるベローズ63は、例えばSUSなどの金属や合成樹脂やエラストマーの蛇腹構造体であり、バッフル板61及びフレーム62の昇降動作に合わせて、大気圧搬送室14内で上下に伸縮する。ベローズ63は、バッフル板61及びフレーム62の形状に合わせ、角筒状をなしている。
ベローズ支持部64は、大気圧搬送室14の底壁14bから垂直方向に立設された壁部材64Aと、大気圧搬送室14の側壁14cから水平方向に張り出した棚部材64Bとを有している。壁部材64Aには複数の貫通穴64A1が設けられており、FFU45によって形成されるガスの整流作用を有している。
図4は、大気側搬送装置25の搬送アーム26aをZ軸方向に下降させ、区画可変装置60のフレーム62と係合させた状態を示している。図4の状態では、後述する図5の状態に比べ、大気圧搬送室14の内部のガス流通空間S1の容積は大きい。ここで、バッフル板61とベローズ63によって規定される空間は、排気用空間S2であり、ガス排出部32及びガス循環用排出部33に直接連通している。一方、ガス流通空間S1は、バッフル板61の開口61a又はベローズ支持部64の貫通穴64A1を介さなければ、ガス排出部32及びガス循環用排出部33に連通していない。そのため、バッフル板61の開口61a又はベローズ支持部64の貫通穴64A1をガスが通過する際の圧力損失によって、ガス流通空間S1と排気用空間S2との間には差圧が生じる。従って、排気用空間S2は、大気圧搬送室14の内部で、清浄空気や清浄ガスを流通させてクリーンな雰囲気に保持されるガス流通空間S1とは区別される。
区画可変装置60と大気側搬送装置25とを連結する係合手段としては、両者を確実に連結した状態と、分離した状態とを切替可能なものであれば特に制限はなく、その構成は問われない。例えば、クランプ、フックなどの機械的機構、静電チャック、電磁チャックなどの電気的吸着機構、真空チャックなどの圧力を利用した吸引機構であってもよい。図6~図8は、係合手段の代表例を示している。
次に、区画可変装置60を利用して行われる、大気圧搬送室14のガス置換方法について説明する。図9は、大気圧搬送室14のガス置換を行う際の大気側搬送装置25及びベローズ63の動作、ガス流通空間S1の容積変化、ガス排気量及びガス供給量の変化を示すタイミングチャートである。図9の横軸は時間を示している。ここでは、清浄空気からN2ガスへの置換を行う場合を例に挙げて説明する。
Claims (12)
- 基板を搬送する搬送装置を備えた基板搬送室であって、
前記基板搬送室内にガスを供給するガス供給部と、
前記基板搬送室内のガスを排出するガス排出部と、
前記搬送装置と協働して、前記基板搬送室内における前記ガスの流通空間の区画を変化させる区画可変装置と、
を備えたことを特徴とする基板搬送室。 - 前記搬送装置は、昇降変位可能に設けられており、
前記区画可変装置は、前記搬送装置の昇降動作に連動して前記基板搬送室内における前記ガスの流通空間の区画を変化させるものである請求項1に記載の基板搬送室。 - 前記区画可変装置は、
前記基板搬送室内を昇降変位する可動部材と、
前記可動部材に連動して伸縮する伸縮部材と、
を備えている請求項2に記載の基板搬送室。 - 前記可動部材が、複数の開口を有し、ガスの流れを整流する整流板である請求項3に記載の基板搬送室。
- 前記区画可変装置と前記搬送装置とを連動させる係合手段が、前記区画可変装置もしくは前記搬送装置のいずれか片方又は両方に設けられている請求項2に記載の基板搬送室。
- 前記係合手段が、機械的機構である請求項5に記載の基板搬送室。
- 前記係合手段が、吸引機構である請求項5に記載の基板搬送室。
- 前記係合手段が、電気的吸着機構である請求項5に記載の基板搬送室。
- 複数の基板を収納した搬送容器を載置する載置部と、
前記基板に対して所定の処理を施す処理部と、
前記載置部と前記処理部との間に介在する基板搬送室と、
を備え、
前記基板搬送室は、
前記載置部に載置された前記搬送容器と前記処理部との間で前記基板を搬送する搬送装置と、
前記基板搬送室内にガスを供給するガス供給部と、
前記基板搬送室の内部のガスを排出するガス排出部と、
前記搬送装置と協働して、前記基板搬送室内における前記ガスの流通空間の区画を変化させる区画可変装置と、を有する基板処理システム。 - 基板の搬送を行う基板搬送室において、その内部のガスを置換する基板搬送室内のガス置換方法であって、
前記基板搬送室は、
前記基板を搬送する搬送装置と、
前記基板搬送室の内部にガスを供給するガス供給部と、
前記基板搬送室の内部のガスを排出するガス排出部と、
前記搬送装置と協働して、前記基板搬送室内における前記ガスの流通空間の区画を変化させる区画可変装置と、
を備えており、
前記ガス排出部からの前記ガスの排出量が大きな第1の排気状態で、前記区画可変装置によって前記ガスの流通空間の容積を縮小させる第1のステップと、
前記ガス排出部からの前記ガスの排出量が、前記第1の排気状態よりも相対的に小さな第2の排気状態で、前記区画可変装置によって前記ガスの流通空間の容積を拡大させる第2のステップと、
を含むことを特徴とする基板搬送室内のガス置換方法。 - 前記第1のステップでは、前記ガス供給部からの前記ガスの供給量が小さな第1の供給状態であり、前記第2のステップでは、前記ガス供給部からの前記ガスの供給量が、前記第1の供給状態よりも相対的に大きな第2の供給状態である請求項10に記載の基板搬送室内のガス置換方法。
- 前記搬送装置は、昇降変位可能に設けられており、
前記区画可変装置は、前記搬送装置の昇降動作に連動して前記基板搬送室内における前記ガスの流通空間の区画を変化させるものであって、前記搬送装置が上昇した状態で前記ガスの流通空間の容積を縮小させ、前記搬送装置が下降した状態で前記ガスの流通空間の容積を拡大させる請求項10に記載の基板搬送室内のガス置換方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/747,066 US10347510B2 (en) | 2015-07-23 | 2016-06-07 | Substrate transfer chamber, substrate processing system, and method for replacing gas in substrate transfer chamber |
KR1020187005182A KR101903338B1 (ko) | 2015-07-23 | 2016-06-07 | 기판 반송실, 기판 처리 시스템, 및 기판 반송실 내의 가스 치환 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015145398A JP6564642B2 (ja) | 2015-07-23 | 2015-07-23 | 基板搬送室、基板処理システム、及び基板搬送室内のガス置換方法 |
JP2015-145398 | 2015-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013959A1 true WO2017013959A1 (ja) | 2017-01-26 |
Family
ID=57833864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066909 WO2017013959A1 (ja) | 2015-07-23 | 2016-06-07 | 基板搬送室、基板処理システム、及び基板搬送室内のガス置換方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10347510B2 (ja) |
JP (1) | JP6564642B2 (ja) |
KR (1) | KR101903338B1 (ja) |
TW (1) | TWI701752B (ja) |
WO (1) | WO2017013959A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7031131B2 (ja) * | 2017-03-22 | 2022-03-08 | Tdk株式会社 | Efem及びefemのガス置換方法 |
JP6890029B2 (ja) | 2017-03-31 | 2021-06-18 | 東京エレクトロン株式会社 | 基板搬送装置及び基板搬送方法 |
US11133208B2 (en) * | 2017-05-31 | 2021-09-28 | Tdk Corporation | EFEM and method of introducing dry air thereinto |
JP6992283B2 (ja) * | 2017-05-31 | 2022-01-13 | Tdk株式会社 | Efem及びefemへの乾燥空気の導入方法 |
JP7005288B2 (ja) * | 2017-11-02 | 2022-01-21 | 株式会社ニューフレアテクノロジー | 集塵装置 |
CN110137121B (zh) * | 2018-02-09 | 2024-03-26 | 东京毅力科创株式会社 | 基板处理装置 |
JP6949780B2 (ja) * | 2018-06-13 | 2021-10-13 | 株式会社荏原製作所 | パージ方法、パージのための制御装置、および制御装置を備えるシステム |
US20210341377A1 (en) * | 2018-09-12 | 2021-11-04 | Lam Research Corporation | Method and apparatus for measuring particles |
JP7209503B2 (ja) * | 2018-09-21 | 2023-01-20 | 株式会社Screenホールディングス | 基板処理装置および基板処理方法 |
KR102136691B1 (ko) * | 2019-05-13 | 2020-07-22 | 무진전자 주식회사 | 기판 건조 챔버 |
KR102208017B1 (ko) * | 2019-08-14 | 2021-01-27 | 로체 시스템즈(주) | 기판 반송 장치 |
JP7345403B2 (ja) * | 2020-01-22 | 2023-09-15 | 東京エレクトロン株式会社 | 基板処理装置及びパージ方法 |
CN113838731B (zh) * | 2020-06-08 | 2023-02-28 | 长鑫存储技术有限公司 | 半导体刻蚀设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333076A (ja) * | 2004-05-21 | 2005-12-02 | Tokyo Electron Ltd | ロードロック装置、処理システム及びその使用方法 |
JP2007142337A (ja) * | 2005-11-22 | 2007-06-07 | Canon Inc | ロードロック装置、デバイス製造装置及びデバイス製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3425592B2 (ja) | 1997-08-12 | 2003-07-14 | 東京エレクトロン株式会社 | 処理装置 |
JP4244555B2 (ja) | 2002-02-25 | 2009-03-25 | 東京エレクトロン株式会社 | 被処理体の支持機構 |
KR100486690B1 (ko) | 2002-11-29 | 2005-05-03 | 삼성전자주식회사 | 기판 이송 모듈의 오염을 제어할 수 있는 기판 처리 장치및 방법 |
JP4344593B2 (ja) | 2002-12-02 | 2009-10-14 | ローツェ株式会社 | ミニエンバイロメント装置、薄板状物製造システム及び清浄容器の雰囲気置換方法 |
JP2006216710A (ja) * | 2005-02-02 | 2006-08-17 | Hitachi High-Technologies Corp | 半導体製造装置 |
JP5006122B2 (ja) * | 2007-06-29 | 2012-08-22 | 株式会社Sokudo | 基板処理装置 |
CN101971298A (zh) * | 2007-11-02 | 2011-02-09 | 佳能安内华股份有限公司 | 表面处理设备和表面处理方法 |
JP4784599B2 (ja) * | 2007-12-28 | 2011-10-05 | 東京エレクトロン株式会社 | 真空処理装置及び真空処理方法並びに記憶媒体 |
KR101181560B1 (ko) * | 2008-09-12 | 2012-09-10 | 다이닛뽕스크린 세이조오 가부시키가이샤 | 기판처리장치 및 그것에 사용되는 기판반송장치 |
JP5388643B2 (ja) * | 2009-03-19 | 2014-01-15 | 東京エレクトロン株式会社 | 基板搬送装置及び基板搬送方法 |
JP2012015272A (ja) * | 2010-06-30 | 2012-01-19 | Ulvac Japan Ltd | 処理装置及び搬送装置 |
JP5603314B2 (ja) * | 2011-12-01 | 2014-10-08 | 東京エレクトロン株式会社 | 搬送装置及び基板処理システム |
JP5718379B2 (ja) * | 2013-01-15 | 2015-05-13 | 東京エレクトロン株式会社 | 基板収納処理装置及び基板収納処理方法並びに基板収納処理用記憶媒体 |
KR101557016B1 (ko) | 2013-10-17 | 2015-10-05 | 주식회사 유진테크 | 기판 처리장치 |
TWI635552B (zh) * | 2013-12-13 | 2018-09-11 | 昕芙旎雅股份有限公司 | 設備前端模組(efem) |
JP7017306B2 (ja) * | 2016-11-29 | 2022-02-08 | 株式会社日立ハイテク | 真空処理装置 |
-
2015
- 2015-07-23 JP JP2015145398A patent/JP6564642B2/ja active Active
-
2016
- 2016-06-07 US US15/747,066 patent/US10347510B2/en active Active
- 2016-06-07 KR KR1020187005182A patent/KR101903338B1/ko active IP Right Grant
- 2016-06-07 WO PCT/JP2016/066909 patent/WO2017013959A1/ja active Application Filing
- 2016-07-21 TW TW105122984A patent/TWI701752B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333076A (ja) * | 2004-05-21 | 2005-12-02 | Tokyo Electron Ltd | ロードロック装置、処理システム及びその使用方法 |
JP2007142337A (ja) * | 2005-11-22 | 2007-06-07 | Canon Inc | ロードロック装置、デバイス製造装置及びデバイス製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101903338B1 (ko) | 2018-10-01 |
JP6564642B2 (ja) | 2019-08-21 |
JP2017028110A (ja) | 2017-02-02 |
US10347510B2 (en) | 2019-07-09 |
US20180211850A1 (en) | 2018-07-26 |
TWI701752B (zh) | 2020-08-11 |
KR20180025979A (ko) | 2018-03-09 |
TW201712780A (zh) | 2017-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6564642B2 (ja) | 基板搬送室、基板処理システム、及び基板搬送室内のガス置換方法 | |
JP4744427B2 (ja) | 基板処理装置 | |
JP5503006B2 (ja) | 基板処理システム、搬送モジュール、基板処理方法及び半導体素子の製造方法 | |
US5223001A (en) | Vacuum processing apparatus | |
KR101088289B1 (ko) | 탑재대, 처리 장치 및 처리 시스템 | |
JP4980978B2 (ja) | 基板処理装置 | |
KR100991288B1 (ko) | 기판처리장치 | |
WO2003071600A1 (fr) | Mecanisme de transport pour substrats, utilise dans un systeme de traitement de semi-conducteurs | |
US11776828B2 (en) | Vacuum processing device | |
KR20030002299A (ko) | 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조방법 및 반송장치 | |
US9613837B2 (en) | Substrate processing apparatus and maintenance method thereof | |
WO2013105533A1 (ja) | 基板処理システム及び基板位置矯正方法 | |
EP3796368B1 (en) | Transport device having local purge function | |
JP4642619B2 (ja) | 基板処理システム及び方法 | |
US9269599B2 (en) | Substrate relay apparatus, substrate relay method, and substrate processing apparatus | |
US11955356B2 (en) | Processing system and transfer method | |
KR102099105B1 (ko) | 기판 처리 방법 및 기판 처리 장치 | |
US10955758B2 (en) | Guide pin, photo mask supporting unit including the same, and photo mask cleaning apparatus including the same | |
WO2016038656A1 (ja) | ロボットシステムおよび搬送方法 | |
US20220347694A1 (en) | Efem | |
JP2005333076A (ja) | ロードロック装置、処理システム及びその使用方法 | |
KR20050015316A (ko) | 반도체 소자 제조용 멀티 챔버 시스템 및 이를 이용한반도체 소자의 제조방법 | |
KR20240045404A (ko) | 기판 처리 장치 | |
KR20200106762A (ko) | 패널 합착 장치 | |
KR20160017332A (ko) | 기판 처리 장치 및 기판 처리 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827523 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15747066 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187005182 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827523 Country of ref document: EP Kind code of ref document: A1 |