Nothing Special   »   [go: up one dir, main page]

WO2017006999A1 - 耐部分放電用電気絶縁樹脂組成物 - Google Patents

耐部分放電用電気絶縁樹脂組成物 Download PDF

Info

Publication number
WO2017006999A1
WO2017006999A1 PCT/JP2016/070160 JP2016070160W WO2017006999A1 WO 2017006999 A1 WO2017006999 A1 WO 2017006999A1 JP 2016070160 W JP2016070160 W JP 2016070160W WO 2017006999 A1 WO2017006999 A1 WO 2017006999A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
resin composition
discharge resistance
electrically insulating
resin
Prior art date
Application number
PCT/JP2016/070160
Other languages
English (en)
French (fr)
Inventor
徳之 林坂
加瑞範 川▲崎▼
昌幸 山下
蛯名 武雄
隆弘 石田
知美 服部
Original Assignee
住友精化株式会社
国立研究開発法人産業技術総合研究所
学校法人静岡理工科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, 国立研究開発法人産業技術総合研究所, 学校法人静岡理工科大学 filed Critical 住友精化株式会社
Priority to JP2017527498A priority Critical patent/JP6524228B2/ja
Priority to CA2991858A priority patent/CA2991858A1/en
Priority to US15/742,861 priority patent/US20180204648A1/en
Priority to KR1020187001285A priority patent/KR20180028454A/ko
Priority to EP16821467.4A priority patent/EP3321940A4/en
Priority to CN201680038094.9A priority patent/CN107710338A/zh
Publication of WO2017006999A1 publication Critical patent/WO2017006999A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to an electrically insulating resin composition for partial discharge resistance excellent in partial discharge resistance, a method for producing the same, and an insulating varnish, an electrodeposition paint, and a cured product using the electrical insulating resin composition for partial discharge resistance.
  • Electric wire rotating electrical machine, insulating film, and insulating coating.
  • Inverter control is a type of control method that performs speed control of an electric motor or the like by a variable voltage / variable frequency AC power source using an inverter.
  • the inverter is an efficient variable speed voltage control device, which is controlled by a high-speed switching element of several kHz to several hundred kHz, and generates a high surge voltage when a voltage is applied.
  • Insulated wires such as enameled wires with insulating coatings on conductors are generally used as materials for forming coils of electrical equipment that performs such inverter control.
  • Partial discharge may occur due to the occurrence of a steep overvoltage (inverter surge) associated with inverter control.
  • Partial discharge means that a weak electrical spark (discharge phenomenon) is generated in a minute void (gap) in an insulator or between a conductor and an insulator. If a partial discharge occurs in an insulated wire, the insulator is destroyed by this, and there is a risk of eventually causing an insulation failure in which the insulation state cannot be maintained, and the life of the insulated wire may be extremely shortened.
  • the causes of the deterioration of the insulator due to such partial discharge are as follows: 1) Degradation of the insulating material due to cutting of the main chain of the resin due to collision of charged particles of the partial discharge, 2) Insulation material due to local temperature rise due to partial discharge It is considered that dissolution and chemical decomposition, and 3) deterioration of insulating materials due to secondary products such as ozone generated by partial discharge.
  • Patent Document 1 discloses the use of spherical silica particles as a filler
  • Non-Patent Document 1 discloses the use of a plate-like layered silicate (cation exchange clay).
  • these methods can suppress 1) but cannot cope with 2) and 3). In particular, when the voltage is high, the effect of suppressing the deterioration of the insulator due to partial discharge is not sufficient.
  • Patent Document 2 and Non-Patent Document 2 metal hydroxide such as magnesium hydroxide is dispersed and mixed as a filler to release water when the filler is exposed to partial discharge, thereby suppressing heat generation due to partial discharge.
  • a method is disclosed. According to this method, 2) can be suppressed, and at the same time, the production of secondary product 3) due to temperature rise can be reduced.
  • the metal hydroxide has a smaller barrier effect than the spherical silica particles of Patent Document 1 and the layered silicate of Non-Patent Document 1, that is, the effect on 1) is inferior. Further, the metal hydroxide has strong alkalinity and may promote deterioration of the mixed resin. Furthermore, in the method using magnesium hydroxide or the like of Non-Patent Document 2, since only agglomerated powder is mixed, there is a bias in the dispersion state, and in order to obtain a sufficient effect, it is necessary to increase the filler filling amount. There is. Moreover, in the method using the metal hydroxide or metal carbonate of Patent Document 2, although an extremely minute filler is used and the dispersion state is improved, aggregation occurs and the effect is not sufficient.
  • the deterioration of the insulator due to partial discharge causes dielectric breakdown, and these problems have not been sufficiently solved at present, and the development of an insulator having better partial discharge resistance is required.
  • the problem of dielectric breakdown due to partial discharge is that not only electric wires but also insulation films such as interphase insulation paper of electric motors; insulating varnishes that cover and fix the outer layer of motor coils; generators, transformers, switchgears, etc. It also exists in electric wires for insulation of power equipment; filling mold insulation members of power equipment such as transformers and switchgears; For this reason, there is a need for the development of excellent materials for partial discharge resistance that can be applied to insulators for a wide range of applications.
  • the dielectric breakdown in the present invention refers to a phenomenon in which when the voltage applied to the insulator exceeds a certain limit, the insulator is electrically broken and loses the insulating property to cause a current to flow.
  • the main object of the present invention is to solve all of the above causes 1) to 3) and to provide an excellent electrical insulating resin composition for partial discharge resistance which can suppress deterioration of the insulator due to partial discharge. To do.
  • the present invention also provides an excellent method for producing an electrical insulating resin composition for partial discharge, and an insulating varnish, an electrodeposition paint, a cured product, an electric wire, a rotating electrical machine, an insulating film, and the like, using the resin composition. It is also an object to provide an insulating coating.
  • the present inventors have obtained an electrically insulating resin composition for partial discharge resistance excellent in partial discharge resistance by containing a layered double hydroxide and a resin. I found out. Moreover, the present inventors have found that the electrical insulating resin composition for partial discharge resistance according to the present invention can suitably suppress deterioration of an insulator due to partial discharge generated by an inverter surge. Furthermore, the present inventors have improved partial discharge resistance through a step of pregelling the layered double hydroxide in the production of the electrical insulating resin composition for partial discharge resistance of the present invention. I found out. The present invention has been completed by further studies based on these findings.
  • Item 1 An electrically insulating resin composition for partial discharge resistance, comprising a layered double hydroxide and a resin.
  • Item 2. The electrically insulating resin composition for partial discharge resistance according to Item 1, wherein the layered double hydroxide is nanoparticles.
  • Item 3. Item 3. The electrically insulating resin composition for partial discharge resistance according to Item 1 or 2, wherein the layered double hydroxide is a swellable hydrotalcite compound.
  • the resin is at least one resin selected from the group consisting of polyvinyl formal resin, polyurethane resin, polyamide resin, polyester resin, polyimide resin, polyamideimide resin, polyetherimide resin, polyesterimide resin, and epoxy resin.
  • Item 4. The electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 3.
  • Item 5. The electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 4, wherein the content of the layered double hydroxide is 0.1 to 60% by mass.
  • Item 6. Item 6.
  • Item 7. Item 7.
  • Item 8. Item 8. An insulating varnish containing the electrically insulating resin composition for partial discharge resistance according to any one of Items 1 to 7 and a solvent.
  • Item 9. Item 8. An electrodeposition coating composition comprising the partial discharge resistant electrically insulating resin composition according to any one of Items 1 to 7 and a solvent.
  • Item 11. Item 8.
  • the method for producing an electrical insulating resin composition for partial discharge resistance according to any one of Items 1 to 7, wherein the step of pregelating the layered double hydroxide, and the layered double hydroxide that has been pregelated The manufacturing method of the electrical-insulation resin composition for partial discharge resistance including the process mixed with resin.
  • Item 8. The electric wire comprising a conductor and a single layer or a plurality of layers of insulating coating formed on the outer periphery of the conductor, wherein at least one layer of the insulating coating is described in any one of Items 1-7.
  • An electric wire comprising an electrically insulating resin composition for partial discharge resistance or a cured product thereof.
  • Item 13 Item 13.
  • Item 16. Use for suppressing deterioration due to partial discharge of a resin composition containing a layered double hydroxide and a resin.
  • An insulating product comprising an electrically insulating resin composition for partial discharge resistance containing a layered double hydroxide and a resin.
  • an electrical insulating resin composition for partial discharge resistance having excellent partial discharge resistance, and an insulating varnish, an electrodeposition paint, a cured product, an electric wire, a rotating electrical machine, and an insulating film using the resin composition.
  • an insulating coating can be provided.
  • a coil of a rotating electric machine such as a motor or a generator, an insulating film such as interphase insulating paper, an insulating varnish for covering and fixing the outer layer of the motor coil, This makes it possible to extend the life of insulating members of power equipment such as switches and switchgears.
  • the electrically insulating resin composition of the present invention is for partial discharge resistance and contains a layered double hydroxide and a resin.
  • the electrically insulating resin composition for partial discharge resistance of the present invention will be described in detail.
  • a layered double hydroxide is a layered compound having a metal hydroxide layer.
  • the layered double hydroxide usually has a structure in which metal hydroxide layers and intermediate layers composed of anions and interlayer water are alternately stacked, and has anion exchange ability.
  • the electrically insulating resin composition for partial discharge resistance of the present invention contains a layered double hydroxide and a resin, it exhibits excellent characteristics for partial discharge resistance. The details of this mechanism are not necessarily clear, but can be considered as follows, for example. That is, it is considered that the layered double hydroxide in the electrically insulating resin composition for partial discharge resistance releases water and efficiently absorbs heat energy when exposed to partial discharge. For this reason, it is estimated that the deterioration of the resin due to the thermal energy (temperature increase) of the partial discharge is effectively suppressed.
  • the layered double hydroxide has a feature of releasing water in a wide temperature range, it is considered that heat generation due to partial discharge is suppressed in a wide temperature range. As a result, it is speculated that temperature rise can be suppressed and generation of secondary products such as ozone is also efficiently suppressed.
  • the layered double hydroxide has a flat plate shape, for example, when the electrically insulating resin composition for partial discharge resistance according to the present invention is applied to a conductor, the layered double hydroxide is formed so as to cover the conductor in the same manner as the flat layered silicate. It is presumed that a high barrier effect is exhibited by being present in the resin.
  • the layered crystal structure is maintained even after the interlayer water is discharged, it is presumed that the high barrier effect is maintained.
  • the layered double hydroxide releases interlayer water and structural water, it can absorb water vapor in the air and release water again, so that the heat generation suppression effect by the partial discharge described above can be maintained. Presumed to be possible.
  • the layered double hydroxide is not particularly limited as long as it can improve partial discharge resistance, but is preferably a hydrotalcite compound.
  • a hydrotalcite compound Known hydrotalcite compounds can be used.
  • hydrotalcite compounds include the following general formula (1): [M 2+ 1-x M 3+ x (OH) 2 ] x + [A n ⁇ x / n ⁇ mH 2 O] x ⁇ (1) (Wherein, M 2+ is a divalent metal, M 3+ is a trivalent metal, A n-is an n-valent anion, x is in the range of 0 ⁇ x ⁇ 0.33, m is 0 to 15, preferably 1 to 15, and n is an integer of 1 to 4.) And a compound having a structure represented by:
  • examples of the divalent metal M 2+ include Mg 2+ , Zn 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Cu 2+ , Ca 2+ and Cd 2. + , V 2+ and the like.
  • the divalent metal M 2+ one of the aforementioned divalent metals may be used alone, or a mixture of two or more types may be used. Of these, Mg 2+ is preferable as the divalent metal M 2+ .
  • Examples of the trivalent metal M 3+ include Al 3+ , Fe 3+ , Cr 3+ , Co 3+ , and In 3+ .
  • the trivalent metal M 3+ one of the aforementioned trivalent metals may be used alone, or a mixture of two or more kinds may be used. Of these, Al 3+ is preferable as the trivalent metal M 3+ .
  • n-valent anion A n ⁇ examples include I ⁇ , Cl ⁇ , NO 3 ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , OH ⁇ , SO 4 2 ⁇ , SiO 4 4 ⁇ , bicarbonate ion, salicylate ion, Examples include oxalate ion, citrate ion, lactate ion, glycine ion, and acetate ion.
  • These n-valent anions A n- may be used alone or in combination of two or more. Among these, as the n-valent anion A n ⁇ , CO 3 2 ⁇ or lactate ion is preferable.
  • hydrotalcite compounds include Mg, Al, Zr 4+ series and Zn, Ti 4+ series in which part or all of the trivalent metal ions are replaced with tetravalent metal ions, and M + , M 3+ series (wherein M + is a monovalent metal and M 3+ is a trivalent metal).
  • M + is a monovalent metal and M 3+ is a trivalent metal.
  • the hydrotalcite compound in the present invention is preferably a compound having a structure represented by the above-described general formula (1) in that the partial discharge resistance can be further improved.
  • preferable hydrotalcite compounds include, for example, [Mg 4.5 Al 2 (OH) 13 ] 2+ [CO 3 .3.5H 2 O] 2 ⁇ , Mg 4.3 Al 2 (OH) 12.6 CO 3. 3.5H 2 O or Mg 3 Al (OH) 8 (CO 3 2 ⁇ ) 0.5 ⁇ 2H 2 O, Mg 6 Al 2 (OH) 16 (2CH 3 CH (OH) COO ⁇ ) ⁇ 4H 2 O, etc. Is mentioned.
  • the hydrotalcite compound in the present invention is preferably surface-modified.
  • the surface modification of the hydrotalcite compound can be performed by a known method such as surface organic treatment with a silane coupling agent or a titanate coupling agent.
  • Preferred examples of the surface modifier include saturated higher fatty acids.
  • the hydrotalcite compound may be a natural product or a synthetic product.
  • synthesis method of hydrotalcite compounds for example, Japanese Patent Publication No. 46-2280, Japanese Patent Publication No. 47-32198, Japanese Patent Publication No. 50-30039, Japanese Patent Publication No. 48-29477, Japanese Patent Publication No. 51-29129.
  • the publicly known manufacturing method described in the Gazette No. etc. is mentioned.
  • hydrotalcite compound may be a commercially available product.
  • examples of commercially available hydrotalcite compounds include “DHT-4A”, “DHT-4A-2”, and “DHT-6” manufactured by Kyowa Chemical Industry Co., Ltd.
  • the hydrotalcite compound is preferably a swelling type. When it is a swelling type, partial discharge resistance can be further improved.
  • the swellable hydrotalcite compound in the present invention refers to a layer that is easily peeled and separated in water or an organic solvent and is easily dispersed, and hydrotalcite substituted with another anion having a different anion between layers. Say. Examples thereof include those in which carbonate ions are substituted with amino acid ions, carboxylate ions, organic sulfonate ions, or isethionate ions.
  • Another anion is not particularly limited as long as the hydrotalcite compound substituted with another anion can swell in water or in an organic solvent, but for example, it enables delamination. , Glycine ion, isethionate ion, or lactate ion is preferable.
  • examples of the swelling type hydrotalcite compound has a structure represented by the above general formula (I), n-valent anion A n- is, bicarbonate ion, salicylate ion, oxalate ion, citrate ion , acetate, isethionate ion, preferably a compound is lactic acid ion or glycine ions, the n-valent anion a n- is more preferably a compound which is a lactate ion or glycine ions.
  • nanocomposite means that a layered double hydroxide, which is made into particles in the order of 1 to 500 nm, is dispersed in a resin.
  • a known method can be employed as a method for synthesizing the swelling hydrotalcite compound.
  • a swelling type lactic acid ion-based hydrotalcite compound can be synthesized by a known production method described in JP-A-2012-246194.
  • the swellable hydrotalcite compound is preferably dispersed in water at a concentration of 10 g / L to form a suspension, and the turbidity of the suspension after standing for 24 hours is preferably 400 NTU or less.
  • the turbidity is a value obtained by measuring with a turbidimeter.
  • the layered double hydroxide in the present invention is preferably nanoparticles.
  • a nanoparticle is a nanosized particle, specifically, a particle having a particle diameter of about 1 nm to 1 ⁇ m.
  • the nanoparticles also include, for example, particles in which at least one of the lateral direction and the thickness is about 1 nm to 1 ⁇ m when the layered double hydroxide has a flat plate structure.
  • the average particle size of the hydrotalcite compound is preferably 1 nm to 5 ⁇ m, and more preferably 5 nm to 500 nm.
  • the average particle diameter is a particle diameter at an integrated value of 50% in a particle size distribution obtained by measurement using a scattering particle size measuring apparatus (Microtrack) by laser diffraction.
  • the layered double hydroxide preferably has an aspect ratio (major axis / minor axis) of 2 or more, more preferably 4 to 100, and still more preferably 5 to 100.
  • aspect ratio is 2 or more
  • the alignment direction of the layered double hydroxide can be regularly arranged so as to be opposed to erosion by partial discharge, the covered area can be widened, and the effect of partial discharge resistance is enhanced. be able to.
  • the aspect ratio means the ratio of the major axis to the minor axis (major axis / minor axis) of the particles observed at a magnification of 5000 times using a scanning electron microscope. That is, the average value of the particle size of the plate-like particles (layered double hydroxide) is divided by the average value of the plate thickness, and the average particle size of at least 100 layered double hydroxide plate-like particles The value is divided by the average value of the plate thickness.
  • the particle size of the plate-like particles herein corresponds to a circular diameter having the same area as the area of the main surface at the position of the plate-like particles.
  • the content of the layered double hydroxide is preferably 0.1 to 60% by mass, and more preferably 1 to 60% by mass in the electrically insulating resin composition for partial discharge resistance.
  • the content of the layered double hydroxide is 0.1 to 60% by mass, a resin composition having excellent partial discharge resistance can be obtained.
  • a more preferable lower limit of the content of the layered double hydroxide is 2% by mass, and still more preferably 5% by mass.
  • the upper limit of the content of the layered double hydroxide is more preferably 50% by mass, and still more preferably 40% by mass.
  • the resin used in the electrically insulating resin composition for partial discharge resistance of the present invention is not particularly limited as long as it is generally used as an insulating material and does not inhibit the dispersion of the layered double hydroxide in the resin.
  • the resin includes a polyvinyl formal resin, a polyurethane resin, a polyamide resin, a polyester resin, and a polyimide resin.
  • a polyamideimide resin Preferably at least one resin selected from the group consisting of a polyamideimide resin, a polyetherimide resin, a polyesterimide resin, and an epoxy resin, from a polyamideimide resin, a polyesterimide resin, a polyimide resin, and a polyetherimide resin More preferred is at least one resin selected from the group consisting of:
  • the content of the resin is preferably 30 to 99% by mass, and more preferably 60 to 95% by mass in the electrically insulating resin composition for partial discharge resistance.
  • the electrically insulating resin composition for partial discharge resistance of the present invention contains the layered double hydroxide and the resin, but may further contain other components as necessary.
  • Examples of other components include generally known additives such as other resins and inorganic fillers used in electrical insulating resin compositions.
  • the additive include alkylphenol resins, alkylphenol-acetylene resins, xylene resins, coumarone-indene resins, terpene resins, rosin and other tackifiers, brominated flame retardants such as polybromodiphenyl oxide and tetrabromobisphenol A, Chlorinated flame retardants such as chlorinated paraffin and perchlorocyclodecane, phosphorus flame retardants such as phosphate esters and halogenated phosphate esters, boron flame retardants, oxide flame retardants such as antimony trioxide, phenolic, Phosphorus-based, sulfur-based antioxidants, silica, layered silicate, aluminum oxide, magnesium oxide, boron nitride, silicon nitride, aluminum nitride, and other inorganic fillers, heat stabilizers,
  • the partially insulated electrical insulating resin composition for use in the present invention is generally known in the form of layered double hydroxide, resin, and, if necessary, additives. It can be produced by mixing by a method. You may heat as needed in the case of mixing. Examples of the mixing method include a method of mixing using generally known mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, a twin screw extruder, a rotation and revolution mixer, and a homomixer.
  • the layered double hydroxide may be pulverized in advance before mixing with the resin.
  • the particle size of the layered double hydroxide is reduced and the particle size is uniform so that when mixed with the resin, the dispersion of the layered double hydroxide can be improved in the resin, and the resulting resin composition
  • the partial discharge resistance of the object can be further improved.
  • the pulverization method include methods using generally known pulverization means such as a ball mill, a rod mill, a mass colloider, a dry jet mill, a homogenizer, and a wet jet mill.
  • the layered double hydroxide may be directly dispersed and mixed in the resin, but the layered double hydroxide is dispersed in an organic solvent or water. After preparing the pregel, it is preferable to disperse and mix with the resin.
  • the layered double hydroxide and the resin can be combined in a form in which the layered double hydroxide is better dispersed by mixing with the resin after producing the pregel.
  • the layered double hydroxide Before mixing the layered double hydroxide and the resin, by pregelling the layered double hydroxide, when mixed with the resin, the layered double hydroxide can be better dispersed in the resin, The partial discharge resistance of the resulting resin composition can be further improved.
  • examples of the method for pregelling the layered double hydroxide include a method of dispersing the layered double hydroxide in an organic solvent or water.
  • organic solvent for dispersing the layered double hydroxide examples include polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, methanol, ethanol, propanol, and the like.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, methanol, ethanol, propanol, and the like.
  • examples thereof include a mixed solvent in which water is added to a polar solvent.
  • a layered double hydroxide When pregelling, it is preferable to add 1 to 100 parts by mass of a layered double hydroxide to 100 parts by mass of an organic solvent, water or a mixed solvent and disperse.
  • a dispersion method for example, a known stirring means such as a mixer may be used. The conditions for dispersion such as the stirring speed are appropriately selected depending on the solvent.
  • step (2) the pregelled layered double hydroxide and the resin are mixed.
  • means for mixing the pregelled layered double hydroxide and the resin include the generally known mixing means described above. Further, defoaming is preferably performed during mixing. The mixing conditions are appropriately selected depending on the solvent.
  • the electrically insulating resin composition for partial discharge resistance of the present invention is excellent in partial discharge resistance. For this reason, it can be suitably used as an insulating material for an insulator that requires partial discharge resistance. Moreover, especially the electrical insulation resin composition for partial discharge resistance of this invention can suppress suitably the deterioration of the insulator by the partial discharge generate
  • the electrically insulating resin composition for partial discharge resistance according to the present invention is used for an inverter-controlled electric device (such as a motor).
  • an inverter-controlled electric device such as a motor.
  • the cured product formed from the electrically insulating resin composition for partial discharge resistance according to the present invention is also excellent in partial discharge resistance.
  • a curable resin is used as the resin contained in the electrical insulating resin composition for partial discharge of the present invention, and the electrical insulating resin composition of the present invention is cured using a curing agent as necessary. Can be obtained.
  • the curable resin is not particularly limited, and may be a known curable resin such as one that is thermally cured or ultraviolet curable among the resins listed in the section of the resin.
  • the curing agent may be appropriately selected from known curing agents according to the curable resin to be used.
  • the curing method may be appropriately selected from known curing means such as drying, heating, or ultraviolet irradiation according to the curable resin to be used.
  • Examples of application of the electrically insulating resin composition for partial discharge resistance of the present invention include, for example, insulating varnish and electrodeposition paint.
  • insulating varnish and electrodeposition paint For example, by producing an insulating varnish or an electrodeposition paint using the electrically insulating resin composition for partial discharge resistance of the present invention, and coating the surface of a member such as a conductor using these, excellent partial discharge resistance can be obtained. Can be granted.
  • Insulating varnish By including the electrically insulating resin composition for partial discharge resistance of the present invention and a solvent, an insulating varnish excellent in partial discharge resistance can be obtained.
  • the solvent is not particularly limited as long as it is a known organic solvent conventionally used for insulating varnishes.
  • organic solvent for example, water, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N , N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, ⁇ -butyrolactone and other polar organic solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones, methyl acetate, ethyl acetate, butyl acetate , Esters such as diethyl oxalate, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol dimethyl ether, tetrahydro Ethers such as
  • the blending ratio of the electrically insulating resin composition for partial discharge resistance of the present invention and the solvent is not particularly limited and can be appropriately selected within a range applicable as an insulating varnish.
  • the electrically insulating resin composition for partial discharge resistance and the solvent may be blended so that the ratio of the nonvolatile component in the insulating varnish is 5 to 60% by mass.
  • Electrodeposition paint By containing the electrically insulating resin composition for partial discharge resistance of the present invention and a solvent, an electrodeposition paint having excellent partial discharge resistance can be obtained.
  • the solvent is not particularly limited as long as it is a known solvent conventionally used for electrodeposition coatings.
  • water N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone
  • Amide solvents such as methanol, ethanol, propanol, butanol, methoxypropanol, benzyl alcohol and other alcohol solvents, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol, dipropylene glycol, methyl propanediol and other polyvalent solvents
  • Alcohol solvents dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, diethylene glycol, diethylene glycol dimethyl ether, triethylene glycol, etc.
  • Ether solvents butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone Ester solvents such as ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, acetophenone, diethyl carbonate Carbonate solvents such as propylene carbonate, hydrocarbon solvents such as hexane, heptane,
  • the blending ratio of the electrically insulating resin composition for partial discharge resistance of the present invention and the solvent is not particularly limited and can be appropriately selected within a range applicable as an electrodeposition coating, and is usually a non-volatile component in the electrodeposition coating.
  • the electric insulation resin composition for partial discharge resistance and a solvent may be blended so that the ratio of 1 to 60% by mass.
  • the electrical insulating resin composition for partial discharge resistance of the present invention was used as a part or all of the insulator.
  • examples thereof include an electric wire, a rotating electric machine, an insulating film, and an insulating coating.
  • this invention is also an insulating product containing the electrical insulation resin composition for partial discharge resistance containing a layered double hydroxide and resin.
  • Such insulating products include electric wires, rotating electrical machines, insulating films, or insulating coatings.
  • the electrically insulating resin composition for partial discharge resistance of the present invention can be applied to an insulated wire.
  • an electric wire insulator By applying the electrical insulating resin composition for partial discharge resistance of the present invention as an electric wire insulator, an insulated electric wire having excellent partial discharge resistance can be obtained, and the insulation life of the electric wire can be improved.
  • the present invention is also an electric wire including a conductor and an insulating film composed of a single layer or a plurality of layers formed on an outer periphery of the conductor, wherein at least one layer of the insulating film has the partial discharge resistance. It is an electric wire containing the electrically insulating resin composition for use or its hardened material. Examples of the material of the conductor include metal materials such as copper, aluminum, and silver.
  • the insulating coating consists of a single layer or a plurality of layers formed on the outer periphery of the conductor.
  • at least one layer of the insulating coating contains the partial electrical discharge resin composition for partial discharge resistance or a cured product thereof.
  • the layer which consists of polyamideimide resin or polyesterimide resin etc. is mentioned, for example.
  • the electric wire of the present invention is obtained by applying a dispersion containing the above-mentioned electrical insulating resin composition for partial discharge resistance onto the surface of a conductor or another layer coated with a conductor, and applying an insulating film by baking or the like. It can be manufactured by forming.
  • Rotating electrical machine The electrically insulating resin composition for partial discharge resistance of the present invention can be applied to a rotating electrical machine. That is, the rotating electrical machine of the present invention is a rotating electrical machine using the above-described electric wire. Examples of the rotating electric machine include a motor and a generator.
  • Insulating film The electrically insulating resin composition for partial discharge resistance of the present invention can also be applied to an insulating film. That is, the insulating film of the present invention is an insulating film having an insulating layer made of the above-mentioned electrically insulating resin composition for partial discharge resistance or a cured product thereof.
  • the insulating film may be composed of a single layer, or may have a base material and the insulating layer on the base material.
  • the thickness of the insulating film is preferably 2 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m. If it is less than 2 ⁇ m, the insulating film may be defective during production. If it exceeds 300 ⁇ m, the flexibility as the insulating film may be impaired.
  • the insulating film consisting of one layer is produced, for example, by a method of producing the partially insulating electric insulating resin composition of the present invention by molding into a sheet by extrusion molding, or on a substrate such as polyethylene terephthalate.
  • the electrical insulating resin composition for partial discharge is dissolved or dispersed in a solvent as necessary, applied, and heated, dried or cured as necessary to form an insulating layer, and then the substrate is peeled off. It can be manufactured by a method or the like.
  • the insulating film having a base material and an insulating layer on the base material may be prepared by, for example, dissolving or dispersing the electrically insulating resin composition for partial discharge resistance of the present invention in a solvent as necessary on the base material.
  • the insulating layer can be produced by coating and, if necessary, heating, drying or curing to form an insulating layer.
  • the substrate include synthetic resins such as polyethylene terephthalate, polyethylene naphthalate, polyester, polyethylene, and polypropylene.
  • the thickness of the insulating layer is preferably 2 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m. If it is less than 2 ⁇ m, the insulating film may be defective during production. If it exceeds 300 ⁇ m, the flexibility as the insulating film may be impaired.
  • the thickness of the substrate is not particularly limited, and examples thereof include 2 to 300 ⁇ m, preferably 5 to 200 ⁇ m.
  • the electrically insulating resin composition for partial discharge resistance of the present invention can also be applied to insulating coatings such as solder resists used for electronic substrates and the like. That is, the insulating coating according to the present invention is an insulating coating having an insulating layer made of the above-mentioned partial insulating electric insulating resin composition or a cured product thereof.
  • the insulating coating of the present invention is, for example, a method in which the electrically insulating resin composition for partial discharge resistance of the present invention is heated and melted to coat the surface of an object to be coated such as an electronic substrate and molded to form an insulating layer, A method for forming an insulating layer on an object to be coated by electrodeposition using the electrically insulating resin composition for partial discharge resistance of the invention as an electrodeposition paint, or the electrical insulating resin composition for partial discharge resistance of the present invention as required It can be produced by a method in which it is dissolved or dispersed in a solvent, applied to an object to be coated, and heated, dried or cured as necessary to form an insulating layer. Moreover, when it fills with the clearance gap between base materials instead of the surface, it can also be set as a mold member. Examples of the coating object such as the electronic substrate include metal materials such as copper, aluminum, and silver.
  • the electrical insulating resin composition for partial discharge resistance of the present invention has excellent partial discharge resistance, it can be insulated by applying it to an insulator that requires partial discharge resistance. The life of the member can be extended.
  • Example 1> Preparation of layered double hydroxide pregel
  • hydrotalcite compound manufactured by Kyowa Chemical Industry Co., Ltd., “DHT-4A-2”, average particle size 440 nm, aspect ratio 10) 3.0 g
  • NMP N-methyl-2-pyrrolidone
  • ARE-310 rotating / revolving mixer
  • a blade coater having a groove depth of 520 ⁇ m was formed on a 100 ⁇ m thick PET (polyethylene terephthalate) film having a rectangular shape with respect to the obtained electric resin composition for partial discharge containing the hydrotalcite compound. And applied.
  • An insulating film was formed on the PET film by keeping the PET film in a horizontal state and drying in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. . After this insulating film was detached from the PET film, it was heat-treated in order at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes, from the hydrotalcite compound and the polyimide resin. An insulating film was obtained. In addition, content of the hydrotalcite-type compound with respect to the whole film was 5.0 mass%, and thickness was 51 micrometers.
  • Example 2 (Production of lactate ion-substituted layered double hydroxide) A hydrotalcite compound as a layered double hydroxide (“DHT-6” manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.5 ⁇ m, aspect ratio 4.5) in a 3 L four-necked flask equipped with a stirrer 50 g and 950 g of methanol were charged and stirred under nitrogen. After 20 minutes, 13.5 g of lactic acid was added and stirred at 45 ° C. for 2 hours to replace the hydrotalcite interlayer ions with lactic acid ions. Then, it filtered with the membrane filter with the hole diameter of 0.2 micrometer under nitrogen stream, and wash
  • DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.5 ⁇ m, aspect ratio 4.5
  • the insulating varnish obtained above was applied to a 100 ⁇ m thick PET film having a rectangular shape using a blade coater with a groove depth of 550 ⁇ m.
  • An insulating film was formed on the PET film by keeping the PET film in a horizontal state and drying in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. .
  • heat treatment is performed at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes, and then from lactate ion hydrotalcite and polyimide resin.
  • An insulating film was obtained.
  • content of the lactate ion-type hydrotalcite with respect to the whole film was 3.0 mass%, and thickness was 53 micrometers.
  • Example 3> (Preparation of insulating varnish) 8.6 g of lactate ion hydrotalcite pregel (5.5% by mass) prepared by the same method as the preparation of the layered double hydroxide pregel of Example 2 and the same method as in Example 2 50.0 g of the polyamic acid varnish (9.0 g of aromatic polyamic acid, 41.0 g of NMP) is placed in a plastic sealed container and mixed in a mixing mode (2000 rpm) for 5 minutes with a rotating / revolving mixer (“ARE-310”, manufactured by Sinky Corporation). The defoaming mode (2200 rpm) was performed for 5 minutes and stirred to obtain an insulating varnish containing an electrically insulating resin composition for partial discharge resistance.
  • the ratio of the nonvolatile component to the entire dispersion was 16.2% by mass
  • the ratio of the lactate ion-based hydrotalcite to the entire nonvolatile component was 5.0% by mass.
  • the insulating varnish obtained above was applied to a 100 ⁇ m thick PET film having a rectangular shape using a blade coater with a groove depth of 450 ⁇ m.
  • An insulating film was formed on the PET film by keeping the PET film in a horizontal state and drying in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. .
  • this insulating film is detached from the PET film, it is sequentially heat treated at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to comprise a hydrotalcite compound and a polyimide resin.
  • An insulating film was obtained.
  • content of the lactate ion-type hydrotalcite with respect to the whole film was 5.0 mass%, and thickness was 41 micrometers.
  • Example 4> (Preparation of insulation film)
  • Example 3 Preparation of insulating film
  • an insulating film was obtained in the same manner as in Example 3 except that the groove depth of the blade coater was changed to 450 ⁇ m.
  • content of the lactate ion-type hydrotalcite with respect to the whole film was 5.0 mass%, and thickness was 47 micrometers.
  • Example 5> (Preparation of insulation film)
  • Example 3 Preparation of insulating film
  • an insulating film was obtained in the same manner as in Example 3 except that the groove depth of the blade coater was changed to 500 ⁇ m.
  • content of the lactate ion-type hydrotalcite with respect to the whole film was 5.0 mass%, and thickness was 52 micrometers.
  • Example 6> (Preparation of layered double hydroxide pregel) Lactic acid ion-based hydrotalcite (11% by mass) prepared in Example 2 in 5 g of methanol dispersion and 23.4 g of water were placed in a plastic airtight container and mixed in a rotating / revolving mixer (“ARE-310”, manufactured by Sinky Corporation). (2000 rpm) was performed for 3 minutes and stirred to obtain a pregel in which the ratio of lactate ion hydrotalcite to the whole pregel was 1.9% by mass.
  • ARE-310 rotating / revolving mixer
  • the insulating coating with the electrodeposition paint was performed using a stainless steel container as a cathode and a copper plate subjected to nickel plating for forming an electrodeposition film as an anode.
  • the electrodeposition paint prepared above was charged into a stainless steel container, electrodeposition was performed with stirring under conditions of a voltage of 10 V and an energization time of 5 minutes, and the copper plate was slowly pulled up from the electrodeposition paint.
  • the copper plate was suspended in a forced air oven and dried in order at 100 ° C. for 20 minutes and at 200 ° C. for 60 minutes to obtain an insulating coated copper plate.
  • the thickness of the obtained insulating coating was 19 ⁇ m.
  • Example 7 (Preparation of electrically insulating resin composition for partial discharge resistance)
  • a hydrotalcite compound (“DHT-6” manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.5 ⁇ m, aspect ratio 4.5)
  • DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.5 ⁇ m, aspect ratio 4.5
  • 43 g of dried hydrotalcite compound was obtained. This removed the interlayer water of the hydrotalcite compound.
  • Example 1 (Preparation of polyimide insulation film)
  • the polyamic acid varnish produced in Example 1 was applied to a 100 ⁇ m thick PET film having a rectangular shape using a blade coater with a groove depth of 500 ⁇ m. While keeping the PET film horizontal, it is dried in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C to form a polyimide film on the PET film. did. After this polyimide film was detached from the PET film, heat treatment was sequentially performed at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to obtain an insulating film made of polyimide resin. The obtained insulating film had a thickness of 45 ⁇ m.
  • silica-containing insulating film (Preparation of silica-containing insulating film)
  • the obtained silica-containing varnish was applied to a 100 ⁇ m thick PET film having a rectangular shape using a blade coater with a groove depth of 550 ⁇ m. With the PET film held horizontally, it was dried in a forced air oven for 15 minutes at 70 ° C, 45 minutes at 90 ° C, and 10 minutes at 130 ° C. Formed. After this film is detached from the PET film, heat treatment is sequentially performed at 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 60 minutes to obtain an insulating film made of silica and polyimide resin. It was. In the obtained insulating film, the content of silica with respect to the entire film was 5.0% by mass, and the thickness was 48 ⁇ m.
  • Comparative Example 3 In Comparative Example 1, an insulating film was prepared by the same method. The thickness of the obtained film was 44 ⁇ m.
  • Comparative Example 4 In Comparative Example 1, an insulating film was prepared in the same manner except that the groove depth of the blade coater was changed to 500 ⁇ m. The thickness of the obtained film was 50 ⁇ m.
  • Comparative Example 5 In Comparative Example 1, an insulating film was prepared in the same manner except that the groove depth of the blade coater was 600 ⁇ m. The thickness of the obtained film was 54 ⁇ m.
  • the insulating coating with the electrodeposition paint was performed using a stainless steel container as a cathode and a copper plate subjected to nickel plating for forming an electrodeposition film as an anode.
  • the electrodeposition paint prepared above was charged into a stainless steel container, electrodeposition was performed with stirring under conditions of a voltage of 10 V and an energization time of 5 minutes, and the copper plate was slowly pulled up from the electrodeposition paint.
  • the copper plate was suspended in a forced air oven and dried in order at 100 ° C. for 20 minutes and at 200 ° C. for 60 minutes to obtain an insulating coated copper plate.
  • the thickness of the obtained insulating coating was 19 ⁇ m.
  • Example 1 ⁇ Evaluation 1 of partial discharge resistance>
  • the insulation film produced in Example 1 and Comparative Examples 1 and 2 was tested as follows with reference to the “three-layer electrode system sample” of the “Discharge Handbook” (edited by the Discharge Handbook Publishing Committee of the Institute of Electrical Engineers of Japan, 2003). It was evaluated with. As a specific test method, as shown in FIG.
  • the electrode 5 from the bottom, the electrode 5, the metal plate 4, the insulating film 3 (thickness 50 ⁇ 10 ⁇ m), the 5 mm ⁇ -perforated GAP-forming polyimide film 2 (60 ⁇ m), the electrode
  • the insulating film was sandwiched, a partial discharge was caused in the perforated portion 6 of the GAP-forming polyimide film 2, and the time until the insulating film breaks down was measured.
  • a dielectric breakdown voltage tester manufactured by Yasuda Seiki Seisakusho
  • the voltage was 4 kV which is equal to or higher than the partial discharge start voltage, and the frequency was measured at 60 Hz.
  • Table 1 The results are shown in Table 1.
  • ⁇ Evaluation 2 of partial discharge resistance> (Partial discharge resistance test of insulating film)
  • the insulating films having different thicknesses produced in Examples 2 to 5 and Comparative Examples 3 to 5 were evaluated by the following test methods.
  • a specific test method as shown in FIG. 2, a small amount of conductive grease 10 was applied to the aluminum plate 11 from below, and an insulating film 9 was attached. Further, the metal sphere (1 mm ⁇ ) 8 and the insulating film 9 were pressed by the weight of the copper tube 7 and fixed so that the copper tube 7 did not move.
  • the metal ball 8 was used as a high voltage electrode, and the aluminum plate 11 was used as a low voltage electrode.
  • the metal ball 8 was used as a high voltage electrode, and the nickel plated copper plate 13 was used as a low voltage electrode. Thereby, a partial discharge was caused between the metal sphere and the electrodeposited insulating coating, and the time until the insulating coating breakdown was measured.
  • the dielectric breakdown voltage tester was used as a measuring device. The voltage was 1.5 kV which is equal to or higher than the partial discharge start voltage, and the frequency was measured at 60 Hz. The results are shown in Table 3.
  • Trees are dendritic cracks that have occurred in the cured resin over time due to partial discharge, and cause breakdown due to the tree reaching all the paths between the electrodes.
  • the tungsten wire 17 was fixed to the tip of the IV electric wire 16 as an anode, the aluminum plate 18 as a cathode, and the IV electric wire was wired on the glass plate 15 so as to have the shape shown in FIG.
  • the distance between the electrodes of the anode tungsten wire 17 and the cathode aluminum plate 18 was 1 mm, and the distance between the tungsten wire 17 and the aluminum plate 18 and the glass plate 15 was 0.5 to 1 mm.
  • the periphery was molded with the electrically insulating resin composition for partial discharge resistance prepared in Example 7, and then placed in a heat dryer and cured by heating at 70 ° C. for 2 hours and then at 140 ° C. for 8 hours.
  • a resin composition test piece for tree test measurement was prepared.
  • Ten test pieces were prepared. The thickness of the test piece was 1.2 to 1.5 mm.
  • ten test pieces were similarly produced using the epoxy resin composition of Comparative Example 7 instead of the electrically insulating resin composition for partial discharge resistance.
  • ten test pieces were similarly prepared using the silica-containing epoxy resin composition of Comparative Example 8 instead of the partial discharge resistant electrical insulating resin composition.
  • An alternating current of 60 Hz and 17.5 kV were applied to the obtained test piece, and the time until the electrodes became conductive (dielectric breakdown) was measured.
  • Ten samples were measured, and the results were geometrically averaged to obtain measured values, except those that could not be measured due to dielectric breakdown during rising voltage. The results are shown in Table 4.
  • test piece molded with the electrically insulating resin composition for partial discharge resistance prepared in Example 7 was left overnight in a sealed tank prepared at a relative humidity of 75.3% at 25 ° C. to absorb moisture, and the test was performed. The interlayer water of the hydrotalcite compound in the piece was restored. Thus, an epoxy resin composition test piece containing a hydrotalcite compound retaining interlayer water was prepared. About the produced test piece, time until dielectric breakdown was measured by the method similar to the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Insulating Bodies (AREA)

Abstract

本発明は、部分放電による絶縁体の劣化を抑制し得る、優れた耐部分放電用電気絶縁樹脂組成物を提供することを目的とする。本発明は、層状複水酸化物と、樹脂とを含有する耐部分放電用電気絶縁樹脂組成物である。

Description

耐部分放電用電気絶縁樹脂組成物
 本発明は、耐部分放電性に優れた耐部分放電用電気絶縁樹脂組成物、その製造方法、ならびに、前記耐部分放電用電気絶縁樹脂組成物を用いた、絶縁ワニス、電着塗料、硬化物、電線、回転電機、絶縁フィルム、及び、絶縁コーティングに関する。
 近年、省エネルギー意識の高まりと共に、インバータ制御を行う電気機器(例えば、エアコン、冷蔵庫、蛍光灯、電磁調理器などの家電、自動車、電車、エレベータなど)が増えている。インバータ制御とは、インバータを使った可変電圧・可変周波数の交流電源によって電動モータ等の速度制御を行う制御方式の一種である。インバータは、効率的な可変速電圧制御装置であり、数kHz~数百kHzの高速スイッチング素子によって制御され、電圧印加の際には、高圧のサージ電圧が発生する。
 このようなインバータ制御を行う電気機器のコイルを形成する材料として、導体上に絶縁被覆が設けられたエナメル線などの絶縁電線が一般に使用されている。そのような絶縁電線においては、インバータ制御に伴う急峻な過電圧(インバータサージ)の発生により、部分放電が発生することがある。部分放電とは、絶縁体中、または導体と絶縁体との間における微少なボイド(空隙)で微弱な電気的スパーク(放電現象)が発生することをいう。絶縁電線に部分放電が発生すると、これにより絶縁体が破壊され、最終的に絶縁状態が保てなくなる絶縁破壊に至るおそれがあり、絶縁電線の寿命が極端に短くなる場合がある。
特開2012-204270号 特開2014-040528号
東芝レビューVol.59No.7(2004) 太田司、飯田和生,エポキシ複合体の耐電圧寿命に及ぼす水酸化マグネシウムの効果, 2014, IEEJ Transactions on Fundamentals and Materials,Vol.134,No.5,pp.327-333
 このような部分放電による絶縁体の劣化の原因としては、1)部分放電の荷電粒子の衝突による樹脂の主鎖の切断による絶縁材料の劣化、2)部分放電による局所的温度上昇による絶縁材料の溶解や化学分解、3)部分放電によって発生するオゾン等の二次生成物による絶縁材料の劣化、が考えられている。
 部分放電による絶縁体の劣化を抑制する方法としては、種々の方法が知られている。
 上述した3つの要因のうち、1)に関しては、フィラーを樹脂に分散混合することで、部分放電による樹脂の主鎖の切断が抑制されること(バリア効果と呼ばれる)が知られている。例えば、特許文献1には、フィラーとして球状のシリカ粒子を用いることが開示されており、非特許文献1には、平板状の層状シリケート(陽イオン交換性粘土)を用いることが開示されている。しかしながら、これらの方法では1)は抑制できるが、2)および3)には対応できない。特に電圧が高い場合には部分放電による絶縁体の劣化を抑制する効果が充分でない。
 特許文献2及び非特許文献2には、水酸化マグネシウム等の金属水酸化物をフィラーとして分散混合することにより、フィラーが部分放電に晒された際に水を放出して部分放電による発熱を抑える方法が開示されている。この方法によれば、2)を抑制でき、同時に温度上昇による3)の二次生成物の生成も低減できる。
 しかしながら、例えば、金属水酸化物は、特許文献1の球状シリカ粒子や、非特許文献1の層状シリケートよりもバリア効果が小さく、すなわち1)への効果が劣る。また金属水酸化物はアルカリ性が強く、混合した樹脂の劣化を促進するおそれがある。さらに、非特許文献2の水酸化マグネシウム等を用いる方法では、凝集した粉体を混合しただけであるため、分散状態に偏りがあり、充分な効果を得るためにはフィラーの充填量を増やす必要がある。また特許文献2の金属水酸化物又は金属炭酸塩を用いる方法では、極微小なフィラーを用い、かつ分散状態を改善してはいるが、凝集が起こっており、効果が充分ではない。
 このように、部分放電による絶縁体の劣化は絶縁破壊を引き起こし、これらの問題は現在もなお十分解決されておらず、より優れた耐部分放電性を有する絶縁体の開発が求められている。また、部分放電による絶縁破壊の問題は、電線のみならず、電動モータの相間絶縁紙等の絶縁フィルム;モータコイルの外層を被覆して固定する絶縁ワニス;発電機、変圧器、開閉装置などの電力機器の絶縁用の電線;変圧器、開閉装置などの電力機器の充填モールド絶縁部材;等においても存在する。このため、幅広い用途の絶縁体に適用可能な、優れた耐部分放電用の材料の開発が求められている。
 なお、本発明における絶縁破壊とは、絶縁体にかかる電圧がある限度以上となった時に、絶縁体が電気的に破壊し絶縁性を失って電流を流すようになる現象のことをいう。
 本発明は、上述の原因1)~3)のすべてを解決し、部分放電による絶縁体の劣化を抑制し得る、優れた耐部分放電用電気絶縁樹脂組成物を提供することを主な目的とする。また、本発明は、優れた耐部分放電用電気絶縁樹脂組成物の製造方法、ならびに、当該樹脂組成物を用いた、絶縁ワニス、電着塗料、硬化物、電線、回転電機、絶縁フィルム、及び、絶縁コーティングを提供することも目的とする。
 本発明者らは、上記の課題に鑑み鋭意研究を重ねた結果、層状複水酸化物と樹脂とを含有することにより、耐部分放電性に優れた耐部分放電用電気絶縁樹脂組成物となることを見出した。また、本発明者らは、本発明の耐部分放電用電気絶縁樹脂組成物が、インバータサージによって発生する部分放電による絶縁体の劣化を好適に抑制できることを見出した。更に、本発明者らは、本発明の耐部分放電用電気絶縁樹脂組成物の製造において、層状複水酸化物をプレゲル化する工程を経ることにより、耐部分放電性がより優れたものとなることを見出した。
 本発明は、これらの知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 層状複水酸化物と、樹脂とを含有する耐部分放電用電気絶縁樹脂組成物。
項2. 前記層状複水酸化物が、ナノ粒子である項1に記載の耐部分放電用電気絶縁樹脂組成物。
項3. 前記層状複水酸化物が、膨潤型ハイドロタルサイト類化合物である項1又は2に記載の耐部分放電用電気絶縁樹脂組成物。
項4. 前記樹脂が、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、及び、エポキシ樹脂からなる群より選択される少なくとも一種の樹脂である項1~3のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項5. 前記層状複水酸化物の含有量が0.1~60質量%である項1~4のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項6. 耐インバータサージ用である項1~5のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項7. インバータ制御の電気機器に使用される項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
項8. 項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する絶縁ワニス。
項9. 項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する電着塗料。
項10. 項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物から形成される硬化物。
項11. 項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物の製造方法であって、層状複水酸化物をプレゲル化する工程、及び、プレゲル化した層状複水酸化物を樹脂と混合する工程を含む、耐部分放電用電気絶縁樹脂組成物の製造方法。
項12. 導体と、前記導体の外周上に形成される単層又は複数層からなる絶縁被膜と、を含む電線であって、前記絶縁被膜の少なくとも一層は、項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる、電線。
項13. 項12に記載の電線を用いた回転電機。
項14. 項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁フィルム。
項15. 項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁コーティング。
項16.層状複水酸化物と樹脂とを含有する樹脂組成物の部分放電による劣化を抑制するための使用。
項17.層状複水酸化物と樹脂とを含有する耐部分放電用電気絶縁樹脂組成物を含む、絶縁性製品。
 本発明によれば、耐部分放電性に優れた耐部分放電用電気絶縁樹脂組成物、ならびに、当該樹脂組成物を用いた、絶縁ワニス、電着塗料、硬化物、電線、回転電機、絶縁フィルム、及び、絶縁コーティングを提供することができる。また、当該耐部分放電用電気絶縁樹脂組成物を用いることにより、モータや発電機等の回転電機のコイル、相間絶縁紙等の絶縁フィルム、モータコイルの外層を被覆して固定する絶縁ワニス、変圧器・開閉装置などの電力機器の絶縁部材の長寿命化が可能となる。
実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例の耐部分放電性評価の試験方法の一部を示す概略図である。 実施例の耐部分放電性評価の試験方法の一部を示す概略図である。
1.耐部分放電用電気絶縁樹脂組成物
 本発明の電気絶縁樹脂組成物は、耐部分放電用であり、層状複水酸化物と、樹脂とを含有することを特徴とする。以下、本発明の耐部分放電用電気絶縁樹脂組成物について詳述する。
(層状複水酸化物)
 層状複水酸化物は、金属水酸化物層を有する層状化合物である。層状複水酸化物は、通常、金属水酸化物の層と、陰イオン及び層間水から構成される中間層とが交互に積層した構造を有し、陰イオン交換能を有している。本発明の耐部分放電用電気絶縁樹脂組成物は、層状複水酸化物と樹脂とを含んでいるため、耐部分放電に優れた特性を発揮する。この機序の詳細は、必ずしも明らかではないが、例えば次のように考えることができる。すなわち、耐部分放電用電気絶縁樹脂組成物中の層状複水酸化物は、部分放電に晒されると、水を放出して熱エネルギーを効率的に吸収すると考えられる。このため、部分放電の熱エネルギー(温度上昇)による樹脂の劣化が効果的に抑制されていると推測される。
 また、層状複水酸化物は広い温度範囲で水を放出する特徴をもっているため、広い温度範囲で部分放電による発熱を抑えていると考えられる。その結果、温度上昇を抑えることができ、効率的にオゾン等の二次生成物の発生も抑制していると推測される。
 また層状複水酸化物は、平板状であるため、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を導体に適用した場合に、平板状の層状シリケートと同様に、導体を覆う形で樹脂中に存在することで高いバリア効果を発揮すると推測される。さらに、層間水を放出した後も層状の結晶構造を維持し続けるので、高いバリア効果を維持し続けると推測される。
 また層状複水酸化物は、層間水、構造水を放出した後、空気中の水蒸気を吸収し、再び水を放出することができるので、前述の部分放電による発熱抑制効果等を維持することができると推測される。
 層状複水酸化物としては、耐部分放電性を向上させることができるものであれば、特に限定されないが、ハイドロタルサイト類化合物であることが好ましい。ハイドロタルサイト類化合物としては、公知のものが使用できる。
 ハイドロタルサイト類化合物の具体例としては、下記一般式(1):
[M2+ 1-x3+ x(OH)2x +[An- x/n・mH2O]x -    (1)
(式中、M2+は二価金属であり、M3+は三価金属であり、An-はn価アニオンであり、xは0<x<0.33の範囲にあり、mは0~15、好ましくは1~15であり、nは1~4の整数である。)
で示される構造を有する化合物が挙げられる。
 上記一般式において、二価金属M2+としては、例えば、Mg2+、Zn2+、Ni2+、Mn2+、Fe2+、Co2+、Cu2+、Ca2+、Cd2+、V2+等が挙げられる。二価金属M2+は、前記した二価金属の1種を単独で使用してもよいし、2種以上の混合物であってもよい。なかでも、二価金属M2+としては、Mg2+が好ましい。
 三価金属M3+としては、例えば、Al3+、Fe3+、Cr3+、Co3+、In3+等が挙げられる。三価金属M3+は、前記した三価金属の1種を単独で使用してもよいし、2種以上の混合物であってもよい。なかでも、三価金属M3+としては、Al3+が好ましい。
 n価アニオンAn-としては、例えば、I-、Cl-、NO3 -、HCO3 -、CO3 2-、OH-、SO4 2-、SiO4 4-、重炭酸イオン、サリチル酸イオン、シュウ酸イオン、クエン酸イオン、乳酸イオン、グリシンイオン、酢酸イオンなどが挙げられる。これらのn価アニオンAn-は、前記したn価アニオンの1種を単独で使用してもよいし、2種以上の混合物であってもよい。なかでも、n価アニオンAn-としては、CO3 2-又は乳酸イオンが好ましい。
 また、その他のハイドロタルサイト類化合物としては、三価金属イオンの一部またはすべてを四価金属イオンに置換したMg、Al、Zr4+系やZn、Ti4+系が挙げられ、M+、M3+系(式中、M+は一価金属であり、M3+は三価金属である。)のLi-Al系も挙げられる。これらの金属はそれぞれ1種であっても2種以上の混合であってもよい。
 なかでも、本発明におけるハイドロタルサイト類化合物としては、耐部分放電性をより向上させることができる点で、前述の一般式(1)で示される構造を有する化合物であることが好ましい。
 好ましいハイドロタルサイト類化合物の具体例としては、例えば、[Mg4.5Al2(OH)132+[CO3・3.5H2O]2-、Mg4.3Al2(OH)12.6CO3・3.5H2O、又は、Mg3Al(OH)8(CO3 2-0.5・2H2O、Mg6Al2(OH)16(2CH3CH(OH)COO-)・4H2O等が挙げられる。
 また、本発明におけるハイドロタルサイト類化合物は表面修飾されたものであることが好ましい。ハイドロタルサイト類化合物の表面修飾は、例えば、シランカップリング剤やチタネートカップリング剤による表面有機化処理等の公知の方法により行うことができる。好ましい表面修飾剤としては、飽和高級脂肪酸類等が挙げられる。
 前記ハイドロタルサイト類化合物は、天然産出物であってもよく、合成物であってもよい。ハイドロタルサイト類化合物の合成方法については、例えば、特公昭46-2280号公報、特公昭47-32198号公報、特公昭50-30039号公報、特公昭48-29477号公報、特公昭51-29129号公報等に記載の公知の製法が挙げられる。
 また、前記ハイドロタルサイト類化合物は、市販品であってもよい。ハイドロタルサイト類化合物の市販品としては、例えば、協和化学工業社製の「DHT-4A」、「DHT-4A-2」、「DHT-6」等を挙げることができる。
 さらに、前記ハイドロタルサイト類化合物は、膨潤型であることが好ましい。膨潤型であると、耐部分放電性をより向上させることができる。本発明における膨潤型ハイドロタルサイト類化合物とは、水又は有機溶媒中で層剥離、薄片化して分散し易いものをいい、層間の陰イオンが異なる別の陰イオンに置換されたハイドロタルサイトをいう。例えば、炭酸イオンがアミノ酸イオン、カルボン酸イオン、有機スルホン酸イオン、又はイセチオン酸イオンに置換されたものなどが挙げられる。別の陰イオンとしては、別の陰イオンに置換されたハイドロタルサイト類化合物が、水中又は有機溶媒中で膨潤し得るものであれば特に限定されないが、例えば、層間剥離が可能となる点で、グリシンイオン、イセチオン酸イオン、又は、乳酸イオンが好ましい。
 すなわち、前記膨潤型ハイドロタルサイト類化合物としては、前述の一般式(I)で示される構造を有し、n価アニオンAn-が、重炭酸イオン、サリチル酸イオン、シュウ酸イオン、クエン酸イオン、酢酸イオン、イセチオン酸イオン、乳酸イオン又はグリシンイオンである化合物であることが好ましく、前記n価アニオンAn-が、乳酸イオン又はグリシンイオンである化合物であることがより好ましい。
 膨潤型ハイドロタルサイト類化合物を用いることで、ハイドロタルサイト類化合物の樹脂中での分散が良くなり、樹脂とナノコンポジット化することが容易になるので、耐部分放電性をより向上させることができる。
 なお、本発明における、ナノコンポジット化とは、層状複水酸化物を1~500nm程度のオーダーで粒子化したものを、樹脂中に分散させることをいう。
 膨潤型ハイドロタルサイト類化合物を合成する方法としては、公知の方法を採用することができる。例えば、膨潤型である、乳酸イオン系ハイドロタルサイト類化合物は、特開2012-246194などに記載の公知の製法により合成することができる。
 前記膨潤型ハイドロタルサイト類化合物は、10g/Lの濃度で水に分散させて懸濁液とし、24時間静置した後の前記懸濁液の濁度が400NTU以下であることが好ましい。前記濁度は、濁度計により測定して得られる値である。
 本発明における層状複水酸化物は、ナノ粒子であることが好ましい。ナノ粒子とは、ナノサイズの粒子であり、具体的には、粒子径が1nm~1μm程度である粒子をいう。また、前記ナノ粒子には、例えば、前記層状複水酸化物が平板状の構造である場合、横方向又は厚さの少なくとも一方が1nm~1μm程度である粒子も含まれる。
 層状複水酸化物がハイドロタルサイト類化合物である場合、ハイドロタルサイト類化合物の平均粒子径としては、1nm~5μmが好ましく、5nm~500nmがより好ましい。
 なお、前記平均粒子径は、レーザ回折による散乱式粒度測定装置(マイクロトラック)を使用して測定して得られた粒度分布における積算値50%での粒子径である。
 層状複水酸化物は、アスペクト比(長径/短径)が2以上であることが好ましく、4~100であることがより好ましく、5~100であることが更に好ましい。アスペクト比が2以上であると、層状複水酸化物の整列方向を部分放電による侵食に相対するように規則正しく並べることができ、覆われる面積を広くでき、耐部分放電性の効果をより高くすることができる。
 なお、本明細書において上記アスペクト比は、走査型電子顕微鏡を用いて、5000倍の倍率で観察した粒子の長径と短径の比率(長径/短径)を意味する。すなわち、板状粒子(層状複水酸化物)の粒径の平均値を板厚の平均値で除したものであり、少なくとも100個の層状複水酸化物の板状粒子についての粒径の平均値を板厚の平均値で除したものである。ここでいう板状粒子の粒径は、板状粒子の位置の主面の面積と同一の面積を有する円形状の直径に相当する。
 層状複水酸化物の含有量としては、耐部分放電用電気絶縁樹脂組成物中0.1~60質量%であることが好ましく、1~60質量%であることがより好ましい。層状複水酸化物の含有量が0.1~60質量%であると、耐部分放電性により優れた樹脂組成物とすることができる。層状複水酸化物の含有量の更に好ましい下限は、2質量%であり、更により好ましくは5質量%である。層状複水酸化物の含有量の更に好ましい上限は、50質量%であり、更により好ましくは40質量%である。
(樹脂)
 本発明の耐部分放電用電気絶縁樹脂組成物に用いられる樹脂としては、一般的に絶縁材料に用いられ、樹脂中での層状複水酸化物の分散を阻害しないものであるならば特に限定されず、例えば、ポリビニルホルマール樹脂、ポリエステルイミド樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、ポリフッ化ビニル樹脂、ポリエチレン樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、エポキシ樹脂、シリコン樹脂、ポリフェニレンサルファイド樹脂、フェノール樹脂、リグニン樹脂、ポリ乳酸樹脂、ポリジシクロペンタジエン樹脂、ポリトリシクロペンタジエン樹脂、又は、これら2種以上の樹脂を組み合わせたものが挙げられる。
 これらのなかでも、層状複水酸化物の分散が良好で、耐部分放電性をより向上させることができる観点で、前記樹脂としては、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、及び、エポキシ樹脂からなる群より選択される少なくとも一種の樹脂が好ましく、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、及び、ポリエーテルイミド樹脂からなる群より選択される少なくとも一種の樹脂がさらに好ましい。
 樹脂の含有量としては、耐部分放電用電気絶縁樹脂組成物中30~99質量%が好ましく、60~95質量%がより好ましい。
(他の成分)
 本発明の耐部分放電用電気絶縁樹脂組成物は、前記の層状複水酸化物と樹脂とを含むが、必要に応じて他の成分を更に含んでいてもよい。
 他の成分としては、例えば、一般に公知の、他の樹脂や無機フィラー等、電気絶縁用樹脂組成物に使用される添加剤等が挙げられる。前記添加剤としては、例えば、アルキルフェノール樹脂、アルキルフェノール-アセチレン樹脂、キシレン樹脂、クマロン-インデン樹脂、テルペン樹脂、ロジンなどの粘着付与剤、ポリブロモジフェニルオキサイド、テトラブロモビスフェノールAなどの臭素系難燃剤、塩素化パラフィン、パークロロシクロデカンなどの塩素系難燃剤、リン酸エステル、含ハロゲンリン酸エステルなどのリン系難燃剤、ホウ素系難燃剤、三酸化アンチモンなどの酸化物系難燃剤、フェノール系、リン系、硫黄系の酸化防止剤、シリカ、層状ケイ酸塩、酸化アルミ、酸化マグネシウム、窒化硼素、窒化珪素、又は窒化アルミニウムなどを含む無機フィラー、熱安定剤、光安定剤、紫外線吸収剤、滑剤、顔料、架橋剤、架橋助剤、シランカップリング剤、チタネートカップリング剤などの一般的なプラスチック用配合成分、芳香族ポリアミド繊維などが挙げられる。これら添加剤は、電気絶縁用樹脂組成物に、例えば0.1~10質量%含まれ得る。
2.耐部分放電用電気絶縁樹脂組成物の製造方法
 本発明の耐部分放電用電気絶縁樹脂組成物は、前記した層状複水酸化物、樹脂、及び、必要に応じて添加剤を一般的に公知の方法によって混合することによって製造することができる。混合の際、必要に応じて加熱してもよい。混合方法としては、例えば、ニーダー、加圧ニーダー、混練ロール、バンバリーミキサー、二軸押し出し機、自転公転ミキサー、ホモミキサーなどの一般的に公知の混合手段を用いて混合する方法が挙げられる。
 層状複水酸化物は、樹脂と混合する前に予め粉砕してもよい。粉砕することによって層状複水酸化物の粒径が小さくなり、また粒径が揃うので樹脂と混合した際、樹脂中で層状複水酸化物の分散を良好にすることができ、得られる樹脂組成物の耐部分放電性をより向上させることができる。粉砕する方法としては、例えば、ボールミル、ロッドミル、マスコロイダー、乾式ジェットミル、ホモジナイザー、湿式ジェットミルなどの一般的に公知の粉砕手段を用いる方法が挙げられる。
 層状複水酸化物と樹脂とを混合し、複合化する方法としては、樹脂に層状複水酸化物を直接分散混合してもよいが、層状複水酸化物を有機溶媒又は水に分散させたプレゲルを作製した後に、樹脂と分散混合することが好ましい。
 前記プレゲルを作製した後に樹脂と混合することにより、層状複水酸化物と樹脂とを、層状複水酸化物がよりよく分散した形で複合化することができる。
 すなわち、本発明の耐部分放電用電気絶縁樹脂組成物を製造する方法としては、
層状複水酸化物をプレゲル化する工程(1)、及び、
プレゲル化した層状複水酸化物を樹脂と混合する工程(2)、
を有することが好ましい。
 層状複水酸化物と樹脂とを混合する前に、予め層状複水酸化物をプレゲル化することにより、樹脂と混合した際、樹脂中で層状複水酸化物をよりよく分散させることができ、得られる樹脂組成物の耐部分放電性をより向上させることができる。
 工程(1)において、層状複水酸化物をプレゲル化する方法としては、層状複水酸化物を有機溶媒又は水中に分散させる方法が挙げられる。
 層状複水酸化物を分散させる有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、メタノール、エタノール、プロパノール等の極性溶媒や、これらの極性溶媒に水を加えた混合溶媒等が挙げられる。
 プレゲル化する場合、有機溶媒、水又は混合溶媒100質量部に対し、層状複水酸化物を1~100質量部を添加して分散させることが好ましい。分散方法としては、例えば、ミキサー等の公知の撹拌手段により行うとよい。なお、撹拌速度等、分散の条件は、溶媒によって適宜選択される。
 次に、工程(2)において、プレゲル化した層状複水酸化物と樹脂とを混合する。プレゲル化した層状複水酸化物と樹脂とを混合する手段としては、前記した一般に公知の混合手段が挙げられる。また、混合の際、脱泡を行うことが好ましい。なお、混合の条件は、溶媒によって、適宜選択される。
3.用途
 本発明の耐部分放電用電気絶縁樹脂組成物は、耐部分放電性に優れる。このため、耐部分放電性が要求される絶縁体の絶縁材料として好適に使用することができる。また、本発明の耐部分放電用電気絶縁樹脂組成物は、特に、インバータサージによって発生する部分放電による絶縁体の劣化を好適に抑制することができる。このため、本発明の耐部分放電用電気絶縁樹脂組成物は、耐インバータサージ用に好ましく用いられる。
 また、本発明の耐部分放電用電気絶縁樹脂組成物は、インバータ制御の電気機器(モータなど)に使用されることが好ましい。本発明の耐部分放電用電気絶縁樹脂組成物をインバータ制御の電気機器に使用する方法としては、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を用いて導体を被覆した絶縁電線や、本発明の耐部分放電用電気絶縁樹脂組成物を用いて形成した絶縁シートを電気機器に適用する方法などが挙げられる。
 本発明の耐部分放電用電気絶縁樹脂組成物から形成される硬化物も、同様に、耐部分放電性に優れる。硬化物は、例えば、本発明の耐部分放電用電気絶縁樹脂組成物に含まれる樹脂として硬化性樹脂を用い、必要に応じて硬化剤を用いて、本発明の電気絶縁樹脂組成物を硬化させることにより得られる。
 前記硬化性樹脂としては、特に限定されず、前記の樹脂の項で挙げられた樹脂のうち、熱硬化するもの、又は、紫外線硬化するもの等、公知の硬化性樹脂が挙げられる。硬化剤としては、使用する硬化性樹脂に合わせて公知の硬化剤から適宜選択するとよい。硬化方法は、使用する硬化性樹脂に応じて、乾燥、加熱、又は、紫外線照射等の公知の硬化手段から適宜選択するとよい。
 本発明の耐部分放電用電気絶縁樹脂組成物の適用例としては、例えば、絶縁ワニスや電着塗料などが挙げられる。例えば、本発明の耐部分放電用電気絶縁樹脂組成物を用いて絶縁ワニスや電着塗料を作製し、これらを用いて導体等の部材の表面を被覆することにより、優れた耐部分放電性を付与することができる。
4.絶縁ワニス
 本発明の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有することにより耐部分放電性に優れた絶縁ワニスとすることができる。
 溶媒としては、絶縁ワニスに従来用いられている公知の有機溶媒であれば、特に限定されず、具体的には、例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素類、ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素類、クレゾール、クロルフェノールなどのフェノール類、ピリジンなどの第三級アミン類、メタノール、エタノール、プロパノールなどのアルコール類等が挙げられる。これらの溶媒はそれぞれ単独であるいは2種以上を混合して用いられる。
 本発明の耐部分放電用電気絶縁樹脂組成物と溶媒との配合割合としては、特に限定されず、絶縁ワニスとして適用可能な範囲で適宜選択することができる。通常、絶縁ワニスにおける不揮発性成分の割合が5~60質量%となるように、耐部分放電用電気絶縁樹脂組成物と溶媒を配合すればよい。
5.電着塗料
 本発明の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有することにより耐部分放電性に優れた電着塗料とすることができる。
 溶媒としては、電着塗料に従来用いられている公知の溶媒であれば、特に限定されず、例えば、水、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド系溶媒、メタノール、エタノール、プロパノール、ブタノール、メトキシプロパノール、ベンジルアルコールなどのアルコール系溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、ジプロピレングリコール、メチルプロパンジオールなどの多価アルコール系溶媒、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジエチレングリコール、ジエチレングリコールジメチルエーテル、トリエチレングリコールなどのエーテル系溶媒、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、プチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどのエステル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、アセトフェノン等のケトン系溶媒、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、フェノール、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、その他、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド、スルホラン、ジメチルスターペン、ミネラルスピリット、石油ナフサ系溶媒などが挙げられる。これらの溶媒はそれぞれ単独あるいは2種以上を混合して用いられる。
 本発明の耐部分放電用電気絶縁樹脂組成物に含まれる樹脂として、電着塗料に従来用いられている公知の樹脂を用いるとよい。
 本発明の耐部分放電用電気絶縁樹脂組成物と溶媒の配合割合としては、特に限定されず、電着塗料として適用可能な範囲で適宜選択することができ、通常、電着塗料における不揮発性成分の割合が1~60質量%となるように、耐部分放電用電気絶縁樹脂組成物と溶媒を配合すればよい。
 また、本発明の耐部分放電用電気絶縁樹脂組成物の他の適用例としては、本発明の耐部分放電用電気絶縁樹脂組成物又はその硬化物を、絶縁体の一部又は全部として用いた電線、回転電機、絶縁フィルム、又は、絶縁コーティング等が挙げられる。すなわち、本発明はまた、層状複水酸化物と樹脂とを含有する耐部分放電用電気絶縁樹脂組成物を含む、絶縁性製品である。そのような絶縁性製品として、電線、回転電機、絶縁フィルム、又は、絶縁コーティングが挙げられる。
6.電線
 本発明の耐部分放電用電気絶縁樹脂組成物は、絶縁電線に適用することができる。本発明の耐部分放電用電気絶縁樹脂組成物を電線の絶縁体として適用することで、耐部分放電性に優れた絶縁電線とすることができ、電線の絶縁寿命を向上させることができる。
 すなわち、本発明はまた、導体と、前記導体の外周上に形成される単層又は複数層からなる絶縁被膜と、を含む電線であって、前記絶縁被膜の少なくとも一層は、前記の耐部分放電用電気絶縁樹脂組成物又はその硬化物を含む、電線である。
 前記導体の材料としては、例えば、銅、アルミ、銀等の金属材料が挙げられる。
 前記絶縁被膜は、前記導体の外周上に形成される単層又は複数層からなる。本発明の電線では、前記絶縁被膜の少なくとも一層は、前記の耐部分放電用電気絶縁樹脂組成物又はその硬化物を含む。
 前記絶縁被膜における他の層としては、例えば、ポリアミドイミド樹脂又はポリエステルイミド樹脂等からなる層が挙げられる。
 本発明の電線は、例えば、前記の耐部分放電用電気絶縁樹脂組成物を含む分散液等を導体の表面上、又は、導体を被覆した他の層上に塗布し、焼き付け等により絶縁被膜を形成することにより製造することができる。
7.回転電機
 本発明の耐部分放電用電気絶縁樹脂組成物は、回転電機に適用することができる。
すなわち、本発明の回転電機は、前述の電線を用いた回転電機である。
回転電機としては、例えば、モータ、発電機(ジェネレータ)などが挙げられる。
8.絶縁フィルム
 本発明の耐部分放電用電気絶縁樹脂組成物はまた、絶縁フィルムに適用することができる。すなわち、本発明の絶縁フィルムは、前記の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁フィルムである。
 絶縁フィルムは、一層からなるものであってもよいし、基材と、前記基材上に前記絶縁層とを有するものであってもよい。
 前記絶縁フィルムの厚さは、好ましくは2μm~300μm、より好ましくは5μ~200μmである。2μm未満では絶縁フィルムを製造時に欠陥が生じるおそれがある。300μmを超えると、絶縁フィルムとしての柔軟性を損なうおそれがある。
 一層からなる絶縁フィルムは、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を押出成形によりシート状に成形して製造する方法、又は、ポリエチレンテレフタレート等の基材上に、本発明の耐部分放電用電気絶縁樹脂組成物を必要に応じて溶媒に溶解し又は分散させ、塗布して、必要に応じて、加熱、乾燥又は硬化させて絶縁層を形成した後、前記基材を剥離する方法等により、製造することができる。
 また、基材と、前記基材上に絶縁層とを有する絶縁フィルムは、例えば、基材上に、本発明の耐部分放電用電気絶縁樹脂組成物を必要に応じて溶媒に溶解又は分散させ、塗布して、必要に応じて、加熱、乾燥又は硬化させて絶縁層を形成することにより、製造することができる。
 前記基材としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエステル、ポリエチレン、ポリプロピレン等の合成樹脂等が挙げられる。
 基材と絶縁層とを有する絶縁フィルムの場合、絶縁層の厚さとしては、好ましくは2μm~300μm、より好ましくは5μm~200μmが挙げられる。2μm未満では絶縁フィルムを製造時に欠陥が生じるおそれがある。300μmを超えると、絶縁フィルムとしての柔軟性を損なうおそれがある。
 基材の厚さとしては、特に限定されないが、例えば2~300μm、好ましくは5~200μmが挙げられる。
9.絶縁コーティング
 本発明の耐部分放電用電気絶縁樹脂組成物はまた、電子基板等に用いられるソルダーレジスト等の絶縁コーティングに適用することができる。すなわち、本発明の絶縁コーティングは、前記した耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁コーティングである。
 本発明の絶縁コーティングは、例えば、本発明の耐部分放電用電気絶縁樹脂組成物を加熱溶融させて電子基板等のコーティング対象物の表面にコーティングし、成形して絶縁層を形成する方法、本発明の耐部分放電用電気絶縁樹脂組成物を電着塗料として、電着によりコーティング対象物に絶縁層を形成する方法、又は、本発明の耐部分放電用電気絶縁樹脂組成物を必要に応じて溶媒に溶解又は分散し、コーティング対象物に塗布して、必要に応じて、加熱、乾燥又は硬化させて絶縁層を形成する方法等により、製造することができる。
 また表面ではなく、基材の隙間に充填した場合は、モールド部材とすることもできる。
 前記電子基板等のコーティング対象物としては、銅、アルミ、銀等の金属材料が挙げられる。
 以上のように、本発明の耐部分放電用電気絶縁樹脂組成物は、優れた耐部分放電性を有するものであるため、耐部分放電性が必要とされる絶縁体に適用することにより、絶縁部材の長寿命化が可能になる。
 以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(層状複水酸化物のプレゲルの作製)
 層状複水酸化物として、ハイドロタルサイト類化合物(協和化学工業社製、「DHT-4A-2」、平均粒子径440nm、アスペクト比10)3.0g、N-メチル-2-ピロリドン(NMP)4.5g、および、水6.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するハイドロタルサイト類化合物の割合が22.2質量%のプレゲルを得た。
(ポリアミド酸ワニスの作製)
 撹拌機と温度計を備えた1Lの4つ口フラスコに、4,4’-ジアミノジフェ二ルエーテル73.2gとNMP832gを仕込み、撹拌しながら50℃に昇温して溶解させた。次に、溶解物に、無水ピロメリット酸40gとビフェニルテトラカルボン酸ジ無水物51gを徐々に添加した。添加終了後1時間撹拌し、第1の液体であるNMPに、下記式(I)で表される芳香族ポリアミド酸が16.4質量%の濃度で溶解されてなるポリアミド酸ワニスを得た。
Figure JPOXMLDOC01-appb-C000001
(ハイドロタルサイト類化合物を含有する耐部分放電用電気樹脂組成物の作製)
 前記で作製したハイドロタルサイト類化合物プレゲル(ハイドロタルサイト類化合物22.2質量%)1.2g、及び、前記で作製したポリアミド酸ワニス30.0g(芳香族ポリアミド酸5.0g、NMP25.0g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、ハイドロタルサイト類化合物を含有する耐部分放電用電気樹脂組成物を得た。得られた耐部分放電用電気樹脂組成物は、分散液全体に対する不揮発性成分の割合が16.9質量%であり、不揮発性成分全体に対するハイドロタルサイト類化合物の割合が5.0質量%であった。
(絶縁フィルムの作製)
 得られたハイドロタルサイト類化合物を含有する耐部分放電用電気樹脂組成物を、形状が長方形である厚さ100μmのPET(ポリエチレンテレフタレート)フィルムに、溝の深さを520μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥してPETフィルム上に絶縁フィルムを形成した。この絶縁フィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、ハイドロタルサイト類化合物とポリイミド樹脂とからなる絶縁フィルムを得た。なお、フィルム全体に対するハイドロタルサイト類化合物の含有量は5.0質量%であり、厚さは51μmであった。
<実施例2>
(乳酸イオン置換層状複水酸化物の作製)
撹拌機を備えた3Lの4つ口フラスコに、層状複水酸化物としてハイドロタルサイト類化合物(協和化学工業社製、「DHT-6」、平均粒子径0.5μm、アスペクト比4.5)50gとメタノール950gを仕込み、窒素下で攪拌し、20分後、乳酸を13.5g添加し、45℃で2時間攪拌しハイドロタルサイトの層間イオンを乳酸イオンに置換した。その後、窒素気流下、孔径0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を十分に洗浄した。ろ別した沈殿物は真空下で乾燥して乳酸イオン系ハイドロタルサイトの白色粉末52gを得た。
(層状複水酸化物のプレゲルの作製)
前記で得た乳酸イオン系ハイドロタルサイトの白色粉末11gに水89gを加え、ホモジナイザーにより粉砕した後、超音波処理をすることで乳酸イオン系ハイドロタルサイトの水分散液(11.0質量%)を作製した。作製した水分散液5.0gとN-メチル-2-ピロリドン(NMP)5.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間撹拌し、プレゲル全体に対する乳酸イオン系ハイドロタルサイトの割合が5.5質量%のプレゲルを得た。
(ポリアミド酸ワニスの作製)
 撹拌機と温度計を備えた10Lの4つ口フラスコに、4,4’?ジアミノジフェニルエーテル400gとNMP4104gを仕込み、撹拌しながら50℃に昇温して溶解させた。次に、溶解物に、無水ピロメリット酸220gとビフェニルテトラカルボン酸ジ無水物280gを徐々に添加した。添加終了後1時間撹拌し、第1の液体であるNMPに、前記式(I)で表される芳香族ポリアミド酸が18.0質量%の濃度で溶解されてなるポリアミド酸ワニスを得た。
(絶縁ワニスの作製)
 前記で作製した乳酸イオン系ハイドロタルサイトのプレゲル(5.5質量%)5.1g、及び、前記で作製したポリアミド酸ワニス50.0g(芳香族ポリアミド酸9.0g、NMP41.0g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、耐部分放電用電気絶縁樹脂組成物を含有する絶縁ワニスを得た。得られた絶縁ワニスは、分散液全体に対する不揮発性成分の割合が17.6質量%であり、前記不揮発性成分全体に対する乳酸イオン系ハイドロタルサイトの割合が3.0質量%であった。
(絶縁フィルムの作製)
 前記で得られた絶縁ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを550μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥してPETフィルム上に絶縁フィルムを形成した。この絶縁フィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、乳酸イオン系ハイドロタルサイトとポリイミド樹脂からなる絶縁フィルムを得た。なお、フィルム全体に対する乳酸イオン系ハイドロタルサイトの含有量は3.0質量%であり、厚さは53μmであった。
<実施例3>
(絶縁ワニスの作製)
 実施例2の層状複水酸化物のプレゲルの作製と同様の方法で作製した乳酸イオン系ハイドロタルサイトのプレゲル(5.5質量%)8.6g、及び、実施例2と同様の方法で作製したポリアミド酸ワニス50.0g(芳香族ポリアミド酸9.0g、NMP41.0g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、耐部分放電用電気絶縁樹脂組成物を含有する絶縁ワニスを得た。得られた絶縁ワニスは、分散液全体に対する不揮発性成分の割合が16.2質量%であり、前記不揮発性成分全体に対する乳酸イオン系ハイドロタルサイトの割合が5.0質量%であった。
(絶縁フィルムの作製)
 前記で得られた絶縁ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを450μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥してPETフィルム上に絶縁フィルムを形成した。この絶縁フィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、ハイドロタルサイト類化合物とポリイミド樹脂からなる絶縁フィルムを得た。なお、フィルム全体に対する乳酸イオン系ハイドロタルサイトの含有量は5.0質量%であり、厚さは41μmであった。
<実施例4>
(絶縁フィルムの作製)
 実施例3の(絶縁フィルムの作製)において、ブレードコーターの溝の深さを450μmとした以外は、実施例3と同様の方法で絶縁フィルムを得た。なお、フィルム全体に対する乳酸イオン系ハイドロタルサイトの含有量は5.0質量%であり、厚さは47μmであった。
<実施例5>
(絶縁フィルムの作製)
 実施例3の(絶縁フィルムの作製)において、ブレードコーターの溝の深さを500μmとした以外は、実施例3と同様の方法で絶縁フィルムを得た。なお、フィルム全体に対する乳酸イオン系ハイドロタルサイトの含有量は5.0質量%であり、厚さは52μmであった。
<実施例6>
(層状複水酸化物のプレゲルの作製)
 実施例2において作製した乳酸イオン系ハイドロタルサイト(11質量%)メタノール分散液5gと水23.4gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対する乳酸イオン系ハイドロタルサイトの割合が1.9質量%のプレゲルを得た。
(電着塗料の作製)
 撹拌機と温度計を備えた300mLの4つ口フラスコに、実施例1と同様の方法で作製したポリアミド酸ワニス183g(芳香族ポリアミド酸30g、NMP153g)を仕込み、撹拌しながら実施例2と同様の方法で作製した乳酸イオン系ハイドロタルサイト(1.9質量%)のプレゲル7.8gを徐々に加えた後、ベンジルアルコール117gを加え攪拌した。次いで、この液を攪拌しながらピリジン11.8gを加え、徐々に水188gを添加することで、耐部分放電用電気絶縁樹脂組成物を含有する電着塗料を得た。得られた電着塗料は、電着塗料における不揮発性成分の割合が5.9質量%であり、全不揮発成分全体に対する乳酸イオン系ハイドロタルサイトの割合が0.5質量%であった。
(絶縁コーティングの作製)
 電着塗料による絶縁コーティングは、ステンレス製容器を陰極とし、電着被膜を形成するニッケルメッキ処理を施した銅板を陽極として行った。ステンレス製容器に前記で作製した電着塗料を仕込み、攪拌しながら電圧10V、通電時間5分の条件で電着を行い、銅板をゆっくりと電着塗料から引き上げた。前記銅板を強制送風式オーブン中に吊るし順に100℃で20分、200℃で60分の温度条件で乾燥して、絶縁コーティングした銅板を得た。得られた絶縁コーティングの厚さは19μmであった。
<実施例7>
(耐部分放電用電気絶縁樹脂組成物の作製)
 層状複水酸化物として、ハイドロタルサイト類化合物(協和化学工業社製「DHT-6」、平均粒子径0.5μm、アスペクト比4.5)50.0gをビーカーに取り、250℃の乾燥機に入れ1時間乾燥させた。乾燥したハイドロタルサイト類化合物43gを得た。これによりハイドロタルサイト類化合物の層間水を除去した。
 前記乾燥ハイドロタルサイト類化合物を15gとエポキシ樹脂(主剤としてビスフェノールA型液状樹脂(ナガセケムテックス(株)製:アラルダイトCY225)、硬化剤として変性脂環式酸無水物(ナガセケムテックス(株)製:ハードナーHY925))100gを混合し、70℃で30 分間攪拌混合した後、70℃で30分真空脱泡し、ハイドロタルサイト類化合物のエポキシ樹脂組成物を作製した。得られた耐部分放電用電気絶縁樹脂組成物は、全不揮発成分全体に対するハイドロタルサイト類化合物の割合が13質量%であった。
<比較例1>
(ポリイミド絶縁フィルムの作製)
 実施例1で作製したポリアミド酸ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを500μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥して、PETフィルム上にポリイミドフィルムを形成した。このポリイミドフィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、ポリイミド樹脂からなる絶縁フィルムを得た。なお、得られた絶縁フィルムの厚さは45μmであった。
<比較例2>
(コロイダルシリカプレゲルの作製)
 コロイダルシリカ(日産化学工業社製、「スノーテックスN」、濃度20.4%、平均粒子径13nm)2.1gとNMP1.7gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を3分間行って撹拌し、プレゲル全体に対するシリカの割合が11.4質量%のプレゲルを得た。
(シリカ含有ワニスの作製)
 作製したコロイダルシリカプレゲル(シリカ11.4質量%)3.8g、及び、実施例1の(ポリアミド酸ワニスの作製)と同様の方法で作製したポリアミド酸ワニス50.0g(ポリアミド酸8.2g、NMP41.8g)をプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を5分間、脱泡モード(2200rpm)を5分間行って撹拌し、均一なシリカ含有ワニスを得た。得られたワニスは、不揮発性成分全体に対するシリカの割合が5.0質量%であり、分散液全体に対する不揮発性成分の割合が16.0質量%であった。
(シリカ含有絶縁フィルムの作製)
 得られたシリカ含有ワニスを、形状が長方形である厚さ100μmのPETフィルムに、溝の深さを550μmとしたブレードコーターを用いて塗布した。PETフィルムを水平に保った状態で、強制送風式オーブン中で順に70℃で15分、90℃で45分、130℃で10分の温度条件で乾燥して、PETフィルム上にシリカ含有フィルムを形成した。このフィルムをPETフィルムから離脱した後、順に、150℃で10分、200℃で10分、250℃で10分、300℃で60分熱処理して、シリカとポリイミド樹脂とからなる絶縁フィルムを得た。得られた絶縁フィルムにおいて、フィルム全体に対するシリカの含有量は5.0質量%であり、厚さは48μmであった。
<比較例3>
 比較例1において、同様の方法で絶縁フィルムを作成した。得られたフィルムの厚さは44μmであった。
<比較例4>
 比較例1において、ブレードコーターの溝の深さを500μmとした以外は、同様の方法で絶縁フィルムを作成した。得られたフィルムの厚さは50μmであった。
<比較例5>
 比較例1において、ブレードコーターの溝の深さを600μmとした以外は、同様の方法で絶縁フィルムを作成した。得られたフィルムの厚さは54μmであった。
<比較例6>
(電着塗料の作製)
 撹拌機と温度計を備えた300mLの4つ口フラスコに、実施例1と同様の方法で作製したポリアミド酸ワニス300g(芳香族ポリアミド酸49.2g、NMP250.8g)を仕込み、撹拌しながらピリジン11.8gを加え、さらに徐々に水200gを添加することで、電着塗料における不揮発性成分の割合が9.6%である電着塗料を得た。
(絶縁コーティングの作製)
 電着塗料による絶縁コーティングは、ステンレス製容器を陰極とし、電着被膜を形成するニッケルメッキ処理を施した銅板を陽極として行った。ステンレス製容器に前記で作製した電着塗料を仕込み、攪拌しながら電圧10V、通電時間5分の条件で電着を行い、銅板をゆっくりと電着塗料から引き上げた。前記銅板を強制送風式オーブン中に吊るし順に100℃で20分、200℃で60分の温度条件で乾燥して、絶縁コーティングした銅板を得た。得られた絶縁コーティングの厚さは19μmであった。
<比較例7>
(エポキシ樹脂組成物の作製)
 エポキシ樹脂(主剤としてビスフェノールA 型液状樹脂(ナガセケムテックス(株)製:アラルダイトCY225)、硬化剤として変性脂環式酸無水物(ナガセケムテックス(株)製:ハードナーHY925))100部を混合し、70℃で30分間攪拌混合した後、70℃で30分真空脱泡し、エポキシ樹脂組成物を作製した。
<比較例8>
(シリカ含有エポキシ樹脂組成物の作製)
 乾燥ハイドロタルサイト類化合物の代わりに、球状シリカ(平均粒径1μm)を使用した以外は実施例7と同様にして、シリカを含有するエポキシ樹脂組成物を作製した。
<耐部分放電性の評価1>
 実施例1及び比較例1、2で作製した絶縁フィルムを、「放電ハンドブック」(電気学会放電ハンドブック出版委員会編、2003年)の「3枚重ね電極系試料」を参考にした以下の試験方法で評価した。
 具体的な試験方法としては、図1に示すように、下から、電極5、金属板4、絶縁フィルム3(厚さ50±10μm)、5mmφ穴空きGAP形成用ポリイミドフィルム2(60μm)、電極1の順で、絶縁フィルムを挟み込み、GAP形成用ポリイミドフィルム2の穴空き部6で部分放電を起こし、絶縁フィルムが絶縁破壊するまでの時間を測定した。測定装置は、絶縁破壊耐電圧試験機(安田精機製作所製)を用いた。電圧は部分放電開始電圧以上の4kVとし、周波数は60Hzで測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例の絶縁フィルムは、比較例の絶縁フィルムと比較して、絶縁破壊までの時間が長く、耐部分放電性が優れることがわかった。
<耐部分放電性の評価2>
(絶縁フィルムの耐部分放電性試験)
 実施例2~5及び比較例3~5で作製した厚さの異なる絶縁フィルムを、以下の試験方法で評価した。
 具体的な試験方法としては、図2に示すように、下から、アルミ板11に導電性グリス10を少量塗布し、絶縁フィルム9を貼り付けた。さらに金属球(1mmφ)8と絶縁フィルム9を銅管7の自重で押さえ、銅管7を動かないように固定した。銅管7とアルミ板11を電源に接続することで、金属球8を高電圧電極、アルミ板11を低電圧電極とした。それにより金属球と絶縁フィルム間で部分放電を起こし、絶縁フィルムが絶縁破壊するまでの時間を測定した。測定装置は、絶縁破壊耐電圧試験機(No.175、安田精機製作所製)を用いた。電圧は部分放電開始電圧以上の3.5kVとし、周波数は60Hzで測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
表2より乳酸イオン系ハイドロタルサイトを添加した実施例の絶縁フィルムは、比較の絶縁フィルムと比較して、絶縁破壊までの時間が長く、耐部分放電性が優れることがわかった。
<耐部分放電性の評価3>
(電着塗料による絶縁コーティングの耐部分放電性試験)
 実施例6及び比較例6で作製した電着塗料による絶縁コーティングの耐部分放電性を、以下の試験方法で評価した。
 具体的な試験方法としては、図3に示すように、下から、ステンレス製土台14上に電着により絶縁コーティング12を形成したニッケルメッキ処理銅板13を設置した。その上から金属球(2mmφ)8、銅管7の順にのせて自重で押さえ、銅管7を動かないように固定した。銅管7とニッケルメッキ処理銅板13を電源に接続することで、金属球8を高電圧電極、ニッケルメッキ処理銅板13を低電圧電極とした。それにより金属球と電着絶縁被膜間で部分放電を起こし、絶縁コーティングが絶縁破壊するまでの時間を測定した。測定装置は、前記絶縁破壊耐電圧試験機を用いた。電圧は部分放電開始電圧以上の1.5kVとし、周波数は60Hzで測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3より、実施例6の乳酸イオン系ハイドロタルサイトを含有する絶縁コーティングは、比較例6の絶縁コーティングと比較して、絶縁破壊までの時間が長く、耐部分放電性が優れることがわかった。
<耐トリー試験による評価>
 耐部分放電性試験の一つとして耐トリー試験がある。トリーとは、部分放電により時間の経過と共に樹脂硬化物に生じた樹状の亀裂であり、電極間の全路にトリーがおよぶことで絶縁破壊に至る。
(試験片の作製および評価)
 図4に示した形になる様に、ガラス板15上に、陽極としてIV電線16の先端にタングステン線17を、陰極としてアルミ板18を固定し、IV電線を配線した。陽極のタングステン線17と陰極のアルミ板18との電極間の距離は1mmであり、タングステン線17及びアルミ板18とガラス板15との距離は0.5~1mmであった。その周りを実施例7で作製した耐部分放電用電気絶縁樹脂組成物でモールドした後、加熱乾燥機に入れて、70℃で2時間、次いで140℃で8時間加熱して硬化させた。このようにして、耐トリー験測定用樹脂組成物試験片を作成した。試験片は10個作成した。試験片の厚さは、1.2~1.5mmであった。また、耐部分放電用電気絶縁樹脂組成物の代わりに比較例7のエポキシ樹脂組成物を用いて、同様に試験片を10個作製した。また、耐部分放電用電気絶縁樹脂組成物の代わりに比較例8のシリカ含有エポキシ樹脂組成物を用いて、同様に試験片を10個作製した。得られた試験片に交流60Hz、17.5kVを印加し、電極間が導通(絶縁破壊)するまでの時間を測定した。各々10サンプルの測定を行い、昇電圧中に絶縁破壊する等で測定できなかったものを除いて、結果を幾何平均して測定値とした。結果を表4に示す。
 更に、実施例7で作製した耐部分放電用電気絶縁樹脂組成物でモールドした試験片を、25℃での相対湿度75.3%に作製した密閉槽内に一晩放置して吸湿させ、試験片中のハイドロタルサイト類化合物の層間水を元にもどした。このようにして層間水を保持したハイドロタルサイト類化合物を含有するエポキシ樹脂組成物試験片を作製した。作製した試験片について前記と同様の方法で絶縁破壊するまでの時間を測定した。
Figure JPOXMLDOC01-appb-T000005
 表4より、実施例7の樹脂組成物は、比較例7の樹脂組成物と比較して、絶縁破壊までの時間が長く、耐トリー性が優れていることがわかった。また、比較例8のシリカ含有エポキシ樹脂組成物と比較しても絶縁破壊までの時間が長く、耐トリー性が優れていることがわかった。さらに、実施例7の樹脂組成物に吸湿させた場合、より絶縁破壊時間が長くなったことから、層間水を失ったハイドロタルサイト類化合物が空気中の水蒸気等を吸収して再度層間水を持ち、部分放電耐性を向上させることがわかる。すなわち、層間水を放出したハイドロタルサイト類化合物が空気中の水蒸気等を吸収する事で発熱抑制効果を再生させることを示している。
1 電極
2 GAP形成用フィルム
3、9 絶縁フィルム
4 金属板
5 電極
6 穴空き部
7 銅管
8 金属球
10 導電性グリス
11 アルミ板
12 絶縁コーティング
13 ニッケルメッキ処理銅板
14 ステンレス製土台
15 ガラス板
16 IV電線
17 タングステン線(陽極)
18 アルミ板(陰極)
19 樹脂組成物

Claims (15)

  1. 層状複水酸化物と、樹脂とを含有する耐部分放電用電気絶縁樹脂組成物。
  2. 前記層状複水酸化物が、ナノ粒子である請求項1に記載の耐部分放電用電気絶縁樹脂組成物。
  3. 前記層状複水酸化物が、膨潤型ハイドロタルサイト類化合物である請求項1又は2に記載の耐部分放電用電気絶縁樹脂組成物。
  4. 前記樹脂が、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエステルイミド樹脂、及び、エポキシ樹脂からなる群より選択される少なくとも一種の樹脂である請求項1~3のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  5. 前記層状複水酸化物の含有量が0.1~60質量%である請求項1~4のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  6. 耐インバータサージ用である請求項1~5のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  7. インバータ制御の電気機器に使用される請求項1~6のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物。
  8. 請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する絶縁ワニス。
  9. 請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物と、溶媒とを含有する電着塗料。
  10. 請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物から形成される硬化物。
  11. 請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物の製造方法であって、
    層状複水酸化物をプレゲル化する工程、及び、
    プレゲル化した層状複水酸化物を樹脂と混合する工程
    を含む、耐部分放電用電気絶縁樹脂組成物の製造方法。
  12. 導体と、
    前記導体の外周上に形成される単層又は複数層からなる絶縁被膜と、を含む電線であって、
    前記絶縁被膜の少なくとも一層は、請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる、電線。
  13. 請求項12に記載の電線を用いた回転電機。
  14. 請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁フィルム。
  15. 請求項1~7のいずれか一項に記載の耐部分放電用電気絶縁樹脂組成物又はその硬化物からなる絶縁層を有する絶縁コーティング。
PCT/JP2016/070160 2015-07-09 2016-07-07 耐部分放電用電気絶縁樹脂組成物 WO2017006999A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017527498A JP6524228B2 (ja) 2015-07-09 2016-07-07 耐部分放電用電気絶縁樹脂組成物
CA2991858A CA2991858A1 (en) 2015-07-09 2016-07-07 Partial discharge-resistant electrical insulating resin composition
US15/742,861 US20180204648A1 (en) 2015-07-09 2016-07-07 Electrical insulating resin composition for partial-discharge resistance
KR1020187001285A KR20180028454A (ko) 2015-07-09 2016-07-07 내부분방전용 전기 절연 수지 조성물
EP16821467.4A EP3321940A4 (en) 2015-07-09 2016-07-07 ELECTRICAL INSULATION RESIN COMPOSITION FOR PART DISCHARGE STRENGTH
CN201680038094.9A CN107710338A (zh) 2015-07-09 2016-07-07 耐局部放电用电绝缘树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138127 2015-07-09
JP2015138127 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006999A1 true WO2017006999A1 (ja) 2017-01-12

Family

ID=57685082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070160 WO2017006999A1 (ja) 2015-07-09 2016-07-07 耐部分放電用電気絶縁樹脂組成物

Country Status (8)

Country Link
US (1) US20180204648A1 (ja)
EP (1) EP3321940A4 (ja)
JP (1) JP6524228B2 (ja)
KR (1) KR20180028454A (ja)
CN (1) CN107710338A (ja)
CA (1) CA2991858A1 (ja)
TW (1) TW201710343A (ja)
WO (1) WO2017006999A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567796B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
JP6567797B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
WO2020049783A1 (ja) * 2018-09-03 2020-03-12 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
WO2020049784A1 (ja) * 2018-09-03 2020-03-12 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
WO2020059689A1 (ja) * 2018-09-20 2020-03-26 住友精化株式会社 電着塗料及び絶縁被膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833410B (zh) * 2022-10-31 2024-02-21 中原大學 奈米複合材料及其合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469034A1 (en) * 2003-04-04 2004-10-20 Vem S.P.A. Polimeric nanocomposite material flame retarded, process for preparation and use thereof
JP2005190699A (ja) * 2003-12-24 2005-07-14 Toyota Motor Corp 巻線および製造方法、回転電機
JP2012246194A (ja) * 2011-05-30 2012-12-13 National Institute Of Advanced Industrial Science & Technology 層状複水酸化物コロイド分散液およびその製造方法
JP2013047310A (ja) * 2011-08-29 2013-03-07 Sumitomo Seika Chem Co Ltd 不燃水蒸気バリアフィルム、不燃水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
JP2013179118A (ja) * 2012-02-28 2013-09-09 Murata Mfg Co Ltd 粘土自立膜
JP2016149930A (ja) * 2015-02-09 2016-08-18 住友精化株式会社 回転電機、コイル及びコイル装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087433A (en) * 1997-12-22 2000-07-11 Sumitomo Chemical Company, Ltd. Resin composition
JP2000276953A (ja) * 1999-03-23 2000-10-06 Sumitomo Wiring Syst Ltd 被覆電線
JP2009212034A (ja) * 2008-03-06 2009-09-17 Hitachi Magnet Wire Corp 耐部分放電性エナメル線用塗料及び耐部分放電性エナメル線
CN101980963B (zh) * 2008-03-31 2015-07-01 户田工业株式会社 水滑石型化合物颗粒粉末、使用该水滑石型化合物颗粒粉末的含氯树脂稳定剂和含氯树脂组合物
US9221948B2 (en) * 2009-05-13 2015-12-29 Chemtura Corporation Phosphorus-containing flame retardants
WO2011043342A1 (ja) * 2009-10-07 2011-04-14 日立化成工業株式会社 熱硬化性樹脂組成物、フレキシブル配線板の保護膜を形成する方法及びフレキシブル配線板
JP5447539B2 (ja) * 2010-02-09 2014-03-19 東亞合成株式会社 球状ハイドロタルサイト化合物および電子部品封止用樹脂組成物
FI20105223A0 (fi) * 2010-03-05 2010-03-05 Licentia Oy Menetelmä epäorgaanisten, kerrostettujen kaksoishydroksidien valmistamiseksi, uudet epäorgaaniset, kerrostetut kaksoishydroksidit sekä niiden käyttö
JP5910887B2 (ja) * 2011-01-27 2016-05-11 国立研究開発法人物質・材料研究機構 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法
CN103649192A (zh) * 2011-05-04 2014-03-19 博里利斯股份公司 用于电气装置的聚合物组合物
CN103865191B (zh) * 2012-12-13 2017-06-16 日立金属株式会社 聚氯乙烯树脂组合物及使用了该聚氯乙烯树脂组合物的绝缘电线
KR102020066B1 (ko) * 2013-02-01 2019-09-10 엘에스전선 주식회사 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469034A1 (en) * 2003-04-04 2004-10-20 Vem S.P.A. Polimeric nanocomposite material flame retarded, process for preparation and use thereof
JP2005190699A (ja) * 2003-12-24 2005-07-14 Toyota Motor Corp 巻線および製造方法、回転電機
JP2012246194A (ja) * 2011-05-30 2012-12-13 National Institute Of Advanced Industrial Science & Technology 層状複水酸化物コロイド分散液およびその製造方法
JP2013047310A (ja) * 2011-08-29 2013-03-07 Sumitomo Seika Chem Co Ltd 不燃水蒸気バリアフィルム、不燃水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
JP2013179118A (ja) * 2012-02-28 2013-09-09 Murata Mfg Co Ltd 粘土自立膜
JP2016149930A (ja) * 2015-02-09 2016-08-18 住友精化株式会社 回転電機、コイル及びコイル装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIAGIO DE VIVO ET AL.: "Evaluation of the electrical properties of epoxy-based nanocomposites for motor insulation,", DIAGNOSTICS FOR ELECTRICAL MACHINES, POWER ELECTRONICS & DRIVES (SDEMPED), 2011 IEEE INTERNATIONAL SYMPOSIUM, 2011, pages 426 - 430, XP 032067908 *
NORIKAZU FUSE ET AL.: "Possible Mechanism of Superior Partial-Discharge Resistance of Polyamide Nanocomposites (2)-Its Relations with Dielectric Breakdown and Photoluminescence", DAI 35 KAI SYMPOSIUM ON ELECTRICAL AND ELECTRONIC INSULATING MATERIALS AND APPLICATIONS IN SYSTEMS YOKOSHU, 2004, pages 129 - 132, XP 009508189, ISBN: 4-88686-062-1 *
See also references of EP3321940A4 *
SHIN'ICHI KUGE ET AL.: "PD Discharge Erosion Characteristics of Several Epoxy Nanocomposites", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO HODEN YUDEN .ZETSUEN ZAIRYO GODO KENKYUKAI KO DEN'ATSU, 2006, pages 85 - 90, XP 009508198 *
TATSUYA YAZAWA ET AL.: "PD Erosion Degradation Phenomenon of Epoxy/Clay Nanocomposite using Rod Electrode System", KENKYUKAI SHIRYO HODEN YUDEN . ZETSUEN ZAIRYO GODO KENKYUKAI KO DEN'ATSU, 2007, JAPAN, pages 57 - 62, XP009508186 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567796B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
JP6567797B1 (ja) * 2018-09-03 2019-08-28 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
WO2020049783A1 (ja) * 2018-09-03 2020-03-12 住友精化株式会社 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
WO2020049784A1 (ja) * 2018-09-03 2020-03-12 住友精化株式会社 導体と絶縁被膜の積層体、コイル、回転電機、絶縁塗料、及び絶縁フィルム
US11955258B2 (en) 2018-09-03 2024-04-09 Sumitomo Seika Chemicals Co., Ltd. Laminate of conductor and insulating coating, coil, rotating electric machine, insulating paint, and insulating film
US12100533B2 (en) 2018-09-03 2024-09-24 Sumitomo Seika Chemicals Co., Ltd. Partial discharge-resistant paint, partial discharge-resistant insulating coating, electric wire, and rotating electric machine
WO2020059689A1 (ja) * 2018-09-20 2020-03-26 住友精化株式会社 電着塗料及び絶縁被膜
JPWO2020059689A1 (ja) * 2018-09-20 2021-09-02 住友精化株式会社 電着塗料及び絶縁被膜
JP7449867B2 (ja) 2018-09-20 2024-03-14 住友精化株式会社 電着塗料及び絶縁被膜

Also Published As

Publication number Publication date
TW201710343A (zh) 2017-03-16
US20180204648A1 (en) 2018-07-19
JP6524228B2 (ja) 2019-06-05
EP3321940A4 (en) 2019-03-20
CA2991858A1 (en) 2017-01-12
KR20180028454A (ko) 2018-03-16
CN107710338A (zh) 2018-02-16
JPWO2017006999A1 (ja) 2018-06-21
EP3321940A1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6524229B2 (ja) 耐部分放電用電気絶縁樹脂組成物
WO2017006999A1 (ja) 耐部分放電用電気絶縁樹脂組成物
Lau et al. Nanodielectrics: opportunities and challenges
KR102661175B1 (ko) 도체와 절연 피막의 적층체, 코일, 회전 전기, 절연 도료, 및 절연 필름
JP7449867B2 (ja) 電着塗料及び絶縁被膜
JP7367760B2 (ja) 電気絶縁樹脂組成物、及び電気絶縁体
TWI821382B (zh) 耐局部放電用塗料、耐局部放電用絕緣被膜、電線、及旋轉電機
JP6567796B1 (ja) 耐部分放電用塗料、耐部分放電用絶縁被膜、電線、及び回転電機
Guastavino et al. Electrical tracking in cycloaliphatic epoxy based nano structured composites
JP7367759B2 (ja) 電気絶縁樹脂組成物、及び電気絶縁体
WO2013111635A1 (ja) 電気絶縁性シート
WO2022165301A1 (en) Magnet wire with high partial discharge inception voltage (pdiv)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527498

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15742861

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2991858

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187001285

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016821467

Country of ref document: EP