Nothing Special   »   [go: up one dir, main page]

WO2017005261A1 - Drehdurchführung für ein fahrzeug - Google Patents

Drehdurchführung für ein fahrzeug Download PDF

Info

Publication number
WO2017005261A1
WO2017005261A1 PCT/DE2016/200304 DE2016200304W WO2017005261A1 WO 2017005261 A1 WO2017005261 A1 WO 2017005261A1 DE 2016200304 W DE2016200304 W DE 2016200304W WO 2017005261 A1 WO2017005261 A1 WO 2017005261A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing element
sealing
pressure chamber
rotary feedthrough
face
Prior art date
Application number
PCT/DE2016/200304
Other languages
English (en)
French (fr)
Inventor
Marc-André SCHÄFER
Horst Brehm
Sebastian NIEDERLE
Robert Heuberger
Andreas Flint
Andre Hofmann
Original Assignee
Schaeffler Technologies AG & Co. KG
Gapi Technische Produkte Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG, Gapi Technische Produkte Gmbh filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201680039662.7A priority Critical patent/CN107850218B/zh
Priority to US15/741,798 priority patent/US10760688B2/en
Priority to EP16747724.9A priority patent/EP3320240A1/de
Priority to BR112017027936A priority patent/BR112017027936A2/pt
Publication of WO2017005261A1 publication Critical patent/WO2017005261A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3436Pressing means
    • F16J15/3448Pressing means the pressing force resulting from fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/001Devices for manually or automatically controlling or distributing tyre pressure whilst the vehicle is moving
    • B60C23/003Devices for manually or automatically controlling or distributing tyre pressure whilst the vehicle is moving comprising rotational joints between vehicle-mounted pressure sources and the tyres
    • B60C23/00363Details of sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/342Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with means for feeding fluid directly to the face

Definitions

  • the invention relates to a rotary feedthrough for the fluid supply of a pressure chamber, which is arranged between a rotatable component and a stationary fixed component of a vehicle, comprising a seal carrier with at least one channel for fluidic connection to the pressure chamber, wherein at the seal carrier at least two axially spaced sealing rings for static Seal the at least one channel are arranged, and wherein at least one sealing element for axial and radial sealing of the pressure chamber rotationally fixed to the seal carrier is arranged.
  • Rotary feedthroughs are used in particular for trucks and tractors that drive on different surfaces in order to adapt the tire pressure the Fahrpeehigen- shafts. In off-road or on unpaved roads, it is beneficial to have a low tire pressure to increase the vehicle's traction. On paved roads, on the other hand, a higher tire pressure is sought in order to minimize tire wear and fuel consumption.
  • the rotary feedthrough allows a variable adjustment of the tire pressure by increasing or decreasing the air pressure in a compressed air chamber.
  • DE 10 2012 222 339 A1 discloses a fluid rotary feedthrough for sealing a fluid pressure space between a rotatable shaft and a shaft receptacle.
  • the fluid rotary feedthrough comprises a sealing ring carrier and a fitting body, wherein the sealing ring carrier is rotatably and fluid-tightly connected to the shaft or the receptacle and the fitting body bears fluid-tight against the receptacle or the shaft.
  • the fitting body and the sealing ring carrier are at least partially radially spaced from each other spaced to form a fluid pressure space between them.
  • two axially spaced-apart sealing rings are provided, which abut sealingly against the sealing body with a contact surface sealingly against the sealing ring carrier and with a contact surface to seal the fluid pressure chamber on both sides to the outside, and each, preferably independently of each other, relative to the sealing ring carrier and / or the fitting body are rotatable.
  • the sealing ring carrier and the fitting body together form two axially spaced receiving grooves for the sealing rings, the receiving grooves are open to the fluid pressure chamber and each comprise at least one retaining projection which secures the arranged in the receiving groove sealing ring at least partially against a radial position change from the groove to the fluid pressure chamber out ,
  • the respective sealing ring is intended to seal both radially and axially.
  • the respective sealing ring comes into contact axially with a sealing surface.
  • the axial contact pressure of the respective sealing ring on the sealing surface is relatively high, so that due to increased wear and increased heat stress, the life of the respective seal is greatly reduced. At very high pressure loads, the respective seal can also fail immediately.
  • the at least one sealing element comes at a pressure build-up in the pressure chamber axially against a rotatably connected to the rotatable component ring element to the plant, said at least one sealing element has means for reducing the axial contact pressure on the ring member.
  • the means for reducing the axial contact pressure of the at least one sealing element are integrated in the sealing element and thus formed in one piece.
  • the rotary feedthrough entwe- which has a sealing element or particularly preferably two sealing elements.
  • the arrangement of two sealing elements realizes a symmetrical structure of the rotary feedthrough. Consequently, with such a symmetrical construction of the rotary feedthrough, the respective sealing element comes into contact with a respective annular element.
  • the rotary feedthrough is used to connect a tire of a vehicle with a compressed air source.
  • a first end face of the at least one sealing element arranged on the ring element is larger than a second end face of the at least one sealing element adjoining the pressure chamber.
  • the contact pressure which acts on the second end face due to the pressure load in the pressure chamber, distributed to the larger first end face, wherein the amount of axial force acting on the first end face, is just as large like the amount of axial force acting on the second face.
  • the wear on the first end face decreases as well as the heat load between see the second end face and the rotatable ring member.
  • the first end face of the at least one sealing element is at least 1.05 times as large but at most 5 times as large as the second end face of the at least one sealing element.
  • the two faces should have a ratio of 1: 1, 05 to 1: 5, depending on the expected pressures in the pressure chamber.
  • the at least one sealing element has at least one relief bore, which fluidly communicates the pressure chamber. nisch with a back pressure chamber connects.
  • This special design of the at least one sealing element serves in particular as a means for reducing the axial contact pressure. At the same time thereby also a quick concern of the first end face is realized on the ring member.
  • the at least one relief bore is preferably formed axially. When a pressure buildup in the pressure chamber escapes through the at least one relief bore, the compressed air from the pressure chamber in the counter-pressure chamber, whereby a back pressure on the pressure surface of the at least one sealing element which is disposed within the counter-pressure chamber, builds. This counterpressure counteracts the pressure acting on the second end face adjoining the pressure chamber and thereby reduces a contact pressure force of the at least one sealing element on the rotatable ring element.
  • the at least one sealing element has a plurality of relief bores, which fluidly connect the pressure chamber with a counter-pressure space.
  • a variety of relief holes which have a small diameter, favor a slow build-up of the back pressure in the back pressure chamber. Consequently, there is a delayed reduction of the axial contact pressure of the at least one sealing element on the ring element.
  • the invention includes the technical teaching that the at least one sealing element has an axially extending region with a circumferential sealing nose, which comes to bear radially on the seal carrier.
  • the sealing surface between the at least one sealing element and the sealing carrier is less heavily loaded than the sealing surface between the at least one sealing element and the ring element, which also forms a sliding surface. Therefore, it is advantageous to increase the contact pressure at this point, thereby also increasing the reliability of the sealing effect. In particular, this is done by the formation of the circumferential nose on at least one sealing element, which has a particularly small contact surface on the seal carrier and thus undergoes a high contact pressure.
  • the axially extending portion is formed radially flexible.
  • the axially extending region serves as a lever arm for receiving a resulting from the pressure chamber radial force.
  • the axially extending region is at least 0.3 times but at most 0.7 times as large as the total axial dimension of the at least one sealing element. The larger the axially extending region, the larger the lever arm and thus the maximum radial force that can be absorbed.
  • the circumferential sealing nose is arranged substantially statically to the seal carrier.
  • the sealing lug has substantially no relative movement to the seal carrier. However, this does not include slight compensatory movements as well as small axial displacements which permit readjustment of the sealing element, in particular in the case of signs of wear.
  • the axially extending region is preferably larger than the second end face of the at least one sealing element.
  • the axially extending region has a relatively small wall thickness and is thus web-like.
  • the at least one sealing element is made of a
  • FIG. 1 shows a part of a schematic sectional representation to illustrate the structure of a rotary feedthrough according to the invention according to a first embodiment
  • 3 shows a part of a schematic sectional representation to illustrate the structure of a rotary feedthrough according to the invention according to a third embodiment
  • a part of a schematic sectional view to illustrate the structure of a rotary feedthrough according to the invention 4 shows a part of a schematic sectional illustration for illustrating the structure of a rotary feedthrough according to the invention according to a fifth exemplary embodiment
  • FIG. 6 shows a part of a schematic sectional illustration for illustrating the structure of a rotary feedthrough according to the invention according to a sixth embodiment
  • Figure 7 is a part of a schematic sectional view illustrating the construction of a rotary feedthrough according to the invention according to a seventh embodiment.
  • Figures 1 to 7 shows a rotary feedthrough according to the invention for the compressed air supply of a pressure chamber 1, which is arranged between a rotatable component 2 and a stationary fixed component 3 of a - not shown here - vehicle.
  • the rotary feedthrough comprises a seal carrier 4 with a channel 5 for the fluidic connection to the pressure chamber 1.
  • the channel 5 is further connected to another channel 14, which leads to a - not shown - compressed air source.
  • a tire pressure of a - not shown here - tire of the vehicle is set variably and in particular specially tuned to the roadway.
  • two axially spaced sealing rings 6 for static sealing of the channel 5 are arranged on the seal carrier 4, wherein due to the partial sectional view of only one of the two sealing rings 6 is shown.
  • the rotary feedthrough is symmetrical.
  • two sealing elements 7 for axial and radial sealing of the pressure chamber 1 are arranged on the seal carrier 4, wherein only one of the two sealing elements 7 is shown due to the partial sectional view.
  • the respective sealing element 7 comes to bear axially against a respective ring element 8 connected in a rotationally fixed manner to the rotatable component 2.
  • the at least one sealing element 7 has an axially extending region 12 with a circumferential sealing nose 13, which comes to rest radially on the seal carrier 4.
  • a first end face 9a of the sealing element 7 arranged on the ring element 8 is larger than a second end face 9b of the sealing element 7 adjoining the pressure chamber 1.
  • This special design of the sealing element 7 represents a means for reducing the axial contact pressure on the ring element 8.
  • the first end face 9a of the sealing element 7 1, 4 times as large as the second end face 9b of the sealing member 7.
  • the second end face 9b of the sealing member 7 thus serves as a contact surface for the compressed air in the pressure chamber 1, wherein the force acting on the end face 9a on the larger end face 9b is evenly distributed, whereby a contact pressure of the sealing element 7 on the ring element 8 decreases.
  • the first end face 9a of the sealing member 7 is five times as large as the second end face 9b of the sealing member 7. Further, the axially extending portion 12 is formed radially flexible. The axially extending portion 12 is half as large as the entire axial dimension of the seal member 7. In addition, the axially extending portion 12 is larger than the second end face 9 b of the seal member. 7 FIG. 3 shows an embodiment of the sealing element 7 with a first end face 9a, which is twice as large as the second end face 9b of the sealing element 7, wherein the axially extending region 12 is radially flexible.
  • the sealing element 7 has a relief bore 10a which connects the pressure chamber 1 to a counter-pressure space 11 by fluid technology.
  • This special embodiment of the sealing element 7 also represents a means for reducing the axial contact pressure on the ring element 8.
  • the axially extending region 12 is radially flexible and the first end surface 9a is twice as large as the second end surface 9b of the sealing element 7.
  • the sealing element 7 has a plurality of relief bores 10a, 10b, 10c, which connect the pressure chamber 1 to a counter-pressure space 11 by fluid technology.
  • the only means for reducing the axial contact pressure of the sealing element 7 on the ring element 8 are the discharge holes 10a-10c.
  • the axially extending portion 12 is formed radially flexible.
  • FIGS. 6 and 7 illustrate a simplified embodiment of the sealing element 7 from FIG. 5.
  • the sealing element 7 according to FIGS. 6 and 7 has only one relief bore 10a, which fluidly connects the pressure chamber 1 to a counterpressure space 11.
  • the counter-pressure space 1 1 according to FIG. 7 furthermore has a larger volume than the counterpressure space 11 according to FIGS. 5 and 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Joints Allowing Movement (AREA)
  • Sealing Devices (AREA)

Abstract

Die Erfindung betrifft eine Drehdurchführung zur Fluidspeisung eines Druckraumes (1), der zwischen einem rotierbaren Bauteil (2) und einem stationär festgelegten Bauteil (3) eines Fahrzeugs angeordnet ist, umfassend einen Dichtungsträger (4) mit mindestens einem Kanal (5) zur fluidtechnischen Verbindung mit dem Druckraum (1), wobei an dem Dichtungsträger (4) mindestens zwei axial beabstandete Dichtungsringe (6) zur statischen Abdichtung des mindestens einen Kanals (5) angeordnet sind, und wobei mindestens ein Dichtungselement(7) zur axialen sowie radialen Abdichtung des Druckraumes (1) drehfest am Dichtungsträger (4) angeordnetist. Erfindungsgemäß kommt das mindestens eine Dichtungselement (7) bei einem Druckaufbau im Druckraum (1) axial an einem mit dem rotierbaren Bauteil(2) drehfest verbundenem Ringelement (8) zur Anlage, wobei das mindestens eine dritte Dichtungselement (7) Mittel zur Verringerung des axialen Anpressdruckes am Ringelement (8) aufweist.

Description

Titel
Drehdurchführung für ein Fahrzeug
Beschreibung
Die Erfindung betrifft eine Drehdurchführung zur Fluidspeisung eines Druckraumes, der zwischen einem rotierbaren Bauteil und einem stationär festgelegten Bauteil eines Fahrzeugs angeordnet ist, umfassend einen Dichtungsträger mit mindestens einem Kanal zur fluidtechnischen Verbindung mit dem Druckraum, wobei an dem Dichtungsträger mindestens zwei axial beabstandete Dichtungsringe zur statischen Abdichtung des mindestens einen Kanals angeordnet sind, und wobei mindestens ein Dichtungselement zur axialen sowie radialen Abdichtung des Druckraumes drehfest am Dichtungsträger angeordnet ist.
Gebiet der Erfindung
Drehdurchführungen werden insbesondere bei LKWs und Traktoren eingesetzt, die auf unterschiedlichem Untergrund fahren, um den Reifendruck den Fahrbahneigen- Schäften anzupassen. Im Gelände oder auf unbefestigten Straßen ist es von Vorteil, wenn ein Reifendruck gering ist, um die Traktion des Fahrzeugs zu erhöhen. Auf befestigten Straßen wird ein demgegenüber höherer Reifendruck angestrebt, um einen Reifenverschleiß und einen Kraftstoffverbrauch gering zu halten. Die Drehdurchführung erlaubt eine variable Einstellung des Reifendrucks durch eine Erhöhung oder Senkung des Luftdruckes in einer Druckluftkammer.
Die DE 10 2012 222 339 A1 offenbart eine Fluiddrehdurchführung zur Abdichtung eines Fluiddruckraumes zwischen einer rotierbaren Welle und einer Wellenaufnahme. Die Fluiddrehdurchführung umfasst einen Dichtringträger und einen Passkörper, wo- bei der Dichtringträger drehfest und fluiddicht mit der Welle oder der Aufnahme verbunden ist und der Passkörper fluiddicht an der Aufnahme oder der Welle anliegt. Der Passkörper und der Dichtringträger sind zumindest abschnittsweise radial voneinan- der beabstandet, um zwischen sich einen Fluiddruckraum auszubilden. Ferner sind zwei axial voneinander beabstandete Dichtringe vorgesehen, die jeweils mit einer Anlagefläche abdichtend gegen den Dichtringträger und mit einer Anlagefläche abdichtend gegen den Passkörper anliegen, um beidseitig den Fluiddruckraum nach außen abzudichten, und die jeweils, vorzugsweise unabhängig voneinander, gegenüber dem Dichtringträger und/oder dem Passkörper verdrehbar sind. Der Dichtringträger und der Passkörper bilden gemeinsam zwei axial beabstandete Aufnahmenuten für die Dichtringe, wobei die Aufnahmenuten zum Fluiddruckraum hin offen sind und jeweils zumindest einen Haltevorsprung umfassen, der den in der Aufnahmenut angeordneten Dichtring zumindest bereichsweise gegen eine radiale Lageveränderung aus der Nut zum Fluiddruckraum hin sichert.
Mit anderen Worten ist der jeweilige Dichtring dazu vorgesehen sowohl radial als auch axial abzudichten. Bei einem Druckaufbau im Druckraum kommt der jeweilige Dicht- ring axial an einer Dichtfläche zur Anlage. Dabei ist der axiale Anpressdruck des jeweiligen Dichtungsrings an der Dichtfläche relativ hoch, sodass aufgrund eines erhöhten Verschleißes sowie einer erhöhten Hitzebelastung die Lebensdauer der jeweiligen Dichtung stark herabgesetzt wird. Bei sehr hohen Druckbelastungen kann die jeweilige Dichtung auch sofort versagen.
Aufgabenstellung
Die Aufgabe der Erfindung besteht darin, eine Drehdurchführung weiter zu entwickeln und insbesondere die Dichtwirkung zu erhöhen sowie die Lebensdauer zu verlängern
Erfindungsgemäße Lösung
Erfindungsgemäß kommt das mindestens eine Dichtungselement bei einem Druckaufbau im Druckraum axial an einem mit dem rotierbaren Bauteil drehfest verbundenem Ringelement zur Anlage, wobei das mindestens eine Dichtungselement Mittel zur Verringerung des axialen Anpressdruckes am Ringelement aufweist. Die Mittel zur Verringerung des axialen Anpressdruckes des mindestens einen Dichtungselements sind im Dichtungselement integriert und somit einteilig ausgebildet. Unter dem mindestens einen Dichtungselement ist zu verstehen, dass die Drehdurchführung entwe- der ein Dichtungselement oder besonders bevorzugt zwei Dichtungselemente aufweist. Die Anordnung von zwei Dichtungselementen realisiert einen symmetrischen Aufbau der Drehdurchführung. Mithin kommt bei einem solchen symmetrischen Aufbau der Drehdurchführung das jeweilige Dichtungselement an einem jeweiligen Ring- element zur Anlage. Insbesondere dient die Drehdurchführung zur Verbindung eines Reifens eines Fahrzeugs mit einer Druckluftquelle.
Je nachdem ob der Einsatzbereich der Drehdurchführung eine Radlageranordnung einer Landmaschine oder eines LKWs ist, ist entweder der Innenring und die damit verbundene Welle drehbeweglich und der Außenring stationär an einem drehfesten Bauteil festgelegt oder der Außenring ist drehbeweglich und der Innenring stationär festgelegt. Für die erfindungsgemäße Drehdurchführung sind beide Einsatzbereiche denkbar. Gemäß einem bevorzugten Ausführungsbeispiel ist eine am Ringelement angeordnete erste Stirnfläche des mindestens einen Dichtungselements größer als eine am Druckraum angrenzende zweite Stirnfläche des mindestens einen Dichtungselements. Diese spezielle Ausbildung des mindestens einen Dichtungselements dient insbesondere als Mittel zur Verringerung des axialen Anpressdruckes. Durch die Größenunter- schiede zwischen den beiden Stirnflächen verteilt sich die Anpresskraft, die aufgrund der Druckbelastung im Druckraum auf die zweite Stirnfläche wirkt, auf die größere erste Stirnfläche, wobei der Betrag der Axial kraft, der auf die erste Stirnfläche wirkt, genau so groß ist wie der Betrag der Axialkraft, der auf die zweite Stirnfläche wirkt. Mithin sinkt der Verschleiß an der ersten Stirnfläche ebenso wie die Hitzebelastung zwi- sehen der zweiten Stirnfläche und dem drehbeweglichen Ringelement.
Vorzugsweise ist die erste Stirnfläche des mindestens einen Dichtungselements mindestens 1 , 05-mal so groß jedoch höchstens 5-mal so groß wie die zweite Stirnfläche des mindestens einen Dichtungselements. Mithin sollten die beiden Stirnflächen, je nach zu erwartenden Drücken im Druckraum ein Verhältnis von 1 :1 ,05 bis hin zu 1 :5 aufweisen.
Gemäß einem bevorzugten Ausführungsbeispiel weist das mindestens eine Dichtungselement mindestens eine Entlastungsbohrung auf, die den Druckraum fluidtech- nisch mit einem Gegendruckraum verbindet. Diese spezielle Ausbildung des mindestens einen Dichtungselements dient insbesondere als Mittel zur Verringerung des axialen Anpressdruckes. Gleichzeitig wird dadurch auch ein schnelles Anliegen der ersten Stirnfläche an dem Ringelement realisiert. Die mindestens eine Entlastungsboh- rung ist dabei vorzugsweise axial ausgebildet. Bei einem Druckaufbau im Druckraum entweicht durch die mindestens eine Entlastungsbohrung die Druckluft aus dem Druckraum in den Gegendruckraum, wodurch sich ein Gegendruck auf die Druckfläche des mindestens einen Dichtungselements, die innerhalb des Gegendruckraumes angeordnet ist, aufbaut. Dieser Gegendruck wirkt dem auf die am Druckraum angren- zende zweite Stirnfläche wirkenden Druck entgegen und senkt dadurch eine Anpresskraft des mindestens einen Dichtungselements am drehbeweglichen Ringelement.
Vorzugsweise weist das mindestens eine Dichtungselement eine Vielzahl Entlastungsbohrungen auf, die den Druckraum fluidtechnisch mit einem Gegendruckraum verbinden. Eine Vielzahl Entlastungsbohrungen, die einen kleinen Durchmesser aufweisen, begünstigen einen langsamen Aufbau des Gegendruckes im Gegendruckraum. Mithin erfolgt eine verzögerte Verringerung des axialen Anpressdruckes des mindestens einen Dichtungselements am Ringelement. Die Erfindung schließt die technische Lehre ein, dass das mindestens eine Dichtungselement einen axial verlaufenden Bereich mit einer umlaufenden Dichtungsnase aufweist, die radial an dem Dichtungsträger zur Anlage kommt. Aufgrund der drehfesten Anordnung des mindestens einen Dichtungselements am Dichtungsträger ist die Dichtfläche zwischen dem mindestens einen Dichtungselement und dem Dichtungs- träger weniger stark belastet als die Dichtfläche zwischen dem mindestens einen Dichtungselement und dem Ringelement, welche gleichzeitig auch eine Gleitfläche bildet. Daher ist es von Vorteil den Anpressdruck an dieser Stelle zu erhöhen, um dadurch auch die Zuverlässigkeit der Dichtwirkung zu erhöhen. Insbesondere erfolgt dies durch die Ausbildung der umlaufenden Nase am mindestens einen Dichtungs- element, die eine besonders geringe Anlagefläche am Dichtungsträger aufweist und somit einen hohen Anpressdruck erfährt.
Vorzugsweise ist der axial verlaufende Bereich radial flexibel ausgebildet. Mit anderen Worten kann dadurch ein Druckaufbau im Druckraum schneller und leichter auf den axial verlaufenden Bereich und somit auch auf die Dichtwirkung am Dichtungsträger einwirken. Der axial verlaufende Bereich dient als Hebelarm zur Aufnahme einer aus dem Druckraum resultierenden Radialkraft. Des Weiteren bevorzugt ist der axial verlaufende Bereich mindestens 0,3-mal jedoch höchstens 0,7-mal so groß, wie das gesamte axiale Abmaß des mindestens einen Dichtungselements. Je größer der axial verlaufende Bereich ist, umso größer ist auch der Hebelarm und somit die maximale Radialkraft, die aufgenommen werden kann. Insbesondere ist die umlaufende Dichtungsnase im Wesentlichen statisch zum Dichtungsträger angeordnet. Somit weist die Dichtungsnase im Wesentlichen keine Relativbewegung zum Dichtungsträger auf. Davon ausgenommen sind jedoch leichte Ausgleichsbewegungen sowie geringe axiale Verschiebungen, die insbesondere bei Verschleißerscheinungen ein Nachstellen des Dichtungselements erlauben.
Des Weiteren bevorzugt ist der axial verlaufende Bereich größer als die zweite Stirnfläche des mindestens einen Dichtungselements. Mit anderen Worten weist der axial verlaufende Bereich eine relativ geringe Wandstärke auf und ist somit stegartig ausgebildet.
Vorteilhafterweise ist das mindestens eine Dichtungselements aus einem
Polymerwerkstoff ausgebildet. Insbesondere eignet sich hierfür ein
Polytetrafluorethylen- Werkstoff. Kurzbeschreibung der Zeichnung
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung bevorzugter Ausführungsbeispiele der Erfindung anhand der Figuren näher dargestellt. Es zeigen
Figur 1 einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem ersten Ausführungsbeispiel, Figur 2 einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem zweiten Ausführungsbeispiel, Figur 3 einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem dritten Ausführungsbeispiel, einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem vierten Ausführungsbeispiel, einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem fünften Ausführungsbeispiel,
Figur 6 einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem sechsten Ausführungsbeispiel, und
Figur 7 einen Teil einer schematischen Schnittdarstellung zur Veranschaulichung des Aufbaus einer erfindungsgemäßen Drehdurchführung gemäß einem siebten Ausführungsbeispiel.
Ausführliche Beschreibung der Zeichnung
Die Figuren 1 bis 7 zeigt eine erfindungsgemäße Drehdurchführung zur Druckluftspeisung eines Druckraumes 1 , der zwischen einem rotierbaren Bauteil 2 und einem stationär festgelegten Bauteil 3 eines - hier nicht dargestellten - Fahrzeugs angeordnet ist. Die Drehdurchführung umfasst einen Dichtungsträger 4 mit einem Kanal 5 zur fluidtechnischen Verbindung mit dem Druckraum 1 . Der Kanal 5 ist ferner mit einem weiteren Kanal 14 verbunden, der zu einer - hier nicht dargestellten - Druckluftquelle führt. Durch die Einspeisung von Druckluft in den Druckraum 1 wird ein Reifendruck eines - hier nicht dargestellten - Reifens des Fahrzeugs variabel eingestellt und ins- besondere auf die Fahrbahn abgestimmt. Ferner sind an dem Dichtungsträger 4 zwei axial beabstandete Dichtungsringe 6 zur statischen Abdichtung des Kanals 5 angeordnet, wobei aufgrund der teilweisen Schnittdarstellung nur einer der beiden Dichtungsringe 6 abgebildet ist. Die Drehdurchführung ist symmetrisch aufgebaut.
Des Weiteren sind am Dichtungsträger 4 zwei Dichtungselemente 7 zur axialen sowie radialen Abdichtung des Druckraumes 1 angeordnet, wobei aufgrund der teilweisen Schnittdarstellung nur eines der beiden Dichtungselemente 7 abgebildet ist. Bei einer Druckluftbeaufschlagung des Druckraums 1 kommt das jeweilige Dichtungselement 7 axial an einem jeweiligen mit dem rotierbaren Bauteil 2 drehfest verbundenen Ringelement 8 zur Anlage. Ferner weist das mindestens eine Dichtungselement 7 einen axial verlaufenden Bereich 12 mit einer umlaufenden Dichtungsnase 13 auf, die radial an dem Dichtungsträger 4 zur Anlage kommt. Zur Verringerung eines Verschleißes des Dichtungselements 7 sowie zur damit verbundenen Erhöhung der Lebensdauer der Drehdurchführung sind an dem Dichtungselement 7 Mittel zur Verringerung des axialen Anpressdruckes am Ringelement 8 ausgebildet.
Gemäß Figur 1 ist eine am Ringelement 8 angeordnete erste Stirnfläche 9a des Dichtungselements 7 größer als eine am Druckraum 1 angrenzende zweite Stirnfläche 9b des Dichtungselements 7. Diese spezielle Ausbildung des Dichtungselements 7 stellt ein Mittel zur Verringerung des axialen Anpressdruckes am Ringelement 8 dar. Insbesondere ist die erste Stirnfläche 9a des Dichtungselements 7 1 ,4-mal so groß wie die zweite Stirnfläche 9b des Dichtungselements 7. Die zweite Stirnfläche 9b des Dichtungselements 7 dient somit als Angriffsfläche für die Druckluft im Druckraum 1 , wobei die auf die Stirnfläche 9a wirkende Kraft auf die größere Stirnfläche 9b gleichmäßig verteilt wird, wodurch ein Anpressdruck des Dichtungselements 7 am Ringelement 8 sinkt.
Nach Figur 2 ist die erste Stirnfläche 9a des Dichtungselements 7 fünfmal so groß wie die zweite Stirnfläche 9b des Dichtungselements 7. Ferner ist der axial verlaufende Bereich 12 radial flexibel ausgebildet. Der axial verlaufende Bereich 12 ist halb so groß, wie das gesamte axiale Abmaß des Dichtungselements 7. Darüber hinaus ist der axial verlaufende Bereich 12 größer als die zweite Stirnfläche 9b des Dichtungselements 7. Figur 3 zeigt eine Ausführungsform des Dichtungselements 7 mit einer ersten Stirnfläche 9a, die doppelt so groß ist wie die zweite Stirnfläche 9b des Dichtungselements 7, wobei der axial verlaufende Bereich 12 radial flexibel ausgebildet ist.
Gemäß Figur 4 weist das Dichtungselement 7 eine Entlastungsbohrung 10a auf, die den Druckraum 1 fluidtechnisch mit einem Gegendruckraum 1 1 verbindet. Auch diese spezielle Ausbildung des Dichtungselements 7 stellt ein Mittel zur Verringerung des axialen Anpressdruckes am Ringelement 8 dar. Ferner ist der axial verlaufende Be- reich 12 radial flexibel ausgebildet und die erste Stirnfläche 9a doppelt so groß wie die zweite Stirnfläche 9b des Dichtungselements 7.
Nach Figur 5 weist das Dichtungselement 7 eine Vielzahl Entlastungsbohrungen 10a, 10b, 10c auf, die den Druckraum 1 fluidtechnisch mit einem Gegendruckraum 1 1 ver- binden. Das einzige Mittel zur Verringerung des axialen Anpressdruckes des Dichtungselements 7 am Ringelement 8 sind die Entlastungbohrungen 10a-10c. Ferner ist der axial verlaufende Bereich 12 radial flexibel ausgebildet.
Die Figuren 6 und 7 stellen eine vereinfachte Ausbildung des Dichtungselements 7 aus Figur 5 dar. Dabei weist das Dichtungselement 7 gemäß der Figuren 6 und 7 lediglich eine Entlastungsbohrung 10a auf, die den Druckraum 1 fluidtechnisch mit einem Gegendruckraum 1 1 verbindet. Der Gegendruckraum 1 1 gemäß Figur 7 weist ferner ein größeres Volumen als der Gegendruckraum 1 1 gemäß der Figuren 5 und 6.
Bezugszeichenliste
1 Druckraum
2 rotierbares Bauteil
3 stationär festgelegtes Bauteil
4 Dichtungsträger
5 Kanal
6 Dichtungsring
7 Dichtungselement
8 Ringelement
9a, 9b Stirnfläche
10a-10c Entlastungsbohrung
1 1 Gegendruckraum
12 axial verlaufender Bereich
13 Dichtungsnase
14 Kanal

Claims

Patentansprüche
1 . Drehdurchführung zur Fluidspeisung eines Druckraumes (1 ), der zwischen ei- nem rotierbaren Bauteil (2) und einem stationär festgelegten Bauteil (3) eines Fahrzeugs angeordnet ist, umfassend einen Dichtungsträger (4) mit mindestens einem Kanal (5) zur fluidtechnischen Verbindung mit dem Druckraum (1 ), wobei an dem Dichtungsträger (4) mindestens zwei axial beabstandete Dichtungsringe (6) zur statischen Abdichtung des mindestens einen Kanals (5) angeordnet sind, und wobei min- destens ein Dichtungselement (7) zur axialen sowie radialen Abdichtung des Druckraumes (1 ) drehfest am Dichtungsträger (4) angeordnet ist,
dadurch gekennzeichnet, dass das mindestens eine Dichtungselement (7) bei einem Druckaufbau im Druckraum (1 ) axial an einem mit dem rotierbaren Bauteil (2) drehfest verbundenem Ringelement (8) zur Anlage kommt, wobei das mindestens ei- ne Dichtungselement (7) Mittel zur Verringerung des axialen Anpressdruckes am Ringelement (8) aufweist.
2. Drehdurchführung nach Anspruch 1 ,
dadurch gekennzeichnet, dass eine am Ringelement (8) angeordnete erste Stirnflä- che (9a) des mindestens einen Dichtungselements (7) größer ist als eine am Druckraum (1 ) angrenzende zweite Stirnfläche (9b) des mindestens einen Dichtungselements (7).
3. Drehdurchführung nach Anspruch 2,
dadurch gekennzeichnet, dass die erste Stirnfläche (9a) des mindestens einen
Dichtungselements (7) mindestens 1 ,05-mal so groß jedoch höchstens 5-mal so groß ist wie die zweite Stirnfläche (9b) des mindestens einen Dichtungselements (7).
4. Drehdurchführung nach Anspruch 1 ,
dadurch gekennzeichnet, dass das mindestens eine Dichtungselement (7) mindestens eine Entlastungsbohrung (10a) aufweist, die den Druckraum (1 ) fluidtechnisch mit einem Gegendruckraum (1 1 ) verbindet.
5. Drehdurchführung nach Anspruch 1 ,
dadurch gekennzeichnet, dass das mindestens eine Dichtungselement (7) einen axial verlaufenden Bereich (12) mit einer umlaufenden Dichtungsnase (13) aufweist, die radial an dem Dichtungsträger (4) zur Anlage kommt.
6. Drehdurchführung nach Anspruch 5,
dadurch gekennzeichnet, dass der axial verlaufende Bereich (12) radial flexibel ausgebildet ist.
7. Drehdurchführung nach Anspruch 5,
dadurch gekennzeichnet, dass der axial verlaufende Bereich (12) mindestens 0,3- mal jedoch höchstens 0,7-mal so groß ist, wie das gesamte axiale Abmaß des mindestens einen Dichtungselements (7).
8. Drehdurchführung nach Anspruch 5,
dadurch gekennzeichnet, dass die umlaufende Dichtungsnase (13) im Wesentlichen statisch zum Dichtungsträger (4) angeordnet ist.
9. Drehdurchführung nach Anspruch 2 oder 5,
dadurch gekennzeichnet, dass der axial verlaufende Bereich (12) größer ist als die zweite Stirnfläche (9b) des mindestens einen Dichtungselements (7).
10. Drehdurchführung nach Anspruch 1 ,
dadurch gekennzeichnet, dass das mindestens eine Dichtungselements (7) aus einem Polymerwerkstoff ausgebildet ist.
PCT/DE2016/200304 2015-07-07 2016-07-01 Drehdurchführung für ein fahrzeug WO2017005261A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680039662.7A CN107850218B (zh) 2015-07-07 2016-07-01 用于车辆的旋转接头
US15/741,798 US10760688B2 (en) 2015-07-07 2016-07-01 Rotary leadthrough for a vehicle
EP16747724.9A EP3320240A1 (de) 2015-07-07 2016-07-01 Drehdurchführung für ein fahrzeug
BR112017027936A BR112017027936A2 (pt) 2015-07-07 2016-07-01 passagem rotativa para um veículo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015212641.2A DE102015212641A1 (de) 2015-07-07 2015-07-07 Drehdurchführung für ein Fahrzeug
DE102015212641.2 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017005261A1 true WO2017005261A1 (de) 2017-01-12

Family

ID=56571098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/200304 WO2017005261A1 (de) 2015-07-07 2016-07-01 Drehdurchführung für ein fahrzeug

Country Status (6)

Country Link
US (1) US10760688B2 (de)
EP (1) EP3320240A1 (de)
CN (1) CN107850218B (de)
BR (1) BR112017027936A2 (de)
DE (1) DE102015212641A1 (de)
WO (1) WO2017005261A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127432A1 (de) 2017-11-21 2019-05-23 Gapi Technische Produkte Gmbh Dichtungsanordnung für eine Drehdurchführung eines Radlagers eines Kraftfahrzeugs
DE102017127464A1 (de) 2017-11-21 2019-05-23 Gapi Technische Produkte Gmbh Dichtungsanordnung für eine Drehdurchführung eines Radlager eines Kraftfahrzeugs
DE102017127427B3 (de) 2017-11-21 2019-04-25 Gapi Technische Produkte Gmbh Dichtungsanordnung für eine Drehdurchführung eines Radlagers eines Kraftfahrzeugs
DE102017127456A1 (de) 2017-11-21 2019-05-23 Gapi Technische Produkte Gmbh Dichtungsanordnung für eine Drehdurchführung eines Radlagers eines Kraftfahrzeugs
DE102017127438A1 (de) 2017-11-21 2019-05-23 Gapi Technische Produkte Gmbh Radlager zur Lagerung eines Kraftfahrzeugreifens eines Kraftfahrzeugs
DE102018100751A1 (de) 2018-01-15 2019-07-18 Schaeffler Technologies AG & Co. KG Radlager zur Lagerung eines Kraftfahrzeugreifens eines Kraftfahrzeugs
DE102018100750B4 (de) 2018-01-15 2022-04-28 Schaeffler Technologies AG & Co. KG Radlager zur Lagerung eines Kraftfahrzeugreifens eines Kraftfahrzeugs
DE102018101411B4 (de) 2018-01-23 2024-10-17 Schaeffler Technologies AG & Co. KG Dichtungsanordnung für eine Drehdurchführung eines Radlager eines Kraftfahrzeugs
DE102020104042B3 (de) 2020-02-17 2021-07-22 Schaeffler Technologies AG & Co. KG Radlager zur Lagerung eines Kraftfahrzeugreifens eines Kraftfahrzeugs
CN115992913A (zh) * 2023-02-13 2023-04-21 苏州昶耀精密机械有限公司 旋转式传输接头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113176A2 (de) * 1999-12-27 2001-07-04 Leybold Vakuum GmbH Vakuumpumpe mit Wellendichtmitteln
DE102012222339A1 (de) 2012-01-11 2013-07-11 Gapi Technische Produkte Gmbh Fluiddrehdurchführung
WO2014142265A1 (ja) * 2013-03-14 2014-09-18 イーグルブルグマンジャパン株式会社 メカニカルシール装置
EP2816235A1 (de) * 2013-06-19 2014-12-24 Pfeiffer Vacuum Gmbh Vakuumpumpe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB817396A (en) * 1956-02-23 1959-07-29 Napier & Son Ltd Seals for sealing rotatable members passing through partitions
GB560280A (en) * 1942-11-16 1944-03-28 York Shipley Ltd Sealed joint for rotary shaft
US4196912A (en) * 1978-11-24 1980-04-08 Amax Inc. Fluid-pressurized face seal
DE3604137A1 (de) 1986-02-10 1987-08-13 Ficht Gmbh Dichtung
BR0304826A (pt) * 2002-05-14 2004-08-17 Luk Lamellen & Kupplungsbau Sistema hidráulico
WO2010123025A1 (ja) * 2009-04-23 2010-10-28 イーグル工業株式会社 メカニカルシール装置
CN201696282U (zh) * 2010-05-27 2011-01-05 宁波伏尔肯机械密封件制造有限公司 密封装置
CN202901285U (zh) * 2012-11-09 2013-04-24 江苏隆达机械设备有限公司 一种随动型侧搅拌机械密封结构
ES2693282T3 (es) * 2013-07-18 2018-12-10 Ankol Eood Conector de transferencia para transferir al menos un fluido
CN103912685B (zh) * 2014-04-15 2016-02-24 清华大学 一种顺逆流泵送结合的径向双端面机械密封装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113176A2 (de) * 1999-12-27 2001-07-04 Leybold Vakuum GmbH Vakuumpumpe mit Wellendichtmitteln
DE102012222339A1 (de) 2012-01-11 2013-07-11 Gapi Technische Produkte Gmbh Fluiddrehdurchführung
WO2014142265A1 (ja) * 2013-03-14 2014-09-18 イーグルブルグマンジャパン株式会社 メカニカルシール装置
EP2816235A1 (de) * 2013-06-19 2014-12-24 Pfeiffer Vacuum Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
EP3320240A1 (de) 2018-05-16
US10760688B2 (en) 2020-09-01
US20180195619A1 (en) 2018-07-12
BR112017027936A2 (pt) 2018-08-28
CN107850218A (zh) 2018-03-27
CN107850218B (zh) 2020-12-01
DE102015212641A1 (de) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2017005261A1 (de) Drehdurchführung für ein fahrzeug
EP2529134B1 (de) Rotationsdichtungsanordnung
EP3458746B1 (de) Rotationsdichtungsanordnung mit druckaktivierbarer rotationsdichtung sowie rotationsdichtung
DE102012006901B3 (de) Drehdurchführung
DE102009057158A1 (de) Drehdurchführung
DE10019641A1 (de) Dichtungsanordnung
EP2550456B1 (de) Zahnradpumpe
DE102012217040A1 (de) Luftführungsanordnung zur Reifendruck-Regulierung
EP3713779B1 (de) Dichtungsanordnung für eine drehdurchführung eines radlager eines kraftfahrzeugs
EP1162394B1 (de) Dichtelement für hydraulische Kolben-Zylinder-Anordnungen
DE102011014025B4 (de) Fahrzeug, insbesondere Landmaschine
EP2606232B1 (de) Dichtring für eine kolbenpumpe
DE69013270T2 (de) Drehende und abgedichtete Lagereinheit eines ersten Elementes, das sich in einem zweiten Element dreht.
EP2837512B1 (de) Radaufhängung
EP3320239B1 (de) Drehdurchführung für ein fahrzeug
EP3882048B1 (de) Fahrzeugrad-drehdurchführung, fahrzeugrad-baugruppe, selbstfahrende arbeitsmaschine und verfahren zum betrieb einer fahrzeugrad-drehdurchführung
WO2014135164A1 (de) Drehdurchführung und reifendruckregulierungsanlage mit drehdurchführung
EP2151593B1 (de) Dichtung für eine Radnabe
DE102013104406A1 (de) Wellenanordung mit nachgiebiger Distanzeinheit
DE202020101527U1 (de) Fahrzeugrad-Drehdurchführung, Fahrzeugrad-Baugruppe und selbstfahrende Arbeitsmaschine
DE202016102691U1 (de) Rotationsdichtungsanordnung mit druckaktivierbarer Rotationsdichtung sowie Rotationsdichtung
DE202022104274U1 (de) Reifendruckregelanlage
DE102017127456A1 (de) Dichtungsanordnung für eine Drehdurchführung eines Radlagers eines Kraftfahrzeugs
DE102016001936A1 (de) Drehdurchführung mit konkav gestützten Dichtungsscheiben
DE102018115583A1 (de) Dichtungsanordnung für eine Drehdurchführung eines Radlagers eines Kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16747724

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016747724

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027936

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017027936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222