WO2017086220A1 - 点灯回路、車両用灯具 - Google Patents
点灯回路、車両用灯具 Download PDFInfo
- Publication number
- WO2017086220A1 WO2017086220A1 PCT/JP2016/083228 JP2016083228W WO2017086220A1 WO 2017086220 A1 WO2017086220 A1 WO 2017086220A1 JP 2016083228 W JP2016083228 W JP 2016083228W WO 2017086220 A1 WO2017086220 A1 WO 2017086220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- unit
- abnormality
- circuit
- bypass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/02—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
- B60Q1/04—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q11/00—Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
Definitions
- the present invention relates to a lighting circuit and a vehicular lamp including a lighting circuit and a light source unit, and relates to a technical field for detecting an abnormality such as a short circuit abnormality.
- Patent Document 1 discloses a circuit in which a bypass circuit is provided for each of a plurality of LEDs connected in series, and a part of the LEDs are turned off by turning on the bypass path.
- a light source unit in which a plurality of light emitting elements are connected in series.
- a plurality of LEDs, a laser element such as a plurality of laser diodes, or an LED and a laser element are connected in series.
- the light-emitting element is driven by a common converter and the number of light-emitting elements to be lit is changed by turning on / off a bypass switch provided in parallel to each light-emitting element.
- the light source type can be changed like LED and laser.
- an abnormality of each light emitting element for example, a short circuit failure (including a failure in which the wiring of the lighting circuit output is equivalent to a light source short circuit (such as a short circuit of the harness)), a current leakage of the lighting circuit wiring, a deterioration of the light source, etc.
- a short circuit failure including a failure in which the wiring of the lighting circuit output is equivalent to a light source short circuit (such as a short circuit of the harness)
- a current leakage of the lighting circuit wiring a deterioration of the light source, etc.
- an object of the present invention is to make it possible to accurately detect an abnormality in a configuration in which a plurality of light emitting elements connected in series can be selectively lit.
- a lighting circuit receives a direct current voltage to perform voltage conversion, and supplies a driving current to a light source unit having first and second light emitting elements connected in series.
- a first bypass switch that forms a bypass path that bypasses the first light emitting element; an abnormality detection unit that detects an abnormality of the light source unit when an output voltage of the voltage conversion unit is lower than a threshold; and the first And a control unit that changes the threshold value of the abnormality detection unit in accordance with a control state of the first bypass switch.
- the abnormality detection unit detects that an abnormality such as a short circuit or a leak has occurred when the output voltage of the voltage conversion unit with respect to the light source unit drops below a threshold value.
- the number and types of light emitting elements to which a driving current is supplied that is, light emitting elements that emit light
- the load voltage of the voltage conversion part as the whole light source part also changes.
- the threshold value of the abnormality detection unit is changed according to the control state of the bypass switch.
- the lighting circuit described above includes a second bypass switch that forms a bypass path through which the drive current bypasses the second light emitting element, and the control unit controls the first and second bypass switches.
- the control unit controls the first and second bypass switches.
- the ON / OFF control of the first and second bypass switches makes the lighting state of the light source unit more diverse. Therefore, the threshold value of the abnormality detection unit is changed according to the combination of ON / OFF control of the first and second bypass switches.
- the abnormality detection unit compares a voltage dividing circuit that divides the output voltage of the voltage conversion unit, and a first voltage divided by the voltage dividing circuit with a second voltage that is a reference voltage.
- the voltage converter is configured to stop the voltage conversion in response to an abnormality being detected based on the first voltage being lower than the second voltage
- the control unit may change the voltage dividing ratio of the voltage dividing circuit in order to change the threshold value. That is, the abnormality detection unit performs the process of comparing the output voltage of the voltage conversion unit and the threshold by the process of comparing the divided voltage of the output voltage and the reference voltage. In this case, if the reference voltage is a threshold, changing the voltage dividing ratio indirectly changes the threshold.
- the abnormality detection unit includes a voltage dividing circuit that divides the output voltage of the voltage conversion unit, and a comparison circuit that compares the first voltage divided by the voltage dividing circuit with the second voltage. And a reference voltage variable circuit that varies the reference voltage to generate the second voltage, and the voltage conversion unit detects an abnormality based on the fact that the first voltage is lower than the second voltage. It is considered that the voltage conversion is stopped in response to the detection, and the control unit instructs the reference voltage variable circuit to generate the second voltage in order to change the threshold value.
- the abnormality detection unit performs the process of comparing the output voltage of the voltage conversion unit and the threshold by the process of comparing the divided voltage of the output voltage and the reference voltage. In this case, the threshold value of the reference voltage that functions as the threshold value is changed.
- a vehicular lamp according to the present invention is a vehicular lamp that includes a light source unit having first and second light emitting elements connected in series and the lighting circuit.
- the abnormality determination voltage of the light source unit can be adaptively changed according to the number and type of light emitting elements that emit light. Regardless of the control state of the bypass switch, the abnormality detection can be performed with a substantially constant sensitivity. Therefore, the abnormality detection accuracy can be improved.
- FIG. 1 shows a vehicular lamp 1 according to an embodiment and related parts thereof.
- the vehicular lamp 1 can be suitably applied to various lamps such as a vehicle headlamp, a turn signal lamp, and a backlight.
- the vehicle lamp 1 includes a lighting circuit 2 and a light source unit 3.
- the lighting circuit 2 is composed of various electronic components arranged on a lighting circuit board, for example.
- the light source unit 3 has a plurality of light emitting elements arranged on a light source substrate. Here, an example in which the light emitting elements 30 and 31 are connected in series is shown.
- the light source unit 3 is a light source as a headlamp.
- the light emitting element 30 is an LED
- the light emitting element 31 is a laser element such as a laser diode. Therefore, in the following description, the light emitting element 30 is referred to as “LED 30”, and the light emitting element 31 is referred to as “laser element 31”.
- the LED 30 serves as a diffused light source and the laser element 31 serves as a condensing light source to function as an additional high beam.
- the light source part 3 into the serial structure of LED and a laser element
- other examples such as setting it as the serial structure only of several LED, or the serial structure only of a laser element, are also considered.
- a plurality of light source elements may be connected in series.
- the lighting circuit 2 is configured to receive power from the vehicle battery BT between the terminals 41 and 42.
- the lighting circuit 2 is connected via a terminal 43 so as to be communicable with an ECU (Electronic Control Unit) 52 that comprehensively performs electrical control provided on the vehicle side.
- a switch SWb is inserted between the positive terminal of the battery BT and the terminal 41 of the lighting circuit 2, and lighting / extinguishing of the vehicular lamp 1 is controlled by ON / OFF of the switch SWb.
- a terminal 42 of the vehicular lamp 1 is connected to the negative electrode side of the battery BT through a ground point.
- a configuration is also conceivable in which the power supply voltage line and the ground line from the battery BT are connected to the terminals 41 and 42 via the ECU 52 so that the ECU 52 can control the power supply to the lighting circuit 2.
- the LED 30 and the laser element 31 are connected in series as described above.
- the LED 30 and the laser element 31 are driven to emit light by being supplied with a drive current Id controlled at a constant current from the lighting circuit 2.
- the lighting circuit 2 includes a control unit 11, a DC / DC converter 12, a converter driving unit 13, an abnormality detection unit 14, and bypass switches 15 and 16.
- the DC / DC converter 12 is a voltage conversion unit that supplies a drive current Id to the light source unit 3.
- the DC / DC converter 12 receives the direct current voltage from the battery BT, performs voltage conversion, and generates an output voltage Vd.
- the DC / DC converter 12 is a switching regulator, for example. Depending on the relationship between the forward voltage drop of the light source unit 3 and the power supply voltage by the battery BT, any of a step-up type, a step-down type, and a step-up / step-down type can be considered.
- the current based on the output voltage Vd appearing on the output side of the DC / DC converter 12 flows to the LED 30 and the laser element 31 of the light source unit 3 as the drive current Id.
- the converter drive unit 13 performs the voltage conversion operation of the DC / DC converter 12 and performs constant current control of the drive current Id. For example, the converter drive unit 13 compares the current value of the drive current Id with the target current value based on the detection signal SId of the output (drive current Id) of the DC / DC converter 12, and the PWM control signal Spwm according to the difference. Is generated. This PWM control signal Spwm is supplied to the switching element of the DC / DC converter 12 to control the voltage conversion operation, thereby realizing a constant current output.
- the lighting circuit 2 is provided with bypass switches 15 and 16 that are connected in parallel to the LED 30 and the laser element 31 connected in series.
- the bypass switches 15 and 16 are configured by switching elements such as MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), for example.
- MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
- the lighting circuit 2 is provided with terminals 44, 45, and 46, and the terminals 44 and 46 serve as positive / negative terminals on the output side of the DC / DC converter 12.
- the bypass switches 15 and 16 are connected in series between the terminals 44 and 46. A connection point between the bypass switches 15 and 16 is led to a terminal 45.
- terminals 32, 33, 34 are provided on the light source unit 3 side.
- the terminal 32 is connected to the anode of the LED 30, and the terminal 34 is connected to the cathode of the laser element 31 (laser diode).
- a connection point between the LED 30 and the laser element 31 is connected to the terminal 33.
- each terminal 44, 45, 46 is connected with the corresponding terminal in the terminals 32, 33, 34 as shown in the figure. For example, it is connected by wiring between substrates. Therefore, the bypass switch 15 is connected in parallel to the LED 30, and the bypass switch 16 is connected in parallel to the laser element 31.
- bypass switch 15 When the bypass switch 15 is turned on, a bypass path BP1 for the LED 30 is formed. In this case, since the drive current Id flows through the bypass BP1 and does not flow through the LED 30, the LED 30 is not lit. When the bypass switch 15 is turned off, the drive current Id flows through the LED 30 and the LED 30 is lit. When the bypass switch 16 is turned on, a bypass path BP2 for the laser element 31 is formed. In this case, the drive current Id flows through the bypass BP2, and the laser element 31 is not turned on. When the bypass switch 16 is turned off, the drive current Id flows through the laser element 31, and the laser element 31 is turned on.
- the bypass switches 15 and 16 are ON / OFF controlled by bypass control signals SB1 and SB2 from the control unit 11.
- the control unit 11 is formed of a microcomputer, for example, and controls the converter drive unit 13 and the bypass switches 15 and 16. Further, the threshold value variable control of the abnormality detection unit 14 is performed.
- the control unit 11 controls the operation of the converter driving unit 13 for turning on / off the light source unit 3 in accordance with an instruction from the ECU 52. Further, the control unit 11 generates bypass control signals SB1 and SB2 based on an instruction from the ECU 52, and performs ON / OFF control of the bypass switches 15 and 16, respectively. For example, in the case of this configuration, each lighting state can be switched and controlled such that only the LED 30 is turned on, only the laser element 31 is turned on, and both the LED 30 and the laser element 31 are turned on.
- the controller 14 can control the lighting state in various ways by controlling the bypass switches 15 and 16 with the bypass control signals SB1 and SB2 during the period in which the DC / DC converter 12 is operated. That is, the LED 30 is turned off by continuously turning on the bypass switch 15 by the bypass control signal SB1, and not only the LED 30 is turned on by turning off the bypass switch 15 continuously.
- the LED 30 can be dimmed by turning on / off at 100 Hz). Furthermore, dimming can be performed by changing the on-duty of the on / off control. The same applies to the laser element 31.
- the abnormality detection unit 14 includes a voltage dividing circuit 20, a comparator 21, a fail timer 22, and a reference voltage generation circuit 23.
- the voltage dividing circuit 20 includes resistors R1 to R4 and switches T1 and T2, and divides the output voltage Vd of the DC / DC converter 12.
- the resistors R1 and R2 are connected in series between the output terminal (positive electrode) of the DC / DC converter 12 and the ground.
- the resistor R3 and the drain-source of the switch T1 are connected in series between the connection point of the resistors R1 and R2 and the ground. Further, the resistor R4 and the drain-source of the switch T2 are connected in series between the connection point of the resistors R1 and R2 and the ground.
- the switches T1 and T2 are, for example, MOSFETs, and the signal St1 from the control unit 11 is supplied to the gate of the switch T1, and the signal St2 from the control unit 11 is supplied to the gate of the switch T2.
- the controller 11 can control ON / OFF of the switches T1 and T2 by signals St1 and St2.
- the resistor R3 functions as a voltage dividing resistor.
- the resistor R4 functions as a voltage dividing resistor. Therefore, the voltage dividing ratio of the voltage dividing circuit 20 changes in four ways depending on the ON / OFF combination of the switches T1 and T2.
- the switches T1 and T2 may be composed of other elements such as bipolar transistors.
- the voltage (divided voltage Vdv) at the connection point of the resistors R1 and R2 is input to the comparator 21.
- the reference voltage Vref from the reference voltage generation circuit 23 is input to the other end of the comparator 21.
- the comparison result between the divided voltage Vdv and the reference voltage Vref by the comparator 21 is supplied to the fail timer 22.
- the output of the comparator 21 becomes L level when, for example, the divided voltage Vdv is lower than the reference voltage Vref.
- the L level output of the comparator 21 becomes a signal for detecting that the output voltage Vd of the DC / DC converter 12 has dropped due to a short circuit abnormality or the like.
- the fail timer 22 outputs an abnormality detection signal SF in response to the L level output of the comparator 21 continuing for a predetermined time. For example, as shown in FIG. 2, if the L level output period of the comparator 21 is less than the predetermined time Tc, the fail timer 22 is not abnormal, and the L level output period of the comparator 21 continues the predetermined time Tc. At that time, an abnormality detection signal SF for notifying abnormality is output.
- the abnormality detection signal SF is supplied to the converter drive unit 13 and the control unit 11.
- the converter drive unit 13 may stop the operation of the DC / DC converter 12 according to the abnormality detection signal SF.
- the control unit 11 may instruct the converter driving unit 13 to stop the operation according to the abnormality detection signal SF.
- the controller 11 may notify the ECU 52 of the abnormality without necessarily stopping the operation of the DC / DC converter 12.
- the output of the fail timer 22 may be directly supplied to the vehicle side (ECU 52) side.
- the control unit 11 can select lighting of only the LED 30, lighting of only the laser element 31, and lighting of both the LED 30 and the laser element 31 by controlling the bypass switches 15 and 16.
- the abnormality detection unit 14 detects an abnormality as a signal for detecting a short circuit of the light source unit 3 (including a failure in which the wiring of the lighting circuit output is equivalent to a light source short circuit (such as a short circuit of a harness)), current leakage, light source deterioration, and the like.
- the signal SF is output.
- the output voltage Vd of the DC / DC converter 12 is about 4 V when only the laser element 31 is turned on.
- the output voltage Vd of the DC / DC converter 12 is about 7 V when only the LED 30 is lit.
- the threshold value Vth for determining short circuit abnormality is set to a certain value, and it is detected that the output voltage Vd is equal to or lower than the threshold value Vth.
- the threshold value Vth is set to a constant value, the occurrence of a short circuit abnormality can be detected by setting the threshold value Vth to a voltage value that is impossible for the normal output voltage Vd.
- the threshold value Vth must be matched when the output voltage Vd is the lowest. This is to prevent erroneous detection when the output voltage Vd is the lowest.
- the abnormality determination threshold is changed according to the lighting state of the light source unit 3.
- the divided voltage Vdv becomes 0.8V or less, and the output of the comparator 21 becomes a level indicating abnormality.
- the output voltage Vd is 2 V or less when only the laser element 31 is lit-When the output voltage Vd is 3.5 V or less when only the LED 30 is lit-When the LED 30 and the laser element 31 are lit, the output voltage Vd is 5. This is the case for 5V or less.
- the lighting state of the light source unit 3 that is, the lighting / extinguishing of the LED 30 and the laser element 31, is set by the control unit 11 performing ON / OFF control of the bypass switches 15 and 16 with the bypass control signals SB1 and SB2. Therefore, the control unit 11 may turn ON / OFF the switches T1 and T2 according to the control of the bypass switches 15 and 16.
- a vehicular lamp 1 according to a second embodiment is shown in FIG.
- the configuration of the abnormality detection unit 14A is different from that of the first embodiment.
- the abnormality detection unit 14A includes resistors R1 and R2 as the voltage dividing circuit 20A.
- the resistors R1 and R2 are connected in series between the output terminal (positive electrode) of the DC / DC converter 12 and the ground. In this case, the output voltage Vd of the DC / DC converter 12 is always divided by the resistors R 1 and R 2, and the divided voltage Vdv is supplied to the comparator 21.
- the reference voltage variable circuit 23 ⁇ / b> A varies the reference voltage Vref supplied to the comparator 21 in accordance with the control signal Sv of the control unit 11.
- Vref Vd / 4V
- Vref 1V.
- Vref 1.75V.
- the reference voltage Vref 2.75V.
- the threshold value Vth is changed according to the lighting state of the light source unit 3 so that it is determined that the output voltage Vd is 50% or less of the normal value. Accordingly, it is possible to appropriately detect a short circuit abnormality, a current leak, and the like regardless of the lighting state of the light source unit 3.
- the control unit 11 may perform variable control of the reference voltage Vref value of the reference voltage variable circuit 23 ⁇ / b> A along with control of the bypass switches 15 and 16.
- FIG. 1 A vehicle lamp 1 according to a third embodiment is shown in FIG. The same parts as those in FIG. In this example, the bypass switch 15 is eliminated from the configuration of FIG. A bypass switch 16 is provided, and the controller 11 controls the turn-off / lighting of the laser element 31 by turning the bypass switch 16 on and off with a bypass control signal SB2. That is, in this configuration, the lighting state of the light source unit 3 can be switched between lighting of only the LED 30 and lighting of the LED 30 and the laser element 31.
- the abnormality detection unit 14 includes a voltage dividing circuit 20B, a comparator 21, a fail timer 22, and a reference voltage generation circuit 23.
- the voltage dividing circuit 20B includes resistors R10 to R12 and a switch T3, and divides the output voltage Vd of the DC / DC converter 12.
- the resistors R10 and R11 are connected in series between the output terminal (positive electrode) of the DC / DC converter 12 and the ground.
- a resistor R12 and a drain-source of a switch T3 made of, for example, a MOSFET are connected in series between a connection point of the resistors R10 and R11 and the ground.
- a signal St3 from the control unit 11 is supplied to the gate of the switch T3.
- the control unit 11 can control ON / OFF of the switch T3 by a signal St3.
- the control unit 11 turns off the switch T3 when only the LED 30 is lit.
- the control unit 11 turns on the switch T3.
- the threshold value Vth for abnormality determination is changed according to the lighting state of the light source unit 3. That is, appropriate abnormality detection is realized in the same way as in the first embodiment.
- FIG. 5 shows a vehicular lamp 1 according to a fourth embodiment. Note that the same parts as those in FIG. In this example, the bypass switch 15 is eliminated from the configuration of FIG. Therefore, as in the third embodiment of FIG. 4, the lighting state of the light source unit 3 can be switched between lighting of only the LED 30 and lighting of the LED 30 and the laser element 31.
- the control unit 11 variably controls the reference voltage Vref generated by the reference voltage variable circuit 23 ⁇ / b> A according to the lighting state of the light source unit 3. As a result, the threshold value Vth for abnormality determination is changed according to the lighting state of the light source unit 3. That is, appropriate abnormality detection is realized in the same way as in the second embodiment.
- the lighting circuit 2 receives a DC voltage, performs voltage conversion, and supplies a drive current to the light source unit 3 having the first and second light emitting elements (30, 31) connected in series.
- a voltage conversion unit (DC / DC converter 12) that supplies Id, a first bypass switch 16 that forms a bypass path BP2 in which the drive current Id bypasses the first light emitting element (for example, the laser element 31), and voltage conversion
- the abnormality detection unit (14 or 14A) that detects an abnormality of the light source unit 3 when the output voltage Vd of the unit is lower than the threshold value Vth, the first bypass switch 16, and the control of the first bypass switch 16
- the control unit 11 changes the threshold value Vth of the abnormality detection unit (14 or 14A) according to the state.
- the threshold value Vth for determining the abnormality of the light source unit 3 can be adaptively changed according to the number and type of light emitting elements that emit light. Can do. Therefore, regardless of the control state of the bypass switch 16, abnormality detection can be performed with substantially constant sensitivity, and detection accuracy can be improved. For example, a leak abnormality can always be detected with the same sensitivity. Therefore, the abnormality detection accuracy can be improved.
- the lighting circuit 2 of the first and second embodiments includes a second bypass switch 15 that forms a bypass path BP1 in which the drive current Id bypasses the second light emitting element (for example, the LED 30).
- the control unit 11 controls the first and second bypass switches 16 and 15, and the threshold value of the abnormality detection unit (14 or 14A) according to the control state of the first and second bypass switches 16 and 15. Vth is changed. That is, the ON / OFF control of the plurality of bypass switches 15 and 16 makes the lighting state of the light source unit 3 more diverse. Therefore, the threshold value Vth of the abnormality detection units 14 and 14A is changed according to the combination of ON / OFF control of the bypass switches 15 and 16.
- the threshold value Vth for determining the abnormality of the light source unit 3 can be adaptively changed according to the number and type of light emitting elements emitting light.
- the lighting circuit configuration can be simplified, which is advantageous for downsizing and cost reduction. It is.
- voltage detection can be performed on the basis of a fixed voltage (for example, ground potential) that is not based on the floating node for detecting an abnormality of each light emitting element, the voltage detection accuracy can be improved.
- the abnormality detection unit 14 divides the output voltage Vd of the voltage conversion unit, and the first voltage (divided voltage) divided by the voltage dividing circuit 20.
- a comparison circuit for comparing Vdv) with the second voltage (reference voltage Vref) is provided.
- the voltage conversion unit DC / DC converter 12
- the controller 11 changes the voltage dividing ratio of the voltage dividing circuit 20 in order to change the threshold value Vth.
- the abnormality detection unit 14 performs a process of comparing the output voltage Vd of the voltage converter and the threshold value Vth by a process of comparing the divided voltage Vdv of the output voltage Vd and the reference voltage Vref.
- changing the voltage dividing ratio is equivalent to changing the threshold value Vth indirectly.
- the threshold can be easily changed by changing the partial pressure ratio.
- the abnormality detection unit 14A includes a voltage dividing circuit 20A that divides the output voltage Vd of the voltage conversion unit, and a first voltage (divided by the voltage dividing circuit 20A).
- a comparison circuit (comparator 21) that compares the divided voltage Vdv) with the second voltage, and a reference voltage variable circuit 23A that generates the second voltage by changing the reference voltage Vref.
- the voltage converter (DC / DC converter 12) converts the voltage in response to the detection of an abnormality based on the first voltage (Vdv) being lower than the second voltage (Vref or its variable voltage value). To stop.
- the controller 11 instructs the reference voltage variable circuit 23A to generate the second voltage (variable value of the reference voltage Vref) in order to change the threshold value Vth. That is, the abnormality detection unit 14A executes a process of comparing the output voltage Vd of the voltage converter and the threshold value Vth by a process of comparing the divided voltage Vdv of the output voltage Vd and the reference voltage Vref. In this case, the threshold value change can be easily realized by adopting a method of changing the reference voltage Vref.
- the abnormality detection unit (14 or 14A) of the first to fourth embodiments includes a comparison circuit (comparator 21) that compares the output voltage Vd of the voltage conversion unit and the threshold value Vth, and an output of the abnormality detection level of the comparison circuit.
- a timer circuit for outputting an abnormality detection signal in response to the continuation of a predetermined time.
- the abnormality detectors 14 and 14A output the abnormality detection signal SF when the abnormality detection level continues as a comparison result between the output voltage of the voltage converter and the threshold value Vth.
- the configurations of the first and third embodiments for changing the voltage division ratio and the configurations of the second and fourth embodiments for changing the reference voltage Vref are combined to control both the voltage division ratio and the reference voltage Vref.
- a configuration in which 11 is variable is also possible.
- the threshold Vth is described as an example in which the voltage Vd is 50% of the normal output voltage Vd.
- the voltage value equivalent to 50% is merely an example. If the threshold value Vth is set to a voltage value such as 60% or 70% of the normal output voltage Vd, the detection sensitivity increases, but conversely the possibility of erroneous detection also increases. If the threshold value Vth is a voltage value such as 40% or 30% of the normal output voltage Vd, the detection sensitivity is lowered, but the possibility of erroneous detection is reduced. Therefore, it may be determined according to the lighting circuit configuration, lamp type, detection purpose, and the like.
- bypass switches 15 and 16 Although an example having the bypass switches 15 and 16 and a configuration having only the bypass switch 16 are illustrated, a configuration having only the bypass switch 15 is also conceivable. That is, the present invention is also effective in the case where a bypass switch is provided for some of a plurality of light source elements connected in series. Further, a configuration in which a larger number of light emitting elements are connected in series and a bypass switch is provided in all or a part thereof is also conceivable. Also in those cases, the control unit 11 may change the threshold value Vth in the abnormality detection unit 14 together with the control of one or a plurality of bypass switches.
- SYMBOLS 1 Vehicle lamp, 2 ... Lighting circuit, 3 ... Light source part, 11 ... Control part, 12 ... DC / DC converter, 13 ... Converter drive part, 14, 14A ... Abnormality detection part, 15, 16 ... Bypass switch, 30 ... Light emitting element (LED) 31. Light emitting element (laser element) 20, 20A... Voltage dividing circuit, 21.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
直列接続された複数の発光素子が選択的に点灯可能な構成において異常検出を精度よくできるようにする。このため直流電圧を受けて電圧変換を行い、直列接続された第1及び第2の発光素子を有する光源部に駆動電流を供給する電圧変換部と、駆動電流が第1の発光素子をバイパスするバイパス路を形成する第1のバイパススイッチと、電圧変換部の出力電圧が閾値より低くなることにより光源部の異常を検出する異常検出部と、第1のバイパススイッチを制御するとともに第1のバイパススイッチの制御状態に応じて異常検出部の閾値を変化させる制御部とを備える。これにより光源部の異常判定のための閾値を発光している発光素子の数や種類に応じて適応的に変化させる。
Description
本発明は、点灯回路及び点灯回路と光源部を含む車両用灯具に関し、例えばショート異常等の異常検出についての技術分野に関する。
例えば車両用前照灯やターンシグナルランプなどの車両用灯具においてはLED(Light Emitting Diode)等の半導体光源としての発光素子やフィラメント電球等の発光素子が用いられている。
上記特許文献1には直列接続された複数のLEDのそれぞれに対してバイパス回路を設け、バイパス経路をオンすることで一部のLEDを消灯させる回路が開示されている。
上記特許文献1には直列接続された複数のLEDのそれぞれに対してバイパス回路を設け、バイパス経路をオンすることで一部のLEDを消灯させる回路が開示されている。
複数の発光素子を直列接続した光源部を考える。例えば複数のLEDや、複数のレーザダイオード等のレーザ素子、或いはLEDとレーザ素子などを直列接続する場合である。
この場合に、各発光素子の定常点灯電流が同じであれば、共通のコンバータで駆動するとともに、各発光素子に対して並列に設けたバイパススイッチのON/OFFにより、点灯させる発光素子数を変えたり、LEDとレーザのように光源種別を変化させることができる。
この場合に、各発光素子の定常点灯電流が同じであれば、共通のコンバータで駆動するとともに、各発光素子に対して並列に設けたバイパススイッチのON/OFFにより、点灯させる発光素子数を変えたり、LEDとレーザのように光源種別を変化させることができる。
ここで、各発光素子の異常、例えばショート故障(点灯回路出力の配線が光源ショートと等価となる故障(ハーネスのショート等)を含む)や、点灯回路配線の電流リーク、光源劣化等を検出することを考える。このような異常検出のためには、点灯回路の出力電圧をモニタして、閾値以下であれば異常と判定することが一般的である。
ところが直列に複数の発光素子を接続し、バイパススイッチで点灯させる発光素子を選択可能とした構成では、点灯させる発光素子数や発光素子の種類によって点灯回路の出力電圧が変化する。従って、異常検出のための閾値が、必ずしも異常検出のための適正値とはならない場合が生じ、異常検出機能が低下する場合がある。
ところが直列に複数の発光素子を接続し、バイパススイッチで点灯させる発光素子を選択可能とした構成では、点灯させる発光素子数や発光素子の種類によって点灯回路の出力電圧が変化する。従って、異常検出のための閾値が、必ずしも異常検出のための適正値とはならない場合が生じ、異常検出機能が低下する場合がある。
そこで本発明は、直列接続された複数の発光素子が選択的に点灯可能な構成において、異常検出を精度よくできるようにすることを目的とする。
本発明に係る点灯回路は、直流電圧を受けて電圧変換を行い、直列接続された第1及び第2の発光素子を有する光源部に駆動電流を供給する電圧変換部と、前記駆動電流が前記第1の発光素子をバイパスするバイパス路を形成する第1のバイパススイッチと、前記電圧変換部の出力電圧が閾値より低くなることにより前記光源部の異常を検出する異常検出部と、前記第1のバイパススイッチを制御するとともに、前記第1のバイパススイッチの制御状態に応じて、前記異常検出部の前記閾値を変化させる制御部と、を備える。
この構成において異常検出部は、電圧変換部の光源部に対する出力電圧が閾値以下に低下した場合にショートやリーク等の異常が発生していると検出する。ここでバイパススイッチの制御により、駆動電流が供給される発光素子、即ち発光する発光素子の数や種類が変化する。すると光源部全体としての電圧変換部の負荷電圧も変化する。この場合に、常に一定値の閾値を用いていると、異常検出感度が、バイパススイッチの制御状態に応じて変化してしまう。そこでバイパススイッチの制御状態に応じて、異常検出部の閾値を変化させる。
この構成において異常検出部は、電圧変換部の光源部に対する出力電圧が閾値以下に低下した場合にショートやリーク等の異常が発生していると検出する。ここでバイパススイッチの制御により、駆動電流が供給される発光素子、即ち発光する発光素子の数や種類が変化する。すると光源部全体としての電圧変換部の負荷電圧も変化する。この場合に、常に一定値の閾値を用いていると、異常検出感度が、バイパススイッチの制御状態に応じて変化してしまう。そこでバイパススイッチの制御状態に応じて、異常検出部の閾値を変化させる。
上記した点灯回路においては、前記駆動電流が前記第2の発光素子をバイパスするバイパス路を形成する第2のバイパススイッチを備え、前記制御部は、前記第1及び第2のバイパススイッチを制御するとともに、前記第1及び第2のバイパススイッチの制御状態に応じて、前記異常検出部の前記閾値を変化させることが考えられる。
第1,第2のバイパススイッチのON/OFF制御により、光源部の点灯状態はより多様とされる。従って第1,第2のバイパススイッチのON/OFF制御の組み合わせに応じて異常検出部の閾値を変化させる。
第1,第2のバイパススイッチのON/OFF制御により、光源部の点灯状態はより多様とされる。従って第1,第2のバイパススイッチのON/OFF制御の組み合わせに応じて異常検出部の閾値を変化させる。
上記した点灯回路においては、前記異常検出部は、前記電圧変換部の出力電圧を分圧する分圧回路と、前記分圧回路で分圧された第1電圧を基準電圧である第2電圧と比較する比較回路を有し、前記電圧変換部は、前記第1電圧が前記第2電圧より低くなったことに基づいて異常が検出されることに応じて前記電圧変換を停止するものとされ、前記制御部は、前記閾値を変化させるために前記分圧回路の分圧比を変更することが考えられる。
つまり異常検出部は、電圧変換部の出力電圧と閾値の比較という処理を、出力電圧の分圧電圧と基準電圧の比較という処理で実行するようにする。この場合に、基準電圧を閾値とすれば、分圧比を変化させることは、間接的に閾値を変化させることになる。
つまり異常検出部は、電圧変換部の出力電圧と閾値の比較という処理を、出力電圧の分圧電圧と基準電圧の比較という処理で実行するようにする。この場合に、基準電圧を閾値とすれば、分圧比を変化させることは、間接的に閾値を変化させることになる。
上記した点灯回路においては、前記異常検出部は、前記電圧変換部の出力電圧を分圧する分圧回路と、前記分圧回路で分圧された第1電圧を、第2電圧と比較する比較回路と、前記基準電圧を可変して前記第2電圧を生成する基準電圧可変回路とを有し、前記電圧変換部は、前記第1電圧が前記第2電圧より低くなったことに基づいて異常が検出されることに応じて前記電圧変換を停止するものとされ、前記制御部は、前記閾値を変化させるために前記基準電圧可変回路に前記第2電圧の生成を指示することが考えられる。
異常検出部は、電圧変換部の出力電圧と閾値の比較という処理を、出力電圧の分圧電圧と基準電圧の比較という処理で実行するようにする。この場合に、閾値として機能する基準電圧を閾値を変化させる。
異常検出部は、電圧変換部の出力電圧と閾値の比較という処理を、出力電圧の分圧電圧と基準電圧の比較という処理で実行するようにする。この場合に、閾値として機能する基準電圧を閾値を変化させる。
本発明に係る車両用灯具は、直列接続された第1及び第2の発光素子を有する光源部と、上記の点灯回路とを備えた車両用灯具である。
本発明によれば、バイパススイッチの制御状態に応じて閾値を変化させることで、光源部の異常判定電圧を発光している発光素子の数や種類に応じて適応的に変化させることができるため、バイパススイッチの制御状態に関わらず、ほぼ一定の感度で異常検出を行うことができる。従って異常検出精度を向上させることができる。
<第1の実施の形態>
以下、実施の形態の点灯回路2及び該点灯回路2を備えた車両用灯具1について図面を参照しながら説明する。図1は実施の形態の車両用灯具1及びその関連部位を示している。この車両用灯具1は、例えば車両の前照灯、ターンシグナルランプ、バックライトなど、各種の灯具に好適に適用できる。
以下、実施の形態の点灯回路2及び該点灯回路2を備えた車両用灯具1について図面を参照しながら説明する。図1は実施の形態の車両用灯具1及びその関連部位を示している。この車両用灯具1は、例えば車両の前照灯、ターンシグナルランプ、バックライトなど、各種の灯具に好適に適用できる。
車両用灯具1は、点灯回路2と光源部3を有する。点灯回路2は例えば点灯回路基板に配置された各種電子部品により構成される。また光源部3は光源用基板に配置された複数の発光素子を有して形成されている。ここでは、発光素子30,31が直列接続された例を示している。
本実施の形態では、光源部3を前照灯としての光源とし、一例として、発光素子30はLED、発光素子31はレーザダイオード等のレーザ素子とする。そこで以下の説明では、発光素子30を「LED30」、発光素子31を「レーザ素子31」と表記する。
前照灯の場合、LED30を拡散光の光源とするとともに、レーザ素子31を集光用の光源とし追加ハイビームとして機能させることが考えられる。
なお、光源部3をLEDとレーザ素子の直列構成とすることは一例であり、複数のLEDのみの直列構成としたり、レーザ素子のみの直列構成とするなど、他の例も考えられる。いずれにしても複数の光源素子が直列接続されるものであればよい。
前照灯の場合、LED30を拡散光の光源とするとともに、レーザ素子31を集光用の光源とし追加ハイビームとして機能させることが考えられる。
なお、光源部3をLEDとレーザ素子の直列構成とすることは一例であり、複数のLEDのみの直列構成としたり、レーザ素子のみの直列構成とするなど、他の例も考えられる。いずれにしても複数の光源素子が直列接続されるものであればよい。
点灯回路2は、端子41,42間に対して、車両のバッテリBTから電源供給を受ける構成とされる。また点灯回路2は端子43を介して、車両側に設けられる電気的な制御を総合的に行うECU(電子制御ユニット:Electronic Control Unit)52と通信可能に接続される。
バッテリBTの正極端子と点灯回路2の端子41との間にはスイッチSWbが挿入され、当該スイッチSWbのON/OFFにより車両用灯具1の点灯/消灯が制御される。車両用灯具1の端子42は接地点を介してバッテリBTの負極側に接続されている。
なお、バッテリBTからの電源電圧ライン及びグランドラインが、ECU52を介して端子41,42に接続されるようにし、ECU52が点灯回路2への電源供給を制御できるようにする構成も考えられる。
バッテリBTの正極端子と点灯回路2の端子41との間にはスイッチSWbが挿入され、当該スイッチSWbのON/OFFにより車両用灯具1の点灯/消灯が制御される。車両用灯具1の端子42は接地点を介してバッテリBTの負極側に接続されている。
なお、バッテリBTからの電源電圧ライン及びグランドラインが、ECU52を介して端子41,42に接続されるようにし、ECU52が点灯回路2への電源供給を制御できるようにする構成も考えられる。
車両用灯具1における光源部3は、上記のようにLED30とレーザ素子31が直列接続されている。そしてこのLED30とレーザ素子31に対しては、点灯回路2から定電流制御された駆動電流Idが供給されて発光駆動される。
点灯回路2は、制御部11、DC/DCコンバータ12、コンバータ駆動部13、異常検出部14、バイパススイッチ15、16を有する。
DC/DCコンバータ12は、光源部3に駆動電流Idを供給する電圧変換部である。DC/DCコンバータ12はバッテリBTからの直流電圧を受けて電圧変換を行い、出力電圧Vdを生成する。
DC/DCコンバータ12は例えばスイッチングレギュレータとされる。光源部3の順方向降下電圧とバッテリBTによる電源電圧の関係にもよるが、昇圧型、降圧型、昇降圧型のいずれも考えられる。
DC/DCコンバータ12の出力側に現れる出力電圧Vdに基づく電流は、駆動電流Idとして光源部3のLED30やレーザ素子31に流れる。
DC/DCコンバータ12は例えばスイッチングレギュレータとされる。光源部3の順方向降下電圧とバッテリBTによる電源電圧の関係にもよるが、昇圧型、降圧型、昇降圧型のいずれも考えられる。
DC/DCコンバータ12の出力側に現れる出力電圧Vdに基づく電流は、駆動電流Idとして光源部3のLED30やレーザ素子31に流れる。
コンバータ駆動部13はDC/DCコンバータ12の電圧変換動作を実行させるとともに駆動電流Idの定電流制御を行う。
例えばコンバータ駆動部13は、DC/DCコンバータ12の出力(駆動電流Id)の検出信号SIdに基づいて、駆動電流Idの電流値と目標電流値を比較し、その差分に応じたPWM制御信号Spwmを生成する。このPWM制御信号SpwmをDC/DCコンバータ12のスイッチング素子に供給して電圧変換動作を制御し、定電流出力を実現する。
例えばコンバータ駆動部13は、DC/DCコンバータ12の出力(駆動電流Id)の検出信号SIdに基づいて、駆動電流Idの電流値と目標電流値を比較し、その差分に応じたPWM制御信号Spwmを生成する。このPWM制御信号SpwmをDC/DCコンバータ12のスイッチング素子に供給して電圧変換動作を制御し、定電流出力を実現する。
点灯回路2には、直列接続されたLED30,レーザ素子31のそれぞれに対して並列となるバイパススイッチ15、16が設けられている。バイパススイッチ15、16は例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのスイッチング素子で構成されている。
点灯回路2には、端子44、45、46が設けられており、端子44、46がDC/DCコンバータ12の出力側の正極/負極端となる。この端子44、46の間に、バイパススイッチ15、16が直列接続されている。またバイパススイッチ15、16の接続点が端子45に導かれている。
点灯回路2には、端子44、45、46が設けられており、端子44、46がDC/DCコンバータ12の出力側の正極/負極端となる。この端子44、46の間に、バイパススイッチ15、16が直列接続されている。またバイパススイッチ15、16の接続点が端子45に導かれている。
点灯回路2の端子44,45,46に対応して、光源部3側では端子32,33,34が設けられている。
端子32はLED30のアノードに接続され、端子34はレーザ素子31(レーザダイオード)のカソードに接続されている。またLED30とレーザ素子31の接続点が端子33に接続されている。
そして図示のように、端子44,45,46のそれぞれが、端子32,33,34における対応する端子と接続されている。例えば基板間配線で結線されている。
従って、LED30に並列にバイパススイッチ15が接続され、レーザ素子31に並列にバイパススイッチ16が接続されていることになる。
端子32はLED30のアノードに接続され、端子34はレーザ素子31(レーザダイオード)のカソードに接続されている。またLED30とレーザ素子31の接続点が端子33に接続されている。
そして図示のように、端子44,45,46のそれぞれが、端子32,33,34における対応する端子と接続されている。例えば基板間配線で結線されている。
従って、LED30に並列にバイパススイッチ15が接続され、レーザ素子31に並列にバイパススイッチ16が接続されていることになる。
バイパススイッチ15がONとされると、LED30に対するバイパス路BP1が形成される。この場合、駆動電流Idはバイパス路BP1を流れ、LED30には流れないためLED30は非点灯となる。バイパススイッチ15がOFFとなると駆動電流IdはLED30を流れ、LED30は点灯する。
バイパススイッチ16がONとされると、レーザ素子31に対するバイパス路BP2が形成される。この場合、駆動電流Idはバイパス路BP2を流れ、レーザ素子31は非点灯となる。バイパススイッチ16がOFFとなると駆動電流Idはレーザ素子31を流れ、レーザ素子31は点灯する。
各バイパススイッチ15、16は、制御部11からのバイパス制御信号SB1、SB2によってON/OFF制御される。
バイパススイッチ16がONとされると、レーザ素子31に対するバイパス路BP2が形成される。この場合、駆動電流Idはバイパス路BP2を流れ、レーザ素子31は非点灯となる。バイパススイッチ16がOFFとなると駆動電流Idはレーザ素子31を流れ、レーザ素子31は点灯する。
各バイパススイッチ15、16は、制御部11からのバイパス制御信号SB1、SB2によってON/OFF制御される。
制御部11は例えばマイクロコンピュータで形成され、コンバータ駆動部13やバイパススイッチ15、16の制御を行う。また異常検出部14の閾値可変制御を行う。
制御部11は、ECU52からの指示に応じて、光源部3の点灯/消灯のためのコンバータ駆動部13の動作制御を行う。また制御部11は、ECU52からの指示に基づいてバイパス制御信号SB1、SB2を生成し、バイパススイッチ15,16のそれぞれのON/OFF制御を行う。例えばこの構成の場合、LED30のみの点灯、レーザ素子31のみの点灯、LED30とレーザ素子31の両方の点灯というように、各点灯状態を切替制御することができる。
制御部11は、ECU52からの指示に応じて、光源部3の点灯/消灯のためのコンバータ駆動部13の動作制御を行う。また制御部11は、ECU52からの指示に基づいてバイパス制御信号SB1、SB2を生成し、バイパススイッチ15,16のそれぞれのON/OFF制御を行う。例えばこの構成の場合、LED30のみの点灯、レーザ素子31のみの点灯、LED30とレーザ素子31の両方の点灯というように、各点灯状態を切替制御することができる。
なお制御部14は、DC/DCコンバータ12を動作させている期間において、バイパス制御信号SB1、SB2によってバイパススイッチ15、16を制御することで点灯状態をさらに多様に制御できる。
即ち、バイパス制御信号SB1によりバイパススイッチ15を継続的にオンすることでLED30を消灯させ、バイパススイッチ15を継続的にオフすることでLED30を点灯させるだけでなく、バイパススイッチ15を高周波(例えば数100Hz)でオン/オフすることでLED30を減光することができる。さらにはオン/オフ制御のオンデューティを変えることで調光することができる。レーザ素子31についても同様である。
即ち、バイパス制御信号SB1によりバイパススイッチ15を継続的にオンすることでLED30を消灯させ、バイパススイッチ15を継続的にオフすることでLED30を点灯させるだけでなく、バイパススイッチ15を高周波(例えば数100Hz)でオン/オフすることでLED30を減光することができる。さらにはオン/オフ制御のオンデューティを変えることで調光することができる。レーザ素子31についても同様である。
異常検出部14は、分圧回路20、コンパレータ21、フェールタイマ22、基準電圧生成回路23を有して構成されている。
分圧回路20は、抵抗R1~R4、スイッチT1,T2を有し、DC/DCコンバータ12の出力電圧Vdを分圧する。
抵抗R1,R2はDC/DCコンバータ12の出力端(正極)とグランド間において直列接続されている。また抵抗R1,R2の接続点とグランドの間に抵抗R3とスイッチT1のドレイン-ソースが直列接続されている。さらに抵抗R1,R2の接続点とグランドの間に抵抗R4とスイッチT2のドレイン-ソースが直列接続されている。
スイッチT1,T2は例えばMOSFETとされ、スイッチT1のゲートには制御部11からの信号St1が供給され、またスイッチT2のゲートには制御部11からの信号St2が供給される。制御部11は信号St1、St2によりスイッチT1,T2をON/OFF制御可能とされている。スイッチT1がONとされることで、抵抗R3が分圧抵抗として機能する。またスイッチT2がONとされることで、抵抗R4が分圧抵抗として機能する。従って、スイッチT1,T2のON/OFFの組み合わせにより分圧回路20の分圧比は4通りに変化する。
なおスイッチT1,T2はバイポーラトランジスタ等の他の素子で構成してもよい。
抵抗R1,R2はDC/DCコンバータ12の出力端(正極)とグランド間において直列接続されている。また抵抗R1,R2の接続点とグランドの間に抵抗R3とスイッチT1のドレイン-ソースが直列接続されている。さらに抵抗R1,R2の接続点とグランドの間に抵抗R4とスイッチT2のドレイン-ソースが直列接続されている。
スイッチT1,T2は例えばMOSFETとされ、スイッチT1のゲートには制御部11からの信号St1が供給され、またスイッチT2のゲートには制御部11からの信号St2が供給される。制御部11は信号St1、St2によりスイッチT1,T2をON/OFF制御可能とされている。スイッチT1がONとされることで、抵抗R3が分圧抵抗として機能する。またスイッチT2がONとされることで、抵抗R4が分圧抵抗として機能する。従って、スイッチT1,T2のON/OFFの組み合わせにより分圧回路20の分圧比は4通りに変化する。
なおスイッチT1,T2はバイポーラトランジスタ等の他の素子で構成してもよい。
抵抗R1,R2の接続点の電圧(分圧電圧Vdv)は、コンパレータ21に入力される。コンパレータ21の他端には、基準電圧生成回路23からの基準電圧Vrefが入力される。そしてコンパレータ21による分圧電圧Vdvと基準電圧Vrefの比較結果がフェールタイマ22に供給される。
コンパレータ21の出力は、例えば分圧電圧Vdvが基準電圧Vrefより低下することでLレベルとなる。このコンパレータ21のLレベル出力が、DC/DCコンバータ12の出力電圧Vdがショート異常等により低下したことを検知する信号となる。フェールタイマ22は、コンパレータ21のLレベル出力が所定時間継続することに応じて、異常検出信号SFを出力する。
例えばフェールタイマ22は、図2に示すように、コンパレータ21のLレベル出力の期間が所定時間Tc未満であれば、異常とはせず、コンパレータ21のLレベル出力の期間が所定時間Tcを継続した時点で異常を通知する異常検出信号SFを出力する。
例えばフェールタイマ22は、図2に示すように、コンパレータ21のLレベル出力の期間が所定時間Tc未満であれば、異常とはせず、コンパレータ21のLレベル出力の期間が所定時間Tcを継続した時点で異常を通知する異常検出信号SFを出力する。
異常検出信号SFはコンバータ駆動部13や制御部11に供給される。コンバータ駆動部13は、異常検出信号SFに応じてDC/DCコンバータ12の動作を停止させるようにしてもよい。或いは制御部11が、異常検出信号SFに応じてコンバータ駆動部13に動作停止指示をしてもよい。また、異常検出信号SFに応じては、必ずしもDC/DCコンバータ12を動作停止させずに、制御部11がECU52に異常を通知するようにしてもよい。またフェールタイマ22の出力が、直接車両側(ECU52)側に供給されるようにしてもよい。
以上の構成の車両用灯具1の動作、特に異常検出について述べる。
制御部11は、光源部3の点灯状態としては、LED30のみの点灯、レーザ素子31のみの点灯、LED30とレーザ素子31の両方の点灯を、バイパススイッチ15,16の制御により選択できる。
異常検出部14は、光源部3のショート(点灯回路出力の配線が光源ショートと等価となる故障(ハーネスのショート等)を含む)や、電流リーク、光源劣化等を検出する信号として、異常検出信号SFを出力する。
制御部11は、光源部3の点灯状態としては、LED30のみの点灯、レーザ素子31のみの点灯、LED30とレーザ素子31の両方の点灯を、バイパススイッチ15,16の制御により選択できる。
異常検出部14は、光源部3のショート(点灯回路出力の配線が光源ショートと等価となる故障(ハーネスのショート等)を含む)や、電流リーク、光源劣化等を検出する信号として、異常検出信号SFを出力する。
ここで正常な点灯状態の場合、DC/DCコンバータ12の出力電圧Vdは、レーザ素子31のみの点灯時に約4Vである。またLED30を2チップLEDとした場合、LED30のみの点灯時はDC/DCコンバータ12の出力電圧Vdは約7Vである。LED30(2チップLED)とレーザ素子31を両方点灯する場合、出力電圧Vdは約11V(=4V+7V)となる。以下、この例で説明する。
ショート異常等が発生すると出力電圧Vdが低下する。そこでショート異常を判定する閾値Vthを或る値に設定し、出力電圧Vdが閾値Vth以下になることを検知する。ここで閾値Vthを一定値にする場合、閾値Vthを正常な出力電圧Vdとしてはあり得ない電圧値とすることで、ショート異常発生を検知できるようにする。そして本例のように直列接続されている光源素子が選択的に点灯される構成においては、閾値Vthを、出力電圧Vdが最も低い場合に合わせなければならない。これは出力電圧Vdが最も低い場合に、誤検知を生ずることがないようにするためである。
上記例の場合、レーザ素子31の点灯時に出力電圧Vd=4Vであるのなら、例えば閾値Vthを2Vなどとする。もし2Vより高い電圧とすると、レーザ素子31のみの点灯時に、誤検知をする可能性が高くなってしまうためである。
ところが、異常検知は、光源劣化や配線経路の電流リーク等により、光源素子が正常に点灯できない場合も検知することが適切である。これを考えた場合、上記のように閾値Vth=2Vとすると、LED30(2チップLED)の点灯時(出力電圧Vd=7Vのとき)や、両方の点灯時(出力電圧Vd=11Vのとき)には、低すぎることになる。これらの場合、光源素子の劣化や電流リーク等による電圧低下に対する検出感度が鈍くなってしまい、適切に異常検出がなされない場合が生ずる。
ところが、異常検知は、光源劣化や配線経路の電流リーク等により、光源素子が正常に点灯できない場合も検知することが適切である。これを考えた場合、上記のように閾値Vth=2Vとすると、LED30(2チップLED)の点灯時(出力電圧Vd=7Vのとき)や、両方の点灯時(出力電圧Vd=11Vのとき)には、低すぎることになる。これらの場合、光源素子の劣化や電流リーク等による電圧低下に対する検出感度が鈍くなってしまい、適切に異常検出がなされない場合が生ずる。
そこで本実施の形態では、光源部3の点灯状態に応じて、異常判定閾値を変化させるものとする。例えばレーザ素子31のみの点灯時の出力電圧Vd=4Vに対して閾値Vthを2Vとする。またLED30のみの点灯時の出力電圧Vd=7Vに対して閾値Vthを3.5Vとする。さらにLED30とレーザ素子31の点灯時の出力電圧Vd=11Vに対して閾値Vthを5.5Vとする。つまり、正常な出力電圧Vdの50%の電圧値となるように閾値Vthを可変する。
図1の実施の形態の場合、このような閾値Vthの変更を、分圧回路20の分圧比の変更により間接的に実行する。例えば各定数を次のようにする。
抵抗R1=15kΩ
抵抗R2=10kΩ
抵抗R3=8kΩ
抵抗R4=3.43kΩ
基準電圧Vref=0.8V
抵抗R1=15kΩ
抵抗R2=10kΩ
抵抗R3=8kΩ
抵抗R4=3.43kΩ
基準電圧Vref=0.8V
レーザ素子31のみの点灯時は、制御部11はスイッチT1,T2をOFFとする。すると、分圧電圧Vdvは、出力電圧Vdが抵抗R1,R2で分圧された電圧となる。出力電圧Vd=4Vのとき分圧電圧Vdv=1.6Vとなる。
LED30のみの点灯時は、制御部11はスイッチT1をON,T2をOFFとする。すると、分圧電圧Vdvは、出力電圧Vdが抵抗R1と、抵抗R2、R3の並列抵抗で分圧された電圧となる。出力電圧Vd=7Vのとき分圧電圧Vdv=1.6Vとなる。
LED30とレーザ素子31の点灯時は、制御部11はスイッチT1をOFF,T2をONとする。すると、分圧電圧Vdvは、出力電圧Vdが抵抗R1と、抵抗R2、R4の並列抵抗で分圧された電圧となる。出力電圧Vd=11Vのとき分圧電圧Vdv=1.6Vとなる。
LED30のみの点灯時は、制御部11はスイッチT1をON,T2をOFFとする。すると、分圧電圧Vdvは、出力電圧Vdが抵抗R1と、抵抗R2、R3の並列抵抗で分圧された電圧となる。出力電圧Vd=7Vのとき分圧電圧Vdv=1.6Vとなる。
LED30とレーザ素子31の点灯時は、制御部11はスイッチT1をOFF,T2をONとする。すると、分圧電圧Vdvは、出力電圧Vdが抵抗R1と、抵抗R2、R4の並列抵抗で分圧された電圧となる。出力電圧Vd=11Vのとき分圧電圧Vdv=1.6Vとなる。
つまり、いずれの場合も、正常時の分圧電圧Vdvは1.6Vとなり、これが基準電圧Vref=0.8Vと比較される。
そして分圧電圧Vdvが0.8V以下となり、コンパレータ21の出力が異常を示すレベルとなるのは、
・レーザ素子31のみの点灯時は出力電圧Vdが2V以下の場合
・LED30のみの点灯時は出力電圧Vdが3.5V以下の場合
・LED30とレーザ素子31の点灯時は出力電圧Vdが5.5V以下の場合
となる。
結局、出力電圧Vdが正常時の50%以下となると異常と判断されるように、光源部3の点灯状態に応じて閾値Vthが変化されることと等価となっている。
これによって光源部3の点灯状態に関わらず、ショート異常や電流リーク等の検出を適切に検出できるようになる。
なお、光源部3の点灯状態、つまりLED30とレーザ素子31の点灯/消灯は、制御部11がバイパス制御信号SB1、SB2によってバイパススイッチ15,16をON/OFF制御することで設定される。従って制御部11は、バイパススイッチ15,16の制御に応じて、スイッチT1,T2のON/OFFを行えばよいことになる。
そして分圧電圧Vdvが0.8V以下となり、コンパレータ21の出力が異常を示すレベルとなるのは、
・レーザ素子31のみの点灯時は出力電圧Vdが2V以下の場合
・LED30のみの点灯時は出力電圧Vdが3.5V以下の場合
・LED30とレーザ素子31の点灯時は出力電圧Vdが5.5V以下の場合
となる。
結局、出力電圧Vdが正常時の50%以下となると異常と判断されるように、光源部3の点灯状態に応じて閾値Vthが変化されることと等価となっている。
これによって光源部3の点灯状態に関わらず、ショート異常や電流リーク等の検出を適切に検出できるようになる。
なお、光源部3の点灯状態、つまりLED30とレーザ素子31の点灯/消灯は、制御部11がバイパス制御信号SB1、SB2によってバイパススイッチ15,16をON/OFF制御することで設定される。従って制御部11は、バイパススイッチ15,16の制御に応じて、スイッチT1,T2のON/OFFを行えばよいことになる。
<第2の実施の形態>
第2の実施の形態の車両用灯具1を図3に示す。なお図1と同一部分は同一符号を付し説明を省略する。この例は、異常検出部14Aの構成が第1の実施の形態と異なる。
異常検出部14Aは、分圧回路20Aとして抵抗R1,R2を備える。抵抗R1,R2はDC/DCコンバータ12の出力端(正極)とグランド間において直列接続されている。この場合、DC/DCコンバータ12の出力電圧Vdは、常に抵抗R1,R2によって分圧され、分圧電圧Vdvがコンパレータ21に供給される。
第2の実施の形態の車両用灯具1を図3に示す。なお図1と同一部分は同一符号を付し説明を省略する。この例は、異常検出部14Aの構成が第1の実施の形態と異なる。
異常検出部14Aは、分圧回路20Aとして抵抗R1,R2を備える。抵抗R1,R2はDC/DCコンバータ12の出力端(正極)とグランド間において直列接続されている。この場合、DC/DCコンバータ12の出力電圧Vdは、常に抵抗R1,R2によって分圧され、分圧電圧Vdvがコンパレータ21に供給される。
基準電圧可変回路23Aは、制御部11の制御信号Svに応じてコンパレータ21に供給する基準電圧Vrefを可変する。
今、仮にR1=R2とし、分圧電圧Vdv=Vd/2とする。
制御部11は光源部3の点灯状態に応じて、基準電圧可変回路23Aで発生させる基準電圧Vrefを、Vref=Vd/4となるように制御する。
例えばレーザ素子31のみの点灯時(Vd=4V)は、基準電圧Vref=1Vとする。
LED30のみの点灯時(Vd=7V)は、基準電圧Vref=1.75Vとする。
LED30とレーザ素子31の点灯時(Vd=11V)は、基準電圧Vref=2.75Vとする。
この場合も、出力電圧Vdが正常時の50%以下となると異常と判断されるように、光源部3の点灯状態に応じて閾値Vthが変化されることになる。
これによって光源部3の点灯状態に関わらず、ショート異常や電流リーク等の検出を適切に検出できるようになる。
なお、制御部11は、バイパススイッチ15,16の制御とともに、基準電圧可変回路23Aの基準電圧Vref値の可変制御を行えば良い。
今、仮にR1=R2とし、分圧電圧Vdv=Vd/2とする。
制御部11は光源部3の点灯状態に応じて、基準電圧可変回路23Aで発生させる基準電圧Vrefを、Vref=Vd/4となるように制御する。
例えばレーザ素子31のみの点灯時(Vd=4V)は、基準電圧Vref=1Vとする。
LED30のみの点灯時(Vd=7V)は、基準電圧Vref=1.75Vとする。
LED30とレーザ素子31の点灯時(Vd=11V)は、基準電圧Vref=2.75Vとする。
この場合も、出力電圧Vdが正常時の50%以下となると異常と判断されるように、光源部3の点灯状態に応じて閾値Vthが変化されることになる。
これによって光源部3の点灯状態に関わらず、ショート異常や電流リーク等の検出を適切に検出できるようになる。
なお、制御部11は、バイパススイッチ15,16の制御とともに、基準電圧可変回路23Aの基準電圧Vref値の可変制御を行えば良い。
<第3の実施の形態>
第3の実施の形態の車両用灯具1を図4に示す。なお図1と同一部分は同一符号を付し説明を省略する。この例は、図1の構成からバイパススイッチ15を無くした例である。バイパススイッチ16が設けられており、制御部11がバイパス制御信号SB2によりバイパススイッチ16のON/OFFを行うことにより、レーザ素子31の消灯/点灯が制御される。つまりこの構成では、光源部3の点灯状態としては、LED30のみの点灯とLED30とレーザ素子31の点灯が切替可能となっている。
第3の実施の形態の車両用灯具1を図4に示す。なお図1と同一部分は同一符号を付し説明を省略する。この例は、図1の構成からバイパススイッチ15を無くした例である。バイパススイッチ16が設けられており、制御部11がバイパス制御信号SB2によりバイパススイッチ16のON/OFFを行うことにより、レーザ素子31の消灯/点灯が制御される。つまりこの構成では、光源部3の点灯状態としては、LED30のみの点灯とLED30とレーザ素子31の点灯が切替可能となっている。
異常検出部14は、分圧回路20B、コンパレータ21、フェールタイマ22、基準電圧生成回路23を有して構成されている。
分圧回路20Bは、抵抗R10~R12、スイッチT3を有し、DC/DCコンバータ12の出力電圧Vdを分圧する。
抵抗R10,R11はDC/DCコンバータ12の出力端(正極)とグランド間において直列接続されている。また抵抗R10,R11の接続点とグランドの間に抵抗R12と例えばMOSFETによるスイッチT3のドレイン-ソースが直列接続されている。スイッチT3のゲートには制御部11からの信号St3が供給される。制御部11は信号St3によりスイッチT3をON/OFF制御可能とされている。
分圧回路20Bは、抵抗R10~R12、スイッチT3を有し、DC/DCコンバータ12の出力電圧Vdを分圧する。
抵抗R10,R11はDC/DCコンバータ12の出力端(正極)とグランド間において直列接続されている。また抵抗R10,R11の接続点とグランドの間に抵抗R12と例えばMOSFETによるスイッチT3のドレイン-ソースが直列接続されている。スイッチT3のゲートには制御部11からの信号St3が供給される。制御部11は信号St3によりスイッチT3をON/OFF制御可能とされている。
この構成において、例えば制御部11は、LED30のみの点灯時はスイッチT3をOFFとする。一方、LED30とレーザ素子31の点灯時は、制御部11はスイッチT3をONとする。これにより、光源部3の点灯状態に応じて、異常判定のための閾値Vthを変化させる。つまり第1の実施の形態と同様の考え方で適切な異常検出を実現する。
<第4の実施の形態>
第4の実施の形態の車両用灯具1を図5に示す。なお図3と同一部分は同一符号を付し説明を省略する。この例は、図3の構成からバイパススイッチ15を無くした例である。従って図4の第3の実施の形態と同様、光源部3の点灯状態としては、LED30のみの点灯とLED30とレーザ素子31の点灯が切替可能となっている。
制御部11は光源部3の点灯状態に応じて、基準電圧可変回路23Aで発生させる基準電圧Vrefを可変制御する。これによって光源部3の点灯状態に応じて、異常判定のための閾値Vthを変化させる。つまり第2の実施の形態と同様の考え方で適切な異常検出を実現する。
第4の実施の形態の車両用灯具1を図5に示す。なお図3と同一部分は同一符号を付し説明を省略する。この例は、図3の構成からバイパススイッチ15を無くした例である。従って図4の第3の実施の形態と同様、光源部3の点灯状態としては、LED30のみの点灯とLED30とレーザ素子31の点灯が切替可能となっている。
制御部11は光源部3の点灯状態に応じて、基準電圧可変回路23Aで発生させる基準電圧Vrefを可変制御する。これによって光源部3の点灯状態に応じて、異常判定のための閾値Vthを変化させる。つまり第2の実施の形態と同様の考え方で適切な異常検出を実現する。
<まとめ>
以上の実施の形態では、次のような効果が得られる。
第1~第4の実施の形態の点灯回路2は、直流電圧を受けて電圧変換を行い、直列接続された第1及び第2の発光素子(30,31)を有する光源部3に駆動電流Idを供給する電圧変換部(DC/DCコンバータ12)と、駆動電流Idが第1の発光素子(例えばレーザ素子31)をバイパスするバイパス路BP2を形成する第1のバイパススイッチ16と、電圧変換部の出力電圧Vdが閾値Vthより低くなることにより光源部3の異常を検出する異常検出部(14又は14A)と、第1のバイパススイッチ16を制御するとともに、第1のバイパススイッチ16の制御状態に応じて、異常検出部(14又は14A)の閾値Vthを変化させる制御部11とを備える。
このようにバイパススイッチ16の制御状態に応じて閾値を変化させることで、光源部3の異常判定のための閾値Vthを発光している発光素子の数や種類に応じて適応的に変化させることができる。従って、バイパススイッチ16の制御状態に関わらず、ほぼ一定の感度で異常検出を行うことができ、検出精度を向上させることができる。例えばリーク異常について、常に同等の感度で検出できる。従って異常検出精度を向上させることができる。
以上の実施の形態では、次のような効果が得られる。
第1~第4の実施の形態の点灯回路2は、直流電圧を受けて電圧変換を行い、直列接続された第1及び第2の発光素子(30,31)を有する光源部3に駆動電流Idを供給する電圧変換部(DC/DCコンバータ12)と、駆動電流Idが第1の発光素子(例えばレーザ素子31)をバイパスするバイパス路BP2を形成する第1のバイパススイッチ16と、電圧変換部の出力電圧Vdが閾値Vthより低くなることにより光源部3の異常を検出する異常検出部(14又は14A)と、第1のバイパススイッチ16を制御するとともに、第1のバイパススイッチ16の制御状態に応じて、異常検出部(14又は14A)の閾値Vthを変化させる制御部11とを備える。
このようにバイパススイッチ16の制御状態に応じて閾値を変化させることで、光源部3の異常判定のための閾値Vthを発光している発光素子の数や種類に応じて適応的に変化させることができる。従って、バイパススイッチ16の制御状態に関わらず、ほぼ一定の感度で異常検出を行うことができ、検出精度を向上させることができる。例えばリーク異常について、常に同等の感度で検出できる。従って異常検出精度を向上させることができる。
また第1、第2の実施の形態の点灯回路2においては、駆動電流Idが第2の発光素子(例えばLED30)をバイパスするバイパス路BP1を形成する第2のバイパススイッチ15を備える。そして制御部11は、第1及び第2のバイパススイッチ16,15を制御するとともに、第1及び第2のバイパススイッチ16,15の制御状態に応じて、異常検出部(14又は14A)の閾値Vthを変化させるようにしている。
即ち複数のバイパススイッチ15,16のON/OFF制御により、光源部3の点灯状態はより多様とされる。従ってバイパススイッチ15,16のON/OFF制御の組み合わせに応じて異常検出部14,14Aの閾値Vthを変化させるようにしている。
これにより、光源部3の異常判定のための閾値Vthを発光している発光素子の数や種類に応じて適応的に変化させることができる。
また、複数のバイパス路毎に電圧をモニタする、つまり発光素子毎の両端電圧をモニタするような構成を取らなくてもよいため、点灯回路構成を簡略化でき、小型化、低コスト化に有利である。さらに、各発光素子の異常検出のために、フローティングノード基準ではない固定電圧(例えばグランド電位)基準で電圧検出ができるため、電圧検出精度を向上でき、この点でも異常検出精度向上を促進できる。
即ち複数のバイパススイッチ15,16のON/OFF制御により、光源部3の点灯状態はより多様とされる。従ってバイパススイッチ15,16のON/OFF制御の組み合わせに応じて異常検出部14,14Aの閾値Vthを変化させるようにしている。
これにより、光源部3の異常判定のための閾値Vthを発光している発光素子の数や種類に応じて適応的に変化させることができる。
また、複数のバイパス路毎に電圧をモニタする、つまり発光素子毎の両端電圧をモニタするような構成を取らなくてもよいため、点灯回路構成を簡略化でき、小型化、低コスト化に有利である。さらに、各発光素子の異常検出のために、フローティングノード基準ではない固定電圧(例えばグランド電位)基準で電圧検出ができるため、電圧検出精度を向上でき、この点でも異常検出精度向上を促進できる。
第1、第3の実施の形態においては、異常検出部14は、電圧変換部の出力電圧Vdを分圧する分圧回路20と、分圧回路20で分圧された第1電圧(分圧電圧Vdv)を第2電圧(基準電圧Vref)と比較する比較回路(コンパレータ21)を有する。そして電圧変換部(DC/DCコンバータ12)は、第1電圧(Vdv)が第2電圧(Vref)より低くなったことに基づいて異常が検出されることに応じて電圧変換を停止する。制御部11は、閾値Vthを変化させるために分圧回路20の分圧比を変更する。
つまり異常検出部14は、電圧変換部の出力電圧Vdと閾値Vthの比較という処理を、出力電圧Vdの分圧電圧Vdvと基準電圧Vrefの比較という処理で実行する。この場合に、分圧比を変化させることは、間接的に閾値Vthを変化させることに相当する。そして分圧比の変化によって、閾値変化を容易に行うことができる。
つまり異常検出部14は、電圧変換部の出力電圧Vdと閾値Vthの比較という処理を、出力電圧Vdの分圧電圧Vdvと基準電圧Vrefの比較という処理で実行する。この場合に、分圧比を変化させることは、間接的に閾値Vthを変化させることに相当する。そして分圧比の変化によって、閾値変化を容易に行うことができる。
第2,第4の実施の形態の点灯回路においては、異常検出部14Aは、電圧変換部の出力電圧Vdを分圧する分圧回路20Aと、分圧回路20Aで分圧された第1電圧(分圧電圧Vdv)を、第2電圧と比較する比較回路(コンパレータ21)と、基準電圧Vrefを可変して第2電圧を生成する基準電圧可変回路23Aとを有する。そして電圧変換部(DC/DCコンバータ12)は、第1電圧(Vdv)が第2電圧(Vref又はその可変電圧値)より低くなったことに基づいて異常が検出されることに応じて電圧変換を停止する。制御部11は、閾値Vthを変化させるために基準電圧可変回路23Aに第2電圧(基準電圧Vrefの可変値)の生成を指示する。
つまり異常検出部14Aは、電圧変換部の出力電圧Vdと閾値Vthの比較という処理を、出力電圧Vdの分圧電圧Vdvと基準電圧Vrefの比較という処理で実行する。この場合に基準電圧Vrefを変化させるという手法を採ることで、閾値変化を容易に実現することができる。
つまり異常検出部14Aは、電圧変換部の出力電圧Vdと閾値Vthの比較という処理を、出力電圧Vdの分圧電圧Vdvと基準電圧Vrefの比較という処理で実行する。この場合に基準電圧Vrefを変化させるという手法を採ることで、閾値変化を容易に実現することができる。
第1~第4の実施の形態の異常検出部(14又は14A)は、電圧変換部の出力電圧Vdと閾値Vthを比較する比較回路(コンパレータ21)と、この比較回路の異常検出レベルの出力が所定時間継続することに応じて、異常検出信号を出力するタイマ回路(フェールタイマ22)を有する。異常検出部14,14Aは、電圧変換部の出力電圧と閾値Vthの比較結果として、異常検出レベルが継続したときに異常検出信号SFを出力する。これにより瞬間的な出力電圧変化などにより異常であると誤検出が生ずることを回避でき、精度の良い異常検出を促進できる。
なお、分圧比を変更する第1、第3の実施の形態と、基準電圧Vrefを可変する第2,第4の実施の形態の構成を合成し、分圧比と基準電圧Vrefの両方を制御部11が可変する構成も考えられる。
また実施の形態では、閾値Vthを正常時の出力電圧Vdの50%の電圧とする例に沿って説明したが、50%相当の電圧値とすることは一例に過ぎない。
閾値Vthを、正常時の出力電圧Vdの60%、70%などの電圧値とすれば、検出感度が高くなるが、逆に誤検出の可能性も高まる。閾値Vthを、正常時の出力電圧Vdの40%、30%などの電圧値とすれば、検出感度は低下するが、逆に誤検出の可能性も低くなる。
従って点灯回路構成や灯具種別、検出目的などに応じて決められれば良い。
閾値Vthを、正常時の出力電圧Vdの60%、70%などの電圧値とすれば、検出感度が高くなるが、逆に誤検出の可能性も高まる。閾値Vthを、正常時の出力電圧Vdの40%、30%などの電圧値とすれば、検出感度は低下するが、逆に誤検出の可能性も低くなる。
従って点灯回路構成や灯具種別、検出目的などに応じて決められれば良い。
バイパススイッチ15,16を有する例、及びバイパススイッチ16のみを有する構成を例示したが、バイパススイッチ15のみを有する構成も考えられる。つまり直列接続された複数の光源素子の一部に対してバイパススイッチが設けられる構成の場合も、本発明は有効である。
また、さらに多数の発光素子が直列接続され、それらの全部又は一部にバイパススイッチが設けられる構成も考えられる。それらの場合も制御部11は、1又は複数のバイパススイッチの制御と合わせて異常検出部14における閾値Vthを可変すればよい。
また、さらに多数の発光素子が直列接続され、それらの全部又は一部にバイパススイッチが設けられる構成も考えられる。それらの場合も制御部11は、1又は複数のバイパススイッチの制御と合わせて異常検出部14における閾値Vthを可変すればよい。
1…車両用灯具、2…点灯回路、3…光源部、11…制御部、12…DC/DCコンバータ、13…コンバータ駆動部、14,14A…異常検出部、15,16…バイパススイッチ、30…発光素子(LED)、31…発光素子(レーザ素子)、20,20A…分圧回路、21…コンパレータ、22…フェールタイマ、23…基準電圧生成回路、23A…基準電圧可変回路
Claims (5)
- 直流電圧を受けて電圧変換を行い、直列接続された第1及び第2の発光素子を有する光源部に駆動電流を供給する電圧変換部と、
前記駆動電流が前記第1の発光素子をバイパスするバイパス路を形成する第1のバイパススイッチと、
前記電圧変換部の出力電圧が閾値より低くなることにより前記光源部の異常を検出する異常検出部と、
前記第1のバイパススイッチを制御するとともに、前記第1のバイパススイッチの制御状態に応じて、前記異常検出部の前記閾値を変化させる制御部と、を備えた
点灯回路。 - 前記駆動電流が前記第2の発光素子をバイパスするバイパス路を形成する第2のバイパススイッチを備え、
前記制御部は、前記第1及び第2のバイパススイッチを制御するとともに、前記第1及び第2のバイパススイッチの制御状態に応じて、前記異常検出部の前記閾値を変化させる
請求項1に記載の点灯回路。 - 前記異常検出部は、
前記電圧変換部の出力電圧を分圧する分圧回路と、
前記分圧回路で分圧された第1電圧を基準電圧である第2電圧と比較する比較回路を有し、
前記電圧変換部は、前記第1電圧が前記第2電圧より低くなったことに基づいて異常が検出されることに応じて前記電圧変換を停止するものとされ、
前記制御部は、前記閾値を変化させるために前記分圧回路の分圧比を変更する
請求項1又は請求項2に記載の点灯回路。 - 前記異常検出部は、
前記電圧変換部の出力電圧を分圧する分圧回路と、
前記分圧回路で分圧された第1電圧を、第2電圧と比較する比較回路と、
基準電圧を可変して前記第2電圧を生成する基準電圧可変回路とを有し、
前記電圧変換部は、前記第1電圧が前記第2電圧より低くなったことに基づいて異常が検出されることに応じて前記電圧変換を停止するものとされ、
前記制御部は、前記閾値を変化させるために前記基準電圧可変回路に前記第2電圧の生成を指示する
請求項1又は請求項2に記載の点灯回路。 - 直列接続された第1及び第2の発光素子を有する光源部と、
請求項1乃至請求項4のいずれかに記載の点灯回路と、を備えた
車両用灯具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017551835A JP6783790B2 (ja) | 2015-11-18 | 2016-11-09 | 点灯回路、車両用灯具 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-225335 | 2015-11-18 | ||
JP2015225335 | 2015-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086220A1 true WO2017086220A1 (ja) | 2017-05-26 |
Family
ID=58718836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083228 WO2017086220A1 (ja) | 2015-11-18 | 2016-11-09 | 点灯回路、車両用灯具 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6783790B2 (ja) |
WO (1) | WO2017086220A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019123860A1 (ja) * | 2017-12-22 | 2019-06-27 | 株式会社デンソー | 車両用前方照明装置および断線検出方法 |
WO2019130821A1 (ja) * | 2017-12-27 | 2019-07-04 | 株式会社デンソー | 車両用前方照明装置および断線検出方法 |
CN112004718A (zh) * | 2018-04-25 | 2020-11-27 | 株式会社小糸制作所 | 尾转向灯 |
CN112969262A (zh) * | 2017-09-22 | 2021-06-15 | 株式会社小糸制作所 | 点灯电路以及车辆用灯具 |
WO2023106199A1 (ja) * | 2021-12-09 | 2023-06-15 | 株式会社小糸製作所 | 点灯回路、及び車両用灯具 |
EP4159540A4 (en) * | 2020-05-29 | 2024-04-10 | Koito Manufacturing Co., Ltd. | VEHICLE LIGHTING SYSTEM |
US12139062B2 (en) | 2020-05-29 | 2024-11-12 | Koito Manufacturing Co., Ltd. | Automotive lamp system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012079602A (ja) * | 2010-10-05 | 2012-04-19 | Hitachi Appliances Inc | 点灯装置 |
JP2015118809A (ja) * | 2013-12-18 | 2015-06-25 | パナソニックIpマネジメント株式会社 | 点灯装置及び照明装置 |
JP2016045999A (ja) * | 2014-08-20 | 2016-04-04 | 株式会社デンソー | 発光装置 |
-
2016
- 2016-11-09 JP JP2017551835A patent/JP6783790B2/ja active Active
- 2016-11-09 WO PCT/JP2016/083228 patent/WO2017086220A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012079602A (ja) * | 2010-10-05 | 2012-04-19 | Hitachi Appliances Inc | 点灯装置 |
JP2015118809A (ja) * | 2013-12-18 | 2015-06-25 | パナソニックIpマネジメント株式会社 | 点灯装置及び照明装置 |
JP2016045999A (ja) * | 2014-08-20 | 2016-04-04 | 株式会社デンソー | 発光装置 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112969262A (zh) * | 2017-09-22 | 2021-06-15 | 株式会社小糸制作所 | 点灯电路以及车辆用灯具 |
CN112969262B (zh) * | 2017-09-22 | 2024-03-08 | 株式会社小糸制作所 | 点灯电路以及车辆用灯具 |
JP2019114424A (ja) * | 2017-12-22 | 2019-07-11 | 株式会社デンソー | 車両用前方照明装置、断線検出方法 |
JP7024388B2 (ja) | 2017-12-22 | 2022-02-24 | 株式会社デンソー | 車両用前方照明装置、断線検出方法 |
WO2019123860A1 (ja) * | 2017-12-22 | 2019-06-27 | 株式会社デンソー | 車両用前方照明装置および断線検出方法 |
US11219109B2 (en) * | 2017-12-27 | 2022-01-04 | Denso Corporation | Vehicle front lighting apparatus and disconnection detection method |
JP2019117752A (ja) * | 2017-12-27 | 2019-07-18 | 株式会社デンソー | 車両用前方照明装置、断線検出方法 |
WO2019130821A1 (ja) * | 2017-12-27 | 2019-07-04 | 株式会社デンソー | 車両用前方照明装置および断線検出方法 |
CN112004718A (zh) * | 2018-04-25 | 2020-11-27 | 株式会社小糸制作所 | 尾转向灯 |
CN112004718B (zh) * | 2018-04-25 | 2023-08-11 | 株式会社小糸制作所 | 尾转向灯 |
EP4159540A4 (en) * | 2020-05-29 | 2024-04-10 | Koito Manufacturing Co., Ltd. | VEHICLE LIGHTING SYSTEM |
JP7549658B2 (ja) | 2020-05-29 | 2024-09-11 | 株式会社小糸製作所 | 車両用灯具システム |
US12139062B2 (en) | 2020-05-29 | 2024-11-12 | Koito Manufacturing Co., Ltd. | Automotive lamp system |
WO2023106199A1 (ja) * | 2021-12-09 | 2023-06-15 | 株式会社小糸製作所 | 点灯回路、及び車両用灯具 |
Also Published As
Publication number | Publication date |
---|---|
JP6783790B2 (ja) | 2020-11-11 |
JPWO2017086220A1 (ja) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6783790B2 (ja) | 点灯回路、車両用灯具 | |
US9320107B2 (en) | Vehicular lamp | |
US9907151B2 (en) | Lighting circuit and vehicle lamp having the same | |
JP6051909B2 (ja) | 電力供給装置 | |
US8970136B2 (en) | Semiconductor light source lighting circuit and vehicular lamp | |
US10165652B2 (en) | Lighting circuit and vehicle lamp employing same | |
JP5275450B2 (ja) | 直流電源照明システム用の低損失型入力チャネル検出装置 | |
US9992835B2 (en) | Lighting circuit | |
KR102051694B1 (ko) | 누설 전류 검출 회로, 이를 포함하는 조명 장치 및 누설 전류 검출 방법 | |
JP6591814B2 (ja) | 点灯回路およびそれを用いた車両用灯具 | |
US20120306386A1 (en) | Led drive device and led illuminating device | |
JP6821835B2 (ja) | 点灯回路およびそれを用いた車両用灯具 | |
US20180339641A1 (en) | Lighting circuit and vehicle lamp | |
JP2010212369A (ja) | Led駆動装置 | |
JP2015168305A (ja) | 車両用灯具およびその駆動装置 | |
KR101053335B1 (ko) | Led 구동 회로 | |
KR20140044257A (ko) | 클램핑 장치를 가진 발광 다이오드 조명 시스템 | |
US11051383B2 (en) | Ground fault detection circuit, abnormality detection circuit, light emitting device, vehicle | |
US9603227B2 (en) | Semiconductor light source driving apparatus | |
JP5054236B1 (ja) | Led点灯装置 | |
JP5214047B1 (ja) | Led点灯装置 | |
US9204507B2 (en) | LED lighting device | |
JP5149457B1 (ja) | Led点灯装置 | |
CN111903193A (zh) | 点灯电路及车辆用灯具 | |
JP2012064339A (ja) | 照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16866222 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017551835 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16866222 Country of ref document: EP Kind code of ref document: A1 |