Nothing Special   »   [go: up one dir, main page]

WO2017057277A1 - 撮像素子および撮像装置 - Google Patents

撮像素子および撮像装置 Download PDF

Info

Publication number
WO2017057277A1
WO2017057277A1 PCT/JP2016/078278 JP2016078278W WO2017057277A1 WO 2017057277 A1 WO2017057277 A1 WO 2017057277A1 JP 2016078278 W JP2016078278 W JP 2016078278W WO 2017057277 A1 WO2017057277 A1 WO 2017057277A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
imaging device
unit
solid
Prior art date
Application number
PCT/JP2016/078278
Other languages
English (en)
French (fr)
Inventor
石田 知久
佳之 渡邉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201680057084.XA priority Critical patent/CN108174619B/zh
Priority to JP2017543259A priority patent/JPWO2017057277A1/ja
Priority to EP16851448.7A priority patent/EP3358620A4/en
Priority to KR1020237001097A priority patent/KR102623653B1/ko
Priority to KR1020187009049A priority patent/KR20180048900A/ko
Priority to US15/764,419 priority patent/US20180294300A1/en
Priority to KR1020207036799A priority patent/KR102488709B1/ko
Priority to CN202211045472.XA priority patent/CN115295569A/zh
Priority to KR1020247000327A priority patent/KR20240010528A/ko
Publication of WO2017057277A1 publication Critical patent/WO2017057277A1/ja
Priority to US17/484,275 priority patent/US20220085220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to an imaging element and an imaging apparatus.
  • the gazette of Patent Document 1 discloses the following solid-state imaging device.
  • the semiconductor substrate is provided with an imaging region that includes a photoelectric conversion unit and a signal scanning circuit unit and includes a unit pixel matrix.
  • the imaging region includes an element isolation insulating film provided so as to surround each unit pixel corresponding to a boundary portion between adjacent unit pixels, a MOSFET provided on a surface of the semiconductor substrate and below the element isolation insulating film, And a first diffusion layer of a first conductivity type provided in a region near the element isolation insulating film in the semiconductor substrate.
  • the element isolation insulating film is provided offset from the front surface of the semiconductor substrate on which the signal scanning circuit portion is formed in the semiconductor substrate and reaches the back surface of the semiconductor substrate.
  • the MOSFET includes a gate electrode and a second diffusion layer of the first conductivity type formed in the semiconductor substrate and above the gate electrode.
  • the first diffusion layer is in contact with the second diffusion layer, and in the vertical direction of the semiconductor substrate, the center of the width of the first diffusion layer along the first direction orthogonal to the vertical direction is the first direction. In the vicinity of the center of the width of the second diffusion layer along.
  • the exposure time is shortened in the high-speed reading required in recent years (for example, 100 to 10,000 frames / second). For this reason, the amount of charge generated by photoelectric conversion is reduced, and there is a concern about deterioration of sensitivity.
  • An imaging device includes a semiconductor substrate having a light receiving portion that receives light that has been transmitted through a microlens, and a portion of light that is transmitted through the microlens and is incident on the semiconductor substrate.
  • a light shielding portion for shielding light.
  • the light receiving unit receives light incident through the micro lens between the micro lens and the light shielding unit.
  • An imaging device includes an imaging device and a generation unit that generates image data based on a signal output from the imaging device.
  • the image pickup device includes a semiconductor substrate having a light receiving portion that receives light incident through the microlens, and a light shielding portion that blocks a part of the light transmitted through the microlens and incident on the semiconductor substrate.
  • the light receiving unit receives light incident through the micro lens between the micro lens and the light shielding unit.
  • Sectional drawing of the pixel 20 of 1st Embodiment. (A) is sectional drawing explaining the outline of the pixel 20 of 2nd Embodiment, (b) is an equivalent circuit schematic of (a).
  • FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 100 of the present embodiment.
  • the solid-state imaging device 100 includes an imaging unit 30 in which pixels 20 are arranged on a light receiving surface. These pixels 20 are supplied with a driving pulse from a vertical scanning circuit 31 via a vertical control line 32. Further, the pixels 20 are connected to the vertical signal lines 21 in column units. The vertical signal lines 21 are connected to the pixel current sources 22, respectively.
  • a noise output and a signal output that are output in a time division manner from the pixel 20 to the vertical signal line 21 are sequentially input to the CDS circuit 24 (correlated double sampling circuit) via the column amplifier 23.
  • the CDS circuit 24 takes the difference between both outputs and generates a true signal output.
  • This true signal output is horizontally scanned by the drive signal from the horizontal scanning circuit 33 and sequentially output to the horizontal signal line 25.
  • the signal output from the horizontal signal line 25 is output to the output terminal 27 via the output amplifier 26.
  • FIG. 2 is a diagram illustrating an equivalent circuit of the pixel 20 described above.
  • the pixel 20 is provided with a photodiode (PD) 1.
  • the PD 1 is connected to a floating diffusion (FD) 8 through a transfer transistor (TG: hereinafter also referred to as transfer gate) 4 that is gate-controlled by a transfer drive signal (transfer gate voltage).
  • the FD 8 is connected to the gate electrode of the amplification transistor (AMP) 11.
  • the FD 8 is connected to the reference potential Vdd via a reset transistor (RST: hereinafter also referred to as reset gate) 13 that is gate-controlled by a reset drive signal (reset gate voltage).
  • RST reset transistor
  • the amplification transistor 11 has a drain connected to the potential Vdd, and a source connected to the vertical signal line 21 via a selection transistor (SEL: also referred to as a selection gate hereinafter) 12 that is gate-controlled by a selection drive signal (selection gate voltage). Is done.
  • SEL selection transistor
  • the transfer gate voltage of the transfer transistor 4 is supplied via the transfer wiring 4H.
  • the reset gate voltage of the reset transistor 13 is supplied via the reset wiring 13H.
  • the selection gate voltage of the selection transistor 12 is supplied via the selection wiring 12H.
  • the transfer wiring 4H, the reset wiring 13H, and the selection wiring 12H are formed in a wiring region 203 (wiring layer) in the same substrate as the substrate on which the PD1 and the FD8 are formed. Since other configurations are the same as those in FIG. 1, repeated description is omitted here.
  • the potential of the FD 8 is connected to the top gate electrode of the amplification transistor 11, and the back gate electrode is connected to the GND potential.
  • the top gate electrode of the amplification transistor 11 is connected to a predetermined potential, and the back gate electrode is connected to the potential of FD8.
  • the top gate electrode and the back gate electrode of the amplification transistor 11 are both connected to the potential of the FD8.
  • FIG. 3 is a cross-sectional view showing a part of the element structure of the pixel 20.
  • the solid-state image sensor 100 is formed on the semiconductor substrate 200.
  • the semiconductor substrate 200 is a monolithic semiconductor substrate.
  • the semiconductor substrate 200 is composed of approximately three layers stacked from the upper side (light receiving surface side) to the lower side (wiring region side) in FIG.
  • An oxide film 201 is formed at the top, a wiring region 203 is formed at the bottom, and a diffusion region 202 is formed between the oxide film 201 and the wiring region 203.
  • the diffusion region 202 is referred to as a semiconductor region.
  • the region other than the wiring is an oxide layer.
  • the oxide film and the oxide layer are a film and a layer mainly composed of a region where the semiconductor substrate is oxidized.
  • semiconductor region 202 In the semiconductor region (diffusion region) 202 of the semiconductor substrate 200, a vertically elongated PD1 that is long in the substrate thickness direction (the direction in which light enters) and a signal readout circuit 300 disposed in the surface direction of the substrate are formed. Yes.
  • the semiconductor region 202 has a base region 202K and a convex region 202T extending from the base region 202K toward the light receiving surface where light enters.
  • PD1 is formed in the convex region 202T, and a signal readout circuit 300 is formed in the base region 202K.
  • the PD 1 and the signal readout circuit 300 are formed by selectively injecting p-type impurities and n-type impurities at appropriate concentrations into predetermined portions of the p-type region.
  • a PD1 that converts incident light into charges by photoelectric conversion and a signal readout circuit 300 that outputs the charges photoelectrically converted by the PD1 to the vertical signal line 21 as pixel signals are formed.
  • the signal readout circuit 300 formed in the semiconductor region 202 includes a transfer transistor 4 that transfers the charge of PD1 to the FD8, an FD8 that accumulates the transferred charge and converts it into a voltage, and an amplification transistor that amplifies the output voltage of the FD8. 11, a selection transistor 12 that selects a pixel, and a reset transistor 13 that resets the FD 8.
  • the transfer transistor 4 transfers the charge generated in the PD1 to the FD8.
  • the FD 8 is a capacitor that accumulates charges transferred from the transfer transistor 4 and converts them into a voltage.
  • the electric charge generated in PD1 by photoelectric conversion is converted into a voltage by the capacitor of FD8, and this voltage becomes the gate voltage of the amplification transistor 11. Since the value obtained by dividing the charge Q generated in PD1 by the capacitance C of the FD8 is the basis of the pixel signal of the pixel 20, reducing the capacitance of the FD8 contributes to improving the sensitivity of the imaging device.
  • the amplification transistor 11 amplifies the voltage of the FD 8 applied to the gate electrode 11g.
  • the voltage amplified by the amplification transistor 11 is output from the selection transistor 12 as a pixel signal.
  • the reset transistor 13 discharges the charge accumulated in the FD 8 and resets it to the reference potential Vdd.
  • a wiring 203H is provided in the wiring region 203.
  • the wiring 203H includes the transfer wiring 4H, the reset wiring 13H, and the selection wiring 12H described above.
  • a light-shielding film 450 is formed on the surface of the oxide film 201, that is, the light-receiving surface that is the back surface of the semiconductor substrate 200.
  • the light shielding film 450 is provided to prevent light from entering the signal readout circuit 300 or the like.
  • An opening 401 is formed in the light shielding film 450 so that light enters the PD 1.
  • the light shielding film 450 shields at least part of the semiconductor region 202.
  • PD1 is a pn junction photoelectric conversion portion formed by selectively injecting an n-type impurity into a predetermined region of the p-type semiconductor region 202.
  • PD1 is formed in a prismatic shape.
  • the inner side of the prism is an n-type photoelectric conversion region 1a, and the surface is a p + region 1b.
  • An n region is exposed on a part of the surface of PD1.
  • PD1 is not limited to a prismatic shape, and may be any solid that extends in the direction in which light enters.
  • a cylinder, an elliptic cylinder, a pyramid, a cone, an elliptic cone, a sphere, an ellipsoid, a polyhedron, and the like may be used.
  • the p + region of the surface region 1b of PD1 prevents the depletion layer of the photoelectric conversion region 1a from reaching the surface. This depletion layer prevents dark current generated at the semiconductor interface from flowing to the photoelectric conversion region 1a. That is, the PD 1 of the first embodiment is an embedded photodiode.
  • PD1 is formed to protrude from the semiconductor region 202 where the signal readout circuit 300 is formed to the light receiving surface side.
  • the PD1 is formed in a convex region 202T that extends from the base region 202K of the semiconductor region 202 where the signal readout circuit 300 is formed and protrudes toward the light receiving surface. That is, in FIG. 3, PD1 has a convex shape extending from the base region 202K where the signal readout circuit 300 is formed to the light receiving surface side.
  • at least a part of PD1 has a convex portion extending along the direction in which light enters. At least a part of PD1 extends in a direction in which light enters from an opening 452A (see FIG.
  • a light shielding part 452 described later, and is located on the light receiving surface side of the light shielding part 452. Note that at least a part of the PD 1 may extend from the reflective film 450 or the opening 401 in the direction in which light enters.
  • An oxide film 201 is formed on the light receiving surface side of the semiconductor substrate 200.
  • An optical path region 400 in which incident light travels is formed on the outer periphery of the PD 1 formed in the convex region 202T of the semiconductor region 202.
  • the cross section of the optical path region 400 and the shape of the opening 401 are the same as the cross section of PD1.
  • the cross section on the light receiving surface side of the optical path region 400 is rectangular.
  • the cross section from the PD upper surface 1c to the light shielding film 452, that is, the bottom side (wiring region side) of the optical path region 400 is a square ring.
  • An oxide layer is deposited in the optical path region 400.
  • the shape of the opening 401 is a rectangle.
  • the material inside the optical path region 400 is not limited to the oxide layer.
  • the inside of the optical path region 400 may be hollow.
  • the cross section of the optical path region 400 and the shape of the opening 401 are not limited to a rectangle.
  • the cross section of the optical path region 400 and the shape of the opening 401 may be a circle, an ellipse, a polygon, or a ring.
  • a reflection film 451 is formed on the inner peripheral surface of the optical path region 400, and a light shielding film 452 is formed on the bottom of the optical path region 400 (the bottom surface on the wiring region side).
  • PD1 is formed in a convex shape from the base region 202K toward the microlens 462 through the opening 452A of the light shielding film 452.
  • the reflective film 451 and the light shielding film 452 can be formed of, for example, aluminum having high reflectivity by PVD.
  • the reflective film 451 may be formed of a material having high reflectance
  • the light shielding film 452 may be formed of a material having low light transmittance, and may be the same material or different materials.
  • a color filter 461 and a microlens 462 are provided in the opening 401 of the optical path region 400. As will be described later, the color filter 461 and the microlens 462 may be omitted.
  • the wiring 203H includes various wirings such as the vertical signal line 21 for outputting the pixel signal of the unit image 20 to an external chip, that is, an image memory formed on another semiconductor substrate.
  • the transfer wiring 4H, the reset wiring 13H, the selection wiring 12H, and the like described above are also included.
  • a photoelectric conversion operation by the solid-state imaging device 100 described above will be described. Pixels are arranged in a matrix on the light receiving surface of the solid-state imaging device 100.
  • the light incident on the image sensor 100 is collected by the microlens 462 provided for each pixel.
  • the collected light is wavelength-selected by the color filter 461 and enters the optical path region 400 through the opening 401.
  • a part of the incident light enters the inside from the surface 1c of the PD1.
  • light other than the light incident on the PD 1 from the surface 1c that is, the light incident on the optical path region 400 between the side surface 1d of the PD 1 and the reflective film 451 is reflected by the reflective film 451.
  • the light enters the PD 1 from the side surface 1d.
  • the PD 1 photoelectrically converts light incident from the surface 1c and the side surface 1d into electric charges. As a result, the PD 1 generates charges more efficiently from the incident light.
  • the light incident on the bottom of the optical path region 400 is shielded by the light shielding film 452.
  • the light shielding film 452 prevents incident light from entering the semiconductor region 202 in which the signal readout circuit 300 is formed. Thereby, generation
  • the light shielding film 452 has an opening 452A (see FIG. 3) at a portion where the PD 1 extends in the light incident direction.
  • the transfer transistor 4 When the transfer transistor 4 is turned on when a predetermined accumulation time has elapsed since the transfer transistor 4 and the reset transistor 13 reset the PD1 and the FD8, the charge is accumulated in the FD8 by the detection current due to the charge accumulated in the PD1.
  • the voltage due to the capacitance of the FD 8 is applied to the gate electrode 11g of the amplification transistor 11, and the amplification transistor 11 amplifies the voltage of the FD 8.
  • the amplified voltage is selected by the selection transistor 12 and is output to the vertical signal line 21 as a pixel signal.
  • Detected current from PD1 to FD8 flows in a direction as indicated by an arrow 4C having a thickness direction component on the surface of the semiconductor substrate.
  • a signal readout circuit that extracts charge as a pixel signal transfers a signal along the surface of a semiconductor substrate among a transfer circuit, an amplifier circuit, and a selection circuit.
  • the signal path from PD1 to FD8 becomes the path 4C having a component in the substrate thickness direction, and the size of the transfer transistor 4 in the substrate surface direction can be reduced accordingly. . That is, the pixel can be reduced in size.
  • the solid-state imaging device 100 includes a PD (photoelectric conversion region) that photoelectrically converts incident light to generate charges, and a readout circuit 300 that includes an FD (charge transfer region) 8 to which charges are transferred from the PD1.
  • a formed semiconductor region 202 is provided. At least a part of the semiconductor region 202, that is, PD 1 is provided so as to protrude from an optical path region (incident region) 400 provided on the light receiving surface side. With such a configuration of the PD 1, incident light is incident from the surface 1 c and the side surface 1 d of the PD 1, so that the light receiving area of the PD 1 is increased.
  • the S / N ratio is increased and the sensitivity is improved. Further, it is possible to prevent the deterioration of the S / N ratio due to the shortening of the exposure time and the deterioration of the S / N ratio due to the miniaturization of the pixels. Therefore, even with a solid-state imaging device that reads at a high speed such as 1000 to 10,000 frames, a high-quality image with little noise can be obtained.
  • (2) PD1 extends through the bottom of the optical path region 400 to the light receiving surface side. A part of the light incident from the side surface of the PD 1 enters the optical path region downward along the side surface of the PD 1 so that the light does not enter the semiconductor region 202 where the readout circuit 300 is formed from the light receiving surface side. A light shielding film 452 is formed at the bottom of the optical path region 400. For this reason, even if a configuration that allows light to be incident from the side surface of the PD 1 is adopted, generation of noise due to leaked light to the readout circuit 300 can be reduced.
  • the method of transferring the charge generated in PD1 to FD8 is not the horizontal transfer method parallel to the surface of the semiconductor substrate, but the charge is transferred through the signal path 4c having a component in the thickness direction of the semiconductor substrate.
  • the pixel can be reduced in size as compared with the conventional solid-state imaging device that horizontally transfers the charge of PD1 to FD8.
  • the solid-state imaging device 100 according to the first embodiment can also be described as follows.
  • the solid-state imaging device 100 includes a semiconductor substrate 202 having a PD 1 (light receiving unit) that receives incident light that has passed through the microlens 462 and a semiconductor substrate 202 (optical path region 400 of the semiconductor substrate 202 that passes through the microlens 462).
  • a light-shielding film (light-shielding part) 452 that shields part of the light incident on the light source.
  • the PD 1 receives light incident through the micro lens 462 between the micro lens 462 and the light shielding film 452.
  • the PD 1 (light receiving unit) of the solid-state imaging device 100 according to the first embodiment is light incident from the direction intersecting the optical axis of the micro lens 462 between the micro lens 462 and the light shielding film (light shielding unit) 452. Has a light receiving surface 1d.
  • the PD 1 (light receiving unit) of the solid-state imaging device 100 according to the first embodiment receives a plurality of incident light that has passed through the micro lens 462 between the micro lens 462 and the light shielding film (light shielding unit) 452. Light receiving surfaces 1c and 1d.
  • the PD 1 (light receiving unit) of the solid-state imaging device 100 according to the first embodiment has the light receiving surfaces 1 c and 1 d that receive light on the light incident side from the light shielding film (light shielding unit) 452.
  • At least a part of the PD1 (light receiving unit) of the solid-state imaging device 100 according to the first embodiment protrudes from the light shielding film (light shielding unit) 452 toward the incident light incident side.
  • at least a part of the PD 1 (light receiving unit) is formed in a convex shape between the bottom of the optical path region 400 and the micro lens 462.
  • the light-shielding film (light-shielding part) 452 of the solid-state imaging device 100 of the above (5) has an opening 452A that is a region through which the PD1 penetrates, and at least a part of the PD1 (light-receiving part) is the opening 452A. From the light shielding film (light shielding part) 452, the light is projected to the incident side.
  • Optical path region (waveguide) 400 that is incident on the first portion.
  • the optical path region (waveguide) 400 of the solid-state imaging device 100 of the above (5) causes the light transmitted through the microlens 462 and shielded by the light shielding film (light shielding part) 452 to enter the PD1 (photoelectric conversion part). .
  • the light-shielding film (light-shielding part) 452 of the solid-state imaging device 100 of the above (7) and (8) has an opening 452A that is an area through which the PD 1 penetrates, and the optical path region (waveguide) 400 is a micro Provided between the lens 462 and the opening 452A.
  • At least a part of the light receiving unit of the solid-state imaging device 100 according to the first embodiment includes a photoelectric conversion unit that photoelectrically converts received light to generate charges.
  • the solid-state imaging device 100 according to the first embodiment also has a floating diffusion (accumulation unit) 8 that accumulates charges generated by the photoelectric conversion unit, and transfers the electric charges generated by the photoelectric conversion unit to the floating diffusion (accumulation unit) 8.
  • the transfer transistor (transfer unit) 4 is provided between the photoelectric conversion unit and the floating diffusion (storage unit) 8 in the optical axis direction of the microlens 462.
  • an arrow 4c illustrated in FIG. 3 is a transfer path that transfers charges generated by the photoelectric conversion unit to the floating diffusion (storage unit) 8.
  • a solid-state image sensor according to the second embodiment will be described with reference to FIGS.
  • the second embodiment is different from the first embodiment as follows. (1) The point where the solid-state imaging device 100A is formed using the SOI substrate 500 (2) The point where the FD 8 is arranged immediately below the substrate surface side of the PD 1 (3) The PD 1, the FD 8, the transfer circuit, and the reset circuit Point formed on one substrate and amplification transistor 11 formed on the other substrate (4) FD 8 is directly connected to the back gate electrode of amplification transistor 11 without wiring (5) A point where a predetermined potential (for example, a reference potential Vdd) is applied to the top gate electrode (6) A point where the light shielding film at the bottom of the optical path region is constituted by the transfer wiring 4H of the transfer transistor 4 (7) A selection transistor 12 is provided on a different substrate Point
  • FIG. 4A is a cross-sectional view showing a part of the element pattern of the pixel 20A in the solid-state imaging element 100A. Parts similar to those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solid-state imaging device 100A is formed on the SOI semiconductor substrate 500.
  • the semiconductor substrate 500 is formed by integrating a first semiconductor substrate 501 and a second semiconductor substrate 502 with a buried oxide layer 503.
  • the first semiconductor substrate 501 is formed with a vertically elongated PD1 that is long in the substrate thickness direction (light incident direction), a transfer circuit including the transfer transistor 4, an FD8, and a reset circuit including the reset transistor 13. Yes.
  • the amplifier circuit including the amplifier transistor 11 the through-hole wiring 502H of the GND terminal that connects the anode of PD1 to the ground potential, the drain of the reset transistor 13 and the drain of the amplifier transistor 11 are set to a predetermined potential ( For example, a through-hole wiring 502H connected to the reference potential Vdd) is formed.
  • the second semiconductor substrate 502 performs element isolation by the STI 51.
  • Reference numeral 4H denotes a transfer wiring for applying a gate voltage to the gate electrode 4g of the transfer transistor 4.
  • Reference numeral 13g denotes a gate electrode of the reset transistor 13, and a reset voltage is supplied to the gate electrode 13g from a reset gate wiring (not shown).
  • FIG. 4B is a diagram illustrating an equivalent circuit of the pixel 20 corresponding to FIG. Differences from the equivalent circuit of the first embodiment shown in FIG. 2 are as follows.
  • the FD 8 is connected to the back gate electrode of the amplification transistor 11, the predetermined potential (for example, the reference potential Vdd) is applied to the top gate electrode, and the selection circuit including the selection transistor 12 is provided on a separate substrate. is there.
  • FIG. 5 shows a planar structure of the pixel 20 of the solid-state imaging device 100A of the second embodiment
  • FIG. 6 is a longitudinal sectional view seen from the direction of arrow VI in FIG.
  • FIG. 7 is a longitudinal sectional view as seen from the direction of arrow VII in FIG.
  • FIG. 8 is a longitudinal sectional view as seen from the direction of arrow VIII in FIG.
  • the first semiconductor substrate 501 includes a semiconductor region 501a where a portion corresponding to PD1 extends toward the light receiving surface.
  • the semiconductor region 501a has a thin layer-shaped base region 501aK and a convex region 501aT in which PD1 extends from the base region 501aK toward the light receiving surface.
  • PD1 is formed in the convex region 501aT by selectively injecting n-type impurities or p-type impurities into predetermined portions of the p-type semiconductor region 501a.
  • a transfer circuit including the transfer transistor 4, the FD 8, and a reset circuit including the reset transistor 13 are also formed in the base region 501aK by the same impurity implantation.
  • the thin base layer region 501aK of the semiconductor region 501a includes a p + contact region connected to the GND terminal by a through hole and an n + contact region connected to the reference potential terminal Vdd by the through hole. Is formed.
  • the anode of PD1 and the p + surface region 1b are fixed to the GND potential by the p + contact region.
  • the drain of the reset transistor 13 and the drain of the amplification transistor 13 are connected to the reference potential terminal Vdd by the n + contact region.
  • the first semiconductor substrate 501 has an oxide film 501b provided on the light receiving surface side of the semiconductor region 501a.
  • the oxide film 501b is formed at a location excluding the convex region 501aT of the semiconductor region 501a and the optical path region 400A formed on the outer periphery of the PD1.
  • a transfer wiring 4H is formed so as to cross the PD1 which is a protrusion of the semiconductor region 501a.
  • the oxide film 501b is also provided with an optical path region 400A having a rectangular cross section that surrounds the outer periphery of the convex PD1 in a region closer to the light receiving surface than the transfer wiring 4H.
  • the transfer wiring 4H is formed across the optical path region 400A so that the light incident on the optical path region 400A does not enter the lower side (opposite to the light receiving surface) of FIG. Therefore, the light shielding film 452 described with reference to FIG. 3 has the same function, and the dedicated light shielding film 452 is unnecessary.
  • PD1 is an embedded photodiode having a photoelectric conversion region 1a and a surface region 1b, as in the first embodiment.
  • the p + region of the surface region 1b prevents the depletion layer of the photoelectric conversion region 1a from reaching the surface. This suppresses the dark current generated at the semiconductor interface from flowing to the photoelectric conversion region 1a.
  • PD1 and FD8 The configuration of PD1 and FD8 will be described in detail with reference to FIGS.
  • an n-type impurity is implanted at an appropriate concentration to form a pn junction PD1.
  • the PD1 has an n region and an n + region.
  • the FD 8 is formed by implanting an n-type impurity in the boundary region between the semiconductor substrate base region 501aK and the convex region 501aT.
  • FIG. 6 as viewed from the VI direction in FIG.
  • the FD 8 is shown in an L shape for convenience.
  • PD1 has the same shape as the first embodiment.
  • PD1 has a convex part toward at least a part in the light incident direction.
  • at least a part of the PD1 extends in the direction in which light enters through the opening 4HA of the transfer wiring 4H, and is closer to the light receiving surface than the transfer wiring 4H.
  • at least a part of the PD 1 may extend from the reflective film 450 or the opening 401 in a direction in which light enters.
  • a transfer gate electrode 4g for controlling the channel is formed of polysilicon on the outer peripheral portion of the convex region 501aT so that a detection current due to the electric charge accumulated in the PD1 flows in the opposite region.
  • the transfer gate electrode 4g is connected to the transfer wiring 4H.
  • the transfer wiring 4H is connected to a TG terminal 4T penetrating through a through hole as shown in FIG. When the transfer gate signal is supplied to the TG terminal 4T, the charge of PD1 is transferred to the FD 8 by the transfer transistor 4.
  • the lower part of the FD 8 (opposite to the light receiving surface side) covers the channel portion of the amplification transistor 11 via the buried isolation layer 503 and functions as a back gate electrode.
  • a reset gate electrode 13g is formed of polysilicon on the oxide film 501b below the transfer gate electrode 4g. As shown in FIG. 8, the reset gate electrode 13g is connected to the reset gate terminal RST by a through-hole wiring 502H that penetrates the first semiconductor substrate 501 and the second semiconductor substrate 502.
  • a detection current due to charges generated in the PD 1 flows in a direction as indicated by an arrow 4C (see FIG. 6) having a thickness direction component on the surface of the semiconductor substrate.
  • the FD 8 functions as a back gate electrode of the amplification transistor 11.
  • a predetermined potential for example, a reference potential Vdd
  • the potential of the FD 8 varies, and the amplification transistor 11 amplifies the voltage of the FD 8 accordingly.
  • the voltage amplified by the amplification transistor 11 is supplied to the selection transistor 12 (not shown) by a horizontal transfer method along the substrate surface, and is output as a pixel signal from the vertical signal line.
  • the signal path from PD1 to FD8 is a path having a component in the substrate thickness direction, and the size of the transfer transistor 4 in the substrate surface direction can be reduced accordingly. it can. That is, the pixel can be reduced in size.
  • the solid-state imaging device 100A of the second embodiment can obtain the same effects as those of the first embodiment. That is, in the solid-state imaging device 100A of the second embodiment, the semiconductor substrate 500 having the PD1 (light receiving unit) that receives the light transmitted through the microlens 462 and the microlens 462 is incident on the semiconductor substrate 500. TG wiring 4H (light-shielding part) that shields part of the light to be transmitted. The PD 1 receives light incident through the micro lens 462 between the micro lens 462 and the TG wiring 4H (light shielding portion). At least a part of the PD1 (light receiving unit) of the solid-state imaging device 100A according to the second embodiment includes a photoelectric conversion unit that photoelectrically converts received light to generate charges.
  • the solid-state imaging device 100A of the second embodiment also transfers a floating diffusion (accumulation unit) 8 that accumulates the charges generated by the photoelectric conversion unit, and transfers the electric charge generated by the photoelectric conversion unit to the floating diffusion (accumulation unit) 8. And a transfer transistor (transfer unit) 4.
  • the transfer transistor (transfer unit) 4 is provided between the photoelectric conversion unit and the floating diffusion (storage unit) 8 in the optical axis direction of the microlens 462. Referring to FIG. 6, the transfer transistor 4 causes a detection current due to charges generated in the PD 1 to flow in a direction indicated by an arrow 4C (see FIG. 6) having a thickness direction component on the surface of the semiconductor substrate.
  • an arrow 4c illustrated in FIG. 6 is a transfer path that transfers charges generated by the photoelectric conversion unit to the floating diffusion (storage unit) 8.
  • the FD 8 Since the FD 8 is disposed directly under the PD 1, pixels can be mounted with high density. (2) Since the FD 8 disposed immediately below the PD 1 functions as a back gate electrode of the amplification transistor 11 without a wiring, the capacitance of the FD 8 can be reduced and the conversion gain can be increased. (3) Since the light shielding at the bottom of the optical path region is performed by the transfer wiring 4H, the dedicated light shielding film 452 required in the first embodiment is not necessary.
  • FIG. 9 is a diagram illustrating a configuration of a solid-state imaging device 100B of Modification 1 of the second embodiment, and corresponds to FIG. 6 of the second embodiment.
  • FIG. 10 is a diagram showing an equivalent circuit of the solid-state imaging device 100B of FIG. 9, and corresponds to FIG. 4B of the second embodiment.
  • the same portions as those in FIGS. 6 and 4B are denoted by the same reference numerals, and only the differences will be mainly described.
  • the FD 8 is connected to the back gate electrode of the amplification transistor 11 without a wiring, and a predetermined potential (for example, a reference potential Vdd) is applied to the top gate electrode 11g.
  • a predetermined potential for example, a reference potential Vdd
  • the FD 8 is connected to the top gate electrode 11g of the amplification transistor 11 by the wiring 601. Therefore, a gate drive signal having the same potential is input to the back gate electrode and the top gate electrode 11g of the amplification transistor 11.
  • the solid-state imaging device 100B of Modification 1 of the second embodiment can also exhibit the same operational effects as those of the second embodiment.
  • the gate drive signal having the same potential derived from the FD 8 is input to both the back gate electrode and the top gate electrode of the amplification transistor 11, and thus the following operational effects Can also be obtained.
  • a predetermined potential for example, the reference potential Vdd
  • Vdd the reference potential
  • FIG. 11 is a diagram illustrating a configuration of a solid-state imaging element 100C according to the second modification of the second embodiment, and corresponds to FIG. 9 according to the first modification of the second embodiment.
  • FIG. 12 is a diagram showing an equivalent circuit of the solid-state imaging device 100C of FIG. 11, and corresponds to FIG. 4B of the second embodiment. Portions similar to those in FIGS. 9 and 4B are denoted by the same reference numerals, and only the differences will be mainly described.
  • the FD 8 is connected to the back gate electrode of the amplification transistor 11 without a wiring, and a predetermined potential (for example, a reference potential Vdd) is applied to the top gate electrode.
  • a predetermined potential for example, a reference potential Vdd
  • the potential of the back gate electrode of the amplification transistor 11 is set to the GND potential of the p region.
  • the solid-state imaging device 100C of Modification 2 of the second embodiment can also exhibit the same operational effects as those of the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration of a solid-state imaging device 100D of Modification 3 of the second embodiment, and corresponds to FIG. 7 of the second embodiment.
  • An equivalent circuit of the solid-state imaging device 100D of FIG. 13 is shown in FIG.
  • the same parts as those in FIGS. 7 and 4B are denoted by the same reference numerals, and only the differences will be mainly described.
  • the FD 8 is connected to the back gate electrode of the amplification transistor 11 without a wiring, and a predetermined potential (for example, a reference potential Vdd) is applied to the top gate electrode 11g.
  • a predetermined potential for example, a reference potential Vdd
  • the top gate electrode of the amplification transistor 11 is connected to the FD 8 without a wiring, and the back gate electrode of the amplification transistor 11 directly connects the GND terminal to the p region. That is, the structure of the back gate electrode is not a so-called MOS structure.
  • the solid-state imaging device 100D of Modification 3 of the second embodiment can also exhibit the same operational effects as those of the second embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a solid-state imaging device 100E according to the third embodiment, and corresponds to FIGS. 2 and 3 according to the first embodiment.
  • the same parts as those in FIGS. 2 and 3 are denoted by the same reference numerals, and only the differences will be mainly described.
  • a solid-state imaging device 100E according to the third embodiment is a device that enables a so-called global shutter, and includes a memory that stores a pixel signal for each pixel.
  • the solid-state imaging device 100E is formed in one semiconductor substrate 200.
  • An FD 8, a memory 81, and an overfloating gate 82 are formed in the thin semiconductor base 202 ⁇ / b> K.
  • TG1 and TG2 are gate electrodes of transfer gates that transfer the charge of PD1 to the memory 81 and FD8.
  • the transfer gate electrode TG2 By forming the transfer gate electrode TG2 so as to overlap with the gate electrode TG1, it is possible to prevent light from entering the readout circuit.
  • the shape of the optical path region 400B on the outer periphery of PD1 formed in the convex semiconductor region 202T is not a prismatic shape but a pyramid shape.
  • the optical path region 400B forms a mortar-shaped light incident region that is recessed from the light receiving surface.
  • the optical path region 400B is a cavity.
  • a material having a high visible light transmittance such as SiO 2 may be deposited on the optical path region 400B. If it is a monochrome solid-state image sensor, a color filter is not necessary.
  • the light-shielding film 450 on the light-receiving surface of the oxide film 201, the peripheral reflection film 451 in the optical path region 400, and the light-shielding film 452 on the bottom surface of the optical path region 400 may be formed of the same material instead of being formed of different materials. .
  • the solid-state imaging device 100E of the third embodiment can also exhibit the same operational effects as the first embodiment.
  • FIG. 15 is a diagram illustrating a configuration of a solid-state imaging device 100F of the fourth embodiment, and corresponds to FIG. 14 of the third embodiment.
  • the same parts as those in FIG. 14 are denoted by the same reference numerals, and only the differences will be mainly described.
  • the solid-state image sensor 100E of the third embodiment is a so-called back-illuminated element.
  • the solid-state imaging device 100F of the fourth embodiment is a surface irradiation type device in which a wiring region is arranged on the light receiving surface side.
  • a wiring 203H is formed in a region further outside the optical path region 400, that is, in the oxide film 201 on the light receiving surface side.
  • Other configurations are the same as those of the third embodiment, and a description thereof will be omitted.
  • the solid-state imaging device 100F according to the fourth embodiment can also exhibit the same operational effects as the first embodiment.
  • FIG. 16 is a diagram illustrating a configuration of a solid-state imaging device 100G of the fifth embodiment, and corresponds to FIG. 15 of the fourth embodiment.
  • the same parts as those in FIG. 15 are denoted by the same reference numerals, and only the differences will be mainly described.
  • the solid-state imaging device 100G of the fifth embodiment is also a surface irradiation type device in which a wiring region is arranged on the light receiving side.
  • the difference from the solid-state imaging device 100F of the fourth embodiment is the shape of the optical path region formed on the outer periphery of the vertically long PD1.
  • the solid-state imaging device 100G of the fifth embodiment is formed in one semiconductor substrate.
  • An FD 8, a memory 81, and an overfloating gate 82 are formed in the thin semiconductor base 202 ⁇ / b> K.
  • a prismatic optical waveguide 400C having a rectangular cross section is formed in place of the optical path region 400B on the outer periphery of the PD1 formed in the convex semiconductor region 202T.
  • the solid-state imaging device 100G of the fifth embodiment can also exhibit the same operational effects as the first embodiment.
  • the internal quantum efficiency of an image sensor depends on the light absorption depth determined by the formation position of the photodiode and the wavelength of light.
  • the internal quantum efficiency is higher for shorter wavelength light and lower for longer wavelength light.
  • a photodiode is formed in a deep region of the silicon substrate, so that the internal quantum efficiency is higher for longer wavelength light and lower for shorter wavelength light.
  • the photodiode can be formed at an optimum depth for each wavelength instead of forming the photodiode at a certain fixed depth, the internal quantum efficiency is improved in both the front-side irradiation type and the back-side irradiation type.
  • a photodiode is formed in a deep region of a silicon substrate, complete transfer becomes difficult, so that it has been difficult to produce in the past.
  • an image sensor having an image plane phase difference detection function generally has two photodiodes divided into left and right by P-type separation within a pixel.
  • the photodiode depth is changed for each wavelength as described above, it is necessary to form the P-type isolation depth at the same depth, but it is difficult to form a good P-type isolation structure in a deep silicon region. . If the P-type separation is insufficient in the deep region of silicon, the surface irradiation type element has a long wavelength light, and the back side irradiation type element has a short wavelength light.
  • the solid-state imaging device having the configuration of the following modification improves the sensitivity by realizing a photodiode having a depth corresponding to the light wavelength by using a vertical transfer gate structure, and also improves the sensitivity according to the light wavelength.
  • the isolation characteristic can be improved by adjusting the diode aperture ratio.
  • the depth position from the light receiving surface to the PD is fixed regardless of the wavelength-selected light.
  • the depth position from the incident surface (light receiving surface) to the PD is a position corresponding to the wavelength-selected light, that is, a position corresponding to the RGB pixel.
  • charges are transferred from the PD to the FD using a vertical transfer gate structure.
  • Each of the solid-state imaging devices 100H to 100K in FIGS. 17 to 20 arranges the PD1 at a depth corresponding to the RGB wavelength, and transfers the charge of the PD1 to the FD8 by the vertical transfer gates FD61R, 61G, and 61B. is there.
  • a solid-state imaging device 100H in FIG. 17 is obtained by forming RGB pixels in a Bayer array or the like on a semiconductor substrate 600 including a Si layer 651 and a wiring region 652.
  • a front-illuminated pixel having a Bayer array of color filters photodiodes are formed in the deep position of the silicon layer in the order of R pixel, G pixel, and B pixel, and the gate lengths of the vertical transfer gates 61R, 61G, and 61B are Change the length accordingly.
  • the photodiode is formed deeply in the order of B pixel, G pixel, and R pixel, and the gate length is set accordingly.
  • PD1 is formed at a first depth position from the surface of the Si layer 651, and FD8 is formed on the surface of the Si layer 651.
  • PD1 is formed at a second depth position from the surface of the Si layer 651, and FD8 is formed on the surface of the Si layer 651.
  • PD1 is formed at the third depth position from the surface of the Si layer 651, and FD8 is formed on the surface of the Si layer 651.
  • vertical transfer gates 61R, 61G, 61B (hereinafter referred to as reference numeral 61) for transferring charges between PD1 and FD8 are provided in the Si layer 651.
  • the gate length is transfer gate 61R ⁇ transfer gate 61G ⁇ transfer gate 61B.
  • a wiring 652H for inputting a gate control signal to the vertical transfer gate 61 is provided in the wiring region 652.
  • the wiring region 652H is also provided with a wiring 653H that transfers the potential of the FD 8 to an amplification transistor (not shown).
  • the region other than the wiring in the wiring region 652 is an oxide film 652S such as SiO2.
  • a solid-state imaging device 100I in FIG. 18 is obtained by replacing the solid-state imaging device 100H in FIG. 17 with a surface irradiation type device.
  • PD1 is formed at a fourth depth position from the surface of the Si layer 651, and FD8 is formed on the surface of the Si layer 651.
  • PD1 is formed at a fifth depth position from the surface of the Si layer 651, and FD8 is formed on the surface of the Si layer 651.
  • PD1 is formed at a sixth depth position from the surface of the Si layer 651, and FD8 is formed on the surface of the Si layer 651.
  • vertical transfer gates 61R, 61G, 61B (hereinafter referred to as reference numeral 61) for transferring charges between PD1 and FD8 are provided in the Si layer 651.
  • the gate length is transfer gate 61R> transfer gate 61G> transfer gate 61B.
  • the same parts as those in FIG. 17 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solid-state imaging devices 100H and 100I in FIGS. 17 and 18 have the following operational effects. (1) In the solid-state imaging devices 100H and 100I of the modification shown in FIGS. 17 and 18, the photodiode formation depth in the pixel and the gate length of the vertical transfer gate are different for each color filter color. . Even if the PD1 is formed at different depths for each color, the internal quantum efficiency can be improved without deteriorating the transfer characteristics by optimizing the vertical transfer gate length and arranging the transfer gate adjacent to the PD1. .
  • the same structure may also be applied when there are two photodiodes in a pixel.
  • the solid-state image sensor 100J in FIG. 19 is a so-called 2PD type element in which a pair of PD1L and PD1R is provided in one pixel of the solid-state image sensor 100H in FIG. FD8L and 8R corresponding to a pair of PD1L and PD1R are provided.
  • the same portions are denoted by the same reference numerals, and detailed description thereof is omitted. The same applies when the number of photodiodes increases to four, eight,.
  • a solid-state imaging device 100K in FIG. 20 is a so-called 2PD type device in which a pair of PD1L and PD1R is provided in one pixel of the solid-state imaging device 100I in FIG. FD8L and 8R corresponding to a pair of PD1L and PD1R are provided.
  • the distance between the pair of PD1L and PD1R is increased as the wavelength is longer.
  • the same portions are denoted by the same reference numerals, and detailed description thereof is omitted. The same applies when the number of photodiodes increases to four, eight,.
  • the solid-state imaging devices 100H and 100I in FIGS. 19 and 20 have the following operational effects.
  • FIGS. 19 and 20 The solid-state imaging device has a structure with two photodiodes in a pixel, and the photodiode aperture ratio differs for each color filter color.
  • the distance between the two photodiodes is made smaller as the wavelength is longer. By doing so, even if photodiodes are formed at different depths for each color, adjusting the distance between the two photodiodes for each color changes the electron collection efficiency of the photodiode separator. Therefore, the separation characteristics can be optimized.
  • the R wavelength absorbed in a deep region is poorly separated. Therefore, when the distance between two photodiodes is made wider in the order of R pixel, G pixel, and B pixel, the R pixel But separation is better.
  • the B wavelength absorbed in a shallow region is poorly separated. Therefore, if the distance between two photodiodes is made wider in the order of B pixel, G pixel, and R pixel, the B pixel is also separated. Will be better.
  • a high SN ratio can be realized by improving the sensitivity for each color, and the autofocus accuracy can be improved by improving the separation characteristics.
  • FIG. 21 is a diagram illustrating a solid-state imaging element 100L which is a modification of the third embodiment. Parts similar to those in FIG. 14 showing the third embodiment are denoted by the same reference numerals, and different points will be described. The main differences are as follows.
  • the semiconductor substrate 202 of the solid-state imaging device 100E of the third embodiment includes a semiconductor base 202K and a convex semiconductor region 202T.
  • PD1 is formed in the convex semiconductor region 202T, and an optical path region 400B having a pyramidal cross section is formed on the outer periphery thereof.
  • a solid-state image sensor 100L according to a modification of the third embodiment includes a semiconductor substrate 2000.
  • the semiconductor base 2000 is formed on the semiconductor base 2000K, the light shielding part 2000S locked on the upper surface thereof, the oxide layer 2001 formed on the upper layer with the light shielding part 2000S interposed therebetween, and the lower surface of the semiconductor base 2000K.
  • the oxide layer 2001 is formed with a pyramid-shaped recess 2001R that constitutes a pixel unit.
  • a light shielding portion 2001S is formed in a region excluding the opening of the recess 2001R.
  • the light shielding portion is not formed on the surface of the recess 2001R, and the PD (photoelectric conversion portion) 2003 is formed on the inclined side wall surface and bottom surface.
  • the recess 2001R is an optical path region 400D that receives incident light.
  • a floating diffusion (FD) 8 and a transfer transistor 4 for transferring charges photoelectrically converted by the PD 2003 to the floating diffusion 8 are formed.
  • the transfer transistor 4 is controlled to be turned on and off by signal control of the gate electrode TG1.
  • the charges accumulated in the floating diffusion 8 are amplified by the amplifier circuit SFamp and read out to the vertical signal line.
  • the solid-state imaging device 100L includes a PD 2003 that receives incident light through a micro lens (not shown), a semiconductor base 2000K on which the PD 2003 is formed, and a micro lens.
  • a light shielding unit 2000S that shields part of the light that is transmitted and incident on the semiconductor substrate 2000K is provided.
  • the PD 2003 receives light incident through the microlens between the microlens (not shown) and the light shielding unit 2000S.
  • the image sensor according to the present invention is not limited to the above-described embodiments and modifications, and the following image sensor is also included in the present invention. This will be described with reference to the drawings. This will be described with reference to FIGS. (1)
  • the solid-state imaging device 100 includes a photoelectric conversion region including the photoelectric conversion unit 1 that photoelectrically converts incident light, a semiconductor region 202 in which a circuit 300 that reads photoelectrically converted charges is formed, and an opening 401. And a light shielding portion 450 that shields at least a part of the semiconductor region 202. At least a part of the photoelectric conversion unit 1 is provided along the incident direction of light incident from the opening 401.
  • At least a part of the photoelectric conversion unit 1 extends in the optical axis direction of the microlens 462. Since at least a part of the photoelectric conversion unit 1 is provided along the incident direction of light incident from the opening 401, the opening 401 and the photoelectric conversion unit 1 are arranged so as to overlap each other in a plan view of the substrate, thereby reducing the size of the pixel. Contributes to (2) In the solid-state imaging device 100 of the above (1), at least a part of the photoelectric conversion region protrudes from the opening 401 to the incident light incident side. For example, the photoelectric conversion region has a convex portion on the side where incident light enters from the opening 401.
  • the solid-state imaging device 100 includes a photoelectric conversion region including a photoelectric conversion unit 1 that photoelectrically converts incident light to generate charges, and a charge transfer region including a charge transfer unit 4 to which charges are transferred from the photoelectric conversion region. And a semiconductor region 202 provided with a photoelectric conversion region and a charge transfer region. At least a part of the semiconductor region 202 has a convex region 202T on the incident light incident side, and at least a part of the photoelectric conversion unit 1 is provided in the convex region 202T.
  • At least a part of the semiconductor region 202 has a convex region 202T on the incident light incident side from the opening 401, and at least a part of the photoelectric conversion unit 1 is provided in the convex region 202T. Since the opening 401 and the photoelectric conversion unit 1 are arranged so as to overlap with each other in plan view of the substrate, the pixel can be reduced in size.
  • the solid-state imaging device 100 of the above (4) has an opening 401, the solid-state imaging device 100 includes a light-shielding portion 450 that shields at least a part of the semiconductor region 202, and the photoelectric conversion region has an opening 401. Is provided in the convex region 202T in the incident direction of the light incident from.
  • the solid-state imaging device 100 includes a photoelectric conversion region including a photoelectric conversion unit 1 that photoelectrically converts incident light to generate charges, and a charge transfer region including a charge transfer unit 4 to which charges are transferred from the photoelectric conversion region. And a semiconductor region 202 provided with a photoelectric conversion region and a charge transfer region. At least a part of the semiconductor region 202 is provided to protrude into the incident region 400, and at least a part of the photoelectric conversion region is provided to protrude into the incident region 400. Since at least a part of the semiconductor region 202 is provided to protrude to the incident region 400 and at least a part of the photoelectric conversion region is provided to protrude to the incident region 400, the pixel can be reduced in size.
  • the photoelectric conversion region protrudes from the incident region 400, light is also incident from the periphery of the photoelectric conversion region, so that the conversion gain of the element is improved.
  • the semiconductor region 202 has a region 202T convex in the incident light incident direction in the incident region 400, and at least a part of the photoelectric conversion region 1 Are provided in the convex region 202T.
  • the solid-state imaging device 100 of (7) has an opening 401, and the solid-state imaging device 100 includes a light-shielding portion 450 that shields at least part of the semiconductor region 202.
  • the convex region 202T is a region extending in the incident direction of light incident from the opening 401.
  • the incident area is the optical path area 400 of incident light.
  • the light shielding portion 450 is formed so as to shield the semiconductor region 202 excluding the photoelectric conversion region.
  • wiring is formed on the other surface opposite to the surface that receives incident light, and a wiring region 203 is provided.
  • the solid-state imaging device is provided on an SOI substrate 500 separated into one semiconductor region 501 and another semiconductor region 502 by a buried oxide layer 503, and
  • the solid-state imaging device includes an amplification region including an amplification unit 11 that amplifies the output of the charge accumulation unit 8 in the charge transfer region.
  • the photoelectric conversion region and the charge transfer region are formed in one semiconductor region 501, and the amplification region is It is formed in another semiconductor region 502. (13)
  • the charge transfer region is provided with a transfer unit 4 that transfers the charge photoelectrically converted in the photoelectric conversion region, and a floating diffusion 8 that accumulates the transferred charge.
  • the floating diffusion 8 is formed below the photoelectric conversion unit 1.
  • the amplifying unit 11 is disposed immediately below the floating diffusion 8 and is connected to the floating diffusion 8 through a wiring penetrating the buried oxide layer 503.
  • a semiconductor substrate different from the ISO substrate 500 having the selection unit 12 that selects the output amplified by the amplification unit 11 is another semiconductor of the IOS substrate 500. Stacked in the region 502.
  • the present invention is not limited to the embodiments and modifications described above. Solid-state image sensors that have undergone various modifications and changes without departing from the present invention are also within the scope of the present invention.
  • the present invention includes the image sensors 100 to 100L according to the above-described embodiments and modifications, and a generation unit 1500 that generates image data based on signals output from the image sensors 100 to 100L. It can implement also as the imaging device 1600 provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

撮像素子は、マイクロレンズを透過して入射した光を受光する受光部を有する半導体基板と、マイクロレンズを透過して半導体基板に入射する光の一部を遮光する遮光部とを備え、受光部は、マイクロレンズと遮光部との間で、マイクロレンズを透過して入射した光を受光する。

Description

撮像素子および撮像装置
 本発明は、撮像素子および撮像装置に関する。
 特許文献1の公報には、次のような固体撮像装置が開示されている。
 半導体基板には、光電変換部及び信号走査回路部を含み単位画素行列を配置して成る撮像領域が設けられている。撮像領域は、隣接する単位画素との境界部分に対応して各単位画素を囲むように設けられる素子分離絶縁膜と、半導体基板の表面上且つ素子分離絶縁膜の下方領域に設けられるMOSFETと、半導体基板内の素子分離絶縁膜の近傍領域に設けられた第1導電型の第1の拡散層とを備える。素子分離絶縁膜は、信号走査回路部が形成される半導体基板の表面から半導体基板中にオフセットされて設けられ且つ半導体基板の裏面に達して形成されている。MOSFETは、ゲート電極と、半導体基板内且つゲート電極の上方に形成される第1導電型の第2の拡散層とを備えている。第1の拡散層と、第2の拡散層とが接し、半導体基板の垂直方向において、垂直方向に直交する第1の方向に沿った第1の拡散層の幅の中心は、第1の方向に沿った第2の拡散層の幅の中心近傍に位置する。
日本国特許5547260号
 しかし、近年要求される高速読み出し(たとえば、100~10000フレーム/秒)では露出時間が短縮される。そのため、光電変換により発生する電荷量が少なくなり、感度の劣化が懸念される。
 本発明の第1の態様による撮像素子は、マイクロレンズを透過して入射した光を受光する受光部を有する半導体基板と、前記マイクロレンズを透過して前記半導体基板に入射する光の一部を遮光する遮光部とを備える。前記受光部は、前記マイクロレンズと前記遮光部との間で、前記マイクロレンズを透過して入射した光を受光する。
 本発明の第2の態様による撮像装置は、撮像素子と、撮像素子から出力された信号に基づいて画像データを生成する生成部とを備える。撮像素子は、マイクロレンズを透過して入射した光を受光する受光部を有する半導体基板と、前記マイクロレンズを透過して前記半導体基板に入射する光の一部を遮光する遮光部とを備える。前記受光部は、前記マイクロレンズと前記遮光部との間で、前記マイクロレンズを透過して入射した光を受光する。
第1実施形態による固体撮像素子100の概略構成を示す図 第1実施形態の画素20の等価回路を示す図 第1実施形態の画素20の断面図 (a)は第2実施形態の画素20の概略を説明する断面図、(b)は(a)の等価回路図 第2実施形態による固体撮像素子100の平面図 第2実施形態の画素20のVI方向から観た断面図 第2実施形態の画素20のVII方向から観た断面図 第2実施形態の画素20のVIII方向から観た断面図 第2実施形態の変形例1を説明する図6に対応する断面図 第2実施形態の変形例1の等価回路を示す図 第2実施形態の変形例2を説明する図6に対応する断面図 第2実施形態の変形例2の等価回路を示す図 第2実施形態の変形例3を説明する図7に対応する断面図 第3実施形態の画素20の断面図 第4実施形態の画素20の断面図 第5実施形態の画素20の断面図 第1~第5実施形態の変形例を説明する図であり、裏面照射型素子に適用した画素20の要部のみ示す断面図 図17の変形例を表面照射型素子に適用した画素20の要部のみ示す断面図 図17の変形例を一画素に一対のPDを設けた素子に適用した画素20の要部のみ示す断面図 図19の変形例を表面照射型素子に適用した画素20の要部のみ示す断面図 第3実施形態の変形例を説明する図14に対応する断面図 本発明の撮像装置を説明するブロック図
《第1実施形態》
(素子概略構成)
 図1は、本実施形態の固体撮像素子100の概略構成を示す図である。
 固体撮像素子100は、受光面に画素20を配列した撮像部30を備える。これらの画素20には、垂直制御線32を介して、垂直走査回路31から駆動パルスが供給される。また、画素20は、列単位に垂直信号線21に接続される。この垂直信号線21は画素電流源22にそれぞれ接続される。
 一方、画素20から垂直信号線21に対して時分割に出力されるノイズ出力と信号出力は、列アンプ23を介して、CDS回路24(相関二重サンプリング回路)に順次に入力される。このCDS回路24は、両出力の差分をとって真の信号出力を生成する。この真の信号出力は、水平走査回路33からの駆動信号により水平走査され、水平信号線25に順次出力される。この水平信号線25の信号出力は、出力アンプ26を介して出力端子27に出力する。
(画素20の等価回路)
 図2は、上述した画素20の等価回路を示す図である。
 画素20には、フォトダイオード(PD)1が設けられる。PD1は、転送駆動信号(転送ゲート電圧)でゲート制御される転送トランジスタ(TG:以下で転送ゲートとも呼ぶ)4を介してフローティングディフュージョン(FD)8に接続される。FD8は、増幅トランジスタ(AMP)11のゲート電極に接続される。また、FD8は、リセット駆動信号(リセットゲート電圧)でゲート制御されるリセットトランジスタ(RST:以下でリセットゲートとも呼ぶ)13を介して基準電位Vddに接続される。増幅トランジスタ11は、ドレインが電位Vddに接続され、ソースが選択駆動信号(選択ゲート電圧)でゲート制御される選択トランジスタ(SEL:以下で選択ゲートとも呼ぶ)12を介して垂直信号線21に接続される。
 転送トランジスタ4の転送ゲート電圧は転送配線4Hを介して供給される。リセットトランジスタ13のリセットゲート電圧はリセット配線13Hを介して供給される。選択トランジスタ12の選択ゲート電圧は選択配線12Hを介して供給される。転送配線4H、リセット配線13H、および選択配線12Hは、PD1やFD8が形成される基板と同じ基板内の配線領域203(配線層)に形成される。
 その他の構成は図1と同じため、ここでの重複説明を省略する。
 なお、第1実施形態では、増幅トランジスタ11のトップゲート電極にFD8の電位が接続され、バックゲート電極はGND電位に接続される。後述する第4および第5実施形態も同様である。後述する第2実施形態(図4(b)参照)では、増幅トランジスタ11のトップゲート電極は所定電位に接続され、バックゲート電極はFD8の電位に接続される。後述する第3実施形態(図10参照)では、増幅トランジスタ11のトップゲート電極およびバックゲート電極はともにFD8の電位に接続される。
(画素20の素子構造)
 図3は、画素20の素子構造の一部を示す断面図である。入射光は、図3の上方から入射する。
 固体撮像素子100は半導体基板200に形成される。半導体基板200はモノリシック半導体基板である。半導体基板200は、図3の上方(受光面側)から下方(配線領域側)に向かって積層される概略3つの層で構成される。最上方には酸化膜201、最下方には配線領域203、酸化膜201と配線領域203との間には拡散領域202が形成される。なお、拡散領域202を半導体領域と呼ぶ。配線領域203は配線以外の領域が酸化層である。なお、酸化膜および酸化層は、主として半導体基板を酸化した領域から成る膜および層である。
(半導体領域202)
 半導体基板200の半導体領域(拡散領域)202には、基板厚み方向(光が入射する方向)に長い縦長形状のPD1と、基板の面方向に配設される信号読み出し回路300とが形成されている。半導体領域202は、基部領域202Kと、基部領域202Kから光が入射する受光面側に延びる凸領域202Tとを有する。凸領域202TにはPD1が形成され、基部領域202Kには信号読み出し回路300が形成されている。PD1や信号読み出し回路300は、p型領域の所定箇所にp型不純物とn型不純物を適宜の濃度で選択的に注入することにより形成される。
 半導体領域202には、入射した光を光電変換により電荷に変換するPD1と、PD1で光電変換された電荷を画素信号として垂直信号線21に出力するための信号読み出し回路300とが形成される。
 半導体領域202に形成される信号読み出し回路300は、PD1の電荷をFD8に転送する転送トランジスタ4と、転送された電荷を蓄積して電圧に変換するFD8と、FD8の出力電圧を増幅する増幅トランジスタ11と、画素を選択する選択トランジスタ12と、FD8をリセットするリセットトランジスタ13とを含んで構成される。
 転送トランジスタ4は、ゲート電極4gにゲート電圧が印加されると、PD1で発生した電荷をFD8に転送する。
 FD8は、転送トランジスタ4から転送される電荷を蓄積して電圧に変換するキャパシタである。光電変換によりPD1で発生した電荷はFD8のキャパシタにより電圧に変換され、この電圧が増幅トランジスタ11のゲート電圧となる。PD1で発生した電荷QをFD8の容量Cで除した値が画素20の画素信号の基であるから、FD8の容量を小さくすることが撮像素子の感度向上に寄与する。
 増幅トランジスタ11は、ゲート電極11gに印加されるFD8の電圧を増幅する。増幅トランジスタ11で増幅された電圧が選択トランジスタ12から画素信号として出力される。
 リセットトランジスタ13は、ゲート電極13gにゲート電圧が印加されると、FD8に蓄積された電荷を排出して基準電位Vddにリセットする。
(配線領域203)
 配線領域203には配線203Hが設けられている。配線203Hは、上述した転送配線4H、リセット配線13H、および選択配線12Hを含む。
(酸化膜201)
 酸化膜201の表面、すなわち半導体基板200の裏面となる受光面には遮光膜450が形成されている。遮光膜450は、信号読み出し回路300などに光が入射することを防ぐために設けられる。遮光膜450には、PD1へ光が入射するために開口401があけられている。遮光膜450は、半導体領域202の少なくとも一部を遮光する。
(PD1の詳細)
 図3を参照してPD1を詳細に説明する。
 PD1は、n型不純物をp型半導体領域202の所定領域に選択的に注入して形成したp-n接合の光電変換部である。PD1は角柱形状に形成されている。角柱の内方はn型光電変換領域1a、表面はp+領域1bである。PD1の表面の一部分にはn領域が露出している。転送トランジスタ4のゲート電極4gにゲート電圧が印加されると、PD1に蓄積された電荷による電流が流れてFD8に電荷が蓄積される。なお、PD1は角柱形状に限定されず、光が入射する方向に延びた立体であればよい。例えば、円柱、楕円柱、角錐、円錐、楕円錐、球体、楕円体、多面体などでもよい。
 PD1の表面領域1bのp+領域は、光電変換領域1aの空乏層が表面に到達することを防ぐ。この空乏層によって、半導体界面で発生する暗電流が光電変換領域1aへ流れることを防ぐ。すなわち、第1実施形態のPD1は、埋め込み型フォトダイオードである。
 PD1は、信号読み出し回路300が形成される半導体領域202から受光面側に突出して形成されている。換言すると、PD1は、信号読み出し回路300が形成されている半導体領域202の基部領域202Kから受光面側に延在して突出する凸領域202Tに形成されている。すなわち、図3において、PD1は、信号読み出し回路300が形成される基部領域202Kから受光面側に延びる凸形状である。換言すると、PD1の少なくとも一部は、光が入射する方向に沿って延びる凸部を有している。PD1の少なくとも一部は、後述する遮光部452が有する開口部452A(図3参照)よりも光が入射する方向に向かって延びており、遮光部452よりも受光面側にある。なお、PD1の少なくとも一部は、反射膜450または開口401より光が入射する方向に向かって延びていてもよい。
(酸化膜210)
 半導体基板200の受光面側には酸化膜201が形成されている。半導体領域202の凸領域202Tに形成されているPD1の外周には、入射光が進行する光路領域400が形成されている。光路領域400の断面および開口401の形状は、PD1の断面と同様の形状である。光路領域400の受光面側の断面は矩形であり、光路領域400において、PD上面1cから遮光膜452までの間、すなわち光路領域400の底部側(配線領域側)の断面は角環である。光路領域400には酸化層が堆積されている。開口401の形状は矩形である。
 可視光成分の透過率が所定以上であれば、光路領域400内部の材質は酸化層に限定されない。光路領域400内部を空洞としてもよい。なお、光路領域400の断面および開口401の形状は矩形に限定されない。例えば、光路領域400の断面および開口401の形状は、円、楕円、多角形、円環であってもよい。
 光路領域400の内周面には反射膜451が形成され、光路領域400の底部(配線領域側の底面)には遮光膜452が形成されている。PD1は、遮光膜452の開口部452Aを貫通して基部領域202Kからマイクロレンズ462に向かって凸形状に形成されている。反射膜451および遮光膜452は、たとえば反射率の高いアルミなどをPVDにて形成することができる。反射膜451は反射率の高い材料、遮光膜452は光透過率の低い材料で形成されればよく、同じ材料であっても、異なる材料であってもよい。
 光路領域400の開口401にはカラーフィルタ461とマイクロレンズ462が設けられている。後述するように、カラーフィルタ461とマイクロレンズ462を省略することもできる。
 半導体領域202の下方の配線領域203には、酸化層203Sで互いに絶縁される各種配線203Hが形成されている。配線203Hは、垂直信号線21など、単位画像20の画素信号を外部チップ、すなわち別の半導体基板に形成した画像メモリなどに出力する種々の配線を含む。上述した転送配線4H、リセット配線13H、選択配線12Hなども含まれる。
 以上説明した固体撮像素子100による光電変換動作を説明する。
 固体撮像素子100の受光面にはマトリクス状に画素が配列されている。撮像素子100に入射した光は、画素ごとに設けられているマイクロレンズ462で集光される。集光された光はカラーフィルタ461で波長選択されて開口401から光路領域400に入射する。入射光の一部はPD1の面1cから内部に入射する。光路領域400に入射した光のうち面1cからPD1に入射した光以外の光、すなわちPD1の側面1dと反射膜451との間の光路領域400に入射した光は、反射膜451で反射してPD1に側面1dから入射する。PD1は、面1cと側面1dのから入射する光を電荷に光電変換する。これにより、PD1は入射した光からより効率良く電荷を発生させる。
 光路領域400の底部に入射する光は遮光膜452で遮光される。遮光膜452は、入射光が信号読み出し回路300が形成されている半導体領域202に入射することを防ぐ。これにより、読み出し回路300へ入射した光によるノイズの発生を低減することができる。遮光膜452は、上述したようにPD1は凸形状であるため、PD1が光の入射する方向に向かって延びる部分に開口部452A(図3参照)を有する。
 転送トランジスタ4とリセットトランジスタ13でPD1とFD8をリセットしてから所定の蓄積時間が経過した時点で転送トランジスタ4をオンすると、PD1に蓄積された電荷による検出電流によりFD8に電荷が蓄積される。FD8の容量による電圧は増幅トランジスタ11のゲート電極11gに印加され、増幅トランジスタ11はFD8の電圧を増幅する。増幅された電圧は選択トランジスタ12により選択されて画素信号として垂直信号線21に出力される。
 PD1からFD8への検出電流は、半導体基板の表面の厚み方向成分を持った矢印4Cのような方向に流れる。
 特許文献1の固体撮像素子において、電荷を画素信号として取り出す信号読み出し回路は、転送回路と増幅回路と選択回路の間で信号を半導体基板表面に沿って転送する。
 第1実施形態の固体撮像素子1では、PD1からFD8までの信号経路が基板厚み方向の成分を持った経路4Cとなり、その分、転送トランジスタ4の基板表面方向の大きさを小さくすることができる。すなわち、画素の小型化を図ることができる。
 以上説明した第1実施形態による固体撮像素子の作用効果は以下のとおりである。
(1)固体撮像素子100は、入射した光を光電変換して電荷を生成するPD(光電変換領域)と、PD1から電荷が転送されるFD(電荷転送領域)8を含む読み出し回路300とが形成された半導体領域202を備える。半導体領域202,すなわちPD1の少なくとも一部は、受光面側に設けた光路領域(入射領域)400に突出して設けられている。
 このようなPD1の構成により、入射光がPD1の面1cと側面1dをから入射するので、PD1の受光面積が大きくなる。したがって、S/N比が大きくなり、感度が向上する。また、露出時間の短縮によるS/N比の劣化、画素の微小化に伴うS/N比の劣化を防止することができる。したがって、たとえば1000~10000フレームのような高速読み出しされる固体撮像素子であってもノイズの少ない高画質の画像を得ることができる。
(2)PD1は光路領域400の底部を貫通して受光面側まで延在している。PD1の側面から入射する光の一部が、PD1の側面に沿って光路領域内を下方に入射し、受光面側から読み出し回路300が形成されている半導体領域202に光が入射しないように、光路領域400の底部には遮光膜452が形成されている。
 そのため、PD1の側面からの光の入射を可能とした構成を採用しても、読み出し回路300への漏れ光によるノイズの発生を低減することができる。
(3)PD1の少なくとも一部は、FD8を含む読み出し回路300の形成面より受光面側に延びている。そのため、PD1で発生した電荷をFD8に転送する方式が半導体基板の面に平行な横転送方式ではなく、半導体基板厚み方向の成分を有する信号経路4cで電荷の転送が行われる。その結果、PD1の電荷をFD8に横転送する従来技術の固体撮像素子に比べると、画素を小型化できる。
 第1実施形態による固体撮像素子100は次のように説明することもできる。
(1)固体撮像素子100は、マイクロレンズ462を透過して入射した光を受光するPD1(受光部)を有する半導体基板202と、マイクロレンズ462を透過して半導体基板202(の光路領域400)に入射する光の一部を遮光する遮光膜(遮光部)452とを備える。PD1は、マイクロレンズ462と遮光膜452との間で、マイクロレンズ462を透過して入射した光を受光する。
(2)第1実施形態による固体撮像素子100のPD1(受光部)は、マイクロレンズ462と遮光膜(遮光部)452との間で、マイクロレンズ462の光軸と交差する方向から入射した光を受光する受光面1dを有する。
(3)第1実施形態による固体撮像素子100のPD1(受光部)は、マイクロレンズ462と遮光膜(遮光部)452との間で、マイクロレンズ462を透過して入射した光を受光する複数の受光面1c,1dを有する。
(4)第1実施形態による固体撮像素子100のPD1(受光部)は、遮光膜(遮光部)452よりも光が入射してくる側で光を受光する受光面1c,1dを有する。
(5)第1実施形態による固体撮像素子100のPD1(受光部)の少なくとも一部は、遮光膜(遮光部)452よりも入射光が入射してくる側に突出する。換言すると、PD1(受光部)の少なくとも一部は、光路領域400の底部とマイクロレンズ462との間に凸形状に形成されている。
(6)上記(5)の固体撮像素子100の遮光膜(遮光部)452は、PD1が貫通する領域である開口部452Aを有し、PD1(受光部)の少なくとも一部は、開口部452Aから、遮光膜(遮光部)452よりも入射光が入射してくる側に突出する。
(7)上記(1)~(4)の固体撮像素子100の半導体基板202は、マイクロレンズ462と遮光膜(遮光部)452との間に、マイクロレンズ462を透過した光をPD1(光電変換部)に入射させる光路領域(導波路)400を有する。
(8)上記(5)の固体撮像素子100の光路領域(導波路)400は、マイクロレンズ462を透過し遮光膜(遮光部)452で遮光された光をPD1(光電変換部)に入射させる。
(9)上記(7)、(8)の固体撮像素子100の遮光膜(遮光部)452は、PD1が貫通する領域である開口部452Aを有し、光路領域(導波路)400は、マイクロレンズ462と開口部452Aとの間に設けられる。
(10)第1実施形態の固体撮像素子100の受光部の少なくとも一部は、受光した光を光電変換して電荷を生成する光電変換部を有する。
 第1実施形態の固体撮像素子100はまた、光電変換部で生成された電荷を蓄積するフローティングディフュージョン(蓄積部)8と、光電変換部で生成された電荷をフローティングディフュージョン(蓄積部)8に転送する転送トランジスタ(転送部)4とを備える。転送トランジスタ(転送部)4は、マイクロレンズ462の光軸方向において、光電変換部とフローティングディフュージョン(蓄積部)8との間に設けられる。
 第1実施形態の固体撮像素子100は、図3に示す矢印4cが、光電変換部で生成された電荷をフローティングディフュージョン(蓄積部)8に転送する転送路である。
《第2実施形態》
 図4~図8に基づいて第2実施形態の固体撮像素子を説明する。
 第2実施形態が第1実施形態と相違する点は以下のとおりである。
(1)固体撮像素子100AがSOI基板500を用いて形成されている点
(2)PD1の基板表面側の直下にFD8が配置されている点
(3)PD1とFD8と転送回路とリセット回路が一方の基板に形成され、増幅トランジスタ11が他方の基板に形成されている点
(4)FD8が配線を介さず増幅トランジスタ11のバックゲート電極に直接接続されている点
(5)増幅トランジスタ11のトップゲート電極に所定電位(たとえば基準電位Vdd)が印加される点
(6)光路領域底部の遮光膜が転送トランジスタ4の転送配線4Hで構成される点
(7)選択トランジスタ12を異なる基板に設けた点
(画素20の素子パターンの概略)
 図4(a)は、固体撮像素子100Aにおける画素20Aの素子パターンの一部を示す断面図である。図3と同様の箇所には同様の符号を付して詳細説明は省略する。
 固体撮像素子100AはSOI半導体基板500に形成される。半導体基板500は、第1半導体基板501と第2半導体基板502とを埋め込み酸化層503で一体化して形成されている。
 第1半導体基板501には、基板厚み方向(光が入射する方向)に長い縦長形状のPD1と、転送トランジスタ4を含む転送回路と、FD8と、リセットトランジスタ13を含むリセット回路とが形成されている。
 第2半導体基板502には、増幅トランジスタ11を含む増幅回路と、PD1のアノードをグランド電位に接続するGND端子のスルーホール配線502Hと、リセットトランジスタ13のドレインと増幅トランジスタ11のドレインを所定電位(たとえば基準電位Vdd)に接続するスルーホール配線502Hとが形成されている。第2半導体基板502はSTI51により素子分離を行っている。
 符号4Hは、転送トランジスタ4のゲート電極4gにゲート電圧を印加する転送配線である。符号13gはリセットトランジスタ13のゲート電極であり、このゲート電極13gに図示しないリセットゲート配線からリセット電圧が供給される。
(画素20の等価回路)
 図4(b)は図4(a)に対応する画素20の等価回路を示す図である。
 図2に示す第1実施形態の等価回路と相違する点は以下である。
 FD8が増幅トランジスタ11のバックゲート電極に接続される点と、トップゲート電極に所定電位(たとえば基準電位Vdd)が印加される点と、選択トランジスタ12を含む選択回路が別基板に設けられる点である。
(固体撮像素子100Aの詳細)
 図5~図8も参照して第2実施形態の固体撮像素子100Aの詳細を説明する。
 図5は、第2実施形態の固体撮像素子100Aの画素20の平面構造を示し、図6は、図5の矢印VI方向から観た縦断面図である。図7は、図5の矢印VII方向から観た縦断面図である。図8は、図5の矢印VIII方向から観た縦断面図である。
(第1半導体基板501)
 図6を参照して第1半導体基板501について説明する。
 第1半導体基板501は、PD1に対応する箇所が受光面側に延びる半導体領域501aを含む。半導体領域501aは、薄い層形状の基部領域501aKと、基部領域501aKから受光面側にPD1が延びる凸領域501aTとを有する。凸領域501aTには、p型半導体領域501aの所定箇所にn型不純物やp型不純物を選択的に注入することにより、PD1が形成されている。基部領域501aKにも同様の不純物注入により、転送トランジスタ4を含む転送回路と、FD8と、リセットトランジスタ13を含むリセット回路とが形成されている。
(半導体領域501a)
 図6を参照すると、半導体領域501aの薄い層形状の基部領域501aKには、スルーホールによってGND端子に接続されるp+コンタクト領域と、スルーホールによって基準電位端子Vddに接続されるn+コンタクト領域が形成されている。p+コンタクト領域によってPD1のアノードとp+表面領域1bはGND電位に固定される。n+コンタクト領域によって、リセットトランジスタ13のドレインと増幅トランジスタ13のドレインが基準電位端子Vddに接続される。
 第1半導体基板501は、半導体領域501aの受光面側に設けられた酸化膜501bを有する。酸化膜501bは、半導体領域501aの凸領域501aTとPD1の外周に形成した光路領域400Aを除いた箇所に形成されている。
 酸化膜501bには、半導体領域501aの突部であるPD1を横断するように転送配線4Hが形成されている。酸化膜501bにはまた、転送配線4Hよりも受光面側の領域において、凸形状のPD1の外周を取り囲む断面矩形の光路領域400Aが設けられている。
 転送配線4Hは、光路領域400Aに入射した光が図4の下方(受光面とは反対側)に入射しないよう、光路領域400Aを横断して形成されている。したがって、図3で説明した遮光膜452と同様の機能を有することになり、専用の遮光膜452は不要である。
 PD1は、第1実施形態と同様に、光電変換領域1aと表面領域1bとを有する埋め込み型フォトダイオードである。表面領域1bのp+領域は、光電変換領域1aの空乏層が表面に到達することを防ぐ。これによって、半導体界面で発生する暗電流が光電変換領域1aへ流れることを抑制する。
(PD1,FD8の詳細)
 PD1,FD8の構成について図6~図8を参照して詳細に説明する。
 半導体基板501aの凸領域501aTの上面側の所定領域、すなわち、転送配線4Hよりも受光面側のp型領域において、n型不純物を適宜の濃度で注入してp-n接合のPD1を形成する。図6では、PD1にはn領域とn+領域が形成されている。
 FD8は、半導体基板基部領域501aKと凸領域501aTとの境界領域においてn型不純物を注入して形成されている。図5のVI方向から観た図6において、FD8は便宜上L字形状で示している。PD1は、第1実施形態と同様の形状を有している。PD1は、少なくとも一部が光の入射する方向に向かって凸部を有している。換言すれば、PD1の少なくとも一部は、転送配線4Hが有する開口部4HAを貫通して光が入射する方向に向かって延びており、転送配線4Hよりも受光面側にある。なお、PD1の少なくとも一部は、反射膜450または開口401よりも光が入射する方向に向かって延びていてもよい。
 FD8の上端のn型領域がp型領域を介してPD1のn領域と対向している。この対向領域で、PD1に蓄積された電荷による検出電流を流すように、このチャンネルを制御する転送ゲート電極4gが凸領域501aTの外周部の酸化膜501bにポリシリコンで形成されている。転送ゲート電極4gは転送配線4Hと接続されている。転送配線4Hは図8に示すようにスルーホールで貫通するTG端子4Tに接続されている。転送ゲート信号がTG端子4Tに供給されると、転送トランジスタ4によりPD1の電荷がFD8に転送される。
 一方、FD8の下部(受光面側の反対側)は、埋め込み分離層503を介して増幅トランジスタ11のチャネル部を覆っており、バックゲート電極として働く。
 転送ゲート電極4gの下方の酸化膜501bにはリセットゲート電極13gがポリシリコンで形成されている。リセットゲート電極13gは、図8に示すように、第1半導体基板501と第2半導体基板502を貫通するスルーホール配線502Hによりリセットゲート端子RSTと接続されている。
 転送トランジスタ4により、PD1で発生した電荷による検出電流が、半導体基板の表面の厚み方向成分を持った矢印4C(図6参照)のような方向に流れる。FD8は、増幅トランジスタ11のバックゲート電極として働く。増幅トランジスタ11のトップゲート電極11gには所定電位(たとえば基準電位Vdd)が接続されている。FD8の電位が変動し、それに応じて増幅トランジスタ11はFD8の電圧を増幅する。増幅トランジスタ11で増幅した電圧は、基板表面に沿った横転送方式で図示しない選択トランジスタ12に供給されて垂直信号線から画素信号として出力される。
 従来は、PD1で発生した電荷による検出電流が半導体基板の表面に沿った方向に流れる。一方、第1実施形態の固体撮像素子1では、PD1からFD8までの信号経路は基板厚み方向の成分を持った経路となり、その分、転送トランジスタ4の基板表面方向の大きさを小さくすることができる。すなわち、画素の小型化を図ることができる。
 第2実施形態の固体撮像素子100Aは第1実施形態と同様の作用効果を得ることができる。
 すなわち、第2実施形態の固体撮像素子100Aは、マイクロレンズ462を透過して入射した光を受光するPD1(受光部)を有する半導体基板500と、マイクロレンズ462を透過して半導体基板500に入射する光の一部を遮光するTG配線4H(遮光部)とを備える。PD1は、マイクロレンズ462とTG配線4H(遮光部)との間で、マイクロレンズ462を透過して入射した光を受光する。
 第2実施形態の固体撮像素子100AのPD1(受光部)の少なくとも一部は、受光した光を光電変換して電荷を生成する光電変換部を有する。
 第2実施形態の固体撮像素子100Aはまた、光電変換部で生成された電荷を蓄積するフローティングディフュージョン(蓄積部)8と、光電変換部で生成された電荷をフローティングディフュージョン(蓄積部)8に転送する転送トランジスタ(転送部)4とを備える。転送トランジスタ(転送部)4は、マイクロレンズ462の光軸方向において、光電変換部とフローティングディフュージョン(蓄積部)8との間に設けられる。図6を参照すると、転送トランジスタ4により、PD1で発生した電荷による検出電流が、半導体基板の表面の厚み方向成分を持った矢印4C(図6参照)のような方向に流れる。
 第2実施形態の固体撮像素子100Aは、図6に示す矢印4cが、光電変換部で生成された電荷をフローティングディフュージョン(蓄積部)8に転送する転送路である。
 加えて、次のような作用効果を奏することができる。
(1)FD8をPD1の直下に配設したので画素を高密度に実装できる。
(2)PD1の直下に配設したFD8が配線を介さず、増幅トランジスタ11のバックゲート電極として働くようにしたので、FD8の容量を小さくでき、変換ゲインを大きくすることができる。
(3)光路領域底部の遮光を転送配線4Hで行うようにしたので、第1実施形態で必要であった専用の遮光膜452が不要となる。
 以上説明した第2実施形態を次のように変形して実施することもできる。
《第2実施形態の変形例1》
 図9は、第2実施形態の変形例1の固体撮像素子100Bの構成を示す図であり、第2実施形態の図6と対応する。図10は図9の固体撮像素子100Bの等価回路を示す図であり、第2実施形態の図4(b)と対応する。図6および図4(b)と同様な箇所には同一の符号を付して相違点のみ主に説明する。
 図6の固体撮像素子100Aでは、FD8を配線を介さず増幅トランジスタ11のバックゲート電極に接続し、トップゲート電極11gには所定電位(たとえば基準電位Vdd)を印加するものとした。これに対して、図9の固体撮像素子100Bでは、増幅トランジスタ11のトップゲート電極11gに配線601によりFD8を接続する。したがって、増幅トランジスタ11のバックゲート電極とトップゲート電極11gとに同電位のゲート駆動信号が入力される。
 第2実施形態の変形例1の固体撮像素子100Bも第2実施形態と同様の作用効果を奏することができる。
 第2実施形態の変形例1の固体撮像素子100Bでは、増幅トランジスタ11のバックゲート電極とトップゲート電極の双方にFD8由来の同電位のゲート駆動信号が入力されるので、次のような作用効果も得られる。
(1)第2実施形態ではトップゲート電極に印加する所定電位(たとえば基準電位Vdd)を電荷読み出しタイミングでトップゲート電極に印加する必要があり、回路構成が複雑になる。FD8由来のゲート駆動信号をトップゲート電極とバックゲート電極とに入力することにより、そのようなタイミング回路が不要となり回路が簡素化される。
《第2実施形態の変形例2》
 図11は、第2実施形態の変形例2の固体撮像素子100Cの構成を示す図であり、第2実施形態の変形例1の図9と対応する。図12は図11の固体撮像素子100Cの等価回路を示す図であり、第2実施形態の図4(b)と対応する。図9および図4(b)と同様な箇所には同一の符号を付して相違点のみ主に説明する。
 図6の固体撮像素子100Aでは、FD8を配線を介さず増幅トランジスタ11のバックゲート電極に接続し、トップゲート電極には所定電位(たとえば基準電位Vdd)を印加するものとした。これに対して、図11の固体撮像素子100Cでは、増幅トランジスタ11のバックゲート電極の電位をp領域のGND電位とする。
 第2実施形態の変形例2の固体撮像素子100Cも第2実施形態と同様の作用効果を奏することができる。
《第2実施形態の変形例3》
 図13は、第2実施形態の変形例3の固体撮像素子100Dの構成を示す図であり、第2実施形態の図7と対応する。図13の固体撮像素子100Dの等価回路は図12で示される。図7および図4(b)と同様な箇所には同一の符号を付して相違点のみ主に説明する。
 図6の固体撮像素子100Aでは、FD8を配線を介さず増幅トランジスタ11のバックゲート電極に接続し、トップゲート電極11gには所定電位(たとえば基準電位Vdd)を印加するものとした。これに対して、図13の固体撮像素子100Dでは、増幅トランジスタ11のトップゲート電極を配線を介さずにFD8に接続し、増幅トランジスタ11のバックゲート電極はGND端子を直接p領域に接続する。すなわち、バックゲート電極の構造はいわゆるMOS構造ではない。
 第2実施形態の変形例3の固体撮像素子100Dも第2実施形態と同様の作用効果を奏することができる。
《第3実施形態》
 図14は、第3実施形態の固体撮像素子100Eの構成を示す図であり、第1実施形態の図2、図3と対応する。図2、図3と同様な箇所には同一の符号を付して相違点のみ主に説明する。
 第3実施形態の固体撮像素子100Eは、いわゆるグローバルシャッタを可能とする素子であり、画素ごとに画素信号を保存するメモリを備える。
 固体撮像素子100Eは、1枚の半導体基板内200に形成される。薄い層の半導体基部202K内に、FD8,メモリ81、さらに、オーバーフローティングゲート82が形成されている。TG1,TG2は、PD1の電荷をメモリ81とFD8に転送する転送ゲートのゲート電極である。転送ゲート電極TG2をゲート電極TG1と重複して形成することにより、読み出し回路への光の入射を防止できる。
 また、凸状半導体領域202T内に形成したPD1の外周の光路領域400Bの形状を角柱形状ではなく、角錐形状としたものである。光路領域400Bは、受光面から凹んだすり鉢状の光入射領域を形成する。光路領域400Bは空洞である。
 第1実施形態と同様に光路領域400BにSiO2などの可視光の透過率が高い材料を堆積させてもよい。
 白黒の固体撮像素子であれば、カラーフィルタは不要である。 酸化膜201の受光面の遮光膜450と、光路領域400の周面反射膜451と、光路領域400の底面の遮光膜452を別々の材料で形成せず、同一の材料で形成してもよい。
 第3実施形態の固体撮像素子100Eも第1実施形態と同様の作用効果を奏することができる。
《第4実施形態》
 図15は、第4実施形態の固体撮像素子100Fの構成を示す図であり、第3実施形態の図14と対応する。図14と同様な箇所には同一の符号を付して相違点のみ主に説明する。
 第3実施形態の固体撮像素子100Eはいわゆる裏面照射型の素子である。第4実施形態の固体撮像素子100Fは受光面側に配線領域を配置した表面照射型の素子である。光路領域400のさらに外側の領域、すなわち受光面側の酸化膜201に配線203Hが形成されている。その他の構成は第3実施形態と同様であり説明を省略する。
 第4実施形態の固体撮像素子100Fも第1実施形態と同様の作用効果を奏することができる。
《第5実施形態》
 図16は、第5実施形態の固体撮像素子100Gの構成を示す図であり、第4実施形態の図15と対応する。図15と同様な箇所には同一の符号を付して相違点のみ主に説明する。
 第5実施形態の固体撮像素子100Gも受光側に配線領域を配置した表面照射型の素子である。第4実施形態の固体撮像素子100Fとの相違点は、縦長のPD1の外周に形成した光路領域の形状である。
 第5実施形態の固体撮像素子100Gは、1枚の半導体基板内に形成される。薄い層の半導体基部202K内に、FD8,メモリ81、さらに、オーバーフローティングゲート82が形成されている。また、凸状半導体領域202T内に形成したPD1の外周には、光路領域400Bに代えて、断面矩形の角柱状の光導波路400Cが形成されている。
 第5実施形態の固体撮像素子100Gも第1実施形態と同様の作用効果を奏することができる。
 以上説明した各実施形態を次のように変形して実施することもできる。
 以下説明する変形例は、固体撮像素子の色別の高感度化と分離特性を向上させるようにしたものである。
 一般的に、撮像素子の内部量子効率はフォトダイオードの形成位置と光の波長で決まる光吸収深さに依存する。シリコン表面側にフォトダイオードが形成される表面照射型の画素では、内部量子効率は短波長光ほど高く、長波長光ほど低い。逆に、裏面照射型の画素では、シリコン基板の深い領域にフォトダイオードが形成されるので、内部量子効率は長波長光ほど高く、短波長光ほど低くなる。
 フォトダイオードをある固定の深さに形成するのではなく、波長毎に最適な深さにフォトダイオードを形成できれば、表面照射型でも裏面照射型でも内部量子効率は向上する。しかし、シリコン基板の深い領域にフォトダイオードを形成してしまうと完全転送が難しくなるため、従来は作成が困難であった。
 また、像面位相差検出機能を持つ撮像素子は、一般に画素内にP型分離で左右に分割された二つのフォトダイオードを持つ。上記のようにフォトダイオード深さを波長毎に変える場合、P型分離深さも同じ深さに形成する必要があるが、シリコンの深い領域で良好なP型分離構造を形成することは困難である。シリコンの深い領域でP型分離が不十分だと、表面照射型素子では長波長光で、裏面照射型素子では逆に短波長光で分離特性が悪くなる。
 以下の変形例の構成を有する固体撮像素子は、垂直型転送ゲート構造を用いて光波長に応じた深さのフォトダイオードを実現することで、感度を向上させ、また、光波長に応じてフォトダイオード開口率を調整することで、分離特性を向上させることができる。
《変形例1》
 第1実施形態~第5実施形態では、受光面からPDまでの深さ位置は波長選択した光にかかわらず固定である。変形例1では、入射面(受光面)からPDまでの深さ位置を波長選択した光に応じた位置、すなわちRGB画素に応じた位置とする。さらに変形例1では、垂直型転送ゲート構造を採用してPDからFDへ電荷を転送する。
 図17~図20の固体撮像素子100H~100Kは、いずれもPD1をRGBの波長に応じた深さに配置し、PD1の電荷を垂直型転送ゲートFD61R、61G、61BでFD8に転送するものである。
 図17の固体撮像素子100Hは、Si層651と配線領域652とから成る半導体基板600上にRGBの画素をベイヤ配列などで形成したものである。
 例えば、カラーフィルタがベイヤ配列の表面照射型画素では、R画素、G画素、B画素の順でフォトダイオードをシリコン層の深い位置に形成し、垂直型転送ゲート61R、61G、61Bのゲート長もそれに応じて長さを変える。裏面照射型画素では逆にフォトダイオードをB画素、G画素、R画素の順で深く形成し、ゲート長もそれに応じた長さにする。
 具体的には、R画素のSi層651内には、Si層651の表面から第1の深さ位置にPD1が、Si層651の表面にはFD8が形成されている。G画素のSi層651内には、Si層651の表面から第2の深さ位置にPD1が、Si層651の表面にはFD8が形成されている。B画素のSi層651内には、Si層651の表面から第3の深さ位置にPD1が、Si層651の表面にはFD8が形成されている。第1の深さ位置<第2の深さ位置<第3の深さ位置である。
 RGBの各画素において、PD1とFD8との間で電荷を転送する垂直型転送ゲート61R、61G、61B(以下、代表して符号61とする)がSi層651内に設けられている。ゲート長は、転送ゲート61R<転送ゲート61G<転送ゲート61Bである。
 配線領域652には、垂直型転送ゲート61にゲート制御信号を入力する配線652Hが設けられている。配線領域652Hにはまた、FD8の電位を不図示の増幅トランジスタに転送する配線653Hも設けられている。なお、配線領域652の配線以外の領域はSiO2等の酸化膜652Sである。
 図18の固体撮像素子100Iは、図17の固体撮像素子100Hを表面照射型の素子に代えたものである。
 具体的には、R画素のSi層651内には、Si層651の表面から第4の深さ位置にPD1が、Si層651の表面にはFD8が形成されている。G画素のSi層651内には、Si層651の表面から第5の深さ位置にPD1が、Si層651の表面にはFD8が形成されている。B画素のSi層651内には、Si層651の表面から第6の深さ位置にPD1が、Si層651の表面にはFD8が形成されている。第4の深さ位置>第5の深さ位置>第6の深さ位置である。
 RGBの各画素において、PD1とFD8との間で電荷を転送する垂直型転送ゲート61R、61G、61B(以下、代表して符号61とする)がSi層651内に設けられている。ゲート長は、転送ゲート61R>転送ゲート61G>転送ゲート61Bである。
図17と同一の箇所には同一の符号を付して詳細な説明は省略する。
 図17、図18の固体撮像素子100H、100Iは次のような作用効果を奏する。
(1)図17および図18に示した変形例の固体撮像素子100Hと100Iは、画素内のフォトダイオードの形成深さと、垂直型転送ゲートのゲート長が、カラーフィルタ色毎に異なるようにした。色毎にPD1が異なる深さに形成されていても、垂直型転送ゲート長を最適化し、転送ゲートをPD1に隣接して配置させることで、転送特性を悪化させずに内部量子効率を向上できる。
《変形例2》
 画素内に2つのフォトダイオードがある場合にも同構造を適用しても良い。
 具体的には、図19の固体撮像素子100Jは、図17の固体撮像素子100Hの一つの画素に一対のPD1L,PD1Rを設けたいわゆる2PD型の素子である。一対のPD1L,PD1Rに対応するFD8L、8Rが設けられている。
 同一の箇所には同一の符号を付して詳細な説明は省略する。
 フォトダイオードが4つ、8つ、・・・と増えた場合も同様である。
 図20の固体撮像素子100Kは、図18の固体撮像素子100Iの一つの画素に一対のPD1L,PD1Rを設けたいわゆる2PD型の素子である。一対のPD1L,PD1Rに対応するFD8L、8Rが設けられている。一対のPD1LとPD1Rとの間隔は波長が長いほど広くしている。
 同一の箇所には同一の符号を付して詳細な説明は省略する。
 フォトダイオードが4つ、8つ、・・・と増えた場合も同様である。
 図19、図20の固体撮像素子100H、100Iは次のような作用効果を奏する。
(1)図19、図20固体撮像素子は、画素内に2つのフォトダイオードがある構造で、カラーフィルタ色毎にフォトダイオード開口率が異なる。図18、図19の例では、2つのフォトダイオード間の距離を波長が長いほど小さくしている。そのようにすることで、色毎にフォトダイオードが異なる深さに形成されていても、色毎に2つのフォトダイオード間の距離を調整することで、フォトダイオード分離部の電子の収集効率を変化させることが出来るので、分離特性の最適化が出来る。
 例えば、ベイヤ配列の表面照射型画素構造では、深い領域で吸収されるR波長ほど分離が悪いので、二つのフォトダイオード間距離をR画素、G画素、B画素の順で広く作ると、R画素でも分離が良くなる。逆に、裏面照射型画素構造では、浅い領域で吸収されるB波長ほど分離が悪いので、二つのフォトダイオード間距離をB画素、G画素、R画素の順で広く作ると、B画素でも分離が良くなる。
 以上説明した図17~図20の固体撮像素子100H~100Kによれば、色別の感度を向上による高SN比が実現でき、分離特性向上によりオートフォーカス精度が向上する。
《第3実施形態の変形例》
 図21は、第3実施形態の変形例である固体撮像素子100Lを示す図である。
 第3実施形態を示す図14と同様な箇所には同様な符号を付して相違点を説明する。
 主たる相違点は次の通りである。第3実施形態の固体撮像素子100Eの半導体基板202は、半導体基部202Kと、凸状半導体領域202Tとを含む。凸状半導体領域202T内にはPD1が形成され、その外周に断面が角錐形状の光路領域400Bを形成したものである。
 第3実施形態の変形例の固体撮像素子100Lは、半導体基板2000を備えている。半導体基は2000は、半導体基部2000Kと、その上面に係止された遮光部2000Sと、遮光部2000Sを間に介在させて上層に形成された酸化層2001と、半導体基部2000Kの下面に形成された配線層2002とを備えている。酸化層2001には画素単位を構成する角錘形状の凹部2001Rが形成されている。酸化層2001の上面には、凹部2001Rの開口を除いた領域に遮光部2001Sが形成されている。凹部2001Rの表面には遮光部が形成されず、傾斜する側壁面と底面にPD(光電変換部)2003が形成されている。凹部2001Rは入射光を受光する光路領域400Dである。
 半導体基部2000Kには、フロ-ティングディフュージョン(FD)8と、PD2003で光電変換された電荷をフロ-ティングディフュージョン8に転送するための転送トランジス4とが形成されている。転送トランジスタ4はゲート電極TG1の信号制御による導通非導通が制御される。フロ-ティングディフュージョン8に蓄積された電荷は、増幅回路SFampで増幅され、垂直信号線に読み出される。
 このように構成された第3実施形態の変形例の固体撮像素子100Lは、図示しないマイクロレンズを透過して入射した光を受光するPD2003と、PD2003が形成される半導体基部2000Kと、マイクロレンズを透過して半導体基板2000Kに入射する光の一部を遮光する遮光部2000Sとを備えている。PD2003は、図示しないマイクロレンズと遮光部2000Sとの間で、マイクロレンズを透過して入射した光を受光する。
 本発明による撮像素子は以上で説明した実施形態や変形例に限定されず、以下のような撮像素子も本発明に含まれる。図も参照して説明する。
 図1~図3を参照して説明する。
(1)固体撮像素子100は、入射光を光電変換する光電変換部1を含む光電変換領域、および、光電変換された電荷を読み出す回路300が形成される半導体領域202と、開口部401を有し、半導体領域202の少なくとも一部を遮光する遮光部450とを備える。光電変換部1の少なくとも一部は、開口部401から入射する光の入射方向に沿って設けられる。すなわち、光電変換部1の少なくとも一部は、マイクロレンズ462の光軸方向に延在している。
 光電変換部1の少なくとも一部が開口部401から入射する光の入射方向に沿って設けられているので、基板平面視において、開口部401と光電変換部1が重なって配置され、画素の小型化に寄与する。
(2)上記(1)の固体撮像素子100において、光電変換領域の少なくとも一部は、開口部401から入射光が入射する側に突出されている。
 たとえば、光電変換領域は、開口部401から入射光が入射する側に凸部を有する。
(4)固体撮像素子100は、入射光を光電変換して電荷を生成する光電変換部1を含む光電変換領域と、光電変換領域から電荷が転送される電荷転送部4を含む電荷転送領域と、光電変換領域と電荷転送領域とが設けられる半導体領域202とを備える。半導体領域202の少なくとも一部は、入射光の入射する側に凸領域202Tを有し、光電変換部1の少なくとも一部は凸領域202Tに設けられる。
 半導体領域202の少なくとも一部が、開口部401から入射光の入射する側に凸領域202Tを有し、光電変換部1の少なくとも一部が凸領域202Tに設けられている。基板平面視において、開口部401と光電変換部1が重なって配置されているので、画素を小型化することができる。
(5)上記(4)の固体撮像素子100は開口部401を有し、固体撮像素子100は、半導体領域202の少なくとも一部を遮光する遮光部450を備え、光電変換領域は、開口部401から入射する光の入射方向の凸領域202Tに設けられる。
(6)固体撮像素子100は、入射した光を光電変換して電荷を生成する光電変換部1を含む光電変換領域と、光電変換領域から電荷が転送される電荷転送部4を含む電荷転送領域と、光電変換領域と電荷転送領域とが設けられる半導体領域202とを備える。半導体領域202の少なくとも一部は、入射領域400に突出して設けられ、光電変換領域の少なくとも一部は、入射領域400に突出して設けられる。
 半導体領域202の少なくとも一部が入射領域400に突出して設けられ、光電変換領域の少なくとも一部が入射領域400に突出して設けられているので、画素を小型化することができる。また、入射領域400に光電変換領域の少なくとも一部が突出して設けられているので、光電変換領域の周囲からも光が入射されるので、素子の変換ゲインが向上する。
(7)上記(6)の固体撮像素子100において、半導体領域202の少なくとも一部は、入射領域400に入射光の入射する方向に凸の領域202Tを有し、光電変換領域1の少なくとも一部は、凸領域202Tに設けられている。
(8)上記(7)の固体撮像素子100は開口部401を有し、固体撮像素子100は半導体領域202の少なくとも一部を遮光する遮光部450を備える。凸領域202Tは、開口部401から入射する光の入射方向に延在する領域である。
(9)上記(6)~(8)の固体撮像素子100において、入射領域は、入射光の光路領域400である。
(10)上記(1)~(9)の固体撮像素子100において、遮光部450は、光電変換領域を除いた半導体領域202を遮光するように形成されている。
(11)上記(1)~(10)の固体撮像素子において、入射光を受光する面と対向する他の面に配線が形成され配線領域203が設けられている。
 図4~図8を参照して説明する。
(12)上記(4)~(9)の固体撮像素子において、固体撮像素子は、埋め込み酸化層503で一の半導体領域501と他の半導体領域502に分離されたSOI基板500に設けられ、また、固体撮像素子は、電荷転送領域の電荷蓄積部8の出力を増幅する増幅部11を含む増幅領域を含み、光電変換領域と電荷転送領域とは一の半導体領域501に形成され、増幅領域は他の半導体領域502に形成されている。
(13)上記(12)の固体撮像素子において、電荷転送領域には、光電変換領域で光電変換された電荷を転送する転送部4と、転送された電荷を蓄積するフローティングディフュージョン8とが設けられ、フローティングディフュージョン8は光電変換部1の下方に形成されている。
(14)上記(13)に記載の固体撮像素子において、増幅部11はフローティングディフュージョン8の直下に配置され、埋め込み酸化層503を貫通する配線でフローティングディフュージョン8と接続されている。
(15)上記(12)~(14)の固体撮像素子において、増幅部11で増幅した出力を選択する選択部12を有するISO基板500とは別の半導体基板が、IOS基板500の他の半導体領域502に積層されている。
 本発明は、以上説明した実施形態、変形例に限定されない。本発明を逸脱しない範囲で種々の変形、変更を行った固体撮像素子も本発明の範囲内である。
 また本発明は、図22に示すように、上述した各実施形態、変形例の撮像素子100~100Lと、撮像素子100~100Lから出力された信号に基づいて画像データを生成する生成部1500と備える撮像装置1600としても実施することができる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2015年第195347号(2015年9月30日出願)
1…フォトダイオード、1a…光電変換領域、1b…表面領域、1c…面,1d…周面、4…転送トランジスタ、4g…転送ゲート電極、4H…転送配線、8…フローティングディフュージョン、11…増幅トランジスタ、12…選択トランジスタ、13…リセットトランジスタ、20…画素、21…垂直信号線、100~100K…固体撮像素子、200…半導体基板、201…酸化膜、202…半導体領域、203…配線領域、202K、501aK…基部領域、202T,501aT…凸領域、400…光路領域、401…開口、450,452…遮光膜、451…反射膜、500…SOI基板、501…第1半導体基板、502…第2半導体基板、503…埋め込み酸化層

Claims (13)

  1.  マイクロレンズを透過して入射した光を受光する受光部を有する半導体基板と、
     前記マイクロレンズを透過して前記半導体基板に入射する光の一部を遮光する遮光部と、を備え、
     前記受光部は、前記マイクロレンズと前記遮光部との間で、前記マイクロレンズを透過して入射した光を受光する撮像素子。
  2.  請求項1に記載の撮像素子において、
     前記受光部は、前記マイクロレンズと前記遮光部との間で、前記マイクロレンズの光軸と交差する方向から入射した光を受光する受光面を有する撮像素子。
  3.  請求項1または2に記載の撮像素子において、
     前記受光部は、前記マイクロレンズと前記遮光部との間で、前記マイクロレンズを透過して入射した光を受光する複数の受光面を有する撮像素子。
  4.  請求項1から3までのいずれか1項に記載の撮像素子において、
     前記受光部は、前記遮光部よりも光が入射してくる側で光を受光する受光面を有する撮像素子。
  5.  請求項1から4までのいずれか1項に記載の撮像素子において、
    前記受光部の少なくとも一部は、前記遮光部よりも入射光が入射してくる側に突出する撮像素子。
  6.  請求項5に記載の撮像素子において、
     前記遮光部は、開口部を有し、
     前記受光部の少なくとも一部は、前記開口部から、前記遮光部よりも入射光が入射してくる側に突出する撮像素子。
  7.  請求項1から4までのいずれか1項に記載の撮像素子において、
     前記半導体基板は、前記マイクロレンズと前記遮光部との間に、前記マイクロレンズを透過した光を前記受光部に入射させる導波路を有する撮像素子。
  8.  請求項7に記載の撮像素子において、
     前記導波路は、前記マイクロレンズを透過し前記遮光部で遮光された光を前記受光部に入射させる撮像素子。
  9.  請求項7または8に記載の撮像素子において、
     前記遮光部は、開口部を有し、
     前記導波路は、前記マイクロレンズと前記開口部との間に設けられる撮像素子。
  10.  請求項1から9までのいずれか1項に記載の撮像素子において、
     前記受光部の少なくとも一部は、受光した光を光電変換して電荷を生成する光電変換部を有する撮像素子。
  11.  請求項10に記載の撮像素子において、
     前記光電変換部で生成された電荷を蓄積する蓄積部と、
     前記光電変換部で生成された電荷を前記蓄積部に転送する転送部と、を備え、
     前記転送部は、前記マイクロレンズの光軸方向において、前記光電変換部と前記蓄積部との間に設けられる撮像素子。
  12.  請求項11に記載の撮像素子において、
     前記転送部は、前記光電変換部で生成された電荷を前記蓄積部に転送する転送路である撮像素子。
  13.  請求項1から12までのいずれか1項に記載の撮像素子と、
     前記撮像素子から出力された信号に基づいて画像データを生成する生成部と、備える撮像装置。
PCT/JP2016/078278 2015-09-30 2016-09-26 撮像素子および撮像装置 WO2017057277A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201680057084.XA CN108174619B (zh) 2015-09-30 2016-09-26 摄像元件及摄像装置
JP2017543259A JPWO2017057277A1 (ja) 2015-09-30 2016-09-26 撮像素子および撮像装置
EP16851448.7A EP3358620A4 (en) 2015-09-30 2016-09-26 IMAGING ELEMENT AND IMAGING DEVICE
KR1020237001097A KR102623653B1 (ko) 2015-09-30 2016-09-26 촬상 소자 및 촬상 장치
KR1020187009049A KR20180048900A (ko) 2015-09-30 2016-09-26 촬상 소자 및 촬상 장치
US15/764,419 US20180294300A1 (en) 2015-09-30 2016-09-26 Image sensor and image-capturing device
KR1020207036799A KR102488709B1 (ko) 2015-09-30 2016-09-26 촬상 소자 및 촬상 장치
CN202211045472.XA CN115295569A (zh) 2015-09-30 2016-09-26 摄像元件及摄像装置
KR1020247000327A KR20240010528A (ko) 2015-09-30 2016-09-26 촬상 소자 및 촬상 장치
US17/484,275 US20220085220A1 (en) 2015-09-30 2021-09-24 Image sensor and image-capturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-195347 2015-09-30
JP2015195347 2015-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/764,419 A-371-Of-International US20180294300A1 (en) 2015-09-30 2016-09-26 Image sensor and image-capturing device
US17/484,275 Division US20220085220A1 (en) 2015-09-30 2021-09-24 Image sensor and image-capturing device

Publications (1)

Publication Number Publication Date
WO2017057277A1 true WO2017057277A1 (ja) 2017-04-06

Family

ID=58427557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078278 WO2017057277A1 (ja) 2015-09-30 2016-09-26 撮像素子および撮像装置

Country Status (6)

Country Link
US (2) US20180294300A1 (ja)
EP (1) EP3358620A4 (ja)
JP (3) JPWO2017057277A1 (ja)
KR (4) KR20240010528A (ja)
CN (2) CN108174619B (ja)
WO (1) WO2017057277A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105713A1 (ja) * 2018-11-21 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
WO2022113757A1 (ja) * 2020-11-30 2022-06-02 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及びその製造方法
US11955502B2 (en) 2018-09-11 2024-04-09 Sony Semiconductor Solutions Corporation Solid-state image sensor to reduce display unevenness of a captured image
WO2024116633A1 (ja) * 2022-11-30 2024-06-06 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
JP7551825B2 (ja) 2018-02-01 2024-09-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615010B (zh) * 2016-01-22 2021-11-16 索尼公司 光接收器件、控制方法和电子设备
JP6700811B2 (ja) * 2016-01-26 2020-05-27 キヤノン株式会社 半導体装置および半導体装置の製造方法
JP2018060980A (ja) * 2016-10-07 2018-04-12 キヤノン株式会社 撮像表示装置及びウェアラブルデバイス
CN109033913A (zh) * 2018-07-25 2018-12-18 维沃移动通信有限公司 一种识别码的识别方法及移动终端
JPWO2020262629A1 (ja) * 2019-06-26 2020-12-30
CN112018140A (zh) * 2020-08-14 2020-12-01 清华大学 基于随机形状单元的微型光谱芯片
KR20220144222A (ko) 2021-04-19 2022-10-26 삼성전자주식회사 이미지 센서

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212668A (ja) * 2009-03-10 2010-09-24 Internatl Business Mach Corp <Ibm> 遮光部を含む画素センサ・セルおよび製造方法
JP2013098446A (ja) * 2011-11-04 2013-05-20 Sony Corp 固体撮像素子、固体撮像素子の製造方法、及び、電子機器
JP2015095468A (ja) * 2013-11-08 2015-05-18 ソニー株式会社 固体撮像素子および固体撮像素子の製造方法、並びに電子機器

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799304A (en) 1972-10-30 1974-03-26 Twin Disc Inc Hydraulic control system for power transmission having a modulated friction clutch
JPS5547260U (ja) 1978-09-26 1980-03-27
JP2004304105A (ja) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP4341421B2 (ja) * 2004-02-04 2009-10-07 ソニー株式会社 固体撮像装置
JP2005303081A (ja) * 2004-04-13 2005-10-27 Matsushita Electric Ind Co Ltd 光センサーおよび固体撮像装置
JP2006344754A (ja) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2007201047A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法
JP4649390B2 (ja) * 2006-09-20 2011-03-09 富士フイルム株式会社 裏面照射型撮像素子の製造方法
US7781715B2 (en) * 2006-09-20 2010-08-24 Fujifilm Corporation Backside illuminated imaging device, semiconductor substrate, imaging apparatus and method for manufacturing backside illuminated imaging device
JP5568880B2 (ja) * 2008-04-03 2014-08-13 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP4798232B2 (ja) * 2009-02-10 2011-10-19 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP4816768B2 (ja) * 2009-06-22 2011-11-16 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
KR101776955B1 (ko) * 2009-02-10 2017-09-08 소니 주식회사 고체 촬상 장치와 그 제조 방법, 및 전자 기기
WO2012026292A1 (ja) * 2010-08-24 2012-03-01 富士フイルム株式会社 固体撮像装置
JP2012156310A (ja) * 2011-01-26 2012-08-16 Sony Corp 固体撮像素子、固体撮像素子の製造方法、および電子機器
JP5810551B2 (ja) * 2011-02-25 2015-11-11 ソニー株式会社 固体撮像装置、および、その製造方法、電子機器
JP6299058B2 (ja) * 2011-03-02 2018-03-28 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP5794068B2 (ja) * 2011-09-16 2015-10-14 ソニー株式会社 固体撮像素子および製造方法、並びに電子機器
TW201334169A (zh) * 2012-02-10 2013-08-16 Sony Corp 攝像元件、製造裝置及方法、及攝像裝置
JP6065448B2 (ja) * 2012-08-03 2017-01-25 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP5547260B2 (ja) 2012-10-22 2014-07-09 株式会社東芝 固体撮像装置
JP2014096490A (ja) * 2012-11-09 2014-05-22 Sony Corp 撮像素子、製造方法
US8773562B1 (en) * 2013-01-31 2014-07-08 Apple Inc. Vertically stacked image sensor
JP2015012126A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 固体撮像素子および駆動方法、並びに電子機器
US9356061B2 (en) * 2013-08-05 2016-05-31 Apple Inc. Image sensor with buried light shield and vertical gate
US9305952B2 (en) * 2013-08-27 2016-04-05 Semiconductor Components Industries, Llc Image sensors with inter-pixel light blocking structures
JP2015065270A (ja) * 2013-09-25 2015-04-09 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
JP6196911B2 (ja) * 2014-02-05 2017-09-13 オリンパス株式会社 固体撮像装置および撮像装置
KR102154184B1 (ko) * 2014-03-10 2020-09-09 삼성전자 주식회사 이미지 센서 및 이를 제조하는 방법
KR102363433B1 (ko) * 2015-01-15 2022-02-16 삼성전자주식회사 이미지 센서
KR102225297B1 (ko) * 2015-09-30 2021-03-09 가부시키가이샤 니콘 촬상 소자 및 촬상 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212668A (ja) * 2009-03-10 2010-09-24 Internatl Business Mach Corp <Ibm> 遮光部を含む画素センサ・セルおよび製造方法
JP2013098446A (ja) * 2011-11-04 2013-05-20 Sony Corp 固体撮像素子、固体撮像素子の製造方法、及び、電子機器
JP2015095468A (ja) * 2013-11-08 2015-05-18 ソニー株式会社 固体撮像素子および固体撮像素子の製造方法、並びに電子機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7551825B2 (ja) 2018-02-01 2024-09-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器
US11955502B2 (en) 2018-09-11 2024-04-09 Sony Semiconductor Solutions Corporation Solid-state image sensor to reduce display unevenness of a captured image
JP7527204B2 (ja) 2018-09-11 2024-08-02 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
WO2020105713A1 (ja) * 2018-11-21 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
CN112889136A (zh) * 2018-11-21 2021-06-01 索尼半导体解决方案公司 固态图像传感器
JPWO2020105713A1 (ja) * 2018-11-21 2021-10-14 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
JP7395502B2 (ja) 2018-11-21 2023-12-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
US11985443B2 (en) 2018-11-21 2024-05-14 Sony Semiconductor Solutions Corporation Solid-state image sensor
WO2022113757A1 (ja) * 2020-11-30 2022-06-02 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及びその製造方法
WO2024116633A1 (ja) * 2022-11-30 2024-06-06 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Also Published As

Publication number Publication date
CN108174619A (zh) 2018-06-15
EP3358620A1 (en) 2018-08-08
JP2023017991A (ja) 2023-02-07
KR20180048900A (ko) 2018-05-10
KR20240010528A (ko) 2024-01-23
JPWO2017057277A1 (ja) 2018-07-26
JP2021044572A (ja) 2021-03-18
JP7383597B2 (ja) 2023-11-20
KR20200145850A (ko) 2020-12-30
US20180294300A1 (en) 2018-10-11
CN115295569A (zh) 2022-11-04
KR102623653B1 (ko) 2024-01-10
US20220085220A1 (en) 2022-03-17
KR20230009533A (ko) 2023-01-17
KR102488709B1 (ko) 2023-01-13
CN108174619B (zh) 2022-09-20
EP3358620A4 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP7383597B2 (ja) 撮像素子および撮像装置
KR101893325B1 (ko) 고체 촬상 장치와 그 제조 방법, 및 전자 기기
US11955497B2 (en) Image sensor
US8835981B2 (en) Solid-state image sensor
US8674417B2 (en) Solid-state imaging device and camera
US20180061873A1 (en) Semiconductor devices
JP4751865B2 (ja) 裏面照射型固体撮像素子及びその製造方法
KR102638779B1 (ko) 이미지 센서
JP2016103541A (ja) 固体撮像装置
US20230215901A1 (en) Solid-state imaging element
KR102225297B1 (ko) 촬상 소자 및 촬상 장치
JP5677238B2 (ja) 固体撮像装置
JP7006673B2 (ja) 撮像素子および撮像装置
KR100769563B1 (ko) 누설 전류를 감소시킨 이미지 센서
US20240170522A1 (en) Image sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187009049

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764419

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017543259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851448

Country of ref document: EP