Nothing Special   »   [go: up one dir, main page]

WO2016121632A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016121632A1
WO2016121632A1 PCT/JP2016/051791 JP2016051791W WO2016121632A1 WO 2016121632 A1 WO2016121632 A1 WO 2016121632A1 JP 2016051791 W JP2016051791 W JP 2016051791W WO 2016121632 A1 WO2016121632 A1 WO 2016121632A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
switching element
power
switching
period
Prior art date
Application number
PCT/JP2016/051791
Other languages
English (en)
French (fr)
Inventor
公輔 中野
拓也 酒井
岩蕗 寛康
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/524,356 priority Critical patent/US10250124B2/en
Priority to JP2016538153A priority patent/JP6022130B1/ja
Priority to CN201680004374.8A priority patent/CN107148738B/zh
Priority to DE112016000520.2T priority patent/DE112016000520T5/de
Publication of WO2016121632A1 publication Critical patent/WO2016121632A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/20Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by reversal of phase sequence of connections to the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an operation at the time of regenerative control of an inverter, particularly in a power conversion device including an inverter that converts DC power into AC power and outputs the power.
  • regenerative power as regenerative energy is charged to a battery via a power conversion device equipped with an inverter. And by reusing this regenerative power, the power is effectively utilized.
  • the regenerative power is charged to the battery. I can't. For example, if this disconnection occurs between the battery and its smoothing capacitor, the regenerative power is all accumulated in the smoothing capacitor except for the power consumed by the parasitic resistance of the wiring and the on-resistance of the switching element of the inverter. . If the regenerative power continues to be accumulated in the smoothing capacitor, the voltage of the smoothing capacitor rises and becomes overvoltage, reducing the reliability of the smoothing capacitor and the switching element of the inverter.
  • a conventional power conversion device that suppresses a voltage increase of a DC power supply line during a regenerative operation by the following method is disclosed.
  • a 3-phase short circuit is performed. Due to the three-phase short circuit, the current flows back between the motor and the semiconductor switching element, and the voltage rise of the DC power supply line can be suppressed.
  • the semiconductor switching element on the upper arm or the semiconductor switching element on the lower arm is turned on to flow the current back, so that the semiconductor switching element on the ON side generates heat.
  • the arm that is short-circuited by three phases is appropriately switched.
  • a temperature sensor is provided on each of the upper arm side and the lower arm side of the inverter unit. You may carry out so that it may become comparable (for example, refer patent document 2).
  • JP 2006-166504 A page 4, paragraphs [0012] and [0013], FIG. 2
  • International Publication Number WO2012 / 077187 (20th Mitsugu, paragraphs [0062]-[0066], 25th Mitsugu, [0086], FIG. 4, FIG. 6)
  • arm switching control is performed so that the temperatures of the switching elements on the upper arm side and the lower arm side are approximately the same.
  • the operation mode of the power conversion device the cooling conditions for each arm, the number of switching elements connected in parallel for each arm, the variation in the characteristics of each switching element, the mounting position of each switching element, etc.
  • the temperature of the switching element may vary from phase to phase. Even in the same arm, the conditions that affect the temperature of the switching element may differ for each switching element, and the temperature of each switching element is not necessarily uniform.
  • the present invention has been made to solve the above-described problems.
  • the arm on the high potential side is An object of the present invention is to provide a power conversion device that can reliably suppress the temperature rise of the switching element while suppressing the voltage rise of the smoothing capacitor by appropriately switching control of the switching element and the switching element of the arm on the low potential side.
  • a power conversion device includes a smoothing capacitor connected between DC buses and smoothing DC power from a DC power source, an upper switching element connected to a high potential side of the DC bus, and a low potential of the DC bus.
  • the lower switching element connected to the side is connected in series, and the connection point is connected to each phase AC input / output line connected in parallel between the DC bus lines, and the DC power is supplied to the AC power.
  • the control circuit includes the DC power supply and the smoothing in the regeneration control of the inverter circuit.
  • the power converter according to the invention includes a smoothing capacitor connected between the DC buses and smoothing the DC power from the DC power supply, an upper switching element connected to the high potential side of the DC bus, and a low level of the DC bus.
  • a lower switching element connected to the potential side is connected in series, and a series body in which the connection point is connected to each phase AC input / output line is connected in parallel between the DC bus lines, and DC power is supplied to AC.
  • the control circuit includes the DC power supply and the power source in regeneration control of the inverter circuit.
  • the first control to be turned on and the second control to turn on all the lower switching elements and turn off all the upper switching elements at every predetermined switching period, and the control circuit includes: The switching period is determined according to the current flowing in each phase AC input / output line.
  • the upper switching element on the high potential side and the lower switching element on the low potential side even when the DC power supply and the smoothing capacitor are disconnected during the regeneration control of the inverter circuit
  • the switching capacitor can be appropriately controlled to suppress the rise in the voltage of the smoothing capacitor, and the temperature rise of the switching element can be reliably suppressed, thereby improving the reliability of the smoothing capacitor and the switching element and extending the life. it can.
  • FIG. 1 is a schematic diagram showing a configuration of a power conversion device 100 according to Embodiment 1 of the present invention.
  • the power conversion device 100 is connected between a DC power source 1 and an electric motor 4 used in an electric vehicle, and is driven by an electric motor as an inverter circuit that converts DC power from the DC power source 1 into AC power and outputs the AC power to the electric motor 4.
  • the apparatus 30 includes a smoothing capacitor 2 that smoothes DC power from the DC power source 1, and a control circuit 40 that controls power running and regeneration of the motor drive device 30.
  • the smoothing capacitor 2 is connected between a high potential side DC bus (hereinafter referred to as bus 21) and a low potential side DC bus (hereinafter referred to as bus 22) so as to be in parallel with the motor drive device 30. And is connected to the positive and negative terminals of the DC power supply 1 via the relay 6.
  • the relay 6 can mechanically connect and disconnect the motor drive device 30 and the DC power source 1.
  • the electric motor drive device 30 is a series element in which upper switching elements 31U, 31V, 31W connected to the bus 21 and lower switching elements 32U, 32V, 32W connected to the bus 22 are connected in series. 35U, 35V, 35W are provided. Diodes are connected in antiparallel to the switching element 31 (31U, 31V, 31W) and the switching element 32 (32U, 32V, 32W), respectively.
  • switching elements 31 and 32 are simply referred to as switching elements 31 and 32.
  • the serial bodies 35U, 35V, and 35W are connected in parallel between the bus bar 21 and the bus bar 22, respectively.
  • connection points between the upper switching elements 31U, 31V, 31W and the lower switching elements 32U, 32V, 32W of the series bodies 35U, 35V, 35W are the U-phase, V-phase, and W-phase AC input / output lines, respectively. (U, V, W in the figure).
  • Each phase of the electric motor 4 is connected to the U-phase, V-phase, and W-phase AC input / output lines.
  • the electric motor drive device 30 includes high potential side drive circuits 33U, 33V, 33W for driving the upper switching elements 31U, 31V, 31W, and a low potential side drive circuit for driving the lower switching elements 32U, 32V, 32W. 34U, 34V, 34W.
  • each drive circuit 33U, 33V, 33W, 34U, 34V, 34W is indicated as DR.
  • three sensors, a voltage sensor 71 for detecting the states of the motor drive device 30 and the motor 4, a current sensor 72, and a rotation sensor 73 are provided.
  • the control circuit 40 detects the voltage V1 between the buses 21 and 22 based on the sensing information of the voltage sensor 71.
  • the control circuit 40 detects an output current (current flowing through each phase AC input / output line) Ia of the motor drive device 30 based on sensing information of the current sensor 72. Further, the control circuit 40 detects the speed ⁇ and the magnetic pole position ⁇ of the electric motor 4 based on the sensing information of the rotation sensor 73.
  • FIG. 2 is a circuit configuration diagram of the insulated power supply 7 for driving the switching elements 31 and 32 according to the first embodiment of the present invention.
  • the insulated power supply 7 includes a switching element 7a, a transformer 7b, diodes 7c and 7d, and a capacitor 7e.
  • the insulated power supply 7 receives power between the buses 21 and 22 and generates drive power supplied to the high potential side drive circuits 33U, 33V, and 33W and the low potential side drive circuits 34U, 34V, and 34W.
  • the insulated power supply 7 can vary the voltage to be generated in accordance with the on-time of the internal switching element and the turns ratio of the transformer.
  • the control circuit 40 controls the operation of the motor drive device 30 in order to control the rotation speed and torque of the motor 4.
  • the control circuit 40 includes a command value generation unit 41, a voltage control unit 42, and a PWM circuit 43.
  • the command value generation unit 41 generates a command value C1 based on information on the target rotational speed and target torque of the electric motor 4 and driver control information. Then, the command value C1 is input to the voltage control unit 42.
  • the voltage control unit 42 detects the values of the voltage V1, the output current (current of each phase AC input / output line) Ia, the speed ⁇ , and the magnetic pole position ⁇ detected by the sensors 71 to 73. Based on the command value C1, a command value C2 for controlling the output voltage of the motor drive device 30 is output.
  • the PWM circuit 43 generates a drive signal by PWM control based on the command value C2, and the generated drive signal is input to the high potential side drive circuits 33U, 33V, 33W and the low potential side drive circuits 34U, 34V, 34W. .
  • the upper switching elements 31U, 31V, and 31W thus arranged corresponding to the respective phases are driven by the high potential side drive circuits 33U, 33V, and 33W, and the bus line 21 and the U-phase, V-phase, and W-phase alternating currents. Switches between input and output lines.
  • the lower switching elements 32U, 32V, 32W are driven by the low potential side drive circuits 34U, 34V, 34W to switch between the bus 22 and the U-phase, V-phase, and W-phase AC input / output lines. .
  • the control circuit 40 regeneratively controls the motor drive device 30 to regenerate the generated AC power.
  • the control circuit 40 turns off all the switching elements 31 and 32 of the motor drive device 30.
  • it is not restricted to the control which turns off all the switching elements 31 and 32 as mentioned above.
  • synchronous rectification control that switches the switching elements 31 and 32 in synchronization with the conduction of the diode may be used.
  • the AC power is converted into DC power by the motor driving device 30 and charged to the DC power source 1.
  • the charged electric power is used again as travel energy during the power running operation of the electric motor drive device 30.
  • the control circuit 40 Performs the following overvoltage suppression control in order to suppress the voltage rise of the smoothing capacitor 2 due to regenerative power.
  • FIG. 3 is a schematic diagram illustrating an overvoltage suppression control signal during regenerative control of the control circuit 40 according to the first embodiment of the present invention.
  • the horizontal axis indicates time, and Q indicates the period of overvoltage suppression control.
  • a Fail signal F1 that becomes Hi when the path between the DC power source 1 and the smoothing capacitor 2 is in a cut-off state, and lower switching elements 32U, 32V that the control circuit 40 outputs to the motor drive device 30 during overvoltage suppression control,
  • the relationship between the drive signal S2 of 32W and the drive signal S1 of the upper switching elements 31U, 31V, 31W is shown.
  • the control circuit 40 starts overvoltage suppression control.
  • the Fail signal F1 is, for example, a path between the DC power source 1 and the smoothing capacitor 2 using information on the voltage and current of the power converter 100 acquired by the open / close signal of the relay 6, the voltage sensor 71, and the current sensor 72. It is determined whether or not is in a cut-off state and output.
  • the control circuit 40 turns on all lower switching elements 32U, 32V, 32W of the U phase, V phase, and W phase and turns off all upper switching elements 31U, 31V, 31W.
  • the second control P2 having is executed.
  • each phase of the armature winding of the electric motor 4 is short-circuited, and the regenerative current flows back between the electric motor driving device 30 and the electric motor 4.
  • the regenerative power is consumed by the ON resistance of each of the lower switching elements 32U, 32V, and 32W that is turned ON, the load of the armature winding of the electric motor 4, and the parasitic resistance of the wiring.
  • the control circuit 40 turns on all the upper switching elements 31U, 31V, 31W of the U phase, the V phase, and the W phase and all the lower switching elements 32U, 32V, 32W. Is switched to the first control P1 having a zero vector period for turning off the. As in the case of the second control P2, regenerative power is consumed by the ON resistance of the switching elements 31U, 31V, and 32W that are turned on, the load of the armature winding of the motor 4, and the parasitic resistance of the wiring.
  • the control circuit 40 switches to the second control P2.
  • the control circuit 40 switches to the first control P1.
  • the switching control between the first control P1 and the second control P2 for each period ⁇ t by the control circuit 40 is repeated until the Fail signal F1 becomes Low.
  • a period ⁇ t having a constant length is always used as the switching period.
  • the regenerative current flows through the lower switching elements 32U, 32V, 32W. Therefore, the temperature of the lower switching elements 32U, 32V, 32W rises. On the other hand, the regenerative current does not flow through the switching elements 31U, 31V, 31W which are turned off. Therefore, the temperatures of the upper switching elements 31U, 31V, 31W are lowered. In the period of the first control P1 from the time t1 to the time t2, the regenerative current flows through the upper switching elements 31U, 31V, 31W. Therefore, the temperature of the upper switching elements 31U, 31V, 31W rises. On the other hand, no regenerative current flows through the lower switching elements 32U, 32V, and 32W that are turned off. Therefore, the temperatures of the lower switching elements 32U, 32V, and 32W are lowered.
  • control circuit 40 switches between the second control P2 in which the lower switching elements 32U, 32V, and 32W are turned on and the first control P1 in which the upper switching elements 31U, 31V, and 31W are turned on for each period ⁇ t. Control. In this way, it is possible to secure a cooling period in which the regenerative current does not flow through the switching elements 31 and 32 that are turned off. Thereby, the temperature rise of the switching elements 31 and 32 can be suppressed.
  • switching loss occurs when switching the upper switching elements 31U, 31V, 32W and the lower switching elements 32U, 32V, 32W. This switching loss makes it possible to consume regenerative power more efficiently.
  • the first control P1 is performed after the second control P2 is performed first, but this order may be reversed.
  • FIG. 4 is a diagram showing a configuration example of a data table in the control circuit 40 according to the first embodiment of the present invention.
  • the upper limit temperature value Tmax shown in FIG. 4 indicates the upper limit temperature value at the PN junction between the P-type semiconductor region and the N-type semiconductor region inside the switching elements 31 and 32 that are semiconductor elements (in this case, 130 ° C.). .
  • the period length (in this case, 10 ⁇ s) of the switching period ⁇ t that is determined in advance so that the temperature of the PN junction becomes equal to or lower than the upper limit temperature value Tmax is held.
  • the value (10 ⁇ s) of the switching period ⁇ t is determined in advance based on the condition J1 such as the element characteristics of the switching elements 31 and 32, the operation mode of the power conversion device 100, the mounting positions of the switching elements 31 and 32, and the like. Is. These conditions J1 can be accurately acquired before the operation of the power conversion apparatus 100. And based on these conditions J1, the switching period (DELTA) t from which all the switching elements 31 and 32 with which the power converter device 100 is provided becomes below upper limit temperature value Tmax is determined.
  • the control circuit 40 switches and controls the first control P1 and the second control P2 every 10 ⁇ s using the switching period ⁇ t of 10 ⁇ s determined in advance as described above.
  • the thermal resistance of the switching elements 31 and 32 is used as a specific example of the element characteristics of the switching elements 31 and 32 that satisfy the condition J1 will be described below.
  • the temperature rise value ⁇ Tr of the switching elements 31 and 32 can be calculated in advance. Then, the calculated temperature rise value ⁇ Tr is radiated and the switching period ⁇ t is determined such that the temperature of the switching elements 31 and 32 is equal to or lower than the upper limit temperature value Tmax.
  • the heat capacity of the switching elements 31 and 32 may be used in order to calculate a more accurate temperature rise value ⁇ Tr.
  • the thermal resistance of the heat radiating portion thermally connected to the switching elements 31 and 32 may be used.
  • this heat radiation part will be described with reference to the drawings.
  • FIG. 5 is a cross-sectional view showing a state in which switching elements 31 and 32 according to the first embodiment of the present invention are mounted on substrate 60.
  • a heat sink 61 as a heat radiating portion is mounted on the back surface of the substrate 60 on which the switching elements 31 and 32 are mounted on the front surface.
  • the heat generated by the switching elements 31 and 32 is transferred to the heat sink 61 via the substrate 60 as a heat conduction path.
  • a more accurate temperature rise value ⁇ Tr can be calculated using the thermal resistance of the switching elements 31 and 32, the thermal resistance of the substrate 60, and the thermal resistance of the heat sink 61.
  • FIG. 6 is a diagram showing another configuration example of the data table in the control circuit 40 according to the first embodiment of the present invention.
  • a plurality of period lengths with respect to the switching period ⁇ t are held.
  • These switching periods ⁇ t are predetermined based on the condition J1 so that the temperature of the PN junctions of the switching elements 31 and 32 is equal to or lower than the upper limit temperature value Tmax, similarly to the switching period ⁇ t shown in FIG. It is.
  • the condition J2 is a condition that affects the temperature of the switching elements 31 and 32 acquired by a sensor or the like during the operation of the power conversion apparatus 100.
  • Ia as the condition J2 shown in FIG. 6A is the value of the current flowing through each phase AC input / output line acquired by the current sensor 72
  • condition J2 shown in FIG. Ta is the ambient temperature Ta of the switching elements 31 and 32
  • N is the condition J2 shown in FIG. .
  • the switching period ⁇ t corresponding to the value of the condition J2 is determined in advance so that all the switching elements 31 and 32 included in the power conversion device 100 are equal to or lower than the upper limit temperature value Tmax.
  • control circuit 40 using the condition J2
  • the control circuit 40 acquires the condition J2.
  • the control circuit 40 selects one period length from a plurality of period lengths of the switching period ⁇ t according to the acquired condition J2. Specifically, it is assumed that the current Ia flowing through each phase AC input / output line is acquired as the condition J2, and the value of the current Ia is 120A. In this case, the control circuit 40 selects a predetermined period length of 10.5 ⁇ s corresponding to the current Ia of 120 A from the data table shown in FIG. Next, the control circuit 40 switches and controls the first control P1 and the second control P2 every 10.5 ⁇ s by using the period length of 10.5 ⁇ s for the switching period ⁇ t.
  • the control circuit 40 sets the period length of the switching period ⁇ t determined in advance corresponding to the acquired value of the ambient temperature Ta to the data shown in FIG. Select from the table.
  • the control circuit 40 sets the period length of the switching period ⁇ t determined in advance corresponding to the acquired value of the fan speed N to FIG. 6C. Select from the data table shown.
  • the present invention is not limited to selecting the period length for each condition J2.
  • the values of both of a plurality of conditions J2 for example, current Ia and ambient temperature Ta
  • the period length is determined based on a table (not shown) in which the period lengths corresponding to both values are held. It may be elected.
  • the control circuit 40 selects one period length from a plurality of period lengths in accordance with at least one value among the acquired conditions J2.
  • FIG. 7 is a schematic diagram showing control different from that shown in FIG. 3 in overvoltage suppression control during regenerative control of the control circuit 40 according to Embodiment 1 of the present invention.
  • a constant switching period ⁇ t is always used regardless of the elapsed time of the switching control between the first control P1 and the second control P2.
  • the switching period ⁇ t1 used from time t0 to time t5 when switching control between the first control P1 and the second control P2 is started and the switching period ⁇ t2 used from time t5 to time t7. Is different.
  • an n-type MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor
  • a bipolar transistor or IGBT Insulated Gate Bipolar Transistor
  • MOSFETs that are unipolar devices generally tend to increase on-resistance with temperature.
  • an IGBT which is a bipolar device is generally said to have a small increase in the saturation voltage between the collector and the emitter with respect to temperature. In consideration of the characteristics of the switching elements 31 and 32, selection may be made so that the braking force required by the driver of the electric vehicle can be obtained.
  • the diodes connected in reverse parallel to the switching elements 31 and 32 are MOSFET body diodes when MOSFETs are used, but are not limited thereto.
  • the diode only needs to have a function of flowing a current in the reverse direction, and an SBD (Schottky Barrier Diode) or a PN junction diode may be used. Moreover, you may use synchronous rectification of MOSFET, without using a diode.
  • these switching elements 31 and 32 those using wide band gap semiconductors in addition to Si semiconductors can be used. Wide band gap semiconductors include gallium nitride and diamond in addition to silicon carbide. Since the wide band gap semiconductor can operate at a high temperature, a cooling system such as a heat sink can be simplified, and the apparatus can be downsized.
  • the present invention is not limited to this, and the relay 6 may not be provided depending on the circuit configuration.
  • the configurations of the voltage sensor 71, current sensor 72, and rotation sensor 73 are examples. Depending on the electric motor 4 and the load connected to the electric motor 4, these sensors may not be necessary or sensed information may not be used. Alternatively, since it may be necessary to sense more information, the sensor configuration may be changed as appropriate.
  • the DC power source 1 of the electric motor drive device 30 is constituted by, for example, a NiMH (nickel metal hydride) battery or a Li-ion (lithium ion) battery. Further, the AC power supply may be rectified and used as a DC power supply.
  • the power conversion device 100 of the present embodiment configured as described above, when the DC power source 1 and the smoothing capacitor 2 are in a cut-off state during regenerative control, between the motor drive device 30 and the motor 4. To recirculate the regenerative current. Thereby, it can control so that regenerative electric power is not charged to the smoothing capacitor 2. FIG. Therefore, the voltage rise of the smoothing capacitor 2 can be suppressed, and the deterioration of the reliability of the smoothing capacitor and the switching elements 31 and 32 due to the overvoltage of the smoothing capacitor 2 can be prevented.
  • the first control P1 and the second control P2 are switched and controlled every predetermined switching period ⁇ t. Therefore, while the regenerative power is consumed by the switching elements 31 and 32 on the turned-on side, a cooling period in which no regenerative current flows through the switching elements 31 and 32 on the off-side can be secured. As a result, the switching elements 31 and 32 whose temperature has once increased can be cooled, and the temperature increase of the switching elements 31 and 32 can be suppressed to improve the reliability. Thus, a highly reliable and long-life power conversion device can be provided. Furthermore, since it is possible to use a small smoothing capacitor 2 and switching elements 31 and 32 having a small capacity, the device configuration can be reduced in size.
  • the switching period is not determined based on the temperature of the operating switching element that is difficult to detect accurately, and the control circuit 40 uses a predetermined switching period ⁇ t.
  • This switching period ⁇ t is determined in advance based on various conditions J1 that affect the temperature of the switching elements 31 and 32.
  • the condition J1 is a condition that can be accurately acquired before the operation of the power conversion device 100, such as element characteristics of the switching elements 31 and 32. Therefore, it is possible to use an appropriate switching period ⁇ t based on conditions that can be accurately acquired. In this way, the temperature of the switching elements 31 and 32 can be reliably reduced below the upper limit temperature value Tmax.
  • the control circuit 40 acquires the condition J2 such as the value of the current Ia flowing through each phase AC input / output line when the Fail signal F1 becomes Hi, and this condition The period length of the switching period ⁇ t is selected based on J2.
  • This condition J2 such as the current Ia flowing through each phase AC input / output line can be accurately acquired even during the operation of the power conversion device 100.
  • this condition J2 shows the state of the power converter device 100 just before performing switching control of 1st control P1 and 2nd control P2.
  • the switching period ⁇ t is not determined while comparing the temperature of the upper switching element 31 and the temperature of the lower switching element 32. Therefore, there is no possibility of causing a processing delay due to the comparison control of the control circuit 40. In this way, the control circuit 40 can quickly perform switching control between the first control P1 and the second control P2.
  • the switching period ⁇ t according to the elapsed time of the switching control between the first control P1 and the second control P2 can be determined.
  • the switching period ⁇ t1 having a short period length is used at the start of the overvoltage suppression control in which the temperature of the switching elements 31 and 32 is high.
  • the switching period ⁇ t2 having a long period length is used.
  • the switching frequency of the switching elements 31 and 32 can be appropriately reduced according to the elapsed time of the first control P1 and the second control P2. Therefore, the deterioration of the switching elements 31 and 32 due to the surge voltage at the time of turn-off can be suppressed.
  • the value of the current Ia acquired by the control during the normal operation of the power conversion device 100 is also used for determining the switching period ⁇ t in the overvoltage suppression control. Therefore, it is not necessary to separately provide a current sensor for determining the switching period ⁇ t, and the existing current sensor 72 can be used. Thereby, size reduction and cost reduction of the power converter device 100 are possible.
  • cooling speed N for cooling the switching elements 31 and 32 is shown as the cooling speed N.
  • the present invention is not limited to this.
  • cooling water may be used, and in that case, the cooling water temperature, volume, and the like can be used as cooling conditions.
  • the various conditions J1 are not limited to the operation mode of the power conversion device 100, the variation in the element characteristics of the switching elements 31 and 32, and the mounting positions of the switching elements 31 and 32.
  • the conditions that affect the temperature of the switching element any condition that can be accurately acquired before the operation of the power conversion apparatus 100 may be used.
  • substrate 60 was shown as a heat conduction path
  • the upper limit temperature value Tmax is the temperature of the PN junction portion of the switching elements 31 and 32, it is not limited to this.
  • the surface temperature of the package of the switching elements 31 and 32 may be used.
  • the switching period ⁇ t is determined in advance, and the control circuit 40 performs switching control between the first control P1 and the second control P2 using the predetermined switching period ⁇ t. It was.
  • the control circuit 40 determines a predetermined switching period ⁇ t according to the current Ia flowing through each phase AC input / output line during the operation of the power conversion apparatus 100.
  • the current Ia is the same as the current Ia shown as the condition J2 in the first embodiment, and is acquired by the current sensor 72 during the operation of the power conversion apparatus 100 as in the first embodiment.
  • the control circuit 40 determines a switching period ⁇ t based on the current Ia, and controls the first control P1 and the second control P2 by switching the switching period ⁇ t.
  • the control circuit 40 previously holds a table indicating the correspondence between the current Ia and the switching period ⁇ t, and determines the switching period ⁇ t according to the detected current Ia. Further, the switching period ⁇ t is determined so that the temperature of the PN junctions of the switching elements 31 and 32 is equal to or lower than the upper limit temperature value Tmax.
  • control circuit 40 may determine the switching period ⁇ t according to the current Ia and the ambient temperature Ta of the switching elements 31 and 32.
  • This ambient temperature Ta is the same as the ambient temperature Ta shown as the condition J2 in the first embodiment.
  • control circuit 40 may determine the switching period ⁇ t according to the current Ia and the cooling condition for cooling the switching elements 31 and 32.
  • This ambient temperature Ta is the same as the ambient temperature Ta shown as the condition J2 in the first embodiment, and is the rotational speed N of the fan.
  • control circuit 40 calculates the temperature rise value ⁇ Tr of the switching elements 31 and 32 by using at least the thermal resistance of the thermal resistance and thermal capacity of the switching elements 31 and 32.
  • the switching period ⁇ t may be determined based on the current Ia and the calculated temperature rise value ⁇ Tr.
  • control circuit 40 may calculate the temperature increase value ⁇ Tr using the current Ia, the thermal resistance of the heat radiating unit, and the thermal resistance of the heat conduction path.
  • the heat radiation part and the heat conduction path are the same as those shown in the first embodiment, and are the heat sink 61, the substrate 60, and the like.
  • control circuit 40 may determine the switching period ⁇ t according to the elapsed time of the switching control between the first control P1 and the second control P2 based on the current Ia.
  • This switching control is equivalent to that shown in FIG. 7 of the first embodiment, and the switching period ⁇ t varies depending on the elapsed time of the switching control.
  • FIG. 8 is a schematic diagram illustrating an overvoltage suppression control signal during regenerative control of the control circuit 40 according to the second embodiment of the present invention.
  • a carrier wave C1 that is a basis for driving the switching elements 31 and 32 for controlling the power running and regeneration of the power conversion device 100 is shown.
  • the carrier wave C1 is generated based on a clock signal CLK as a reference signal.
  • the control circuit 40 adjusts the switching period ⁇ t determined based on the current Ia based on the clock signal CLK. As shown in FIG.
  • the switching period ⁇ t is adjusted to be an integral multiple of the period of the clock signal CLK, and each switching period ⁇ t is started in synchronization with the rising edge of the clock signal CLK.
  • the clock signal CLK for generating the carrier wave C1 is also used for determining the switching period ⁇ t.
  • the control circuit 40 is connected to the power conversion device 100.
  • the switching period ⁇ t is determined based on the value of the current Ia flowing through each phase AC input / output line during the operation. In this way, the control circuit 40 can be accurately acquired, and can determine an appropriate switching period ⁇ t based on the current Ia in accordance with the actual operation situation. Further, since the control circuit 40 determines the switching period ⁇ t, the switching period ⁇ t can be determined even during the operation of the power conversion device 100. Therefore, the degree of freedom of control is improved.
  • the temperature rise of the switching elements 31 and 32 can be reliably suppressed while suppressing the voltage rise of the smoothing capacitor 2 to be equal to or lower than the upper limit temperature value Tmax. Therefore, the reliability of the smoothing capacitor 2 and the switching elements 31 and 32 can be improved. Thereby, it is possible to provide a power converter having a high reliability and a long lifetime. Furthermore, since it is possible to use a small smoothing capacitor 2 and switching elements 31 and 32 having a small capacity, the device configuration can be reduced in size.
  • control circuit 40 in addition to the current Ia, various other conditions that can be accurately acquired (the ambient temperature Ta of the switching elements 31, 32, the cooling conditions for cooling the switching elements 31, 32, the switching element 31). , 32, the heat capacity of the switching elements 31, 32, the heat resistance of the heat conduction path of the switching elements 31, 32, and the heat resistance of the heat radiating portion). In this way, it is possible to determine an appropriate switching period ⁇ t based on various conditions that can be acquired more accurately.
  • control circuit 40 can determine the switching period ⁇ t according to the elapsed time of the switching control between the first control P1 and the second control P2. Thereby, the switching frequency of the switching elements 31 and 32 can be reduced suitably, and deterioration of the switching elements 31 and 32 by the surge voltage at the time of turn-off can be suppressed.
  • control circuit 40 can adjust the switching period ⁇ t based on the clock signal CLK for driving the switching elements 31 and 32 and determine the phase thereof.
  • the clock signal CLK for controlling the power running and regeneration of the control circuit 40 can also be used for determining the switching period ⁇ t, and it is not necessary to newly add a reference signal. Thereby, the load of the control operation of the control circuit 40 can be reduced.
  • FIG. 9 is a schematic diagram showing a configuration of a power conversion device 300 according to Embodiment 3 of the present invention.
  • a discharge circuit 380 for discharging the smoothing capacitor 2 is connected in parallel to the smoothing capacitor 2.
  • the discharge circuit 380 includes a resistor 381, a switching element 382, and a drive circuit 383 for driving the switching element 382.
  • FIG. 10 is a schematic diagram illustrating an overvoltage suppression control signal during regenerative control of the control circuit 340 according to Embodiment 3 of the present invention.
  • the horizontal axis indicates time, and Q indicates the period of overvoltage suppression control.
  • the Fail signal F1 that is turned on when the path between the DC power supply 1 and the smoothing capacitor 2 is cut off, and the PWM circuit 43 of the control circuit 340 outputs to the motor drive device 30 during overvoltage suppression control.
  • the relationship between the drive signals S2 and S1 of the lower switching elements 32U, 32V and 32W and the upper switching elements 31U, 31V and 31W and the drive signal S3 of the discharge circuit 380 during the overvoltage suppression control is shown.
  • the control circuit 340 starts overvoltage suppression control when the Fail signal F1 becomes Hi at time t0 during regenerative control of the motor drive device 30. Then, the control circuit 340 turns on all lower switching elements 32U, 32V, 32W of the U phase, V phase, and W phase, and has a second vector period having a zero vector period that turns off all upper switching elements 31U, 31V, 31W. Control P2 is executed. At time t1 when the period ⁇ t has elapsed from time t0, the control circuit 340 turns off the lower switching elements 32U, 32V, 32W and the upper switching elements 31U, 31V, 31W, and turns on the switching element 382 in the discharge circuit 380. .
  • the control circuit 40 starts from the control to turn on the switching element 382 in the discharge circuit 380, and then controls the upper switching elements 31U, 31V, U-phase, V-phase, and W-phase.
  • the first control P1 having a zero vector period for turning on 31W and turning off all the lower switching elements 32U, 32V, 32W is switched.
  • the control is switched to the second control P2.
  • the control state at time t3 is the same as the control state at time t0, and after time t3, the same control operation as that from time t0 to time t2 is repeated until the Fail signal F1 becomes Low.
  • the control circuit 40 switches and controls the first control P1 and the second control P2 every switching period ⁇ t, and performs the discharge control P3 while switching from the second control P2 to the first control P1.
  • the switching period ⁇ t used in the present embodiment may use a predetermined switching period ⁇ t as shown in the first embodiment, or the control circuit 40 as shown in the second embodiment. May determine the switching period ⁇ t.
  • the same effects as those of the first embodiment can be obtained, and the path between the DC power source 1 and the smoothing capacitor 2 is cut off during regenerative control. Even in this case, the temperature rise of the switching elements 31 and 32 can be reliably suppressed while suppressing the voltage rise of the smoothing capacitor 2. Therefore, the reliability of the smoothing capacitor 2 and the switching elements 31 and 32 can be improved. Thereby, it is possible to provide a power converter having a high reliability and a long lifetime. Furthermore, since it is possible to use a small smoothing capacitor 2 and switching elements 31 and 32 having a small capacity, the device configuration can be reduced in size.
  • the regenerative power can be consumed not only by the motor drive device 30 but also by the resistor 381 of the discharge circuit 380.
  • the upper switching element 31U, 31V, 31W and the lower switching element 32U, 32V, 32W are turned off, and the control which consumes regenerative power by the discharge circuit 380 is provided .
  • the effect of improving the reliability of the switching elements 31 and 32 is further enhanced.
  • control for discharging the smoothing capacitor 2 by the discharge circuit 380 is provided while switching from the second control P2 to the first control P1, but the order is not limited to this.
  • control for discharging the smoothing capacitor 2 by the discharge circuit 380 may be provided.
  • the control circuit 340 is provided with means for determining whether the voltage V1 of the smoothing capacitor 2 is equal to or higher than the predetermined voltage Vs, and the switching element 382 is provided only when the voltage Vdc of the smoothing capacitor 2 is equal to or higher than the voltage Vs.
  • the smoothing capacitor 2 may be controlled to be turned on and discharged. Thereby, the control according to the voltage Vdc of the actual smoothing capacitor 2 becomes possible.
  • the configuration of the discharge circuit 380 described above is an example, and is not limited thereto.
  • the circuit configuration includes a switching element that can switch on and off of the path through which the regenerative current flows, and can consume regenerative power. If it is.
  • the first control P1 and the second control P2 are switched and controlled every predetermined constant switching period ⁇ t.
  • ⁇ t may be set to be different from the period for executing the first control P1 and the switching period for executing the second control P2.
  • the period in which the discharge circuit 380 is used may be set to be different from the switching period ⁇ t.
  • Such a switching element driving method is an example. What is necessary is just to control the switching elements 31 and 32 using temperature information so that the fall of the reliability of the switching elements 31 and 32 of the electric motor drive device 30 may be suppressed.
  • the power conversion devices described in the first to third embodiments are not limited to those used for driving electric motors of electric vehicles, and the motors 4 are not limited to those used for electric vehicles.
  • the present invention can be freely combined with each other or can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(100)の制御回路(40)は、インバータ回路(30)の回生制御時において、直流電源(1)と平滑コンデンサ(2)との間の経路が遮断状態の場合に、インバータ回路(30)内の上スイッチング素子(31U、31V、31W)をオンさせると共に全ての下スイッチング素子(32U、32V、32W)をオフさせる第1制御と、下スイッチング素子(32U、32V、32W)をオンさせると共に全ての上スイッチング素子(31U、31V、31W)をオフさせる第2制御とを予め定めた切替期間毎に切替えて制御する。

Description

電力変換装置
 この発明は、直流電力を交流電力に変換して出力するインバータを備えた電力変換装置において、特に、インバータの回生制御時の動作に関するものである。
 ハイブリッド自動車や電気自動車などの電動車では、回生制御時において、回生エネルギとなる回生電力をインバータを備えた電力変換装置を介してバッテリに充電する。そしてこの回生電力を再利用することで電力を有効に活用している。しかし回生制御時に、例えばバッテリと電力変換装置とを接続するケーブルが断線するなどの不具合が発生し、バッテリと電力変換装置とが遮断状態となった場合には、バッテリへ回生電力を充電することができない。例えばこの断線がバッテリとその平滑コンデンサとの間で生じた場合には、回生電力は配線の寄生抵抗やインバータのスイッチング素子のオン抵抗で消費される電力を除いて、全て平滑コンデンサに蓄積される。回生電力が平滑コンデンサに蓄積され続けると平滑コンデンサの電圧が上昇して過電圧となり、平滑コンデンサやインバータのスイッチング素子の信頼性を低下させてしまう。
 従来の電力変換装置としてのインバータ装置では、モータを停止させる際、モータの各相の1対のスイッチング素子のうち、直流電源のマイナス側に接続される下スイッチング素子を全てオンさせる。これによりモータの各相を互いに短絡させて、今までモータを駆動させていたエネルギをモータのコイルなどの負荷により電気的に消費させる(例えば、特許文献1参照)。
 また以下のような方法で回生動作中の直流電源ラインの電圧上昇を抑える従来の電力変換装置が開示されている。
 直流電源ラインの過電圧を検知すると3相ショートを行う。3相ショートにより、電流はモータと半導体スイッチング素子との間で還流し、直流電源ラインの電圧上昇を抑えることができる。3相ショートでは、上アームの半導体スイッチング素子もしくは下アームの半導体スイッチング素子をONして電流を還流させるため、ONしている側の半導体スイッチング素子が発熱する。熱による半導体スイッチング素子の故障発生を防ぐために、3相ショートしているアームの切り替えを適宜行う。この3相ショートを行うアームの切り替えを、インバータ部の上アーム側と下アーム側それぞれに温度センサを設け、これらの温度センサの出力によって、上アーム側と下アーム側の半導体スイッチング素子の温度が同程度となるように行ってもよい(例えば、特許文献2参照)。
特開2006-166504号公報(第4頁、段落[0012]、[0013]、図2) 国際公開番号WO2012/077187(第20貢、段落[0062]~[0066]、第25貢、[0086]、図4、図6)
 上記特許文献1に記載の従来の電力変換装置では、モータの各相を互いに短絡させる際に、直流電源の低電位側に接続される全相の下スイッチング素子のみをオンする。これによりモータとインバータ回路間で回生電流を還流させて回生電力を消費させることで、平滑コンデンサの電圧上昇を抑制している。しかし下スイッチング素子のみをオンにして回生電流を還流させるため、スイッチング時の導通損失により下スイッチング素子の温度が上昇し信頼性が低下するものであった。
 また、特許文献2に記載の3相の電力変換装置では、上アーム側と下アーム側のスイッチング素子の温度が同程度となるようにアームの切替制御を行っている。しかしながら、各相にそれぞれ上下アームがあり、電力変換装置の動作モード、アーム毎の冷却条件、アーム毎のスイッチング素子の並列接続数、各スイッチング素子の特性のバラツキ、各スイッチング素子の実装位置、などの条件によって、スイッチング素子の温度が相毎に異なることがある。
 また、同じアーム内であっても、スイッチング素子の温度に影響を与える条件が各スイッチング素子毎に異なる場合があり、各スイッチング素子の温度は必ずしも一様とならない。
 そのため、スイッチング素子の温度を正確に取得することが困難であり、上アーム側と下アーム側のスイッチング素子を適切に切替制御することが困難であった。
 従って、電力変換装置が備えるスイッチング素子の温度上昇を信頼性良く抑制することができないという問題点があった。
 この発明は上述のような問題点を解決するためになされたものであり、電力変換装置の回生制御時において、直流電源と平滑コンデンサとの間が遮断状態の場合でも、高電位側のアームのスイッチング素子と低電位側のアームのスイッチング素子とを、適切に切替制御することにより、平滑コンデンサの電圧上昇を抑制しつつ、スイッチング素子の温度上昇を信頼性良く抑制できる電力変換装置の提供を目的とする。
 この発明に係る電力変換装置は、直流母線間に接続され直流電源からの直流電力を平滑する平滑コンデンサと、前記直流母線の高電位側に接続される上スイッチング素子と、前記直流母線の低電位側に接続される下スイッチング素子とがそれぞれ直列接続され、その接続点が各相交流入出力線に接続される直列体を、前記直流母線間にそれぞれ並列接続して備え、直流電力を交流電力に変換して出力するインバータ回路と、前記インバータ回路の力行および回生を制御する制御回路とを備えた電力変換装置において、前記制御回路は、前記インバータ回路の回生制御において、前記直流電源と前記平滑コンデンサとの間の経路が遮断状態の場合に、全ての前記上スイッチング素子をオンさせると共に全ての前記下スイッチング素子をオフさせる第1制御と、全ての前記下スイッチング素子をオンさせると共に全ての前記上スイッチング素子をオフさせる第2制御とを予め定めた切替期間毎に切替えて制御するものである。
 また、発明に係る電力変換装置は、直流母線間に接続され直流電源からの直流電力を平滑する平滑コンデンサと、前記直流母線の高電位側に接続される上スイッチング素子と、前記直流母線の低電位側に接続される下スイッチング素子とがそれぞれ直列接続され、その接続点が各相交流入出力線に接続される直列体を、前記直流母線間にそれぞれ並列接続して備え、直流電力を交流電力に変換して出力するインバータ回路と、前記インバータ回路の力行および回生を制御する制御回路とを備えた電力変換装置において、前記制御回路は、前記インバータ回路の回生制御において、前記直流電源と前記平滑コンデンサとの間の経路が遮断状態の場合に、全ての前記上スイッチング素子をオンさせると共に全ての前記下スイッチング素子をオフさせる第1制御と、全ての前記下スイッチング素子をオンさせると共に全ての前記上スイッチング素子をオフさせる第2制御とを所定の切替期間毎に切替えて制御するものであり、前記制御回路は、前記各相交流入出力線に流れる電流に応じて前記切替期間を決定するものである。
 この発明に係る電力変換装置によれば、インバータ回路の回生制御時において直流電源と平滑コンデンサとの間が遮断された状態の場合でも、高電位側の上スイッチング素子と低電位側の下スイッチング素子とを、適切に切替制御でき、平滑コンデンサの電圧上昇を抑制しつつ、スイッチング素子の温度上昇を信頼性良く抑制して、平滑コンデンサおよびスイッチング素子の信頼性を向上させ長寿命化を図ることができる。
本発明の実施の形態1による電力変換装置の構成を示す概略図である。 本発明の実施の形態1によるスイッチング素子の駆動用の絶縁電源の回路構成図である。 本発明の実施の形態1による制御回路の回生制御時における過電圧抑制制御の信号の例を表す模式図である。 本発明の実施の形態1による制御回路内のデータテーブルの構成例を示す図である。 本発明の実施の形態1によるスイッチング素子が、基板に実装された状態を示す断面図である。 本発明の実施の形態1による制御回路内のデータテーブルの他の構成例を示す図である。 本発明の実施の形態1による制御回路の回生制御時における過電圧抑制制御の信号の他の例を表す模式図である。 本発明の実施の形態2による制御回路の回生制御時における過電圧抑制制御の信号を表す模式図である。 本発明の実施の形態3による電力変換装置の構成を示す概略図である。 本発明の実施の形態3による制御回路の回生制御時における過電圧抑制制御の信号を表す模式図である。
実施の形態1.
 以下、本発明の実施の形態1による電力変換装置として、電動車の電動機駆動に適用される電力変換装置100について図を用いて説明する。
 図1は、本発明の実施の形態1による電力変換装置100の構成を示す概略図である。
 電力変換装置100は、直流電源1と、電動車に用いられる電動機4との間に接続されて直流電源1からの直流電力を交流電力に変換して電動機4に出力するインバータ回路としての電動機駆動装置30と、直流電源1からの直流電力を平滑する平滑コンデンサ2と、電動機駆動装置30の力行および回生を制御する制御回路40とを備える。
 平滑コンデンサ2は、電動機駆動装置30に並列になるように、高電位側の直流母線(以降、母線21と称す)と低電位側の直流母線(以降、母線22と称す)との間に接続されており、リレー6を介して直流電源1の正負端子に接続されている。このリレー6により電動機駆動装置30と直流電源1とを機械的に接続および切断することができる。
 電動機駆動装置30は、スイッチング素子であって母線21に接続される上スイッチング素子31U、31V、31Wと、母線22に接続される下スイッチング素子32U、32V、32Wとがそれぞれ直列接続された直列体35U、35V、35Wを備える。
 スイッチング素子31(31U、31V、31W)、スイッチング素子32(32U、32V、32W)には、それぞれダイオードが逆並列に接続されている。
 以降、上スイッチング素子31と下スイッチング素子32とを区別せずに説明する場合は、単にスイッチング素子31、32と記載する。
 直列体35U、35V、35Wは、それぞれ母線21と母線22との間に並列接続されている。そして、各直列体35U、35V、35Wの上スイッチング素子31U、31V、31Wと下スイッチング素子32U、32V、32Wとの接続点は、それぞれU相、V相、W相の各相交流入出力線(図中、U、V、W)に接続されている。このU相、V相、W相の各相交流入出力線には電動機4の各相が接続される。
 さらに電動機駆動装置30は、上スイッチング素子31U、31V、31Wを駆動するための高電位側駆動回路33U、33V、33Wと、下スイッチング素子32U、32V、32Wを駆動するための低電位側駆動回路34U、34V、34Wとを備える。なお、図中、各駆動回路33U、33V、33W、34U、34V、34WをDRと表示した。
 また、電動機駆動装置30および電動機4の状態を検出するための電圧センサ71と、電流センサ72と、回転センサ73との3つのセンサが備えられている。
 制御回路40は、電圧センサ71のセンシング情報を基に母線21、22間の電圧V1を検出する。また制御回路40は、電流センサ72のセンシング情報を基に電動機駆動装置30の出力電流(各相交流入出力線に流れる電流)Iaを検出する。また、制御回路40は、回転センサ73のセンシング情報を基に電動機4の速度ωや磁極位置θを検出する。
 図2は、本発明の実施の形態1によるスイッチング素子31、32の駆動用の絶縁電源7の回路構成図である。
 絶縁電源7は、図2に示す様に、スイッチング素子7aとトランス7bとダイオード7c、7dとコンデンサ7eとを備える。そして絶縁電源7は、母線21、22間の電力を受電して、高電位側駆動回路33U、33V、33Wおよび低電位側駆動回路34U、34V、34Wに供給される駆動電源を生成する。この絶縁電源7は、その内部のスイッチング素子のオン時間とトランスの巻数比とに応じて、生成する電圧を可変にすることができる。
 制御回路40は、電動機4の回転数やトルクを制御するために電動機駆動装置30の動作を制御する。この制御回路40は、指令値生成部41と、電圧制御部42と、PWM回路43とを備える。指令値生成部41は電動機4の目標回転数や目標トルクの情報とドライバの制御情報とに基づいて指令値C1を生成する。そして、その指令値C1が電圧制御部42に入力される。電圧制御部42は、上記各センサ71~73でセンシングして検出した母線21、22間の電圧V1、出力電流(各相交流入出力線の電流)Ia、速度ωおよび磁極位置θの値と、指令値C1とに基づき、電動機駆動装置30の出力電圧を制御するための指令値C2を出力する。PWM回路43は指令値C2に基づきPWM制御により駆動信号を生成し、生成された駆動信号が高電位側駆動回路33U、33V、33Wと低電位側駆動回路34U、34V、34Wとに入力される。
 こうして各相に対応して配置された上スイッチング素子31U、31V、31Wは、高電位側駆動回路33U、33V、33Wにより駆動されて、母線21とU相、V相、W相の各相交流入出力線との間をスイッチングする。また下スイッチング素子32U、32V、32Wは、低電位側駆動回路34U、34V、34Wにより駆動されて、母線22とU相、V相、W相の各相交流入出力線との間をスイッチングする。
 次に、電動機駆動装置30の回生制御について説明する。
 回生ブレーキが作動した際は、電動車の車輪から回転トルクが電動機4に伝達され、電動機4は伝達されてきた回転トルクに基づいて交流電力(回生電力)を生成する。このとき、制御回路40は電動機駆動装置30を回生制御して、生成された交流電力を回生する。
 直流電源1と平滑コンデンサ2との間の経路が正常に接続されている場合は、制御回路40は、電動機駆動装置30のスイッチング素子31、32を全てオフする。
 なお、上記のようなスイッチング素子31、32を全てオフする制御に限るものでもない。例えば、ダイオードの導通に同期してスイッチング素子31、32のスイッチングを行う同期整流制御でもよい。これによりこの交流電力は電動機駆動装置30により直流電力に変換されて直流電源1へ充電される。充電された電力は、電動機駆動装置30の力行動作時に再び走行エネルギとして使用される。
 直流電源1と平滑コンデンサ2との間の経路が遮断状態の場合(例えばリレー6が開放状態のときや、何らかの原因で直流電源1へのケーブルが外れた状態の場合など)では、制御回路40は、回生電力による平滑コンデンサ2の電圧上昇を抑制するために以下の過電圧抑制制御を行う。
 図3は、本発明の実施の形態1による制御回路40の回生制御時における過電圧抑制制御の信号を表す模式図である。なお、横軸は時間を示し、Qは過電圧抑制制御の期間を示す。
 図において、直流電源1と平滑コンデンサ2との間の経路が遮断状態の時にHiとなるFail信号F1と、制御回路40が過電圧抑制制御時に電動機駆動装置30に出力する下スイッチング素子32U、32V、32Wの駆動信号S2および上スイッチング素子31U、31V、31Wの駆動信号S1の関係を示す。
 電動機駆動装置30の回生制御時に、時刻t0においてFail信号F1がHiになると、制御回路40は、過電圧抑制制御を開始する。
 このFail信号F1は、例えばリレー6の開閉信号、電圧センサ71、電流センサ72により取得した電力変換装置100の電圧や電流の情報などを用いて、直流電源1と平滑コンデンサ2との間の経路が遮断状態であるか否かが判定されて出力される。
 この過電圧抑制制御において、制御回路40は、U相、V相、W相の全ての下スイッチング素子32U、32V、32Wをオンさせると共に全ての上スイッチング素子31U、31V、31Wをオフさせるゼロベクトル期間を持つ第2制御P2を実行する。
 全相の下スイッチング素子32U、32V、32Wがオンすると、電動機4の電機子巻線の各相が短絡され、電動機駆動装置30と電動機4との間で回生電流が還流する。そして、オンされた各下スイッチング素子32U、32V、32Wのオン抵抗と電動機4の電機子巻線の負荷と配線の寄生抵抗とで回生電力が消費される。
 時刻t0から期間Δtが経過した時刻t1において、制御回路40は、U相、V相、W相の全ての上スイッチング素子31U、31V、31Wをオンさせると共に全ての下スイッチング素子32U、32V、32Wをオフさせるゼロベクトル期間を持つ第1制御P1に切替える。
 第2制御P2の時と同様に、オンされた上スイッチング素子31U、31V、32Wのオン抵抗と電動機4の電機子巻線の負荷と配線の寄生抵抗とで回生電力が消費される。
 時刻t1から期間Δtが経過した時刻t2において、制御回路40は、第2制御P2に切替える。時刻t2から期間Δtが経過した時刻t3において、制御回路40は、第1制御P1に切替える。
 この制御回路40による期間Δt毎の、第1制御P1と第2制御P2との切替え制御は、Fail信号F1がLowになるまで繰り返される。
 なお、図3に示すように、常に一定の長さの期間Δtが切替期間として用いられている。
 上記時刻t0から時刻t1の第2制御P2の期間では、回生電流は下スイッチング素子32U、32V、32Wに流れる。そのため下スイッチング素子32U、32V、32Wの温度が上昇する。これに対してオフされている上スイッチング素子31U、31V、31Wには回生電流が流れない。そのため上スイッチング素子31U、31V、31Wの温度は下降する。
 上記時刻t1から時刻t2の第1制御P1の期間では、回生電流は上スイッチング素子31U、31V、31Wに流れる。そのため上スイッチング素子31U、31V、31Wの温度は上昇する。これに対してオフされている下スイッチング素子32U、32V、32Wには回生電流が流れない。そのため下スイッチング素子32U、32V、32Wの温度は下降する。
 このように、制御回路40により、期間Δt毎に下スイッチング素子32U、32V、32Wがオンになる第2制御P2と、上スイッチング素子31U、31V、31Wがオンになる第1制御P1とを切替えて制御する。こうして、オフされている方のスイッチング素子31、32に回生電流を流さない冷却期間を確保することができる。これにより、スイッチング素子31、32の温度上昇を抑制することができる。
 さらに、上スイッチング素子31U、31V、32Wと下スイッチング素子32U、32V、32Wとを切替えることで、切替える際のスイッチング損失が発生する。このスイッチング損失により回生電力をさらに効率的に消費することが可能となる。
 なお、本実施の形態では、過電圧抑制制御において、先に第2制御P2を行った後に、第1制御P1を行っているが、この順番は逆でもよい。
 以下、上記切替期間Δtについて説明する。
 図4は、本発明の実施の形態1による制御回路40内のデータテーブルの構成例を示す図である。
 図4に示す上限温度値Tmaxは、半導体素子であるスイッチング素子31、32の内部のP型半導体領域とN型半導体領域とのPN接合部における上限の温度値を示す(この場合、130℃)。
 そして、このデータテーブルには、PN接合部の温度がこの上限温度値Tmax以下になるように予め決定された切替期間Δtの期間長(この場合10μs)が保持されている。
 この切替期間Δtの値(10μs)は、各スイッチング素子31、32の素子特性、電力変換装置100の動作モード、各スイッチング素子31、32の実装位置、などの条件J1に基づいて予め決定されたものである。
 これらの条件J1は、電力変換装置100の動作前において正確に取得可能なものである。そしてこれらの条件J1に基いて、電力変換装置100が備える全てのスイッチング素子31、32が上限温度値Tmax以下となるような切替期間Δtが決定されている。
 制御回路40は、上記のように予め決定された10μsの切替期間Δtを用いて、第1制御P1と第2制御P2とを10μs毎に切替えて制御する。
 上記条件J1である各スイッチング素子31、32の素子特性の具体例として、スイッチング素子31、32の熱抵抗を用いた場合を、以下に説明する。
 スイッチング素子31、32の熱抵抗を用いることで、スイッチング素子31、32の温度上昇値ΔTrを予め算出することができる。そして、算出された温度上昇値ΔTrが放熱されて、スイッチング素子31、32の温度が上限温度値Tmax以下となるような切替期間Δtを決定する。
 また、更に正確な温度上昇値ΔTrを算出するために、スイッチング素子31、32の熱抵抗に加えて、スイッチング素子31、32の熱容量を用いてもよい。
 また、温度上昇値ΔTrを算出するために、スイッチング素子31、32の熱抵抗に加えて、スイッチング素子31、32に熱的に接続される放熱部の熱抵抗を用いるものでもよい。以下、この放熱部について図を用いて説明する。
 図5は、本発明の実施の形態1によるスイッチング素子31、32が、基板60に実装された状態を示す断面図である。
 図に示すように、表面にスイッチング素子31、32が実装された基板60の裏面に、放熱部としてのヒートシンク61が実装されている。このように、スイッチング素子31、32の発熱が、熱伝導経路としての基板60を介してヒートシンク61に伝熱される構成である。
 この場合、スイッチング素子31、32の熱抵抗と、基板60の熱抵抗と、ヒートシンク61の熱抵抗とを用いて、より正確な温度上昇値ΔTrが算出可能である。
 以下、上記図4とは異なる構成のデータテーブルを用いた第1制御P1と第2制御P2との切替制御について説明する。
 図6は、本発明の実施の形態1による制御回路40内のデータテーブルの他の構成例を示す図である。
 図6に示すデータテーブルには、切替期間Δtに対する複数の期間長が保持されている。これらの切替期間Δtは、図4に示した切替期間Δtと同様に、スイッチング素子31、32のPN接合部の温度が上限温度値Tmax以下になるように条件J1に基づいて予め決定されたものである。
 さらにこれらの切替期間Δtは、図にIa、Ta、N、として示す条件J2ごとにその期間長が定められている。
 条件J2とは、電力変換装置100の動作中においてセンサなどにより取得される、スイッチング素子31、32の温度に影響を与える条件である。
 具体的には、図6(a)に示す条件J2としてのIaは、電流センサ72により取得された各相交流入出力線に流れる電流の値であり、図6(b)に示す条件J2としてのTaは、スイッチング素子31、32の周囲温度Taであり、図6(c)に示す条件J2としてのNは、スイッチング素子31、32を冷却するファンの冷却条件(ここではファンの回転数N)である。
 こうして、電力変換装置100が備える全てのスイッチング素子31、32が上限温度値Tmax以下となるように、これらの条件J2の値に応じた切替期間Δtが予め決定されている。
 以下、上記条件J2を用いた制御回路40の制御について説明する。
 制御回路40は、電力変換装置100の動作中において、Fail信号F1がHiになり直流電源1と平滑コンデンサ2との間の経路が遮断状態と判定すると、上記条件J2を取得する。
 ここで、3つの条件J2(電流Ia、周囲温度Ta、ファン回転数N)の全てを取得する必要はなく、少なくとも1つの条件J2を取得するものでよい。
 次に、制御回路40は、取得された条件J2に応じて、切替期間Δtの複数の期間長から1つの期間長を選出する。
 具体的には、条件J2として各相交流入出力線に流れる電流Iaを取得し、その電流Iaの値が120Aであったとする。この場合、制御回路40は、図6(a)に示すデータテーブルから、120Aの電流Iaに対応して予め決定された10.5μsの期間長を選出する。
 次に、制御回路40は、10.5μsの期間長を切替期間Δtに用いて、第1制御P1と第2制御P2とを10.5μs毎に切替えて制御する。
 なお、条件J2として周囲温度Taを取得した場合は、制御回路40は、取得した周囲温度Taの値に対応して予め決定された切替期間Δtの期間長を、図6(b)に示すデータテーブルから選出する。
 また、条件J2としてファン回転数Nを取得した場合は、制御回路40は、取得したファン回転数Nの値に対応して予め決定された切替期間Δtの期間長を、図6(c)に示すデータテーブルから選出する。
 なお、上記のように、1つの条件J2毎に期間長を選出するものに限定するものではない。例えば、複数の条件J2(例えば、電流Iaと周囲温度Ta)の両方の値を同時に取得し、この両方の値に対応する期間長が保持されたテーブル(図示せず)に基づいて期間長を選出するものでもよい。
 このように、制御回路40は、取得された条件J2のうち、少なくとも1つの値に応じて、複数の期間長から1つの期間長を選出する。
 以下、上記図3、図4、図6を用いて説明した制御とは異なる第1制御P1と第2制御P2との切替制御について説明する。
 図7は、本発明の実施の形態1による制御回路40の回生制御時における過電圧抑制制御において、図3に示したものとは異なる制御を示す模式図である。
 図3を用いて説明した切替制御では、第1制御P1と第2制御P2との切替制御の経過時間に関わらず、常に一定の切替期間Δtを用いていた。
 図7に示す切替制御では、第1制御P1と前記第2制御P2との切替制御を開始した時刻t0から時刻t5までに用いられる切替期間Δt1と、時刻t5から時刻t7に用いられる切替期間Δt2とは異なる。
 このように、第1制御P1と前記第2制御P2との切替制御の経過時間に応じて予め決定された切替期間Δt1、Δt2を用いることも可能である。
 なお、本実施の形態では、電動機駆動装置30のスイッチング素子にn型MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor)を図示したがこれに限るものではない。スイッチング機能を有していればよく、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor)を用いてもよい。ユニポーラデバイスであるMOSFETは一般的に温度によりオン抵抗が増加する傾向を持っている。一方、バイポーラデバイスであるIGBTは一般的に温度に対するコレクタ・エミッタ間の飽和電圧の増加分が少ないと言われている。これらスイッチング素子31、32の特性を考慮して、電動車のドライバが求める制動力が得られるように選択してもよい。
 また、スイッチング素子31、32に逆並列接続されたダイオードは、MOSFETを用いる場合ではMOSFETのボディーダイオードを示しているが、これに限定するものではない。このダイオードは逆方向に電流を流す機能を有していれば良く、SBD(Schottky Barrier Diode)やPN接合ダイオードを使用しても良い。また、ダイオードを用いずに、MOSFETの同期整流を使用しても良い。
 これらのスイッチング素子31、32にはSi半導体の他、ワイドバンドギャップ半導体を用いたものを使用することが可能である。ワイドバンドギャップ半導体には、シリコンカーバイドの他、窒化ガリウム、ダイヤモンドがある。ワイドバンドギャップ半導体は高温動作が可能であるため、ヒートシンクなどの冷却系を簡素化することができ、装置の小型化が可能である。
 また、本実施の形態では、リレー6を用いた例を挙げたが、これに限定するものではなく、回路構成によってはこのリレー6を設けない場合もある。
 また、上記電圧センサ71、電流センサ72および回転センサ73の構成は一例である。電動機4や、この電動機4に接続する負荷によってはこれらのセンサが不要であったり、センシングされた情報を使わないこともある。もしくは、さらに多くの情報のセンシングが必要になる場合もあるため、適宜センサの構成を変更すればよい。
 また、電動機駆動装置30の直流電源1は、例えば、NiMH(ニッケルメタルハイドライド)電池やLi-ion(リチウムイオン)電池で構成される。また、交流電源を整流して直流電源として使用しても良い。
 上記のように構成された本実施の形態の電力変換装置100によると、回生制御時において直流電源1と平滑コンデンサ2との間が遮断状態の場合に、電動機駆動装置30と電動機4との間で回生電流を還流させる。これにより回生電力が平滑コンデンサ2に充電されないように制御することができる。よって、平滑コンデンサ2の電圧上昇を抑制することができ、平滑コンデンサ2の過電圧に起因する平滑コンデンサおよびスイッチング素子31、32の信頼性の低下を防止することができる。
 さらに、電動機駆動装置30と電動機4との間で回生電流を還流させる際に、予め定めた切替期間Δt毎に第1制御P1と第2制御P2とを切替えて制御する。そのため、オンされている側のスイッチング素子31、32で回生電力を消費しつつ、オフされている側のスイッチング素子31、32に対して回生電流を流さない冷却期間を確保することができる。これにより一旦温度上昇したスイッチング素子31、32を冷却することができ、スイッチング素子31、32の温度上昇を抑制して信頼性を向上させることができる。こうして、信頼性が高く長寿命の電力変換装置を提供することができる。
 さらに、容量の小さい小型の平滑コンデンサ2やスイッチング素子31、32を用いることも可能となるため、装置構成を小型化できる。
 さらに、従来技術のように、正確に検知し難い動作中のスイッチング素子の温度に基づいて切替期間を決めるものではなく、制御回路40は、予め定められた切替期間Δtを用いるものである。この切替期間Δtは、スイッチング素子31、32の温度に影響を与える種々の条件J1に基づいて予め決定されたものである。そして条件J1は、スイッチング素子31、32の素子特性など、電力変換装置100の動作前において正確に取得可能な条件である。そのため、正確に取得可能な条件に基づいた適正な切替期間Δtを用いることが可能である。こうして、スイッチング素子31、32の温度を、信頼性良く上限温度値Tmax以下に抑えることができる。
 また、電力変換装置100の動作中において、制御回路40は、Fail信号F1がHiになった時点での、各相交流入出力線に流れる電流Iaの値などの条件J2を取得し、この条件J2に基づいて切替期間Δtの期間長を選出するものである。
 各相交流入出力線に流れる電流Iaなどのこの条件J2は、電力変換装置100の動作中においても正確に取得可能なものである。また、この条件J2は、第1制御P1と第2制御P2の切替制御を行う直前における電力変換装置100の状態を示すものである。
 こうして、正確であり、さらに電力変換装置100の直近の動作状況に即した条件J2に基づいて、予め定められた複数の期間長の内から最適な期間長を選出することが可能である。そのため、スイッチング素子31、32の温度上昇を制度良く抑制することができる。
 また、従来技術のように、上スイッチング素子31の温度と下スイッチング素子32の温度を比較しながら、切替期間Δtを決定するものではない。そのため、制御回路40の比較制御に起因する処理の遅延を招く恐れがない。こうして、制御回路40は、迅速に第1制御P1と第2制御P2との切替制御を行うことができる。
 また、このように予め定めた第1制御P1と第2制御P2との切替制御を、予め定めた切替期間Δt毎に行うため、チャタリングを防止できる。こうして、安定性の高い切替制御を行う事ができる。
 また、第1制御P1と前記第2制御P2との切替制御の経過時間に応じた切替期間Δtを決定することができる。これにより、スイッチング素子31、32の温度が高い過電圧抑制制御の開始時点においては短い期間長の切替期間Δt1を用いる。そして、過電圧抑制制御の開始から所定の期間が経過し、スイッチング素子31、32の温度が低くなる時刻まで達すると長い期間長の切替期間Δt2を用いる。こうして、第1制御P1と前記第2制御P2の経過時間に応じて、スイッチング素子31、32のスイッチング回数を適宜減らすことができる。そのため、ターンオフ時のサージ電圧によるスイッチング素子31、32の劣化を抑制することができる。
 また、電力変換装置100の通常動作時の制御にて取得する電流Iaの値を、過電圧抑制制御における切替期間Δtの決定にも用いる。そのため、切替期間Δtの決定のために電流センサを別途設ける必要がなく、既存の電流センサ72を活用できる。これにより、電力変換装置100の小型化、低コスト化が可能である。
 なお、図6(c)では、スイッチング素子31、32を冷却する冷却条件として、ファンの回転数Nを示したがこれに限定するものではない。例えば冷却水を用いるものでもよく、その場合は冷却条件として、冷却水の温度、容積などを用いることができる。
 また、種々の条件J1は、電力変換装置100の動作モード、各スイッチング素子31、32の素子特性のばらつき、各スイッチング素子31、32の実装位置、に限定するものではない。スイッチング素子の温度に影響を与える条件のうち、電力変換装置100の動作前において正確に取得可能なものであればよい。
 また、熱伝導経路として基板60、放熱部としてヒートシンク61を示したが、これに限定するものではない。スイッチング素子31、32に熱的に接続されるものであればよい。
 また、上限温度値Tmaxは、スイッチング素子31、32のPN接合部の温度としたが、これに限定するものではない。例えば、スイッチング素子31、32のパッケージの表面温度でもよい。
実施の形態2.
 以下、この発明の実施の形態2を、上記実施の形態1と異なる箇所を中心に説明する。
 実施の形態1では、切替期間Δtが予め決定されており、制御回路40は、この予め決定された切替期間Δtを用いて、第1制御P1と第2制御P2とを切替制御するものであった。
 本実施の形態では、電力変換装置100の動作中において各相交流入出力線に流れる電流Iaに応じて、制御回路40が所定の切替期間Δtを決定するものである。
 この電流Iaは、上記実施の形態1で条件J2として示した電流Iaと同じものであり、実施の形態1と同様に電力変換装置100の動作中に電流センサ72により取得する。
 そして、制御回路40は、電流Iaに基づいて切替期間Δtを決定し、第1制御P1と第2制御P2とを切替期間Δt毎に切替えて制御する。
 制御回路40は、例えば電流Iaと切替期間Δtとの対応を示すテーブルを予め保持し、検出された電流Iaに応じて切替期間Δtを決定する。また、スイッチング素子31、32のPN接合部の温度が上限温度値Tmax以下になるように切替期間Δtは決定される。
 また、制御回路40が、上記電流Iaと、スイッチング素子31、32の周囲温度Taとに応じて切替期間Δtを決定するものでもよい。
 この周囲温度Taは、上記実施の形態1で条件J2として示した周囲温度Taと同じものである。
 また、制御回路40が、上記電流Iaと、スイッチング素子31、32を冷却する冷却条件とに応じて切替期間Δtを決定するものでもよい。
 この周囲温度Taは、上記実施の形態1で条件J2として示した周囲温度Taと同じものであり、ファンの回転数Nなどである。
 また、制御回路40が、スイッチング素子31、32の熱抵抗および熱容量のうち、少なくとも熱抵抗を用いてスイッチング素子31、32の温度上昇値ΔTrを算出する。そして、上記電流Iaと、算出された温度上昇値ΔTrとに基づいて、切替期間Δtを決定するものでもよい。
 また、制御回路40が、上記電流Iaと、放熱部の熱抵抗と、熱伝導経路の熱抵抗とを用いて温度上昇値ΔTrを算出するものでもよい。
 この放熱部と熱伝導経路は、上記実施の形態1で示したものと同じであり、ヒートシンク61、基板60などである。
 また、制御回路40が、上記電流Iaに基づいた上で、第1制御P1と第2制御P2との切替制御の経過時間に応じて切替期間Δtを決定するものでもよい。
 この切替制御は、上記実施の形態1の図7で示したものと同等であり、切替期間Δtは、切替制御の経過時間に応じて異なる。
 また、以下に図を用いて示すような基準信号を用いて切替期間Δtを決定するものでもよい。
 図8は、本発明の実施の形態2による制御回路40の回生制御時における過電圧抑制制御の信号を表す模式図である。
 図において、電力変換装置100の力行および回生を制御するための、スイッチング素子31、32を駆動する基となる搬送波C1を示す。この搬送波C1は、基準信号としてのクロック信号CLKに基づいて生成されるものである。
 本実施の形態では、制御回路40が、電流Iaに基づいて決定された切替期間Δtをこのクロック信号CLKに基づいて調整する。
 図8に示すように、切替期間Δtは、クロック信号CLKの周期の整数倍となるように調整され、各切替期間Δtは、クロック信号CLKの立ち上がりに同期して開始される。
 こうして、搬送波C1を生成するためのクロック信号CLKが、切替期間Δtの決定に対しても用いられる。
 上記のように構成された本実施の形態の電力変換装置によると、回生制御時において直流電源1と平滑コンデンサ2との間の経路が遮断状態の場合でも、制御回路40が、電力変換装置100の動作中おける各相交流入出力線に流れる電流Iaの値に基づいて、切替期間Δtを決定する。
 こうして、制御回路40は、正確に取得可能であり、実際の動作状況に即した電流Iaに基づいて適正な切替期間Δtを決定することができる。
 また、制御回路40が切替期間Δtを決定するため、電力変換装置100の動作中においても切替期間Δtの決定が可能である。そのため、制御の自由度が向上する。
 こうして、平滑コンデンサ2の電圧上昇を抑制しつつ、スイッチング素子31、32の温度上昇を信頼性良く抑制して、上限温度値Tmax以下にすることができる。
 よって、平滑コンデンサ2およびスイッチング素子31、32の信頼性を向上させることができる。これにより、信頼性が高く長寿命の電力変換装置を提供することができる。さらに、容量の小さい小型の平滑コンデンサ2やスイッチング素子31、32を用いることも可能となるため、装置構成を小型化できる。
 さらに制御回路40は、上記電流Iaに加えて、正確に取得可能な他の種々の条件(スイッチング素子31、32の周囲温度Ta、スイッチング素子31、32を冷却するための冷却条件、スイッチング素子31、32の熱抵抗、スイッチング素子31、32の熱容量、スイッチング素子31、32の熱伝導経路の熱抵抗、放熱部の熱抵抗)に基づいて切替期間Δtを決定する。
 こうして、さらに正確に取得可能な種々の条件に基づいて、適正な切替期間Δtを決定をすることが可能である。
 さらに制御回路40は、第1制御P1と前記第2制御P2との切替制御の経過時間に応じた切替期間Δtを決定することができる。これにより、スイッチング素子31、32のスイッチング回数を適宜減らしてターンオフ時のサージ電圧によるスイッチング素子31、32の劣化を抑制することができる。
 さらに、制御回路40は、スイッチング素子31、32を駆動するためのクロック信号CLKに基づいて切替期間Δtを調整し、その位相を決定することができる。
 このように、制御回路40の力行および回生を制御するためのクロック信号CLKを、切替期間Δtの決定にも用いることができ、基準信号を新たに追加する必要がない。これにより、制御回路40の制御動作の負荷を低減することができる。
実施の形態3.
 以下、この発明の実施の形態3を、上記実施の形態1および実施の形態2と異なる箇所を中心に図を用いて説明する。上記実施の形態1および実施の形態2と同一ないし同等である構成要素には同一符号を付して説明を省略する。
 図9は、本発明の実施の形態3による電力変換装置300の構成を示す概略図である。
 図に示すように本実施の形態では、平滑コンデンサ2を放電するための放電回路380が平滑コンデンサ2に並列接続されている。放電回路380は抵抗381とスイッチング素子382とスイッチング素子382を駆動するための駆動回路383とで構成されている。
 図10は、本発明の実施の形態3による制御回路340の回生制御時における過電圧抑制制御の信号を表す模式図である。なお、横軸は時間を示し、Qは過電圧抑制制御の期間を示す。
 図において、直流電源1と平滑コンデンサ2との間の経路が遮断状態となった場合にオンとなるFail信号F1と、制御回路340のPWM回路43が過電圧抑制制御時に電動機駆動装置30に出力する下スイッチング素子32U、32V、32Wおよび上スイッチング素子31U、31V、31Wの駆動信号S2、S1と、過電圧抑制制御時の放電回路380の駆動信号S3との関係を示す。
 実施の形態1と同様に制御回路340は、電動機駆動装置30の回生制御時に時刻t0においてFail信号F1がHiになると、過電圧抑制制御を開始する。そして、制御回路340は、U相、V相、W相の全ての下スイッチング素子32U、32V、32Wをオンさせると共に全ての上スイッチング素子31U、31V、31Wをオフさせるゼロベクトル期間を持つ第2制御P2を実行する。
 時刻t0から期間Δtを経過した時刻t1において、制御回路340は、下スイッチング素子32U、32V、32Wおよび上スイッチング素子31U、31V、31Wをオフさせると共に、放電回路380内のスイッチング素子382をオンさせる。このとき上スイッチング素子31U、31V、31Wおよび下スイッチング素子32U、32V、32Wはともにオフであるため、回生電力は平滑コンデンサ2に充電される。このとき放電回路380内のスイッチング素子382がオンされる。そのため、平滑コンデンサ2内に充電される電力が抵抗381で消費され、平滑コンデンサ2の電圧上昇が抑制される。
 時刻t1から所定の期間を経過した時刻t2において、制御回路40は、放電回路380内のスイッチング素子382をオンする制御から、U相、V相、W相の全ての上スイッチング素子31U、31V、31Wをオンさせると共に全ての下スイッチング素子32U、32V、32Wをオフさせるゼロベクトル期間を持つ第1制御P1に切替える。
 次に時刻t2から期間Δtを経過した時刻t3において第2制御P2に切替える。この時刻t3の制御状態は時刻t0の制御状態と同じであり、時刻t3以降は上述した時刻t0~時刻t2と同じ制御動作をFail信号F1がLowになるまで繰り返す。
 このように、制御回路40は、第1制御P1と第2制御P2とを、切替期間Δt毎に切替えて制御し、第2制御P2から第1制御P1に切替える間に放電制御P3を行う。
 なお、本実施の形態において用いる切替期間Δtは、上記実施の形態1に示したような予め定められた切替期間Δtを用いるものでもよいし、上記実施の形態2に示したような制御回路40が切替期間Δtを決定するものでもよい。
 上記のように構成された本実施の形態の電力変換装置300によると、上記実施の形態1と同様の効果を奏し、回生制御時において直流電源1と平滑コンデンサ2との間の経路が遮断状態の場合でも、平滑コンデンサ2の電圧上昇を抑制しつつ、スイッチング素子31、32の温度上昇を信頼性良く抑制することができる。そのため、平滑コンデンサ2およびスイッチング素子31、32の信頼性を向上することができる。これにより、信頼性が高く長寿命の電力変換装置を提供することができる。さらに、容量の小さい小型の平滑コンデンサ2やスイッチング素子31、32を用いることも可能となるため、装置構成を小型化できる。
 さらに、放電回路380を設けることで、電動機駆動装置30の内部だけではなく放電回路380の抵抗381で回生電力を消費可能な構成としている。そして、第1制御P1と第2制御P2との間に、上スイッチング素子31U、31V、31Wおよび下スイッチング素子32U、32V、32Wをオフさせると共に、放電回路380により回生電力を消費させる制御を設ける。これにより、平滑コンデンサ2の電圧上昇を抑制しながら、各スイッチング素子31、32に対して回生電流を流さない冷却期間をさらに長く確保することができる。こうして、スイッチング素子31、32の信頼性を向上させる効果がさらに高くなる。
 なお、本実施の形態では、第2制御P2から第1制御P1に切替える間に、放電回路380による平滑コンデンサ2を放電させる制御を設けているが、この順番に限定されるものではない。第1制御P1から第2制御P2に切り替える間に、放電回路380による平滑コンデンサ2を放電させる制御を設けても良い。
 また、制御回路340に、平滑コンデンサ2の電圧V1が、所定の電圧Vs以上であるかを判定する手段を設け、平滑コンデンサ2の電圧Vdcが電圧Vs以上である場合にのみ、スイッチング素子382をオンさせて平滑コンデンサ2を放電するように制御してもよい。これにより、実際の平滑コンデンサ2の電圧Vdcに応じた制御が可能になる。
 また、上記に示した放電回路380の構成は一例でありこれに限定するものではなく、回生電流を流す経路のオン、オフが切替え可能なスイッチング素子を備えて、回生電力が消費可能な回路構成であればよい。
 また、本実施の形態では、所定の一定切替期間Δt毎に第1制御P1と第2制御P2とを切替て制御したが、これに限定するものではない。例えば第1制御P1を実行する期間と第2制御P2を実行する切替期間とΔtが異なるように設定してもよい。
 また、放電回路380を用いる期間は、切替期間Δtと異なるように設定してもよい。
 このようなスイッチング素子の駆動方法は一例である。電動機駆動装置30のスイッチング素子31、32の信頼性の低下を抑制するように、温度情報を用いてスイッチング素子31、32を制御すればよい。
 また、上記実施の形態1~3にて述べた電力変換装置は、電動車の電動機駆動に用いるものに限らず、電動機4も電動車に用いるものに限らない。
 また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (18)

  1. 直流母線間に接続され直流電源からの直流電力を平滑する平滑コンデンサと、
    前記直流母線の高電位側に接続される上スイッチング素子と、前記直流母線の低電位側に接続される下スイッチング素子とがそれぞれ直列接続され、その接続点が各相交流入出力線に接続される直列体を、前記直流母線間にそれぞれ並列接続して備え、直流電力を交流電力に変換して出力するインバータ回路と、
    前記インバータ回路の力行および回生を制御する制御回路とを備えた電力変換装置において、
    前記制御回路は、前記インバータ回路の回生制御において、前記直流電源と前記平滑コンデンサとの間の経路が遮断状態の場合に、全ての前記上スイッチング素子をオンさせると共に全ての前記下スイッチング素子をオフさせる第1制御と、全ての前記下スイッチング素子をオンさせると共に全ての前記上スイッチング素子をオフさせる第2制御とを予め定めた切替期間毎に切替えて制御する、
    電力変換装置。
  2. 前記切替期間は、前記上スイッチング素子および前記下スイッチング素子の温度が上限温度値以下になるように決定される、
    請求項1に記載の電力変換装置。
  3. 前記制御回路は、前記切替期間に対し、複数の異なる期間長を保持し、
    前記各相交流入出力線に流れる電流、前記上スイッチング素子および前記下スイッチング素子の周囲温度、前記上スイッチング素子および前記下スイッチング素子を冷却する条件、のうち少なくとも1つに応じて前記複数の期間長から1つを選出して前記切替期間に用いる、
    請求項1または請求項2に記載の電力変換装置。
  4. 前記上スイッチング素子および前記下スイッチング素子の熱抵抗および熱容量のうち、少なくとも熱抵抗を用いて前記上スイッチング素子および前記下スイッチング素子の温度上昇値が予め算出され、
    前記切替期間は、前記温度上昇値に基づいて決定される、
    請求項1または請求項2に記載の電力変換装置。
  5. 前記上スイッチング素子および前記下スイッチング素子の発熱が熱伝導経路を介して放熱部に伝熱され、前記放熱部の熱抵抗と前記熱伝導経路の熱抵抗とを用いて前記温度上昇値が予め算出される、
    請求項4に記載の電力変換装置。
  6. 前記切替期間は、前記第1制御と前記第2制御との切替制御の経過時間に応じて決定される、
    請求項1または請求項2に記載の電力変換装置。
  7. 直流母線間に接続され直流電源からの直流電力を平滑する平滑コンデンサと、
    前記直流母線の高電位側に接続される上スイッチング素子と、前記直流母線の低電位側に接続される下スイッチング素子とがそれぞれ直列接続され、その接続点が各相交流入出力線に接続される直列体を、前記直流母線間にそれぞれ並列接続して備え、直流電力を交流電力に変換して出力するインバータ回路と、
    前記インバータ回路の力行および回生を制御する制御回路とを備えた電力変換装置において、
    前記制御回路は、前記インバータ回路の回生制御において、前記直流電源と前記平滑コンデンサとの間の経路が遮断状態の場合に、全ての前記上スイッチング素子をオンさせると共に全ての前記下スイッチング素子をオフさせる第1制御と、全ての前記下スイッチング素子をオンさせると共に全ての前記上スイッチング素子をオフさせる第2制御とを所定の切替期間毎に切替えて制御するものであり、
    前記制御回路は、前記各相交流入出力線に流れる電流に応じて前記切替期間を決定する、
    電力変換装置。
  8. 前記制御回路は、前記上スイッチング素子および前記下スイッチング素子の温度が上限温度値以下になるように前記切替期間を決定する、
    請求項7に記載の電力変換装置。
  9. 前記制御回路は、前記上スイッチング素子および前記下スイッチング素子の周囲温度に応じて前記切替期間を決定する、
    請求項7または請求項8に記載の電力変換装置。
  10. 前記制御回路は、前記上スイッチング素子および前記下スイッチング素子を冷却する冷却条件に応じて前記切替期間を決定する、
    請求項7から請求項9のいずれか1項に記載の電力変換装置。
  11. 前記上スイッチング素子および前記下スイッチング素子の熱抵抗および熱容量のうち、少なくとも熱抵抗を用いて前記上スイッチング素子および前記下スイッチング素子の温度上昇値が予め算出され、
    前記制御回路は、前記温度上昇値に基づいて前記切替期間を決定する、
    請求項7または請求項8に記載の電力変換装置。
  12. 前記上スイッチング素子および前記下スイッチング素子の発熱が熱伝導経路を介して放熱部に伝熱され、前記放熱部の熱抵抗と前記熱伝導経路の熱抵抗とを用いて前記温度上昇値が算出される、
    請求項11に記載の電力変換装置。
  13. 前記制御回路は、前記第1制御と前記第2制御との切替制御の経過時間に応じて前記切替期間を決定する、
    請求項7または請求項8に記載の電力変換装置。
  14. 前記制御回路は、前記上スイッチング素子および前記下スイッチング素子の駆動制御に用いる搬送波を生成するための基準信号に基づいて、前記切替期間を調整する、
    請求項7から請求項13のいずれか1項に記載の電力変換装置。
  15. スイッチング素子を有する放電回路を、前記平滑コンデンサに並列接続して備え、
    前記制御回路は、前記上スイッチング素子および前記下スイッチング素子をオフさせると共に前記放電回路内の前記スイッチング素子をオンさせる放電制御を、前記第1制御と前記第2制御との間に設ける、
    請求項1から請求項14のいずれか1項に記載の電力変換装置。
  16. 前記制御回路は、前記インバータ回路の回生制御において、前記直流母線間の電圧が所定の電圧値以上となった場合に、前記経路が遮断状態と判定する、
    請求項1から請求項15のいずれか1項に記載の電力変換装置。
  17. 前記上スイッチング素子および前記下スイッチング素子は、ユニポーラデバイスである、
    請求項1から請求項16のいずれか1項に記載の電力変換装置。
  18. 前記上スイッチング素子および前記下スイッチング素子は、バイポーラデバイスである、
    請求項1から請求項17のいずれか1項に記載の電力変換装置。
PCT/JP2016/051791 2015-01-29 2016-01-22 電力変換装置 WO2016121632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/524,356 US10250124B2 (en) 2015-01-29 2016-01-22 Power converter for controlling switching elements during regenerative control of an inverter
JP2016538153A JP6022130B1 (ja) 2015-01-29 2016-01-22 電力変換装置
CN201680004374.8A CN107148738B (zh) 2015-01-29 2016-01-22 电力变换装置
DE112016000520.2T DE112016000520T5 (de) 2015-01-29 2016-01-22 Energieumwandlungseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-014877 2015-01-29
JP2015014877 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121632A1 true WO2016121632A1 (ja) 2016-08-04

Family

ID=56543245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051791 WO2016121632A1 (ja) 2015-01-29 2016-01-22 電力変換装置

Country Status (5)

Country Link
US (1) US10250124B2 (ja)
JP (1) JP6022130B1 (ja)
CN (1) CN107148738B (ja)
DE (1) DE112016000520T5 (ja)
WO (1) WO2016121632A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103288A (ja) * 2017-12-05 2019-06-24 三菱電機株式会社 電力変換装置
JP2020043742A (ja) * 2018-09-13 2020-03-19 マツダ株式会社 電動発電機の制御装置
WO2020158883A1 (ja) * 2019-01-30 2020-08-06 ダイキン工業株式会社 電力変換装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460989A4 (en) * 2016-05-17 2020-01-22 Microspace Corporation MOTOR DRIVE CONTROL DEVICE AND ELECTRIC DEVICE
KR102141663B1 (ko) * 2017-12-15 2020-08-05 미쓰비시덴키 가부시키가이샤 모터 구동 시스템 및 인버터 장치
JP6963495B2 (ja) * 2017-12-22 2021-11-10 サンデンホールディングス株式会社 電力変換装置
CN108023485A (zh) * 2018-01-10 2018-05-11 上海英联电子系统有限公司 一种开关电源开关器件开关损耗管理的控制算法
CN110190799B (zh) * 2018-02-23 2022-09-20 松下知识产权经营株式会社 电动机控制装置和车辆驱动装置
JP6982519B2 (ja) * 2018-03-07 2021-12-17 サンデンホールディングス株式会社 電力変換装置
US10924001B2 (en) * 2018-08-22 2021-02-16 Texas Instruments Incorporated Gate driver controller and associated discharge method
DE102019110269A1 (de) 2019-04-18 2020-10-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ansteuerung einer mehrphasigen elektrischen Maschine mittels Raumzeigermodulation, Steuereinrichtung sowie Antriebsanordnung
KR20210123475A (ko) * 2020-04-03 2021-10-14 현대자동차주식회사 차량 내의 인버터를 과전압으로부터 보호하는 시스템 및 방법
JP7120474B1 (ja) * 2020-10-08 2022-08-17 東芝三菱電機産業システム株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013119A (ja) * 2006-07-07 2008-01-24 Toyota Motor Corp 車両の動力出力装置およびその制御方法
JP2013042611A (ja) * 2011-08-18 2013-02-28 Mitsubishi Electric Corp 半導体電力変換装置
JP2013055822A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896258B2 (ja) * 2001-04-25 2007-03-22 株式会社日立製作所 自動車電源装置
JP2004015892A (ja) * 2002-06-05 2004-01-15 Toshiba Corp インバータの制御装置及び電気自動車
KR100488523B1 (ko) * 2003-02-14 2005-05-11 삼성전자주식회사 모터제어장치 및 그 제어방법
JP2006166504A (ja) 2004-12-02 2006-06-22 Toyota Industries Corp インバータ装置
JP2007245966A (ja) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd 車両用駆動制御装置
JP5082495B2 (ja) 2007-02-21 2012-11-28 トヨタ自動車株式会社 電動回転機の電源制御装置
JP5244653B2 (ja) * 2009-03-03 2013-07-24 日立オートモティブシステムズ株式会社 電力変換装置
CN103250339B (zh) 2010-12-07 2015-11-25 日立汽车系统株式会社 电力变换装置
JP2012249397A (ja) * 2011-05-27 2012-12-13 Hitachi Appliances Inc モータ制御装置およびこれを備えた空気調和機
CN102882467B (zh) * 2011-07-11 2016-06-29 麦格纳电动汽车系统公司 用于电机的逆变器、运行逆变器的控制器和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013119A (ja) * 2006-07-07 2008-01-24 Toyota Motor Corp 車両の動力出力装置およびその制御方法
JP2013042611A (ja) * 2011-08-18 2013-02-28 Mitsubishi Electric Corp 半導体電力変換装置
JP2013055822A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 車両

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103288A (ja) * 2017-12-05 2019-06-24 三菱電機株式会社 電力変換装置
JP2020043742A (ja) * 2018-09-13 2020-03-19 マツダ株式会社 電動発電機の制御装置
JP7206723B2 (ja) 2018-09-13 2023-01-18 マツダ株式会社 電動発電機の制御装置
WO2020158883A1 (ja) * 2019-01-30 2020-08-06 ダイキン工業株式会社 電力変換装置
JP2020124104A (ja) * 2019-01-30 2020-08-13 ダイキン工業株式会社 電力変換装置
JP2021045041A (ja) * 2019-01-30 2021-03-18 ダイキン工業株式会社 電力変換装置
CN113366752A (zh) * 2019-01-30 2021-09-07 大金工业株式会社 功率转换装置
JP7041377B2 (ja) 2019-01-30 2022-03-24 ダイキン工業株式会社 電力変換装置
AU2020214609B2 (en) * 2019-01-30 2022-11-10 Daikin Industries, Ltd. Power conversion device

Also Published As

Publication number Publication date
US10250124B2 (en) 2019-04-02
JP6022130B1 (ja) 2016-11-09
CN107148738B (zh) 2019-06-25
JPWO2016121632A1 (ja) 2017-04-27
CN107148738A (zh) 2017-09-08
US20180278144A1 (en) 2018-09-27
DE112016000520T5 (de) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6022130B1 (ja) 電力変換装置
US10525841B2 (en) Gate driver with short circuit protection
US9998061B2 (en) Motor control device and motor control method
CN107800319B (zh) 用于减少开关损耗的双重栅极固态器件
CN108370223B (zh) 电力转换装置
JP5651927B2 (ja) スイッチング制御回路
US10090792B2 (en) Self-balancing parallel power devices with a temperature compensated gate driver
US20160099665A1 (en) Dynamic IGBT Gate Drive For Vehicle Traction Inverters
US20180366970A1 (en) Junction temperature compensated gate driver
JP2011010404A (ja) 電力変換器およびそれを用いた電動機駆動装置、輸送装置
US20130038140A1 (en) Switching circuit
US8283880B2 (en) Motor drive device with function of switching to power regenerative operation mode
JP6666174B2 (ja) 電力変換装置
JP2012115133A (ja) 高出力密度で高逆起電力の永久磁石機械及びその製造方法
RU2671947C1 (ru) Инвертор с возможностью заряда
US10250174B2 (en) Motor driving device
JP6135563B2 (ja) 電圧コンバータ
JP2019527027A (ja) 電流コンバータの駆動方法およびその方法で駆動される電流コンバータ
US10144296B2 (en) Gate driver with temperature compensated turn-off
JP5707762B2 (ja) 電力変換装置及び電力変換方法
JP2015033222A (ja) 半導体素子の駆動装置およびそれを用いる電力変換装置
JP2010178582A (ja) 車両用電力変換装置および電動車両
JP6305495B1 (ja) インバータ制御装置及びインバータ制御方法
US11682984B2 (en) Converter, motor vehicle and method for controlling a half bridge circuit
JP2020114094A (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016538153

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15524356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000520

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743235

Country of ref document: EP

Kind code of ref document: A1