WO2016107253A1 - 一种检测冷媒泄漏的方法及空调 - Google Patents
一种检测冷媒泄漏的方法及空调 Download PDFInfo
- Publication number
- WO2016107253A1 WO2016107253A1 PCT/CN2015/092769 CN2015092769W WO2016107253A1 WO 2016107253 A1 WO2016107253 A1 WO 2016107253A1 CN 2015092769 W CN2015092769 W CN 2015092769W WO 2016107253 A1 WO2016107253 A1 WO 2016107253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- heat exchanger
- temperature
- indoor heat
- ambient temperature
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
Definitions
- the invention relates to the field of air conditioning control, and in particular to a method for detecting leakage of a refrigerant and an air conditioner.
- commonly used household air conditioners include two parts, an indoor unit and an outdoor unit.
- the entire air conditioning system includes a compressor, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger.
- the air conditioning system also has a refrigerant, which is driven by the pressure generated by the compressor, circulates throughout the system, and exchanges heat with the indoor and outdoor environment to achieve the purpose of cooling or heating, so the amount of refrigerant directly affects the air conditioner. Cooling and heating effects.
- the embodiment of the invention provides a method for detecting refrigerant leakage and an air conditioner, which can realize the detection of refrigerant leakage without increasing the cost of the whole machine, and is beneficial to the promotion and use of the air conditioner.
- an embodiment of the present invention provides a method for detecting a refrigerant leakage for use in an air conditioner, the method comprising:
- an embodiment of the present invention provides an air conditioner, where the air conditioner includes:
- An obtaining unit configured to acquire an ambient temperature of the room and an indoor heat exchanger temperature of the air conditioner when the compressor of the air conditioner continues to work for a first preset time period
- the confirmation unit is configured to confirm whether the refrigerant of the air conditioner leaks according to the ambient temperature and the indoor heat exchanger temperature.
- an embodiment of the present invention provides an air conditioner, including an indoor unit and an outdoor unit, where the indoor unit includes an indoor heat exchanger, and the outdoor unit includes a compressor, and further includes:
- a first temperature sensor a second temperature sensor and a processor
- the first temperature sensor is configured to detect an indoor ambient temperature
- the second temperature sensor is configured to detect an indoor heat exchanger temperature
- the processor is configured to acquire an ambient temperature detected by the first temperature sensor and an indoor heat exchanger temperature detected by the second temperature sensor when the compressor continues to work for a first predetermined duration, according to the The ambient temperature and the indoor heat exchanger temperature confirm whether the refrigerant of the air conditioner leaks.
- Embodiments of the present invention provide a method of detecting refrigerant leakage and an air conditioner, the inspection
- the method for measuring refrigerant leakage includes: when the compressor of the air conditioner continues to work for a first predetermined period of time, first acquiring an ambient temperature of the room and an indoor heat exchanger temperature of the air conditioner, and then according to the ambient temperature The indoor heat exchanger temperature is described to confirm whether or not the refrigerant of the air conditioner leaks.
- the embodiment of the present invention can utilize the existing sensor for obtaining the ambient temperature of the air conditioner and the sensor for obtaining the temperature of the indoor heat exchanger to respectively obtain the ambient temperature and the indoor heat exchanger temperature, when the air conditioner refrigerant is sufficient.
- the indoor heat exchanger temperature should be much larger than the ambient temperature.
- the indoor heat exchanger temperature should be much lower than the ambient temperature, and when the air conditioner refrigerant has a large amount of leakage.
- the ambient temperature is not much different from the indoor heat exchanger temperature. Therefore, it can be determined that the air conditioner refrigerant leaks according to the above-mentioned law of the ambient temperature and the indoor heat exchanger temperature.
- the air conditioner according to the embodiment of the present invention does not need to separately provide a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, the existing refrigerant detecting the ambient temperature sensor and the sensor for detecting the temperature of the indoor heat exchanger can be used to confirm the refrigerant. Whether it leaks, reduces the cost of the whole machine, and is conducive to the promotion and use of air conditioners.
- FIG. 1 is a flowchart of a method for detecting a refrigerant leakage according to an embodiment of the present invention
- FIG. 2 is a flowchart of another method for detecting refrigerant leakage according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of an air conditioner according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of another air conditioner according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of still another air conditioner according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of still another air conditioner according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of still another air conditioner according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of still another air conditioner according to an embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of still another air conditioner according to an embodiment of the present invention.
- An embodiment of the present invention provides a method for detecting a refrigerant leakage, which is used in an air conditioner. As shown in FIG. 1, the method includes:
- Step 101 When the compressor of the air conditioner continues to work for a predetermined period of time, obtain an ambient temperature of the room and an indoor heat exchanger temperature of the air conditioner.
- a standard air conditioner needs to be equipped with two sensors, one for obtaining the ambient temperature, so that the air conditioner determines whether the ambient temperature is the same as the temperature set by the user, and the other sensor is used to obtain the temperature of the indoor heat exchanger, in case When the heat exchanger is frosted during air conditioning or when the air conditioner is heated, the heat exchanger pressure is too large.
- the existing air conditioner can test the indoor ambient temperature through the indoor return air sensor, and then the air conditioner can compare the measured ambient temperature with the temperature set by the user to determine whether the current ambient temperature reaches the set temperature of the user. At the same time, the existing air conditioner can detect the indoor heat exchanger temperature through the indoor piping sensor.
- the existing air conditioner usually sets two preset temperature values, which are respectively corresponding to the first preset temperature value and air conditioning heating during air conditioning and cooling.
- second preset value when the air conditioner is cooled, the indoor heat exchanger temperature is tested by the indoor piping sensor, and then the indoor heat exchanger temperature is compared with the first preset temperature value, when the indoor heat exchanger is warmed.
- the air conditioner is normally used.
- the compressor stops working to prevent the heat exchanger from frosting due to the temperature being too low;
- the air conditioner is heating, the indoor heat exchanger temperature is tested by the indoor piping sensor, and then the indoor heat exchanger temperature is compared with the second preset temperature value.
- the indoor heat exchanger temperature is greater than or equal to the second preset temperature value, The compressor stops working.
- the air conditioner is normally used to prevent the working pressure of the compressor from being too high.
- the first preset duration is set in advance, and may be set according to a specific situation in an actual application, which is not limited by the embodiment of the present invention.
- Step 102 Determine whether a leak of the refrigerant of the air conditioner is caused according to the ambient temperature and the temperature of the indoor heat exchanger.
- the indoor heat exchanger temperature should be much larger than the ambient temperature.
- the indoor heat exchanger temperature should be much lower than the ambient temperature, and when the air conditioner is used When there is a large amount of leakage in the refrigerant, the compressor cannot work effectively.
- the air conditioner is heating or cooling, the ambient temperature is not much different from the indoor heat exchanger temperature, so it can be based on the difference or ratio of the ambient temperature to the indoor heat exchanger temperature. Determine if there is a leak in the air conditioning refrigerant.
- first setting a first preset parameter corresponding to the air conditioner heating and a second preset parameter corresponding to the air conditioner cooling may be set.
- the air conditioner When the air conditioner is heating, when the ratio of the ambient temperature to the indoor heat exchanger temperature is greater than the first preset parameter, it is confirmed that the air conditioner refrigerant leaks; when the ratio of the ambient temperature to the indoor heat exchanger temperature is less than or equal to the first preset parameter , indicating that the air conditioning heating effect is good, the refrigerant does not leak; when the air conditioner is cooling, when the ring When the ratio of the ambient temperature to the indoor heat exchanger temperature is less than or equal to the second preset parameter, it is confirmed that the air conditioner refrigerant leaks; when the ratio of the ambient temperature to the indoor heat exchanger temperature is greater than the second preset parameter, the air conditioning heating or The cooling effect is good and the refrigerant does not leak.
- the temperature of the ambient heat and the temperature of the indoor heat exchanger can be in K (Kelvin).
- K is a commonly used thermodynamic unit. In practical applications, it can also be used in °C (Celsius), which is not limited in the embodiment of the present invention. .
- the air conditioner according to the embodiment of the present invention does not need to separately set a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, but uses the existing sensors of the air conditioner to separately obtain the ambient temperature and the indoor heat exchanger temperature, and then pass Comparing the ambient temperature with the temperature of the indoor heat exchanger, confirming whether the refrigerant leaks, reducing the cost of the whole machine, and facilitating the promotion and use of the air conditioner.
- the refrigerant of the air conditioner when it is determined whether the refrigerant of the air conditioner leaks according to the ambient temperature and the indoor heat exchanger temperature, whether the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is determined Less than or equal to the preset value. If the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value, it is confirmed that the refrigerant of the air conditioner leaks.
- the preset value may be set according to a specific situation in an actual application, which is not limited by the embodiment of the present invention. For example, when the ambient temperature and the indoor heat exchanger temperature may both be in K, the preset value may be It is 3K or 2.5K.
- the indoor heat exchanger temperature should be much larger than the ambient temperature, so if the absolute value of the difference between the indoor heat exchanger temperature and the ambient temperature is less than a preset value, Determine the air conditioning refrigerant leakage; when the air conditioning refrigerant is sufficient and the air conditioner is used for cooling, the indoor heat exchanger temperature should be much lower than the ambient temperature, so if the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than the preset value At this time, it can be determined that the air conditioner refrigerant leaks.
- the ambient temperature of the indoor environment and the indoor heat exchanger temperature of the air conditioner may be obtained to determine whether the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value.
- One cycle when the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value, and it is confirmed that the refrigerant of the air conditioner is leaking, the first cycle may be repeatedly performed N times. N is an integer greater than or equal to 1. If the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature in each first cycle is less than or equal to a preset value, it is confirmed that the refrigerant of the air conditioner leaks. There may be a preset time interval between two adjacent first periods.
- the temperature of the indoor heat exchanger may be unstable after the air conditioner is turned on. Therefore, if the temperature of the indoor heat exchanger obtained once is judged whether the refrigerant of the air conditioner leaks, a misjudgment may occur, so usually Obtaining an indoor ambient temperature and an indoor heat exchanger temperature of the air conditioner to determine whether an absolute value of a difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value as a first period, each of the first Obtain an ambient temperature and indoor heat exchanger temperature in one cycle, and perform N times of the first cycle continuously, that is, continuously obtain N times of ambient temperature and indoor heat exchanger temperature, and determine the ambient temperature and indoor heat exchanger obtained in each first cycle.
- the absolute value of the difference of the temperature is less than or equal to the preset value, and when the absolute value of the difference between the indoor heat exchanger temperature and the ambient temperature acquired in each first period is less than or equal to the preset value, it is confirmed that the refrigerant of the air conditioner leaks This will ensure the correct rate of confirmation results and reduce misjudgment.
- the temperature of the indoor heat exchanger is obtained, and the first two consecutive periods can be executed continuously without intervals, and there may be a preset time interval.
- the preset time interval is set in advance, and is set according to a specific situation in an actual application, which is not limited by the embodiment of the present invention. At the same time, if the compressor runs smoothly and the heat exchange efficiency of the heat exchanger is relatively uniform, there may be no preset time interval between the two adjacent first cycles.
- the first preset duration is 5 minutes
- the preset time interval is 5 seconds
- the preset value is 3
- N is 3, that is, the first period is repeated 3 times.
- the ambient temperature detected by the indoor return air sensor and the indoor heat exchanger temperature detected by the indoor piping sensor after 5 seconds and the second time to determine the ambient temperature and the indoor heat exchange Whether the absolute value of the difference of the temperature of the device is less than or equal to the preset value, the ambient temperature detected by the indoor return air sensor for the third time and the indoor heat exchanger temperature detected by the indoor piping sensor after 5 seconds, and the ambient temperature is determined for the third time.
- the absolute value of the difference between the temperature of the indoor heat exchanger is less than or equal to the preset value, that is, the first cycle is repeated three times, and the absolute value of the difference between the three ambient temperatures and the indoor heat exchanger temperature is less than or equal to the preset value.
- the refrigerant of the air conditioner leaks.
- the compressor when the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value in each first cycle, the compressor is turned off, and then the second preset is After the duration, the compressor is restarted; when the compressor continues to work for the first preset duration, the first period is repeated Q times, and the Q is an integer greater than or equal to 1; And if the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature in each first cycle is less than or equal to a preset value, turning off the compressor until the compressor continues to work for the length of time When the first preset duration is long, the first period is repeated to be the second period, and the second period is repeated M times, the M is an integer greater than or equal to 1; if each second period is In each first cycle, the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value, and it is confirmed that the refrigerant of the air conditioner leaks.
- the compressor is turned off until the compressor continues to work.
- the duration reaches the first preset duration
- the first period is repeated Q times to form a second period; the second period is repeated M times, wherein M and Q are preset, and the actual application is based on
- M and Q are preset, and the actual application is based on
- the specific situation is set, which is not limited by the embodiment of the present invention.
- the first time is entered. The execution of the second cycle, so that when the second cycle is repeatedly performed twice, the first cycle is performed a total of 3N times, so that the probability of misjudgment is small and almost negligible.
- the air conditioner may also issue an alarm.
- an alarm light can be set on the air conditioner.
- the alarm light can be illuminated to alert the user; or, a buzzer can be installed on the air conditioner to confirm that the refrigerant leaks.
- the knowledge buzzer beeps the user is alerted.
- the air conditioner may first turn off the compressor. In order to prevent the compressor from running continuously under the condition of insufficient refrigerant, irreversible damage to the compressor is caused.
- the indoor air return sensor through which the air conditioner can pass detects the ambient temperature, and the indoor heat exchanger temperature is detected by an indoor pipe sensor.
- the method further includes: when the ambient temperature and the indoor heat exchanger temperature When the absolute value of the difference is greater than the preset value, the cumulative working time of the compressor is recorded; when the accumulated working time of the compressor reaches the third preset time, it is determined whether the current working duration of the compressor is Achieving the first preset duration; if the current duration of the compressor of the air conditioner reaches a first preset duration, acquiring the ambient temperature and the indoor heat exchanger temperature, and according to the ambient temperature The indoor heat exchanger temperature confirms whether the refrigerant of the air conditioner leaks.
- the refrigerant may leak rapidly due to cracking and stress of the outdoor unit. Therefore, when the refrigerant is not leaked, the cumulative operation of the compressor can be recorded. Time, when the cumulative working time of the compressor reaches the third preset duration, it indicates that the compressor has been working for a long time, and it is likely that the refrigerant pipeline will crack due to the vibration and stress of the outdoor unit pipeline, causing the refrigerant to appear. Leakage, so it is possible to detect whether there is a leak in the air-conditioning refrigerant.
- the compressor may first be determined whether the current working duration of the compressor reaches the first preset duration, if the current compressor of the air conditioner continues to work for a long time.
- the first preset duration is reached, the first period is executed, that is, whether the refrigerant leaks is detected.
- the accumulated working time of the compressor may be cleared, and then the cumulative working time of the compressor is continuously recorded.
- the accumulated working time of the compressor reaches the third preset time, it may be determined again. Whether the refrigerant leaks, so that the refrigerant is not detected when the air conditioner is just turned on, and the refrigerant is detected in real time during the operation of the air conditioner to ensure timely leakage of the refrigerant. Notify the user to prevent the compressor from running continuously for a long time with less refrigerant or missing refrigerant, causing damage to the compressor.
- An embodiment of the present invention provides a method for detecting a refrigerant leakage.
- the indoor heat exchanger temperature determines whether the refrigerant of the air conditioner leaks.
- the air conditioner according to the embodiment of the present invention does not need to separately set a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, but uses the existing sensor of the air conditioner to confirm whether the refrigerant leaks or not.
- the cost of the machine is conducive to the promotion and use of air conditioners.
- An embodiment of the present invention provides a method for detecting a refrigerant leakage.
- the embodiment of the present invention assumes that the first cycle is repeatedly performed three times, and the second cycle is repeatedly performed three times.
- the first preset duration is 5 minutes, and the adjacent two are adjacent.
- the preset time interval exists between the second period is 5 seconds, the second preset duration is 3 minutes, and the preset value is 2.5K (Kelvin).
- the embodiment of the present invention is only an exemplary description, and the above parameters are not used. The value of the limit is limited.
- the embodiment of the present invention obtains the ambient temperature through the indoor return air sensor, and obtains the indoor heat exchanger temperature through the indoor piping sensor. In actual applications, the ambient temperature and the indoor heat exchanger temperature can also be respectively obtained through other sensors provided in the air conditioner.
- the embodiment of the invention is not limited thereto.
- the method for detecting refrigerant leakage includes:
- Step 201 Turn on the air conditioner, start the compressor, record the long time of continuous operation of the compressor, N is equal to 0, M is equal to 0, and step 202 is performed.
- the compressor With the opening of the air conditioner, the compressor just started to work. At this time, since the compressor may not be used for a long time, the indoor heat exchanger temperature and the ambient temperature are not much different at this time, according to the indoor heat exchanger temperature and the ambient temperature. The size relationship cannot determine whether the refrigerant in the compressor is sufficient. Therefore, it is necessary to record the continuous working time of the compressor. When the continuous working time of the compressor meets the preset conditions, it is judged whether the refrigerant appears by obtaining the ambient temperature and the temperature of the indoor heat exchanger. Leakage can improve the accuracy of judgment results.
- the air conditioner will have heating or cooling, air supply and defrosting modes during operation, when the air conditioner works in the air supply and defrosting mode, the compressor does not work. Therefore, the temperature of the indoor heat exchanger is similar to the ambient temperature. At this time, it is impossible to judge whether or not the refrigerant leaks.
- Step 202 When the continuous operation of the compressor is longer than or equal to the first preset duration, obtain an ambient temperature detected by the indoor return air sensor of the air conditioner and an indoor heat exchanger temperature detected by the indoor piping sensor of the air conditioner, and perform steps 203.
- the first preset duration is set in advance, and may be set according to a specific situation in an actual application, which is not limited by the embodiment of the present invention.
- the existing air conditioner needs to detect the indoor ambient temperature, and then compares the measured ambient temperature with the temperature set by the user to determine whether the current ambient temperature reaches the set temperature of the user. At the same time, the existing air conditioner needs to detect the temperature of the indoor heat exchanger to prevent the heat exchanger from being frosted due to too low temperature or the working pressure of the compressor is too high. Therefore, the sensor for detecting the ambient temperature and the temperature for detecting the heat exchanger are used.
- the sensor is a standard configuration of the existing air conditioner.
- the embodiment of the present invention is described by taking an indoor return air sensor and an indoor piping sensor to obtain an ambient temperature and an indoor heat exchanger temperature as an example. In the embodiment of the invention, the ambient temperature and the indoor heat exchanger temperature are both in K units.
- Step 203 Determine whether an absolute value of a difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to 2.5K, and an absolute value of a difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to 2.5.
- step 204 is performed; when the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is greater than 2.5K, step 209 is performed.
- the difference between the indoor heat exchanger temperature and the ambient temperature is negative when the air conditioner is cooled, and the difference between the indoor heat exchanger temperature and the ambient temperature during the air conditioning heating is positive, so it is necessary to judge the indoor heat exchanger temperature and the ambient temperature.
- the absolute value of the difference when the absolute value of the difference between the indoor heat exchanger temperature and the ambient temperature is less than 2.5K, it indicates that the indoor heat exchanger temperature is not much different from the ambient temperature.
- the indoor heat exchanger temperature should be much lower than the ambient temperature.
- the indoor heat exchanger temperature should be much larger than the ambient temperature, that is, the refrigerant is sufficient.
- the absolute value of the difference between the indoor heat exchanger temperature and the ambient temperature should be large. If the absolute value of the difference between the indoor heat exchanger temperature and the ambient temperature is less than 2.5K, the indoor heat exchanger temperature is close to the ambient temperature. This is due to a large number of leaks in the air-conditioning refrigerant, which cannot be caused by normal cooling or heating.
- the 2.5K is set according to the specific situation, which is not limited by the embodiment of the present invention.
- Step 204 N plus 1, step 205 is performed.
- step 205 it is determined whether N is equal to 3. When N is equal to 3, step 206 is performed; when N is not equal to 3, after 5 seconds, step 202 is performed.
- the temperature of the indoor heat exchanger may be unstable after the air conditioner is turned on. Therefore, if the temperature of the indoor heat exchanger obtained once is judged whether the refrigerant of the air conditioner leaks, a misjudgment may occur, so usually Repeat the above steps 3 times.
- the ambient temperature detected by the indoor return air sensor of the air conditioner and the indoor heat exchanger temperature detected by the indoor piping sensor of the air conditioner may be obtained, and the difference between the ambient temperature and the indoor heat exchanger temperature may be determined.
- the parameter N is set, and each time the first period is executed, N is incremented by 1.
- N is equal to 3
- the first period is completed three times, and each first The absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature in the cycle is less than or equal to 2.5K, so that it is possible to initially determine that the refrigerant may leak.
- the operation of the compressor may not be stable, or the compressor may not be fully heated or cooled, and the temperature of the indoor heat exchanger may not be very high or low, even if The absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature in each first cycle is less than or equal to 2.5K, and may not be caused by refrigerant leakage, so the above steps may be cyclically executed three times in practical applications. Reduce the false positive rate.
- step 206 it is determined whether M is equal to 3. When M is not equal to 3, step 207 is performed; when M is equal to 3, step 211 is performed.
- the first cycle can be repeatedly executed within a reasonable range.
- the first cycle can be executed 3 times each time, and M times are performed continuously, when M is equal to 3 At the time, it indicates that the first cycle has been executed 9 times, and the probability of misjudgment is small at this time. Therefore, after each execution of the first period three times, in order to ensure the number of executions of the first period, it is also required to determine whether the M is equal to the preset threshold.
- the preset threshold is 3.
- Step 207 M is incremented by 1, and step 208 is performed.
- Step 208 Restart the compressor after the compressor is turned off for three minutes, and step 202 is performed.
- N is 3. If the absolute value of the difference between the ambient temperature of the first cycle and the temperature of the indoor heat exchanger is less than or equal to 2.5K, The refrigerant may leak, but this result may also be caused by unstable compressor operation, and the refrigerant may not be completely determined to leak. Therefore, the difference between the ambient temperature and the indoor heat exchanger temperature in each first cycle When the absolute value is less than or equal to 2.5K, the compressor can be turned off for 3 minutes, and then the compressor is restarted, and the ambient temperature and the indoor heat exchanger temperature are re-acquired.
- Step 209 The compressor works normally, and the accumulated working time of the compressor is recorded, and step 210 is performed.
- the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is greater than 2.5K, it indicates that the difference between the indoor heat exchanger temperature and the ambient temperature is large, further indicating that the compressor can perform normal heating or cooling work, that is, refrigerant. Sufficient, so the compressor can continue to work normally, and the cumulative working time of the compressor can be recorded at this time.
- Step 210 When the accumulated working time of the compressor reaches a third preset duration, determine whether the current working duration of the compressor reaches the first preset duration, and if the current compressor of the air conditioner continues to work for a long time Step 209 is performed. If the current duration of the compressor of the air conditioner is less than the first preset duration, the step 209 is performed.
- the refrigerant may leak rapidly due to cracking and stress of the outdoor unit. Therefore, when the refrigerant is not leaked, the cumulative operation of the compressor can be recorded. Time, when the compressor When the accumulated working time reaches the third preset time, it indicates that the compressor has been working for a long time, and it is likely that the refrigerant pipeline will crack due to the vibration and stress of the outdoor unit piping, causing leakage of the refrigerant. It is possible to detect whether or not the air-conditioning refrigerant leaks again.
- step 202 is performed to detect whether a refrigerant leaks.
- Step 211 lighting the alarm light.
- the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature in each first cycle may be less than or equal to a preset value, and the compressor is turned off until the second time One cycle is a second cycle, and after each of the second cycles is repeated for M times, if the first cycle of each second cycle is the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature All of them are less than or equal to the preset value.
- the false positive rate is low, and the refrigerant of the air conditioner can be completely confirmed to leak. Therefore, the warning light can be lighted to warn the user of the refrigerant leakage, so that the user can timely repair the air conditioner and the refrigerant. Add it.
- the compressor can also be turned off first to prevent the compressor from being damaged by continuous operation in the case of insufficient refrigerant.
- the embodiment of the present invention uses the existing sensors of the air conditioner to separately obtain the ambient temperature and the indoor heat exchanger temperature.
- the indoor heat exchanger temperature should be much larger than Ambient temperature, so if the difference between the indoor heat exchanger temperature and the ambient temperature is less than the preset value, it can be determined that the air conditioner refrigerant leaks; when the air conditioner refrigerant is sufficient and the air conditioner is used for cooling, the indoor heat exchanger temperature should be much smaller than the environment. Temperature, so according to the above rules, it can be determined whether the air-conditioning refrigerant leaks.
- the existing sensor of the air conditioner can be used to confirm whether the refrigerant leaks, thereby reducing the cost of the whole machine and facilitating the air conditioner. Promotional use.
- An embodiment of the present invention provides an air conditioner 30.
- the air conditioner includes:
- the obtaining unit 301 is configured to reach when the compressor of the air conditioner 30 continues to work When the first preset time is long, the ambient temperature in the room and the indoor heat exchanger temperature of the air conditioner 30 are acquired.
- the senor for obtaining the ambient temperature and the sensor for obtaining the temperature of the indoor heat exchanger are all standard configurations of the existing air conditioner 30.
- the first preset duration is set in advance, and may be set according to a specific situation in an actual application, which is not limited by the embodiment of the present invention.
- the confirmation unit 302 is configured to confirm whether the refrigerant of the air conditioner leaks according to the ambient temperature and the indoor heat exchanger temperature.
- the indoor heat exchanger temperature should be much larger than the ambient temperature.
- the indoor heat exchanger temperature should be much lower than the ambient temperature, and when the air conditioner is used When there is a large amount of leakage in the refrigerant, the compressor cannot work effectively.
- the air conditioner is heating or cooling, the ambient temperature is not much different from the indoor heat exchanger temperature, so it can be based on the difference or ratio of the ambient temperature to the indoor heat exchanger temperature. Determine if there is a leak in the air conditioning refrigerant.
- the air conditioner according to the embodiment of the present invention does not need to separately set a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, but uses the existing sensors of the air conditioner to separately obtain the ambient temperature and the indoor heat exchanger temperature, and then pass Comparing the ambient temperature with the temperature of the indoor heat exchanger, confirming whether the refrigerant leaks, reducing the cost of the whole machine, and facilitating the promotion and use of the air conditioner.
- the confirming unit 302 is specifically configured to: determine whether an absolute value of a difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value; if the ambient temperature and the indoor heat exchange The absolute value of the difference in temperature of the device is less than or equal to a preset value, and it is confirmed that the refrigerant of the air conditioner 30 leaks.
- whether the absolute value of the difference between the ambient temperature of the indoor air conditioner and the indoor heat exchanger of the air conditioner 30 is determined to be less than or equal to a preset value is One cycle.
- the air conditioner 30 further includes a first execution unit 303, configured to repeatedly perform the first period N times, the N being an integer greater than or equal to 1; the confirming unit 302 is specifically configured to be used
- the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature in each first cycle is less than or equal to a preset value, and it is confirmed that the refrigerant of the air conditioner 30 is leaking.
- whether to obtain an absolute value of a difference between the ambient temperature of the indoor unit and the indoor heat exchanger of the air conditioner to determine whether the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value is a first cycle.
- the air conditioner 30 further includes a second execution unit 304 for repeatedly performing the first period N times, the N being an integer greater than or equal to 1; if each of the first periods is The absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value, the compressor is turned off; after the second predetermined time period, the compressor is restarted; when the compressor continues to work for a long time When the first preset duration is reached, the first period is repeated Q times, and the Q is an integer greater than or equal to 1; wherein the ambient temperature is changed from the indoor if each first period The absolute value of the difference of the temperature of the heat exchanger is less than or equal to a preset value, and the compressor is turned off to repeat the first cycle of Q times again when the duration of the continuous operation of the compressor reaches the first preset time length It is a second period; the second period is repeated M times, and the M is an integer greater than or equal to 1.
- the confirmation unit 302 is specifically configured to: if the absolute value of the difference between the ambient temperature and the indoor heat exchanger temperature is less than or equal to a preset value in each first period of each second period, confirm the Air conditioning refrigerant leaked.
- the air conditioner 30 further includes:
- the control unit 305 is configured to issue an alarm after the confirmation of the leakage of the refrigerant of the air conditioner 30.
- the air conditioner 30 may detect the ambient temperature through an indoor return air sensor of the air conditioner, and detect the indoor heat exchanger temperature by an indoor piping sensor of the air conditioner.
- the air conditioner 30 further includes:
- the recording unit 306 is configured to record an accumulated working time of the compressor when an absolute value of a difference between the ambient temperature and the indoor heat exchanger temperature is greater than the preset value.
- the determining unit 307 is configured to determine whether the current working duration of the compressor reaches the first preset duration when the accumulated working time of the compressor reaches a third preset duration.
- the obtaining unit 301 is further configured to re-acquire the ambient temperature and the indoor heat exchanger temperature if the compressor of the air conditioner is continuously operated for a predetermined period of time.
- the confirmation unit 302 is further configured to confirm whether the refrigerant of the air conditioner leaks according to the ambient temperature reacquired by the acquiring unit and the indoor heat exchanger temperature.
- An embodiment of the present invention provides an air conditioner.
- the air conditioner according to the embodiment of the present invention does not need to separately set a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, but uses the existing sensor of the air conditioner to confirm whether the refrigerant leaks or not.
- the whole machine cost is conducive to the promotion and use of air conditioner 80.
- the embodiment of the present invention provides an air conditioner 80, which includes an indoor unit and an outdoor unit.
- the indoor unit includes an indoor heat exchanger, and the outdoor unit includes a compressor.
- the air conditioner 80 further includes:
- the first temperature sensor 801 is configured to detect an indoor ambient temperature
- the second temperature sensor 802 is configured to detect an indoor heat exchanger temperature
- the processor 803 is configured to acquire an ambient temperature detected by the first temperature sensor 801 and an indoor heat exchanger temperature detected by the second temperature sensor 802 when the compressor continues to work for a first preset duration And confirming whether the refrigerant of the air conditioner 80 leaks according to the ambient temperature and the indoor heat exchanger temperature.
- the air conditioner according to the embodiment of the present invention does not need to separately provide a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, but uses the existing sensor for detecting the ambient temperature of the air conditioner and the sensor for detecting the temperature of the indoor heat exchanger. It can be confirmed whether the refrigerant leaks, which reduces the cost of the whole machine and is conducive to the promotion and use of air conditioners.
- processor 803 is specifically configured to:
- the processor 803 is specifically configured to repeatedly perform the first period of N times, where the N is an integer greater than or equal to 1;
- the processor 803 is specifically configured to repeatedly perform the first period of N times, where the N is an integer greater than or equal to 1;
- the first period is repeated Q times, and the Q is an integer greater than or equal to 1;
- the compressor is turned off until the compressor continues to work for a long time.
- the first preset duration is described, the first period is repeated to be the second period again;
- the processor 803 is further configured to: after the confirming that the refrigerant of the air conditioner 80 leaks, shut down the compressor.
- the air conditioner 80 further includes an alarm 804;
- the processor 803 is further configured to control the alarm 804 to issue an alarm after the confirmation of the leakage of the refrigerant of the air conditioner 80.
- the first temperature sensor 801 is an indoor return air sensor disposed at a return air outlet of the air conditioner 80;
- the second temperature sensor 802 is an indoor pipe sensor connected to a pipe of the air conditioner 80.
- the processor 803 is further configured to record an accumulated working time of the compressor when an absolute value of a difference between the ambient temperature and the indoor heat exchanger temperature is greater than the preset value;
- the current duration of the compressor of the air conditioner 80 reaches the first preset duration, Obtaining the ambient temperature and the indoor heat exchanger temperature, and confirming whether the refrigerant of the air conditioner 80 leaks according to the ambient temperature and the indoor heat exchanger temperature.
- An embodiment of the present invention provides an air conditioner, which first acquires an ambient temperature and an indoor heat exchanger temperature of the air conditioner when the compressor of the air conditioner continues to work for a predetermined period of time, and then changes according to the ambient temperature and the indoor temperature.
- the temperature of the heater confirms that the refrigerant of the air conditioner leaks.
- the air conditioner according to the embodiment of the present invention does not need to separately set a temperature sensor at the inlet and the outlet of the air conditioner heat exchanger, but uses the existing sensor of the air conditioner to confirm whether the refrigerant leaks or not.
- the cost of the whole machine is conducive to the promotion and use of air conditioners.
- the disclosed apparatus and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or may be physically included in each unit, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种检测冷媒泄漏的方法及空调。该方法包括:当空调的压缩机持续工作时长达到第一预设时长时,获取室内的环境温度和空调的室内换热器温度;根据所述环境温度和所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。该方法用于空调控制领域,不需要设置专用的温度传感器,能够在不增加整机成本的基础上,实现冷媒泄漏的检测,有利于空调的推广使用。
Description
本申请要求于2014年12月30日提交中国专利局、申请号为201410851559.5、发明名称为“一种检测冷媒泄漏的方法及空调”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及空调控制领域,尤其涉及一种检测冷媒泄漏的方法及空调。
目前,常用的家用空调包括室内机和室外机两部分,整个空调系统包括压缩机、室外换热器、节流装置、室内换热器等。空调系统内还具有冷媒,冷媒由压缩机产生的压力驱动,在整个系统内循环,并通过与室内外环境之间进行换热,达到制冷或者制热的目的,因此冷媒的多少直接影响空调的制冷和制热效果。但是,在空调的安装或使用过程中,可能会出现室内外机高低压连接管螺母没有密封紧导致的冷媒长期缓慢的泄漏,或者室外机管路振动及应力较大造成冷媒管路开裂导致冷媒迅速泄漏,进而影响空调的制冷和制热效果。
现有技术中,通常需要分别在空调换热器的进口和出口设置温度传感器,分别用来检测空调换热器进口处和出口处冷媒的温度,当空调换热器进口处冷媒的温度和出口处冷媒的温度的差小于或等于特定数值时,说明有可能因为冷媒泄露造成了冷媒量不足,进而可以向用户报警,便于用户及时进行检查或维修。但是该方法需要设置专用的温度传感器,增加了整机成本,不利于空调的推广使用。
发明内容
本发明的实施例提供一种检测冷媒泄漏的方法及空调,能够在不增加整机成本的基础上,实现冷媒泄漏的检测,有利于空调的推广使用。
为达到上述目的,本发明的实施例采用如下技术方案:
一方面,本发明实施例提供一种检测冷媒泄漏的方法,用于空调,所述方法包括:
当所述空调的压缩机持续工作时长达到第一预设时长时,获取室内的环境温度和所述空调的室内换热器温度;
根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
另一方面,本发明实施例提供一种空调,所述空调包括:
获取单元,用于当所述空调的压缩机持续工作时长达到第一预设时长时,获取室内的环境温度和所述空调的室内换热器温度;
确认单元,用于根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
再一方面,本发明实施例提供一种空调,包括室内机和室外机,所述室内机包括室内换热器,所述室外机包括压缩机,还包括:
第一温度传感器,第二温度传感器和处理器;
所述第一温度传感器用于检测室内环境温度;
所述第二温度传感器用于检测室内换热器温度;
所述处理器用于当所述压缩机持续工作时长达到第一预设时长时,获取所述第一温度传感器检测的环境温度和所述第二温度传感器检测的室内换热器温度,根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
本发明的实施例提供一种检测冷媒泄漏的方法及空调,所述检
测冷媒泄漏的方法包括:当所述空调的压缩机持续工作时长达到第一预设时长时,首先获取室内的环境温度和所述空调的室内换热器温度,然后根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。相较于现有技术,本发明实施例可以利用空调现有的用于获取环境温度的传感器和用于获取室内换热器温度的传感器分别获取环境温度和室内换热器温度,当空调冷媒充足且空调用于制热时,室内换热器温度应该远远大于环境温度,当空调冷媒充足且空调用于制冷时,室内换热器温度应该远远小于环境温度,而当空调冷媒出现大量泄漏时,无论空调正在进行制热还是制冷,环境温度与室内换热器温度相差不大,因此可以根据环境温度与室内换热器温度的上述规律,确定空调冷媒出现泄漏。由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的检测环境温度的传感器和检测室内换热器温度的传感器即可确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种检测冷媒泄漏的方法的流程图;
图2为本发明实施例提供的另一种检测冷媒泄漏的方法的流程图;
图3为本发明实施例提供的一种空调的结构示意图;
图4为本发明实施例提供的另一种空调的结构示意图;
图5为本发明实施例提供的又一种空调的结构示意图;
图6为本发明实施例提供的再一种空调的结构示意图;
图7为本发明实施例提供的又另一种空调的结构示意图;
图8为本发明实施例提供的又再一种空调的结构示意图;
图9为本发明实施例提供的再另一种空调的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种检测冷媒泄漏的方法,用于空调,如图1所示,所述方法包括:
步骤101、当所述空调的压缩机持续工作时长达到第一预设时长时,获取室内的环境温度和所述空调的室内换热器温度。
实际应用中,标准的空调需要配置两个传感器,一个传感器用于获取环境温度,以便于空调判断环境温度是否与用户设定的温度相同,另一个传感器用于获取室内换热器温度,以防空调制冷时换热器结霜或者空调制热时换热器压力过大。示例的,现有的空调可以通过室内回风传感器测试室内环境温度,然后空调可以将测得的环境温度与用户设定的温度进行比较,判断当前环境温度是否达到用户的设定温度。同时,现有的空调可以通过室内配管传感器检测室内换热器温度,例如,现有空调通常设定两个预设温度值,分别为空调制冷时对应的第一预设温度值和空调制热时对应的第二预设值,当空调制冷时,通过室内配管传感器测试室内换热器温度,然后将室内换热器温度与第一预设温度值进行比较,当室内换热器温
度大于或等于第一预设温度值时,空调正常使用,当室内换热器温度小于第一预设温度值时,压缩机停止工作,以防换热器由于温度太低引起结霜;当空调制热时,通过室内配管传感器测试室内换热器温度,然后将室内换热器温度与第二预设温度值进行比较,当室内换热器温度大于或等于第二预设温度值时,压缩机停止工作,当室内换热器温度小于第二预设温度值时,空调正常使用,以防压缩机工作压力过高。
随着空调的开启,压缩机刚开始工作,此时由于压缩机可能长时间没有使用,室内换热器温度与环境温度本来就相差不大,此时根据室内换热器温度与环境温度的大小关系,无法判断压缩机中冷媒是否出现大部分泄漏,因此需要压缩机持续工作时长达到第一预设时长后,再去判断室内换热器温度与环境温度的大小关系。其中第一预设时长是预先设置的,实际应用中可以根据具体情况进行设置,本发明实施例对此不做限定。
步骤102、根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
当空调冷媒充足且空调用于制热时,室内换热器温度应该远远大于环境温度,当空调冷媒充足且空调用于制冷时,室内换热器温度应该远远小于环境温度,而当空调冷媒出现大量泄漏时,压缩机无法进行有效工作,无论空调正在进行制热还是制冷,环境温度与室内换热器温度相差不大,因此可以根据环境温度与室内换热器温度的差或者比值,确定空调冷媒是否出现泄漏。
示例的,当根据环境温度与室内换热器温度的比值,确定空调冷媒是否出现泄漏时,可以首先设置与空调制热对应的第一预设参数和与空调制冷对应的第二预设参数,空调制热时,当环境温度与室内换热器温度的比值大于第一预设参数时,确认空调冷媒出现泄漏;当环境温度与室内换热器温度的比值小于或等于第一预设参数时,说明空调制热效果良好,冷媒未出现泄漏;空调制冷时,当环
境温度与室内换热器温度的比值小于或等于第二预设参数时,确认空调冷媒出现泄漏;当环境温度与室内换热器温度的比值大于第二预设参数时,说明空调制热或制冷效果良好,冷媒未出现泄漏。其中,环境温度与室内换热器温度可以均以K(开尔文)为单位,K是常用的热力学单位,实际应用中,还可以用℃(摄氏度)为单位,本发明实施例对此不做限定。
这样一来,由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的传感器分别获取环境温度和室内换热器温度,然后通过对环境温度和室内换热器温度的对比,确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
可选的,在根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏时,可以判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值。若所述环境温度与所述室内换热器温度的差的绝对值小于或等于预设数值,确认所述空调的冷媒出现泄漏。
若冷媒充足,空调制冷时室内换热器温度与环境温度的差为负数,空调制热时室内换热器温度与环境温度的差为正数,因此需要判断室内换热器温度与环境温度的差的绝对值,然后通过判断结果确认冷媒是否出现泄漏。其中预设数值可以在实际应用中根据具体情况进行设定,本发明实施例对此不做限定,示例的,当环境温度与室内换热器温度可以均以K为单位时,预设数值可以为3K或者2.5K。
示例的,当空调冷媒充足且空调用于制热时,室内换热器温度应该远远大于环境温度,因此如果室内换热器温度与环境温度的差的绝对值小于预设数值时,即可确定空调冷媒出现泄漏;当空调冷媒充足且空调用于制冷时,室内换热器温度应该远远小于环境温度,因此如果环境温度与室内换热器温度的差的绝对值小于预设数值
时,即可确定空调冷媒出现泄漏。
可选的,可以将获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值组成一个第一周期。这样在所述环境温度与所述室内换热器温度的差的绝对值小于或等于预设数值,确认所述空调的冷媒出现泄漏时,可以首先重复执行N次所述第一周期,所述N为大于或等于1的整数,若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏其中,相邻两个第一周期之间可以存在预设时间间隔。
实际应用中,可能会出现空调开启后室内换热器温度不稳定的情况,因此如果仅通过一次获取的室内换热器温度判断空调的冷媒是否出现泄漏,会出现误判的情况,所以通常可以将获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为第一周期,每个第一周期获取一次环境温度和室内换热器温度,连续执行N次第一周期,即连续获取N次环境温度和室内换热器温度,判断每个第一周期获取的环境温度与室内换热器温度的差的绝对值是否小于或等于预设数值,当每个第一周期获取的室内换热器温度与环境温度的差的绝对值均小于或等于预设数值时,确认空调的冷媒出现泄漏,这样可以保证确认结果的正确率,减少误判。其中为了进一步保证在压缩机工作稳定,即换热器换热效率稳定的情况下,获取室内换热器温度,相邻两次第一周期可以连续不间隔执行,也可以存在预设的时间间隔,使得相邻两次第一周期之间的结果互不影响,其中所述预设的时间间隔是预先设置的,实际应用中根据具体情况进行设定,本发明实施例对此不做限定。同时,如果压缩机运行较为平稳,换热器的换热效率较均匀时,相邻两次第一周期之间也可以不存在预设时间间隔。
示例的,假设第一预设时长为5分钟,预设的时间间隔为5秒,预设数值为3,N为3,即重复执行3次第一周期。当压缩机持续工作时长超过5分钟之后,第一次通过室内回风传感器检测的环境温度和室内配管传感器检测的室内换热器温度,并第一次判断环境温度与室内换热器温度的差的绝对值是否小于或等于预设数值,然后5秒之后第二次通过室内回风传感器检测的环境温度和室内配管传感器检测的室内换热器温度,并第二次判断环境温度与室内换热器温度的差的绝对值是否小于或等于预设数值,相隔5秒之后第三次通过室内回风传感器检测的环境温度和室内配管传感器检测的室内换热器温度,并第三次判断环境温度与室内换热器温度的差的绝对值是否小于或等于预设数值,即重复执行3次第一周期,当三次环境温度与室内换热器温度的差的绝对值均小于或等于预设数值时,即可确认所述空调的冷媒出现泄漏。
可选的,还可以在每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值时,关闭所述压缩机,然后第二预设时长后,重启所述压缩机;当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期,所述Q为大于或等于1的整数;其中从若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期为第二周期;重复执行M次所述第二周期,所述M为大于或等于1的整数;若每个第二周期的每个第一周期中,所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
实际应用中,在空调刚开始启动时,或者空调的压缩机长时间停机之后重新开启,此时即便是重复执行N次第一周期,还是有可能因为开始测试时压缩机工作不稳定,导致室内换热器温度不稳定,使得确定结果出现误判的现象,因此可以在重复执行N次第一周期,且每个第一周期中所述环境温度与所述室内换热器温度的差的绝对
值均小于或等于预设数值时,选择暂时关闭压缩机,然后第二预设时长之后,重新启动压缩机,并在压缩机持续工作时长达到第一预设时长之后,再次重复执行N次第一周期,判断再次执行时每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值,当再次执行时每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值还是均小于或等于预设数值时,说明第一次误判的几率很小,为了保证确认的准确率可以连续执行多次,当每次结果都统一时,确认空调冷媒出现泄漏,防止出现误判。
示例的,可以将若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期组成一个第二周期;重复执行M次所述第二周期,其中M和Q是预先设置的,实际应用中根据具体情况进行设定,本发明实施例对此不做限定。在第一次重复执行N次第一周期之后,当每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值时,进入第一次第二周期的执行,这样当第二周期重复执行2次时,第一周期共执行3N次,使得误判的几率很小,几乎可以忽略不计。
进一步的,在所述确认所述空调的冷媒出现泄漏之后,空调还可以发出警报。
示例的,当经过连续的判断已经可以确认空调的冷媒出现泄漏之后,说明空调已经不能正常进行工作了,因此可以向用户发出警报,以便于用户及时维修并补充冷媒。其中发警报有多种方式,可以在空调上设置报警灯,当确认冷媒出现泄露时,可以点亮所述报警灯,警示用户;或者,可以在空调上安装蜂鸣器,当确认冷媒出现泄露时,知识蜂鸣器发出蜂鸣,警示用户。实际应用中,在所述确认所述空调的冷媒出现泄漏之后,空调还可以首先关闭压缩机,
以免压缩机在冷媒不足的情况下持续运行对压缩机造成不可逆的损坏。
可选的,所述空调可以通过的室内回风传感器检测所述环境温度,通过室内配管传感器检测所述室内换热器温度。
进一步的,在判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值之后,所述方法还包括:当所述环境温度与所述室内换热器温度的差的绝对值大于所述预设数值时,记录所述压缩机的累计工作时间;当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长;若当前所述空调的压缩机持续工作时长达到第一预设时长,获取所述环境温度和所述室内换热器温度,并根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
实际应用中,在压缩机工作的过程中,可能因为室外机管路振动及应力较大造成冷媒管路开裂导致冷媒迅速泄漏,因此在确认冷媒未出现泄漏时,可以开始记录压缩机的累计工作时间,当压缩机的累计工作时间达到第三预设时长时,说明压缩机已经工作了较长时间,很有可能会因为室外机管路振动及应力较大造成冷媒管路开裂,致使冷媒出现泄漏,因此此时可以对空调冷媒是否出现泄漏进行检测。为了保证在压缩机稳定工作的情况下获取室内换热器温度,还可以首先判断当前所述压缩机持续工作时长是否达到所述第一预设时长,若当前所述空调的压缩机持续工作时长达到第一预设时长,执行所述第一周期,即对冷媒是否出现泄漏进行检测。
可选的,当确定空调冷媒没有出现泄漏时,可以清零压缩机的累计工作时长,然后继续记录压缩机累计工作时间,当压缩机的累计工作时间达到第三预设时长时,可以再次确定冷媒是否出现泄漏,这样不仅在空调刚开启的时候对冷媒进行检测,同时在空调的运行过程中对冷媒进行实时的检测,确保冷媒出现泄漏的时候能够及时
通知用户,以免压缩机长时间在冷媒量较少或者冷媒缺失的情况下持续运转,对压缩机造成损害。
本发明的实施例提供一种检测冷媒泄漏的方法,首先当所述空调的压缩机持续工作时长达到第一预设时长时,获取环境温度和室内换热器温度,然后根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。相较于现有技术,由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有传感器即可确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
本发明实施例提供一种检测冷媒泄漏的方法,如图2所示,本发明实施例假设第一周期重复执行三次,第二周期重复执行三次,第一预设时长为5分钟,相邻两次第一周期之间存在的预设的时间间隔为5秒,第二预设时长为3分钟,预设数值为2.5K(开尔文),本发明实施例仅为示例性说明,并不对上述参数的取值做出限定。同时,本发明实施例通过室内回风传感器获取环境温度,通过室内配管传感器获取室内换热器温度,实际应用中还可以通过空调中设置的其他传感器分别获取环境温度和室内换热器温度,本发明实施例对此不作限定。具体的,所述检测冷媒泄漏的方法包括:
步骤201、开启空调,压缩机开始工作,记录压缩机的持续工作时长时间,N等于0,M等于0,执行步骤202。
随着空调的开启,压缩机刚开始工作,此时由于压缩机可能长时间没有使用,此时室内换热器温度与环境温度本来就相差不大,此时根据室内换热器温度与环境温度的大小关系,无法判断压缩机中冷媒是否充足,因此需要记录压缩机的持续工作时长,当压缩机的持续工作时长满足预设条件时,通过获取环境温度和室内换热器温度判断冷媒是否出现泄漏,能够提高判断结果的正确率。
需要说明的,由于空调在运行过程中会出现制热或制冷,送风以及除霜等模式,当空调工作在送风和除霜模式时,压缩机不工作,
因此室内换热器温度与环境温度相差不多,此时不能对冷媒是否出现泄漏进行判断。
步骤202、当所述压缩机的持续工作时长时间大于或等于第一预设时长时,获取空调的室内回风传感器检测的环境温度和空调的室内配管传感器检测的室内换热器温度,执行步骤203。
实际应用中,需要压缩机持续工作第一预设时长后,再去判断室内换热器温度与环境温度的大小关系。其中第一预设时长是预先设置的,实际应用中可以根据具体情况进行设置,本发明实施例对此不做限定。
实际应用中,现有的空调需要检测室内环境温度,然后将测得的环境温度与用户设定的温度进行比较,判断当前环境温度是否达到用户的设定温度。同时,现有空调需要检测室内换热器温度,以防换热器由于温度太低引起结霜或压缩机工作压力过高,因此,用于检测环境温度的传感器和用于检测换热器温度的传感器是现有空调的标准配置,本发明实施例以室内回风传感器和室内配管传感器获取环境温度和室内换热器温度为例进行说明。本发明实施例中环境温度和室内换热器温度均以K为单位。
步骤203、判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于2.5K,当所述环境温度与所述室内换热器温度的差的绝对值小于或等于2.5K时,执行步骤204;当所述环境温度与所述室内换热器温度的差的绝对值大于2.5K时,执行步骤209。
若冷媒充足,空调制冷时室内换热器温度与环境温度的差为负数,空调制热时室内换热器温度与环境温度的差为正数,因此需要判断室内换热器温度与环境温度的差的绝对值,当室内换热器温度与环境温度的差的绝对值小于2.5K时,说明室内换热器温度与环境温度相差不大。但是在冷媒充足的情况下,空调在制冷时,室内换热器温度应该远远小于环境温度,空调在制热时,室内换热器温度应该远远大于环境温度,也就是说,在冷媒充足的情况下,空调正
常工作时,室内换热器温度与环境温度的差的绝对值应该较大,如果室内换热器温度与环境温度的差的绝对值小于2.5K时,说明室内换热器温度接近于环境温度,这是由于空调冷媒出现了大量泄漏,换热器无法进行正常的制冷或制热造成的。其中2.5K根据具体情况进行设定,本发明实施例对此不做限定。
步骤204、N加1,执行步骤205。
步骤205、判断N是否等于3,当N等于3时,执行步骤206;当N不等于3时,5秒后,执行步骤202。
实际应用中,可能会出现空调开启后室内换热器温度不稳定的情况,因此如果仅通过一次获取的室内换热器温度判断空调的冷媒是否出现泄漏,会出现误判的情况,所以通常可以将上述步骤重复执行3次。示例的,可以将获取所述空调的室内回风传感器检测的环境温度和所述空调的室内配管传感器检测的室内换热器温度和判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值组成第一周期,设置参数N,每执行完一次第一周期,执行N加1,当N等于3时,说明第一周期完成了三次,且每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于2.5K,这样可以初步判定冷媒可能出现了泄漏。
但是在重复执行三次第一周期的时候,可能压缩机的工作并不稳定,或者压缩机并没有完全进行制热或制冷工作,室内换热器温度可能并不是很高或很低,此时即便每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于2.5K,也有可能不是由冷媒泄漏引起的,所以实际应用中可以循环执行上述步骤三次,减小误判率。
步骤206、判断M是否等于3,当M不等于3时,执行步骤207;当M等于3时,执行步骤211。
实际应用中,可以在合理的范围内多次重复执行第一周期,示例的,可以每次执行第一周期3次,连续执行M次,当M等于3
时,说明已经执行第一周期9次,此时出现误判的几率很小。因此在每次重复执行第一周期三次之后,为了确保第一周期的执行次数,还需要判断M是否等于预设阈值,本发明实施例中预设阈值为3。
步骤207、M加1,执行步骤208。
步骤208、关闭所述压缩机三分钟之后重启所述压缩机,执行步骤202。
重复执行第一周期N次之后,本发明实施例中N为3,若每次第一周期的所述环境温度与所述室内换热器温度的差的绝对值均小于或等于2.5K,说明冷媒可能出现泄漏,但是这种结果也有可能是压缩机工作不稳定造成的,不能完全确定冷媒出现泄漏,因此,在每次第一周期的所述环境温度与所述室内换热器温度的差的绝对值均小于或等于2.5K时,可以关闭压缩机3分钟,然后重新开启压缩机,进而重新获取环境温度和室内换热器温度进行判断。
步骤209、压缩机正常工作,记录压缩机的累计工作时间,执行步骤210。
当环境温度与室内换热器温度的差的绝对值大于2.5K时,说明室内换热器温度与环境温度的差别较大,进一步说明了压缩机能够进行正常的制热或制冷工作,即冷媒充足,因此压缩机可以继续进行正常的工作,此时可以开始记录压缩机的累计工作时间。
步骤210、当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长,若当前所述空调的压缩机持续工作时长达到第一预设时长,执行步骤202;若当前所述空调的压缩机持续工作时长小于第一预设时长,执行步骤209。
实际应用中,在压缩机工作的过程中,可能因为室外机管路振动及应力较大造成冷媒管路开裂导致冷媒迅速泄漏,因此在确认冷媒未出现泄漏时,可以开始记录压缩机的累计工作时间,当压缩机
的累计工作时间达到第三预设时长时,说明压缩机已经工作了较长时间,很有可能会因为室外机管路振动及应力较大造成冷媒管路开裂,致使冷媒出现泄漏,因此此时可以再次对空调冷媒是否出现泄漏进行检测。为了保证在压缩机稳定工作的情况下获取室内换热器温度,还可以首先判断所述压缩机当前持续工作时长是否达到所述第一预设时长,当所述空调的压缩机持续工作时长达到第一预设时长时,执行步骤202,即对冷媒是否出现泄漏进行检测。
步骤211、点亮报警灯。
可以将若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至第二次重复执行N次所述第一周期为一个第二周期,当连续M次重复执行第二周期之后,若每个第二周期的每个第一周期中,所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,此时误判率较低,可以完全确认所述空调的冷媒出现泄漏,因此可以点亮报警灯,警示用户冷媒泄漏,以便于用户对空调进行及时维修以及对冷媒进行补充。实际应用中,也可以首先关闭压缩机,以免压缩机在冷媒不足的情况下持续运行对压缩机造成损伤。
相较于现有技术,本发明实施例是利用空调现有的传感器分别获取环境温度和室内换热器温度,当空调冷媒充足且空调用于制热时,室内换热器温度应该远远大于环境温度,因此如果室内换热器温度与环境温度的差小于预设数值时,即可确定空调冷媒出现泄漏;当空调冷媒充足且空调用于制冷时,室内换热器温度应该远远小于环境温度,因此根据上述规律,即可确定空调冷媒是否出现泄漏。由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的传感器即可确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
本发明实施例提供一种空调30,如图3所示,所述空调包括:
获取单元301,用于当所述空调30的压缩机持续工作时长达到
第一预设时长时,获取室内的环境温度和所述空调30的室内换热器温度。
需要说明的,用于获取环境温度的传感器和用于获取室内换热器温度的传感器均为现有空调30的标准配置。
随着空调30的开启,压缩机刚开始工作,此时由于压缩机可能长时间没有使用,室内换热器温度与环境温度本来就相差不大,此时根据室内换热器温度与环境温度的大小关系,无法判断压缩机中冷媒是否充足,因此需要压缩机持续工作时长第一预设时长后,再去判断室内换热器温度与环境温度的大小关系。其中第一预设时长是预先设置的,实际应用中可以根据具体情况进行设置,本发明实施例对此不做限定。
确认单元302,用于根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
当空调冷媒充足且空调用于制热时,室内换热器温度应该远远大于环境温度,当空调冷媒充足且空调用于制冷时,室内换热器温度应该远远小于环境温度,而当空调冷媒出现大量泄漏时,压缩机无法进行有效工作,无论空调正在进行制热还是制冷,环境温度与室内换热器温度相差不大,因此可以根据环境温度与室内换热器温度的差或者比值,确定空调冷媒是否出现泄漏。
这样一来,由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的传感器分别获取环境温度和室内换热器温度,然后通过对环境温度和室内换热器温度的对比,确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
可选的,所述确认单元302具体用于:判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值;若所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调30的冷媒出现泄漏。
可选的,从获取室内的环境温度和所述空调30的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期。
如图4所示,所述空调30还包括第一执行单元303,用于重复执行N次所述第一周期,所述N为大于或等于1的整数;所述确认单元302具体用于若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调30的冷媒出现泄漏。
可选的,从获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期。
如图5所示,所述空调30还包括第二执行单元304,用于重复执行N次所述第一周期,所述N为大于或等于1的整数;若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机;第二预设时长后,重启所述压缩机;当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期,所述Q为大于或等于1的整数;其中从若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期为第二周期;重复执行M次所述第二周期,所述M为大于或等于1的整数。
所述确认单元302具体用于若每个第二周期的每个第一周期中,所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
示例的,如图6所示,所述空调30还包括:
控制单元305,用于在所述确认所述空调30的冷媒出现泄漏之后发出警报。
可选的,空调30可以通过所述空调的室内回风传感器检测所述环境温度,通过所述空调的室内配管传感器检测所述室内换热器温度。
进一步的,如图7所示,所述空调30还包括:
记录单元306,用于当所述环境温度与所述室内换热器温度的差的绝对值大于所述预设数值时,记录所述压缩机的累计工作时间。
判断单元307,用于当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长。
所述获取单元301还用于若当前所述空调的压缩机持续工作时长达到所述第一预设时长,重新获取所述环境温度和所述室内换热器温度。
所述确认单元302还用于根据所述获取单元重新获取的所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
本发明的实施例提供一种空调,首先当所述空调的压缩机持续工作时长达到第一预设时长时,通过获取单元获取环境温度和所述空调的室内换热器温度,然后通过确认单元确认所述空调的冷媒出现泄漏。相较于现有技术,由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的传感器即可确认冷媒是否泄漏,减小了整机成本,有利于空调80的推广使用。
本发明实施例提供一种空调80,包括室内机和室外机,所述室内机包括室内换热器,所述室外机包括压缩机,如图8所示,所述空调80还包括:
第一温度传感器801,第二温度传感器802和处理器803;
所述第一温度传感器801用于检测室内环境温度;
所述第二温度传感器802用于检测室内换热器温度;
所述处理器803用于当所述压缩机持续工作时长达到第一预设时长时,获取所述第一温度传感器801检测的环境温度和所述第二温度传感器802检测的室内换热器温度,根据所述环境温度与所述室内换热器温度,确认所述空调80的冷媒是否出现泄漏。
这样一来,本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的检测环境温度的传感器和检测室内换热器温度的传感器即可确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
进一步的,所述处理器803具体用于:
判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值;
若所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调80的冷媒出现泄漏。
进一步的,从获取室内的环境温度和所述空调80的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期;
所述处理器803具体用于重复执行N次所述第一周期,所述N为大于或等于1的整数;
若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调80的冷媒出现泄漏。
较佳的,从获取室内的环境温度和所述空调80的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期;
所述处理器803具体用于重复执行N次所述第一周期,所述N为大于或等于1的整数;
若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机;
第二预设时长后,重启所述压缩机;
当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期,所述Q为大于或等于1的整数;
其中从若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期为第二周期;
重复执行M次所述第二周期,所述M为大于或等于1的整数;
若每个第二周期的每个第一周期的所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调80的冷媒出现泄漏。
可选的,所述处理器803还用于在所述确认所述空调80的冷媒出现泄漏之后,关闭所述压缩机。
可选的,如图9所示,所述空调80还包括警报器804;
所述处理器803还用于在所述确认所述空调80的冷媒出现泄漏之后控制所述警报器804发出警报。
可选的,所述第一温度传感器801为设置在所述空调80回风口的室内回风传感器;
所述第二温度传感器802为与所述空调80的配管连接的室内配管传感器。
进一步的,所述处理器803还用于当所述环境温度与所述室内换热器温度的差的绝对值大于所述预设数值时,记录所述压缩机的累计工作时间;
当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长;
若当前所述空调80的压缩机持续工作时长达到第一预设时长,
获取所述环境温度和所述室内换热器温度,并根据所述环境温度与所述室内换热器温度,确认所述空调80的冷媒是否出现泄漏。
本发明的实施例提供一种空调,首先当所述空调的压缩机持续工作时长达到第一预设时长时,获取环境温度和所述空调的室内换热器温度,然后根据环境温度和室内换热器温度确认所述空调的冷媒出现泄漏。相较于现有技术,由于本发明实施例所述的空调不需要分别在空调换热器的进口和出口设置温度传感器,而是利用空调现有的传感器即可确认冷媒是否泄漏,减小了整机成本,有利于空调的推广使用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独的物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围
并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (21)
- 一种检测冷媒泄漏的方法,用于空调,其特征在于,所述方法包括:当所述空调的压缩机持续工作时长达到第一预设时长时,获取室内的环境温度和所述空调的室内换热器温度;根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
- 根据所述权利要求1所述的方法,其特征在于,所述根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏包括:判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值;若所述环境温度与所述室内换热器温度的差的绝对值小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求2所述的方法,其特征在于,从获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为第一周期;在若所述环境温度与所述室内换热器温度的差的绝对值小于或等于预设数值,确认所述空调的冷媒出现泄漏之前,所述方法还包括:重复执行N次所述第一周期,所述N为大于或等于1的整数;所述若所述环境温度与所述室内换热器温度的差的绝对值小于或等于预设数值,确认所述空调的冷媒出现泄漏具体为:若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求2所述的方法,其特征在于,从获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为第一周期;重复执行N次所述第一周期,所述N为大于或等于1的整数;若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机;第二预设时长后,重启所述压缩机;当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期,所述Q为大于或等于1的整数;其中从若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期为第二周期;重复执行M次所述第二周期,所述M为大于或等于1的整数;所述若所述环境温度与所述室内换热器温度的差的绝对值小于或等于预设数值,确认所述空调的冷媒出现泄漏具体为:若每个第二周期的每个第一周期中,所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求2至4任意一项权利要求所述的方法,其特征在于,在所述确认所述空调的冷媒出现泄漏之后,所述方法还包括:所述空调发出警报。
- 根据所述权利要求1至4任意一项权利要求所述的方法,其特征在于,通过所述空调的室内回风传感器检测所述环境温度,通过所述空调的室内配管传感器检测所述室内换热器温度。
- 根据所述权利要求2所述的方法,其特征在于,在判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值之后,所述方法还包括:当所述环境温度与所述室内换热器温度的差的绝对值大于所述预设数值时,记录所述压缩机的累计工作时间;当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长;若当前所述空调的压缩机持续工作时长达到所述第一预设时长,获取所述环境温度和所述室内换热器温度,并根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
- 一种空调,其特征在于,所述空调包括:获取单元,用于当所述空调的压缩机持续工作时长达到第一预设时长时,获取室内的环境温度和所述空调的室内换热器温度;确认单元,用于根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
- 根据所述权利要求8所述的空调,其特征在于,所述确认单元具体用于:判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值;若所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求9所述的空调,其特征在于,从获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期;所述空调还包括第一执行单元,用于重复执行N次所述第一周期,所述N为大于或等于1的整数;所述确认单元具体用于:若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求9所述的空调,其特征在于,从获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期;所述空调还包括第二执行单元,用于重复执行N次所述第一周期,所述N为大于或等于1的整数;若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机;第二预设时长后,重启所述压缩机;当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期,所述Q为大于或等于1的整数;其中从若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期为第二周期;重复执行M次所述第二周期,所述M为大于或等于1的整数;所述确认单元具体用于若每个第二周期的每个第一周期中,所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求9至11任意一项权利要求所述的空调,其特征在于,所述空调还包括:控制单元,用于在所述确认所述空调的冷媒出现泄漏之后发出警报。
- 根据所述权利要求8至11任意一项权利要求所述的空调,其特征在于,通过所述空调的室内回风传感器检测所述环境温度,通过所述空调的室内配管传感器检测所述室内换热器温度。
- 根据所述权利要求9所述的空调,其特征在于,所述空调还包括:记录单元,用于当所述环境温度与所述室内换热器温度的差的绝对值大于所述预设数值时,记录所述压缩机的累计工作时间;判断单元,用于当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长;所述获取单元还用于若当前所述空调的压缩机持续工作时长达到所述第一预设时长,重新获取所述环境温度和所述室内换热器温度所述确认单元还用于根据所述获取单元重新获取的所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
- 一种空调,包括室内机和室外机,所述室内机包括室内换热器,所述室外机包括压缩机,其特征在于,所述空调还包括:第一温度传感器,第二温度传感器和处理器;所述第一温度传感器用于检测室内环境温度;所述第二温度传感器用于检测室内换热器温度;所述处理器用于当所述压缩机持续工作时长达到第一预设时长时,获取所述第一温度传感器检测的环境温度和所述第二温度传感器检测的室内换热器温度,根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
- 根据所述权利要求15所述的空调,其特征在于,所述处理器具体用于:判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值;若所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求16所述的空调,其特征在于,从获取室内的环境温度和所述空调的室内换热器温度至判断所述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为第一周期;所述处理器具体用于重复执行N次所述第一周期,所述N为大于或等于1的整数;若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求16所述的空调,其特征在于,从获取室内的环境温度和所述空调的室内换热器温度至判断所 述环境温度与所述室内换热器温度的差的绝对值是否小于或等于预设数值为一个第一周期;所述处理器具体用于重复执行N次所述第一周期,所述N为大于或等于1的整数;若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机;第二预设时长后,重启所述压缩机;当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期,所述Q为大于或等于1的整数;其中从若每个第一周期中所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,关闭所述压缩机至当所述压缩机持续工作时长达到所述第一预设时长时,再次重复执行Q次所述第一周期为第二周期;重复执行M次所述第二周期,所述M为大于或等于1的整数;若每个第二周期的每个第一周期的所述环境温度与所述室内换热器温度的差的绝对值均小于或等于预设数值,确认所述空调的冷媒出现泄漏。
- 根据所述权利要求16至18任意一项权利要求所述的空调,其特征在于,所述空调还包括警报器;所述处理器还用于在所述确认所述空调的冷媒出现泄漏之后控制所述警报器发出警报。
- 根据所述权利要求15至18任意一项权利要求所述的空调,其特征在于,所述第一温度传感器为设置在所述空调回风口的室内回风传感器;所述第二温度传感器为与所述空调的配管连接的室内配管传感器。
- 根据所述权利要求16所述的空调,其特征在于,所述处理器还用于当所述环境温度与所述室内换热器温度的差 的绝对值大于所述预设数值时,记录所述压缩机的累计工作时间;当所述压缩机的累计工作时间达到第三预设时长时,判断当前所述压缩机持续工作时长是否达到所述第一预设时长;若当前所述空调的压缩机持续工作时长达到第一预设时长,获取所述环境温度和所述室内换热器温度,并根据所述环境温度与所述室内换热器温度,确认所述空调的冷媒是否出现泄漏。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410851559.5 | 2014-12-30 | ||
CN201410851559.5A CN104655365A (zh) | 2014-12-30 | 2014-12-30 | 一种检测冷媒泄漏的方法及空调 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016107253A1 true WO2016107253A1 (zh) | 2016-07-07 |
Family
ID=53246756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/092769 WO2016107253A1 (zh) | 2014-12-30 | 2015-10-23 | 一种检测冷媒泄漏的方法及空调 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104655365A (zh) |
WO (1) | WO2016107253A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112668179A (zh) * | 2020-12-25 | 2021-04-16 | 青岛科技大学 | 化工企业换热网络内漏的新型智能动态预测预警方法 |
CN113847703A (zh) * | 2021-10-29 | 2021-12-28 | 海信(广东)空调有限公司 | 除湿机的冷媒泄漏检测方法 |
WO2024119723A1 (zh) * | 2022-12-07 | 2024-06-13 | 青岛海信日立空调系统有限公司 | 空调设备及其故障检测方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104655365A (zh) * | 2014-12-30 | 2015-05-27 | 海信科龙电器股份有限公司 | 一种检测冷媒泄漏的方法及空调 |
CN104949278A (zh) * | 2015-06-25 | 2015-09-30 | 海信(山东)空调有限公司 | 一种空调制冷剂泄漏的检测方法、装置和空调设备 |
CN105004492B (zh) * | 2015-07-16 | 2017-10-27 | 珠海格力电器股份有限公司 | 空调机组制冷剂泄漏的检测方法和装置 |
CN106016579B (zh) * | 2016-05-10 | 2019-01-22 | 广东美的制冷设备有限公司 | 空调系统及防止冷媒泄露的分段控制方法和装置 |
DE102016110585A1 (de) | 2016-06-08 | 2017-12-14 | Truma Gerätetechnik GmbH & Co. KG | Klimasystem und Verfahren zur Leckageerkennung in einem Klimasystem |
CN106895558B (zh) * | 2017-02-21 | 2019-07-19 | 美的集团股份有限公司 | 空调器冷媒泄漏的检测方法及装置 |
CN106895561B (zh) * | 2017-02-28 | 2019-07-30 | 广东美的制冷设备有限公司 | 一种检测空调器冷媒泄漏的方法、空调器的控制装置和空调器 |
CN106950045B (zh) * | 2017-03-02 | 2019-03-26 | 珠海格力电器股份有限公司 | 一种多联机内机管路异常的检测方法 |
CN107328022A (zh) * | 2017-07-05 | 2017-11-07 | Tcl德龙家用电器(中山)有限公司 | 移动空调器的控制方法及移动空调器 |
CN108168044A (zh) * | 2017-12-07 | 2018-06-15 | 青岛海尔空调器有限总公司 | 空调装置及用于判断其运行状态是否正常的方法 |
CN110762785B (zh) * | 2018-07-26 | 2021-05-18 | 奥克斯空调股份有限公司 | 空调器及空调器冷媒泄漏检测方法 |
CN110895024B (zh) * | 2018-09-12 | 2021-08-27 | 奥克斯空调股份有限公司 | 一种冷媒泄漏检测方法及空调器 |
CN110895020B (zh) * | 2018-09-12 | 2021-08-27 | 奥克斯空调股份有限公司 | 一种制冷剂泄漏检测方法及空调器 |
CN110645673B (zh) * | 2019-10-16 | 2021-03-16 | 南京天加环境科技有限公司 | 一种定频空调器缺冷媒保护方法 |
CN110671779B (zh) * | 2019-10-24 | 2022-01-25 | 宁波奥克斯电气股份有限公司 | 空调器的冷媒余量检测方法、装置、服务器及存储介质 |
CN113970163A (zh) * | 2020-07-24 | 2022-01-25 | 广东美的制冷设备有限公司 | 空调器及其冷媒泄漏检测方法、检测装置、可读存储介质 |
CN114963528B (zh) * | 2021-06-29 | 2023-08-18 | 青岛海尔新能源电器有限公司 | 冷媒检测方法、装置、设备及存储介质 |
CN113432240B (zh) * | 2021-06-30 | 2022-09-30 | 海信(广东)空调有限公司 | 检测冷媒泄露的方法及装置、空调器和存储介质 |
CN113587485B (zh) * | 2021-07-30 | 2023-03-24 | 美的集团武汉暖通设备有限公司 | 温度检测装置的安装位置获取方法、空调器及存储介质 |
CN114087710B (zh) * | 2021-11-12 | 2022-11-11 | 珠海格力电器股份有限公司 | 一种空调器的缺氟检测方法及装置、存储介质、电子设备 |
CN117450622A (zh) * | 2022-07-18 | 2024-01-26 | 青岛海尔空调电子有限公司 | 检测三管路同时冷暖空调的阀盒泄露的方法及装置、电子设备 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010062946A (ko) * | 1999-12-21 | 2001-07-09 | 윤종용 | 공기조화기의 냉매누설 감지방법 |
JP2005257219A (ja) * | 2004-03-15 | 2005-09-22 | Mitsubishi Electric Corp | 空気調和機 |
KR20060081484A (ko) * | 2005-01-07 | 2006-07-13 | 엘지전자 주식회사 | 공기조화기의 냉매누설 감지방법 |
CN1888644A (zh) * | 2005-06-27 | 2007-01-03 | 乐金电子(天津)电器有限公司 | 空气调节器的冷媒泄漏感知方法 |
JP2008057837A (ja) * | 2006-08-30 | 2008-03-13 | Sharp Corp | 冷媒漏洩検出方法、冷媒漏洩検出装置及び空気調和機 |
CN101566517A (zh) * | 2009-05-26 | 2009-10-28 | 宁波奥克斯电气有限公司 | 空调器中制冷剂泄漏的判断方法 |
KR20100069403A (ko) * | 2008-12-16 | 2010-06-24 | 엘지전자 주식회사 | 공기조화기 및 그 제어 방법 |
CN101813357A (zh) * | 2010-04-01 | 2010-08-25 | 广东美的电器股份有限公司 | 空调器压缩机的保护方法 |
CN102788403A (zh) * | 2012-07-30 | 2012-11-21 | 广东美的电器股份有限公司 | 检测空调器缺冷媒的方法及空调器 |
CN103940560A (zh) * | 2014-04-10 | 2014-07-23 | 广东美的制冷设备有限公司 | 冷媒泄漏检测方法、冷媒泄漏检测系统和空调器 |
CN104655365A (zh) * | 2014-12-30 | 2015-05-27 | 海信科龙电器股份有限公司 | 一种检测冷媒泄漏的方法及空调 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10122711A (ja) * | 1996-10-18 | 1998-05-15 | Matsushita Electric Ind Co Ltd | 冷凍サイクル制御装置 |
KR100432224B1 (ko) * | 2002-05-01 | 2004-05-20 | 삼성전자주식회사 | 공기 조화기의 냉매 누설 검출 방법 |
CN100451473C (zh) * | 2006-10-12 | 2009-01-14 | 珠海格力电器股份有限公司 | 具有制冷剂缺少故障检测功能的空调器及故障检测方法 |
WO2012044038A2 (en) * | 2010-09-30 | 2012-04-05 | Lg Electronics Inc. | Diagnosing method for clothes treating apparatus and clothes treating apparatus with refrigerant leakage detecting means |
CN104061655B (zh) * | 2014-06-16 | 2017-01-18 | 广东美的集团芜湖制冷设备有限公司 | 用于空调器制冷系统的故障检测方法、检测装置和空调器 |
-
2014
- 2014-12-30 CN CN201410851559.5A patent/CN104655365A/zh active Pending
-
2015
- 2015-10-23 WO PCT/CN2015/092769 patent/WO2016107253A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010062946A (ko) * | 1999-12-21 | 2001-07-09 | 윤종용 | 공기조화기의 냉매누설 감지방법 |
JP2005257219A (ja) * | 2004-03-15 | 2005-09-22 | Mitsubishi Electric Corp | 空気調和機 |
KR20060081484A (ko) * | 2005-01-07 | 2006-07-13 | 엘지전자 주식회사 | 공기조화기의 냉매누설 감지방법 |
CN1888644A (zh) * | 2005-06-27 | 2007-01-03 | 乐金电子(天津)电器有限公司 | 空气调节器的冷媒泄漏感知方法 |
JP2008057837A (ja) * | 2006-08-30 | 2008-03-13 | Sharp Corp | 冷媒漏洩検出方法、冷媒漏洩検出装置及び空気調和機 |
KR20100069403A (ko) * | 2008-12-16 | 2010-06-24 | 엘지전자 주식회사 | 공기조화기 및 그 제어 방법 |
CN101566517A (zh) * | 2009-05-26 | 2009-10-28 | 宁波奥克斯电气有限公司 | 空调器中制冷剂泄漏的判断方法 |
CN101813357A (zh) * | 2010-04-01 | 2010-08-25 | 广东美的电器股份有限公司 | 空调器压缩机的保护方法 |
CN102788403A (zh) * | 2012-07-30 | 2012-11-21 | 广东美的电器股份有限公司 | 检测空调器缺冷媒的方法及空调器 |
CN103940560A (zh) * | 2014-04-10 | 2014-07-23 | 广东美的制冷设备有限公司 | 冷媒泄漏检测方法、冷媒泄漏检测系统和空调器 |
CN104655365A (zh) * | 2014-12-30 | 2015-05-27 | 海信科龙电器股份有限公司 | 一种检测冷媒泄漏的方法及空调 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112668179A (zh) * | 2020-12-25 | 2021-04-16 | 青岛科技大学 | 化工企业换热网络内漏的新型智能动态预测预警方法 |
CN112668179B (zh) * | 2020-12-25 | 2022-04-08 | 青岛科技大学 | 化工企业换热网络内漏的新型智能动态预测预警方法 |
CN113847703A (zh) * | 2021-10-29 | 2021-12-28 | 海信(广东)空调有限公司 | 除湿机的冷媒泄漏检测方法 |
CN113847703B (zh) * | 2021-10-29 | 2023-08-15 | 海信(广东)空调有限公司 | 除湿机的冷媒泄漏检测方法 |
WO2024119723A1 (zh) * | 2022-12-07 | 2024-06-13 | 青岛海信日立空调系统有限公司 | 空调设备及其故障检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104655365A (zh) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016107253A1 (zh) | 一种检测冷媒泄漏的方法及空调 | |
WO2016107252A1 (zh) | 一种检测冷媒泄漏的方法及空调 | |
CN110186155A (zh) | 一种空调外机脏堵检测及自清洁的方法及空调器 | |
CN106247530B (zh) | 多管制变频一拖多空调自检方法 | |
CN105485856B (zh) | 空调系统及空调系统制热状态下的异常检测方法 | |
WO2019109959A1 (zh) | 空调装置及用于判断其运行状态是否正常的方法 | |
US20090107157A1 (en) | Refrigerant leak-detection systems | |
CN106595152B (zh) | 一种空调冷媒循环异常的确定方法、装置及空调 | |
CN103969280B (zh) | 检测制冷剂异常的方法及空调器 | |
CN107255340A (zh) | 防止变频空调器的压缩机过热的控制方法及控制系统 | |
CN104296946B (zh) | 一种空调冷媒泄漏的检测方法及系统 | |
CN105698284B (zh) | 空调系统及其制冷控制方法和装置 | |
CN103090504A (zh) | 空调器及其检测方法和装置 | |
CN105065249B (zh) | 压缩机性能检测装置、具有该装置的空调系统和控制方法 | |
CN203719246U (zh) | 空调系统的压缩机回油管路故障的处理系统 | |
CN105954052A (zh) | 一种毛细管堵塞检测系统及方法 | |
CN110715395B (zh) | 一种空调冷媒泄露检测方法、装置及空调 | |
CN109631229A (zh) | 制冷系统制冷剂快速泄漏的判定方法 | |
CN110375466B (zh) | 用于空气源热泵系统的制冷剂泄露的检测装置和方法 | |
CN104964404A (zh) | 空调器冷媒泄漏检测的方法和装置 | |
CN103940158A (zh) | 空调室外机、空调系统和空调系统的操作方法 | |
CN103557578B (zh) | 风冷模块式冷热水机组缺氟的保护方法 | |
CN111140990A (zh) | 一种空调换热器脏堵检验方法和空调器 | |
CN110836519A (zh) | 一种空调器冷媒泄漏检测方法及检测系统 | |
CN105864953A (zh) | 空调节流部件的堵塞检测方法、装置及空调 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15874938 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15874938 Country of ref document: EP Kind code of ref document: A1 |