Nothing Special   »   [go: up one dir, main page]

WO2016104736A1 - コミュニケーション提供システム及びコミュニケーション提供方法 - Google Patents

コミュニケーション提供システム及びコミュニケーション提供方法 Download PDF

Info

Publication number
WO2016104736A1
WO2016104736A1 PCT/JP2015/086309 JP2015086309W WO2016104736A1 WO 2016104736 A1 WO2016104736 A1 WO 2016104736A1 JP 2015086309 W JP2015086309 W JP 2015086309W WO 2016104736 A1 WO2016104736 A1 WO 2016104736A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
answer
question
data
database
Prior art date
Application number
PCT/JP2015/086309
Other languages
English (en)
French (fr)
Inventor
千貴 米倉
Original Assignee
株式会社オルツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オルツ filed Critical 株式会社オルツ
Priority to JP2016566534A priority Critical patent/JP6502965B2/ja
Publication of WO2016104736A1 publication Critical patent/WO2016104736A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language

Definitions

  • the present invention relates to an interactive system for automatically communicating with a user who has accessed through a telecommunication line such as the Internet.
  • Social networking services can overcome time and distance obstacles and share a large amount of information with each other in real time, but each user has private time. In reality, it is not always possible to exchange information in real time.
  • users of social networking services can simultaneously send information to multiple people associated as friends, but it is difficult to communicate with each of multiple friends individually and simultaneously. is there.
  • an automatic interactive system that stores document data of answers to expected questions on a recording medium and outputs answers in response to user questions (see Patent Documents 1 and 2). ).
  • answer documents since answer documents are prepared in advance, the dialog is uniform and it is impossible to have a conversation according to the social situation that changes every moment.
  • one embodiment of the present invention has an object to provide a communication system and a communication method capable of expressing individual personality and personality of a user.
  • a first user's social data registered with one or more social networking services and a plurality of uses registered with multiple social networking services.
  • a database in which information of a user's social data and a plurality of text data collected from a plurality of social networking services is stored, and a second user's question for the first user is stored in the database.
  • a communication providing system including an information processing module having a function as an artificial intelligence that infers or learns an answer to a question and determines based on at least a part of the information being asked.
  • the database stores a first database that stores social data of a first user, a second database that stores social data of a plurality of users, and a plurality of text data.
  • the third database may be hierarchized.
  • an information processing module having a function as an artificial intelligence sends an appropriate answer to a question from data recorded in the first database, the second database, and the third database. Inference may be made based on at least part of the information recorded in the upper database.
  • an information processing module having a function as artificial intelligence performs trend analysis on answers to questions from social data of a plurality of users stored in the first database, and infers answers to the questions. Or may be determined by learning.
  • the trend analysis may analyze temporal changes in answers of a plurality of users to a question.
  • the first user's social data and the plurality of users' social data are text data and text data generated from one or more of audio data, photo data, and video data. Things are included.
  • an information processing module including a similar database in which similar questions are grouped as similar questions and an answer corresponding to the similar question is associated, and having a function as an artificial intelligence is obtained from the similar database. An answer to the question may be selected.
  • the similar database may include a similar question database that groups and records similar question contents and a similar answer database that stores answers corresponding to the similar questions.
  • the similar database includes a first similar database in which data categorizing the contents of a question and an answer among social data of the first user, and social data of a plurality of users.
  • a second similar database that stores data that classifies the contents of questions and answers from data
  • a third similar database that stores data that classifies the contents of questions and answers from text data; It may be hierarchized.
  • an evaluation module for acquiring information evaluated by the second user and attaching an evaluation value to the response may be included.
  • the evaluation module may include a notification module that notifies the first user of the evaluation result of the answer.
  • a first user who has received a notification from the notification module edits the content of the answer to the question, and the content of the answer to the question based on the content edited by the editing module. And an update module to be updated.
  • the evaluation module assigns a priority level based on the evaluation result, and the information processing module having a function as artificial intelligence infers or learns an appropriate answer to the question based on the priority. May be determined.
  • the database may have a function of updating and accumulating the first user's social data, the second user's social data, and text data over time.
  • an image data generation module that generates three-dimensional image data of the first user may be included.
  • the database includes the first user's voice data, and generates a phoneme data generation module that generates phoneme data from the voice data, and a voice generation module that generates voice of conversation using the phoneme data. And may be included.
  • an information processing module having a function as artificial intelligence may have a function of analyzing a frequency of answers to a question and recording a question corresponding to a high-frequency answer in a similar database. Good.
  • an information processing module having a function as artificial intelligence has a function of parsing text data included in personal social data and inferring or learning an answer to a question. It may be.
  • a question that a virtual personal image of the first user is generated based on the registration information of the first user and is transmitted to the virtual individual by the second user.
  • the answer to the question is determined by inferring or learning based on one type of social data of the first user, social data of a plurality of users or a plurality of text data registered in advance,
  • a communication providing method for providing the determined answer to the second user is provided.
  • the first user's social data is searched for an answer to the question, and when an appropriate answer cannot be obtained, the second is searched for a plurality of users' social data.
  • a plurality of social data registered in advance may be searched.
  • the answer to the question may be determined by trend analysis of the answer to the question from the social data of a plurality of users, and inferring or learning the answer to the question.
  • the trend analysis may analyze temporal changes in answers of a plurality of users to a question.
  • the first user's social data and the plurality of users' social data may be text data, text data generated from audio data, photo data, and video data.
  • similar questions are grouped as similar questions, answers corresponding to similar questions are stored in a similar database in association with each other, and answers to the questions are selected from the similar database. May be.
  • data similar to the contents of questions and answers is stored in the similar database from the social data of the first user, and the questions and answers are stored from the social data of a plurality of users. May be stored, and data in which the contents of questions and answers are categorized from text data may be stored.
  • information evaluated by the second user may be acquired and an evaluation value may be attached to the answer.
  • the evaluation result of the answer may be notified to the first user.
  • the first user who receives the notification from the notification module receives the edited content of the answer to the question and updates the content of the answer to the question based on the edited content. It may be.
  • a priority level may be assigned based on the evaluation result, and an appropriate answer to the question may be inferred or learned based on the priority order.
  • the first user's social data, the second user's social data, and text data may be updated and accumulated over time.
  • three-dimensional image data of the first user may be generated.
  • the voice data of the first user may be stored, phoneme data may be generated from the voice data, and a conversational voice may be generated using the phoneme data.
  • the frequency of answers to a question may be analyzed, and a question corresponding to a high-frequency answer may be recorded in a similar database.
  • text data included in personal social data may be parsed and an answer to a question may be inferred or learned to be determined.
  • AI artificial intelligence learns a user's thoughts by acquiring data from various social networking services used by the user and storing it in a database.
  • a system that provides appropriate answers to questions can be provided.
  • FIG. 1 It is a figure which shows the relationship between the communication provision system which concerns on one Embodiment of this invention, a social networking service, and the user who utilizes this communication provision system.
  • the communication provision system which concerns on one Embodiment of this invention it is an example figure of the screen for asking a question.
  • the communication provision system which concerns on one Embodiment of this invention it is an example figure of the screen for asking a question.
  • the communication provision system which concerns on one Embodiment of this invention it is an example figure of the screen by which an answer is provided.
  • a plurality of second when a virtual first user answers a question asked by a plurality of second users at a terminal of the first user, a plurality of second It is a figure explaining the function to set automatic answer propriety for every user.
  • the communication provision system which concerns on one Embodiment of this invention it is a flowchart explaining the flow of the process which judges whether a reply is possible for every use which asked a question, and answers. It is a figure which shows the functional structure of the communication provision system which concerns on this embodiment. It is a figure explaining the structure of the communication provision system which concerns on one Embodiment of this invention. It is a figure explaining the structure of the communication provision system which concerns on one Embodiment of this invention.
  • the communication provision system which concerns on one Embodiment of this invention WHEREIN: The aspect which integrates a context by grouping the question and answer in conversation is shown.
  • the communication provision system which concerns on one Embodiment of this invention it is a figure which illustrates what kind of keyword order is important when seeking a match.
  • a question and an answer show the aspect clustered by the similarity of the answer, and it is a figure which shows the aspect that each cluster comprises one group.
  • it is a figure explaining the vector (keyword, concept, type) which comprises each question has the prediction factor which estimates an equivalent answer vector. It is a figure explaining the structure of the communication provision system which concerns on one Embodiment of this invention.
  • FIG. 1A shows a relationship between a communication providing system according to an embodiment of the present invention, a social networking service (hereinafter also referred to as “SNS”), and a user who uses this communication providing system.
  • the communication providing system 100 according to the present embodiment has a function of acquiring data from various SNS used by a user and storing it in a database.
  • the communication providing system 100 further has a function (function as an artificial intelligence) for inferring and learning a user's thought based on information stored in the database, and can provide an appropriate answer to the question. Details will be described below.
  • the communication providing system 100 is placed in a state where it can be accessed with a plurality of users 202 through a telecommunication line.
  • a plurality of users 202 can communicate with each other directly and indirectly by a service provided by the communication providing system 100.
  • FIG. 1A shows that a plurality of users 202 are placed in a state where each user terminal 200 can communicate with the communication providing system 100 and both through an electric communication line.
  • the plurality of users 202 is preferably a set of users registered in advance to receive services provided via the communication providing system 100.
  • the safety and reliability of communication can be improved.
  • the plurality of users 202 may be registered in advance in order to receive a service provided via the communication providing system 100.
  • at least one of the plurality of users 202 may be able to use the communication providing system 100 as an anonymous user.
  • the communication providing system 100 is placed in a state where it can communicate with one or a plurality of SNSs 300 provided to the public.
  • SNSs 300 include Twitter (registered trademark), Facebook (registered trademark), and various communication services provided on the Internet.
  • communication modes provided by the SNS are various and are not limited to the services exemplified above.
  • the SNS 300 that cooperates with the communication providing system 100 only needs to be provided with social data of the user, and preferably has a mode in which information can be shared among a plurality of users.
  • social data refers to characters (including emoticons) that a user sends to a specific person (for example, another user registered as a friend) or an unspecified person through some kind of SNS. ), Information such as symbols, sounds, still images, and moving images.
  • personal social data refers to social data of a specific individual among a plurality of users.
  • the communication providing system 100 acquires social data stored in each from at least one, preferably a plurality of SNSs 300.
  • the acquisition of social data performed by the communication providing system 100 may be executed in real time, or may be performed in a timely manner or at regular intervals.
  • the communication providing system 100 accumulates the acquired social data in a database.
  • the communication providing system 100 preferably acquires social data in cooperation with a plurality of SNSs 300.
  • the first user 204 registers the attributes of the first user 204 in the communication providing system 100 using a personal computer, a smartphone, or the like.
  • the first user 204 displays the screen shown in “Welcome personalized AI” using a browser or an application, and clicks the “Register” button 1.
  • Push a screen for inputting the attributes of the first user 204 is displayed.
  • information SNS specifying information
  • Authentication information may be included.
  • SNS identification information is input in field 2
  • a user name and a password are input in fields 3 and 4 as authentication information.
  • the “Register” button 5 is pressed.
  • the attributes of the first user 204 are stored in a storage device of the communication providing system 100, for example, a secondary storage that stores a database or the like.
  • the communication providing system 100 uses the SNS specifying information and the authentication information of the SNS to access the SNS specified by the SNS specifying information, and logs in to the SNS using the authentication information of the first user 204. Thereafter, the communication providing system 100 acquires information on the first user 204 stored in the SNS, that is, social data.
  • Information related to the first user 204 includes messages exchanged by the first user 204 with a specific user in the SNS, articles, photos, audio information, and videos posted by the first user 204 on the SNS. (Which may include audio information).
  • the communication providing system 100 stores information on the first user 204 acquired from the SNS in a database.
  • the communication providing system 100 can directly use the information regarding the first user 204 acquired from the SNS as a database.
  • the communication provision system 100 may convert the information regarding the 1st user 204 into another information according to the attribute and content of the acquired information, and may accumulate
  • a question from another user and the first user 204 corresponding thereto. can be stored in the database in association with each other.
  • the database is composed of a plurality of areas (such as sub-databases or tables), and can include (1) an area for storing questions and (2) an area for storing answers. Therefore, a question from another user is accumulated in the area where the question is accumulated, and the answer of the first user 204 is accumulated in the area where the answer is accumulated. Further, a question from another user and the answer of the first user 204 are associated with each other, and for example, information for association is stored in the third area. For example, a set of a primary key for a question and a primary key for an answer is stored in the third area.
  • the communication providing system 100 acquires the first information stored in the database when all the information related to the first user 204 is acquired from the SNS specified by the SNS specifying information and is not stored in the database.
  • the ratio of all information related to the user 204 may be presented to the first user 204.
  • the first user 204 can know the degree of information accumulation.
  • the communication providing system 100 responds to a question from one of the plurality of users 202 by the first user 204. It is possible to decide whether or not to reply on behalf of In addition, it is possible to predict the appropriateness of an answer to a question by presenting the degree of accumulation of such information to a plurality of users 202.
  • the communication providing system 100 answers questions from other users using the information stored in the database.
  • the first user 204 may be able to ask the communication providing system 100 some questions. After seeing the answers to the questions of some attempts, the “Publish” buttons 7 and 8 may be pressed.
  • the communication providing system 100 can reflect information individually set by the user in each SNS 300. For example, when a user who uses a certain SNS 300 sets his / her personal profile private and sets a message posted to the SNS to be public, a range of disclosure or private / public is set for each message. In this case, the communication providing system 100 can take over the setting.
  • the disclosure range of the information is also stored in the database. For example, as shown in FIG. 1F, if the one-to-one message exchange 301-1 with the user 207 in the SNS 6 (301), the question and answer by the message exchange 301-1 are sent to the user 207. Only disclosed. In other words, if the question made by the user A other than the user 207 using the communication providing system 100 appears only when the first user 204 exchanges a one-to-one message with the user 207. The answer to the question is not provided to the user A.
  • the answer is not provided.
  • the answer is sent to the user 208 belonging to the group 3010-2.
  • the first user 204 makes an answer to a question in a state where anyone can see it in the SNS, no matter which user makes the question, the answer is sent to the communication providing system 100.
  • the first user 204 answers a question under a state (301-3) that can be viewed by any user belonging to the SNS 6 (301), the first user 204 If a similar question is received from the user 209 belonging to the same SNS 6, the answer is provided.
  • the plurality of users 202 to whom the service is provided from the communication providing system 100 are users of one or a plurality of SNSs 300 at the same time. This is because the communication providing system 100 acquires social data of each of the plurality of users 202 from the SNS 300 provided to the public. That is, a plurality of users 202 can receive service provision via the communication providing system 100 by participating in the community of the SNS 300.
  • FIG. 1A shows a mode in which the second user 206 interacts with the first user 204 via the communication providing system 100.
  • the first user 204 and the second user 206 do not directly exchange messages, but the virtual user generated by the communication providing system 100.
  • a typical first user 204b and a real second user 206 interact with each other.
  • the communication providing system 100 answers as the virtual first user 204b on behalf of the first user 204. It can be carried out. Thereby, the effort of the 1st user 204 can be reduced.
  • the first user 204 when the first user 204 is a celebrity, even if many users ask the same question, the first user 204 can be prevented from becoming a burden. Even if a special question is asked, if the first user 204 has answered such a question in the past, the first user 204 does not look for a past answer, The communication providing system 100 can make an answer as the virtual first user 204b. This can also reduce the effort of the first user 204.
  • An example of dialogue in this case is as follows.
  • the second user 206 accesses the communication providing system 100, logs in if necessary, and then specifies the other party (first user 204b) who wants to interact.
  • the other party first user 204b
  • FIG. 1G a screen for asking a question is displayed, and a “login” button 9 is pressed to log in.
  • the “anonymous” button 10 is pressed.
  • a list of acquaintances in the communication providing system 100 of the second user 206 can be displayed to specify a partner with whom a conversation is desired.
  • the user terminal 200 transmits a question to the other party (first user 204b).
  • the question is received by the communication providing system 100 by inputting the question in the field 12 and pressing the enter key or the like.
  • the communication providing system 100 that has received the question transmits an appropriate answer to the question to the user terminal 200. For example, if a question “Who are you?” Is input in the field 12, an answer “I am the president” is displayed in the field 14, as shown in FIG. 1J.
  • the face photograph data 13 of the first user 204 may be displayed.
  • the face photograph data 13 may be data generated by three-dimensional data, as will be described later.
  • the response transmitted by the communication providing system 100 is generated based on the personal social data of the first user 204 as a first example.
  • the communication providing system 100 cannot find an appropriate answer from personal social data, the communication providing system 100 generates an appropriate answer by referring to social data of a plurality of users and responds.
  • the response of the virtual first user 204b is extremely fast with respect to the time required for the second user 206 to ask a question (time for operating the user terminal 200). It becomes. Therefore, a plurality of users 202 can interact with the virtual first user 204b at the same time as described above.
  • the virtual first user 204b generated based on the personal social data of the first user 204 is embodied via the communication providing system 100. From another point of view, it can be considered that the virtual first user 204b exists on the computer program or application program executed by the communication providing system 100. Alternatively, the virtual first user 204b can be regarded as an entity embodied by hardware resources constituting the communication providing system 100 and software resources executed on the hardware resources.
  • FIG. 2 shows a functional configuration of the communication providing system 100 according to the present embodiment.
  • the communication providing system 100 includes an information processing module 104 having a function as artificial intelligence and a database 102.
  • the communication providing system 100 shown in FIG. 2 has a database 102 realized by a memory module or storage device such as a hard disk, a semiconductor memory, and a magnetic memory, and a central processing unit (CPU) or an arithmetic processing circuit having an equivalent function.
  • the information processing module 104 can be realized by a device realized by the above.
  • the information processing module can be regarded as a functional block realized by hardware resources or hardware resources and software resources, and is sometimes called an information processing unit or information processing means.
  • the artificial intelligence means that intelligent functions such as inference and judgment are realized by using hardware resources and software resources, and may be recognized as a concept including a database for storing data as knowledge.
  • Artificial intelligence also has a learning function, which may have the ability to predict the future from past information (data).
  • the information processing module 104 having a function as artificial intelligence includes at least one having a function as normal artificial intelligence as described above.
  • the database 102 has at least an area for storing social data.
  • FIG. 2 shows an aspect in which the database 102 includes a first database 102 a and a second database 102 b that store social data acquired from the SNS 300.
  • the third database 102c may include social data, or words, vocabularies, and fixed phrases used in communication may be stored in advance.
  • the first database 102a, the second database 102b, and the third database 102c are stored in association with the contents of the dialogue included in the social data, such as questions and answers (or questions and responses). Moreover, social data transmitted unilaterally like a personal tweet (tweet) may be included.
  • tweets are often not answers to questions.
  • the tweet is parsed and decomposed into adverb phrases representing the subject, object, place, time, and form, and adverb phrases representing the subject, object, place, time, and form, etc.
  • Information about the first user 204 may be accumulated in the database. For example, suppose the first user 204 tweeted, “My sister signed a contract to purchase a car yesterday.” At this time, the subject is “my sister”, the object is “car” and “contract”, and the adverb phrase representing time is “yesterday”.
  • the similar database 106 stores similar questions as one group, and answers to the group are associated with each other.
  • the similar database 106 may be divided into a first similar database 106a, a second similar database 106b, and a third similar database 106c corresponding to the first to third databases described above.
  • the information processing module 104 having a function as an artificial intelligence performs a function as an artificial intelligence in cooperation with the database 102 and the similar database 106, and also functions for editing a message (answer information, etc.) and a message (answer information, etc.). It includes an evaluation function, an evaluation result notification function, a phoneme generation function for reproducing the user's voice, a question generation function for generating a new question, and a 3D imaging function for generating a 3D video of the user.
  • the communication providing system 100 is placed in a state capable of bidirectional communication with a plurality of users (user terminals 202a and 202b illustrated in FIG. 2).
  • the user terminals 202a and 202b can communicate with the communication providing system 100 and the SNS 300.
  • the user terminals 202a and 202b can communicate with a plurality of user terminals 202a and 202b. It is in an available state.
  • the communication providing system 100 can generate a virtual first user 204b for the first user 204 on the system, and can have a conversation with a plurality of other users sequentially or simultaneously. is there. In this case, the virtual first user 204b can have an equal conversation with all accessing users.
  • the first user 204 among the plurality of second users 202, depending on closeness (family, friendship), organizational relationship (whether they belong to the same corporation or group), etc. There is a request to limit the scope of responses. That is, the first user 204 may want to reserve an answer to the question in relation to the second user 206.
  • FIG. 1K shows an example of a screen display of a user terminal operated by the first user 204.
  • the screen display shown in FIG. 1K indicates whether or not the first user 204 may make an automatic answer for each registered user to receive the service provided via the communication providing system 100.
  • the stage to set up is shown.
  • a display 210 for identifying a user based on a user name, a thumbnail image of the user, and the like, and an answer availability selection switch 211 are shown.
  • the first user 204 can set automatic answer permission for each user while viewing such a screen display. Note that such settings can be changed in a timely manner, and the first user 204 can change the settings by operating the selection switch 211 for timely answer availability.
  • FIG. 1L shows the operation of the communication providing system 100 in the case where the answer permission / inhibition is individually set for the plurality of second users 202.
  • the answer permission / inhibition is individually set for the plurality of second users 202.
  • S31 a question is made by the second user 206
  • the user is identified and an automatic answer is judged (S32).
  • S32 an automatic answer is judged
  • the virtual first user 204b generates an answer (S33)
  • An answer is made to the user 206 (S34).
  • the virtual first user 204b holds the answer. Become.
  • the communication providing system 100 can provide a function in which the first user 204 individually sets whether or not to answer a plurality of second users 202.
  • the communication providing system 100 has a function of setting whether or not to generate an answer in the information processing module 104 for the second usage question.
  • the range of communication by the virtual first user 204b can be set.
  • communication with a specific user can be restricted for the first user 204.
  • the virtual first user 204b is a plurality of second users. Since it is not necessary to answer all the questions 202 and all the questions, the load on the system can be reduced.
  • FIG. 3A is a diagram illustrating the configuration of the database 102 in the communication providing system 100 according to an embodiment of the present invention.
  • the database 102 may be constructed in a plurality of layers.
  • the first database 102a is a database corresponding to each user, and stores personal social data.
  • the personal social data stored in the first database 102a is also used as basic data when generating virtual user data in the communication providing system 100. Therefore, personal social data and information generated therefrom are stored in the database for each user.
  • the information generated from personal social data includes vectors obtained by analyzing personal social data using keywords, vectors obtained by analyzing personal social data using concepts, and personal social data, depending on the type. One or more of the analyzed vector and the vector obtained by analyzing the personal social data by the group are included.
  • the data stored in the first database 102a includes personal social data acquired from a plurality of SNSs 300. For example, information such as a comment posted by a certain user on the SNS, communication contents exchanged on the SNS between the user and other users, and tweets (tweets) of the user are stored. Yes. Also, as described above, questions and answers can be generated and stored.
  • the second database 102b stores social data of a plurality of users.
  • the data stored in the second database 102b includes social data of each user acquired from the plurality of SNSs 300.
  • the second database 102b stores a larger amount of data than the first database 102a.
  • the second database 102b is hierarchically positioned below the first database 102a.
  • the data stored in the second database 102b can be changed based on the change in the social data stored in the first database 102a. For example, when it is detected that a large number of users change the length, style, and contents of answers to similar questions, the data stored in the second database 102b can be changed according to the change. Is possible. That is, as shown in FIG. 3B, it is possible to perform a trend analysis on the first database 102a and update the second database 102b. As an example of such a case, in response to the question "What kind of person are you?" In contrast to responding, recently, when changes such as “I am a company employee” are detected that responds to occupations, the second database is responded to this change. The data stored in 102b may be changed so that the occupation is answered in response to the question "What kind of person are you?" Such a change may be referred to as “analyzing answers to questions”.
  • the third database 102c stores a plurality of text data.
  • the data stored in the third database 102c may be any text data set in advance, or may be a collection of texts that appear frequently among texts that appear on the SNS. .
  • texts having a high frequency of appearance may be collected from real-time communication called chat that is exchanged in SNS.
  • the first user's social data stored in the first database 102a includes real-time communication data called chat, tweets uploaded to Twitter (registered trademark), Facebook, etc.
  • the uploaded comments and comments of other users with respect to the comments are stored.
  • the social data of a plurality of users stored in the second database 102b may include data similar to the above, and further may store a question and text data of an answer to the question in association with each other.
  • a plurality of text data may be stored in association with each other in the form of a question and an answer to the question.
  • the social data stored in the first database 102a and the second database 102b is preferably text data.
  • this text data may include not only text data created by the SNS user but also text data generated from audio data, photo data, and video data.
  • audio data included in audio data and video data can be converted into text and stored in a database as text data.
  • a comment may be attached at the same time, and another user's comment may be attached to the comment.
  • a photo location, a content, or a content is added to a photo, a moving image, or a sound as a tag. Therefore, in generating text data from photo data and video data, data such as tags and comments attached thereto can be stored as text data in a database.
  • position information country name, place name, etc.
  • date information from which photo data and video data are acquired can be stored in a database as text data.
  • text data can be generated and stored in a database based on one or more of audio data, photo data, and video data.
  • Such a database 102 operates in cooperation with or in cooperation with the information processing module 104 having a function as artificial intelligence, as described with reference to FIG. Since the user's personal social data is stored in the first database 102a, what uses this hierarchy may be expressed as “private AI” or “personalized AI” as artificial intelligence reflecting the individual. it can. Further, since the second database stores social data of the entire user, what is realized using this hierarchy can also be expressed as “everyone AI” or “common sense AI”.
  • the information processing module 104 having a function as artificial intelligence generates a virtual individual using social data stored in the database 102 and communicates with a real user.
  • the information processing module 104 having a function as artificial intelligence has, for example, a function of recognizing text data stored in the database 102 and creating or generating an answer to a question.
  • the information processing module 104 having a function as artificial intelligence has a function of inferring or learning an appropriate answer to a question from text data stored in the database 102 and determining it.
  • the information processing module 104 having a function as artificial intelligence receives a question of the second user 206 with respect to the virtual first user 204b, and creates or generates an answer to the question. At this time, the information processing module 104 having a function as artificial intelligence performs processing for obtaining answers in order from the upper hierarchy of the database 102.
  • FIG. 4 is a flowchart showing an example of a process in which the information processing module 104 having a function as artificial intelligence searches the database 102 and creates an answer to a question.
  • the flow of processing will be described with reference to FIG.
  • an information processing module 104 having a function as artificial intelligence creates or generates an answer to a question
  • an appropriate answer to the question is searched from the first database 102a (S01). If an answer is obtained from the first database 102a, it will most accurately reflect the thoughts, thoughts, feelings, etc. of the first user 204 (S06).
  • the question stored in the first database 102a is searched for a question that matches the question as a character string.
  • the answers associated with the asked questions can be retrieved.
  • a search is performed by determining whether or not they match in consideration of a certain degree of notation fluctuation. You can also. It is also possible to search for a question having the largest number of words included in the question among the questions stored in the first database 102a. In this case, in addition to the number of words, the search can be performed in consideration of the order in which the words are arranged.
  • Semantic analysis can include, for example, deriving a logical outcome from an answer as a conclusion or deriving a condition assumed by the answer based on a predetermined logic system.
  • Semantic analysis can include, for example, deriving a logical outcome from an answer as a conclusion or deriving a condition assumed by the answer based on a predetermined logic system.
  • an answer is detected, if it includes a case where the character string is not completely matched, there is a case where the answer is inferred and determined.
  • there is a complete match as a character string there is a case of “learning and determining an answer”.
  • the information processing module 104 having the function as artificial intelligence searches the second database 102b in the lower hierarchy (S03).
  • the answers obtained from the second database 102b can know the tendency of how the majority of users are answering a specific question, and can obtain an average and appropriate answer. For example, "who are you” In response to the question “I am XX (name).”
  • the information processing module 104 having a function as artificial intelligence can determine a similar answer as an answer to the question.
  • the above is an example of a simple question. However, based on the second database 102b, the response tendency of a large number of users is reflected, so that it is possible to obtain an answer in time (S06).
  • the information processing module 104 searches the third database 102c (S05). Since an enormous number of text data is stored in the third database 102c, an answer can be selected from the stored text data. Then, the selected one is set as an answer (S06).
  • the database 102 stores a question and a response to the question in association with each other.
  • questions (questions) and responses (responses) to communication in human society are usually not uniform. For example, when trying to ask the name of a person you meet for the first time, you may ask “Who are you?” Or “Please tell me your name”.
  • a mechanism for selecting a response to the corresponding question is provided. For example, in response to the above-mentioned questions “Who are you?” And “Tell me your name”, there is no sense of incongruity even if you reply “I am Annie.”
  • This mechanism may be constructed as the similar database 106 as described in FIG.
  • FIG. 5 shows an example of the similar database 106.
  • the similar database 106 includes a question database 107 that stores questions and a response database 108 that stores responses. Alternatively, an area for storing a question and an area for storing a response may be provided in the similar database 106.
  • the question database 107 stores a plurality of questions as data.
  • the plurality of questions are stored as one group in association with similar questions. For example, the above-mentioned “Who are you?” And “Tell me your name” are associated and stored as similar questions.
  • the response database 108 stores the response content to the question, that is, a plurality of responses as data. For example, the above-mentioned reply “I am Annie” is stored.
  • the response data is associated with a specific question. According to the example above, the questions “Who are you?” And “Tell me your name” are grouped together and the response is associated with the response “I am Annie.” ing.
  • FIG. 6A shows another aspect of the similar database 106.
  • FIG. 6A shows an aspect in which the similar database 106 is hierarchized.
  • the similar database 106 includes a first similar database 106a corresponding to the first database 102a and a second similar database corresponding to the second database 102b.
  • the database 106b and the third similar database 106c corresponding to the third database 102c may be hierarchized.
  • the first similar database 106a is created for each specific user based on the personal social data of the user.
  • Text data corresponding to a question sentence and text data corresponding to a reply sentence are stored from text data by chat or the like included in the personal social data or the contents of the textized conversation.
  • similar question sentence data is grouped and stored in the question database, and the corresponding reply sentence data is stored in the response database and associated. It has been.
  • the second similar database 106b is created based on social data of a plurality of users. Text data corresponding to a question sentence and text data corresponding to a reply sentence are stored from text data by chat or the like included in social data of a plurality of users, or from the contents of a textized conversation. In the second similar database 106b, as described with reference to FIG. 5, similar text data corresponding to the question text is grouped and stored in the question database, and response text data corresponding thereto is stored in the response database. Stored and associated.
  • the data stored in the second similar database 106b can be changed based on the change in the social data stored in the first similar database 106a. That is, as shown in FIG. 6B, the trend analysis of the first similar database 106a can be performed, and the second similar database 106b can be updated using the result. For example, suppose that there are cases where a large number of users respond to nominations for each of the questions “Who are you?” And “Tell me your name”.
  • the second similar database 106b may be updated so that both the question “Who are you?” And “Tell me your name” are similar questions. it can.
  • the third similar database 106c stores a plurality of text data.
  • the plurality of text data may be prepared as a question text and text data of a response text to the question text. These text data may be collected text data having a high appearance frequency among text data appearing on the SNS.
  • similar text data corresponding to the question text is grouped and stored in the question database, and response text data corresponding thereto is stored in the response database. Stored and associated.
  • the similar database 106 includes the first similar database in which the data categorizing the contents of the question and the answer among the social data of the first user and the social data of a plurality of users are stored. Is divided into a second similar database that stores data that classifies the contents of questions and answers, and a third similar database that stores data that classifies the contents of questions and answers from text data It is preferable that
  • the information processing module 104 having a function as artificial intelligence refers to the second database 102b and there are many identical contents in answers from many users.
  • a question item for the answer may be automatically added to the similar database 106 and updated. In this way, by updating the similar database with reference to the social data of multiple users, the combination of questions and answers that are determined to be similar can be more accurately and accurately, and the accuracy of communication can be improved. it can.
  • the second user 206 recognizes the voice by speaking with the voice, and the voice of the first user 204 (or the pseudo user) A function of responding with the voice of the person himself / herself.
  • the second user 206 makes a non-voice question using text information or the like, it has a function of responding with the voice of the first user 204 (or a pseudo person's voice). It may be.
  • a voice response method a method can be used in which a large number of voices of the first user 204 are recorded in advance and a response sentence is created as voice data using the voice.
  • such a method forces the user himself / herself to input a large amount of audio data in advance, which is not preferable for all users and impairs the user's convenience.
  • communication data by voice of the user performed via the SNS is recorded as needed, and phoneme data is created based on the data. For example, a word spoken by a user in voice communication is taken out and a set of a plurality of words is created.
  • this word set is stored as data for creating phonemes.
  • a feature (waveform) of voice data prepared in advance and an actual user's voice waveform are compared in accordance with user attributes (for example, sex, age, etc.). Then, the waveform of the voice data prepared in advance is adjusted so as to approach the waveform of the user's voice. The adjusted voice data is used as the phoneme data of the user.
  • a method in which a large number of voices of the first user 204 are recorded in advance and a response sentence is created as voice data using the voices
  • the following may be possible. That is, when a large number of voices of the first user 204 are recorded in advance, it is assumed that voice data is acquired by causing the first user 204 to read a predetermined sentence. At this time, communication data by voice of the user performed via the SNS is recorded at any time, and voice generated by the first user 204 is recognized. When a predetermined sentence or a part of a word constituting a part thereof is recognized, the voice data of the recognized part is acquired and stored.
  • the voice data of the entire sentence determined in advance is obtained by repeating this process and appropriately connecting the acquired and stored voice data, the connected voice data is registered.
  • the first user 204 can be used without burdening the first user 204. It is possible to obtain voice data in which many voices of the person 204 are recorded.
  • the creation of such phoneme data may be performed by the information processing module 104 having a function as an artificial intelligence and the database 102, or may be executed in cooperation with an external server that creates phonemes.
  • the text data of the reply sentence is converted into voice data by using the phoneme data created as described above. Create Then, the created voice data is transmitted to the second user 206 as a response sentence.
  • the communication providing system 100 can acquire the voice data of the conversation performed via the SNS and create phoneme data that meets each user without giving a special load to the user. Even if it is pseudo, voice data close to the user can be created and voice communication can be established.
  • the communication providing system can include an evaluation module in which the second user 206 evaluates the content of the answer transmitted from the communication providing system 100.
  • the answer can be evaluated by operating the user terminal 200 of the second user 206.
  • the user terminal 200 can display the answer contents on the screen and display an icon (or button) for performing the evaluation, and the second user 206 can execute the evaluation by performing an operation according to the screen display.
  • the evaluation screen can be constructed by displaying icons (or buttons) indicating “Like” and “Dislike” (buttons 15 and 16 in FIG. 1J) together with the reply message. Further, the evaluation may be in a form in which the user gives a score instead of the two-choice set.
  • FIG. 7 is a diagram for explaining a mode in which an answer answered from the communication providing system 100 is evaluated with respect to a question made by the second user 206 to the virtual first user 204b.
  • the second user 206 (any of Mr. A, Mr. B, and Mr. C) has a question to communicate with the virtual first user 204 b generated on the communication providing system 100.
  • the case is shown (left side in the figure).
  • the second user 206 (any one of Mr. A, Mr. B, and Mr. C) evaluates the answer provided from the communication providing system 100. For example, in the case of Mr. A, it is evaluated as “Dislike”, and in the case of Mr. B or Mr. C, it is evaluated as “Like” (approximately the center in the figure).
  • the information processing module 104 having a function as an artificial intelligence can total the evaluation information input to the evaluation module for each response sentence and accumulate it as evaluation data.
  • the evaluation data may be stored in a point system in correspondence with the response text data.
  • the information processing module 104 having a function as an artificial intelligence can rank the response data having a high evaluation value so that the response data with a high evaluation value is preferentially selected.
  • the information may be notified to the first user 204.
  • the first user 204 can edit the response content and update the response text.
  • the communication providing system includes an editing module that allows the first user 204 to edit the reply sentence created by the communication providing system 100 by itself. For example, "Who are you” or "Tell me your name” In response to the question “I am XX (name).” It is assumed that the information processing module 104 having a function as artificial intelligence is learned so as to respond. However, some users may think that the response content thus derived is not appropriate. For example, to the above question: “I am the CEO of XX Company.” May be considered appropriate.
  • the first user 204 may receive a low evaluation notification for the response content (left side in the figure). In that case, the first user 204 may want to modify and edit the response content.
  • the communication providing system 100 individually sets a response sentence when the user wants to set a response sentence that is different from the response sentence created by the information processing module 104 having a function as an artificial intelligence. It can be edited by the function of the editing module.
  • the user may input the text data of the response content from the user terminal 200 and update the content by the update module.
  • the user may learn by interacting with the information processing module 104 having a function as artificial intelligence.
  • the first user 204 accesses the communication providing system 100 using the user terminal 200, and gives a pseudo first user 204 created on the communication providing system 100 to, for example, "Tell me your name” Ask.
  • the information processing module 104 having the function as artificial intelligence has a prepared answer as follows: “I am XX (name).” Responds. The first user 204 can determine that there is no problem with the response content. In this case, the first user 204 need not use the editing function. Next, another question is "Who are you?" In response to the question, the information processing module 104 having a function as artificial intelligence, “I am XX (name).” When the response is made, the first user 204 determines that this response is not appropriate, and uses the editing function.
  • the icon is operated according to the screen display of the user terminal 200 to set the editing mode. Then, the response content “I am XX (name)” is set to the response content “I am the representative director of XX company”. This allows you to answer the question “Who are you?” To answer “I am the representative director of XX company”.
  • FIG. 8A shows a flowchart explaining the evaluation of questions and answers by the second user 206 and the manner in which the first user 204 performs editing.
  • the second user 206 accesses the virtual first user 204b in which the communication providing system 100 exists and asks a question (question) (S11).
  • the communication providing system 100 generates an answer to the question (S12) and transmits the answer to the second user 206 (S13). Then, the second user 206 evaluates the obtained answer (S14).
  • the communication providing system 100 aggregates the evaluation values (S15). If the evaluation value is normal or high, or the evaluation value is higher than a certain level, the answer may be weighted (S16, S17), assuming that the answer is a preferable answer. In this case, the weighted answer may have a high probability of being selected at the next search.
  • the first user 204 is notified to that effect (S16, S18).
  • the first user 204 that has received the notification (S19) edits the content of the response so that a favorable response is obtained (S20).
  • the communication providing system 100 receives the edited answer, the communication providing system 100 corrects and updates the corresponding answer recorded in the database (S21). If the first user 204 determines that there is no need to correct the content of the answer, the first user 204 can leave it as it is.
  • the second user 206 asks a question and the first user 204 edits the answer to the question.
  • the first user 204 has a conversation with the virtual first user 204b appearing in the communication providing system 100, asks himself a question, and evaluates himself. And editing can be performed.
  • the first user 204 can know the content of the answer to the question, and can evaluate the answer and edit the answer so that a preferable answer can be obtained. That is, the information processing module 104 having a function as artificial intelligence can be learned.
  • the communication providing system 100 can create a new response sentence by the user editing data associated with a question and a response.
  • the user can learn the artificial intelligence function to respond appropriately to the question while interacting with the pseudo self generated on the communication providing system 100.
  • the first user 204 edits the answer to the question while interacting with the virtual first user 204b generated on the communication providing system 100, and functions as an artificial intelligence.
  • the information processing module 104 can be learned.
  • FIG. 8B shows an aspect in which the communication providing system 100 generates a candidate for an answer to a question and the user selects it.
  • the communication providing system 100 generates candidate answers to the question based on the first database 102a in which personal social data is stored.
  • the first information processing module 104a having a function as artificial intelligence has a function of generating a plurality of answer candidates based on different logics.
  • the first information processing module 104a having a function as artificial intelligence generates answer candidates by weighting the contents of recent conversations from the personal social data of the first user, and generates another logic.
  • answer candidates are created based on the content of the conversation with a high appearance frequency from all the data. For example, in response to a question about favorite food, there is logic for answering food that has been eaten recently and logic for answering food that the first user has long liked.
  • the information processing module 104b having a function as artificial intelligence is stored in the second database 102b when the first information processing module 104a cannot find an appropriate answer in the first database 102a. Create candidate answers based on the data.
  • the second database 102b in addition to storing social data of the entire user, for example, various information on the Internet is collected and stored by crawling.
  • the answer to the question generated by the information processing module 104b having the function as artificial intelligence is not an answer reflecting the individual personality of the user, but a generalized answer for social wisdom. For example, an answer that is pleasing is generated for a question about a player in the home country that won the international match.
  • the answer candidates generated by the information processing module 104 having a function as artificial intelligence are output to the first user's terminal 204a.
  • the first information processing module 104a having a function as artificial intelligence generates seven types of answer candidates and outputs the answer candidates to the first user terminal 204a.
  • FIG. 8B shows a mode in which the answers A1 to A7 are displayed on the terminal 204a of the first user.
  • the answer candidates generated by the information processing module 104 having the function as artificial intelligence are in order of highest priority (the order of answers judged to be most accurate). Answer candidates A1 to A7 are displayed.
  • the first user can change the order of answers by his / her own judgment with reference to the answers A1 to A7.
  • the order of the answer candidates A1 and A3 is switched.
  • the order of answer candidates changed by the first user is reflected in the information processing module 104 having a function as artificial intelligence.
  • answer candidates are generated in the order of A3, A2, and A1.
  • This result is used as a response of the pseudo first user 204b generated by the information processing module 104 having a function as artificial intelligence.
  • the information processing module 104 having a function as artificial intelligence generates a plurality of answer candidates for a question, and the first user selects the answer candidate, thereby making a pseudo first user.
  • the answer of 204b can be made more appropriate.
  • Such an answer candidate editing function can edit an answer candidate by the function of the editing module described above, and can update an answer candidate for the question based on the contents edited by the editing module by the function of the update module.
  • the communication providing system 100 can acquire a user's appearance as image data, convert it into three-dimensional image data, and display it on a user terminal. For example, in the configuration shown in FIG. 1A, when the second user 206 interacts with the virtual first user generated on the communication providing system 100, the video of the first user is displayed on the user terminal 200. Can be displayed.
  • User image data can be acquired using the imaging function of the user terminal 200.
  • the user takes a picture of himself / herself using the user terminal 200 and uploads the image data to the communication providing system 100.
  • image data may be extracted using the photographed information. it can. Thereby, the latest image data of the user can be acquired, and the three-dimensionalization of the user photo can be realized based on the latest image data of the user.
  • the communication providing system 100 can generate 3D image data by estimating and calculating the 3D shape of a person shown in the 2D photo data.
  • the method for example, three-dimensional image data is created by a method for obtaining depth information from the density distribution of the texture of the object or a method for calculating a normal direction from the intensity of light reflection on the object surface.
  • the user's 3D image data may be appropriately updated as described above.
  • image data is retrieved from the personal social data of a specific user recorded in the first database 102a and the user is captured using the face recognition function. Is identified. And the structure which selects the newest data from the image data in which a user is reflected, and updates a user's three-dimensional image data based on the data can also be provided.
  • the other party's video is displayed on the user terminal as a three-dimensional image, thereby giving a sense of reality to the communication.
  • the 3D image of the virtual individual is updated to the most recent data, so that the appearance of the other party becomes more specific, and the feeling of intimacy can be further enhanced through pseudo communication.
  • the communication providing system 100 has a function of automatically generating and registering a question sentence using social data stored in the database 102.
  • many personal “tweets” may be recorded as personal social data of the first user 204.
  • personal “tweets” include, for example, “I went shopping in Tokyo today” and “I'm waiting in Shibuya”. Such personal social data does not have a form of response to the inquiry, but “tweet” includes at least one piece of information.
  • the information processing module 104 having a function as an artificial intelligence creates and registers question data from information obtained by decomposing text data of such personal social data into nouns, verbs, adjectives, etc., and syntactic interpretation. It has a function to keep.
  • the information processing module 104 having a function as artificial intelligence refers to social data of a plurality of users registered in the second database 102b and learns what kind of conversation is being made. For example, in response to the question “Where did you go?”, If there are many conversations such as “The function went to XX (place name).” ? "Is generated and registered in the first database 102. If a plurality of question sentences can be created, they can be registered in the similar database 106.
  • the information processing module 104 having a function as artificial intelligence automatically creates a question sentence from personal social data, so that the dialogue ability can be enhanced.
  • This parameter may be assigned to the user according to a personality analysis of the user, such as a person who has a high probability of occurrence of fluctuation or a person who is not easily influenced by other users. Thereby, the personality of each user or the userness can be produced depending on how the fluctuation is reflected.
  • Such parameters can be stored in the communication providing system 100 as user attributes at the time of registration in the communication providing system 100 and read out as necessary.
  • the result of detecting the temporal change of the user's answer accumulated in the first database 102a is stored in the communication providing system 100, and if necessary, Can be read.
  • the result of detecting temporal changes in the information related to the user accumulated in the first similar database 106a can be stored in the communication providing system 100 and read out as necessary.
  • the information processing module 104 having a function as artificial intelligence can perform a response to the inquiry as follows.
  • ⁇ Users may give answers without receiving questions, such as tweets.
  • tweets For example, the following tweet:
  • Table 3 summarizes such tweets from user 1.
  • Question and answer combinations can be obtained from past conversations.
  • the communication providing system 100 can learn past conversations.
  • the communication providing system 100 according to the present embodiment can generate new questions and infer and predict responses by learning past conversation data (social data accumulated in a database).
  • FIG. 9 shows a configuration for retrieving an answer from a past conversation when a question is received and predicting an appropriate answer.
  • An important aspect for predicting responses is where artificial intelligence must imitate human behavior.
  • the response to a question depends on the person asking the question. Therefore, in order to predict a response to a question made by a certain user, the artificial intelligence needs to refer to the user's past conversation data and predict a response content with a high priority obtained from the data.
  • the artificial intelligence finds an appropriate response sentence from the conversation that the first user exchanges with another user. There is a need. When doing this, it is necessary to be careful not to leak confidential matters such as personal information of other users by searching for conversations with other users.
  • the artificial intelligence estimates the confidentiality score of each answer in the content of the conversation exchanged by other users.
  • an answer sentence that has already been shared with another user has a low confidentiality score.
  • the confidentiality score can be low.
  • FIG. 10 shows a process flow for selecting an answer to a question from user 2 to user 1.
  • the artificial intelligence first searches for a suitable answer from conversations between the first user and the second user exchanged in the past (S21). As a result, when a suitable answer is found, it is selected as an answer (S22, S26). On the other hand, when a suitable answer is not found, one or a plurality of answers learned from the conversations of all users are selected (S22, S23). The confidentiality score is evaluated for the answer obtained here (S24). Then, one with a low confidentiality score is selected and selected as an answer (S25, S26).
  • the answers to the questions may be ranked as follows. For example, as shown in FIG. 11, when an answer is found in a conversation that the first user and the second user have exchanged in the past, the answer can be shared between the two at the “personal level”. Can be an answer. Further, when finding an appropriate response sentence from the conversation in which the first user exchanges with other users, the confidentiality score is evaluated for one or a plurality of obtained answers. An answer with a low confidentiality score can be set as a “public level” answer. Furthermore, as shown in FIG. 12, the social data of a plurality of users is learned, the confidentiality score of one or a plurality of answers obtained therefrom is evaluated, and an answer with a low score is assigned to a “shared level”. Can be an answer.
  • I a submodel representing a conversation between user i and user j.
  • Q (i, j) represents a question made from user j to user i
  • a (i, j) represents an answer made from user i to user j
  • t corresponds. Indicates the time to do.
  • q is a question (or query) of user j with respect to user i
  • A is a predicted answer.
  • the predicted answer when the confidentiality score of the answer is higher than the first threshold, the predicted answer is an individual level answer. Further, when the confidentiality score is equal to or lower than the first threshold value and the confidentiality score is lower than the second threshold value, the predicted answer is a public level answer. If it does not correspond to these, it can be treated as a shared level answer.
  • Such an aspect of the answer level can be expressed by the following equation.
  • Cprivate gives a confidentiality score for the personal level answer
  • C public gives a publicity score.
  • sim (q, Qx) is a function indicating the similarity or matching between q and tuple (Qx, Ax, tx).
  • FIG. 13 illustrates how contexts are integrated by grouping questions and answers in a conversation. It is shown that the matching of the query with the question and the answer is a weighted sum.
  • the similarity when integrating contexts can be expressed as:
  • a i is a weighting factor
  • W indicates the number of tuples included in the context window.
  • Each query for a question and an answer is composed of a set of vectors of keyword (W), concept (C), type (T), and group (G) as shown in the following equation.
  • Keywords Keywords are obtained by building words from all messages exchanged between users. Vector similarity between two keywords is weighted (TF-IDF: Robertson, SE, Walker, S., Beaulieu, MM, Gatford, M., & Payne, A. Okapi at TREC-4. In Proceedings of the 4th Text REtrieval Conference (TREC-4), pp. 73-96, 1995]). Or, OkapiBM25 (Harman, D. Ranking algorithms. In WB Frakes & R. Baeza-Yates (Eds.), Information retrieval: Data structures and algorithms, pp. 363-392. Englewood Cliffs, New Jersey, USA: Prentice Hall, 1992]), or any other ranking function used in information retrieval. Similarity between keywords includes semantic similarity.
  • Types Types are defined as different groups of messages from the perspective of grammatical structure and reputation analysis. This group includes questions, people, rough places, order, romantic messages, happy messages, and more. These classifications can be obtained by the artificial intelligence learning of manually labeled feature vectors, grammatical data, concepts and keywords.
  • Group Tuples (Q, A) of all users are clustered based on the similarity of text between answers. Each cluster is given a name.
  • the group vector is a list of clusters to which the tuple (Q, A) belongs. Both have similar answers, so obviously two questions in the same group are similar.
  • FIG. 15 shows a mode in which questions and answers are clustered by the similarity of the answers, and each cluster forms a group.
  • Artificial intelligence can be learned using all available data.
  • the input vector is a question and the output vector is an answer.
  • the learned artificial intelligence estimates the answer template.
  • the answers in this template can be matched to the answers in the database. This is important in order to be able to find an answer when a question is not found in the data.
  • Any supervised algorithm can be used in this case as a neural network, support vector machine, k-Nearest-Neighbors, Gaussian mixture model.
  • the communication providing system acquires data from various SNSs and accumulates them in a database, and an information processing module having a function as artificial intelligence is used by a user. Learning thoughts can provide appropriate answers to questions.
  • the communication providing system collects social data from a plurality of SNSs, and an information processing module having a function as artificial intelligence infers and learns it, so that one user can conceive. You can also offer no thoughts.
  • first database 102a that generates a virtual user generated by the communication providing system 100 is made to acquire specialized knowledge, the virtual user is acquired.
  • Various services can be provided. Such expertise may be acquired from an SNS used by the corresponding user.
  • the applicable field Expertise can be made available to virtual users.
  • the expertise in this case includes not only uniform expertise accumulated by books and the like, but also information on expertise used by natural persons as a conversation on a social network. By including information related to such conversational expertise, the communication providing system 100 can effectively use various expertise as an answer to a question.
  • such specialized knowledge can be acquired as pseudo first user knowledge generated by artificial intelligence, for example, if the first user desires.
  • the pseudo first user can not only acquire specific specialized knowledge but also use the first user in consideration of the individuality of the first user. For example, if the first user has knowledge in the medical field, the pseudo first user also has expertise in the medical field, and the pseudo first user has further specialized knowledge. If you acquire expertise in the legal field, you will be able to demonstrate your abilities in the field of forensic medicine.
  • the expertise stored in the first database 102a may be stored in a question and answer (ie, Q & A) format.
  • the social data (knowledge) stored in the first database 102 can be updated in a timely manner, and the data is not lost, so that the amount of knowledge can be increased.
  • a virtual individual having high expertise can appear on the communication providing system in accordance with the user's attributes, and the service can be provided to other users.
  • FIG. 2 shows an information processing module (first information processing module) having a function as artificial intelligence configured based on personal social data and a function as artificial intelligence configured based on social data of the entire user.
  • the information processing module (second information processing module) having The present invention can further include an information processing module (third information processing module) having a function as an artificial intelligence in which a plurality of first information processing modules are aggregated to share information or a knowledge level.
  • FIG. 17 shows an aspect in which there are a plurality of first information processing modules 104a configured based on personal social data and having functions as artificial intelligence (first information processing modules 104a_1 to 104a_n (n is 2 or more). integer)).
  • first information processing modules 104a_1 to 104a_n (n is 2 or more). integer)
  • the first information processing module 104a generates pseudo users called “private AI” and “personalized AI”.
  • the second information processing module 104b linked to the first information processing module 104a is based on a fusion of knowledge obtained by crawling social data of the entire user and various information on the social network. It is artificial intelligence and is called “Everyone AI”, “Common Sense AI” or “Moral AI”.
  • FIG. 17 shows that a plurality of first information processing modules 104a_1 to 104a_n form one set 110.
  • a third information processing module 112 having a function as an artificial intelligence that shares knowledge and information is connected to the set 110.
  • the third information processing module 112 is artificial intelligence generated by a common knowledge level generated by the plurality of first information processing modules 104a_1 to 104a_n. That is, the third information processing module 112 is a pseudo user having all the knowledge, personality, and personality of the plurality of pseudo users generated by the plurality of first information processing modules 104a_1 to 104a_n. It can be said that there is.
  • Such third information processing module 112 can be referred to as a “group AI”.
  • the third information processing module 104c can demonstrate the knowledge and individuality of each pseudo user generated by the plurality of first information processing modules 104a_1 to 104a_n. From another viewpoint, the pseudo user generated by the third information processing module 112 is different from the pseudo user generated by the first information processing module 104a. Since a plurality of individuals are generated together, it can be said that they have a corporate character.
  • the plurality of first information processing modules 104a_1 to 104a_n can have a conversation with the third information processing module 112. Thereby, the plurality of first information processing modules 104a_1 to 104a_n can share each other's information and knowledge. Even if one of the pseudo users generated by the first information processing modules 104a_1 to 104a_n leaves the group, the third information processing module 112 can share the knowledge and personality of the detached user. Since it can hold
  • the third information processing module 112 having a function as artificial intelligence is operated as a function of a part of a certain corporation, even if a member (natural person) belonging to the corporation leaves in the middle, the member who has left You can keep your skills in that corporation.
  • the third information processing module 104c can acquire new information from the plurality of first information processing modules 104a_1 to 104a_n, whereby artificial intelligence grows. That is, the skill of each individual person generated by the first information processing modules 104a_1 to 104a_n is improved, so that the skill is a skill of the pseudo user generated by the third information processing module 112. Reflected.
  • the third information processing module 112 may be placed in an accessible state with the second information processing module 102b through an electric communication line. Thereby, the third information processing module 103c can collect a wide range of information.
  • a plurality of pseudo users generated by artificial intelligence can be used to determine the knowledge, intelligence, and personality of a plurality of users forming the set.
  • a pseudo user with everything can be formed and used.
  • SYMBOLS 100 Communication provision system, 102 ... Database, 104 ... Information processing module, 106 ... Similarity database, 107 ... Question database, 108 ... Response database, 200 ... User terminal, 202 ... Plural users, 204 ... First user, 206 ... Second user, 300 ... SNS

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

利用者個人の個性、人格を適正に表現することのできるコミュニケーションシステム、コミュニケーション方法を提供することを目的の一つとする。一つ又は複数のソーシャル・ネットワーキング・サービスに登録されている第1の利用者のソーシャルデータと、複数のソーシャル・ネットワーキング・サービスに登録されている複数の利用者のソーシャルデータと、複数のソーシャル・ネットワーキング・サービスから収集された複数のテキストデータと、の情報が記憶されたデータベースと、第1の利用者に対する第2の利用者の質問を、データベースに記憶されている情報の少なくとも一部に基づいて、質問に対する回答を推論し又は学習して決定する人工知能としての機能を有する情報処理モジュールと、を含むコミュニケーション提供システムが提供される。

Description

コミュニケーション提供システム及びコミュニケーション提供方法
 本発明は、インターネット等の電気通信回線を通じてアクセスしたユーザとの間で自動的にコミュニケーションを行う対話型のシステムに関する。
 ソーシャル・ネットワーキング・サービスの普及により、スマートフォン、タブレット端末、パーソナルコンピュータ等のデバイスを使用して複数のユーザ同士が情報を発信し共有することが可能となっている。それにより、個人が取得し又は発信することのできる情報の量は増大し、その範囲は著しく拡大している。端末装置にインストールされたアプリケーション・ソフトウエアを操作すれば、複数人と同時に情報を共有することも容易にできる。コミュニケーションの内容は、音声や文字のみではなく、静止画像や動画によるコミュニケーションも可能となり、情報の量及び質が増大しているといえる。
 ソーシャル・ネットワーキング・サービスを利用すれば、時間的及び距離的障害を克服して、複数人と多量の情報を相互に、しかもリアルタイムで共有することができる反面、それぞれのユーザはプライベートな時間を持っているのが通常であるため、常にリアルタイムで情報交換ができるとは限らないのが実情である。また、ソーシャル・ネットワーキング・サービスの利用者は、友人として関連付けられた複数人に対し同時に情報を発信することができるが、複数の友人のそれぞれと個別に且つ同時的にコミュニケーションを図ることは困難である。
 ところで、記録媒体に予想される質問に対する回答の文書データを記憶させておき、ユーザの質問に応じて回答を自答的に出力する自動対話型システムが開示されている(特許文献1,2参照)。しかしながら、これらの自動対話型のシステムは、予め回答文書が用意されているので、対話は画一的であり時々刻々と変化する社会情勢に応じた会話をすることができない。また、質問をする相手方の個性や感情を表現できないといった問題がある。
特開2006-072787号公報 特開2006-172280号公報
 本発明の一実施形態は、このような問題に鑑み、利用者個人の個性、人格を表現することのできるコミュニケーションシステム、コミュニケーション方法を提供することを目的の一つとする。
 本発明の一実施形態によれば、一つ又は複数のソーシャル・ネットワーキング・サービスに登録されている第1の利用者のソーシャルデータと、複数のソーシャル・ネットワーキング・サービスに登録されている複数の利用者のソーシャルデータと、複数のソーシャル・ネットワーキング・サービスから収集された複数のテキストデータと、の情報が記憶されたデータベースと、第1の利用者に対する第2の利用者の質問を、データベースに記憶されている情報の少なくとも一部に基づいて、質問に対する回答を推論し又は学習して決定する人工知能としての機能を有する情報処理モジュールと、を含むコミュニケーション提供システムが提供される。
 本発明の一実施形態において、データベースは、第1の利用者のソーシャルデータを記憶する第1のデータベースと、複数の利用者のソーシャルデータを記憶する第2のデータベースと、複数のテキストデータを記憶する第3のデータベースと、に階層化されていてもよい。
 本発明の一実施形態において、人工知能としての機能を有する情報処理モジュールは、第1のデータベース、第2のデータベース及び第3のデータベースに記録されているデータの中から、質問に対する適切な回答を、上位のデータベースに記録された情報の少なくとも一部に基づいて推論し生成してもよい。
 本発明の一実施形態において、人工知能としての機能を有する情報処理モジュールは、第1のデータベースに記憶されている複数の利用者のソーシャルデータから質問に対する回答を傾向分析し、質問に対する回答を推論し又は学習して決定してもよい。
 本発明の一実施形態において、傾向分析は、質問に対する複数の利用者の回答の時間的な変化を分析するものであってもよい。
 本発明の一実施形態において、第1の利用者のソーシャルデータ及び複数の利用者のソーシャルデータは、テキストデータ並びに、音声データ、写真データおよびに映像データの一以上から生成されたテキストデータであるものが含まれる。
 本発明の一実施形態において、類似する質問を類似質問としてグループ化し、類似質問に対応する回答が対応付けられている類似データベースを含み、人工知能としての機能を有する情報処理モジュールは、類似データベースから質問の回答を選択してもよい。
 本発明の一実施形態において、類似データベースは、類似質問内容をグループ化して記録する類似質問データベースと、類似質問に対応する回答を記憶する類似回答データベースとを含んでいてもよい。
 本発明の一実施形態において、類似データベースは、第1の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶される第1の類似データベースと、複数の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶される第2の類似データベースと、テキストデータの中から質問と回答の内容を類型化したデータが記憶される第3の類似データベースとに階層化されていてもよい。
 本発明の一実施形態において、第2の利用者が回答の評価した情報を取得して、回答に評価値を付ける評価モジュールを含んでいてもよい。
 本発明の一実施形態において、評価モジュールは、回答の評価結果を、第1の利用者に通知する通知モジュールを含んでいてもよい。
 本発明の一実施形態において、通知モジュールから通知を受けた第1の利用者が、質問に対する回答の内容を編集する編集モジュールと、編集モジュールで編集された内容に基づいて質問に対する回答の内容を更新する更新モジュールとを含んでいてもよい。
 本発明の一実施形態において、評価モジュールは、評価結果に基づいて優先準位を付け、人工知能としての機能を有する情報処理モジュールは、優先順位に基づいて質問に対する適切な回答を推論し又は学習して決定してもよい。
 本発明の一実施形態において、データベースは、経時的に、第1の利用者のソーシャルデータ、第2の利用者のソーシャルデータ、テキストデータを更新し蓄積する機能を有していてもよい。
 本発明の一実施形態において、第1の利用者の三次元画像データを生成する画像データ生成モジュールを含んでいてもよい。
 本発明の一実施形態において、データベースは、第1の利用者の音声データを含み、音声データから音素データを生成する音素データ生成モジュールと、音素データを用いて会話の音声を生成する音声生成モジュールとを含んでいてもよい。
 本発明の一実施形態において、人工知能としての機能を有する情報処理モジュールは、質問に対する回答の頻度を解析し、頻度の高い回答に対応する質問を類似データベースに記録する機能を有していてもよい。
 本発明の一実施形態において、人工知能としての機能を有する情報処理モジュールは、個人ソーシャルデータに含まれるテキストデータの構文解析をし、質問に対する回答を推論し又は学習して決定する機能を有していてもよい。
 本発明の一実施形態によれば、第1の利用者の登録情報に基づいて仮想的な第1の利用者の個人像を生成し、第2の利用者が仮想個人に対して送信した質問を受け付け、質問に対する回答を、第1の利用者のソーシャルデータ、複数の利用者のソーシャルデータ又は予め登録されている複数のテキストデータのいずれか一種に基づいて推論し又は学習して決定し、決定された回答を、第2の利用者に提供するコミュニケーション提供方法が提供される。
 本発明の一実施形態において、質問に対する回答を、第1に第1の利用者のソーシャルデータを検索し、適切な回答を得られないとき、第2に複数の利用者のソーシャルデータを検索し、適切な回答を得られないとき、第3に予め登録されている複数のソーシャルデータを検索するようにしてもよい。
 本発明の一実施形態において、質問に対する回答を、複数の利用者のソーシャルデータから、質問に対する回答を傾向分析し、質問に対する回答を推論し又は学習して決定するようにしてもよい。
 本発明の一実施形態において、傾向分析は、質問に対する複数の利用者の回答の時間的な変化を分析するものであってもよい。
 本発明の一実施形態において、第1の利用者のソーシャルデータ及び複数の利用者のソーシャルデータは、テキストデータ及び、音声データ、写真データ並びに映像データから生成されたテキストデータであってもよい。
 本発明の一実施形態において、類似する質問を類似質問としてグループ化し、類似質問に対応する回答を対応付けて類似データベースに記憶させ、質問に対する回答を、類似データベースから質問の回答を選択するようにしてもよい。
 本発明の一実施形態において、類似データベースに、第1の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶させ、複数の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶させ、テキストデータの中から質問と回答の内容を類型化したデータが記憶させてもよい。
 本発明の一実施形態において、第2の利用者が回答の評価した情報を取得して、回答に評価値を付けるようにしてもよい。
 本発明の一実施形態において、回答の評価結果を、第1の利用者に通知するようにしてもよい。
 本発明の一実施形態において、通知モジュールから通知を受けた第1の利用者が、質問に対する回答の内容を編集した内容を受け付け、編集された内容に基づいて質問に対する回答の内容を更新するようにしてもよい。
 本発明の一実施形態において、評価結果に基づいて優先準位を付け、優先順位に基づいて質問に対する適切な回答を推論し又は学習して決定するようにしてもよい。
 本発明の一実施形態において、第1の利用者のソーシャルデータ、第2の利用者のソーシャルデータ、テキストデータを経時的に更新し蓄積するようにしてもよい。
 本発明の一実施形態において、第1の利用者の三次元画像データを生成するようにしてもよい。
 本発明の一実施形態において、第1の利用者の音声データを記憶して、音声データから音素データを生成し、音素データを用いて会話の音声を生成するようにしてもよい。
 本発明の一実施形態において、質問に対する回答の頻度を解析し、頻度の高い回答に対応する質問を類似データベースに記録するようにしてもよい。
 本発明の一実施形態において、個人ソーシャルデータに含まれるテキストデータの構文解析をし、質問に対する回答を推論し又は学習して決定するようにしてもよい。
 本発明の一実施形態によれば、利用者が利用している様々なソーシャル・ネットワーキング・サービスからデータを取得し、データベースに蓄積することで、人工知能(AI)が利用者の思考を学習し、質問に対する適切な回答を提供するシステムを提供することができる。
本発明の一実施形態に係るコミュニケーション提供システムと、ソーシャル・ネットワーキング・サービス及び、本コミュニケーション提供システムを利用する利用者との関係を示す図である。 本発明の一実施形態に係るコミュニケーション提供システムに登録するための画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムに登録するための画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムに登録するための画面の一例図である。(D)本発明の一実施形態に係るコミュニケーション提供システムに登録するための画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムに登録するための画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムと、ソーシャル・ネットワーキング・サービス及び、本コミュニケーション提供システムを利用する利用者との関係を示す図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問を行うための画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問を行うための画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、回答が提供される画面の一例図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、第1の利用者の端末で、仮想的な第1の利用者が複数の第2の利用者がする質問に回答するに際し、複数の第2の利用者毎に自動的な回答可否を設定する機能を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問をした利用毎に回答の可否を判断して回答をする処理の流れを説明するフローチャートである。 本実施形態に係るコミュニケーション提供システムの機能的構成を示す図である。 本発明の一実施形態に係るコミュニケーション提供システムの構成を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムの構成を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて実行される処理の流れを説明するフローチャートである。 本発明の一実施形態に係るコミュニケーション提供システムに含まれる類似データベースを説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムに含まれるデータベースを説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムに含まれるデータベースを説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて回答を評価する態様を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて実行される処理の流れを説明するフローチャートである。 本発明の一実施形態に係るコミュニケーション提供システムにおいて質問に対する回答の候補と編集をする態様を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問を受けたとき、過去の会話の中からその回答を検索し、また適切な回答を予測するための構成を示す図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて実行される処理の流れを説明するフローチャートである。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問に対する回答をランク分けする態様を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問に対する回答をランク分けする態様を説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、会話における質問と回答をグループ化することにより、文脈を統合する態様を示す。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、どのようなキーワードの順序が一致を求める際に重要であるかを例示する図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、質問と回答が、その回答の類似性によってクラスタ化された態様を示し、各クラスタが一つのグループを構成する態様を示す図である。 本発明の一実施形態に係るコミュニケーション提供システムにおいて、各質問を構成するベクトル(キーワード、コンセプト、タイプ)は、同等の回答ベクトルを推定する予測因子を持っていることを説明する図である。 本発明の一実施形態に係るコミュニケーション提供システムの構成を説明する図である。
 以下、本発明の実施の形態を、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
[システムの概要]
 図1Aは、本発明の一実施形態に係るコミュニケーション提供システムと、ソーシャル・ネットワーキング・サービス(以下「SNS」ともいう。)及び、このコミュニケーション提供システムを利用する利用者との関係を示す。本実施形態に係るコミュニケーション提供システム100は、利用者が利用している様々なSNSからデータを取得しデータベースに蓄積する機能を有している。コミュニケーション提供システム100はさらに、データベースに蓄積された情報に基づいて、利用者の思考を推論し学習する機能(人工知能としての機能)を有し、質問に対する適切な回答を提供可能としている。以下、その詳細を説明する。
 図1Aにおいて、コミュニケーション提供システム100は、複数の利用者202との間で電気通信回線を通じてアクセス可能な状態に置かれている。複数の利用者202は、コミュニケーション提供システム100が提供するサービスによって、直接的及び間接的にコミュニケーションを相互に図ることができる。
 図1Aは、複数の利用者202が、それぞれのユーザ端末200によってコミュニケーション提供システム100と電気通信回線を通じて双方に通信可能な状態に置かれていることを示している。ここで、複数の利用者202は、コミュニケーション提供システム100を介して提供されるサービスを受けるために予め登録された利用者の集合であることが好ましい。コミュニケーション提供システム100を介して提供されるサービスの利用を登録制とすることで、コミュニケーションの安全性及び信頼性を高めることができる。
 なお、必ずしも、複数の利用者202の全員がコミュニケーション提供システム100を介して提供されるサービスを受けるために予め登録されている必要は、ない。例えば、複数の利用者202の少なくとも一人は匿名のユーザとしてコミュニケーション提供システム100を利用できるようになっていてもよい。
 コミュニケーション提供システム100は、公衆に提供されているSNS300の一つ又は複数と通信可能な状態に置かれている。SNS300としては、例えば、Twitter(登録商標)、Facebook(登録商標)等であり、インターネット上で提供される様々なコミュニケーションサービスが例示される。なお、SNSにより提供されるコミュニケーションの態様は様々であり、上記に例示されるサービスに限定されるものではない。本実施形態において、コミュニケーション提供システム100と連携するSNS300は、その利用者のソーシャルデータが提供されるものであればよく、複数の利用者間で情報を共有できる態様のものであることが好ましい。
 なお、本明細書において「ソーシャルデータ」とは、何らかのSNSを通じて、利用者が特定人(例えば、友人として登録されている他の利用者。)又は不特定人に発信する文字(顔文字を含む)、記号、音声、静止画像、動画等の情報をいう。また、「個人ソーシャルデータ」とは、複数の利用者の内、特定個人のソーシャルデータを指すものとする。
 コミュニケーション提供システム100は、少なくとも一つ、好ましくは複数のSNS300から、それぞれに蓄積されるソーシャルデータを取得する。コミュニケーション提供システム100が行うソーシャルデータの取得は、リアルタイムで実行されてもよいし、一定時間又は一定期間ごとに適時行われてもよい。コミュニケーション提供システム100は、取得したソーシャルデータをデータベースに蓄積する。データベースに蓄積される情報の量及び質を高めるためには、コミュニケーション提供システム100は複数のSNS300と連携してソーシャルデータを取得することが好ましい。
 具体的なソーシャルデータの取得と取得されたソーシャルデータがデータベースに蓄積される過程の一例としては、次のものがある。まず、第1の利用者204が、パーソナルコンピュータやスマートフォンなどを用いて、第1の利用者204の属性をコミュニケーション提供システム100に登録を行う。このために、第1の利用者204は、例えば、図1Bに示すように、「ようこそpersonalized AIへ」に示される画面をブラウザやアプリを用いて表示を行い、「登録へ」のボタン1を押す。すると、第1の利用者204の属性を入力する画面が表示される。第1の利用者204の属性には、SNS300のいずれのSNSからソーシャルデータを取得するかを特定するための情報(SNS特定情報)および、ソーシャルデータを取得するSNSにおける第1の利用者204の認証情報が含まれ得る。例えば、図1Cに示されるように、SNS特定情報をフィールド2に入力し、認証情報として、ユーザ名およびパスワードをフィールド3および4に入力する。そして、「登録」のボタン5を押す。
 第1の利用者204の属性は、コミュニケーション提供システム100の記憶装置、例えばデータベースなどを格納する2次記憶などに格納される。コミュニケーション提供システム100は、SNS特定情報およびSNSの認証情報を用いて、SNS特定情報で特定されるSNSにアクセスを行い、第1の利用者204の認証情報を用いてSNSにログインなどを行う。この後、コミュニケーション提供システム100は、そのSNSに格納されている第1の利用者204に関する情報、すなわちソーシャルデータ、を取得する。第1の利用者204に関する情報には、第1の利用者204がそのSNSにおける特定のユーザと交換したメッセージや、第1の利用者204がそのSNSに投稿した記事、写真、音声情報、動画(音声情報を含み得る)が含まれる。
 コミュニケーション提供システム100は、そのSNSより取得した第1の利用者204に関する情報をデータベースに格納する。この場合、コミュニケーション提供システム100は、そのSNSより取得した第1の利用者204に関する情報を、そのままデータベースにすることができる。あるいは、コミュニケーション提供システム100は、取得した情報の属性や内容に応じて、第1の利用者204に関する情報を、別の情報に変換してデータベースに蓄積してもよい。
 例えば、そのSNSにおける第1の利用者204が別の利用者からの質問に対して回答したことを表わす情報が取得されると、別の利用者からの質問とそれに対する第1の利用者204の回答とを互いに関連付けてデータベースに蓄積することができる。この場合、データベースは、複数の領域(サブデータベース、あるいはテーブルなど)により構成されており、(1)質問が蓄積される領域および(2)回答が蓄積される領域を含むことができる。したがって、質問が蓄積される領域には、別の利用者からの質問が蓄積され、回答が蓄積される領域には、第1の利用者204の回答が蓄積される。また、別の利用者からの質問と第1の利用者204の回答とは互いに関連付けられ、例えば、第3の領域に関連付けのための情報が格納される。例えば、質問に対する主キーと回答に関する主キーとの組が第3の領域に格納される。
 なお、コミュニケーション提供システム100は、SNS特定情報により特定されるSNSから第1の利用者204に関する全ての情報が取得されデータベースに蓄積されていない場合には、データベースに蓄積された情報の、第1の利用者204に関する全ての情報の比率を第1の利用者204に提示してもよい。これにより、第1の利用者204は、情報の蓄積の程度を知ることができ、例えば、複数の利用者202のいずれかからの質問に対して、コミュニケーション提供システム100が第1の利用者204に代わって回答を行うか否かを決定することができる。また、このような情報の蓄積の程度を複数の利用者202に提示することにより、質問に対する回答の適切さを予想することも可能となる。
 例えば、図1Dに示されるように、データベースに蓄積された情報の、第1の利用者204に関する全ての情報の比率を円グラフ6として表示し、60%の情報がデータベースに蓄積された場合には、「あなたの60%になりました。」と表示される。第1の利用者204が、60%以上であればよいと考えれば、「公開」のボタン7を押す。これにより、コミュニケーション提供システム100は、データベースに蓄積された情報を用いて、他のユーザからの質問に回答を行う。
 また第1の利用者204が60%では不満であると考えれば、その後、全て(100%)の情報がデータベースに蓄積され、例えば図1Eに示すように「私はあなたになり切りました」というメッセージが表示される。第1の利用者204がこれで満足であれば、「公開」のボタン8を押す。これにより、コミュニケーション提供システム100は、データベースに蓄積された情報を用いて、他のユーザからの質問に回答を行う。
 なお、第1の利用者204は、コミュニケーション提供システム100に試みの質問をいくつか行うことが可能になっていてもよい。いくつかの試みの質問に対する回答を見て、「公開」のボタン7および8を押すようになっていてもよい。
 SNSによって提供されるソーシャルデータであっても、利用者のプライバシーは確保されるべきである。本実施形態に係るコミュニケーション提供システム100は、それぞれのSNS300で利用者が個別に設定している情報を反映することが可能となっている。例えば、あるSNS300を利用する利用者が、個人プロフィールは非公開とし、SNSに投稿するメッセージは公開すると設定している場合、さらにはメッセージ毎に公開又は非公開、公開の範囲が設定されている場合、コミュニケーション提供システム100はその設定を引き継ぐことができる。
 したがって、コミュニケーション提供システム100は、第1の利用者204に関する情報を取得してデータベースに蓄積する場合、その情報の開示の範囲もデータベースに蓄積することになる。例えば、図1Fに示すように、SNS6(301)における利用者207との1対1のメッセージの交換301-1であれば、このメッセージの交換301-1による質問と回答は、利用者207に対してのみ開示される。言い換えると、利用者207以外の利用者Aがコミュニケーション提供システム100を用いて行った質問が、第1の利用者204が利用者207との1対1のメッセージの交換においてのみ出現したのならば、その質問に対する回答は、利用者Aには提供されないようになる。
 第1の利用者204がSNS6における特定のグループにおいてのみ回答した回答についても、その特定のグループに属している利用者以外が質問を行っても、その回答は提供されない。例えば、図1Fに示すように、SNS6において、第1の利用者204が、グループ301-2において質問を受けて、回答した場合、その回答は、グループ3010-2に属している利用者208に開示される。
 一方、第1の利用者204が、SNSにおいて、だれでも見られる状態で質問に対して回答などを行った場合には、どの利用者がその質問を行っても、その回答がコミュニケーション提供システム100から提供される。例えば、第1の利用者204が、SNS6(301)に属しているどの利用者にも閲覧可能な状態(301-3)下において、質問に回答すると、第1の利用者204とは、特別な関係がなく、単に同じSNS6に属している利用者209から同様の質問をうけると、その回答が提供される。
 本実施形態において、コミュニケーション提供システム100からサービスが提供される複数の利用者202は、同時に一つ又は複数のSNS300の利用者であることが好ましい。コミュニケーション提供システム100は、複数の利用者202のそれぞれのソーシャルデータを、公衆に提供されているSNS300から取得するためである。すなわち、複数の利用者202は、SNS300のコミュニティに参加していることで、コミュニケーション提供システム100を介してサービスの提供を受けることができる。
 図1Aは、第2の利用者206が、コミュニケーション提供システム100を介して、第1の利用者204と対話をする態様を示す。だたし、本実施形態における特徴の一つは、第1の利用者204と第2の利用者206とは直接的にメッセージの交換をするのではなく、コミュニケーション提供システム100によって生成された仮想的な第1の利用者204bと実在する第2の利用者206とが対話する形式をとっている。これにより、同じ質問が複数回、第1の利用者204に対して行われたとしても、第1の利用者204に代わってコミュニケーション提供システム100が仮想的な第1の利用者204bとして回答を行うことができる。これにより、第1の利用者204の手間を減少させることができる。例えば、第1の利用者204が著名人である場合、多くの利用者が同じ質問を行っても、第1の利用者204には負担とならないようにすることができる。また、特殊な質問がされたとしても、そのような質問に対して第1の利用者204が過去に回答している場合には、第1の利用者204が過去の回答を探すことなく、コミュニケーション提供システム100が仮想的な第1の利用者204bとして回答を行うことができる。これによっても第1の利用者204の手間を減少させることができる。
 この場合における対話の一例は、次の通りである。まず、第2の利用者206は、コミュニケーション提供システム100にアクセスし、必要ならばログインなどを行った後、対話を希望する相手(第1の利用者204b)を特定する。例えば、図1Gに示すように、質問を行なうための画面を表示させ、「ログインする」のボタン9を押し、ログインする。あるいは、匿名の利用者として質問をする場合には、「匿名」のボタン10を押す。また、対話を希望する相手を特定するために、図1Hに示すように、フィールド11に対話を希望する相手のユーザ名を入力する。あるいは、第2の利用者206のコミュニケーション提供システム100における知人の一覧を表示して、対話を希望する相手を特定することもできる。
 そしてユーザ端末200から相手(第1の利用者204b)に対する質問を送信する。例えば、図1Hに示すように、フィールド12に質問を入力し、エンターキーなどを押すことにより、コミュニケーション提供システム100に質問が受け付けられる。質問を受け付けたコミュニケーション提供システム100は、それに対する適切な回答をユーザ端末200に送信する。例えば、フィールド12に「あなたは誰ですか?」という質問が入力されたとすると、図1Jに示すように、フィールド14に「私は社長です。」という回答が表示される。また、このとき、第1の利用者204の顔写真データ13が表示されるようになっていてもよい。この顔写真データ13は、後述するように、3次元データにより生成されたデータであってもよい。
 このとき、コミュニケーション提供システム100が送信する回答は、第1の例として、第1の利用者204の個人ソーシャルデータに基づき生成される。第2の例として、コミュニケーション提供システム100は、個人ソーシャルデータの中から適切な回答を見つけられないとき、複数の利用者のソーシャルデータを参照して適切な回答を生成し応答する。
 この場合、コンピュータシステムの特性により、第2の利用者206が質問をするために要する時間(ユーザ端末200を操作する時間)に対し、仮想的な第1の利用者204bの応答は極めて速いものとなる。そのため、複数の利用者202は、上述のように、同時多発的に仮想的な第1の利用者204bと対話をすることが可能となる。
 本実施形態において、第1の利用者204の個人ソーシャルデータに基づいて生成される仮想的な第1の利用者204bは、コミュニケーション提供システム100を介して具現化されるものと考えることができる。別の観点からは、コミュニケーション提供システム100によって実行されるコンピュータプログラム又はアプリケーションプログラム上に仮想的な第1の利用者204bが存在するものとみなすこともできる。あるいは、仮想的な第1の利用者204bは、コミュニケーション提供システム100を構成するハードウェア資源と、その上で実行されるソフトウェア資源とによって具現化される存在であるとみなすこともできる。
 図2は、本実施形態に係るコミュニケーション提供システム100の機能的構成を示す。コミュニケーション提供システム100は、人工知能としての機能を有する情報処理モジュール104、データベース102を含んで構成されている。
 なお、図2で示すコミュニケーション提供システム100は、ハードディスク、半導体メモリ及び磁気メモリ等のメモリモジュール又はストレージデバイスによりデータベース102が実現され、中央処理装置(CPU)又はこれと同等の機能を有する演算処理回路により実現されるデバイスにより情報処理モジュール104が実現され得る。ここで、情報処理モジュールとは、ハードウェア資源、又は、ハードウェア資源とソフトウェア資源により実現される機能ブロックともみなすことができ、情報処理部又は情報処理手段と呼ばれる場合もある。以下、本明細書でモジュールと標記されるものについては同様である。
 ここで、人工知能とは、推論、判断など知的な機能をハードウェア資源及びソフトウェア資源を使って実現されるものであり、知識としてのデータを記憶するデータベースを含む概念として認識されてもよい。また、人工知能には学習する機能があり、それにより過去の情報(データ)から将来を予測する能力を有していてもよい。本実施形態においても、人工知能としての機能を有する情報処理モジュール104とは、少なくとも上記のように通常の人工知能としての機能を有するものを含むものとする。
 データベース102は、少なくともソーシャルデータを記憶する領域を有している。図2では、データベース102に、SNS300から取得されるソーシャルデータを記憶する第1のデータベース102a、第2のデータベース102bが含まれている態様を示す。また、第3のデータベース102cは、同様にソーシャルデータを含むようにしてもよいし、コミュニケーションで使用される単語、語彙、定型文が予め記憶されていてもよい。
 第1のデータベース102a、第2のデータベース102b及び第3のデータベース102cは、質問と回答(または、問いかけと応答)といったように、ソーシャルデータに含まれる対話の内容を関連付けられて記憶されている。また、個人のツイート(つぶやき)のように一方的に発信されるソーシャルデータが含まれていてもよい。
 一般的には、ツイート(つぶやき)は質問に対する回答ではない場合が多い。この場合には、ツイート(つぶやき)の構文解析などを行い、主語、目的語、場所や時間、態様を表わす副詞句などに分解し、主語、目的語、場所や時間、態様を表わす副詞句などを尋ねる質問とそれに対する回答とを生成して、データベースに第1の利用者204に関する情報を蓄積してもよい。例えば、第1の利用者204が「私の妹が、昨日、自動車を購入する契約をしました。」とつぶやきを行ったとする。このとき、主語は、「私の妹」、目的語は、「自動車」および「契約」、時間を表わす副詞句は、「昨日」となる。そこで、「誰がしたのですか?」という質問を生成し「私の妹です。」という回答を生成し、「いつしたのですか?」という質問を生成し、「昨日です。」という回答を生成し、「何を購入する契約をしたのですか?」という質問を生成し「自動車です。」という回答を生成し、「何をしたのですか?」という質問を生成し「自動車を購入する契約です。」という回答を生成し、それぞれをデータベースに蓄積することができる。
 類似データベース106は、類似する質問を一つのクループとし、そのグループに対する回答が関連付けられて記憶されている。類似データベース106は、前述の第1乃至第3のデータベースに対応して、第1の類似データベース106a、第2の類似データベース106b、第3の類似データベース106cに分割されていてもよい。
 人工知能としての機能を有する情報処理モジュール104は、データベース102及び類似データベース106と連携して人工知能としての機能を発揮する外、メッセージ(回答情報等)の編集機能、メッセージ(回答情報等)の評価機能、評価結果の通知機能、利用者の音声を再現するための音素生成機能、新しい質問を生成する質問生成機能、利用者の三次元映像を生成する三次元映像化機能を含んでいる。
 コミュニケーション提供システム100は、複数の利用者(図2で例示する、ユーザ端末202a、202b)と双方向に通信可能な状態に置かれている。別言すれば、ユーザ端末202a、202bはコミュニケーション提供システム100及びSNS300と通信可能であり、一方、コミュニケーション提供システム100から見れば複数のユーザ端末202a、202bと通信可能であり、SNS300からソーシャルデータを入手可能な状態に置かれている。
 コミュニケーション提供システム100は、第1の利用者204に対する仮想的な第1の利用者204bをシステム上に生成し、複数の他の利用者と逐次的又は同時多発的に会話をすることが可能である。この場合、仮想的な第1の利用者204bは、アクセスしてくる全ての利用者と平等に会話をすることが可能である。一方、第1の利用者204にとっては、複数の第2の利用者202の中に、親密度合(家族、友人関係)や組織的な関係(同一法人又はグループに属するか否か)等によって、回答の範囲を制限したいという要求がある。すなわち、第1の利用者204は、第2の利用者206との関係において、質問に対して回答を留保したい場合もある。
 本実施形態に係るコミュニケーション提供システム100は、第1の利用者204が複数の利用者202に対して、仮想的な第1の利用者204bによって自動的に回答をしても良いか否かの設定をしておく機能を有している。図1Kは、第1の利用者204が操作するユーザ端末の画面表示の一例を示す。図1Kで示す画面表示は、第1の利用者204がコミュニケーション提供システム100を介して提供されるサービスを受けるために登録されている利用者毎に、自動的な回答をしても良いか否かを設定する段階を示す。図1Kでは、利用者名や利用者のサムネイル画像等による利用者を識別する表示210と、回答可否の選択スイッチ211が示されている。第1の利用者204は、このような画面表示を見ながら、利用者ごとに自動的な回答可否を設定することができる。なお、このような設定は適時変更可能であり、第1の利用者204は適時回答可否の選択スイッチ211を操作して設定を変更することができる。
 図1Lは、複数の第2の利用者202に対し、回答可否の設定が個別になされている場合におけるコミュニケーション提供システム100の動作を示す。例えば、第2の利用者206から質問がされた場合(S31)、その利用者の識別と自動的な回答可否の判断を行う(S32)。質問をした第2の利用者206が、第1の利用者204によって「回答可」と設定されている場合、仮想的な第1の利用者204bは回答を生成し(S33)、第2の利用者206に対して回答をする(S34)。一方、質問をした第2の利用者206が、第1の利用者204によって「回答不可」と設定されている場合(S32)、仮想的な第1の利用者204bは回答を留保することとなる。
 このように、コミュニケーション提供システム100は、第1の利用者204が、複数の第2の利用者202に対し、個別に回答可否の設定をする機能を提供することができる。すなわち、コミュニケーション提供システム100は、第2の利用による質問に対し、情報処理モジュール104で回答を生成するか否かの設定をする機能を有する。それにより、仮想的な第1の利用者204bによるコミュニケーションの範囲を設定することができる。これにより、第1の利用者204にとっては、特定の利用者とのコミュニケーションを制限することができ、コミュニケーション提供システム100においては、仮想的な第1の利用者204bが複数の第2の利用者202の全てと、全ての質問に対する回答をしなくても良いので、システムの負荷を軽減することができる。
 以下、コミュニケーション提供システム100が利用者の仮想的個人を生成し、当該仮想個人が他の利用者とコミュニケーションを可能とするための構成を詳細に説明する。
[データベース]
 図3Aは、本発明の一実施形態に係るコミュニケーション提供システム100におけるデータベース102構成を説明する図である。図3Aで示すように、データベース102は複数の階層に分かれて構築されていてもよい。第1のデータベース102aは、各利用者に対応するデータベースであり、個人ソーシャルデータが記憶されている。この第1のデータベース102aに記憶される個人ソーシャルデータは、コミュニケーション提供システム100において、仮想的な利用者データを生成するときの基礎データとしても利用される。したがって、個人ソーシャルデータおよびそれから生成される情報は、利用者ごとにデータベースに記憶される。また、個人ソーシャルデータから生成される情報には、後述のように、個人ソーシャルデータをキーワードにより分析して得られるベクトル、個人ソーシャルデータをコンセプトにより分析して得られるベクトル、個人ソーシャルデータをタイプにより分析したベクトル、および、個人ソーシャルデータをグループにより分析したベクトルのいずれか一以上が含まれる。
 第1のデータベース102aに記憶されるデータは、複数のSNS300から取得される個人ソーシャルデータを含んでいる。例えば、ある利用者がSNSに投稿したコメント、当該利用者と他の利用者との間で、SNS上で交わされたコミュニケーションの内容、当該利用者のツイート(つぶやき)などの情報が記憶されている。また、上述したように、質問と回答とを生成して、これらが記憶されているようにすることもできる。
 第2のデータベース102bは、複数の利用者のソーシャルデータが記憶されている。第2のデータベース102bに記憶されるデータは、複数のSNS300から取得されるそれぞれの利用者のソーシャルデータを含んでいる。第2のデータベース102bは第1のデータベース102aと比べて、記憶されるデータ量が多くなっている。この第2のデータベース102bは、階層的には第1のデータベース102aの下位に位置している。
 なお、第1のデータベース102aに記憶されているソーシャルデータの変化に基づいて、第2のデータベース102bに記憶されているデータを変更することが可能である。例えば、多数の利用者が同様の質問に対する回答の長さや文体、内容が変化することが検出された場合に、その変化に応じて第2のデータベース102bに記憶されているデータを変更することが可能である。すなわち、図3Bに示すように、第1のデータベース102aに対する傾向分析を行い、第2のデータベース102bを更新することができる。このような場合の一例としては、「あなたはどのような人ですか?」という質問に対して、従来は多数の利用者が、「私は短気な性格です。」などというように、性格を返答していたのに対して、近時は、「私は会社員です。」などというように、職業を返答するような変化が検出された場合に、この変化に応じて、第2のデータベース102bに記憶されているデータを変更し、「あなたはどのような人ですか?」という質問に対して、職業を返答するようにすることもできる。なお、このような変更を「質問に対する回答を傾向分析する」という場合がある。
 第3のデータベース102cは、複数のテキストデータを記憶している。第3のデータベース102cに記憶されるデータは、予め設定された任意のテキストデータであってもよく、またはSNS上に出現するテキストの中で出現頻度の高いテキストを収集したものであってもよい。例えば、SNSにおいて交わされるチャットと呼ばれるリアルタイムコミュニケーションの中から出現頻度の高いテキストを収集したものであってもよい。
 具体的に、第1のデータベース102aに記憶される第1の利用者のソーシャルデータは、チャットと呼ばれるリアルタイムコミュニケーションにおけるデータ、Twitter(登録商標)等にアップロードされたツイート、Facebook(登録商標)等にアップロードされたコメント、並びにコメントに対する他の利用者のコメント等が記憶されている。また、第2のデータベース102bに記憶される複数の利用者のソーシャルデータは、上記と同様のデータを含み、さらに、質問とそれに対する回答のテキストデータが関連付けられて記憶されていてもよい。また、第3のデータベース102cにおいても、複数のテキストデータが、質問とそれに対する回答と言う形式で関連付けられて記憶されていてもよい。
 第1のデータベース102a、第2のデータベース102bに記憶されるソーシャルデータは、テキストデータであることが好ましい。しかし、このテキストデータは、SNSの利用者が作成したテキストデータのみならず、音声データ、写真データ及び映像データから生成されたテキストデータが含まれていてもよい。
 例えば、音声データ及び映像データに含まれる音声データは、音声をテキスト変換してテキストデータとしてデータベースに記憶させることができる。また、利用者が写真や動画をSNSにアップデートするときは、コメントを同時に付す場合があり、またそのコメントに対する他の利用者のコメントが付けられる場合がある。また、写真や動画、音声には、撮影場所やその内容がタグとして付与される場合がある。そこで、写真データ及び映像データからテキストデータを生成するに当たっては、それに付されたタグ、コメント等のデータをテキストデータとし、データベースに記憶させることができる。また、写真データ及び映像データが取得された位置情報(国名、地名等)、日付情報をテキストデータとしてデータベースに記憶させることができる。言い換えると、音声データ、写真データおよび映像データのいずれか一以上に基づいて、テキストデータを生成し、データベースに記憶することができる。
 このようなデータベース102は、図2を参照して説明したように、人工知能としての機能を有する情報処理モジュール104と連携し、または協働して動作する。第1のデータベース102aは利用者の個人ソーシャルデータが記憶されるので、この階層を用いたものは個人を反映させる人工知能として「プライベートAI」あるいは「パーソナライズド(personalized)AI」と表現することもできる。また第2のデータベースは、利用者全体のソーシャルデータが記憶されるので、この階層を使って実現されるものは「エブリワンAI」あるいは「コモンセンスAI」と表現することもできる。
[情報処理モジュール(人工知能)]
 人工知能としての機能を有する情報処理モジュール104は、データベース102に記憶されているソーシャルデータを用いて仮想個人を生成し、実在の利用者とコミュニケーションを行う。人工知能としての機能を有する情報処理モジュール104は、例えば、データベース102に記憶されているテキストデータを認識し、質問に対する回答を作成又は生成する機能を有する。このとき人工知能としての機能を有する情報処理モジュール104は、データベース102に記憶されたテキストデータから、質問に対する適切な回答を推論し又は学習して決定する機能を有している。
 人工知能としての機能を有する情報処理モジュール104は、仮想的な第1の利用者204bに対する第2の利用者206の質問を受け付け、それに対する回答を作成又は生成する。このとき、人工知能としての機能を有する情報処理モジュール104は、データベース102の上位の階層から順に回答を求める処理を行う。
 図4は、人工知能としての機能を有する情報処理モジュール104がデータベース102を検索して質問に対する回答を作成する工程の一例をフローチャートで示す。以下、図4を参照しつつ、処理の流れを説明する。
 最初に、人工知能としての機能を有する情報処理モジュール104がある質問に対する回答を作成又は生成するとき、最初に第1のデータベース102aの中から当該質問に対する適した回答を検索する(S01)。第1のデータベース102aから回答が得られれば、それは第1の利用者204の思考、思想及び感情等を最も的確に反映させたものとなる(S06)。
 第1のデータベース102aの中から当該質問に対する適した回答を検索する場合には、第1のデータベース102aに蓄積された質問のうち、当該質問と文字列として一致している質問を検索し、検索された質問と関連付けられた回答を検索することができる。あるいは、第1のデータベース102aに蓄積された質問のうち、当該質問と文字列として完全一致していなくても、ある程度の表記の揺らぎを考慮して一致するかどうかを判定して検索を行うこともできる。また、第1のデータベース102aに蓄積された質問のうち、当該質問に含まれる単語数が最も大きいものを検索することもできる。この場合、単語数に加えて、単語が並ぶ順序を考慮して検索することもできる。また、第1のデータベース102aに蓄積された質問と、当該質問との意味の解析を行い、最も意味が近いものを検索することもできる。意味の解析として、例えば、所定の論理体系に基づいて、回答からの論理的な帰結を結論として導き出したり、回答が前提としている条件を導き出したりすることを含めることができる。このように、回答を検出する場合に、文字列として完全一致していない場合を含む場合には、「回答を推論して決定する」という場合がある。また、文字列として完全一致している場合には、「回答を学習して決定する」という場合がある。
 人工知能としての機能を有する情報処理モジュール104は、第1のデータベース102aの中から回答を得ることができないとき(S02)、下位の階層にある第2のデータベース102bを検索する(S03)。第2のデータベース102bから得られる回答は、大多数の利用者が特定の質問に対してどのように回答しているかの傾向を知ることができ、平均的で妥当な回答を得ることができる。例えば、
「貴方は誰ですか」
という質問に対し、
「私は○○(名前)です。」
という回答が多くなされている場合、人工知能としての機能を有する情報処理モジュール104は同様の回答を、質問に対する回答として決定することができる。上記は簡単な質問の一例であるが、第2のデータベース102bに基づけば、多数の利用者の回答傾向が反映されるので、時流に沿った回答を得ることができる(S06)。
 人工知能としての機能を有する情報処理モジュール104は、第2のデータベース102bで回答を見つけることができないとき(S04)、第3のデータベース102cを検索する(S05)。第3のデータベース102cには膨大な数のテキストデータが記憶されているので、その中から回答を選択することができる。そして、その選択されたものを回答とする(S06)。
[類似する質問の判断]
 データベース102は、質問と質問に対する返答を関連付けて記憶している。しかし、人間社会のコミュニケーションにおける質問(問いかけ)と、それに対する返回答(返答)は画一的なものではないのが通常である。例えば、初対面の人の名前を問いかけようとする場合、「貴方は誰ですか?」と問いかけるような場合もあれば、「お名前を教えて下さい」と問いかける場合もある。
 本発明の一実施形態では、このような類似の質問がなされたときに、該当する質問に対する返答を選択する仕組みが設けられている。例えば、前述の「貴方は誰ですか?」と、「お名前を教えて下さい」との質問に対しては、いずれも「私はアニーです。」という返答があっても違和感がない。この仕組みは、図2で説明したような、類似データベース106として構築されていてもよい。
 図5は、類似データベース106の一例を示す。類似データベース106は、質問を記憶する質問データベース107と、返答を記憶する返答データベース108とを含んでいる。あるいは、類似データベース106の中で質問を記憶する領域と、返答を記憶する領域が設けられていてもよい。
 質問データベース107には複数の質問がデータとして記憶されている。複数の質問は、類似する質問が関連付けられて一つのグループとして記憶されている。例えば、前述の「貴方は誰ですか?」と「お名前を教えて下さい」とは類似する質問として関連付けられて記憶されている。
 返答データベース108は、質問に対する応答内容、すなわち複数の返答がデータとして記憶されている。例えば、前述の「私はアニーです。」という返答が記憶されている。返答データベース108の中で、返答データは特定の質問と関連付けられている。上記の例に従えば、「貴方は誰ですか?」と「お名前を教えて下さい」との質問は一つのグループとしてまとめられ、その返答として「私はアニーです。」という返答と関連付けられている。
 図6Aは、類似データベース106の他の態様を示す。図6Aでは、類似データベース106が階層化されている態様を示す例えば、類似データベース106は、第1のデータベース102aに対応する第1の類似データベース106a、第2のデータベース102bに対応する第2の類似データベース106b、第3のデータベース102cに対応する第3の類似データベース106cに階層化されていてもよい。
 第1の類似データベース106aは、特定の利用者ごとに、その利用者の個人ソーシャルデータに基づいて作成されている。個人ソーシャルデータに含まれるチャット等によるテキストデータや、テキスト化された会話の内容から、質問文に対応するテキストデータと、返答文に対応するテキストデータが記憶される。この場合、図5で説明したように、質問文に対応するテキストデータの内、類似する質問文データがクループ化されて質問データベースに記憶され、それに対する返答文データが返答データベースに記憶され、関連付けられている。
 第2の類似データベース106bは、複数の利用者のソーシャルデータに基づいて作成されている。複数の利用者のソーシャルデータに含まれるチャット等によるテキストデータや、テキスト化された会話の内容から、質問文に対応するテキストデータと、返答文に対応するテキストデータが記憶される。第2の類似データベース106bも、図5で説明したように、質問文に対応するテキストデータの内、類似する質問文データがクループ化されて質問データベースに記憶され、それに対する返答文データが返答データベースに記憶され、関連付けられている。
 なお、第1の類似データベース106aに記憶されているソーシャルデータの変化に基づいて、第2の類似データベース106bに記憶されているデータを変更することが可能である。すなわち、図6Bに示すように、第1の類似データベース106aの傾向分析を行い、その結果を用いて第2の類似データベース106bを更新することができる。例えば、「貴方は誰ですか?」と「お名前を教えて下さい」との質問それぞれに、多数の利用者が指名を回答している場合があるとする。この場合、多数の利用者について、第1の類似データベース106aにおいて、「貴方は誰ですか?」と「お名前を教えて下さい」とが類似した質問であることが検出された場合に、第2の類似データベース106bにおいても、「貴方は誰ですか?」と「お名前を教えて下さい」との質問の両方を類似した質問とするように、第2の類似データベース106bを更新することができる。
 第3の類似データベース106cは、複数のテキストデータを記憶している。複数のテキストデータは予め用意された質問文と、それに対する返答文のテキストデータであってもよい。これらのテキストデータは、SNS上に出現するテキストデータの中で出現頻度の高いテキストデータを収集したものであってもよい。第3の類似データベース106cも、図5で説明したように、質問文に対応するテキストデータの内、類似する質問文データがクループ化されて質問データベースに記憶され、それに対する返答文データが返答データベースに記憶され、関連付けられている。
 このように、類似データベース106は、第1の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶される第1の類似データベースと、複数の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶される第2の類似データベースと、テキストデータの中から質問と回答の内容を類型化したデータが記憶される第3の類似データベースとに階層化されていることが好ましい。
 本実施形態によれば、複数の質問に対し、同一の返答でよいと判断されるものは、質問と返答の組み合わせとして関連付けられている。このような処置により、質問とそれに対する返答の組み合わせを全通り記憶させる必要がなく、記憶容量を節約することができる。また、質問に対する返答にすばやくアクセスすることができる。
 さらに、本実施形態に係るコミュニケーション提供システムでは、人工知能としての機能を有する情報処理モジュール104が、第2のデータベース102bを参照して、多くの利用者からの回答に、同一の内容が多いと判断される場合には、その回答に対する質問事項を自動的に類似データベース106に追加し、更新する機能を有していてもよい。このように、複数の利用者のソーシャルデータを参照して類似データベースを更新することにより、類似と判断される質問と回答の組み合わせはより的確に、かつ正確になり、コミュニケーションの精度を高めることができる。
[音素の生成]
 本実施形態に係るコミュニケーション提供システムは、図1Aで示す態様において、第2の利用者206が音声で話しかけることでその音声を認識し、第1の利用者204の本人の音声(又は、擬似的な本人の音声)で返答する機能を有していてもよい。あるいは、第2の利用者206が文字情報などにより非音声的に質問をした場合に、第1の利用者204の本人の音声(又は、擬似的な本人の音声)で返答する機能を有していてもよい。このような音声による返答の方式としては、あらかじめ第1の利用者204の本人の音声を数多く録音しておき、それを用いて返答文を音声データとして作成する方式がとり得る。しかしながら、このような方式は、利用者本人に予め多量の音声データの入力を強いることになり、全ての利用者に適用することは好ましくなく、また利用者の利便性を損なうこととなる。
 そこで本実施形態に係るコミュニケーション提供システム100おいては、SNSを介して行われる利用者の音声によるコミュニケーションのデータを随時収録し、それに基づいて音素データを作成する。例えば、利用者が音声によるコミュニケーションの中で話している言葉を取り出し、複数の単語のセットを作成する。
 そしてこの単語のセットを、音素を作成するデータとして記憶する。音素の作り方は、まず利用者の属性(例えば、性別、年齢等)に合わせて、予め用意された音声データの特徴(波形)と、実際の利用者の音声波形とを比較する。そして、利用者の音声の波形に近づくように、予め用意された音声データの波形を調整する。調整された音声データを利用者の音素データとして用いる。
 あるいは、あらかじめ第1の利用者204の本人の音声を数多く録音しておき、それを用いて返答文を音声データとして作成する方式が用いられる場合には、次のようにすることも可能である。すなわち、あらかじめ第1の利用者204の本人の音声を数多く録音する場合、あらかじめ定められた文を第1の利用者204に読ませて音声データを取得するとする。このとき、SNSを介して行われる利用者の音声によるコミュニケーションのデータを随時収録し、第1の利用者204の発した音声の認識を行う。そして、あらかじめ定められた文やその一部を構成する単語の部分の認識がされた場合、その認識された部分の音声データを取得して記憶する。もし、この処理を繰り返し、取得して記憶された音声データを適切に連接することにより、あらかじめ定められた文全体の音声データが得られる場合には、連接した音声データを登録する。これにより、あらかじめ第1の利用者204の本人の音声を数多く録音して、音声データを作成する方式が用いられていても、第1の利用者204に負担をかけることなく、第1の利用者204の本人の音声を数多く録音した音声データを取得することができる。
 このような音素データの作成は、人工知能としての機能を有する情報処理モジュール104とデータベース102によって行われても良いし、音素を作成する外部のサーバと連携して実行されてもよい。
 人工知能としての機能を有する情報処理モジュール104では、第2の利用者206が音声による質問をした場合に、返答文のテキストデータを、上記のようにして作成された音素データを用いて音声データを作成する。そして、作成された音声データを返答文として、第2の利用者206に送信する。
 このように、SNSを介して行われる会話の音声データを取得して、各利用者に会わせた音素データを作成することで、利用者に特別な負荷を与えることなく、コミュニケーション提供システム100が擬似的であっても、利用者本人に近い音声データを作成し、音声コミュニケーションを成立させることができる。
[回答の評価]
 本実施形態に係るコミュニケーション提供システムは、第2の利用者206が、コミュニケーション提供システム100から送信された回答の内容を評価する評価モジュールを有することができる。回答の評価は、第2の利用者206のユーザ端末200を操作することによって行うことができる。ユーザ端末200に、回答内容を画面表示するとともに、評価を行うためのアイコン(またはボタン)を表示させ、第2の利用者206はその画面表示に従って操作をすることにより、評価を実行することができる。評価用の画面は、回答のメッセージと共に、「Like」、「Dislike」を示すアイコン(またはボタン)(図1Jのボタン15および16)を表示させることで構築することができる。また、評価は2者択一式ではなく、利用者が点数を付ける形式のものであってもよい。
 図7は、第2の利用者206が仮想の第1の利用者204bに対して行った質問に対して、コミュニケーション提供システム100から回答された回答を評価する態様を説明する図である。
 図7において、第2の利用者206(A氏、B氏、C氏の何れか)が、コミュニケーション提供システム100上に生成される仮想の第1の利用者204bとコミュニケーションを図るため、ある質問をした場合が示されている(図中の左側)。第2の利用者206(A氏、B氏、C氏の何れか)は、コミュニケーション提供システム100から提供された回答を評価する。例えば、A氏の場合であれば「Dislike」と評価し、B氏やC氏の場合であれば「Like」と評価している(図中の略中央)。
 人工知能としての機能を有する情報処理モジュール104は、評価モジュールに入力された評価情報を返答文毎に集計し、評価データとして蓄積することができる。例えば、評価データはポイント制として、返答文データに対等付けて記憶するようにしてもよい。人工知能としての機能を有する情報処理モジュール104は、評価値に基づいて、質問に対する応答時に、評価値の高い応答データが優先して選択されるように序列化をすることができる。
 また、第2の利用者206が、ある返答内容について低い評価を与えた場合、その情報を第1の利用者204に通知するようにしてもよい。通知を受けた第1の利用者204は、返答内容を編集し、返答文を更新することができる。
[質問に対する回答の編集]
 本実施形態に係るコミュニケーション提供システムは、コミュニケーション提供システム100が作成した返答文を、第1の利用者204が自ら編集する編集モジュールを有する。例えば、
「貴方は誰ですか」又は「お名前を教えて下さい」
という質問に対し、
「私は○○(名前)です。」
と返答するように、人工知能としての機能を有する情報処理モジュール104は学習されているとする。しかし、利用者によっては、このように導き出された返答内容では適切でないと考える場合がある。例えば、上記の質問に対して、
「私は○○会社の代表取締役です。」
と答えることが適切であると考える場合がある。
 また、第1の利用者204は、図7で示すように、応答内容に対して低い評価の通知を受ける場合がある(図中の左側)。その場合、第1の利用者204は、返答内容を修正し、編集したいと考える場合がある。
 本実施形態に係るコミュニケーション提供システム100は、このような場合、利用者が、人工知能としての機能を有する情報処理モジュール104が作成した応答文と異なる応答文を設定したいとき、個別に応答文を編集モジュールの機能により編集することができる。
 応答内容の編集の方式としては、利用者が応答内容のテキストデータを自己のユーザ端末200から入力し、内容を更新モジュールにより更新するようにしてもよい。また、好ましい態様としては、利用者が、人工知能としての機能を有する情報処理モジュール104と対話して学習させてもよい。
 例えば、第1の利用者204が、ユーザ端末200を使ってコミュニケーション提供システム100にアクセスし、コミュニケーション提供システム100上に作成された擬似的な第1の利用者204に、例えば、
「お名前を教えて下さい」
と問いかける。人工知能としての機能を有する情報処理モジュール104は、予め用意されている回答として、
「私は、○○(名前)です。」
と応答する。第1の利用者204は、この応答内容に問題ないと判断することができる。この場合、第1の利用者204は編集機能を使用しないで済む。次に、別の質問として、「貴方は誰ですか」
という問いかけに対し、人工知能としての機能を有する情報処理モジュール104は、予め用意されている回答として、
「私は、○○(名前)です。」
という応答がなされると、第1の利用者204は、この応答は適切ではないと判断し、編集機能を使用する。例えば、ユーザ端末200の画面表示に従ってアイコンを操作し、編集モードにする。そして、「私は、○○(名前)です。」という応答内容を、「私は○○会社の代表取締役です。」という応答内容に設定する。これにより、「貴方は誰ですか」という問いかけに対しては、「私は○○会社の代表取締役です。」と回答するように設定することができる。
 この場合、「お名前を教えて下さい」と「貴方は誰ですか」が、図5で示す類似データベース106において、同じ類似グループに登録されているとき、この類似データベース106の内容を更新する。例えば、「お名前を教えて下さい」に対しては「私は、○○(名前)です。」が回答されるようにし、「貴方は誰ですか」に対しては「私は○○会社の代表取締役です。」と回答されるように、別のグループとして登録し直すことができる。
 図8Aは、第2の利用者206による質問と回答の評価と、第1の利用者204が編集を行う態様を説明するフローチャートを示す。
 図8Aにおいて、第2の利用者206は、コミュニケーション提供システム100の存在する仮想の第1の利用者204bにアクセスし、ある質問(問いかけ)をする(S11)。コミュニケーション提供システム100は質問に対する回答を生成し(S12)、第2の利用者206へその回答を送信する(S13)。そして、第2の利用者206は、得られた回答を評価する(S14)。
 コミュニケーション提供システム100は評価値を集計する(S15)。評価値が通常又は高いもの、若しくは一定レベルより高い評価値のものは、その回答は好ましい回答であるとして、重み付けをするようにしてもよい(S16,S17)。この場合、重み付けされた回答は、次回の検索のときに選択される確率が高くなるようにされていてもよい。
 また、回答の評価が低かったものは、その旨を第1の利用者204に通知する(S16,S18)。通知を受けた第1の利用者204は(S19)、好ましい回答となるように、回答の内容を編集する(S20)。コミュニケーション提供システム100は、編集された回答を受信したとき、データベースに記録されている該当する回答を修正し、更新する(S21)。第1の利用者204は、回答の内容を修正する必要がないと判断した場合には、そのままにしておくこともできる。
 なお、図8Aでは、第2の利用者206が質問をし、第1の利用者204が質問に対する回答を編集するという対立関係で示す。しかし、本発明の一実施形態はこれに限定されず、第1の利用者204が、コミュニケーション提供システム100に表れる仮想の第1の利用者204bと会話をし、自ら質問をして、自ら評価及び編集をするという処理を行うことができる。このような処理により、第1の利用者204は、質問に対する回答の内容を知ることができ、また回答を評価し、回答を編集して好ましい回答が得られるようにすることができる。すなわち、人工知能としての機能を有する情報処理モジュール104を学習させることができる。
 このように本実施形態に係るコミュニケーション提供システム100は、質問と応答の関連付けられたデータを、利用者が編集して、新たな応答文を作成することができる。この場合において、利用者は、コミュニケーション提供システム100上に生成される擬似的な自己と対話をしながら、質問に対する適切な応答をするように人工知能機能を学習させることができる。
 この場合において、第1の利用者204は、コミュニケーション提供システム100上に生成される仮想的な第1の利用者204bと対話をしながら、質問に対する回答を編集し、また人工知能としての機能を有する情報処理モジュール104に学習させることができる。
[回答候補の表示と選択]
 図8Bは、コミュニケーション提供システム100が、質問に対する回答の候補を生成し、利用者がこれを選択する態様を示す。コミュニケーション提供システム100は、個人ソーシャルデータが記憶された第1のデータベース102aに基づいて、質問に対する回答の候補を生成する。このとき、人工知能としての機能を有する第1の情報処理モジュール104aは、異なるロジックに基づいて複数の回答の候補を生成する機能を有する。人工知能としての機能を有する第1の情報処理モジュール104aは、第1の利用者の個人ソーシャルデータの中から、近時の会話の内容に重み付けをして回答の候補を生成し、別のロジックとしては全データの中から出現頻度の高い会話の内容に基づいて回答候補を作成する。例えば、好きな食べ物の関する質問に対し、最近食べて美味しかった食べ物を回答するロジックと、第1の利用者が昔から好きであった食べ物を回答するロジックとがある。
 また、人工知能としての機能を有する情報処理モジュール104bは、第1の情報処理モジュール104aが第1のデータベース102aの中に適切な答えを見つけられない場合、第2のデータベース102bに記憶されているデータに基づいて回答の候補を作成する。第2のデータベース102bには、利用者全体のソーシャルデータが記憶されていることの他、例えば、インターネット上にある様々な情報をクローリングして収集して記憶されている。人工知能としての機能を有する情報処理モジュール104bが生成する質問に対する回答は、利用者個人の個性を反映した回答ではなく、社会通念上一般化された回答が生成される。例えば、国際試合で優勝した自国の選手に関する質問に対して、喜ばしいという回答が生成される。
 人工知能としての機能を有する情報処理モジュール104によって生成された回答の候補は、第1の利用者の端末204aに出力される。例えば、人工知能としての機能を有する第1の情報処理モジュール104aは7通りの回答の候補を生成し、第1の利用者の端末204aに回答の候補を出力する。図8Bは、第1の利用者の端末204aに回答A1~A7が表示される態様を示す。第1の利用者の端末204aには、人工知能としての機能を有する情報処理モジュール104によって生成された回答の候補が、優先度の高い順(最も的確であると判断される回答の順)にA1~A7の回答候補が表示される。第1の利用者は、この回答A1~A7を参照して、自己の判断で回答の順番を変更することができる。図8Bでは、回答候補A1とA3の順番を入れ替えている。
 第1の利用者が変更した、回答候補の順は、人工知能としての機能を有する情報処理モジュール104に反映される。その結果、次回同じ質問がされた場合には、A3、A2、A1の順に回答の候補が生成される。この結果は、人工知能としての機能を有する情報処理モジュール104によって生成される擬似的な第1の利用者204bの回答として利用される。このように、人工知能としての機能を有する情報処理モジュール104が、質問に対する回答の候補を複数生成し、第1の利用者がこの回答候補を選択することで、擬似的な第1の利用者204bの回答をより適切なものとすることができる。
 このような回答候補の編集機能は、前述の編集モジュールの機能により回答候補を編集し、更新モジュールの機能により、編集モジュールで編集された内容に基づいて質問に対する回答候補を更新することができる。
[ユーザ写真の三次元化]
 本実施形態に係るコミュニケーション提供システム100は、利用者の姿を画像データとして取得し、三次元の画像データに変換してユーザ端末に表示させることができる。例えば、図1Aで示す構成において、第2の利用者206が、コミュニケーション提供システム100上に生成される仮想の第1の利用者と対話をするとき、ユーザ端末200に第1の利用者の映像を表示させることができる。
 利用者の画像データは、ユーザ端末200の撮像機能を使って取得することができる。例えば、利用者は、ユーザ端末200を使って自己の写真を撮影し、コミュニケーション提供システム100に、その画像データをアップロードする。あるいは、利用者がSNSなどにおいて、その利用者を撮影して他の利用者とメッセージを交換した情報が記録されている場合には、その撮影した情報を用いて、画像データを抽出することもできる。これにより、利用者の最新の画像データを取得することができ、利用者の最新の画像データに基づいて、ユーザ写真の三次元化を実現することができる。
 コミュニケーション提供システム100は、二次元の写真データから、そこに写っている人物の3次元形状を推測し、また計算して3次元画像データを生成することができる。その方法として、例えば、物体の肌理の密度分布などから奥行き情報を求める方法や、物体表面での光の反射の強さから法線方向を計算する方法によって、三次元の画像データを作成する。
 利用者の3次元画像データは、上述したように、適宜更新するようにしてもよい。別の構成としては、例えば、第1のデータベース102aに収録された、特定の利用者の個人ソーシャルデータの中から画像データを検索し、顔認識の機能を使って利用者の写っている画像データを特定する。そして、利用者の写っている画像データの中から、最新のデータを選択し、そのデータに基づいて利用者の3次元画像データを更新する構成も提供することができる。
 このように、コミュニケーション提供システム100上に存在する仮想個人と対話をするときに、相手方の映像を三次元画像でユーザ端末に表示させることで、コミュニケーションに実体感を持たせることができる。この場合において、仮想個人の三次元映像が、より直近のデータに更新されることで、話し相手の姿がより具体的なものとなり、擬似的なコミュニケーションを介してより親密感を高めることができる。
[質問の自動生成]
 本実施形態のコミュニケーション提供システム100は、データベース102に記憶されているソーシャルデータを使って、質問文を自動的に生成し、登録しておく機能を有する。
 例えば、第1のデータベース102aには、第1の利用者204の個人ソーシャルデータとして、個人的な「ツイート」が多く収録されていてもよい。個人的な「ツイート」とは、例えば、「今日は東京で買い物をした。」、「渋谷で待ち合わせ中。」などである。このような個人ソーシャルデータは、問いかけに対する応答の形式を有していないものの、「ツイート」の中には、少なくとも一つの情報が含まれている。
 前述の文例では、「東京」、「渋谷」といった地名に関する情報が含まれている。また、それ以外にも、食べ物、天候、服装、株価、ニュースのキーワード、人名など様々な情報を個人ソーシャルデータの中から見出すことができる。
 人工知能としての機能を有する情報処理モジュール104は、このような個人ソーシャルデータのテキストデータを、名詞、動詞、形容詞等に分解し、構文解釈して得られた情報から、質問データを作成し登録しておく機能を有する。人工知能としての機能を有する情報処理モジュール104は、第2のデータベース102bに登録されている複数の利用者のソーシャルデータを参照し、どのような会話がなされているのかを学習する。例えば、「どこに行きましたか?」という質問に対して、「機能は○○(地名)へ行きました。」というような会話が数多くなされている場合、地名に対する質問文として「どこに行きましたか?」という質問文を生成し、第1のデータベース102に登録する。複数の質問文が作成可能な場合には、類似データベース106に登録することも可能である。
 このように、人工知能としての機能を有する情報処理モジュール104が、個人ソーシャルデータから自動的に設問文を作成することで、対話能力を高めることができる。
[人間らしさの表現方法]
 質問に対する返答には揺らぎを与えるようにしてもよい。例えば、
「お元気ですか?」
という質問に対し、
「元気です。あなたはいかがですか?」
という返答が設定されていたとしても、必ずしもこの返答をしないようにしてもよい。例えば、他の多くの利用者が「すごくいいよ!」と返答をしているとき、それに影響をされて同様に回答をするようにしてもよい。
 この揺らぎは、利用者の性格分析から、揺らぎの発生する確率の多い人、または他の利用者に影響されにくい人、などのパラメータを当該利用者に割り当てておいてもよい。それにより、その揺らぎの反映され方により個々の利用者の性格、あるいはその利用者らしさを演出することができる。このようなパラメータは、利用者の属性として、コミュニケーション提供システムへ100の登録時に、コミュニケーション提供システムへ100に格納して、必要に応じて読み出すことができる。また、このようなパラメータや性格分析の結果は、第1のデータベース102aに蓄積された利用者の回答の時間的な変化を検出した結果をコミュニケーション提供システムへ100に格納して、必要に応じて読み出すことができる。同様に、第1の類似データベース106aに蓄積された利用者に関する情報の時間的な変化を検出した結果をコミュニケーション提供システム100に格納して、必要に応じて読み出すことができる。
[質問に対する回答の導出]
 人工知能としての機能を有する情報処理モジュール104は、問いかけに対する応答を次のようにして行うことができる。
-全体的な構成-
 例えば、利用者1と、利用者2とで次のような会話がなされることを想定する。ここで、T1、T2・・・は時刻を表すものとする。
 利用者1:「こんにちは」[T1]
 利用者2:「こんにちは」[T2]
 利用者1:「ごきげんいかがですか」[T3]
 利用者2:「調子いいよ、あなたは」[T4]
 利用者1:「今日は素晴らしいよ」[T5]
 利用者1と利用者2のこのような会話の内容をまとめると表1及び表2に示すようになる。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 このような、利用者1と利用者2との間で交わされる典型的な会話の中で、例えば、利用者1の質問に対する回答は、「こんにちは」に対する「ごきげんいかがですか」であることが判る。これは、利用者1は利用者2に対し、すでに「こんにちは」と述べている文脈から理解することができる。
 利用者が、ツイートなどの一方的な会話、つまり質問を受けずに答えを与えている場合もある。例えば、次のようなツイートである。
 利用者1:「なんて素晴らしい試合だ」[T1]
 利用者1:「コンピューティングの将来はユビキタス人工知能である」[T2]
 利用者1によるこのようなツイートをまとめると表3のようになる。
Figure JPOXMLDOC01-appb-T000003
 
 質問と回答の組み合わせは過去の会話の中から得ることができる。コミュニケーション提供システム100は過去の会話を学習することができる。本実施形態に係るコミュニケーション提供システム100は、過去の会話データ(データベースに蓄積されているソーシャルデータ)を学習することで、新しい質問を生成し、応答を推論し予測することができる。図9は、質問を受けたとき、過去の会話の中からその回答を検索し、また適切な回答を予測するための構成を示す。
 回答を予測するための重要な側面は、人工知能が人間の行動を模倣しなければならないところにある。質問への応答は、その質問をしている人に依存する。したがって、ある利用者がした質問に対する応答を予測するには、人工知能は、当該利用者の過去の会話データを参照し、その中から得られる優先順位の高い応答内容を予測する必要がある。
 しかし、過去の会話データの中から適切な応答文を検出することができない場合、人工知能は、第1の利用者が他の利用者と交わしている会話の中から、適切な応答文を見つける必要がある。これを行う場合には、他の利用者が交わしている会話を検索することによって、他の利用者の個人情報等、機密事項が漏洩しないように注意する必要がる。
 このような場合、個人情報が漏洩する危険を排除するために、人工知能は、他の利用者が交わしている会話の内容において、各回答の機密性のスコアを推定するようにする。
 例えば、既に他の利用者と共有されている回答文は、機密性のスコアは低いものとなる。また、上記例文にあるような、一般的な回答文は、仮に他の利用者と共有されていないものであっても、機密性のスコアは低いものとすることができる。
 利用者2から利用者1への質問に対する回答を選択するための処理の流れを図10に示す。人工知能は、最初に、過去に交わされた第1の利用者と第2の利用者との会話の中から適した回答があるかを検索する(S21)。その結果、適した回答が見つかった場合には、それを回答として選択する(S22、S26)。一方、適した回答が見つからない場合には、全利用者の会話の中から学習した回答を一つ又は複数選択する(S22、S23)。ここで得られた回答に対し、機密性のスコアを評価する(S24)。そして、機密性のスコアの低いものを選択し、回答として選択する(S25、S26)。
-回答の検索-
 また、図11に示すように、質問に対する回答は、次のようにランク分けしてもよい。例えば、図11で示すように、第1の利用者と第2の利用者が過去に交わした会話の中から回答が見つけられる場合、その回答は両者の間で共有され得る「個人レベル」の回答とすることができる。また、第1の利用者が他の利用者と交わしている会話の中から、適切な応答文を見つける場合には、得られた一つ又は複数の回答について機密性のスコアを評価する。そして、機密性のスコアが低い回答を「公開レベル」の回答とすることができる。さらに、図12で示すように、複数の利用者のソーシャルデータを学習し、そこから得られた一つ又は複数の回答の機密性のスコアを評価し、スコアの低い回答を「共有レベル」の回答とすることができる。
 このような利用者を数式化して表すと、次式のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 
ここで、
Figure JPOXMLDOC01-appb-I000005
は、利用者iと利用者jとの会話を表すサブモデルである。
 そして、全ての利用者の会話を表すパブリックサブモデル
Figure JPOXMLDOC01-appb-I000006
は次式で表すことができる。
Figure JPOXMLDOC01-appb-M000007
 
ここで、Q(i,j)は利用者jから利用者iに対してなされた質問を表し、A(i、j)は利用者iから利用者jになされた回答を示し、tは対応する時間を示す。
 質問に対する回答の関係を、関数fを用いて次式のように表すことができる。
Figure JPOXMLDOC01-appb-M000008
 
ここで、qは利用者iに対する利用者jの質問(またはクエリ)であり、Aは予測される回答である。
 そして、例えば、その回答の機密性のスコアが第1の閾値より高い場合、予測される回答は個人レベルの回答となる。また、機密性のスコアが第1の閾値以下であり、その機密性のスコアが第2の閾値より低い場合は、、予測される回答は公開レベルの回答となる。そして、これらに該当しない場合は共有レベルの回答として扱うことができる。なお、機密性のスコアが第2の閾値より低いとは、機密性と対を成す概念である公開性のスコアとすることもできる。例えば、機密性のスコアをCprivateとし、公開性のスコアをCpublicとした場合、Cprivate= 1-Cpublicと定義したりすることができる。
 このような回答レベルの態様は、次式で表すことができる。 
Figure JPOXMLDOC01-appb-M000009
 
ここで、Cprivateは個人レベルの回答に対する機密性のスコアを与え、Cpublicは公開性のスコアを与える。
 質問に対する回答として最も適していると判断される回答は一つであり、次式で示すことができる。
Figure JPOXMLDOC01-appb-M000010
 
ここで、sim(q,Qx)は、q及びtuple(Qx,Ax,tx)との間の類似性又はマッチングを示す関数である。
-文脈の統合-
 質問に対する回答を予測する場合には、文脈を把握することが重要となる。同じ質問に対する回答は、会話の中でなされていた、過去の質問と回答に依拠することができる。これは、「はい」と返事をする場合のような、一般的な質問の場合に特に当てはまるものとなる。そのような質問への答えは、上記で述べた関数に当てはめることができる。文脈を統合するために、過去になされた会話における質問と回答の学習データをグループ化して適用することができる。図13は、会話における質問と回答をグループ化することにより、文脈を統合する態様を示す。クエリと、質問及び回答とのマッチングは、加重和となることが示されている。
 文脈を統合するときの類似性は次式で示すことができる。
Figure JPOXMLDOC01-appb-M000011
 
ここで、aiは重み係数であり、Wは文脈ウィンドウに含まれているタプル数を示す。
-マッチング関数-
 過去の会話から質問と回答の適合性を見つけるために、それらの間の類似性を評価する必要がある。ベクトルの集合として質問と回答を、各クエリで表すことができる。2つのベクトルの集合間の類似性は、対応するベクトル間の類似度の加重和として表すことができる。ベクトル間の類似性は、コサイン距離、ユークリッド距離、マハラノビス距離として推定することができる。
 質問と回答に対する各クエリは、次式に示すように、キーワード(W)、コンセプト(C)、タイプ(T)及びグループ(G)の、各ベクトルの集合で構成される。 
Figure JPOXMLDOC01-appb-M000012
 
・キーワード
 キーワードは、利用者の間で交わされるすべてのメッセージから単語を構築することによって得られる。2つのキーワードの間のベクトルの類似性は、重み付け(TF-IDF:Robertson, S. E., Walker, S., Beaulieu, M. M., Gatford, M., & Payne, A. Okapi at TREC-4. In Proceedings of the 4th Text REtrieval Conference (TREC-4), pp. 73-96, 1995])されたキーワードのコサイン距離として得ることができる。或いは、OkapiBM25(Harman, D. Ranking algorithms. In W. B. Frakes & R. Baeza-Yates (Eds.), Information retrieval: Data structures and algorithms, pp. 363-392. Englewood Cliffs, New Jersey, USA: Prentice Hall, 1992])、または情報検索において使用される任意の他のランク付け関数を用いることができる。キーワード間の類似性には意味的類似性が含まれる。それは、意味的に関連している2つのキーワードは類似していると考えられる。この意味的な関係は、WordNet(G. A. Miller, R. Beckwith, C. D. Fellbaum, D. Gross, K. Miller. WordNet: An online lexical database. Int. J. Lexicograph. 3, 4, pp. 235-244, 1990)、BabelMet(R. Navigli and S. P Ponzetto. BabelNet: The Automatic Construction, Evaluation and Application of a Wide-Coverage Multilingual Semantic Network. Artificial Intelligence, 193, Elsevier, pp. 217-250, 2012)、共出現分析(Harris Z. S. Co-occurrence and transformation in linguistic structure, Language, 33, pp. 283-340., 1957)のデータを用いて得ることができる。類似度を推定する際には、文書内におけるキーワードの順序と場所を考慮しなければならない。システム内の順序を統合する対策として場所を表すインデックスの分散を用いる。図14は、どのようなキーワードの順序が、一致を求める際に重要であるかを示している。
・コンセプト
 コンセプトは、語彙の次元を圧縮することで得ることができる。潜在的意味解析(Latent Semantic Analysis)は、コンセプトの限定されたリストを提供するために用いることができる(Thomas K. Landauer, Peter W. Foltz et Darrell Laham. Introduction to Latent Semantic Analysis, Discourse Processes, vol. 25, p. 259-284, 1998)。各質問と応答は、概念空間に投影される。この投影は概念ベクトルを与える。そして、コサイン距離は、概念ベクトル間の類似度を推定することができる。
・タイプ
 タイプは文法構造と評判分析の観点から、メッセージの異なるグループとして定義される。このグループには、質問、人、大体の場所、順序、ロマンチックなメッセージ、幸せなメッセージなどが含まれる。これらの分類は、手動のラベル付けされた特徴ベクトルは、文法構造であるデータ、概念やキーワードを人工知能が学習することによって得ることができる。
・グループ
 全利用者のタプル(Q,A)は、回答同士のテキストの類似性に基づいてクラスタ化される。各クラスタには名前が与えられる。グループベクトルはタプル(Q,A)が属するクラスタのリストである。どちらも同じような答えを持っているので、明らかに同じグループの2つの質問は類似するものとなる。図15は、質問と回答が、その回答の類似性によってクラスタ化された態様を示し、各クラスタが一つのグループを構成する態様を示す。
・テンプレートの生成
 利用可能な全てのデータを使って人工知能を学習させることができる。入力ベクトルは質問であり、出力ベクトルは回答となる。任意の質問の回答を得るために、学習された人工知能は、解答のテンプレートを推定する。データベースに記憶されている質問と共にクエリのマッチングと組み合わせることで、データベース内の回答にこのテンプレートの答えを一致させることができる。これは、質問がデータの中に見つけられないときに、回答を見つけることができるようにする上で重要である。どんな監修アルゴリズムであっても、ニューラルネットワーク、サポートベクターマシン、k-Nearest-Neighbors、ガウス混合モデルとして、この場合使用することができる。
 質問と回答の間でキーワードに共起分析は、回答テンプレートのキーワードの一部に対して実施することができる。図16は、各質問を構成するベクトル(キーワード、コンセプト、タイプ)は、同等の回答ベクトルを推定する予測因子を持っている。回答テンプレートのグループは、質問テンプレートにおけるものと同等である。
 以上のように、本発明の一実施形態に係るコミュニケーション提供システムは、コミュニケーション提供システムが様々なSNSからデータを取得しデータベースに蓄積すると共に、人工知能としての機能を有する情報処理モジュールが利用者の思考を学習することで、質問に対する適切な回答を提供することができる。
 本発明の一実施形態に係るコミュニケーション提供システムは、複数のSNSからソーシャルデータを収集し、それを人工知能としての機能を有する情報処理モジュールが推論し学習することで、一利用者では想到し得ない思考についても提供することができる。
 さらに、本発明の一実施形態によれば、コミュニケーション提供システム100によって生成される仮想の利用者を生成するデータベース(第1のデータベース102a)に、専門知識を習得させれば、当該仮想の利用者によって様々なサービスを提供することができる。そのような専門知識は、該当する利用者が利用するSNSから習得されるものであってもよい。
 例えば、専門知識として、自然科学、人文学、心理学、法律、金融、工学等の各分野における専門知識の少なくとも一つを、仮想の利用者を生成するデータベースに記憶させれば、該当する分野に専門知識を仮想の利用者が使用できるようにすることができる。なお、この場合における専門知識は、書籍等により蓄積された画一的な専門知識のみでなく、ソーシャルネットワーク上で自然人が会話として使用される専門知識の情報が含まれていることが好ましい。このような会話型の専門知識に関する情報が含まれていることにより、コミュニケーション提供システム100は、質問に対する回答として、さまざまな専門知識を有益に活用することができる。
 なお、このような専門知識は、例えば、第1の利用者が希望する場合、人工知能によって生成される擬似的な第1の利用者の知識として身につけることができる。その場合、擬似的な第1の利用者は、単に特定の専門知識を取得するのみでなく、当該第1の利用者の個性を加味する形で活用することができる。例えば、第1の利用者が医学分野の知識を有する場合、その知性は擬似的な第1の利用者も医学分野の専門知識を有し、擬似的な第1の利用者がさらに専門知識として法律分野の専門知識を取得すれば、法医学の分野で能力を発揮することが可能となる。
 この場合、第1のデータベース102aに記憶される専門知識は、質問と回答(すなわちQ&A)形式で記憶されていてもよい。第1のデータベース102に記憶されるソーシャルデータ(知識)は、適時更新することができ、データは消失することがないので、知識量を増やして行くことができる。
 さらに、このような専門知識が記憶される第1のデータベース102aに、全利用者のソーシャルデータが記憶される第2のデータベース102bの情報を反映させ、学習効果を高めることで、より適切な回答を出力させることができる。
 専門知識としては、司法、行政、医療、環境、経済など、利用者の属性に会わせた様々な分野の知識に対応することができる。すなわち、本発明の一実施形態によれば、利用者の属性に合わせて、高い専門知識を有する仮想個人をコミュニケーション提供システム上に出現させ、他の利用者にサービスを提供することができる。
[グループによる知識の共有:グループAI]
 図2は、個人ソーシャルデータに基づき構成される、人工知能としての機能を有する情報処理モジュール(第1の情報処理モジュール)と、利用者全体のソーシャルデータに基づき構成される、人工知能としての機能を有する情報処理モジュール(第2の情報処理モジュール)と、の関係を示している。本発明は、さらに複数の第1の情報処理モジュールが集合して、情報又は知識レベルを共有する、人工知能としての機能を有する情報処理モジュール(第3の情報処理モジュール)を有することができる。
 図17は、個人ソーシャルデータに基づき構成される、人工知能としての機能を有する第1の情報処理モジュール104aが複数存在する態様を示す(第1の情報処理モジュール104a_1~104a_n(nは2以上の整数))。なお、第1の情報処理モジュール104aは、図2を参照して説明したように、「プライベートAI」、「パーソナライズドAI」と呼ばれる擬似的な利用者を生成するものである。一方、第1の情報処理モジュール104aと連係する第2の情報処理モジュール104bは、利用者全体のソーシャルデータや、ソーシャルネットワーク上にある様々な情報がクローリングされて得られた知識の融合体に基づく人工知能であり「エブリワンAI」、「コモンセンスAI」若しくは「モラールAI」と呼ばれるものである。
 図17は、複数の第1の情報処理モジュール104a_1~104a_nが、一つの集合110を形成していることを示す。そして、この集合110に対して、知識及び情報を共有する、人工知能としての機能を有する第3の情報処理モジュール112が接続されている。第3の情報処理モジュール112は、複数の第1の情報処理モジュール104a_1~104a_nにより生成される共通の知識レベルによって生成される人工知能である。すなわち、第3の情報処理モジュール112は、複数の第1の情報処理モジュール104a_1~104a_nにより生成される複数の擬似的な利用者の全ての知識と個性及び人格を備えた擬似的な利用者であるといえる。このような第3の情報処理モジュール112は「グループAI」と呼ぶことができる。
 第3の情報処理モジュール104cは、複数の第1の情報処理モジュール104a_1~104a_nにより生成される擬似的な各利用者の知識および個性を発揮することができる。別の観点から見れば、第3の情報処理モジュール112により生成される擬似的な利用者は、第1の情報処理モジュール104aによって生成される擬似的な利用者が個人レベルであるのに対し、複数の個人が集合して生成されるものであるので、法人的な性格を有しているともいえる。
 複数の第1の情報処理モジュール104a_1~104a_nは、第3の情報処理モジュール112と会話をすることができる。これにより、複数の第1の情報処理モジュール104a_1~104a_nは、お互いの情報や知識を共有することができる。第3の情報処理モジュール112は、第1の情報処理モジュール104a_1~104a_nにより生成される擬似的な利用者の一人が、このグループから離脱したとしても、その脱離した利用者の知識や個性を保持することができるので、メンバーの離脱による知能の欠損を防止することができる。例えば、人工知能としての機能を有する第3の情報処理モジュール112が、ある法人の一部の機能として運用されるとき、法人に属する構成員(自然人)が途中で離脱しても、離脱したメンバーのスキルをその法人に留めておくことができる。
 第3の情報処理モジュール104cは、複数の第1の情報処理モジュール104a_1~104a_nから、新たな情報を取得することが可能であり、それによって人工知能が成長する。すなわち、第1の情報処理モジュール104a_1~104a_nによって生成される擬似的な各個人のスキルが向上することにより、そのスキルは第3の情報処理モジュール112によって生成される擬似的な利用者のスキルとして反映される。
 なお、図17で示すように、第3の情報処理モジュール112は、第2の情報処理モジュール102bと電気通信回線を通してアクセス可能な状態に置かれていてもよい。これにより、第3の情報処理モジュール103cは、幅広く情報を収集することができる。
 図17を参照して説明したように、本発明によれば、人工知能によって生成される複数の疑似的な利用者の集合により、その集合を形成する複数の利用者の知識、知能、個性の全てを備えた擬似的な利用者を形成し、活用することができる。
100・・・コミュニケーション提供システム、102・・・データベース、104・・・情報処理モジュール、106・・・類似データベース、107・・・質問データベース、108・・・返答データベース、200・・・ユーザ端末、202・・・複数の利用者、204・・・第1の利用者、206・・・第2の利用者、300・・・SNS 

Claims (38)

  1.  一つ又は複数のソーシャル・ネットワーキング・サービスに登録されている第1の利用者のソーシャルデータと、前記複数のソーシャル・ネットワーキング・サービスに登録されている複数の利用者のソーシャルデータと、前記複数のソーシャル・ネットワーキング・サービスから収集された複数のテキストデータと、の情報が記憶されたデータベースと、
     前記第1の利用者に対する第2の利用者の質問を、前記データベースに記憶されている前記情報の少なくとも一部に基づいて、前記質問に対する回答を推論し又は学習して決定する人工知能としての機能を有する情報処モジュールと、を含むことを特徴とするコミュニケーション提供システム。
  2.  前記データベースは、前記第1の利用者のソーシャルデータを記憶する第1のデータベースと、前記複数の利用者のソーシャルデータを記憶する第2のデータベースと、前記複数のテキストデータを記憶する第3のデータベースと、に階層化されている、請求項1に記載のコミュニケーション提供システム。
  3.  前記人工知能としての機能を有する情報処理モジュールは、前記第1のデータベース、前記第2のデータベース及び前記第3のデータベースに記録されているデータの中から、前記質問に対する適切な回答を、上位のデータベースに記録された情報の少なくとも一部に基づいて推論し生成する、請求項2に記載のコミュニケーション提供システム。
  4.  前記人工知能としての機能を有する情報処理モジュールは、前記第1のデータベースに記憶されている前記複数の利用者のソーシャルデータから、質問に対する回答を傾向分析し、前記質問に対する回答を推論し又は学習して決定する、請求項3に記載のコミュニケーション提供システム。
  5.  前記傾向分析は、前記質問に対する前記複数の利用者の前記回答の時間的な変化を分析することである、請求項4に記載のコミュニケーション提供システム。
  6.  前記第1の利用者のソーシャルデータ及び前記複数の利用者のソーシャルデータは、テキストデータ並びに、音声データ、写真データおよび映像データのいずれか一以上から生成されたテキストデータである、請求項1に記載のコミュニケーション提供システム。
  7.  類似する質問を類似質問としてグループ化し、前記類似質問に対応する回答が対応付けられている類似データベースを含み、
     前記人工知能としての機能を有する情報処理モジュールは、前記類似データベースから前記質問の回答を選択する、請求項6に記載のコミュニケーション提供システム。
  8.  前記類似データベースは、類似質問内容をグループ化して記録する類似質問データベースと、前記類似質問に対応する回答を記憶する類似回答データベースと、を含む、請求項7に記載のコミュニケーション提供システム。
  9.  前記類似データベースは、前記第1の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶される第1の類似データベースと、前記複数の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶される第2の類似データベースと、前記テキストデータの中から質問と回答の内容を類型化したデータが記憶される第3の類似データベースと、に階層化されている、請求項8に記載のコミュニケーション提供システム。
  10.  前記第2の利用者が前記回答を評価した情報を取得して、前記回答に評価値を付ける評価モジュールを含む、請求項1に記載のコミュニケーション提供システム。
  11.  前記評価モジュールは、前記回答の評価結果を、前記第1の利用者に通知する通知モジュールを含む、請求項10に記載のコミュニケーション提供システム。
  12.  前記通知モジュールから通知を受けた第1の利用者が、前記質問に対する前記回答の内容を編集する編集モジュールと、前記編集モジュールで編集された内容に基づいて前記質問に対する回答の内容を更新する更新モジュールと、を含む、請求項11に記載のコミュニケーション提供システム。
  13.  前記評価モジュールは、前記評価結果に基づいて優先準位を付け、前記人工知能としての機能を有する情報処理モジュールは、前記優先順位に基づいて前記質問に対する適切な回答を推論し又は学習して決定する、請求項10に記載のコミュニケーション提供システム。
  14.  前記データベースは、経時的に、前記第1の利用者のソーシャルデータ、前記第2の利用者のソーシャルデータ、前記テキストデータを更新し、蓄積する、請求項1に記載のコミュニケーション提供システム。
  15.  前記第1の利用者の三次元画像データを生成する画像データ生成モジュールを含む、請求項1に記載のコミュニケーション提供システム。
  16.  前記データベースは、前記第1の利用者の音声データを含み、前記音声データから音素データを生成する音素データ生成モジュールと、
     前記音素データを用いて会話の音声を生成する音声生成モジュールと、を含む、請求項1に記載のコミュニケーション提供システム。
  17.  前記人工知能としての機能を有する情報処理モジュールは、前記質問に対する前記回答の頻度を解析し、頻度の高い回答に対応する質問を前記類似データベースに記録する、請求項7に記載のコミュニケーション提供システム。
  18.  前記人工知能としての機能を有する情報処理モジュールは、前記第1の利用者のソーシャルデータに含まれるテキストデータの構文解析をし、質問に対する回答を推論し又は学習して決定する、請求項1に記載のコミュニケーション提供システム。
  19.  前記第2の利用による質問に対し、前記情報処理モジュールで回答を生成するか否かの設定をする機能を有する、請求項1に記載のコミュニケーション提供システム。
  20.  前記情報処理モジュールは、第2の利用者の質問に対する回答候補を複数生成し、前記第1の利用者が、前記質問に対する前記回答候補を編集する編集モジュールと、前記編集モジュールで編集された内容に基づいて前記質問に対する回答の内容を更新する更新モジュールと、を有する、請求項1に記載のコミュニケーション提供システム。
  21.  第1の利用者の登録情報に基づいて、仮想的な前記第1の利用者の個人像を生成し、
     第2の利用者が前記仮想的な個人に対して送信した質問を受け付け、
     前記質問に対する回答を、前記第1の利用者のソーシャルデータ、複数の利用者のソーシャルデータ又は予め登録されている複数のテキストデータのいずれか一種に基づいて推論し又は学習して決定し、
     前記決定された回答を、前記第2の利用者に提供することを特徴とするコミュニケーション提供方法。
  22.  前記質問に対する回答を、第1に前記第1の利用者のソーシャルデータを検索し、適切な回答を得られないとき、第2に前記複数の利用者のソーシャルデータを検索し、適切な回答を得られないとき、第3に前記予め登録されている複数のソーシャルデータを検索する、請求項21に記載のコミュニケーション提供方法。
  23.  前記質問に対する回答を、前記複数の利用者のソーシャルデータから、質問に対する回答を傾向分析し、前記質問に対する回答を推論し又は学習して決定する、請求項22に記載のコミュニケーション提供方法。
  24.  前記傾向分析は、前記質問に対する前記複数の利用者の前記回答の時間的な変化を分析する、請求項23に記載のコミュニケーション提供方法。
  25.  前記第1の利用者のソーシャルデータ及び前記複数の利用者のソーシャルデータは、テキストデータ並びに、音声データ、写真データおよび映像データの一以上から生成されたテキストデータである、請求項21に記載のコミュニケーション提供方法。
  26.  類似する質問を類似質問としてグループ化し、前記類似質問に対応する回答を対応付けて類似データベースに記憶させ、
     前記質問に対する回答を、前記類似データベースから前記質問の回答を選択する、請求項21に記載のコミュニケーション提供方法。
  27.  前記類似データベースに、前記第1の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶させ、前記複数の利用者のソーシャルデータの中から質問と回答の内容を類型化したデータが記憶させ、前記テキストデータの中から質問と回答の内容を類型化したデータが記憶させる、請求項26に記載のコミュニケーション提供方法。
  28.  前記第2の利用者が前記回答の評価した情報を取得して、前記回答に評価値を付ける、請求項21に記載のコミュニケーション提供方法。
  29.  前記回答の評価結果を、前記第1の利用者に通知する、請求項28に記載のコミュニケーション提供方法。
  30.  前記通知を受けた第1の利用者が、前記質問に対する前記回答の内容を編集した内容を受け付け、前記編集された内容に基づいて前記質問に対する回答の内容を更新する、請求項29に記載のコミュニケーション提供方法。
  31.  前記評価結果に基づいて優先準位を付け、前記優先順位に基づいて前記質問に対する適切な回答を推論し又は学習して決定する、請求項29に記載のコミュニケーション提供方法。
  32.  前記第1の利用者のソーシャルデータ、前記第2の利用者のソーシャルデータ、前記テキストデータを経時的に更新し、蓄積する、請求項21に記載のコミュニケーション提供方法。
  33.  前記第1の利用者の三次元画像データを生成する、請求項21に記載のコミュニケーション提供方法。
  34.  前記第1の利用者の音声データを記憶して、前記音声データから音素データを生成し、前記音素データを用いて会話の音声を生成する、請求項21に記載のコミュニケーション提供方法。
  35.  前記質問に対する前記回答の頻度を解析し、頻度の高い回答に対応する質問を前記類似データベースに記録する、請求項26に記載のコミュニケーション提供方法。
  36.  前記第1の利用者のソーシャルデータに含まれるテキストデータの構文解析をし、質問に対する回答を推論し又は学習して決定する、請求項21に記載のコミュニケーション提供方法。
  37.  前記第2の利用による質問に対し、回答を生成するか否かの設定する、請求項21に記載のコミュニケーション提供方法。
  38.  第2の利用者の質問に対する回答候補を複数生成し、前記第1の利用者が、前記質問に対する前記回答候補を編集し、前記編集された内容に基づいて前記質問に対する回答の内容を更新する、請求項21に記載のコミュニケーション提供方法。
     
PCT/JP2015/086309 2014-12-26 2015-12-25 コミュニケーション提供システム及びコミュニケーション提供方法 WO2016104736A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566534A JP6502965B2 (ja) 2014-12-26 2015-12-25 コミュニケーション提供システム及びコミュニケーション提供方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462096951P 2014-12-26 2014-12-26
US62/096,951 2014-12-26
JP2015-008988 2015-01-20
JP2015008988 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016104736A1 true WO2016104736A1 (ja) 2016-06-30

Family

ID=56150748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086309 WO2016104736A1 (ja) 2014-12-26 2015-12-25 コミュニケーション提供システム及びコミュニケーション提供方法

Country Status (2)

Country Link
JP (1) JP6502965B2 (ja)
WO (1) WO2016104736A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217507A1 (ja) * 2016-06-16 2017-12-21 株式会社オルツ コミュニケーションを支援する人工知能システム
WO2018061776A1 (ja) * 2016-09-29 2018-04-05 株式会社東芝 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体
JP2018055548A (ja) * 2016-09-30 2018-04-05 株式会社Nextremer 対話装置、学習装置、対話方法、学習方法、およびプログラム
CN109918525A (zh) * 2019-03-12 2019-06-21 同济大学 基于微信小程序的食物图片美学分析标签数据收集系统
WO2019138567A1 (ja) * 2018-01-15 2019-07-18 富士通株式会社 出力制御プログラム、出力制御方法、及び出力制御装置
JP2020071679A (ja) * 2018-10-31 2020-05-07 株式会社リクルート 質問に対する回答を支援するためのシステム、方法、及びプログラム
JP6837614B1 (ja) * 2020-05-28 2021-03-03 三菱電機株式会社 推論装置、プログラム及び推論方法
WO2022034922A1 (ja) * 2020-08-14 2022-02-17 株式会社オルツ アンケート調査のためのシステム、プログラム、および方法
JP2022032935A (ja) * 2020-08-14 2022-02-25 株式会社オルツ アンケート調査のためのシステム、プログラム、および方法
JP7078307B1 (ja) 2022-01-14 2022-05-31 望 窪田 学習モデルの個別化
JP2022166260A (ja) * 2022-03-02 2022-11-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド マルチシステムに基づくインテリジェントな質問応答方法、装置及び機器
US11494354B2 (en) 2019-11-08 2022-11-08 Fujifilm Business Innovation Corp. Information management apparatus, information processing apparatus, and non-transitory computer readable medium
JP2023082970A (ja) * 2021-12-03 2023-06-15 株式会社ビデオリサーチ 専門家回答システム
JP7295207B1 (ja) 2021-12-03 2023-06-20 株式会社ビデオリサーチ 調査集計システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038088A (ja) * 2003-07-17 2005-02-10 Toshiba Corp 質問応答装置及び質問応答方法
JP2005196356A (ja) * 2004-01-05 2005-07-21 Nec Corp 擬似人格対話システム、方法、およびプログラム
JP2008305322A (ja) * 2007-06-11 2008-12-18 C2Cube Inc 評判コーパス生成装置、対象情報コーパス生成装置、サーバ装置、バーチャルチャット装置、およびプログラム
JP2013210792A (ja) * 2012-03-30 2013-10-10 Hitachi Solutions Ltd 授業質問回答システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038088A (ja) * 2003-07-17 2005-02-10 Toshiba Corp 質問応答装置及び質問応答方法
JP2005196356A (ja) * 2004-01-05 2005-07-21 Nec Corp 擬似人格対話システム、方法、およびプログラム
JP2008305322A (ja) * 2007-06-11 2008-12-18 C2Cube Inc 評判コーパス生成装置、対象情報コーパス生成装置、サーバ装置、バーチャルチャット装置、およびプログラム
JP2013210792A (ja) * 2012-03-30 2013-10-10 Hitachi Solutions Ltd 授業質問回答システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO NAKAGAWA: "ATR Ken Onsei Hon'yaku ni Awase Kuchimoto no Ugoki o Saigen", GEKKAN COMPUTER DIGEST, vol. 26, no. 12, 10 December 2000 (2000-12-10), pages 68 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11526720B2 (en) 2016-06-16 2022-12-13 Alt Inc. Artificial intelligence system for supporting communication
WO2017217507A1 (ja) * 2016-06-16 2017-12-21 株式会社オルツ コミュニケーションを支援する人工知能システム
WO2018061776A1 (ja) * 2016-09-29 2018-04-05 株式会社東芝 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体
JP2018055422A (ja) * 2016-09-29 2018-04-05 株式会社東芝 情報処理システム、情報処理装置、情報処理方法、及びプログラム
JP2018055548A (ja) * 2016-09-30 2018-04-05 株式会社Nextremer 対話装置、学習装置、対話方法、学習方法、およびプログラム
US11301466B2 (en) 2018-01-15 2022-04-12 Fujitsu Limited Computer-readable recording medium recording output control program, output control method, and information processing apparatus
WO2019138567A1 (ja) * 2018-01-15 2019-07-18 富士通株式会社 出力制御プログラム、出力制御方法、及び出力制御装置
JPWO2019138567A1 (ja) * 2018-01-15 2020-12-03 富士通株式会社 出力制御プログラム、出力制御方法、及び出力制御装置
JP2020071679A (ja) * 2018-10-31 2020-05-07 株式会社リクルート 質問に対する回答を支援するためのシステム、方法、及びプログラム
CN109918525A (zh) * 2019-03-12 2019-06-21 同济大学 基于微信小程序的食物图片美学分析标签数据收集系统
US11494354B2 (en) 2019-11-08 2022-11-08 Fujifilm Business Innovation Corp. Information management apparatus, information processing apparatus, and non-transitory computer readable medium
JP6837614B1 (ja) * 2020-05-28 2021-03-03 三菱電機株式会社 推論装置、プログラム及び推論方法
WO2021240721A1 (ja) * 2020-05-28 2021-12-02 三菱電機株式会社 推論装置、プログラム及び推論方法
WO2022034922A1 (ja) * 2020-08-14 2022-02-17 株式会社オルツ アンケート調査のためのシステム、プログラム、および方法
JP2022032935A (ja) * 2020-08-14 2022-02-25 株式会社オルツ アンケート調査のためのシステム、プログラム、および方法
JP7101357B2 (ja) 2020-08-14 2022-07-15 株式会社オルツ アンケート調査のためのシステム、プログラム、および方法
JP2023114460A (ja) * 2021-12-03 2023-08-17 株式会社ビデオリサーチ 専門家回答予測システム
JP7352761B2 (ja) 2021-12-03 2023-09-28 株式会社ビデオリサーチ 専門家回答予測システム
JP2023082970A (ja) * 2021-12-03 2023-06-15 株式会社ビデオリサーチ 専門家回答システム
JP7295207B1 (ja) 2021-12-03 2023-06-20 株式会社ビデオリサーチ 調査集計システム
JP2023089330A (ja) * 2021-12-03 2023-06-28 株式会社ビデオリサーチ 調査集計システム
JP7078307B1 (ja) 2022-01-14 2022-05-31 望 窪田 学習モデルの個別化
JP2023103675A (ja) * 2022-01-14 2023-07-27 望 窪田 学習モデルの個別化
JP2022166260A (ja) * 2022-03-02 2022-11-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド マルチシステムに基づくインテリジェントな質問応答方法、装置及び機器
JP7548967B2 (ja) 2022-03-02 2024-09-10 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド マルチシステムに基づくインテリジェントな質問応答方法、装置及び機器

Also Published As

Publication number Publication date
JP6502965B2 (ja) 2019-04-17
JPWO2016104736A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6502965B2 (ja) コミュニケーション提供システム及びコミュニケーション提供方法
US11526720B2 (en) Artificial intelligence system for supporting communication
CN112292674B (zh) 为助理系统处理多模态用户输入
Dame Making a name for yourself: Tagging as transgender ontological practice on Tumblr
US11829725B2 (en) Computer implemented method for the automated analysis or use of data
Purohit et al. Emergency-relief coordination on social media: Automatically matching resource requests and offers
Baker et al. ‘Why do white people have thin lips?’Google and the perpetuation of stereotypes via auto-complete search forms
US20170344532A1 (en) Method and system for creating interactive inquiry and assessment bots
Lotfian et al. Formulating emotion perception as a probabilistic model with application to categorical emotion classification
US10770072B2 (en) Cognitive triggering of human interaction strategies to facilitate collaboration, productivity, and learning
JP6831522B2 (ja) コミュニケーションシステム
Aattouri et al. Modeling of an artificial intelligence based enterprise callbot with natural language processing and machine learning algorithms
Wu et al. Toward predicting active participants in tweet streams: A case study on two civil rights events
Yenkikar et al. Sentimlbench: Benchmark evaluation of machine learning algorithms for sentiment analysis
Eichinger et al. Affinity: A system for latent user similarity comparison on texting data
CN113806620A (zh) 内容推荐方法、设备、系统及存储介质
Zanzotto et al. Have you lost the thread? discovering ongoing conversations in scattered dialog blocks
Alsulami et al. Extracting attributes for twitter hashtag communities
Saravanos et al. Discovering Influential Twitter Authors Via Clustering And Ranking On Apache Storm
CN110083785A (zh) 基于用户搜索记录的性别年龄判别方法及装置
Ishanka A context-aware travel recommendation system based on user emotion and personality
Pulikonda et al. Exploring the Applications, Challenges, and Issues of Sentiment Analysis
Hauffa Topic-Driven Characterization of Social Relationships for the Analysis of Social Influence
Srinidhi et al. Sentiment Analysis of Social Media Comments using Natural Language Procesing
Alharthi The Use of Items Personality Profiles in Recommender Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 24.01.18.

122 Ep: pct application non-entry in european phase

Ref document number: 15873304

Country of ref document: EP

Kind code of ref document: A1