WO2016101787A1 - 一种孤岛转联网方法 - Google Patents
一种孤岛转联网方法 Download PDFInfo
- Publication number
- WO2016101787A1 WO2016101787A1 PCT/CN2015/096747 CN2015096747W WO2016101787A1 WO 2016101787 A1 WO2016101787 A1 WO 2016101787A1 CN 2015096747 W CN2015096747 W CN 2015096747W WO 2016101787 A1 WO2016101787 A1 WO 2016101787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- inverter
- island
- overcurrent
- transmission system
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims abstract description 40
- 230000008859 change Effects 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 12
- 230000000903 blocking effect Effects 0.000 claims description 6
- 230000002045 lasting effect Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 230000006855 networking Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/122—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
- H02H7/1222—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/04—Constant-current supply systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/388—Islanding, i.e. disconnection of local power supply from the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- the invention belongs to the field of power electronics, and in particular relates to a method for switching islands to flexible networking of a flexible direct current transmission system.
- Flexible DC transmission uses a voltage source converter to control active power and reactive power independently and quickly, thereby improving system stability, suppressing system frequency and voltage fluctuations, and improving the steady-state performance of the grid-connected AC system.
- Flexible DC transmission has great advantages in the fields of new energy grid-connected, distributed generation grid-connected, island power supply, and urban distribution network power supply. Therefore, research on flexible DC transmission related technologies is of great significance.
- the near-end closing in the converter station is connected to the AC grid or the remote switch is closed, and the flexible DC converter station is connected in parallel to the active grid.
- the flexible DC system needs to be controlled from the current island operation.
- the mode is switched to the networked active operation control mode to keep the DC transmission system running.
- the object of the present invention is to provide a method for detecting the change of the operating mode of the power grid into the networking state under the operation of the flexible direct current transmission system, and to ensure that the flexible direct current transmission system is accurately and smoothly changed from the islanding operation to the networked operation.
- the control system determines whether the flexible DC transmission system enters the network state by detecting whether the current of the inverter bridge arm is overcurrent and the voltage changes on the grid side and the valve side, including the following steps:
- step (1) In the case of island operation of the converter station of the flexible DC transmission system, check whether the three-phase AC current on the valve side of the converter or the current of the inverter arm is overcurrent, and the overcurrent setting is taken as the rated bridge arm current. n times. If an overcurrent occurs and lasts for a time t1, proceed to step (2), otherwise return to step (1);
- step (3) blocking the converter, detecting whether the voltage on the AC side is lower than the threshold, if it is lower than the threshold, and lasting for t2, unlocking the inverter, returning to step (1), otherwise proceeding to step (3);
- phase locking link of the control system is set to track the current AC side voltage phase, and the control mode is switched at the same time.
- the island control of the current flexible DC transmission system converter station is switched to the active control mode, and the inverter is unlocked.
- the overcurrent setting value is taken as n times of the rated valve side current of the inverter or the current of the inverter bridge arm, n is in the range of 1 to 10, and the duration t1 is in the range of 0 to 1 s. , t2 ranges from 0 to 1 s;
- the threshold value of the voltage on the AC side is in the range of 0 to 0.99 pu, and the duration t is in the range of 0 to 1 s;
- the active power and the reactive power command can maintain the current active power and the reactive power running value, and can also be 0, and can gradually increase to the current running value by the slope.
- the invention also includes an island-to-network control device, which comprises an inverter detection overcurrent unit, an AC-side voltage detection unit, and an island-to-network mode conversion unit.
- the converter detects the overcurrent unit to detect whether the three-phase alternating current of the converter valve side or the current of the converter arm current is overcurrent, and the overcurrent setting is taken as The rated bridge arm current is n times; if an overcurrent occurs and lasts for t1, it enters the AC side voltage detection unit, otherwise it returns to the inverter to detect the overcurrent unit.
- the AC side voltage detecting unit first locks the inverter, and then detects whether the AC side voltage is lower than a threshold. If it is lower than the threshold and lasts for t2, the inverter is unlocked, and the inverter is returned to detect the overcurrent unit to continue detecting. Otherwise, enter the island to network mode conversion unit.
- the function of the island-to-network mode conversion unit is to perform a control mode conversion.
- the active power and the reactive power command maintain the current active power and the reactive power running value, or after the conversion, the active power and the reactive power The power is converted to 0 and gradually rises to the pre-conversion run value.
- the invention also includes an island-to-network control system, which comprises an inverter, an upper controller and a valve control device, wherein (1) in the case of an island operation of a converter station of a flexible direct current transmission system, the upper controller Detecting the three-phase AC current on the valve side of the converter or the overcurrent of the inverter arm current The flow setting is taken as n times the rated bridge arm current; if an overcurrent occurs and lasts for a time t1, the process proceeds to step (2), otherwise returns to step (1);
- step (3) blocking the converter, detecting whether the voltage on the AC side is lower than the threshold, if it is lower than the threshold, and lasting for t2, unlocking the inverter, returning to step (1), otherwise proceeding to step (3);
- the upper controller lock phase link sets the current AC side voltage phase and starts the control mode conversion.
- the island control of the current flexible DC transmission system converter station is switched to the active control mode, and the inverter is unlocked.
- the invention provides a method for detecting the change of the operating mode of the power grid into the networked state under the operation of the flexible direct current transmission system, and detecting the grid connection time accurately, and can smoothly switch to the network operation mode without causing impact on the power grid.
- FIG. 1 is a schematic diagram of a dual station structure of a flexible direct current transmission system
- FIG. 2 is a schematic diagram of a control mode of a grid-connected detection converter station
- FIG. 3 is a schematic diagram of a control mode of a constant DC voltage control station
- Figure 4 is a flow chart of flexible DC grid-connected detection in an island operation mode.
- the flexible DC transmission converter stations 201-202 in the island operation As shown in FIG. 1 , the flexible DC transmission converter stations 201-202 in the island operation, the remote switch 102 is not closed, the flexible DC transmission system 201-202 is not connected to the AC grid 400, and the flexible DC transmission system 201-202 is at The island operation state, 202 is the fixed DC voltage control side, the control mode is shown in Figure 3, 201 is controlled by Figure 2, and Figure 3 is the constant DC voltage control mode, which remains unchanged before and after switching. The state is switched to the active control mode. If the switch 102 is closed, follow the steps below to check (see Figure 4) whether it is turned from island to network:
- step (1) In the case of island operation of the converter station of the flexible DC transmission system, check whether the three-phase AC current on the valve side of the converter or the current of the inverter arm is overcurrent, and the overcurrent setting is taken as the rated bridge arm current. n times. If an overcurrent occurs and lasts for a time t1, proceed to step (2), otherwise return to step (1);
- step (3) blocking the converter, detecting whether the voltage on the AC side is lower than the threshold, if it is lower than the threshold, and lasting for t2, unlocking the inverter, returning to step (1), otherwise proceeding to step (3);
- Control system phase-locking link set to track the current AC side voltage phase, and start the control mode The conversion is switched from the island control of the current flexible DC transmission system to the active control mode, and the inverter is unlocked.
- duration t1 ranges from 0 to 1 s
- t2 ranges from 0 to 1 s.
- the inverter 201 switches from island control to active control mode according to the above steps.
- the network side 400 is a passive system. After the switch 102 is closed, the bridge arm overcurrent phenomenon does not occur under normal conditions, so the control mode does not change; or the AC side voltage is detected after the inverter is blocked. Below the threshold, the networked detection condition is immediately blocked for a period of time, and the operation from the island operation to the network operation is prohibited, and the inverter trigger pulse is immediately released. At the end of the detection networking process, the inverter 201 still maintains the original island operation state. .
- the invention also provides an island-to-network control device, comprising an inverter detection over-current unit, an AC-side voltage detection unit, and an island-to-network mode conversion unit; in the case of a flexible DC transmission system converter station island operation, The inverter detects the overcurrent unit to detect whether the three-phase alternating current of the converter valve side or the inverter arm current is overcurrent, and the overcurrent setting is taken as n times of the rated bridge arm current; if overcurrent occurs, The duration t1 enters the AC side voltage detecting unit, otherwise returns to the inverter to detect the overcurrent unit;
- the AC side voltage detecting unit first locks the inverter, and then detects whether the AC side voltage is lower than a threshold. If it is lower than the threshold and lasts for t2, the inverter is unlocked, and the inverter is returned to detect the overcurrent unit to continue detecting. Otherwise, enter the island-to-network mode conversion unit;
- the function of the island-to-network mode conversion unit is to perform a control mode conversion.
- the active power and the reactive power command maintain the current active power and the reactive power running value, or after the conversion, the active power and the reactive power The power is converted to 0 and gradually rises to the pre-conversion run value.
- the invention also provides an island-to-network control system, comprising an inverter, an upper controller and a valve control device, wherein (1) in the case of an island operation of a converter station of a flexible direct current transmission system, the upper controller detects the inverter Whether the valve-side three-phase AC current or the inverter arm current has an overcurrent condition, and the overcurrent setting is taken as n times the rated bridge arm current; if an overcurrent occurs and the duration is t1, the process proceeds to step (2). Otherwise return to step (1);
- step (3) blocking the converter, detecting whether the voltage on the AC side is lower than the threshold, if it is lower than the threshold, and lasting for t2, unlocking the inverter, returning to step (1), otherwise proceeding to step (3);
- the upper controller lock phase link sets the current AC side voltage phase and starts the control mode conversion.
- the island control of the current flexible DC transmission system converter station is switched to the active control mode, and the inverter is unlocked.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Inverter Devices (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
Claims (6)
- 一种柔性直流输电系统孤岛转联网的切换方法,其特征在于,包括如下步骤:(1)在柔性直流输电系统换流站孤岛运行情况下,检测换流器阀侧三相交流电流或换流器桥臂电流是否出现过流情况,过流定值取为额定桥臂电流的n倍;如果出现过流,并持续时间t1,则进入步骤(2),否则返回步骤(1);(2)闭锁换流器,检测交流侧电压是否低于阈值,如果低于阈值,且持续时间t2,则解锁换流器,返回步骤(1),否则进入步骤(3);(3)控制系统锁相环节设定跟踪当前交流侧电压相位,同时启动控制方式转换,由当前柔性直流输电系统换流站孤岛控制转换到有源控制方式,并解锁换流器。
- 如权利要求1所述的一种柔性直流输电系统孤岛转联网的切换方法,其特征在于,所述步骤(1)中,过流定值取为换流器额定阀侧电流或者换流器桥臂电流的n倍,n取值范围为1~10,持续时间t1取值范围为0~1s,t2取值范围为0~1s。
- 如权利要求1所述柔性直流输电系统孤岛转联网的方法,所述步骤(2)中,交流侧电压的阀值取值范围为0~0.99pu,持续时间t取值范围为0~1s。
- 如权利要求1所述柔性直流输电系统孤岛转联网的方法,步骤(3)所述控制方式转换的瞬间,有功功率和无功功率指令维持当前有功功率和无功功率的运行值,或者转换后,有功功率和无功功率转换到0,逐渐升到转换前运行值。
- 一种孤岛转联网控制装置,其特征在于包括换流器检测过流单元,交流侧电压检测单元,以及孤岛转联网模式转换单元;在柔性直流输电系统换流站孤岛运行情况下,所述换流器检测过流单元检测换流器阀侧三相交流电流或换流器桥臂电流是否出现过流情况,过流定值取为额定桥臂电流的n倍;如果出现过流,并持续时间t1,则进入交流侧电压检测单元,否则返回换流器检测过流单元;所述交流侧电压检测单元先闭锁换流器,然后检测交流侧电压是否低于阈值,如果低于阈值,且持续时间t2,则解锁换流器,返回换流器检测过流单元继续进行检测,否则进入孤岛转联网模式转换单元;所述孤岛转联网模式转换单元作用是进行控制方式转换,在控制方式转换的瞬间,有功功率和无功功率指令维持当前有功功率和无功功率的运行值,或者转 换后,有功功率和无功功率转换到0,逐渐升到转换前运行值。
- 一种孤岛转联网控制系统,其特征在于,包括换流器、上层控制器以及阀控装置,其中,(1)在柔性直流输电系统换流站孤岛运行情况下,上层控制器检测换流器阀侧三相交流电流或换流器桥臂电流是否出现过流情况,过流定值取为额定桥臂电流的n倍;如果出现过流,并持续时间t1,则进入步骤(2),否则返回步骤(1);(2)闭锁换流器,检测交流侧电压是否低于阈值,如果低于阈值,且持续时间t2,则解锁换流器,返回步骤(1),否则进入步骤(3);(3)上层控制器锁相环节设定跟踪当前交流侧电压相位,同时启动控制方式转换,由当前柔性直流输电系统换流站孤岛控制转换到有源控制方式,并解锁换流器。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/534,024 US10418816B2 (en) | 2014-12-23 | 2015-12-09 | Passive islanding-to-grid-connected switch method |
DK15871856.9T DK3211743T3 (da) | 2014-12-23 | 2015-12-09 | Ø-til-netværk-omskiftningsfremgangsmåde |
RU2017118086A RU2674167C2 (ru) | 2014-12-23 | 2015-12-09 | Способ переключения с пассивного секционирования на подключение к энергосистеме |
ES15871856T ES2761661T3 (es) | 2014-12-23 | 2015-12-09 | Método de conmutación de isla a red |
CA2970125A CA2970125C (en) | 2014-12-23 | 2015-12-09 | Passive islanding-to-grid-connected switch method |
KR1020177014862A KR101972562B1 (ko) | 2014-12-23 | 2015-12-09 | 섬에서 계통 연계로 스위칭하는 방법 |
EP15871856.9A EP3211743B1 (en) | 2014-12-23 | 2015-12-09 | Island-to-network switching method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410812231.2 | 2014-12-23 | ||
CN201410812231.2A CN104485683B (zh) | 2014-12-23 | 2014-12-23 | 一种孤岛转联网方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016101787A1 true WO2016101787A1 (zh) | 2016-06-30 |
Family
ID=52760204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/096747 WO2016101787A1 (zh) | 2014-12-23 | 2015-12-09 | 一种孤岛转联网方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10418816B2 (zh) |
EP (1) | EP3211743B1 (zh) |
KR (1) | KR101972562B1 (zh) |
CN (1) | CN104485683B (zh) |
CA (1) | CA2970125C (zh) |
DK (1) | DK3211743T3 (zh) |
ES (1) | ES2761661T3 (zh) |
PT (1) | PT3211743T (zh) |
RU (1) | RU2674167C2 (zh) |
WO (1) | WO2016101787A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112968465A (zh) * | 2021-02-01 | 2021-06-15 | 北京四方继保自动化股份有限公司 | 一种基于电压瞬时监测的换流器交流并网转离网无缝切换控制方法 |
CN113922406A (zh) * | 2020-07-10 | 2022-01-11 | 南京南瑞继保电气有限公司 | 一种柔性直流电网的控制方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104485683B (zh) * | 2014-12-23 | 2018-07-06 | 南京南瑞继保电气有限公司 | 一种孤岛转联网方法 |
CN105140948B (zh) * | 2015-07-06 | 2018-03-30 | 南京南瑞继保电气有限公司 | 柔性直流输电系统功率协调控制方法 |
CN105552962B (zh) * | 2016-02-01 | 2018-10-19 | 易事特集团股份有限公司 | 微电网系统及其控制方法 |
CN105870909B (zh) * | 2016-03-30 | 2017-10-13 | 南京南瑞继保电气有限公司 | 一种直流电网电压控制的方法 |
CN106451458A (zh) * | 2016-09-18 | 2017-02-22 | 许继集团有限公司 | 一种柔性直流输电网的无源控制方法和无源控制器 |
CN108023337B (zh) | 2016-10-31 | 2019-07-23 | 南京南瑞继保电气有限公司 | 一种柔性直流输电系统换流器运行在孤岛状态下故障限流控制与保护配合方法 |
CN106953349B (zh) * | 2017-04-27 | 2019-06-21 | 南京南瑞继保电气有限公司 | 一种用于柔性直流输电系统孤岛启动的方法 |
CN107134800B (zh) * | 2017-04-27 | 2019-12-24 | 许继电气股份有限公司 | 一种直流输电系统的双极vsc无源控制方法及装置 |
JP7143183B2 (ja) * | 2018-10-25 | 2022-09-28 | 株式会社東芝 | 制御装置、および制御方法 |
CN110061529B (zh) * | 2019-04-19 | 2022-12-06 | 合肥工业大学 | 柔性多状态开关的平滑切换控制方法 |
CN113131444B (zh) * | 2020-01-15 | 2024-06-25 | 许继集团有限公司 | 一种柔性直流输电系统的桥臂电流应力降低方法及系统 |
CN111130141B (zh) * | 2020-01-17 | 2022-10-04 | 中国电力科学研究院有限公司 | 一种用于柔性直流换流站联网与孤岛运行的切换控制器 |
US11749997B2 (en) | 2020-06-05 | 2023-09-05 | Eaton Intelligent Power Limited | Synchronization of electrical power grids |
CN111934354B (zh) * | 2020-08-24 | 2021-11-30 | 北京四方继保自动化股份有限公司 | 一种模块化多电平换流器离网转并网控制方法和系统 |
CN114336723B (zh) * | 2020-09-29 | 2024-02-02 | 南京南瑞继保电气有限公司 | 柔性直流输电系统换流器孤岛故障穿越控制方法及装置 |
CN113394809B (zh) * | 2021-06-24 | 2022-07-22 | 南方电网科学研究院有限责任公司 | 基于电网构造型的柔性直流孤岛控制方法、装置及介质 |
CN114123181A (zh) * | 2021-11-24 | 2022-03-01 | 许继集团有限公司 | 一种配电网柔性合环装置的模式切换控制方法及装置 |
CN115047333B (zh) * | 2022-08-11 | 2022-11-01 | 国网经济技术研究院有限公司 | 一种海上平台换流阀码头无源解锁试验方法及系统 |
CN115663902A (zh) * | 2022-11-16 | 2023-01-31 | 国网浙江省电力有限公司舟山供电公司 | 一种柔性直流输电系统孤岛运行转联网运行的方法 |
CN115663878B (zh) * | 2022-12-15 | 2023-04-25 | 国网山东省电力公司济南供电公司 | 一种面向直流配电控制系统的换流器运行控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255329A (zh) * | 2011-04-14 | 2011-11-23 | 东南大学 | 一种光伏并网系统的孤岛检测方法 |
CN102403735A (zh) * | 2011-12-19 | 2012-04-04 | 天津市电力公司 | 一种用于微网在孤岛与并网模式之间切换的方法及系统 |
CN102510124A (zh) * | 2011-11-25 | 2012-06-20 | 北京金风科创风电设备有限公司 | 用于微网的从孤岛模式切换到并网模式的模式切换方法 |
US20140103727A1 (en) * | 2012-10-11 | 2014-04-17 | Earl Energy, LLC | Island grid power supply apparatus and methods using energy storage for transient stabilization |
CN104485683A (zh) * | 2014-12-23 | 2015-04-01 | 南京南瑞继保电气有限公司 | 一种孤岛转联网方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE463953B (sv) * | 1989-06-19 | 1991-02-11 | Asea Brown Boveri | Anlaeggning foer avtappning av elektrisk kraft fraan en hoegspaend likstroemstransmissionslinje |
JP3265398B2 (ja) * | 1992-01-30 | 2002-03-11 | 株式会社日立製作所 | 直流送電装置の制御装置 |
JP3192918B2 (ja) * | 1995-04-18 | 2001-07-30 | 三洋電機株式会社 | 系統連系電源装置 |
US7183667B2 (en) * | 2003-12-19 | 2007-02-27 | Square D Company | Method and apparatus for power inverter synchronization |
DE102004034333A1 (de) * | 2004-07-09 | 2006-05-18 | Siemens Ag | Verfahren zum Regeln eines an einer Gleichspannungsquelle angeschlossenen Stromrichters |
US7408268B1 (en) * | 2005-08-04 | 2008-08-05 | Magnetek, S.P.A. | Anti-islanding method and system for distributed power generation systems |
US8823416B2 (en) * | 2010-07-14 | 2014-09-02 | Virginia Tech Intellectual Properties, Inc. | Use of PLL stability for islanding detection |
CN102403537A (zh) * | 2011-11-30 | 2012-04-04 | 南京双登科技发展研究院有限公司 | 一种磷酸铁锂电池制作方法 |
US9634673B2 (en) * | 2013-01-30 | 2017-04-25 | Virginia Tech Intellectual Properties, Inc. | Anti-islanding detection for three-phase distributed generation |
US8957666B2 (en) * | 2013-04-23 | 2015-02-17 | Virgina Tech Intellectual Properties, Inc. | Anti-islanding protection in three-phase converters using grid synchronization small-signal stability |
US9490626B2 (en) * | 2013-02-14 | 2016-11-08 | Aeg Power Solutions Bv | Methods for anti-islanding in distributed-source electrical power generation and distribution systems and electrical systems and apparatus using same |
CN103647286A (zh) * | 2013-11-15 | 2014-03-19 | 许继集团有限公司 | 一种模块化多电平换流器孤岛切换控制方法 |
CN103904677B (zh) * | 2014-03-27 | 2015-09-23 | 浙江大学 | 一种vsc-hvdc在联网与孤岛运行方式间的切换控制方法 |
CN103904676B (zh) * | 2014-03-27 | 2016-01-20 | 浙江大学 | 一种vsc-hvdc的下垂控制方法 |
-
2014
- 2014-12-23 CN CN201410812231.2A patent/CN104485683B/zh active Active
-
2015
- 2015-12-09 CA CA2970125A patent/CA2970125C/en active Active
- 2015-12-09 WO PCT/CN2015/096747 patent/WO2016101787A1/zh active Application Filing
- 2015-12-09 KR KR1020177014862A patent/KR101972562B1/ko active IP Right Grant
- 2015-12-09 DK DK15871856.9T patent/DK3211743T3/da active
- 2015-12-09 PT PT158718569T patent/PT3211743T/pt unknown
- 2015-12-09 EP EP15871856.9A patent/EP3211743B1/en active Active
- 2015-12-09 ES ES15871856T patent/ES2761661T3/es active Active
- 2015-12-09 US US15/534,024 patent/US10418816B2/en active Active
- 2015-12-09 RU RU2017118086A patent/RU2674167C2/ru active IP Right Revival
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255329A (zh) * | 2011-04-14 | 2011-11-23 | 东南大学 | 一种光伏并网系统的孤岛检测方法 |
CN102510124A (zh) * | 2011-11-25 | 2012-06-20 | 北京金风科创风电设备有限公司 | 用于微网的从孤岛模式切换到并网模式的模式切换方法 |
CN102403735A (zh) * | 2011-12-19 | 2012-04-04 | 天津市电力公司 | 一种用于微网在孤岛与并网模式之间切换的方法及系统 |
US20140103727A1 (en) * | 2012-10-11 | 2014-04-17 | Earl Energy, LLC | Island grid power supply apparatus and methods using energy storage for transient stabilization |
CN104485683A (zh) * | 2014-12-23 | 2015-04-01 | 南京南瑞继保电气有限公司 | 一种孤岛转联网方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3211743A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113922406A (zh) * | 2020-07-10 | 2022-01-11 | 南京南瑞继保电气有限公司 | 一种柔性直流电网的控制方法 |
CN113922406B (zh) * | 2020-07-10 | 2024-04-05 | 南京南瑞继保电气有限公司 | 一种柔性直流电网的控制方法 |
CN112968465A (zh) * | 2021-02-01 | 2021-06-15 | 北京四方继保自动化股份有限公司 | 一种基于电压瞬时监测的换流器交流并网转离网无缝切换控制方法 |
CN112968465B (zh) * | 2021-02-01 | 2024-05-10 | 北京四方继保自动化股份有限公司 | 一种基于电压瞬时监测的换流器交流并网转离网无缝切换控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3211743A4 (en) | 2018-01-24 |
RU2674167C2 (ru) | 2018-12-05 |
CN104485683B (zh) | 2018-07-06 |
CN104485683A (zh) | 2015-04-01 |
KR101972562B1 (ko) | 2019-04-25 |
CA2970125C (en) | 2023-02-14 |
RU2017118086A3 (zh) | 2018-11-26 |
DK3211743T3 (da) | 2019-12-16 |
PT3211743T (pt) | 2019-11-12 |
RU2017118086A (ru) | 2018-11-26 |
ES2761661T3 (es) | 2020-05-20 |
EP3211743A1 (en) | 2017-08-30 |
US20180219380A1 (en) | 2018-08-02 |
EP3211743B1 (en) | 2019-10-09 |
CA2970125A1 (en) | 2016-06-30 |
KR20170101903A (ko) | 2017-09-06 |
US10418816B2 (en) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016101787A1 (zh) | 一种孤岛转联网方法 | |
Zhao et al. | Power system support functions provided by smart inverters—A review | |
Ochs et al. | A method of seamless transitions between grid-tied and stand-alone modes of operation for utility-interactive three-phase inverters | |
CN102222937B (zh) | 一种光伏并网逆变器及其并网控制方法 | |
US20210143671A1 (en) | Synchronous soft-start networking control strategy for parallel auxiliary converters of emu | |
CN110011282B (zh) | 一种直流短路故障性质判断方法及直流系统重合闸方法 | |
CN111564896B (zh) | 一种电压暂降治理装置平滑切换及柔性退出方法及装置 | |
CN104362665B (zh) | 一种微电网离网切换到并网的控制系统及控制方法 | |
CN111934330B (zh) | 海上风电经柔直并网系统交流故障下的主动能量控制方法 | |
CN104184151B (zh) | 一种实现微网不同运行模式平滑切换的动态电压恢复器 | |
CN104578128B (zh) | 一种柔性直流输电系统孤岛转联网的切换方法 | |
US20200295563A1 (en) | Voltage and current control method and device for direct-current power transmission system | |
CN103645404A (zh) | 一种微电网孤岛检测方法 | |
CN107591816A (zh) | 光伏并网逆变器的无功补偿方法、装置及光伏并网逆变器 | |
WO2015070493A1 (zh) | 一种模块化多电平换流器孤岛切换控制方法 | |
JP2011193685A (ja) | パワーコンディショナ | |
CN104111406B (zh) | 一种基于频率反馈扰动的孤岛检测方法与装置 | |
CN103532423A (zh) | 一种静止坐标系下复合控制电流源型并网逆变器 | |
CN108462197B (zh) | 一种柔性直流输电换流阀的启动控制方法及装置 | |
CN104198841A (zh) | 一种光伏并网逆变器中的孤岛检测方法 | |
CN108123464A (zh) | 一种储能系统的微网平滑切换控制方法 | |
CN116526482A (zh) | 一种多低压柔性互联装置并网自适应协调控制方法和装置 | |
CN105807841B (zh) | 一种功率环控制限载方法和装置 | |
Seo et al. | DC islanding detection algorithm using injection current perturbation technique for photovoltaic converters in DC distribution | |
WO2016149926A1 (zh) | 一种直流配电网分布式电源的防孤岛方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15871856 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017118086 Country of ref document: RU Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015871856 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177014862 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2970125 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15534024 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |