Nothing Special   »   [go: up one dir, main page]

RU2674167C2 - Способ переключения с пассивного секционирования на подключение к энергосистеме - Google Patents

Способ переключения с пассивного секционирования на подключение к энергосистеме Download PDF

Info

Publication number
RU2674167C2
RU2674167C2 RU2017118086A RU2017118086A RU2674167C2 RU 2674167 C2 RU2674167 C2 RU 2674167C2 RU 2017118086 A RU2017118086 A RU 2017118086A RU 2017118086 A RU2017118086 A RU 2017118086A RU 2674167 C2 RU2674167 C2 RU 2674167C2
Authority
RU
Russia
Prior art keywords
converter
current
switching
voltage
control mode
Prior art date
Application number
RU2017118086A
Other languages
English (en)
Other versions
RU2017118086A3 (ru
RU2017118086A (ru
Inventor
Юнлонг ДОНГ
Джи Тиан
Жаокинг ХУ
Хаиуинг ЛИ
Донгминг САО
Хаибин ЛИУ
Юу ЛУ
Original Assignee
Нр Электрик Ко., Лтд.
Нр Электрик Инжиниринг Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нр Электрик Ко., Лтд., Нр Электрик Инжиниринг Ко., Лтд. filed Critical Нр Электрик Ко., Лтд.
Publication of RU2017118086A3 publication Critical patent/RU2017118086A3/ru
Publication of RU2017118086A publication Critical patent/RU2017118086A/ru
Application granted granted Critical
Publication of RU2674167C2 publication Critical patent/RU2674167C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/04Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Изобретение относится к области электротехники. Технический результат заключается в обеспечении точного и плавного переключения системы адаптивной передачи постоянного тока из состояния изолированной работы в состояние сетевой работы и достигается за счет использования способа переключения с пассивного секционирования на подключение к энергосистеме для системы передачи ПТВН-ПНВ. Когда система передачи ПТВН-ПН находится в рабочем состоянии, ее переход в состояние подключения к энергосистеме определяется посредством обнаружения возникновения явления перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя и посредством обнаружения изменения состояния напряжения на стороне переменного тока. Система переключается из режима изолированной работы в режим управления подключением к энергосистеме. В момент переключения режим сетевого управления плавно переключается посредством изменения команды мощности и отслеживания выполняющейся фазы при текущем напряжении энергосети, чтобы поддерживать постоянную работу. 3 н. и 3 з.п. ф-лы, 4 ил.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Область техники изобретения
Настоящее изобретение относится к области электроники больших мощностей, в частности, к способу переключения с секции на активную сеть в системе передачи постоянного тока высокого напряжения на основе преобразователя напряжения (ПТВН-ПН).
Предшествующий уровень техники
Преобразователь напряжения используется для передачи постоянного тока высокого напряжения, а управление активной и реактивной мощностями выполняется автономно и быстро, чтобы увеличить стабильность системы, предотвратить колебания частоты и напряжения системы, а также обеспечить стабильную работу системы переменного тока, подключенной к энергосистеме. Адаптивная передача постоянного тока имеет большие преимущества в таких сферах, как подключение к новой энергосистеме, подключение к энергосистеме распределенного производства энергии, питание секции и питание распределительной городской сети. Таким образом, исследования технологий, относящихся к адаптивной передаче постоянного тока, имеют большое значение.
Если система адаптивной передачи постоянного тока находится в состоянии изолированной работы, ближний конец в преобразовательной подстанции замыкается для подключения к энергосистеме переменного тока, либо переключатель удаленного конца замыкается. Адаптивная преобразовательная подстанция постоянного тока соединена параллельно с активной энергосистемой для работы. Адаптивная система постоянного тока должна переключаться из текущего режима изолированной работы и управления в режим работы и управления от энергосистемы, чтобы поддерживать постоянную работу системы передачи постоянного тока.
При нахождении системы адаптивной передачи постоянного тока в режиме изолированной работы, если она входит в состояние подключения к энергосистеме из-за замыкания переключателя, момент, в который система адаптивной передачи постоянного тока входит в это состояние, должен быть точно определен, а текущая изолированная работа должна быть вовремя переключена на активную работу. В противном случае относительно большая длительность переключения приведет к отсутствию синхронизации энергосистемы, и впоследствии система передачи ПТВН-ПН прекратит работу. При этом также необходимо плавное переключение на сетевую работу в режиме реального времени, чтобы система передачи ПТВН-ПН не выполняла защитных действий и не выходила из строя, что может быть вызвано явлениями перегрузки по току или перенапряжения, которые возникают в момент переключения. В настоящее время нет каких-либо сведений, относящихся к способу обнаружения изменений в работе энергосистемы с помощью системы адаптивной передачи постоянного тока в состоянии изолированной работы для входа в сетевое состояние и плавного управления в режиме реального времени.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Цель настоящего изобретения состоит в создании способа обнаружения изменений в работе энергосистемы с помощью системы адаптивной передачи постоянного тока в состоянии изолированной работы для входа в состояние подключения к энергосистеме, чтобы обеспечить точное и плавное переключение системы адаптивной передачи постоянного тока из состояния изолированной работы в состояние сетевой работы.
Для достижения вышеуказанной цели в настоящем изобретении используется следующее техническое решение:
В случае обнаружения явления перегрузки по току на плече моста преобразователя и изменении состояний напряжения на сетевой стороне и стороне вентиля, система управления определяет, перейдет ли система передачи постоянного тока высокого напряжения на основе преобразователя напряжения (ПТВН-ПН) в состояние подключения к энергосистеме, включая следующие этапы:
(1) когда преобразовательная подстанция системы передачи ПТВН-ПН находится в состоянии изолированной работы, обнаружение перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя, и установление постоянного значения перегрузки по току на n-кратный номинальный ток плеча моста; в случае возникновения перегрузки по току, при ее длительности t1, выполнение этапа (2); в противном случае повторное выполнение этапа (1);
(2) блокировка преобразователя и определение, не является ли напряжение на стороне переменного тока ниже порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, разблокировка преобразователя и повторное выполнение этапа (1); в противном случае выполнение этапа (3); и
(3) управление настройкой контура фазовой синхронизации системы для отслеживания текущей фазы напряжения на стороне переменного тока, и одновременно начало переключения режима управления, переключение из текущего режима изолированного управления преобразовательной подстанции системы адаптивной передачи постоянного тока в режим активного управления, и разблокировка преобразователя.
В вышеописанном этапе (1) постоянное значение перегрузки по току устанавливается на n-кратный номинальный ток на стороне вентиля преобразователя или ток плеча моста преобразователя. Диапазон значений n составляет от 1 до 10, диапазон значений длительности t1 составляет от 0 до 1 с, диапазон значений t2 составляет от 0 до 1 с.
В этапе (2) выше диапазон значений для порогового значения напряжения на стороне переменного тока составляет от 0 до 0,99 о.е., а диапазон значений длительности t - от 0 до 1 с.
В момент переключения режима управления на этапе (3) команды активной и реактивной мощностей поддерживают текущие рабочие значения активной и реактивной мощностей. Как вариант, активная и реактивная мощности могут составлять 0 и постепенно увеличиваться путем смещения к текущим рабочим значениям.
Настоящее изобретение также включает устройство управления переключением из изолированного режима в сетевой режим, включая устройство обнаружения перегрузки по току преобразователя, устройство обнаружения напряжения на стороне переменного тока, и устройство переключения из изолированного режима в сетевой.
Когда преобразовательная подстанция системы передачи ПТВН-ПН находится в состоянии изолированной работы, устройство измерения перегрузки по току преобразователя определяет наличие перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя, и устанавливает постоянное значение перегрузки по току на n-кратный номинальный ток плеча моста; в случае возникновения перегрузки по току, при ее длительности t1, срабатывает устройство обнаружения напряжения на стороне переменного тока; в противном случае повторно срабатывает устройство обнаружения перегрузки по току преобразователя.
Сначала устройство обнаружения напряжения на стороне переменного тока блокирует преобразователь, затем определяет, не ниже ли напряжение на стороне переменного тока порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, преобразователь разблокируется, и устройство обнаружения перегрузки по току преобразователя продолжает осуществлять распознавание; в противном случае срабатывает устройство переключения из изолированного режима в сетевой режим.
Функция устройства переключения из изолированного режима в сетевой режим заключается в переключении режима управления; в момент переключения режима управления команды активной и реактивной мощностей поддерживают текущие рабочие значения активной и реактивной мощностей; или, после переключения, активная и реактивная мощности преобразовываются в значение 0 и постепенно увеличиваются до рабочих значений перед переключением.
Настоящее изобретение также предусматривает систему управления переключением из изолированного режима в сетевой режим, которая включает преобразователь, контроллер верхнего уровня и устройство с вентильным управлением, причем: (1) когда преобразовательная подстанция системы адаптивной передачи постоянного тока находится в состоянии изолированной работы, контроллер верхнего уровня определяет наличие перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя, и устанавливает постоянное значение перегрузки по току на n-кратный номинальный ток плеча моста; а в случае возникновения перегрузки по току, при ее длительности t1, выполняется этап (2), в противном случае повторно выполняется этап (1);
(2) преобразователь блокируется, и определяется, не ниже ли напряжение на стороне переменного тока порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, преобразователь разблокируется, и повторно выполняется этап (1); в противном случае выполняется этап (3);
(3) контроллер верхнего уровня устанавливает контур фазовой синхронизации для отслеживания текущей фазы напряжения на стороне переменного тока, и одновременно начинает переключение режима управления, переключается из текущего режима изолированного управления преобразовательной подстанции системы адаптивной передачи постоянного тока в режим активного управления, и разблокирует преобразователь.
Благодаря использованию вышеуказанных решений, настоящее изобретение имеет следующие положительные эффекты:
В способе обнаружения изменений в работе энергосистемы с помощью системы адаптивной передачи постоянного тока в состоянии изолированной работы для входа в сетевое состояние по настоящему изобретению, определение момента подключения к энергосистеме является точным, и можно плавно переключиться на сетевую работу, не затрагивая энергосистему.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
ФИГ. 1 - структурная блок-схема двойных станций системы передачи ПТВН-ПН;
ФИГ. 2 - блок-схема режима управления преобразовательной подстанцией обнаружения подключения к энергосистеме;
ФИГ. 3 - блок-схема режима управления станцией контроля напряжения постоянного тока;
ФИГ. 4 - технологическая схема обнаружения подключения к энергосистеме ПТВН-ПН в режиме изолированной работы.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Технические решения подробно описаны ниже со ссылкой на прилагаемые чертежи и конкретные варианты осуществления изобретения.
Как показано на ФИГ. 1, преобразовательные подстанции 201 и 202 системы адаптивной передачи постоянного тока находятся в состоянии изолированной работы. Переключатель удаленного конца 102 не замкнут, системы передачи ПТВН-ПН 201 и 202 не подключены к энергосистеме переменного тока 400 и находятся в состоянии изолированной работы. 202 - это сторона управления напряжением постоянного тока. См. ФИГ. 3 для получения информации о режиме управления 202. В 201 используется режим управления на ФИГ. 2. На ФИГ. 3 показан режим управления напряжением постоянного тока, который остается неизменным до и после переключения. Переключение в режим активного управления происходит, когда в секции обнаружения подключения к энергосистеме на ФИГ. 2 определяется сетевое состояние. Если переключатель 102 замкнут, переключение с изолированной работы на сетевую работу определяется (см. ФИГ. 4) в соответствии со следующими этапами:
(1) когда преобразовательная подстанция системы адаптивной передачи постоянного тока находится в состоянии изолированной работы, обнаружение перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя, и установление постоянного значения перегрузки по току на n-кратный номинальный ток плеча моста; в случае возникновения перегрузки по току, при ее длительности t1, выполнение этапа (2); в противном случае повторное выполнение этапа (1);
(2) блокировка преобразователя и определение, не является ли напряжение на стороне переменного тока ниже порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, разблокировка преобразователя и повторное выполнение этапа (1); в противном случае выполнение этапа (3);
(3) управление настройкой контура фазовой синхронизации системы для отслеживания текущей фазы напряжения на стороне переменного тока, и одновременно начало переключения режима управления, переключение из текущего режима изолированного управления преобразовательной подстанции системы адаптивной передачи постоянного тока в режим активного управления, и разблокировка преобразователя.
Диапазон значений длительности t1 составляет от 0 до 1 с, диапазон значений t2 составляет от 0 до 1 с.
После замыкания переключателя 102, если сетевая сторона 400 находится в активном состоянии, преобразователь 201 переключается из режима изолированного управления в активный режим управления в соответствии с приведенными выше этапами. В специальных случаях сетевая сторона 400 является пассивной системой. После замыкания переключателя 102, явление перегрузки по току на плече моста не возникает в нормальном состоянии. Следовательно, режим управления не переключается. Как вариант, после блокировки преобразователя, если обнаружено, что напряжение стороны переменного тока ниже порогового значения, состояние сетевого обнаружения немедленно прерывается на определенный период времени, запрещено переключаться из изолированной работы на сетевую, и в то же время преобразователь сразу разблокируется для запуска импульса. Процесс сетевого определения завершается, и преобразователь 201 остается в начальном состоянии изолированной работы.
Настоящее изобретение также предусматривает устройство управления переключением с пассивного секционирования на подключение к энергосистеме, включая устройство обнаружения перегрузки по току преобразователя, устройство обнаружения напряжения стороны переменного тока, и устройство переключения с изолированного режима на сетевой. Когда преобразовательная подстанция системы передачи ПТВН-ПН находится в состоянии изолированной работы, устройство измерения перегрузки по току преобразователя определяет наличие перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя, и устанавливает постоянное значение перегрузки по току на n-кратный номинальный ток плеча моста; в случае возникновения перегрузки по току, при ее длительности t1, срабатывает устройство обнаружения напряжения на стороне переменного тока; а в противном случае, повторно срабатывает устройство определения перегрузки по току преобразователя.
Сначала устройство определения напряжения на стороне переменного тока блокирует преобразователь, затем определяет, не ниже ли напряжение на стороне переменного тока порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, преобразователь разблокируется, и устройство определения перегрузки по току преобразователя продолжает работать осуществлять распознавание; а в противном случае, срабатывает устройство переключения с пассивного секционирования на подключение к энергосистеме.
Функция устройства переключения режима пассивного секционирования на подключение к энергосистеме заключается в переключении режима управления; в момент переключения режима управления, команды активной и реактивной мощностей поддерживают текущие рабочие значения активной и реактивной мощностей; или, после переключения, активная и реактивная мощности преобразовываются на значение 0, и постепенно увеличиваются до рабочих значений перед переключением.
Настоящее изобретение также предусматривает систему управления переключения с пассивного секционирования на подключение к энергосистеме, включая преобразователь, контроллер верхнего уровня и устройство с вентильным управлением, причем:
(1) когда преобразовательная подстанция системы передачи ПТВН-ПН находится в состоянии изолированной работы, контроллер верхнего уровня определяет наличие перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя, и устанавливает постоянное значение перегрузки по току на n-кратный номинальный ток плеча моста; а в случае возникновения перегрузки по току, при ее длительности t1, выполняется этап (2), в противном случае выполняется этап (1);
(2) преобразователь блокируется и определяется, не ниже ли напряжение на стороне переменного тока порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, преобразователь разблокируется, и снова выполняется этап (1); в противном случае выполняется этап (3);
(3) контроллер верхнего уровня устанавливает контур фазовой синхронизации для отслеживания текущей фазы напряжения на стороне переменного тока, и одновременно начинает переключение режима управления, переключает из текущего режима изолированного управления преобразовательной подстанции системы передачи ПТВН-ПН в активный режим управления, и разблокирует преобразователь.
Вышеприведенные варианты осуществления в большей степени используются для описания технических идей настоящего изобретения, но не определяют объем правовой охраны изобретения. Все технические идеи, предложенные по настоящему изобретению, и любые модификации, основанные на технических решениях, входят в объем правовой охраны изобретения.

Claims (14)

1. Способ переключения с пассивного секционирования на подключение к энергосистеме для системы передачи постоянного тока высокого напряжения на основе преобразователя напряжения (ПТВН-ПН), отличающийся тем, что он включает следующие этапы:
(1) когда преобразовательная подстанция системы передачи ПТВН-ПН находится в рабочем состоянии пассивного секционирования: определение наличия перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя и установление постоянного значения перегрузки по току на n-кратный номинальный ток плеча моста; в случае возникновения перегрузки по току, при ее длительности t1, выполнение этапа (2); в противном случае повторное выполнение этапа (1);
(2) блокировка преобразователя и определение, не является ли напряжение на стороне переменного тока меньше, чем пороговое значение; если напряжение ниже порогового значения и его длительность составляет t2, разблокировка преобразователя и повторное выполнение этапа (1); в противном случае выполнение этапа (3);
(3) управление настройкой контура фазовой синхронизации системы для отслеживания текущей фазы напряжения на стороне переменного тока и одновременно начало переключения режима управления, переключение из текущего режима изолированного управления преобразовательной подстанции системы передачи ПТВН-ПН в режим активного управления и разблокировка преобразователя.
2. Способ по п. 1, отличающийся тем, что на этапе (1) постоянное значение перегрузки по току устанавливается на n-кратный номинальный ток плеча моста; диапазон значений n составляет от 1 до 10, диапазон значений длительности t1 составляет от 0 до 1 с, диапазон значений t2 составляет от 0 до 1 с.
3. Способ по п. 1, отличающийся тем, что на этапе (2) диапазон значений для порогового значения напряжения на стороне переменного тока составляет от 0 до 0,99 о.е, а диапазон значений длительности t - от 0 до 1 с.
4. Способ по п. 1, отличающийся тем, что в момент переключения режима управления на этапе (3) команды активной и реактивной мощностей поддерживают текущие рабочие значения активной и реактивной мощностей; или после переключения активная и реактивная мощности преобразовываются на значение 0 и постепенно увеличиваются до рабочих значений перед переключением.
5. Устройство управления переключением с пассивного секционирования на подключение к энергосистеме, отличающееся тем, что включает устройство обнаружения перегрузки по току преобразователя, устройство обнаружения напряжения стороны переменного тока и устройство переключения с пассивного секционирования на подключение к энергосистеме, при этом когда преобразовательная подстанция системы передачи ПТВН-ПН находится в состоянии пассивного секционирования, устройство измерения перегрузки по току преобразователя определяет наличие перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя и устанавливает постоянное значение перегрузки по току на n-кратный номинальный ток плеча моста; в случае возникновения перегрузки по току, при ее длительности t1, срабатывает устройство обнаружения напряжения на стороне переменного тока; а в противном случае повторно срабатывает устройство определения перегрузки по току преобразователя;
первоначально устройство определения напряжения на стороне переменного тока блокирует преобразователь, затем определяет, не ниже ли напряжение на стороне переменного тока порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, преобразователь разблокируется и устройство определения перегрузки по току преобразователя продолжает осуществлять распознавание; в противном случае срабатывает устройство переключения с пассивного секционирования на подключение к энергосистеме;
функция устройства переключения режима пассивного секционирования на подключение к энергосистеме заключается в переключении режима управления; в момент переключения режима управления команды активной и реактивной мощностей поддерживают текущие рабочие значения активной и реактивной мощностей; или после переключения активная и реактивная мощности преобразовываются на значение 0 и постепенно увеличиваются до рабочих значений перед переключением.
6. Система управления переключения с пассивного секционирования на подключение к энергосистеме, включающая преобразователь, контроллер верхнего уровня и устройство с вентильным управлением, отличающаяся тем, что
(1) когда преобразовательная подстанция системы адаптивной передачи постоянного тока находится в состоянии пассивного секционирования, контроллер верхнего уровня определяет наличие перегрузки по трехфазному переменному току на стороне вентиля преобразователя или по току на плече моста преобразователя и устанавливает постоянное значение перегрузки по току на n-кратный номинальный ток плеча моста; а в случае возникновения перегрузки по току, при ее длительности t1, выполняется этап (2), в противном случае выполняется этап (1);
(2) преобразователь блокируется и определяется, не ниже ли напряжение на стороне переменного тока порогового значения; если напряжение ниже порогового значения и его длительность составляет t2, преобразователь разблокируется и снова выполняется этап (1); в противном случае выполняется этап (3); и
(3) контроллер верхнего уровня устанавливает контур фазовой синхронизации для отслеживания текущей фазы напряжения на стороне переменного тока и одновременно начинает переключение режима управления, переключение из текущего режима изолированного управления преобразовательной подстанции системы адаптивной передачи постоянного тока в активный режим управления и разблокирует преобразователь.
RU2017118086A 2014-12-23 2015-12-09 Способ переключения с пассивного секционирования на подключение к энергосистеме RU2674167C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410812231.2 2014-12-23
CN201410812231.2A CN104485683B (zh) 2014-12-23 2014-12-23 一种孤岛转联网方法
PCT/CN2015/096747 WO2016101787A1 (zh) 2014-12-23 2015-12-09 一种孤岛转联网方法

Publications (3)

Publication Number Publication Date
RU2017118086A3 RU2017118086A3 (ru) 2018-11-26
RU2017118086A RU2017118086A (ru) 2018-11-26
RU2674167C2 true RU2674167C2 (ru) 2018-12-05

Family

ID=52760204

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017118086A RU2674167C2 (ru) 2014-12-23 2015-12-09 Способ переключения с пассивного секционирования на подключение к энергосистеме

Country Status (10)

Country Link
US (1) US10418816B2 (ru)
EP (1) EP3211743B1 (ru)
KR (1) KR101972562B1 (ru)
CN (1) CN104485683B (ru)
CA (1) CA2970125C (ru)
DK (1) DK3211743T3 (ru)
ES (1) ES2761661T3 (ru)
PT (1) PT3211743T (ru)
RU (1) RU2674167C2 (ru)
WO (1) WO2016101787A1 (ru)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485683B (zh) * 2014-12-23 2018-07-06 南京南瑞继保电气有限公司 一种孤岛转联网方法
CN105140948B (zh) * 2015-07-06 2018-03-30 南京南瑞继保电气有限公司 柔性直流输电系统功率协调控制方法
CN105552962B (zh) * 2016-02-01 2018-10-19 易事特集团股份有限公司 微电网系统及其控制方法
CN105870909B (zh) * 2016-03-30 2017-10-13 南京南瑞继保电气有限公司 一种直流电网电压控制的方法
CN106451458A (zh) * 2016-09-18 2017-02-22 许继集团有限公司 一种柔性直流输电网的无源控制方法和无源控制器
CN108023337B (zh) 2016-10-31 2019-07-23 南京南瑞继保电气有限公司 一种柔性直流输电系统换流器运行在孤岛状态下故障限流控制与保护配合方法
CN106953349B (zh) * 2017-04-27 2019-06-21 南京南瑞继保电气有限公司 一种用于柔性直流输电系统孤岛启动的方法
CN107134800B (zh) * 2017-04-27 2019-12-24 许继电气股份有限公司 一种直流输电系统的双极vsc无源控制方法及装置
JP7143183B2 (ja) * 2018-10-25 2022-09-28 株式会社東芝 制御装置、および制御方法
CN110061529B (zh) * 2019-04-19 2022-12-06 合肥工业大学 柔性多状态开关的平滑切换控制方法
CN113131444B (zh) * 2020-01-15 2024-06-25 许继集团有限公司 一种柔性直流输电系统的桥臂电流应力降低方法及系统
CN111130141B (zh) * 2020-01-17 2022-10-04 中国电力科学研究院有限公司 一种用于柔性直流换流站联网与孤岛运行的切换控制器
US11749997B2 (en) 2020-06-05 2023-09-05 Eaton Intelligent Power Limited Synchronization of electrical power grids
CN113922406B (zh) * 2020-07-10 2024-04-05 南京南瑞继保电气有限公司 一种柔性直流电网的控制方法
CN111934354B (zh) * 2020-08-24 2021-11-30 北京四方继保自动化股份有限公司 一种模块化多电平换流器离网转并网控制方法和系统
CN114336723B (zh) * 2020-09-29 2024-02-02 南京南瑞继保电气有限公司 柔性直流输电系统换流器孤岛故障穿越控制方法及装置
CN112968465B (zh) * 2021-02-01 2024-05-10 北京四方继保自动化股份有限公司 一种基于电压瞬时监测的换流器交流并网转离网无缝切换控制方法
CN113394809B (zh) * 2021-06-24 2022-07-22 南方电网科学研究院有限责任公司 基于电网构造型的柔性直流孤岛控制方法、装置及介质
CN114123181A (zh) * 2021-11-24 2022-03-01 许继集团有限公司 一种配电网柔性合环装置的模式切换控制方法及装置
CN115047333B (zh) * 2022-08-11 2022-11-01 国网经济技术研究院有限公司 一种海上平台换流阀码头无源解锁试验方法及系统
CN115663902A (zh) * 2022-11-16 2023-01-31 国网浙江省电力有限公司舟山供电公司 一种柔性直流输电系统孤岛运行转联网运行的方法
CN115663878B (zh) * 2022-12-15 2023-04-25 国网山东省电力公司济南供电公司 一种面向直流配电控制系统的换流器运行控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089986C1 (ru) * 1989-06-19 1997-09-10 Асеа Браун Бовери АБ Система для отбора электроэнергии от высоковольтной линии передачи постоянного тока
CN102403537A (zh) * 2011-11-30 2012-04-04 南京双登科技发展研究院有限公司 一种磷酸铁锂电池制作方法
CN103647286A (zh) * 2013-11-15 2014-03-19 许继集团有限公司 一种模块化多电平换流器孤岛切换控制方法
US20140103727A1 (en) * 2012-10-11 2014-04-17 Earl Energy, LLC Island grid power supply apparatus and methods using energy storage for transient stabilization

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265398B2 (ja) * 1992-01-30 2002-03-11 株式会社日立製作所 直流送電装置の制御装置
JP3192918B2 (ja) * 1995-04-18 2001-07-30 三洋電機株式会社 系統連系電源装置
US7183667B2 (en) * 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
DE102004034333A1 (de) * 2004-07-09 2006-05-18 Siemens Ag Verfahren zum Regeln eines an einer Gleichspannungsquelle angeschlossenen Stromrichters
US7408268B1 (en) * 2005-08-04 2008-08-05 Magnetek, S.P.A. Anti-islanding method and system for distributed power generation systems
US8823416B2 (en) * 2010-07-14 2014-09-02 Virginia Tech Intellectual Properties, Inc. Use of PLL stability for islanding detection
CN102255329B (zh) 2011-04-14 2013-11-20 东南大学 一种光伏并网系统的孤岛检测方法
CN102510124A (zh) * 2011-11-25 2012-06-20 北京金风科创风电设备有限公司 用于微网的从孤岛模式切换到并网模式的模式切换方法
CN102403735B (zh) * 2011-12-19 2013-07-10 天津市电力公司 一种用于微网在孤岛与并网模式之间切换的方法及系统
US9634673B2 (en) * 2013-01-30 2017-04-25 Virginia Tech Intellectual Properties, Inc. Anti-islanding detection for three-phase distributed generation
US8957666B2 (en) * 2013-04-23 2015-02-17 Virgina Tech Intellectual Properties, Inc. Anti-islanding protection in three-phase converters using grid synchronization small-signal stability
US9490626B2 (en) * 2013-02-14 2016-11-08 Aeg Power Solutions Bv Methods for anti-islanding in distributed-source electrical power generation and distribution systems and electrical systems and apparatus using same
CN103904677B (zh) * 2014-03-27 2015-09-23 浙江大学 一种vsc-hvdc在联网与孤岛运行方式间的切换控制方法
CN103904676B (zh) * 2014-03-27 2016-01-20 浙江大学 一种vsc-hvdc的下垂控制方法
CN104485683B (zh) 2014-12-23 2018-07-06 南京南瑞继保电气有限公司 一种孤岛转联网方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089986C1 (ru) * 1989-06-19 1997-09-10 Асеа Браун Бовери АБ Система для отбора электроэнергии от высоковольтной линии передачи постоянного тока
CN102403537A (zh) * 2011-11-30 2012-04-04 南京双登科技发展研究院有限公司 一种磷酸铁锂电池制作方法
US20140103727A1 (en) * 2012-10-11 2014-04-17 Earl Energy, LLC Island grid power supply apparatus and methods using energy storage for transient stabilization
CN103647286A (zh) * 2013-11-15 2014-03-19 许继集团有限公司 一种模块化多电平换流器孤岛切换控制方法

Also Published As

Publication number Publication date
EP3211743A4 (en) 2018-01-24
CN104485683B (zh) 2018-07-06
CN104485683A (zh) 2015-04-01
KR101972562B1 (ko) 2019-04-25
CA2970125C (en) 2023-02-14
RU2017118086A3 (ru) 2018-11-26
WO2016101787A1 (zh) 2016-06-30
DK3211743T3 (da) 2019-12-16
PT3211743T (pt) 2019-11-12
RU2017118086A (ru) 2018-11-26
ES2761661T3 (es) 2020-05-20
EP3211743A1 (en) 2017-08-30
US20180219380A1 (en) 2018-08-02
EP3211743B1 (en) 2019-10-09
CA2970125A1 (en) 2016-06-30
KR20170101903A (ko) 2017-09-06
US10418816B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
RU2674167C2 (ru) Способ переключения с пассивного секционирования на подключение к энергосистеме
JP6419989B2 (ja) アクティブスタンドバイモードを有する電力変換器システム及びそれを制御する方法
CN103645404B (zh) 一种微电网孤岛检测方法和检测系统
CN103762581B (zh) 一种同塔双回直流输电系统周期性换相失败的防御方法
GB2551596A (en) Method and apparatus for fault prediction of sub-module in flexible direct current transmission converter valve
CN103683283B (zh) 一种微电网系统无缝切换的方法及系统
CN102291085B (zh) 具有低电压穿越能力的异步电机变频器装置
WO2018102935A1 (zh) 柔直控制系统暂时闭锁后再次解锁次数超值跳闸方法
CN110011282B (zh) 一种直流短路故障性质判断方法及直流系统重合闸方法
CN104065154A (zh) 一种变频器应急供电系统
CN104821710B (zh) 一种mmc-mtdc系统启动控制方法
CN103986403A (zh) 变频调速系统及方法
CN104821711B (zh) 一种模块化多电平柔性直流输电换流器启动方法
CN104578128B (zh) 一种柔性直流输电系统孤岛转联网的切换方法
CN104242333A (zh) 模块化多电平换流器柔性直流输电系统的自励起动方法
CN104362665A (zh) 一种微电网离网切换到并网的控制系统及控制方法
CN103730906A (zh) 一种抑制混合直流输电换相失败的协调控制方法
CN103138674A (zh) 大功率无刷双馈电动机变频调速系统及控制方法
CN103488883A (zh) 一种高压直流输电换流阀换相失败监测方法
CN108199402A (zh) 一种直流输电系统换相失败故障恢复方法
CN105391293A (zh) 一种模块化多电平柔性直流输电换流器启动方法
CN104198841A (zh) 一种光伏并网逆变器中的孤岛检测方法
CN107481878B (zh) 一种断路器选相合闸动作逻辑的优化方法
Hu et al. Commutation failure analysis considering direct current dynamics in LCC-HVDC systems
RU2746921C1 (ru) Способ и устройство контроля конвертера

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191210

NF4A Reinstatement of patent

Effective date: 20210119