WO2016170751A1 - Cold storage heat exchanger - Google Patents
Cold storage heat exchanger Download PDFInfo
- Publication number
- WO2016170751A1 WO2016170751A1 PCT/JP2016/001971 JP2016001971W WO2016170751A1 WO 2016170751 A1 WO2016170751 A1 WO 2016170751A1 JP 2016001971 W JP2016001971 W JP 2016001971W WO 2016170751 A1 WO2016170751 A1 WO 2016170751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- header
- cold storage
- heat exchanger
- header tank
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present disclosure relates to a compressor that compresses and discharges a refrigerant, a radiator that cools a refrigerant that has reached a high temperature, and a refrigerating heat exchanger that forms a refrigeration cycle apparatus together with a decompressor that decompresses the cooled refrigerant and evaporates the refrigerant. .
- a refrigeration cycle apparatus is used as an air conditioner. Attempts have been made to provide limited cooling even when the refrigeration cycle apparatus is stopped. For example, in a vehicle air conditioner, a refrigeration cycle apparatus is driven by a traveling engine. For this reason, if the engine stops while the vehicle is temporarily stopped, the refrigeration cycle apparatus stops. In order to provide limited cooling during such a temporary stop, a cold storage heat exchanger in which a cold storage material is added to the evaporator has been proposed. For example, a cold storage heat exchanger described in Patent Document 1 is known.
- the cold storage material is arranged only in the air flow path in order to increase the cooling efficiency of the cold storage material to cool the air when the engine is stopped.
- the air flow passage is originally intended to exchange heat by circulating air, it is necessary to place the regenerator material in a range that does not excessively affect the air flow rate, and there is a limit to increasing the regenerator material. was there.
- the present disclosure has been made in view of the above, and an object thereof is to provide a cold storage heat exchanger that can increase the amount of the cold storage material while reducing the influence on the air flow.
- the cold storage heat exchanger that evaporates the refrigerant includes a plurality of refrigerants each having a refrigerant passage through which the refrigerant circulates and arranged to form an air passage with a space between each other.
- the first header tank provided so that one end sides of the plurality of refrigerant flow paths communicate with each other, and the other end side of the plurality of refrigerant flow paths communicate with each other.
- the second header tank thus formed, and a regenerator material that cools by evaporating the refrigerant decompressed by the decompressor when the compressor is driven and cools when the compressor is stopped.
- the regenerator material is arranged in a region that does not hinder the air flow in the air passage.
- the refrigerant that is cooled by evaporating the refrigerant depressurized by the pressure reducer when the compressor is driven is disposed in a region that does not obstruct the air flow in the air passage while being cooled when the compressor is stopped.
- the amount of the regenerator material can be increased while reducing the influence on the air flow.
- FIG. 4 is a cross-sectional view showing a IV-IV cross section of FIG. 2.
- FIG. 5 is a cross-sectional view showing a VV cross section of FIG. 3.
- FIG. 5 is a cross-sectional view corresponding to FIG. 4 illustrating an evaporator according to a second embodiment of the present disclosure. It is sectional drawing equivalent to FIG. 5 which shows the evaporator which concerns on 2nd Embodiment of this indication. It is sectional drawing equivalent to FIG.
- FIG. 4 which shows the evaporator which concerns on 3rd Embodiment of this indication. It is sectional drawing equivalent to FIG. 4 which shows the evaporator which concerns on 4th Embodiment of this indication. It is sectional drawing equivalent to FIG. 5 which shows the evaporator which concerns on 4th Embodiment of this indication. It is sectional drawing equivalent to FIG. 5 which shows the evaporator which concerns on 5th Embodiment of this indication. It is a perspective view showing a refrigerant channel and a cool storage material of an evaporator concerning a 6th embodiment of this indication. It is a figure which shows typically the flow of the refrigerant
- FIG. 1 is a block diagram illustrating a configuration of a refrigeration cycle apparatus 1 using an evaporator 40 (cold storage heat exchanger) as a first embodiment of the present disclosure.
- the refrigeration cycle apparatus 1 is used in a vehicle air conditioner.
- the refrigeration cycle apparatus 1 includes a compressor 10, a radiator 20, a decompressor 30, and an evaporator 40. These components are connected in an annular shape by piping and constitute a refrigerant circulation path.
- the compressor 10 is driven by an internal combustion engine that is a power source 2 (PS) for traveling the vehicle. For this reason, when the power source 2 stops, the compressor 10 also stops. The compressor 10 sucks the refrigerant from the evaporator 40, compresses it, and discharges it to the radiator 20.
- PS power source 2
- the heat radiator 20 cools the high-temperature refrigerant.
- the radiator 20 is also called a condenser.
- the decompressor 30 decompresses the refrigerant cooled by the radiator 20.
- the decompressor 30 can be provided by a fixed throttle, a temperature expansion valve, or an ejector.
- the evaporator 40 evaporates the refrigerant decompressed by the decompressor 30 and cools the medium.
- the evaporator 40 cools the air supplied to the passenger compartment.
- the refrigeration cycle apparatus 1 can further include an internal heat exchange for exchanging heat between the high-pressure side liquid refrigerant and the low-pressure side gas refrigerant, and a receiver or accumulator tank element that stores excess refrigerant.
- the power source 2 can be provided by an internal combustion engine or an electric motor.
- FIG. 2 is a plan view of an evaporator 40 as a cold storage heat exchanger according to the first embodiment.
- FIG. 3 is a side view of FIG.
- FIG. 4 is an enlarged cross-sectional view showing a part of the IV-IV cross section of FIG.
- FIG. 5 is an enlarged cross-sectional view showing a part of the VV cross section of FIG.
- the evaporator 40 has a refrigerant passage member branched into a plurality.
- the refrigerant passage member is provided by a metal passage member such as aluminum.
- the refrigerant passage member is provided by a first header 41, a second header 42, a third header 43, and a fourth header 44 that are positioned in pairs, and a plurality of refrigerant flow paths 45 that connect the headers. ing.
- the first header 41 and the second header 42 form a pair, and are arranged in parallel with a predetermined distance from each other.
- the third header 43 and the fourth header 44 also form a set and are arranged in parallel with a predetermined distance from each other.
- the first header 41 and the third header 43 are disposed above the refrigerant flow path 45 in the gravity direction, and the second header 42 and the fourth header 44 are disposed below the refrigerant flow path 45 in the gravity direction.
- a plurality of refrigerant flow paths 45 are arranged at equal intervals between the first header 41 and the second header 42. Each refrigerant channel 45 communicates with the corresponding first header 41 and second header 42 at one end thereof.
- a first heat exchange section 48 is formed by the first header 41, the second header 42, and a plurality of refrigerant flow paths 45 arranged therebetween.
- a plurality of refrigerant flow paths 45 are arranged at equal intervals between the third header 43 and the fourth header 44. Each refrigerant channel 45 communicates with the corresponding third header 43 and fourth header 44 at the other end.
- a second heat exchanging portion 49 is formed by the third header 43, the fourth header 44, and a plurality of refrigerant flow paths 45 arranged therebetween.
- the evaporator 40 has a first heat exchange part 48 and a second heat exchange part 49 arranged in two layers.
- the second heat exchange unit 49 is arranged on the upstream side
- the first heat exchange unit 48 is arranged on the downstream side.
- a joint as a refrigerant inlet is provided at the end of the first header 41.
- the inside of the first header 41 is partitioned into a first partition and a second partition by a partition plate provided substantially at the center in the length direction.
- the plurality of refrigerant flow paths 45 are divided into a first group corresponding to the first section and a second group corresponding to the second section.
- the refrigerant is supplied to the first section of the first header 41.
- the refrigerant is distributed from the first section to a plurality of refrigerant flow paths 45 belonging to the first group.
- the refrigerant flows into the second header 42 through the first group and is collected.
- the refrigerant is distributed again from the second header 42 to the plurality of refrigerant flow paths 45 belonging to the second group.
- the refrigerant flows into the second section of the first header 41 through the second group.
- a joint as a refrigerant outlet is provided at the end of the third header 43.
- the inside of the third header 43 is partitioned into a first partition and a second partition by a partition plate provided substantially at the center in the length direction.
- the plurality of refrigerant flow paths 45 are divided into a first group corresponding to the first section and a second group corresponding to the second section.
- the first section of the third header 43 is adjacent to the second section of the first header 41.
- the first section of the third header 43 and the second section of the first header 41 are in communication.
- the refrigerant flows from the second section of the first header 41 into the first section of the third header 43.
- the refrigerant is distributed from the first section to a plurality of refrigerant flow paths 45 belonging to the first group.
- the refrigerant flows into the fourth header 44 through the first group and is collected.
- the refrigerant is distributed again from the fourth header 44 to the plurality of refrigerant flow paths 45 belonging to the second group.
- the refrigerant flows into the second section of the third header 43 through the second group.
- coolant in a U shape is formed.
- the refrigerant in the second section of the third header 43 flows out from the refrigerant outlet and flows toward the compressor 10.
- the refrigerant flow path 45 is a multi-hole pipe having a plurality of refrigerant passages therein.
- the refrigerant channel 45 is also called a flat tube.
- This multi-hole tube can be obtained by an extrusion manufacturing method or a manufacturing method in which a plate is bent.
- the plurality of refrigerant passages extend along the longitudinal direction of the refrigerant flow path 45 and open at both ends of the refrigerant flow path 45.
- the plurality of refrigerant flow paths 45 are arranged in a row. In each row, the plurality of refrigerant channels 45 are arranged so that their main surfaces face each other.
- the plurality of refrigerant flow paths 45 partition an air passage for heat exchange with air and an accommodating portion for accommodating a cold storage material container, which will be described later, between two refrigerant flow paths 45 adjacent to each other. .
- the evaporator 40 includes fin members for increasing the contact area with the air supplied to the passenger compartment.
- the fin member is provided by a plurality of corrugated fins 46.
- the fins 46 are disposed in an air passage partitioned between two adjacent refrigerant flow paths 45.
- the fin 46 is thermally coupled to the two adjacent refrigerant flow paths 45.
- the fins 46 are joined to the two adjacent refrigerant flow paths 45 by a joining material excellent in heat transfer.
- a brazing material can be used as the bonding material.
- the fin 46 has a shape in which a thin metal plate such as aluminum is bent in a wave shape, and includes an air passage called a louver.
- the evaporator 40 further has a plurality of cold storage material containers 47.
- the cold storage material container 47 is made of metal such as aluminum.
- the cold storage material container 47 has a flat cylindrical shape.
- the cool storage material container 47 divides a room for accommodating the cool storage material inside by combining two middle plates.
- the cool storage material container 47 has a wide main surface on both surfaces. The two main walls that provide these two main surfaces are each arranged in parallel with the refrigerant flow path 45.
- the cool storage material container 47 is disposed between two adjacent refrigerant flow paths 45.
- the plurality of refrigerant flow paths 45 are arranged at substantially constant intervals.
- a plurality of gaps are formed between the plurality of refrigerant flow paths 45.
- a plurality of fins 46 and a plurality of cool storage material containers 47 are arranged with a predetermined regularity.
- a part of the gap is an air passage.
- the remaining part of the gap is an accommodating part.
- a cold storage material container 47 is disposed in the housing portion.
- FIGS. 4 and 5 a first embodiment in which the cool storage material is arranged so as not to disturb the air flow in the air passage will be described with reference to FIGS.
- one end of the coolant channel 45 is inserted into the first header 41 and the third header 43.
- Side plates 50 are provided outside the plurality of refrigerant flow paths 45 arranged.
- a partition wall 411 is provided inside the first header 41.
- the partition wall 411 is provided in close contact with the inner wall of the first header 41.
- the partition wall 411 partitions the inside of the first header 41 into two or more spaces.
- One end of the refrigerant channel 45 is provided so as to penetrate the partition wall 411 from the lower side (lower in the gravitational direction) to the upper side (upward in the gravitational direction) shown in the drawing.
- the plurality of refrigerant passages of the refrigerant flow channel 45 communicate with at least one of the spaces partitioned by the partition wall 411.
- the cold storage material 60 is disposed in a lower space between the partition wall 411 and the inner wall of the first header 41 and from which one end of the coolant channel 45 does not protrude.
- the cold storage material 60 may be arranged in a space in the first header 41 where the plurality of refrigerant passages of the refrigerant flow path 45 are not in communication.
- a partition wall 431 is provided inside the third header 43.
- the partition wall 431 is provided in close contact with the inner wall of the third header 43.
- the partition wall 431 partitions the inside of the third header 43 into two or more spaces.
- One end of the refrigerant channel 45 is provided so as to penetrate the partition wall 431 from the lower side (lower in the gravitational direction) to the upper side (upward in the gravitational direction) shown in the drawing.
- the plurality of refrigerant passages of the refrigerant channel 45 communicate with at least one of the spaces partitioned by the partition wall 431.
- the cold storage material 60 is disposed in a lower space between the partition wall 431 and the inner wall of the first header 43 and from which one end of the refrigerant channel 45 does not protrude.
- the cool storage material 60 may be arranged in a space in the third header 43 where the plurality of refrigerant passages of the refrigerant flow path 45 are not in communication.
- the cool storage material 60 is replaced with the first header 41 and the third header by a simple method of providing the partition wall 411 and the partition wall 431 inside the first header 41 and the third header 43 arranged above the gravity direction. 43 can be disposed inside. Since the cold storage material 60 is disposed only in the space below the gravity direction where the refrigerant flow path 45 does not protrude from the partition wall 411 and the partition wall 431, the cold storage material 60 can exhibit the cold storage effect without inhibiting the flow of the refrigerant. it can.
- the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted stops.
- the refrigerant remaining in the evaporator 40 evaporates and gasifies, it is cooled by the regenerator 60 and liquefied again. It is supplied again into the refrigerant flow path 45.
- cold air can be supplied through the first heat exchange unit 48 and the second heat exchange unit 49 which are the core portions.
- the cold storage material 61 is disposed inside the first header 41 and the third header 43 and between the refrigerant flow path 45, the inner wall of the first header 41, and the inner wall of the third header 43.
- the cold storage material 61 is filled in a cylindrical container, and is arranged at a predetermined distance from one end of the refrigerant flow path 45.
- the regenerator material 61 is disposed in the first header 41 and the third header 43 in a manner that can affect the flow of the refrigerant. Therefore, as shown in FIG. 7, it is preferable to dispose the cold storage material 61 in the vicinity of the inlet portion 412 that is the inlet of the refrigerant to the first header 41.
- the cool storage agent 61 may be disposed so as to overlap the side plate 50 close to the inlet portion 412 in the longitudinal direction of the refrigerant flow path 45.
- the refrigerant supplied to the evaporator 40 is a liquid refrigerant
- the refrigerant flowing out of the evaporator 40 is a gas refrigerant. Since the increase in pressure loss is low for liquid refrigerant and high for gas refrigerant, the effect of pressure loss can be reduced by disposing the regenerator 61 in the vicinity of the inlet 412 to which liquid refrigerant is supplied.
- the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted stops.
- the regenerator material It is cooled by 61, liquefied again, and supplied again into the refrigerant flow path 45.
- cold air can be supplied through the first heat exchange unit 48 and the second heat exchange unit 49 which are the core portions.
- the cold storage material 62 is disposed outside the first header 41 and the third header 43 and between the outer peripheral surface of the first header 41 and the outer peripheral surface of the third header 43, and the holding unit 70 and the holding unit 71. ing. A pair of recesses along the longitudinal direction of the first header 41 and the third header 43 is formed between the first header 41 and the third header 43, and the holding unit 70 closes and holds one of the recesses. The portion 71 closes the other concave portion.
- the cold storage material 62 is disposed in a space in which a pair of concave portions are closed by the holding portions 70 and 71.
- the regenerator material 62 of the third embodiment is disposed outside the first header 41 and the third header 43, and thus has no effect on the flow of the refrigerant.
- the mechanism of cold air supply when the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted is the same as in the first embodiment and the second embodiment.
- a fourth embodiment in which the cold storage material is arranged so as not to hinder the air flow in the air passage will be described with reference to FIGS. 9 and 10.
- the cold storage material 63 is disposed outside the first header 41 and the third header 43 and between the outer peripheral surface of the first header 41 and the outer peripheral surface of the third header 43 and the packing 75 (holding portion). Yes.
- a packing 75 is provided in order to maintain airtightness (wind leakage inhibiting property) with the housing case.
- the packing 75 is provided so as to cover the outer circumferences of the first header 41 and the third header 43.
- the cold storage material 63 is disposed along the inner surface of the packing 75 and is in partial contact with the first header 41 and the third header 43.
- the refrigerant flow path 45 in which the cold storage material 64 is arranged instead of the side plate 50 is arranged on the outermost side of the plurality of refrigerant flow paths 45.
- the cold storage material 64 is disposed along the outer surface of the refrigerant flow path 45 disposed on the outermost side. In this way, by cooling a part of the refrigerant flow paths 45 with the cold storage material 64, the inside of the refrigerant flow path 45 in contact with the cold storage material 64 can maintain the two-phase state of the liquid refrigerant and the gas refrigerant.
- the cool storage material 64 is preferably provided on the joint side where the gas refrigerant flows out of the evaporator 40.
- the plurality of refrigerant channels 45 are arranged in two rows so as to form a pair along the air passage.
- the cool storage material 65 is arrange
- the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted, but when the temperature of the refrigerant remaining in the refrigerant flow path 45 rises, it is cooled by the cold storage material 65 and liquefied again into the refrigerant flow path 45. Liquid refrigerant remains.
- cold air can be supplied through the first heat exchange unit 48 and the second heat exchange unit 49 which are the core portions.
- the cold storage container 47 arrange
- FIG. 13 schematically shows the refrigerant flow in each of the above-described embodiments.
- the first header 41, the second header 42, the third header 43, and the fourth header 44 are each divided into two sections, a first section and a second section.
- the refrigerant that has flowed into the first section of the first header 41 flows into the first section of the second header 42 through the refrigerant flow path 45.
- the refrigerant that has flowed into the first section of the second header 42 flows into the second section of the second header 42.
- the refrigerant that has flowed into the second section of the second header 42 flows into the second section of the first header 41 through the refrigerant flow path 45.
- the refrigerant flowing into the second section of the first header 41 flows into the second section of the third header 43.
- the refrigerant that has flowed into the second section of the third header 43 flows into the second section of the fourth header 44 through the refrigerant flow path 45.
- the refrigerant that has flowed into the second section of the fourth header 44 flows into the first section of the fourth header 44.
- the refrigerant flowing into the first section of the fourth header 44 flows into the first section of the third header 43 through the refrigerant flow path 45.
- the refrigerant flowing into the first section of the third header 43 flows out to the outside.
- the embodiment of the present disclosure is not limited to the refrigerant flow described above. As shown in FIG. 14, the first header 41A, the second header 42A, the third header 43A, and the fourth header 44A can be eliminated.
- the refrigerant that has flowed into the first header 41A flows into the second header 42A through the refrigerant flow path 45. Since the second header 42A and the fourth header 44A communicate with each other, the refrigerant that has flowed into the second header 42A flows into the fourth header 44A. The refrigerant that has flowed into the fourth header 44A flows through the refrigerant flow path 45 into the third header 43A. The refrigerant flowing into the third header 43A flows out to the outside.
- the cold storage agents 60, 61, 62, 63, 64, and 65 can also be applied to those constituting the refrigerant flow, such as the cold storage heat exchanger 40A.
- the cold storage heat exchanger 40A is configured to eliminate the internal sections of the first header 41A, the second header 42A, the third header 43A, and the fourth header 44A, but may be configured to increase the internal sections.
- the first header 41B, the second header 42B, the third header 43B, and the fourth header 44B are each divided into three sections.
- the refrigerant that has flowed into the first section of the first header 41B flows through the refrigerant flow path 45 into the first section of the second header 42B.
- the refrigerant that has flowed into the first section of the second header 42B flows into the second section of the second header 42B.
- the refrigerant that has flowed into the second section of the second header 42B flows through the refrigerant flow path 45 into the second section of the first header 41B.
- the refrigerant that has flowed into the second section of the first header 41B flows into the third section of the first header 41B.
- the refrigerant that has flowed into the third section of the first header 41B flows through the refrigerant flow path 45 into the third section of the second header 42B.
- the refrigerant flowing into the third section of the second header 42B flows into the third section of the fourth header 44B.
- the refrigerant that has flowed into the third section of the fourth header 44B flows through the refrigerant flow path 45 into the third section of the third header 43B.
- the refrigerant that has flowed into the third section of the third header 43B flows into the second section of the third header 43B.
- the refrigerant that has flowed into the second section of the third header 43B flows through the refrigerant flow path 45 into the second section of the fourth header 44B.
- the refrigerant that has flowed into the second section of the fourth header 44B flows into the first section of the fourth header 44B.
- the refrigerant that has flowed into the first section of the fourth header 44B flows through the refrigerant flow path 45 into the first section of the third header 43B.
- the refrigerant that has flowed into the first section of the third header 43B flows out to the outside.
- the cold storage agents 60, 61, 62, 63, 64, and 65 can also be applied to a refrigerant that constitutes a refrigerant flow such as the cold storage heat exchanger 40B.
- the refrigerant inlet / outlet ports are provided in the first header 41, 41A, 41B and the third header 43, 43A, 43B, which are arranged on the upper side in the direction of gravity.
- the form of the refrigerant inlet / outlet is not limited to these, and the top and bottom of the cold storage heat exchangers 40, 40A, 40B may be reversed.
- the first header 41R and the third header 43R are arranged on the lower side in the gravity direction, and the second header 42R and the fourth header 44R are arranged on the upper side in the gravity direction. .
- the refrigerant that has flowed into the first section of the first header 41R flows through the refrigerant flow path 45 into the first section of the second header 42R.
- the refrigerant that has flowed into the first section of the second header 42R flows into the second section of the second header 42R.
- the refrigerant that has flowed into the second section of the second header 42R flows through the refrigerant flow path 45 into the second section of the first header 41R.
- the refrigerant flowing into the second section of the first header 41R flows into the second section of the third header 43R.
- the refrigerant that has flowed into the second section of the third header 43R flows through the refrigerant flow path 45 into the second section of the fourth header 44R.
- the refrigerant that has flowed into the second section of the fourth header 44R flows into the first section of the fourth header 44R.
- the refrigerant that has flowed into the first section of the fourth header 44R flows through the refrigerant flow path 45 into the first section of the third header 43R.
- the refrigerant flowing into the first section of the third header 43R flows out to the outside.
- the second header 42R and the fourth header 44R correspond to the first header tank of the present disclosure, and the first header 41R and the third header 43R are the second header of the present disclosure. Corresponds to the header tank. Therefore, the cool storage agents 60, 61, 62, and 63 are provided in the second header 42R and the fourth header 44R.
- a cold storage heat exchanger 40RA shown in FIG. 17 is obtained by reversing the cold storage heat exchanger 40A shown in FIG.
- the cold storage heat exchanger 40RA includes a second header 42RA and a fourth header 44RA corresponding to the first header tank of the present disclosure, and a first header 41RA and a third header 43RA corresponding to the second header tank of the present disclosure. I have. Therefore, the cool storage agents 60, 61, 62, and 63 are provided in the second header 42RA and the fourth header 44RA.
- a cold storage heat exchanger 40RB shown in FIG. 18 is obtained by reversing the cold storage heat exchanger 40B shown in FIG.
- the cold storage heat exchanger 40RB includes a second header 42RB and a fourth header 44RB corresponding to the first header tank of the present disclosure, and a first header 41RB and a third header 43RB corresponding to the second header tank of the present disclosure. I have. Therefore, the cool storage agents 60, 61, 62, and 63 are provided in the second header 42RB and the fourth header 44RB.
- regenerator material is arranged in a region that does not inhibit the air flow
- regenerator material may also be arranged in a region that inhibits the air flow.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Provided is a cold storage heat exchanger comprising: a plurality of refrigerant flow paths (45) which have refrigerant passageways and which are disposed so that air passageways are formed by creating intervals between the refrigerant flow paths; fins (46) provided to the air passageways; a first header tank with which one end side of the plurality of refrigerant flow paths communicates; a second header tank with which the other end side of the plurality of refrigerant flow paths communicates; and a cold storage material (60) that is cooled by evaporation of a refrigerant that has been decompressed by a decompressor when a compressor is driven, but is allowed to radiate cold when the compressor is stopped. The cold storage material is arranged in a region where the air flow of the air passageways is not hindered. Due to this configuration, it is possible to increase the amount of cold storage material arranged while reducing the influence on the circulation of air.
Description
本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年4月21日に出願された日本特許出願2015-086613を基にしている。
This application is based on Japanese Patent Application No. 2015-086613 filed on Apr. 21, 2015, the disclosure of which is incorporated herein by reference.
本開示は、冷媒を圧縮吐出する圧縮機、高温となった冷媒を冷却する放熱器、及び冷却された冷媒を減圧する減圧器と共に冷凍サイクル装置を構成し、冷媒を蒸発させる蓄冷熱交換器に関する。
The present disclosure relates to a compressor that compresses and discharges a refrigerant, a radiator that cools a refrigerant that has reached a high temperature, and a refrigerating heat exchanger that forms a refrigeration cycle apparatus together with a decompressor that decompresses the cooled refrigerant and evaporates the refrigerant. .
従来、空調装置には、冷凍サイクル装置が用いられている。この冷凍サイクル装置が停止している状態においても、限定された冷房を提供する試みがなされている。例えば、車両用空調装置では、走行用エンジンによって冷凍サイクル装置が駆動される。このため、車両が一時的に停車している間に、エンジンが停止すると、冷凍サイクル装置が停止する。このような一時的な停車中に、限定された冷房を提供するために、蒸発器に蓄冷材を付加した蓄冷熱交換器が提案されている。例えば、特許文献1に記載の蓄冷熱交換器が知られている。
Conventionally, a refrigeration cycle apparatus is used as an air conditioner. Attempts have been made to provide limited cooling even when the refrigeration cycle apparatus is stopped. For example, in a vehicle air conditioner, a refrigeration cycle apparatus is driven by a traveling engine. For this reason, if the engine stops while the vehicle is temporarily stopped, the refrigeration cycle apparatus stops. In order to provide limited cooling during such a temporary stop, a cold storage heat exchanger in which a cold storage material is added to the evaporator has been proposed. For example, a cold storage heat exchanger described in Patent Document 1 is known.
上記特許文献1に記載の蓄冷熱交換器では、エンジンが停止した場合に蓄冷材が空気を冷却する冷房効率を高めるため、蓄冷材は空気流路にのみ配置されている。車両の一時的な停車中の冷房効率をより高めるためには蓄冷材を増やす必要があるけれども、空気流路にのみ配置している従来の技術では蓄冷材を増やすにも限界がある。また、空気流路は本来空気を流通させて熱交換するものであるから、空気の流通量に過大な影響を与えない範囲で蓄冷材を配置する必要があり、蓄冷材をより増やすには限界があった。
In the cold storage heat exchanger described in Patent Document 1, the cold storage material is arranged only in the air flow path in order to increase the cooling efficiency of the cold storage material to cool the air when the engine is stopped. Although it is necessary to increase the number of cool storage materials in order to further increase the cooling efficiency during the temporary stop of the vehicle, there is a limit to increasing the number of cool storage materials in the conventional technology arranged only in the air flow path. In addition, since the air flow passage is originally intended to exchange heat by circulating air, it is necessary to place the regenerator material in a range that does not excessively affect the air flow rate, and there is a limit to increasing the regenerator material. was there.
本開示は上記を鑑みてなされたものであり、その目的は、空気の流通への影響を低減しつつ蓄冷材の配置量を増やすことができる蓄冷熱交換器を提供することにある。
The present disclosure has been made in view of the above, and an object thereof is to provide a cold storage heat exchanger that can increase the amount of the cold storage material while reducing the influence on the air flow.
本開示の一態様によると、冷媒を蒸発させる蓄冷熱交換器は、冷媒が流通する冷媒通路を各々が有し、互いに間隔をあけて空気通路が形成されるように配置されている複数の冷媒流路と、空気通路に設けられてなるフィンと、複数の冷媒流路の一端側が連通するように設けられてなる第1ヘッダタンクと、複数の冷媒流路の他端側が連通するように設けられてなる第2ヘッダタンクと、圧縮機の駆動時に減圧器によって減圧された冷媒が蒸発することで冷却される一方で、圧縮機の停止時に放冷する蓄冷材と、を備える。空気通路の空気の流れを阻害しない領域に蓄冷材が配置されている。
According to one aspect of the present disclosure, the cold storage heat exchanger that evaporates the refrigerant includes a plurality of refrigerants each having a refrigerant passage through which the refrigerant circulates and arranged to form an air passage with a space between each other. Provided such that the flow path, the fins provided in the air passage, the first header tank provided so that one end sides of the plurality of refrigerant flow paths communicate with each other, and the other end side of the plurality of refrigerant flow paths communicate with each other. The second header tank thus formed, and a regenerator material that cools by evaporating the refrigerant decompressed by the decompressor when the compressor is driven and cools when the compressor is stopped. The regenerator material is arranged in a region that does not hinder the air flow in the air passage.
圧縮機の駆動時に減圧器によって減圧された冷媒が蒸発することで冷却される一方で圧縮機の停止時に放冷する蓄冷材を、空気通路の空気の流れを阻害しない領域に配置しているので、空気の流通への影響を低減しつつ蓄冷材の配置量を増やすことができる。
The refrigerant that is cooled by evaporating the refrigerant depressurized by the pressure reducer when the compressor is driven is disposed in a region that does not obstruct the air flow in the air passage while being cooled when the compressor is stopped. The amount of the regenerator material can be increased while reducing the influence on the air flow.
本開示によれば、空気の流通への影響を低減しつつ蓄冷材の配置量を増やすことができる蓄冷熱交換器を提供することができる。
According to the present disclosure, it is possible to provide a cold storage heat exchanger that can increase the amount of the cold storage material while reducing the influence on the air flow.
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
図1は、本開示の第1実施形態としての蒸発器40(蓄冷熱交換器)を用いた冷凍サイクル装置1の構成を示すブロック図である。冷凍サイクル装置1は、車両用の空調装置に用いられる。冷凍サイクル装置1は、圧縮機10、放熱器20、減圧器30、および蒸発器40を有する。これら構成部品は、配管によって環状に接続され、冷媒循環路を構成する。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration of arefrigeration cycle apparatus 1 using an evaporator 40 (cold storage heat exchanger) as a first embodiment of the present disclosure. The refrigeration cycle apparatus 1 is used in a vehicle air conditioner. The refrigeration cycle apparatus 1 includes a compressor 10, a radiator 20, a decompressor 30, and an evaporator 40. These components are connected in an annular shape by piping and constitute a refrigerant circulation path.
(第1実施形態)
図1は、本開示の第1実施形態としての蒸発器40(蓄冷熱交換器)を用いた冷凍サイクル装置1の構成を示すブロック図である。冷凍サイクル装置1は、車両用の空調装置に用いられる。冷凍サイクル装置1は、圧縮機10、放熱器20、減圧器30、および蒸発器40を有する。これら構成部品は、配管によって環状に接続され、冷媒循環路を構成する。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration of a
圧縮機10は、車両の走行用の動力源2(PS)である内燃機関によって駆動される。このため、動力源2が停止すると、圧縮機10も停止する。圧縮機10は、蒸発器40から冷媒を吸引し、圧縮し、放熱器20へ吐出する。
The compressor 10 is driven by an internal combustion engine that is a power source 2 (PS) for traveling the vehicle. For this reason, when the power source 2 stops, the compressor 10 also stops. The compressor 10 sucks the refrigerant from the evaporator 40, compresses it, and discharges it to the radiator 20.
放熱器20は、高温冷媒を冷却する。放熱器20は、凝縮器とも呼ばれる。減圧器30は、放熱器20によって冷却された冷媒を減圧する。減圧器30は、固定の絞り、温度式膨張弁、あるいはエジェクタによって提供されうる。
The heat radiator 20 cools the high-temperature refrigerant. The radiator 20 is also called a condenser. The decompressor 30 decompresses the refrigerant cooled by the radiator 20. The decompressor 30 can be provided by a fixed throttle, a temperature expansion valve, or an ejector.
蒸発器40は、減圧器30によって減圧された冷媒を蒸発させ、媒体を冷却する。蒸発器40は、車室に供給される空気を冷却する。冷凍サイクル装置1は、さらに、高圧側液冷媒と低圧側ガス冷媒とを熱交換する内部熱交換、余剰冷媒を蓄えるレシーバまたはアキュムレータのタンク要素を備えることができる。また、動力源2は、内燃機関あるいは電動機によって提供されうる。
The evaporator 40 evaporates the refrigerant decompressed by the decompressor 30 and cools the medium. The evaporator 40 cools the air supplied to the passenger compartment. The refrigeration cycle apparatus 1 can further include an internal heat exchange for exchanging heat between the high-pressure side liquid refrigerant and the low-pressure side gas refrigerant, and a receiver or accumulator tank element that stores excess refrigerant. The power source 2 can be provided by an internal combustion engine or an electric motor.
図2は、第1実施形態の蓄冷熱交換器としての蒸発器40の平面図である。図3は、図2の側面図である。図4は、図2のIV-IV断面の一部を示す拡大断面図である。図5は、図3のV-V断面の一部を示す拡大断面図である。
FIG. 2 is a plan view of an evaporator 40 as a cold storage heat exchanger according to the first embodiment. FIG. 3 is a side view of FIG. FIG. 4 is an enlarged cross-sectional view showing a part of the IV-IV cross section of FIG. FIG. 5 is an enlarged cross-sectional view showing a part of the VV cross section of FIG.
図2および図3において、蒸発器40は、複数に分岐した冷媒通路部材を有する。この冷媒通路部材は、アルミニウム等の金属製の通路部材によって提供される。冷媒通路部材は、組をなして位置づけられた第1ヘッダ41、第2ヘッダ42、第3ヘッダ43、第4ヘッダ44と、それらヘッダの間を連結する複数の冷媒流路45とによって提供されている。
2 and 3, the evaporator 40 has a refrigerant passage member branched into a plurality. The refrigerant passage member is provided by a metal passage member such as aluminum. The refrigerant passage member is provided by a first header 41, a second header 42, a third header 43, and a fourth header 44 that are positioned in pairs, and a plurality of refrigerant flow paths 45 that connect the headers. ing.
図2および図3において、第1ヘッダ41と第2ヘッダ42とは、組をなしており、互いに所定距離離れて平行に配置されている。第3ヘッダ43と第4ヘッダ44とも、組をなしており、互いに所定距離れて平行に配置されている。第1ヘッダ41及び第3ヘッダ43は重力方向で冷媒流路45の上方側に配置され、第2ヘッダ42及び第4ヘッダ44は重力方向で冷媒流路45の下方側に配置されている。
2 and 3, the first header 41 and the second header 42 form a pair, and are arranged in parallel with a predetermined distance from each other. The third header 43 and the fourth header 44 also form a set and are arranged in parallel with a predetermined distance from each other. The first header 41 and the third header 43 are disposed above the refrigerant flow path 45 in the gravity direction, and the second header 42 and the fourth header 44 are disposed below the refrigerant flow path 45 in the gravity direction.
第1ヘッダ41と第2ヘッダ42との間には、複数の冷媒流路45が等間隔に配列されている。各冷媒流路45は、その一端部において対応する第1ヘッダ41、第2ヘッダ42内に連通している。これら第1ヘッダ41と、第2ヘッダ42と、それらの間に配置された複数の冷媒流路45によって第1熱交換部48が形成されている。
A plurality of refrigerant flow paths 45 are arranged at equal intervals between the first header 41 and the second header 42. Each refrigerant channel 45 communicates with the corresponding first header 41 and second header 42 at one end thereof. A first heat exchange section 48 is formed by the first header 41, the second header 42, and a plurality of refrigerant flow paths 45 arranged therebetween.
第3ヘッダ43と第4ヘッダ44との間には、複数の冷媒流路45が等間隔に配列されている。各冷媒流路45は、その他端部において対応する第3ヘッダ43、第4ヘッダ44内に連通している。これら第3ヘッダ43と、第4ヘッダ44と、それらの間に配置された複数の冷媒流路45によって第2熱交換部49が形成されている。
A plurality of refrigerant flow paths 45 are arranged at equal intervals between the third header 43 and the fourth header 44. Each refrigerant channel 45 communicates with the corresponding third header 43 and fourth header 44 at the other end. A second heat exchanging portion 49 is formed by the third header 43, the fourth header 44, and a plurality of refrigerant flow paths 45 arranged therebetween.
この結果、蒸発器40は、2層に配置された第1熱交換部48と第2熱交換部49とを有する。空気の流れ方向に関して、第2熱交換部49が上流側に配置され、第1熱交換部48が下流側に配置されている。
As a result, the evaporator 40 has a first heat exchange part 48 and a second heat exchange part 49 arranged in two layers. With respect to the air flow direction, the second heat exchange unit 49 is arranged on the upstream side, and the first heat exchange unit 48 is arranged on the downstream side.
第1ヘッダ41の端部には、冷媒入口としてのジョイントが設けられている。第1ヘッダ41内は、その長さ方向のほぼ中央に設けられた仕切板によって、第1区画と第2区画とに区画されている。これに対応して、複数の冷媒流路45は、第1区画に対応した第1群と、第2区画に対応した第2群とに区分されている。
A joint as a refrigerant inlet is provided at the end of the first header 41. The inside of the first header 41 is partitioned into a first partition and a second partition by a partition plate provided substantially at the center in the length direction. Correspondingly, the plurality of refrigerant flow paths 45 are divided into a first group corresponding to the first section and a second group corresponding to the second section.
冷媒は、第1ヘッダ41の第1区画に供給される。冷媒は、第1区画から、第1群に属する複数の冷媒流路45に分配される。冷媒は、第1群を通して第2ヘッダ42に流入し、集合される。冷媒は、第2ヘッダ42から、第2群に属する複数の冷媒流路45に再び分配される。冷媒は、第2群を通して第1ヘッダ41の第2区画に流入する。このように、第1熱交換部48においては、冷媒をU字状に流す流路が形成される。
The refrigerant is supplied to the first section of the first header 41. The refrigerant is distributed from the first section to a plurality of refrigerant flow paths 45 belonging to the first group. The refrigerant flows into the second header 42 through the first group and is collected. The refrigerant is distributed again from the second header 42 to the plurality of refrigerant flow paths 45 belonging to the second group. The refrigerant flows into the second section of the first header 41 through the second group. Thus, in the 1st heat exchange part 48, the flow path which flows a refrigerant | coolant in a U shape is formed.
第3ヘッダ43の端部には、冷媒出口としてのジョイントが設けられている。第3ヘッダ43内は、その長さ方向のほぼ中央に設けられた仕切板によって、第1区画と第2区画とに区画されている。これに対応して、複数の冷媒流路45は、第1区画に対応した第1群と、第2区画に対応した第2群とに区分されている。
A joint as a refrigerant outlet is provided at the end of the third header 43. The inside of the third header 43 is partitioned into a first partition and a second partition by a partition plate provided substantially at the center in the length direction. Correspondingly, the plurality of refrigerant flow paths 45 are divided into a first group corresponding to the first section and a second group corresponding to the second section.
第3ヘッダ43の第1区画は、第1ヘッダ41の第2区画に隣接している。第3ヘッダ43の第1区画と第1ヘッダ41の第2区画とは連通している。
The first section of the third header 43 is adjacent to the second section of the first header 41. The first section of the third header 43 and the second section of the first header 41 are in communication.
冷媒は、第1ヘッダ41の第2区画から、第3ヘッダ43の第1区画に流入する。冷媒は、第1区画から、第1群に属する複数の冷媒流路45に分配される。冷媒は、第1群を通して第4ヘッダ44に流入し、集合される。冷媒は、第4ヘッダ44から、第2群に属する複数の冷媒流路45に再び分配される。冷媒は、第2群を通して第3ヘッダ43の第2区画に流入する。このように、第2熱交換部49においては、冷媒をU字状に流す流路が形成される。第3ヘッダ43の第2区画内の冷媒は、冷媒出口から流出し、圧縮機10へ向けて流れる。
The refrigerant flows from the second section of the first header 41 into the first section of the third header 43. The refrigerant is distributed from the first section to a plurality of refrigerant flow paths 45 belonging to the first group. The refrigerant flows into the fourth header 44 through the first group and is collected. The refrigerant is distributed again from the fourth header 44 to the plurality of refrigerant flow paths 45 belonging to the second group. The refrigerant flows into the second section of the third header 43 through the second group. Thus, in the 2nd heat exchange part 49, the flow path which flows a refrigerant | coolant in a U shape is formed. The refrigerant in the second section of the third header 43 flows out from the refrigerant outlet and flows toward the compressor 10.
冷媒流路45は、内部に複数の冷媒通路を有する多穴管である。冷媒流路45は、扁平管とも呼ばれる。この多穴管は、押出製法や、板を折り曲げて形成する製法によって得ることができる。複数の冷媒通路は、冷媒流路45の長手方向に沿って延びており、冷媒流路45の両端に開口している。複数の冷媒流路45は、列をなして並べられている。各列において、複数の冷媒流路45は、その主面が対向するように配置されている。複数の冷媒流路45は、互いに隣接する2つの冷媒流路45の間に、空気と熱交換するための空気通路と、後述する蓄冷材容器を収容するための収容部とを区画している。
The refrigerant flow path 45 is a multi-hole pipe having a plurality of refrigerant passages therein. The refrigerant channel 45 is also called a flat tube. This multi-hole tube can be obtained by an extrusion manufacturing method or a manufacturing method in which a plate is bent. The plurality of refrigerant passages extend along the longitudinal direction of the refrigerant flow path 45 and open at both ends of the refrigerant flow path 45. The plurality of refrigerant flow paths 45 are arranged in a row. In each row, the plurality of refrigerant channels 45 are arranged so that their main surfaces face each other. The plurality of refrigerant flow paths 45 partition an air passage for heat exchange with air and an accommodating portion for accommodating a cold storage material container, which will be described later, between two refrigerant flow paths 45 adjacent to each other. .
蒸発器40は、車室へ供給される空気と接触面積を増加させるためのフィン部材を備える。フィン部材は、複数のコルゲート型のフィン46によって提供されている。フィン46は、隣接する2つの冷媒流路45の間に区画された空気通路に配置されている。フィン46は、隣接する2つの冷媒流路45と熱的に結合している。フィン46は、熱伝達に優れた接合材によって、隣接する2つの冷媒流路45に接合されている。接合材としては、ろう材を用いることができる。フィン46は、薄いアルミニウム等の金属板が波状に曲げられた形状をもっており、ルーバーと呼ばれる空気通路を備える。
The evaporator 40 includes fin members for increasing the contact area with the air supplied to the passenger compartment. The fin member is provided by a plurality of corrugated fins 46. The fins 46 are disposed in an air passage partitioned between two adjacent refrigerant flow paths 45. The fin 46 is thermally coupled to the two adjacent refrigerant flow paths 45. The fins 46 are joined to the two adjacent refrigerant flow paths 45 by a joining material excellent in heat transfer. A brazing material can be used as the bonding material. The fin 46 has a shape in which a thin metal plate such as aluminum is bent in a wave shape, and includes an air passage called a louver.
蒸発器40は、さらに、複数の蓄冷材容器47を有している。蓄冷材容器47は、アルミニウム等の金属製である。蓄冷材容器47は、扁平な筒状である。蓄冷材容器47は、2枚の最中状のプレートを合わせることで内部に蓄冷材を収容するための部屋を区画している。蓄冷材容器47は、広い主面を両面に有している。これら2つの主面を提供する2つの主壁は、それぞれが冷媒流路45と平行に配置されている。蓄冷材容器47は、隣接する2つの冷媒流路45の間に配置されている。
The evaporator 40 further has a plurality of cold storage material containers 47. The cold storage material container 47 is made of metal such as aluminum. The cold storage material container 47 has a flat cylindrical shape. The cool storage material container 47 divides a room for accommodating the cool storage material inside by combining two middle plates. The cool storage material container 47 has a wide main surface on both surfaces. The two main walls that provide these two main surfaces are each arranged in parallel with the refrigerant flow path 45. The cool storage material container 47 is disposed between two adjacent refrigerant flow paths 45.
図2において、複数の冷媒流路45は、ほぼ一定の間隔で配置されている。それら複数の冷媒流路45の間には、複数の隙間が形成されている。これら複数の隙間には、複数のフィン46と複数の蓄冷材容器47とが、所定の規則性をもって配置されている。隙間のうちの一部は、空気通路である。隙間のうちの残部は、収容部である。収容部には、蓄冷材容器47が配置されている。
In FIG. 2, the plurality of refrigerant flow paths 45 are arranged at substantially constant intervals. A plurality of gaps are formed between the plurality of refrigerant flow paths 45. In the plurality of gaps, a plurality of fins 46 and a plurality of cool storage material containers 47 are arranged with a predetermined regularity. A part of the gap is an air passage. The remaining part of the gap is an accommodating part. A cold storage material container 47 is disposed in the housing portion.
続いて、蓄冷材容器47に加えて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第1実施形態について、図4及び図5を参照しながら説明する。図4及び図5に示されるように、冷媒流路45の一端は、第1ヘッダ41及び第3ヘッダ43の内部に挿入されている。複数配置された冷媒流路45の外側にはサイドプレート50が設けられている。
Subsequently, in addition to the cool storage material container 47, a first embodiment in which the cool storage material is arranged so as not to disturb the air flow in the air passage will be described with reference to FIGS. As shown in FIGS. 4 and 5, one end of the coolant channel 45 is inserted into the first header 41 and the third header 43. Side plates 50 are provided outside the plurality of refrigerant flow paths 45 arranged.
第1ヘッダ41の内部には、仕切り壁411が設けられている。仕切り壁411は、第1ヘッダ41の内壁に密接するように設けられている。仕切り壁411は、第1ヘッダ41の内部を2以上の空間に仕切る。冷媒流路45の一端は、図に示す下方(重力方向下方)から上方(重力方向上方)に向けて仕切り壁411を貫通するように設けられている。冷媒流路45の複数の冷媒通路は仕切り壁411によって仕切られた空間の少なくとも1つに連通している。蓄冷材60は、仕切り壁411と第1ヘッダ41の内壁との間であって、冷媒流路45の一端が突出していない下側の空間に配置されている。冷媒流路45の複数の冷媒通路が連通していない第1ヘッダ41内の空間に蓄冷材60は配置されてもよい。
A partition wall 411 is provided inside the first header 41. The partition wall 411 is provided in close contact with the inner wall of the first header 41. The partition wall 411 partitions the inside of the first header 41 into two or more spaces. One end of the refrigerant channel 45 is provided so as to penetrate the partition wall 411 from the lower side (lower in the gravitational direction) to the upper side (upward in the gravitational direction) shown in the drawing. The plurality of refrigerant passages of the refrigerant flow channel 45 communicate with at least one of the spaces partitioned by the partition wall 411. The cold storage material 60 is disposed in a lower space between the partition wall 411 and the inner wall of the first header 41 and from which one end of the coolant channel 45 does not protrude. The cold storage material 60 may be arranged in a space in the first header 41 where the plurality of refrigerant passages of the refrigerant flow path 45 are not in communication.
第3ヘッダ43の内部には、仕切り壁431が設けられている。仕切り壁431は、第3ヘッダ43の内壁に密接するように設けられている。仕切り壁431は、第3ヘッダ43の内部を2以上の空間に仕切る。冷媒流路45の一端は、図に示す下方(重力方向下方)から上方(重力方向上方)に向けて仕切り壁431を貫通するように設けられている。冷媒流路45の複数の冷媒通路は仕切り壁431によって仕切られた空間の少なくとも1つに連通している。蓄冷材60は、仕切り壁431と第1ヘッダ43の内壁との間であって、冷媒流路45の一端が突出していない下側の空間に配置されている。冷媒流路45の複数の冷媒通路が連通していない第3ヘッダ43内の空間に蓄冷材60は配置されてもよい。
A partition wall 431 is provided inside the third header 43. The partition wall 431 is provided in close contact with the inner wall of the third header 43. The partition wall 431 partitions the inside of the third header 43 into two or more spaces. One end of the refrigerant channel 45 is provided so as to penetrate the partition wall 431 from the lower side (lower in the gravitational direction) to the upper side (upward in the gravitational direction) shown in the drawing. The plurality of refrigerant passages of the refrigerant channel 45 communicate with at least one of the spaces partitioned by the partition wall 431. The cold storage material 60 is disposed in a lower space between the partition wall 431 and the inner wall of the first header 43 and from which one end of the refrigerant channel 45 does not protrude. The cool storage material 60 may be arranged in a space in the third header 43 where the plurality of refrigerant passages of the refrigerant flow path 45 are not in communication.
このように、重力方向上方に配置される第1ヘッダ41及び第3ヘッダ43の内部に仕切り壁411及び仕切り壁431を設けるという簡単な手法で、蓄冷材60を第1ヘッダ41及び第3ヘッダ43の内部に配置することができる。蓄冷材60は、仕切り壁411及び仕切り壁431から冷媒流路45が突出しない方の重力方向下方の空間にのみ配置されているので、冷媒の流れを阻害することなく蓄冷効果を発揮することができる。
In this way, the cool storage material 60 is replaced with the first header 41 and the third header by a simple method of providing the partition wall 411 and the partition wall 431 inside the first header 41 and the third header 43 arranged above the gravity direction. 43 can be disposed inside. Since the cold storage material 60 is disposed only in the space below the gravity direction where the refrigerant flow path 45 does not protrude from the partition wall 411 and the partition wall 431, the cold storage material 60 can exhibit the cold storage effect without inhibiting the flow of the refrigerant. it can.
より具体的には、冷凍サイクル装置1が搭載されている自動車の停車時には冷媒が流れなくなるが、蒸発器40の内部に残った冷媒が蒸発しガス化すると蓄冷材60によって冷却され、再び液化し冷媒流路45内へと再び供給される。この再供給によって、コア部である第1熱交換部48及び第2熱交換部49を通して冷風を供給することができる。
More specifically, the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted stops. However, when the refrigerant remaining in the evaporator 40 evaporates and gasifies, it is cooled by the regenerator 60 and liquefied again. It is supplied again into the refrigerant flow path 45. By this resupply, cold air can be supplied through the first heat exchange unit 48 and the second heat exchange unit 49 which are the core portions.
また、一般的に熱交換器では冷媒側の圧力損失を小さくすることが性能向上には有利であるところ、第1ヘッダ41及び第3ヘッダ43内への冷媒流路45の挿入代の部分は、第1ヘッダ41及び第3ヘッダ43内における冷媒の流動に対しては圧力損失要因となる。従って、上述したような仕切り壁411,431を設けることで、第1ヘッダ41,43の内部を平坦化することは圧力損失の面からも効果がある。
(第2実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第2実施形態について、図6及び図7を参照しながら説明する。 Further, in general, in a heat exchanger, it is advantageous for performance improvement to reduce the pressure loss on the refrigerant side, but the portion of the insertion allowance of therefrigerant flow path 45 into the first header 41 and the third header 43 is The refrigerant flows in the first header 41 and the third header 43 cause a pressure loss. Therefore, by providing the partition walls 411 and 431 as described above, flattening the inside of the first headers 41 and 43 is also effective in terms of pressure loss.
(Second Embodiment)
Then, 2nd Embodiment which arrange | positions a cool storage material so that the flow of the air of an air passage may not be inhibited is demonstrated, referring FIG.6 and FIG.7.
(第2実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第2実施形態について、図6及び図7を参照しながら説明する。 Further, in general, in a heat exchanger, it is advantageous for performance improvement to reduce the pressure loss on the refrigerant side, but the portion of the insertion allowance of the
(Second Embodiment)
Then, 2nd Embodiment which arrange | positions a cool storage material so that the flow of the air of an air passage may not be inhibited is demonstrated, referring FIG.6 and FIG.7.
蓄冷材61は、第1ヘッダ41及び第3ヘッダ43の内部であって、冷媒流路45と第1ヘッダ41の内壁及び第3ヘッダ43の内壁との間に配置されている。蓄冷材61は、円筒状の容器の中に充填され、冷媒流路45の一端とは所定の距離をおいて配置されている。
The cold storage material 61 is disposed inside the first header 41 and the third header 43 and between the refrigerant flow path 45, the inner wall of the first header 41, and the inner wall of the third header 43. The cold storage material 61 is filled in a cylindrical container, and is arranged at a predetermined distance from one end of the refrigerant flow path 45.
第1実施形態に比較して、蓄冷材61は、冷媒の流れに影響を与えうる態様で第1ヘッダ41及び第3ヘッダ43内に配置されている。そこで、図7に示されるように、第1ヘッダ41への冷媒の流入口である入口部412近傍に蓄冷材61を配置することが好ましい。例えば、蓄冷剤61は、冷媒流路45の長手方向において、入口部412に近いサイドプレート50と重複するように配置されても良い。
Compared to the first embodiment, the regenerator material 61 is disposed in the first header 41 and the third header 43 in a manner that can affect the flow of the refrigerant. Therefore, as shown in FIG. 7, it is preferable to dispose the cold storage material 61 in the vicinity of the inlet portion 412 that is the inlet of the refrigerant to the first header 41. For example, the cool storage agent 61 may be disposed so as to overlap the side plate 50 close to the inlet portion 412 in the longitudinal direction of the refrigerant flow path 45.
蒸発器40に供給される冷媒は液冷媒であり、蒸発器40から流出する冷媒はガス冷媒である。圧力損失の上昇は、液冷媒で低く、ガス冷媒で高くなるため、液冷媒が供給される入口部412近傍に蓄冷材61を配置することで、圧力損失への影響を低減することができる。
The refrigerant supplied to the evaporator 40 is a liquid refrigerant, and the refrigerant flowing out of the evaporator 40 is a gas refrigerant. Since the increase in pressure loss is low for liquid refrigerant and high for gas refrigerant, the effect of pressure loss can be reduced by disposing the regenerator 61 in the vicinity of the inlet 412 to which liquid refrigerant is supplied.
第2実施形態においても第1実施形態と同様に、冷凍サイクル装置1が搭載されている自動車の停車時には冷媒が流れなくなるが、蒸発器40の内部に残った冷媒が蒸発しガス化すると蓄冷材61によって冷却され、再び液化し冷媒流路45内へと再び供給される。この再供給によって、コア部である第1熱交換部48及び第2熱交換部49を通して冷風を供給することができる。
(第3実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第3実施形態について、図8を参照しながら説明する。 Also in the second embodiment, as in the first embodiment, the refrigerant stops flowing when the automobile on which therefrigeration cycle apparatus 1 is mounted stops. However, when the refrigerant remaining in the evaporator 40 evaporates and gasifies, the regenerator material It is cooled by 61, liquefied again, and supplied again into the refrigerant flow path 45. By this resupply, cold air can be supplied through the first heat exchange unit 48 and the second heat exchange unit 49 which are the core portions.
(Third embodiment)
Then, 3rd Embodiment which arrange | positions a cool storage material so that the flow of the air of an air path may not be inhibited is demonstrated, referring FIG.
(第3実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第3実施形態について、図8を参照しながら説明する。 Also in the second embodiment, as in the first embodiment, the refrigerant stops flowing when the automobile on which the
(Third embodiment)
Then, 3rd Embodiment which arrange | positions a cool storage material so that the flow of the air of an air path may not be inhibited is demonstrated, referring FIG.
蓄冷材62は、第1ヘッダ41及び第3ヘッダ43の外側であって、第1ヘッダ41の外周面及び第3ヘッダ43の外周面と、保持部70及び保持部71との間に配置されている。第1ヘッダ41と第3ヘッダ43との間には、第1ヘッダ41及び第3ヘッダ43の長手方向に沿った一対の凹部が形成されており、保持部70は一方の凹部を塞ぎ、保持部71は他方の凹部を塞いでいる。蓄冷材62は、一対の凹部が保持部70,71で塞がれた空間内に配置されている。
The cold storage material 62 is disposed outside the first header 41 and the third header 43 and between the outer peripheral surface of the first header 41 and the outer peripheral surface of the third header 43, and the holding unit 70 and the holding unit 71. ing. A pair of recesses along the longitudinal direction of the first header 41 and the third header 43 is formed between the first header 41 and the third header 43, and the holding unit 70 closes and holds one of the recesses. The portion 71 closes the other concave portion. The cold storage material 62 is disposed in a space in which a pair of concave portions are closed by the holding portions 70 and 71.
第1実施形態及び第2実施形態に比較して、第3実施形態の蓄冷材62は第1ヘッダ41及び第3ヘッダ43の外側に配置されているため、冷媒の流れへの影響は無い。冷凍サイクル装置1が搭載されている自動車の停車時に冷媒が流れなくなった場合の冷風供給のメカニズムは第1実施形態及び第2実施形態と同様である。
(第4実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第4実施形態について、図9及び図10を参照しながら説明する。 Compared to the first embodiment and the second embodiment, theregenerator material 62 of the third embodiment is disposed outside the first header 41 and the third header 43, and thus has no effect on the flow of the refrigerant. The mechanism of cold air supply when the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted is the same as in the first embodiment and the second embodiment.
(Fourth embodiment)
Next, a fourth embodiment in which the cold storage material is arranged so as not to hinder the air flow in the air passage will be described with reference to FIGS. 9 and 10.
(第4実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第4実施形態について、図9及び図10を参照しながら説明する。 Compared to the first embodiment and the second embodiment, the
(Fourth embodiment)
Next, a fourth embodiment in which the cold storage material is arranged so as not to hinder the air flow in the air passage will be described with reference to FIGS. 9 and 10.
蓄冷材63は、第1ヘッダ41及び第3ヘッダ43の外側であって、第1ヘッダ41の外周面及び第3ヘッダ43の外周面と、パッキン75(保持部)との間に配置されている。蒸発器40は、自動車に搭載される際に、収容するケースとの間の気密性(風漏れ阻害性)を保つためパッキン75が設けられる。パッキン75は、第1ヘッダ41及び第3ヘッダ43の外周を覆うように設けられている。蓄冷材63は、パッキン75の内面に沿って配置され、部分的に第1ヘッダ41及び第3ヘッダ43に接している。パッキン75の内面に蓄冷材63を配置することで、冷媒からの冷熱が伝わりやすく、蓄熱した冷熱を放出しやすくなる。また、外面にはパッキン75を配置することで風洩れ性を確保できる。
The cold storage material 63 is disposed outside the first header 41 and the third header 43 and between the outer peripheral surface of the first header 41 and the outer peripheral surface of the third header 43 and the packing 75 (holding portion). Yes. When the evaporator 40 is mounted on an automobile, a packing 75 is provided in order to maintain airtightness (wind leakage inhibiting property) with the housing case. The packing 75 is provided so as to cover the outer circumferences of the first header 41 and the third header 43. The cold storage material 63 is disposed along the inner surface of the packing 75 and is in partial contact with the first header 41 and the third header 43. By disposing the cold storage material 63 on the inner surface of the packing 75, the cold heat from the refrigerant is easily transmitted, and the stored cold heat is easily released. Further, by arranging the packing 75 on the outer surface, it is possible to ensure the air leakage.
第3実施形態と同様に、蓄冷材62は第1ヘッダ41及び第3ヘッダ43の外側に配置されているため、冷媒の流れへの影響は無い。冷凍サイクル装置1が搭載されている自動車の停車時に冷媒が流れなくなった場合の冷風供給のメカニズムは第1実施形態及び第2実施形態と同様である。
(第5実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第5実施形態について、図11を参照しながら説明する。 Similarly to the third embodiment, since thecold storage material 62 is disposed outside the first header 41 and the third header 43, there is no influence on the flow of the refrigerant. The mechanism of cold air supply when the refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted is the same as in the first embodiment and the second embodiment.
(Fifth embodiment)
Then, 5th Embodiment which arrange | positions a cool storage material so that the flow of the air of an air path may not be inhibited is demonstrated, referring FIG.
(第5実施形態)
続いて、空気通路の空気の流れを阻害しないように蓄冷材を配置する第5実施形態について、図11を参照しながら説明する。 Similarly to the third embodiment, since the
(Fifth embodiment)
Then, 5th Embodiment which arrange | positions a cool storage material so that the flow of the air of an air path may not be inhibited is demonstrated, referring FIG.
図11に示されるように、サイドプレート50の代わりに蓄冷材64が配置された冷媒流路45が、複数の冷媒流路45の最も外側に配置されている。蓄冷材64は、最も外側に配置された冷媒流路45の外側面に沿って配置されている。このように一部の冷媒流路45を蓄冷材64で冷却することで、蓄冷材64が接している冷媒流路45内部は液冷媒とガス冷媒との2相状態を維持することができる。そのため、ガス冷媒のみになってしまうと冷媒の温度上昇が進行してしまうところ、蒸発器40内の一部において2相状態を維持することで、全体の温度を一定に保つことができる。従って、蓄冷材64は、蒸発器40からガス冷媒が流出するジョイントサイドに設けることが好ましい。
(第6実施形態)
続いて、空気通路の空気(AIR)の流れを阻害しないように蓄冷材を配置する第6実施形態について、図12を参照しながら説明する。 As shown in FIG. 11, therefrigerant flow path 45 in which the cold storage material 64 is arranged instead of the side plate 50 is arranged on the outermost side of the plurality of refrigerant flow paths 45. The cold storage material 64 is disposed along the outer surface of the refrigerant flow path 45 disposed on the outermost side. In this way, by cooling a part of the refrigerant flow paths 45 with the cold storage material 64, the inside of the refrigerant flow path 45 in contact with the cold storage material 64 can maintain the two-phase state of the liquid refrigerant and the gas refrigerant. For this reason, when only the gas refrigerant is used, the temperature of the refrigerant increases, and by maintaining the two-phase state in a part of the evaporator 40, the entire temperature can be kept constant. Therefore, the cool storage material 64 is preferably provided on the joint side where the gas refrigerant flows out of the evaporator 40.
(Sixth embodiment)
Next, a sixth embodiment in which the regenerator material is arranged so as not to hinder the flow of air (AIR) in the air passage will be described with reference to FIG.
(第6実施形態)
続いて、空気通路の空気(AIR)の流れを阻害しないように蓄冷材を配置する第6実施形態について、図12を参照しながら説明する。 As shown in FIG. 11, the
(Sixth embodiment)
Next, a sixth embodiment in which the regenerator material is arranged so as not to hinder the flow of air (AIR) in the air passage will be described with reference to FIG.
図12に示されるように、複数の冷媒流路45は空気通路に沿って一対となるように2列に配置されている。本実施形態では、一対に配置された冷媒流路45の間に蓄冷材65を配置している。デッドスペースであった冷媒流路45間に蓄冷材65を配置することで、空気通路を流れる空気の流れを阻害すること無く、蓄冷材を配置することができる。
As shown in FIG. 12, the plurality of refrigerant channels 45 are arranged in two rows so as to form a pair along the air passage. In this embodiment, the cool storage material 65 is arrange | positioned between the refrigerant | coolant flow paths 45 arrange | positioned at a pair. By disposing the cool storage material 65 between the refrigerant flow paths 45 which are dead spaces, the cool storage material can be disposed without obstructing the flow of air flowing through the air passage.
冷凍サイクル装置1が搭載されている自動車の停車時には冷媒が流れなくなるが、冷媒流路45の内部に残った冷媒の温度が上昇すると蓄冷材65によって冷却され、再び液化し冷媒流路45内に液冷媒が残る。この再供給によって、コア部である第1熱交換部48及び第2熱交換部49を通して冷風を供給することができる。
The refrigerant stops flowing when the automobile on which the refrigeration cycle apparatus 1 is mounted, but when the temperature of the refrigerant remaining in the refrigerant flow path 45 rises, it is cooled by the cold storage material 65 and liquefied again into the refrigerant flow path 45. Liquid refrigerant remains. By this resupply, cold air can be supplied through the first heat exchange unit 48 and the second heat exchange unit 49 which are the core portions.
上述した各実施形態においては、蓄冷剤60,61,62,63,64,65を空気通路における空気の流れを阻害しないように配置しているので、空気通路に配置されている蓄冷容器47の個数や容積を減らすことができる。
In each embodiment mentioned above, since the cool storage agent 60, 61, 62, 63, 64, 65 is arrange | positioned so that the flow of the air in an air passage may not be inhibited, the cold storage container 47 arrange | positioned in the air passage is used. The number and volume can be reduced.
尚、上述した各実施形態においては、第1ヘッダ41及び第3ヘッダ43が本開示の第1ヘッダタンクに相当し、第2ヘッダ42及び第4ヘッダ44が本開示の第2ヘッダタンクに相当する。図13に、上述した各実施形態における冷媒の流れを模式的に示す。
In each of the above-described embodiments, the first header 41 and the third header 43 correspond to the first header tank of the present disclosure, and the second header 42 and the fourth header 44 correspond to the second header tank of the present disclosure. To do. FIG. 13 schematically shows the refrigerant flow in each of the above-described embodiments.
図13に示されるように、第1ヘッダ41、第2ヘッダ42、第3ヘッダ43、第4ヘッダ44は、それぞれ第1区画及び第2区画に2分割されている。第1ヘッダ41の第1区画に流れ込んだ冷媒は、冷媒流路45を通って第2ヘッダ42の第1区画に流れこむ。第2ヘッダ42の第1区画に流れ込んだ冷媒は、第2ヘッダ42の第2区画に流れ込む。第2ヘッダ42の第2区画に流れ込んだ冷媒は、冷媒流路45を通って第1ヘッダ41の第2区画に流れこむ。
As shown in FIG. 13, the first header 41, the second header 42, the third header 43, and the fourth header 44 are each divided into two sections, a first section and a second section. The refrigerant that has flowed into the first section of the first header 41 flows into the first section of the second header 42 through the refrigerant flow path 45. The refrigerant that has flowed into the first section of the second header 42 flows into the second section of the second header 42. The refrigerant that has flowed into the second section of the second header 42 flows into the second section of the first header 41 through the refrigerant flow path 45.
第1ヘッダ41の第2区画と第3ヘッダ43の第2区画とは連通しているので、第1ヘッダ41の第2区画に流れ込んだ冷媒は第3ヘッダ43の第2区画に流れこむ。第3ヘッダ43の第2区画に流れ込んだ冷媒は、冷媒流路45を通って第4ヘッダ44の第2区画に流れ込む。
Since the second section of the first header 41 and the second section of the third header 43 communicate with each other, the refrigerant flowing into the second section of the first header 41 flows into the second section of the third header 43. The refrigerant that has flowed into the second section of the third header 43 flows into the second section of the fourth header 44 through the refrigerant flow path 45.
第4ヘッダ44の第2区画に流れ込んだ冷媒は、第4ヘッダ44の第1区画に流れ込む。第4ヘッダ44の第1区画に流れ込んだ冷媒は、冷媒流路45を通って第3ヘッダ43の第1区画に流れこむ。第3ヘッダ43の第1区画に流れ込んだ冷媒は外部に流出する。
The refrigerant that has flowed into the second section of the fourth header 44 flows into the first section of the fourth header 44. The refrigerant flowing into the first section of the fourth header 44 flows into the first section of the third header 43 through the refrigerant flow path 45. The refrigerant flowing into the first section of the third header 43 flows out to the outside.
本開示の実施形態としては、上述した冷媒の流れに限定されるものではない。図14に示されるように、第1ヘッダ41A、第2ヘッダ42A、第3ヘッダ43A、第4ヘッダ44A内部の区画を無くすような構成にすることができる。
The embodiment of the present disclosure is not limited to the refrigerant flow described above. As shown in FIG. 14, the first header 41A, the second header 42A, the third header 43A, and the fourth header 44A can be eliminated.
図14に示される蓄冷熱交換器40Aでは、第1ヘッダ41Aに流れ込んだ冷媒は、冷媒流路45を通って第2ヘッダ42Aに流れ込む。第2ヘッダ42Aと第4ヘッダ44Aとは連通しているので、第2ヘッダ42Aに流れ込んだ冷媒は第4ヘッダ44Aに流れ込む。第4ヘッダ44Aに流れ込んだ冷媒は、冷媒流路45を通って第3ヘッダ43Aに流れこむ。第3ヘッダ43Aに流れ込んだ冷媒は外部に流出する。
In the cold storage heat exchanger 40A shown in FIG. 14, the refrigerant that has flowed into the first header 41A flows into the second header 42A through the refrigerant flow path 45. Since the second header 42A and the fourth header 44A communicate with each other, the refrigerant that has flowed into the second header 42A flows into the fourth header 44A. The refrigerant that has flowed into the fourth header 44A flows through the refrigerant flow path 45 into the third header 43A. The refrigerant flowing into the third header 43A flows out to the outside.
蓄冷剤60,61,62,63,64,65は、蓄冷熱交換器40Aのような冷媒の流れを構成するものに対しても適用することができる。
The cold storage agents 60, 61, 62, 63, 64, and 65 can also be applied to those constituting the refrigerant flow, such as the cold storage heat exchanger 40A.
蓄冷熱交換器40Aでは、第1ヘッダ41A、第2ヘッダ42A、第3ヘッダ43A、第4ヘッダ44A内部の区画を無くすような構成としたけれども、内部の区画を増やす構成とすることもできる。
The cold storage heat exchanger 40A is configured to eliminate the internal sections of the first header 41A, the second header 42A, the third header 43A, and the fourth header 44A, but may be configured to increase the internal sections.
図15に示される蓄冷熱交換器40Bでは、第1ヘッダ41B、第2ヘッダ42B、第3ヘッダ43B、第4ヘッダ44B内部をそれぞれ3つの区画に区切っている。
In the regenerative heat exchanger 40B shown in FIG. 15, the first header 41B, the second header 42B, the third header 43B, and the fourth header 44B are each divided into three sections.
第1ヘッダ41Bの第1区画に流れ込んだ冷媒は、冷媒流路45を通って第2ヘッダ42Bの第1区画に流れこむ。第2ヘッダ42Bの第1区画に流れ込んだ冷媒は、第2ヘッダ42Bの第2区画に流れ込む。第2ヘッダ42Bの第2区画に流れ込んだ冷媒は、冷媒流路45を通って第1ヘッダ41Bの第2区画に流れこむ。
The refrigerant that has flowed into the first section of the first header 41B flows through the refrigerant flow path 45 into the first section of the second header 42B. The refrigerant that has flowed into the first section of the second header 42B flows into the second section of the second header 42B. The refrigerant that has flowed into the second section of the second header 42B flows through the refrigerant flow path 45 into the second section of the first header 41B.
第1ヘッダ41Bの第2区画に流れ込んだ冷媒は、第1ヘッダ41Bの第3区画に流れこむ。第1ヘッダ41Bの第3区画に流れ込んだ冷媒は、冷媒流路45を通って第2ヘッダ42Bの第3区画に流れこむ。
The refrigerant that has flowed into the second section of the first header 41B flows into the third section of the first header 41B. The refrigerant that has flowed into the third section of the first header 41B flows through the refrigerant flow path 45 into the third section of the second header 42B.
第2ヘッダ42Bの第3区画と第4ヘッダ44Bの第3区画とは連通しているので、第2ヘッダ42Bの第3区画に流れ込んだ冷媒は第4ヘッダ44Bの第3区画に流れこむ。第4ヘッダ44Bの第3区画に流れ込んだ冷媒は、冷媒流路45を通って第3ヘッダ43Bの第3区画に流れ込む。
Since the third section of the second header 42B and the third section of the fourth header 44B communicate with each other, the refrigerant flowing into the third section of the second header 42B flows into the third section of the fourth header 44B. The refrigerant that has flowed into the third section of the fourth header 44B flows through the refrigerant flow path 45 into the third section of the third header 43B.
第3ヘッダ43Bの第3区画に流れ込んだ冷媒は、第3ヘッダ43Bの第2区画に流れ込む。第3ヘッダ43Bの第2区画に流れ込んだ冷媒は、冷媒流路45を通って第4ヘッダ44Bの第2区画に流れこむ。
The refrigerant that has flowed into the third section of the third header 43B flows into the second section of the third header 43B. The refrigerant that has flowed into the second section of the third header 43B flows through the refrigerant flow path 45 into the second section of the fourth header 44B.
第4ヘッダ44Bの第2区画に流れ込んだ冷媒は、第4ヘッダ44Bの第1区画に流れ込む。第4ヘッダ44Bの第1区画に流れ込んだ冷媒は、冷媒流路45を通って第3ヘッダ43Bの第1区画に流れこむ。第3ヘッダ43Bの第1区画に流れ込んだ冷媒は外部に流出する。
The refrigerant that has flowed into the second section of the fourth header 44B flows into the first section of the fourth header 44B. The refrigerant that has flowed into the first section of the fourth header 44B flows through the refrigerant flow path 45 into the first section of the third header 43B. The refrigerant that has flowed into the first section of the third header 43B flows out to the outside.
蓄冷剤60,61,62,63,64,65は、蓄冷熱交換器40Bのような冷媒の流れを構成するものに対しても適用することができる。
The cold storage agents 60, 61, 62, 63, 64, and 65 can also be applied to a refrigerant that constitutes a refrigerant flow such as the cold storage heat exchanger 40B.
蓄冷熱交換器40,40A,40Bでは、冷媒の出入口を重力方向で上側に配置された、第1ヘッダ41,41A,41B及び第3ヘッダ43,43A,43Bに設けている。冷媒の出入口の形態はこれらに限られるものではなく、蓄冷熱交換器40,40A,40Bの天地を逆転させた構成とすることもできる。
In the cold storage heat exchangers 40, 40A, 40B, the refrigerant inlet / outlet ports are provided in the first header 41, 41A, 41B and the third header 43, 43A, 43B, which are arranged on the upper side in the direction of gravity. The form of the refrigerant inlet / outlet is not limited to these, and the top and bottom of the cold storage heat exchangers 40, 40A, 40B may be reversed.
図16に示される蓄冷熱交換器40Rは、第1ヘッダ41R及び第3ヘッダ43Rを重力方向で下側に配置し,第2ヘッダ42R及び第4ヘッダ44Rを重力方向で上側に配置している。
In the cold storage heat exchanger 40R shown in FIG. 16, the first header 41R and the third header 43R are arranged on the lower side in the gravity direction, and the second header 42R and the fourth header 44R are arranged on the upper side in the gravity direction. .
第1ヘッダ41Rの第1区画に流れ込んだ冷媒は、冷媒流路45を通って第2ヘッダ42Rの第1区画に流れこむ。第2ヘッダ42Rの第1区画に流れ込んだ冷媒は、第2ヘッダ42Rの第2区画に流れ込む。第2ヘッダ42Rの第2区画に流れ込んだ冷媒は、冷媒流路45を通って第1ヘッダ41Rの第2区画に流れこむ。
The refrigerant that has flowed into the first section of the first header 41R flows through the refrigerant flow path 45 into the first section of the second header 42R. The refrigerant that has flowed into the first section of the second header 42R flows into the second section of the second header 42R. The refrigerant that has flowed into the second section of the second header 42R flows through the refrigerant flow path 45 into the second section of the first header 41R.
第1ヘッダ41Rの第2区画と第3ヘッダ43Rの第2区画とは連通しているので、第1ヘッダ41Rの第2区画に流れ込んだ冷媒は第3ヘッダ43Rの第2区画に流れこむ。第3ヘッダ43Rの第2区画に流れ込んだ冷媒は、冷媒流路45を通って第4ヘッダ44Rの第2区画に流れ込む。
Since the second section of the first header 41R communicates with the second section of the third header 43R, the refrigerant flowing into the second section of the first header 41R flows into the second section of the third header 43R. The refrigerant that has flowed into the second section of the third header 43R flows through the refrigerant flow path 45 into the second section of the fourth header 44R.
第4ヘッダ44Rの第2区画に流れ込んだ冷媒は、第4ヘッダ44Rの第1区画に流れ込む。第4ヘッダ44Rの第1区画に流れ込んだ冷媒は、冷媒流路45を通って第3ヘッダ43Rの第1区画に流れこむ。第3ヘッダ43Rの第1区画に流れ込んだ冷媒は外部に流出する。
The refrigerant that has flowed into the second section of the fourth header 44R flows into the first section of the fourth header 44R. The refrigerant that has flowed into the first section of the fourth header 44R flows through the refrigerant flow path 45 into the first section of the third header 43R. The refrigerant flowing into the first section of the third header 43R flows out to the outside.
蓄冷熱交換器40Rを上述した構成とすることで、第2ヘッダ42R及び第4ヘッダ44Rが本開示の第1ヘッダタンクに相当し、第1ヘッダ41R及び第3ヘッダ43Rが本開示の第2ヘッダタンクに相当する。従って、蓄冷剤60,61,62,63は、第2ヘッダ42R及び第4ヘッダ44Rに設けられることになる。
By configuring the cold storage heat exchanger 40R as described above, the second header 42R and the fourth header 44R correspond to the first header tank of the present disclosure, and the first header 41R and the third header 43R are the second header of the present disclosure. Corresponds to the header tank. Therefore, the cool storage agents 60, 61, 62, and 63 are provided in the second header 42R and the fourth header 44R.
図17に示される蓄冷熱交換器40RAは、図14に示される蓄冷熱交換器40Aを天地逆転させたものである。蓄冷熱交換器40RAは、本開示の第1ヘッダタンクに相当する第2ヘッダ42RA及び第4ヘッダ44RAと、本開示の第2ヘッダタンクに相当する第1ヘッダ41RA及び第3ヘッダ43RAと、を備えている。従って、蓄冷剤60,61,62,63は、第2ヘッダ42RA及び第4ヘッダ44RAに設けられることになる。
A cold storage heat exchanger 40RA shown in FIG. 17 is obtained by reversing the cold storage heat exchanger 40A shown in FIG. The cold storage heat exchanger 40RA includes a second header 42RA and a fourth header 44RA corresponding to the first header tank of the present disclosure, and a first header 41RA and a third header 43RA corresponding to the second header tank of the present disclosure. I have. Therefore, the cool storage agents 60, 61, 62, and 63 are provided in the second header 42RA and the fourth header 44RA.
図18に示される蓄冷熱交換器40RBは、図15に示される蓄冷熱交換器40Bを天地逆転させたものである。蓄冷熱交換器40RBは、本開示の第1ヘッダタンクに相当する第2ヘッダ42RB及び第4ヘッダ44RBと、本開示の第2ヘッダタンクに相当する第1ヘッダ41RB及び第3ヘッダ43RBと、を備えている。従って、蓄冷剤60,61,62,63は、第2ヘッダ42RB及び第4ヘッダ44RBに設けられることになる。
A cold storage heat exchanger 40RB shown in FIG. 18 is obtained by reversing the cold storage heat exchanger 40B shown in FIG. The cold storage heat exchanger 40RB includes a second header 42RB and a fourth header 44RB corresponding to the first header tank of the present disclosure, and a first header 41RB and a third header 43RB corresponding to the second header tank of the present disclosure. I have. Therefore, the cool storage agents 60, 61, 62, and 63 are provided in the second header 42RB and the fourth header 44RB.
上記各実施形態では、蓄冷材が空気の流れを阻害しない領域に配置されている場合を説明したが、空気の流れを阻害する領域にも蓄冷材が配置されていてもよい。
In each of the above embodiments, the case where the regenerator material is arranged in a region that does not inhibit the air flow has been described, but the regenerator material may also be arranged in a region that inhibits the air flow.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Claims (13)
- 冷媒を蒸発させる蓄冷熱交換器であって、
冷媒が流通する冷媒通路を各々が有し、互いに間隔をあけて空気通路が形成されるように配置されている複数の冷媒流路(45)と、
前記空気通路に設けられるフィン(46)と、
前記複数の冷媒流路の一端側が連通する第1ヘッダタンク(41,41A,41B,43,43A,43B,42R,42RA,42RB,44R,44RA,44RB)と、
前記複数の冷媒流路の他端側が連通する第2ヘッダタンク(42,42A,42B,44,44A,44B,41R,41RA,41RB,43R,43RA,43RB)と、
圧縮機の駆動時に減圧器によって減圧された冷媒が蒸発することで冷却される一方で、前記圧縮機の停止時に放冷する蓄冷材(60,61,62,63,64,65)と、を備え、
前記空気通路の空気の流れを阻害しない領域に前記蓄冷材が配置されている蓄冷熱交換器。 A cold storage heat exchanger for evaporating the refrigerant,
A plurality of refrigerant passages (45) each having refrigerant passages through which refrigerant flows and arranged so as to form air passages spaced apart from each other;
Fins (46) provided in the air passage;
A first header tank (41, 41A, 41B, 43, 43A, 43B, 42R, 42RA, 42RB, 44R, 44RA, 44RB) in which one end side of the plurality of refrigerant channels communicates;
A second header tank (42, 42A, 42B, 44, 44A, 44B, 41R, 41RA, 41RB, 43R, 43RA, 43RB) in which the other end side of the plurality of refrigerant flow paths communicates;
A regenerator material (60, 61, 62, 63, 64, 65) that cools by evaporating the refrigerant depressurized by the decompressor when the compressor is driven, and cools when the compressor is stopped. Prepared,
The regenerative heat exchanger in which the regenerator material is disposed in a region that does not hinder the air flow in the air passage. - 前記蓄冷材は、前記第1ヘッダタンクの内側及び外側の少なくとも一方に接する請求項1に記載の蓄冷熱交換器。 The cold storage heat exchanger according to claim 1, wherein the cold storage material contacts at least one of an inner side and an outer side of the first header tank.
- 前記第1ヘッダタンクは、重力方向で前記複数の冷媒流路の上側に配置されている請求項2に記載の蓄冷熱交換器。 The cold storage heat exchanger according to claim 2, wherein the first header tank is disposed above the plurality of refrigerant flow paths in the direction of gravity.
- 前記第1ヘッダタンク内において、前記第1ヘッダタンク内に連通される前記複数の冷媒流路の一端が貫通すると共に、前記第1ヘッダタンクの内壁に密接する仕切り壁(411,431)が設けられ、
前記仕切り壁と前記内壁との間であって、前記一端が突出していない方の空間に前記蓄冷材が配置されている請求項2又は3に記載の蓄冷熱交換器。 In the first header tank, there are provided partition walls (411, 431) that penetrate through one end of the plurality of refrigerant flow paths communicating with the first header tank and are in close contact with the inner wall of the first header tank. And
The regenerative heat exchanger according to claim 2 or 3, wherein the regenerator material is disposed in a space between the partition wall and the inner wall and in which the one end does not protrude. - 前記複数の冷媒流路の一端と、前記第1ヘッダタンクの内壁との間に前記蓄冷材(61)が配置されている請求項2又は3に記載の蓄冷熱交換器。 The cold storage heat exchanger according to claim 2 or 3, wherein the cold storage material (61) is disposed between one end of the plurality of refrigerant flow paths and an inner wall of the first header tank.
- 前記第1ヘッダタンク(41,41A,41B,43,43A,43B)は、前記冷媒が流入する入口部(412)を有し、前記蓄冷材は前記入口部の近傍に配置されている請求項5に記載の蓄冷熱交換器。 The first header tank (41, 41A, 41B, 43, 43A, 43B) has an inlet portion (412) into which the refrigerant flows, and the cold storage material is disposed in the vicinity of the inlet portion. 5. The cold storage heat exchanger according to 5.
- 前記蓄冷材(62,63)は、前記第1ヘッダタンク外周面と保持部(70,71,75)との間に配置されている請求項2又は3に記載の蓄冷熱交換器。 The cold storage heat exchanger according to claim 2 or 3, wherein the cold storage material (62, 63) is disposed between an outer peripheral surface of the first header tank and a holding portion (70, 71, 75).
- 前記保持部(75)は、前記蓄冷熱交換器と前記蓄冷熱交換器を収容するケースとの間に配置され気密性を保つためのパッキンである請求項7に記載の蓄冷熱交換器。 The cold storage heat exchanger according to claim 7, wherein the holding part (75) is a packing arranged between the cold storage heat exchanger and a case accommodating the cold storage heat exchanger to maintain airtightness.
- 前記複数の冷媒流路の内、最も外側に配置された冷媒流路の外側面に前記蓄冷材(64)が配置されている請求項1に記載の蓄冷熱交換器。 The cold storage heat exchanger according to claim 1, wherein the cold storage material (64) is arranged on an outer side surface of the refrigerant flow channel arranged on the outermost side among the plurality of refrigerant flow channels.
- 前記複数の冷媒流路は前記空気通路を流通する空気の流れ方向において一対となるように2列に配置されており、一対に配置された前記冷媒流路の間に前記蓄冷材(65)が配置されている請求項1に記載の蓄冷熱交換器。 The plurality of refrigerant flow paths are arranged in two rows so as to form a pair in the flow direction of the air flowing through the air passage, and the cold storage material (65) is interposed between the refrigerant flow paths arranged in a pair. The regenerative heat exchanger according to claim 1 arranged.
- 前記空気通路において空気の流れを阻害する領域にも前記蓄冷材が配置されている請求項1から10のいずれか1項に記載の蓄冷熱交換器。 The cold storage heat exchanger according to any one of claims 1 to 10, wherein the cold storage material is disposed also in a region where air flow is inhibited in the air passage.
- 前記第1ヘッダタンクは、前記第1ヘッダタンクの内壁に密接して、前記第1ヘッダタンクの内部を2以上の空間に仕切る仕切り壁(411,431)を有し、
前記複数の冷媒流路の前記一端は前記仕切り壁を貫通し、前記複数の冷媒流路の各冷媒通路は前記仕切り壁によって仕切られた空間の少なくとも1つと連通しており、
前記冷媒通路が連通していない前記第1ヘッダタンク内の空間に前記蓄冷材が配置されている請求項2又は3に記載の蓄冷熱交換器。 The first header tank has partition walls (411, 431) that are in close contact with the inner wall of the first header tank and partition the interior of the first header tank into two or more spaces.
The one end of the plurality of refrigerant channels passes through the partition wall, and each refrigerant passage of the plurality of refrigerant channels communicates with at least one of the spaces partitioned by the partition wall;
The cold storage heat exchanger according to claim 2 or 3, wherein the cold storage material is disposed in a space in the first header tank in which the refrigerant passage is not communicated. - 前記第1ヘッダタンクの外側に配置された保持部(70,71,75)をさらに備え、
前記蓄冷材(62,63)は、前記第1ヘッダタンクの外周面と前記保持部(70,71,75)との間に配置されている請求項2又は3に記載の蓄冷熱交換器。 A holding portion (70, 71, 75) disposed outside the first header tank;
The cold storage heat exchanger according to claim 2 or 3, wherein the cold storage material (62, 63) is disposed between an outer peripheral surface of the first header tank and the holding portion (70, 71, 75).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-086613 | 2015-04-21 | ||
JP2015086613A JP6540190B2 (en) | 2015-04-21 | 2015-04-21 | Cold storage heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016170751A1 true WO2016170751A1 (en) | 2016-10-27 |
Family
ID=57143835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001971 WO2016170751A1 (en) | 2015-04-21 | 2016-04-11 | Cold storage heat exchanger |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6540190B2 (en) |
WO (1) | WO2016170751A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015148392A (en) * | 2014-02-07 | 2015-08-20 | 株式会社ケーヒン・サーマル・テクノロジー | heat exchanger |
FR3056732A1 (en) * | 2016-09-29 | 2018-03-30 | Valeo Systemes Thermiques | COLLECTOR BOX FOR HEAT EXCHANGER WITH PHASE CHANGE MATERIAL ENCAPSULATED IN TUBES |
WO2018060646A1 (en) * | 2016-09-28 | 2018-04-05 | Valeo Systemes Thermiques | Collector box comprising a phase change material and heat exchanger comprising such a collector box |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102161528B1 (en) * | 2017-06-05 | 2020-10-06 | 한온시스템 주식회사 | Cold reserving heat exchanger |
JP6954138B2 (en) * | 2018-01-15 | 2021-10-27 | 株式会社デンソー | Heat storage device |
JP2019124392A (en) * | 2018-01-15 | 2019-07-25 | 株式会社デンソー | Heat storage device |
JP2019152377A (en) * | 2018-03-02 | 2019-09-12 | 株式会社デンソー | Heat exchanger |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205777A (en) * | 1999-01-18 | 2000-07-28 | Denso Corp | Heat storage heat exchanger apparatus and vehicle air conditioning apparatus |
EP1657090A2 (en) * | 2004-11-16 | 2006-05-17 | Behr GmbH & Co. KG | Air conditioner with cold accumulator |
JP2010042781A (en) * | 2008-08-18 | 2010-02-25 | Valeo Thermal Systems Japan Corp | Vehicular air conditioner |
JP2010112670A (en) * | 2008-11-10 | 2010-05-20 | Showa Denko Kk | Evaporator with cold storage function |
JP2010164211A (en) * | 2009-01-13 | 2010-07-29 | Calsonic Kansei Corp | Structure of heat exchanger with cold storage unit |
JP2012145329A (en) * | 2004-11-30 | 2012-08-02 | Valeo Systemes Thermiques | Heat exchanger with heat storage function |
JP2014073782A (en) * | 2012-10-05 | 2014-04-24 | Calsonic Kansei Corp | Cold storage heat exchanger |
JP2014089035A (en) * | 2012-10-05 | 2014-05-15 | Calsonic Kansei Corp | Cold storage heat exchanger |
JP2014513265A (en) * | 2011-05-04 | 2014-05-29 | ハラ、ビステオン、クライメイト、コントロール コーポレーション | Cold storage heat exchanger |
JP2014148181A (en) * | 2013-01-31 | 2014-08-21 | Calsonic Kansei Corp | Cold-storage heat exchanger |
JP2014169019A (en) * | 2013-03-04 | 2014-09-18 | Calsonic Kansei Corp | Evaporator |
JP2014196865A (en) * | 2013-03-29 | 2014-10-16 | カルソニックカンセイ株式会社 | Evaporator |
JP2014218191A (en) * | 2013-05-09 | 2014-11-20 | カルソニックカンセイ株式会社 | Cold storage heat exchanger |
JP2014234982A (en) * | 2013-06-05 | 2014-12-15 | カルソニックカンセイ株式会社 | Heat exchanger |
US20150007971A1 (en) * | 2012-02-23 | 2015-01-08 | Halla Visteon Climate Control Corp. | Cold storage heat exchanger |
JP2015014399A (en) * | 2013-07-04 | 2015-01-22 | カルソニックカンセイ株式会社 | Cold storage heat exchanger |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5983387B2 (en) * | 2012-12-14 | 2016-08-31 | 株式会社デンソー | Heat exchanger |
JP2016176677A (en) * | 2015-03-23 | 2016-10-06 | 株式会社日本クライメイトシステムズ | Cold storage heat exchanger |
-
2015
- 2015-04-21 JP JP2015086613A patent/JP6540190B2/en not_active Expired - Fee Related
-
2016
- 2016-04-11 WO PCT/JP2016/001971 patent/WO2016170751A1/en active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205777A (en) * | 1999-01-18 | 2000-07-28 | Denso Corp | Heat storage heat exchanger apparatus and vehicle air conditioning apparatus |
EP1657090A2 (en) * | 2004-11-16 | 2006-05-17 | Behr GmbH & Co. KG | Air conditioner with cold accumulator |
JP2012145329A (en) * | 2004-11-30 | 2012-08-02 | Valeo Systemes Thermiques | Heat exchanger with heat storage function |
JP2010042781A (en) * | 2008-08-18 | 2010-02-25 | Valeo Thermal Systems Japan Corp | Vehicular air conditioner |
JP2010112670A (en) * | 2008-11-10 | 2010-05-20 | Showa Denko Kk | Evaporator with cold storage function |
JP2010164211A (en) * | 2009-01-13 | 2010-07-29 | Calsonic Kansei Corp | Structure of heat exchanger with cold storage unit |
JP2014513265A (en) * | 2011-05-04 | 2014-05-29 | ハラ、ビステオン、クライメイト、コントロール コーポレーション | Cold storage heat exchanger |
US20150007971A1 (en) * | 2012-02-23 | 2015-01-08 | Halla Visteon Climate Control Corp. | Cold storage heat exchanger |
JP2014089035A (en) * | 2012-10-05 | 2014-05-15 | Calsonic Kansei Corp | Cold storage heat exchanger |
JP2014073782A (en) * | 2012-10-05 | 2014-04-24 | Calsonic Kansei Corp | Cold storage heat exchanger |
JP2014148181A (en) * | 2013-01-31 | 2014-08-21 | Calsonic Kansei Corp | Cold-storage heat exchanger |
JP2014169019A (en) * | 2013-03-04 | 2014-09-18 | Calsonic Kansei Corp | Evaporator |
JP2014196865A (en) * | 2013-03-29 | 2014-10-16 | カルソニックカンセイ株式会社 | Evaporator |
JP2014218191A (en) * | 2013-05-09 | 2014-11-20 | カルソニックカンセイ株式会社 | Cold storage heat exchanger |
JP2014234982A (en) * | 2013-06-05 | 2014-12-15 | カルソニックカンセイ株式会社 | Heat exchanger |
JP2015014399A (en) * | 2013-07-04 | 2015-01-22 | カルソニックカンセイ株式会社 | Cold storage heat exchanger |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015148392A (en) * | 2014-02-07 | 2015-08-20 | 株式会社ケーヒン・サーマル・テクノロジー | heat exchanger |
WO2018060646A1 (en) * | 2016-09-28 | 2018-04-05 | Valeo Systemes Thermiques | Collector box comprising a phase change material and heat exchanger comprising such a collector box |
FR3056732A1 (en) * | 2016-09-29 | 2018-03-30 | Valeo Systemes Thermiques | COLLECTOR BOX FOR HEAT EXCHANGER WITH PHASE CHANGE MATERIAL ENCAPSULATED IN TUBES |
Also Published As
Publication number | Publication date |
---|---|
JP2016203766A (en) | 2016-12-08 |
JP6540190B2 (en) | 2019-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016170751A1 (en) | Cold storage heat exchanger | |
WO2014030306A1 (en) | Cold storage heat exchanger | |
US9803933B2 (en) | Cold storage medium container | |
WO2015045344A1 (en) | Cold-storage heat exchanger | |
KR101929910B1 (en) | Cold reserving heat exchanger | |
JP5768480B2 (en) | Cold storage heat exchanger | |
US20130284395A1 (en) | Heat exchanger with thermal storage function and method of manufacturing the same | |
JP2008180486A (en) | Heat exchanger | |
WO2014041771A1 (en) | Heat exchanger | |
US10696128B2 (en) | Cold storage heat exchanger | |
WO2014017021A1 (en) | Cold storage heat exchanger | |
JP5552309B2 (en) | Evaporator with cool storage function | |
JP2012126149A (en) | Evaporator with cool storage function | |
JP2014020757A (en) | Cold storage heat exchanger | |
JP2019039597A (en) | Double-pipe heat exchanger, and heat exchange system with the same | |
JP2010243066A (en) | Cold storage heat exchanger | |
JP6627538B2 (en) | Cool storage heat exchanger | |
JP2012102969A (en) | Evaporator with cool storage function | |
JP7159757B2 (en) | Heat exchanger | |
WO2017057174A1 (en) | Cold storage heat exchanger | |
WO2022044741A1 (en) | Cold-storage heat exchanger | |
JP6327386B2 (en) | Cold storage heat exchanger | |
JP2018096568A (en) | Heat exchanger | |
JP2014020663A (en) | Cold storage heat exchanger | |
JP2018167749A (en) | Cool storage type heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16782778 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16782778 Country of ref document: EP Kind code of ref document: A1 |