Nothing Special   »   [go: up one dir, main page]

WO2016147847A1 - 樹脂組成物及び光学レンズ - Google Patents

樹脂組成物及び光学レンズ Download PDF

Info

Publication number
WO2016147847A1
WO2016147847A1 PCT/JP2016/056036 JP2016056036W WO2016147847A1 WO 2016147847 A1 WO2016147847 A1 WO 2016147847A1 JP 2016056036 W JP2016056036 W JP 2016056036W WO 2016147847 A1 WO2016147847 A1 WO 2016147847A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorene
bis
aryl
resin composition
Prior art date
Application number
PCT/JP2016/056036
Other languages
English (en)
French (fr)
Inventor
祐輝 大内
一史 高野
将太郎 田坂
須田 康裕
英嗣 田渕
日出彦 伊吹
善也 大田
Original Assignee
大阪ガスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスケミカル株式会社 filed Critical 大阪ガスケミカル株式会社
Priority to CN201680015257.1A priority Critical patent/CN107429033B/zh
Priority to KR1020177024286A priority patent/KR102418855B1/ko
Priority to JP2017506183A priority patent/JP6734840B2/ja
Publication of WO2016147847A1 publication Critical patent/WO2016147847A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a resin composition useful as an optical lens, comprising a cyclic olefin-based resin and a compound having a 9,9-bisarylfluorene skeleton (hereinafter sometimes referred to as a fluorene compound).
  • an imaging lens included in an optical material, for example, a portable communication device such as a mobile phone or a smartphone.
  • imaging lens mounted on the imaging device in order to secure a space for mounting components and elements.
  • CCD sensors charge-coupled devices
  • CMOS sensors complementary metal oxide semiconductors
  • Such an imaging lens is compact and has high imaging performance and correction of various aberrations under cost constraints, so that various designs can be made in selecting the lens configuration, shape, and material using the optical design. Has been made.
  • the optical design of the imaging lens unit is performed by inputting the refractive index data at a plurality of wavelengths of the lens material into calculation software and repeating the adjustment while automatically calculating according to the algorithm.
  • the resin (or material) that can be used for the optical lens is limited, the degree of design freedom is limited, and there is a limit to highly effective or various designs. That is, the imaging lens unit is composed of a plurality of lenses having different Abbe numbers and refractive indexes. Therefore, in general, one or a plurality of lenses having a large Abbe number and a medium refractive index are used.
  • thermosetting resins and glass Although there are materials with an Abbe number in the middle region, glass is expensive, and thermosetting resins have low lens productivity, so they can be used in optical lenses such as mobile phones and smartphones. not being used.
  • a resin composition in which a compound having a fluorene skeleton or a resin containing a fluorene component is added to a thermoplastic resin.
  • JP-A-2005-162785 Patent Document 1
  • JP-A-2011-8017 Patent Document 2
  • JP-A-2011-8017 Patent Document 2
  • JP-A-2011-8017 Patent Document 2
  • JP-A-2011-8017 Patent Document 2
  • the compound can be added to increase the refractive index of the resin or to reduce the birefringence.
  • these documents also exemplify olefin-based resins or cyclic olefin-based resins as resins, and describe that they can be used for applications such as optical lenses.
  • JP-A-2014-205734 adds a compound having a 9,9-bisarylfluorene skeleton to a resin having a relatively small Abbe number (particularly an aromatic ring-containing resin). It is described that the Abbe number of the resin can be increased.
  • This document also exemplifies a cyclic olefin resin as a resin, and also describes that an optical lens, an optical film, and the like may be formed.
  • a specific fluorene compound for example, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (BPEF), etc.
  • BPEF 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene
  • JP 2013-194186 A discloses a resin composition containing an alicyclic polyester containing a 9,9-bisarylfluorene compound as a diol component and a polycycloolefin (cyclic olefin resin). It is described that a retardation film is formed of a product.
  • a polyester is formed from a fluorene compound containing an alicyclic diol component in order to increase the compatibility (miscibility) with polycycloolefin.
  • this document does not describe the adjustment of the Abbe number.
  • Patent Document 5 JP-A-2014-218660 (Patent Document 5) describes a resin composition containing a cyclic olefin copolymer and a compound having a 9,9-bisarylfluorene skeleton.
  • This document describes that the mechanical strength (for example, tensile strength) of the cyclic olefin copolymer can be improved, and that the Abbe number is also reduced.
  • 9,9-bis (3-methyl-4-hydroxyphenyl) fluorene (BCF) is added to “Arton4531F” or “APEL5014DP” of a cyclic olefin copolymer to obtain a resin composition. ing.
  • the latter resin composition describes that the Abbe number is reduced, the degree of reduction of the Abbe number is small with respect to the amount of BCF added.
  • the latter resin composition has low miscibility (compatibility) between the resin and BCF, and at first glance it appears to have transparency.
  • processing such as hot pressing or molding it was found that the resin composition might become cloudy, and the Abbe number could not be measured.
  • these resin compositions have insufficient heat resistance (glass transition temperature). For this reason, it has been found that it cannot be used for applications such as optical lenses.
  • JP 2005-162785 A (claims, [0015] [0059] [0079], Examples) Japanese Patent Laying-Open No. 2011-8017 (Claims, [0017] [0082], Examples) JP 2014-205734 A (claims, [0087] [0126], Examples) JP 2013-194186 A (claims, [0015] [0025], Examples) JP 2014-218660 A (Claims, [0028] [0029] [0034], Examples)
  • the object of the present invention is to effectively reduce the Abbe number of the cyclic olefin resin even when the content of the fluorene compound is small, and adjust the Abbe number in the intermediate region (for example, Abbe number of about 28 to 55). It is possible to provide a resin composition useful for applications such as optical lenses.
  • Another object of the present invention is to provide a resin composition having high transparency and high heat resistance (glass transition temperature) even when a relatively large amount of a fluorene compound is contained.
  • the present inventors have determined that a compound having a predetermined 9,9-bisarylfluorene skeleton with respect to a cyclic olefin resin having a functional group (sometimes referred to as a fluorene compound). Is added or mixed in the form of a monomer, even if the content of the fluorene compound is small, the Abbe number of the cyclic olefin resin can be effectively reduced to the intermediate region, and the Abbe number of the intermediate region can be adjusted.
  • the present inventors have found that a resin composition having high heat resistance (glass transition temperature) can be obtained and completed the present invention.
  • the resin composition of the present invention contains a cyclic olefin resin having a functional group and a compound having a 9,9-bisarylfluorene skeleton having a polar substituent.
  • the cyclic olefin-based resin may be a resin including a norbornene skeleton.
  • the cyclic olefin-based resin may be a resin including at least a structural unit represented by the following formula (1).
  • group R 1 represents a hydrogen atom or an alkyl group
  • group R 2 represents a hydrogen atom, an alkyl group or an aryl group
  • group W represents a carboxyl group, an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an aryloxycarbonyl group, A hydroxyalkylcarbonyl group, a glycidyloxycarbonyl group, a cyano group or an amide group
  • q represents 0 or 1
  • the group R 1 is a hydrogen atom or a methyl group
  • the group R 2 is a hydrogen atom
  • the group W is a carboxyl group, a C 1-2 alkoxy-carbonyl group, a cyano group or an amide group
  • q is 0. May be.
  • the glass transition temperature of the cyclic olefin resin may be about 140 to 250 ° C.
  • the compound having the 9,9-bisarylfluorene skeleton may be a compound represented by the following formula (2).
  • ring Z is an arene ring
  • R 3 is a halogen atom, cyano group, alkyl group, aryl group, carboxyl group or alkoxycarbonyl group
  • R 4 is a halogen atom, alkyl group, cycloalkyl group, aralkyl group, alkoxy group.
  • R 4 in the two rings Z may be bonded to each other to form a direct bond or an alkylene group to form a hydrocarbon ring with adjacent carbon atoms
  • the group X may be a group — [ (OR 5 ) n1 -Y 1 ] (wherein the substituent Y 1 is a hydroxyl group, a mercap Group, glycidyloxy group or (meth) acryloyloxy group, R 5 is an alkylene group, n1 represents 0 or an integer of 1 or more) or a group-[(CH 2 ) n2 -Y 2 ] (wherein substituted
  • the substituent Y 1 is a hydroxyl group or a glycidyloxy group
  • the ring Z is a benzene ring, a naphthalene ring or a biphenyl ring (particularly a naphthalene ring)
  • R 3 is a C 1-4 alkyl group
  • k is 0 or 1
  • R 4 is a C 1-4 alkyl group
  • m is 0 or 1
  • R 5 is a C 2-4 alkylene group
  • N1 may be an integer from 0 to 2
  • p may be 1 or 2.
  • the compound represented by the formula (2) includes 9,9-bis (mono or dihydroxy C 6-12 aryl) fluorene, 9,9-bis (C 6-12 aryl-hydroxy C 6- 12 aryl) fluorene, 9,9-bis (mono or di C 1-4 alkyl-hydroxy C 6-12 aryl) fluorene, 9,9-bis (mono or dihydroxy (poly) C 2-4 alkoxy C 6-12 Aryl) fluorene, 9,9-bis (C 6-12 aryl-hydroxy (poly) C 2-4 alkoxyC 6-12 aryl) fluorene, 9,9-bis [mono or di C 1-4 alkyl-hydroxy ( poly) C 2-4 alkoxy C 6-12 aryl] fluorene, 9,9-bis (mono- or diglyceryl di sill oxy C 6-12 aryl), 9,9-bi (C 6-12 aryl - Gurijishiruokishi C 6-12 aryl) fluorene, 9,9-bis (9)9
  • the present invention also includes a molded body and an optical lens formed of the resin composition.
  • (meth) acryloyloxy group means an acryloyloxy group and a methacryloyloxy group.
  • the resin composition of the present invention can effectively reduce the Abbe number of the cyclic olefin resin and easily adjust the Abbe number in the intermediate region because the cyclic olefin resin has a predetermined functional group.
  • the cyclic olefin-based resin has a polycyclic structure having the functional group, the heat resistance (glass transition temperature) is high, and the heat resistance can be maintained even when a fluorene compound is added. Therefore, the Abbe number and heat resistance (high glass transition temperature) of the intermediate region can be compatible.
  • the compatibility of both is high, even if the ratio of a fluorene compound is large, it can mix uniformly, without becoming cloudy, has high transparency, and can also reduce the Abbe number greatly.
  • Such a resin composition can expand the degree of freedom in designing a lens or the like, and is useful for applications such as an optical material (for example, an optical lens).
  • the resin composition of the present invention contains a cyclic olefin resin having a functional group and a compound having a 9,9-bisarylfluorene skeleton having a polar substituent (sometimes referred to as a fluorene compound).
  • Cyclic olefin resin has a functional group (A).
  • the cyclic olefin resin is a resin containing at least a cyclic olefin having an ethylenic double bond in the ring as a polymerization component (for example, a homopolymer of a cyclic olefin, a copolymer of a cyclic olefin and a copolymerizable monomer). It may be.
  • the said functional group (A) may be contained in the cyclic olefin and / or the copolymerizable monomer, Preferably it may be contained in the cyclic olefin at least.
  • the cyclic olefin having the functional group (A) may be a monocyclic olefin, but is usually a polycyclic olefin (for example, a bicyclic to tetracyclic olefin) in many cases.
  • the polycyclic olefin is an unsaturated compound having a functional group (A) and a carbon-carbon unsaturated double bond, and a cyclic di- or triene (for example, cyclopentadiene, dicyclo) which may contain a substituent (C). It can be prepared using Diels-Alder reaction with pentadiene and the like.
  • the unsaturated compound examples include compounds having a carboxyl group ⁇ for example, unsaturated mono- or dicarboxylic acid [for example, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, cinnamic acid, etc.] ⁇ , alkoxycarbonyl
  • a compound having a group [for example, (meth) alkyl (meth) acrylate (for example, (meth) methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate) acrylic acid C 1-6 alkyl, preferably (meth) acrylic acid C 1-4 alkyl), unsaturated dicarboxylic acid alkyl ester (e.g., itaconic acid C 1-4 alkyl esters of itaconic acid methyl ester, dimethyl maleate Maleic acid di-C 1-4 alkyl ester, etc.)], cycloa A
  • a compound having a mercapto group for example, A compound corresponding to a compound having a hydroxyl group
  • a compound having a glycidyl group for example, glycidyl (meth) acrylate
  • a compound having an amide group for example, (meth) acrylamide
  • a compound having a cyano group for example, (meth) acrylonitrile etc.
  • These unsaturated compounds can be used alone or in combination of two or more. Of these unsaturated compounds, compounds having a carboxyl group, a C 1-2 alkoxy-carbonyl group, a cyano group or an amide group are preferred.
  • substituent (C) of the cyclic olefin examples include, for example, a halogen atom (a fluorine atom, a chlorine atom, a bromide atom, an iodine atom, etc.), an alkyl group (a C 1-6 alkyl group such as a methyl group, an ethyl group, preferably C 1-4 alkyl group), cycloalkyl group (eg, C 5-10 cycloalkyl group such as cyclohexyl group), aryl group (eg, C 6-10 aryl group such as phenyl group), aralkyl group (benzyl group) And C 6-10 aryl-C 1-4 alkyl group such as phenethyl group).
  • the cyclic olefin may contain one or two or more substituents (C).
  • bicyclic olefins include, for example, cyclic olefins (2-norbornene, 2,5-norbornadiene, etc.) substituted with at least the functional group (A) (
  • 5-C 1-4 alkyl-5 such as 5-carboxy-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-ethoxycarbonyl-2-norbornene, 5-methyl-5-carboxy-2-norbornene, etc.
  • 5-C 1-4 alkyl-5-C 1-2 alkoxy- such as carboxy-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-methyl-5-ethoxycarbonyl-2-norbornene Carbonyl-2-norbornene, 5-methyl-5-cyclohexyloxycarbonyl - 5-C 1-4 alkyl -5-C 5-10 cycloalkoxy such as norbornene - carbonyl-2-norbornene, 5-hydroxy-ethoxycarbonyl-2-norbornene such as 5-hydroxy straight-chain or branched C 2 5 such as -3 alkoxy-carbonyl-2-norbornene, 5-cyano-2-norbornene, 5-amido-2-norbornene, 5,6-dicarboxy-2-norbornene, 5,6-dimethoxycarbonyl-2-norbornene, etc. , 6-diC 1-2 alkoxy-carbonyl-2-nor
  • tricyclic olefins (tricycloalkenes) having a functional group (A) include, for example, tricyclo [5.2.1.0 2,6 ] decan-3-ene substituted with at least the functional group (A).
  • Cyclic olefins such as 8-hydroxy-tricyclo [5.2.1.0 2,6 ] decan-3-ene, 9-hydroxy-tricyclo [5.2.1.0 2,6 ] decan-3- ene, 8-methoxy - tricyclo [5.2.1.0 2, 6] decane-3-8-C 1-4 alkoxy such as ene - tricyclo [5.2.1.0 2, 6] decane -3 9-C 1-4 alkoxy-tricyclo [5.2.1.0 2,6 ] decane, such as -ene, 9-methoxy-tricyclo [5.2.1.0 2,6 ] decan-3-ene 3-ene, 8-cyano - tricyclo [5.2.1.0 , 6] decane-3-ene, 9-cyan
  • Examples of tetracyclic olefins (tetracycloalkenes) having a functional group (A) include tetracyclo [4.4.0.1 2,5 . 1, 10 ] -3-dodecene etc.) and at least a functional group (A) substituted cyclic olefin ⁇ eg, 8-carboxy-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methoxycarbonyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethoxycarbonyl-tetracyclo [4.4.0.1 2,5 .
  • dodeca-3-ene such as 8-hydroxy straight-chain or branched-chain C 2-3 alkoxycarbonyl - tetracyclo [4.4.0.1 2, 5. 1 7,10 ] dodec-3-ene, 8-cyano-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-amido-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8,9-dicarboxy-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8,9-dimethoxycarbonyl-tetracyclo [4.4.0.1 2,5 .
  • cyclic olefins containing a norbornene skeleton are preferable.
  • cyclic olefins containing a norbornene skeleton in particular, bicyclic olefins, tetracyclic olefins, etc.
  • the cyclic olefin having the functional group (A) is a cyclic olefin having no functional group (A) (for example, a monocyclic olefin such as cycloheptene, 2-norbornene, tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] -3-dodecene and other bi- to tetracyclic olefins).
  • a monocyclic olefin such as cycloheptene, 2-norbornene, tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] -3-dodecene and other bi- to tetracyclic olefins.
  • a cyclic olefin resin for example, a copolymer of a cyclic olefin having a functional group (A) and a cyclic olefin having no functional group (A)
  • examples of the cyclic olefin-based resin include a resin (homopolymer or copolymer) including at least a structural unit represented by the following formula (1).
  • group R 1 represents a hydrogen atom or an alkyl group
  • group R 2 represents a hydrogen atom, an alkyl group or an aryl group
  • group W represents a carboxyl group, an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an aryloxycarbonyl group, A hydroxyalkylcarbonyl group, a glycidyloxycarbonyl group, a cyano group or an amide group
  • q represents 0 or 1
  • the alkyl group for the substituents R 1 and R 2 include C 1-4 alkyl groups such as a methyl group and an ethyl group.
  • the aryl group for the substituent R 2 include a phenyl group.
  • R 1 is preferably a hydrogen atom or a methyl group
  • R 2 is preferably a hydrogen atom.
  • examples of the alkoxycarbonyl group include linear or branched C 1-6 alkoxy-carbonyl groups such as a methoxycarbonyl group and an ethoxycarbonyl group, preferably a linear or branched chain And a C 1-4 alkoxy-carbonyl group. Since the alkoxycarbonyl group often has a higher glass transition temperature as the number of carbon atoms becomes shorter, a C 1-2 alkoxy-carbonyl group is particularly preferable.
  • cycloalkyloxycarbonyl group examples include a C 5-8 cycloalkyloxy-carbonyl group such as a cyclohexyloxy-carbonyl group.
  • aryloxycarbonyl group examples include C 6-10 aryloxy-carbonyl groups such as a phenoxycarbonyl group.
  • hydroxyalkylcarbonyl group examples include a hydroxy linear or branched C 2-4 alkyl-carbonyl group such as a 2-hydroxyethylcarbonyl group and a 2-hydroxypropylcarbonyl group.
  • a carboxyl group a C 1-2 alkoxycarbonyl group, a cyano group, an amide group, and the like are preferable from the viewpoint of heat resistance (glass transition temperature).
  • q is 0 or 1, usually 0.
  • the cyclic olefin-based resin may be a homopolymer, but may usually be a copolymer with a copolymerizable monomer.
  • Examples of the copolymerizable monomer include a chain olefin [alkene (eg, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 2-methyl-1-pentene).
  • alkene eg, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 2-methyl-1-pentene.
  • 3-ethyl-1-pentene 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1 -Hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, C 2-12 alkene such as 1-dodecene) and the like, preferably ⁇ -olefins (for example, ethylene, propylene, C 2-10 ⁇ -olefins such as 1-butene, 1-pentene and 1-hexene, preferably C 2-6 ⁇ -olefins, particularly ethylene) may be used.
  • ⁇ -olefins for example, ethylene, propylene, C 2-10 ⁇ -olefins such as 1-butene, 1-pentene and 1-hexene, preferably C 2-6 ⁇ -olefins, particularly ethylene
  • the copolymerizable monomer may have a functional group (A).
  • A the same compound as the unsaturated compound exemplified above (for example, (meth) acrylic acid, methyl (meth) acrylate) ( C1-2 alkyl (meth) acrylate such as ethyl (meth) acrylate).
  • C 2-6 ⁇ -olefins (meth) acrylic acid, C 1-2 alkyl (meth) acrylate, and the like are preferable.
  • the ratio of the cyclic olefin is, for example, 20 to 99 mol% (for example, 25 to 90 mol%), preferably May be about 30 to 95 mol% (for example, 35 to 90 mol%), more preferably about 40 to 90 mol% (for example, 50 to 80 mol%), for example, 30 to 70 mol%, preferably It may be about 40 to 60 mol% (for example, 45 to 55 mol%). If the ratio of the cyclic olefin is too small, the miscibility (or affinity) with the fluorene compound is lowered, and the Abbe number may not be effectively reduced, and the heat resistance (glass transition temperature) may be lowered. .
  • the copolymer is a resin having a structural unit represented by the above formula (1) and a chain alkylene (for example, a C 2-6 alkene such as ethylene, propylene, butylene, etc.) unit. May be.
  • a copolymer having a structural unit represented by the following formula (1a) may be used.
  • the copolymer having the structural unit represented by the formula (1a) may be an alternating copolymer, a random copolymer, a block copolymer, or the like.
  • the cyclic olefin-based resin often has improved heat resistance (glass transition temperature) when the proportion of the cyclic olefin having the functional group (A) increases.
  • the glass transition temperature of the cyclic olefin-based resin can be selected from the range of about 120 to 250 ° C. when measured according to JIS K7121, for example, 140 to 250 ° C., preferably 150 to 220 ° C., more preferably 160 It may be about -200 ° C (eg, 160-180 ° C).
  • the glass transition temperature of the cyclic olefin resin may be, for example, about 120 to 180 ° C., preferably about 130 to 180 ° C., and more preferably about 140 to 170 ° C.
  • the ratio of the cyclic olefin having the functional group (A) is too small, the miscibility (or affinity) with the fluorene compound may be lowered, the heat resistance (glass transition temperature) may be lowered, and the Abbe number is effective. May not be able to be reduced. Depending on the type of resin, it may not be detected below the decomposition temperature.
  • the glass transition temperature can be measured using a differential scanning calorimeter or the like.
  • the weight average molecular weight (polystyrene conversion) of the cyclic olefin resin is, for example, 10,000 to 200,000 (for example, 20,000 to 190,000), preferably 30,000 to 170,000 (for example, 40,000 to 40,000) as measured by gel permeation chromatography (GPC). It is about 150,000, more preferably about 40,000 to 130,000 (for example, 50,000 to 130,000) If the molecular weight is too large, the melt viscosity becomes high, and the productivity and workability of the optical material may be lowered, and if the molecular weight is too small. Mechanical strength decreases.
  • cyclic olefin-based resin a commercially available product (for example, “ARTONF4520” manufactured by JSR Corporation) may be used.
  • ARTONF4520 as the functional group (A), a carboxyl group, tetracyclic olefins having an alkoxycarbonyl group from such a methoxycarbonyl group or an ethoxycarbonyl group (tetracyclo [4.4.0.1 2, 5 .1 7,10 ] -3-dodecene) is a resin obtained by hydrogenation reaction.
  • “APEL5014DP” manufactured by Mitsui Chemicals, Inc. is an addition polymer of bicyclic olefin (2-norbornene) having no functional group and ethylene.
  • the production method of the cyclic olefin-based resin is a conventional method [for example, addition polymerization, ring-opening polymerization (ring-opening metathesis polymerization, etc.), etc.
  • a hydrogenation method using a palladium catalyst, an alumina-supported palladium catalyst, a ruthenium catalyst, etc. may be used.
  • the Abbe number of cyclic olefin resin is relatively high.
  • the Abbe number of the cyclic olefin resin can be reduced by adding a fluorene compound in the form of a monomer to the cyclic olefin resin having a relatively high Abbe number without introducing an alicyclic structure as an additive component. It can be effectively reduced.
  • the fluorene compound has a 9,9-bisarylfluorene skeleton and a polar substituent (B). It is presumed that the compatibility (or miscibility) between the fluorene compound and the cyclic olefin resin is improved by the combination of the polar substituent (B) and the functional group (A), and the Abbe number can be effectively reduced.
  • fluorene compound examples include a compound represented by the following formula (2).
  • ring Z is an arene ring
  • R 3 is a halogen atom, cyano group, alkyl group, aryl group, carboxyl group or alkoxycarbonyl group
  • R 4 is a halogen atom, alkyl group, cycloalkyl group, aralkyl group, alkoxy group.
  • R 4 in the two rings Z may be bonded to each other to form a direct bond or an alkylene group to form a hydrocarbon ring with adjacent carbon atoms
  • the group X may be a group — [ (OR 5 ) n1 -Y 1 ] (wherein the substituent Y 1 is a hydroxyl group, a mercap Group, glycidyloxy group or (meth) acryloyloxy group, R 5 is an alkylene group, n1 represents 0 or an integer of 1 or more) or — [(CH 2 ) n2 —Y 2 ] (wherein the substituent the substituent
  • examples of the arene ring represented by the ring Z include a monocyclic arene ring such as a benzene ring, a polycyclic arene ring, and the like.
  • the polycyclic arene ring includes a condensed polycyclic ring.
  • An arene ring (condensed polycyclic hydrocarbon ring), a ring assembly arene ring (ring assembly aromatic hydrocarbon ring) and the like are included.
  • Examples of the condensed polycyclic arene ring include a condensed bicyclic arene (eg, a condensed bicyclic C 10-16 arene such as naphthalene) ring, a condensed tricyclic arene (eg, anthracene, phenanthrene, etc.) ring, etc. Examples thereof include fused bi to tetracyclic arene rings.
  • Preferred examples of the condensed polycyclic arene ring include condensed C 10-14 polycyclic arene rings such as a naphthalene ring and an anthracene ring, and a naphthalene ring is particularly preferable.
  • Examples of the ring-assembled arene ring include biarene rings such as bi-C 6-12 arene rings such as biphenyl ring, binaphthyl ring, and phenylnaphthalene ring (1-phenylnaphthalene ring, 2-phenylnaphthalene ring, etc.), Examples thereof include a tel C 6-12 arene ring such as a terphenylene ring.
  • Preferred ring-assembled arene rings include bi-C 6-10 arene rings, particularly biphenyl rings.
  • the two rings Z may be the same or different rings.
  • examples of the group R 3 include a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), cyano group, alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group.
  • the group R 3 may be the polar substituent (B), and examples of the polar substituent (B) include a C 1-6 such as a carboxyl group, an alkoxycarbonyl group (for example, a methoxycarbonyl group). Alkoxy-carbonyl group, preferably C 1-4 alkoxy-carbonyl group and the like.
  • the group R 3 may be a polar substituent (B) such as a carboxyl group, an alkyl group or the like.
  • the substitution number k is an integer of 0 to 4 (for example, 0 to 3), preferably an integer of 0 to 2 (for example, 0 or 1). The number of substitutions k may be the same or different from each other.
  • the types of the substituents R 3 may be the same or different from each other, and are substituted with two benzene rings of the fluorene ring.
  • the type of the substituent R 3 may be the same or different.
  • the substitution position of the substituent R 3 is not particularly limited, and may be, for example, 2-position to 7-position (2-position, 3-position and / or 7-position, etc.) of the fluorene ring.
  • a polycyclic arene ring is preferable and a naphthalene ring is particularly preferable because of excellent balance between heat resistance and optical properties.
  • the group R 4 includes a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s A linear or branched C 1-10 alkyl group such as a -butyl group or a t-butyl group, preferably a linear or branched C 1-6 alkyl group), a cycloalkyl group (cyclopentyl group, cyclo C 5-10 cycloalkyl group such as hexyl group), aralkyl group (C 6-10 aryl-C 1-4 alkyl group such as benzyl group and phenethyl group), nitro group and the like.
  • a halogen atom for example, fluorine atom, chlorine atom, bromine atom, iodine atom
  • alkyl group methyl group, eth
  • the group R 4 may be a polar substituent (B).
  • a polar substituent (B) include an alkoxy group (for example, a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, C 1-10 alkoxy group such as isobutoxy group and t-butoxy group), cycloalkoxy group (eg C 5-10 cycloalkyloxy group such as cyclohexyloxy group), aryloxy group (eg phenoxy group etc.) C 6-10 aryloxy group, etc.), aralkyloxy groups (eg, C 6-10 aryl-C 1-4 alkyloxy groups such as benzyloxy group), alkylthio groups (eg, methylthio group, ethylthio group, etc.) C such as 1-10 alkylthio group), C 5-10 such cycloalkylthio group (e.g., cyclohexylthio group cyclohe
  • substituents R 4 typically, polar substituents (B) such as alkoxy groups, carboxyl groups, alkoxycarbonyl groups, alkylcarbonyl groups, cyano groups, substituted amino groups, halogen atoms, alkyl groups, cyclo Examples thereof include an alkyl group, an aralkyl group, and a nitro group.
  • polar substituents (B) such as alkoxy groups, carboxyl groups, alkoxycarbonyl groups, alkylcarbonyl groups, cyano groups, substituted amino groups, halogen atoms, alkyl groups, cyclo Examples thereof include an alkyl group, an aralkyl group, and a nitro group.
  • Preferable substituent R 4 includes an alkoxy group, an alkyl group and the like, and particularly a C 1-4 alkyl group such as a methyl group.
  • the type of the substituent R 4 may be the same or different in the same or different ring Z.
  • R 4 of the two rings Z are bonded to each other to form a direct bond or an alkylene group (eg, a C 1-6 alkylene group such as a methylene group or an ethylene group, preferably a C 1-4 alkylene group).
  • a hydrocarbon ring may be formed together with adjacent carbon atoms.
  • the hydrocarbon ring may be, for example, a 5- to 10-membered (for example, 5- to 8-membered) hydrocarbon ring.
  • R 4 of two rings Z and a carbon atom adjacent to each other form a hydrocarbon ring
  • the bonding position of R 4 is, for example, when the ring Z is a benzene ring, the 2-position of the phenyl group, 3 Often in the -position (especially the 2-position), when the ring Z is a naphthalene ring and the 9-position of fluorene is bonded to the 1-position or 2-position of the naphthalene ring, the ⁇ -position of the naphthalene ring, Often in the ⁇ -position (especially the ⁇ -position).
  • the ring formed by the hydrocarbon ring and the two rings Z may be, for example, a fluorene ring.
  • the 9-position spiro carbon atom of fluorene may be an asymmetric carbon atom and may form an optical isomer R-form or S-form.
  • the compound etc. which are represented by following formula (3) can be illustrated.
  • the number of substitution m can be appropriately selected according to the type of ring Z, the number of m, and the like, and may be an integer of about 0 to 8, for example, an integer of 0 to 4, preferably 0 to 3 (for example, , 0 to 2), in particular 0 or 1.
  • the ring Z may be a benzene ring, a naphthalene ring or a biphenyl ring, and the substituent R 4 may be a methyl group.
  • the alkylene group R 5 includes a linear or branched alkylene group, for example, a C 2-6 alkylene group such as an ethylene group, trimethylene group, tetramethylene group ( Preferably a linear C 2-4 alkylene group, particularly an ethylene group, for example, a branched C 3-6 alkylene group (preferably branched) such as a propylene group, 1,2-butanediyl group, 1,3-butanediyl group, etc. Chain C 3-4 alkylene group, especially propylene group).
  • n1 is an integer of 2 or more types of alkylene groups R 5 may be the same or different.
  • the type of alkylene group R 5 may be the same or different in the same or different ring Z.
  • the number n1 of the oxyalkylene group (OR 5 ) can be selected from a range of about an integer of 0 to 15 (eg, an integer of 0 to 10), for example, an integer of 0 to 8 (eg, 1 to 8), preferably It may be an integer of 0 to 5 (eg 1 to 5), more preferably an integer of 0 to 4 (eg 1 to 4), especially an integer of about 0 to 3 (eg 1 to 3). , An integer from 0 to 2 (for example, 0 or 1) may be used.
  • N2 may be 0 or an integer of 1 or more (eg, 1 to 6, preferably 1 to 4, more preferably about 1 to 2).
  • n2 may usually be 0 or an integer of 1 to 2.
  • the substituent Y 1, part number polarity is a substituent (B), for example, a hydroxyl group, a mercapto group, glycidyloxy group, and the like (meth) acryloyloxy group, the substituent Y 2, carboxyl Group, alkoxycarbonyl group (eg, C 1-6 alkoxy-carbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, t-butoxy group carbonyl group, etc.), amino group, substituted amino group (eg, di C 1-4 alkylamino group such as dimethylamino group, di-C 1-4 alkyl, such as di-acetylamino group - carbonyl amino group) and the like.
  • B substituent (B)
  • B for example, a hydroxyl group, a mercapto group, glycidyloxy group, and the like (meth) acryloyloxy group
  • the substitution number p of the group X may be an integer of 1 or more depending on the kind of the ring Z, for example, an integer of 1 to 4, preferably an integer of 1 to 3, more preferably May be an integer from 1 to 2, in particular 1.
  • the number of substitutions n1 or n2 may be the same or different in each ring Z.
  • the group X can be substituted at an appropriate position of the ring Z.
  • the ring Z is a benzene ring
  • the 2-, 3-, 4-position of the phenyl group (particularly the 3-position and / or 4-position) is often substituted
  • ring Z is a naphthalene ring
  • it is often the 5- to 8-position of the naphthyl group, for example, the naphthalene ring relative to the 9-position of fluorene
  • the 1-position or 2-position of substitute in the relationship of 1-naphthyl or 2-naphthyl
  • the substitution position is not particularly limited.
  • the substitution position of the group X is not particularly limited, and for example, an arene ring bonded to the 9-position of fluorene and / or an arene ring adjacent to the arene ring may be substituted. Good.
  • the 3-position or 4-position of the biphenyl ring Z may be bonded to the 9-position of fluorene, and when the 4-position of the biphenyl ring Z is bonded to the 9-position of fluorene,
  • the substitution position may be any of 2-, 3-, 2′-, 3′-, and 4′-positions, and is usually 2-, 3′-, 4′-position, preferably 2-, 4 It may be substituted at the '-position (particularly the 2-position).
  • the substituent Y 1 is preferably a hydroxy group or a glycidyloxy group.
  • the polar substituent (B) of the fluorene compound may be derived, for example, from any of the substituents Y 1 and Y 2 and the substituents R 3 and R 4 , and usually at least the substituents Y 1 and Y 2. Often derived from.
  • Examples of the polar substituent (B) include a hydroxyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aralkyloxy group, a mercapto group, an alkylthio group, a cycloalkylthio group, an arylthio group, an aralkylthio group, a glycidyloxy group, (Meth) acryloyloxy, carboxyl group, alkoxycarbonyl group, amino group, substituted amino group, alkylcarbonyl group, cyano group, substituted amino group and the like can be mentioned.
  • the fluorene compound may contain a single or two or more polar substituents (B). Of these polar substituents (B), a hydroxyl group, a glycidyloxy group and the like are preferable.
  • the substituent Y 1 is a hydroxy group or a glycidyloxy group in the group X
  • the substituent Y 1 is a hydroxy group
  • n1 is 0, and p is 1.
  • 9,9-bis (hydroxyarene) fluorenes ⁇ eg, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (3-hydroxyphenyl) fluorene, 9,9-bis 9,9-bis (hydroxyC 6-12 aryl) fluorene, such as (6-hydroxy-2-naphthyl) fluorene, 9,9-bis (5-hydroxy-1-naphthyl) fluorene, 9,9-bis (3 9,9-bis (C 6- ) such as -phenyl-4-hydroxyphenyl) fluorene, 9,9-bis (4-phenyl-3-hydroxyphenyl) fluorene 9,9 such as 12 aryl-hydroxy C 6-12 aryl) fluorene, 9,9-bis (3-methyl-4-hydroxyphenyl) fluorene, 9,9-bis (4-methyl-3-hydroxyphenyl) fluorene -Bis (mono- or di-C 1-4 alkyl-hydroxy C 6-12
  • the substituent Y 1 is a hydroxy group
  • n1 is 0, and p is 2 or more, for example, 9,9-bis [(poly) hydroxyarene] fluorene ⁇ 9,9-bis (3,4-dihydroxyphenyl) fluorene, 9,9-bis (dihydroxyC 6-12 aryl) fluorene such as 9,9-bis (2,4-dihydroxyphenyl) fluorene ⁇ Can be illustrated.
  • n1 is 1, and p is 2 or more in the group X, for example, 9,9-bis [(poly) hydroxyalkoxyarene] Fluorenes 9,9-, such as ⁇ 9,9-bis [3,4-di (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [5,6-di (2-hydroxyethoxy) naphthyl] fluorene Bis (dihydroxy C 2-4 alkoxy C 6-12 aryl) fluorene and the like ⁇ and the like.
  • the substituent Y 1 is a hydroxyl group, n1 is 2 or more, and p is 1, corresponding to the compound in which n1 is 0 or 1, an oxyalkylene group (Especially an oxy C 2-4 alkylene group) in which the repeating unit n1 is 2 to 5, such as 9,9-bis ⁇ 4- [2- (2-hydroxyethoxy) ethoxy] phenyl ⁇ fluorene, 9-bis ⁇ 6- [2- (2-hydroxyethoxy) ethoxy] -2-naphthyl ⁇ fluorene, 9,9-bis ⁇ 5- [2- (2-hydroxyethoxy) ethoxy] -1-naphthyl ⁇ fluorene, 9,9-bis [3,4-di [2- (2-hydroxyethoxy) ethoxy] phenyl] fluorene, 9,9-bis [5,6-di [2- (2-hydroxyethoxy) ethoxy] phenyl] fluorene, 9,9
  • the compound in which the substituent Y 1 is a glycidyloxy group in the group X for example, a compound in which a glycidyloxy group is substituted in place of the exemplified hydroxyl group, for example, 9,9 9,9- such as bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (6-glycidyloxy-2-naphthyl) fluorene, 9,9-bis (3,4-diglycidyloxyphenyl) fluorene 9,9-bis (C 6-12 aryl-glycidyloxy C 6 ) such as bis (mono or diglycidyloxy C 6-12 aryl) fluorene, 9,9-bis (4-phenyl-3-glycidyloxyphenyl) fluorene -12 aryl) fluorene, 9,9-bis (3-methyl-4-glycidyloxyphenyl) fluorene, etc.
  • 9,9 9,9-
  • (Poly) C 2-4 alkoxy means a group in which the number of repeating C 2-4 alkoxy n1 or n2 is an integer of 1 or more.
  • the compound represented by the formula (2) includes compounds in which a mercapto group or a (meth) acryloyloxy group is substituted in place of the hydroxyl group or glycidyloxy group shown in the specific examples.
  • the compound in which the substituent Y 2 is a carboxyl group is a compound in which n2 is 0 and p is 1
  • 9,9-bis (carboxyaryl) fluorenes ⁇ eg, 9,9-bis (3-carboxyphenyl) fluorene, 9,9-bis (4-carboxyphenyl) fluorene, 9,9-bis (5 9,9-bis (carboxy C 6-12 aryl) fluorene such as -carboxy-1-naphthyl) fluorene, 9,9-bis (6-carboxy-2-naphthyl) fluorene; n2 is 1 and p is 1
  • the compound are 9,9-bis (carboxyalkyl-aryl) fluorenes ⁇ for example, 9,9-bis (4- (carboxymethyl) phenyl) fluoren
  • the compound represented by the formula (2) includes compounds substituted with an alkylcarbonyl group, an amino group or a substituted amino group in place of the carboxyl group shown in the specific examples.
  • ring Z is a benzene ring
  • Y 1 is a hydroxyl group
  • R 4 C 1
  • a compound that is a -4 alkyl group for example, 9,9-bis (3-methyl-4-hydroxyphenyl) fluorene (BCF);
  • ring Z is a condensed polycyclic C 10-14 arene ring
  • ring Z is a condensed polycyclic C 10-14 arene ring
  • Y 1 is a hydroxyl group
  • ring Z is a benzene ring
  • Y 1 is a hydroxyl group
  • n1 1 to 3
  • R 5 is a C 2-4 alkylene group
  • p 1.
  • Ring Z is fused polycyclic C 10-14 arene ring
  • Y 1 is a hydroxyl group
  • n1 1 ⁇ 2 (particularly 1)
  • the compound represented by the formula (2) may be a commercially available product, or may be produced by a conventional method.
  • a compound in which the substituent Y 1 is a hydroxyl group includes 9-fluorenones and a hydroxyl group-containing arene ring compound in which the group [HO— (R 5 O) n1 —] is substituted on the ring Z (for example, A method of reacting phenoxyalkanols such as 2-phenoxyethanol) in the presence of an acid catalyst, a fluorene compound in which a hydroxyaryl group is substituted at the 9-position of fluorenes [for example, 9,9-bis (4-hydroxyphenyl) ) Fluorene and the like] and at least one selected from alkylene oxide, alkylene carbonate and haloalkanol corresponding to the group OR 5 may be synthesized.
  • a compound in which the substituent Y 1 of the group X is represented by a glycidyloxy group can be prepared by reacting a fluorene in which the group [HO— (R 5 O) n1 —] is substituted on the ring Z with epichlorohydrin. .
  • the resin composition of the present invention contains the cyclic olefin-based resin having a functional group (A) and the fluorene compound having a polar substituent (B), and the addition or mixing (or melt-kneading) of the fluorene compound. Even if the ratio is small, the Abbe number of the cyclic olefin resin can be effectively reduced, and a resin composition having an Abbe number in the intermediate region can be obtained.
  • cyclic olefin resin for example, polycyclic olefin resin
  • the compatibility with the fluorene compound which has a polar group is high, and the ratio of a fluorene compound Even if there is much, it can mix uniformly, without becoming cloudy, can greatly reduce the Abbe number, and is excellent in transparency.
  • a cyclic olefin-based resin has a rigid cross-linked structure having the functional group (for example, a bicyclic structure having a norbornene skeleton, a tricyclic structure, etc.), and thus has a high glass transition temperature.
  • the freedom degree of optical design can be improved and it can utilize for optical material uses (for example, an optical lens, an optical sheet, an optical film, etc.).
  • the Abbe number may be, for example, about 28 to 55, preferably about 30 to 53 (eg, 32 to 51), and more preferably about 35 to 50 (eg, 40 to 50).
  • the Abbe number can be calculated from the refractive index with respect to the spectra of the C line (656 nm), the D line (589 nm), and the F line (456 nm).
  • the refractive index of the resin composition (or molded product) at a wavelength of 589 nm is, for example, about 1.51 to 1.60, preferably about 1.52 to 1.58, and more preferably about 1.53 to 1.57. It may be.
  • the fluorene compound has a conformation (cardo structure) in which a fluorene ring and two aryl rings (such as a benzene ring) are orthogonal to each other, and exhibits optical isotropy. Therefore, the addition of the fluorene compound can further reduce the birefringence of the cycloolefin resin having an alicyclic structure having a relatively low birefringence. Therefore, the resin composition has a relatively low birefringence. That is, the birefringence of the resin composition may be, for example, about 30 to 56 nm, preferably 33 to 55 nm, and more preferably about 35 to 54 nm. In addition, birefringence can be measured by the method of an Example.
  • the said resin composition (or molded object) can make compatible the Abbe number and heat resistance (high glass transition temperature) of an intermediate
  • the resin composition may contain various additives [for example, fillers or reinforcing agents, colorants (dyes, fluorescent brighteners, etc.), conductive agents, flame retardants, plasticizers, lubricants, stabilizers. (Antioxidants, UV absorbers, heat stabilizers, etc.), mold release agents, antistatic agents, dispersants, flow regulators, leveling agents, antifoaming agents, surface modifiers, low stress agents, carbon materials, etc. ] May be included. These additives may be used alone or in combination of two or more. An antioxidant may be used from the viewpoint of heat stability, and an ultraviolet absorber may be used from the viewpoint of weather resistance stability.
  • additives for example, fillers or reinforcing agents, colorants (dyes, fluorescent brighteners, etc.), conductive agents, flame retardants, plasticizers, lubricants, stabilizers. (Antioxidants, UV absorbers, heat stabilizers, etc.), mold release agents, antistatic agents, dispersants, flow regulators, leveling agents, antifoam
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2 ′ -dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis (Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, stearyl- ⁇ - (3,5-di-tert-butyl-4- Hydroxyphenyl) propionate, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-diethylphenylmethane, 3,9-bis [1,1-dimethyl-2- ( ⁇ - ( 3-t-butyl-4
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenyl) Ethyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di-t-pentylphenol, 2- (benzotriazol-2-yl) -4,6-di-t-butylphenol, 2 , 2'-methylenebis ⁇ 4- (1,1,3,3-tetramethylbutyl) -6-[(2H-benzotriazol-2-yl) phenol] ⁇ and the like.
  • the ratio of the additive depends on the type of the additive, but is, for example, 0.001 to 10 parts by weight, preferably 0.01 to 7 parts by weight, and more preferably 0 to 100 parts by weight of the resin composition. It may be about 05 to 5 parts by weight.
  • the resin composition can be obtained by mixing the cyclic olefin-based resin, the fluorene compound, and [if necessary, other components (for example, the additive)].
  • the mixing method is not particularly limited, and may be mixed by, for example, melt kneading or may be mixed by dissolving each component in a solvent.
  • the resin composition can greatly improve fluidity and maintain moldability while maintaining high heat resistance.
  • MFR melt flow rate
  • the melt flow rate (MFR) of the resin composition depends on the type of resin, it is a method according to JIS K7210 (temperature 280 ° C., load 2.16 kgf), for example, 5 to 50 g / 10 min, preferably 7 It may be about -47 g / 10 minutes, more preferably about 10-45 g / 10 minutes.
  • the present invention includes a molded body formed of such a resin composition.
  • the shape of such a molded body is not particularly limited, and can be appropriately selected according to the application.
  • a two-dimensional shape plane shape, film shape, sheet shape, etc.
  • a three-dimensional shape [uneven shape, aspherical surface] Shape (for example, elliptical shape), tubular shape, rod shape, tube shape, hollow shape, and the like].
  • the molded body can be manufactured using, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a transfer molding method, a blow molding method, a pressure molding method, a casting molding method, and the like.
  • the molded article or resin composition of the present invention is excellent in optical properties, it can be suitably used for optical materials (for example, optical lenses, optical sheets, optical films, etc.).
  • the resin composition of the present invention has a moderate Abbe number, it is useful for forming optical lenses and the like.
  • an optical lens is usually manufactured by an injection molding method from the viewpoint of productivity.
  • an optical lens with small optical distortion can be obtained by appropriately adjusting molding conditions such as resin temperature, mold temperature, and pressure.
  • molding conditions such as resin temperature, mold temperature, and pressure.
  • the molding is performed with improved fluidity.
  • problems such as decomposition of the resin, decomposition of additives, volatilization, sticking to the mold, and contamination may occur.
  • the resin temperature may be, for example, about 200 to 350 ° C.
  • the mold temperature is, for example, a temperature that is 10 to 30 ° C. lower than the glass transition temperature (Tg) of the resin (or cyclic olefin resin). It may be.
  • each measuring method and evaluation method in an Example and a comparative example are as follows.
  • Tg glass transition temperature
  • melt flow rate (Measurement of melt flow rate) was measured according to JIS K7210. In Examples 1 to 10 and Comparative Example 2, the temperature was 280 ° C. and the load was 2.16 kg, and in Comparative Example 1, the temperature was 280 ° C. and the load was 16 kg.
  • the refractive index and Abbe number were measured using a Kalnew precision refractometer [manufactured by Shimadzu Corporation, KPR2000] at a measurement temperature of 20 ° C. and a refractive index nD with respect to D-line (wavelength 589 nm).
  • nF represents a refractive index with respect to F-line (wavelength 486 nm)
  • nC represents a refractive index with respect to C-line (wavelength 656 nm).
  • the glass transition temperature (Tg), melt flow rate (MFR), refractive index, Abbe number and birefringence of the obtained resin composition were measured. The measurement results are shown in Table 1.
  • Example 2 A resin composition was obtained in the same manner as in Example 1 except that 90 parts by weight of the cyclic olefin resin and 10 parts by weight of BPEF were used.
  • Example 3 A resin composition was obtained in the same manner as in Example 1 except that 95 parts by weight of the cyclic olefin resin and 5 parts by weight of BPEF were used.
  • Example 4 A resin composition was obtained in the same manner as in Example 1 except that 80 parts by weight of the cyclic olefin resin and 20 parts by weight of BPEF were used.
  • Example 5 A resin composition was obtained in the same manner as in Example 1 except that 70 parts by weight of the cyclic olefin resin and 30 parts by weight of BPEF were used.
  • Example 6 A resin composition was obtained in the same manner as in Example 1 except that 50 parts by weight of the cyclic olefin resin and 50 parts by weight of BPEF were used.
  • Example 7 Instead of BPEF, 15 parts by weight of 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene (Osaka Gas Chemical Co., Ltd., hereinafter referred to as BOPPEF) was used as the fluorene compound. Except for this, a resin composition was obtained in the same manner as in Example 1.
  • Example 8 Instead of BPEF, 15 parts by weight of 9,9-bis (6-hydroxy-2-naphthyl) fluorene (synthesized according to Example 1 of JP-A-2007-099741; hereinafter referred to as BNF) was used as the fluorene compound. In the same manner as in Example 1, a resin composition was obtained.
  • BNF 9,9-bis (6-hydroxy-2-naphthyl) fluorene
  • Example 9 Resin in the same manner as in Example 1 except that 15 parts by weight of 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd., hereinafter referred to as BCF) was used as the fluorene compound. A composition was obtained.
  • BCF 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • Example 10 Resin composition in the same manner as in Example 1 except that 15 parts by weight of 9,9-bis (4-glycidyloxy) phenyl) fluorene (Osaka Gas Chemical Co., Ltd., hereinafter referred to as BPFG) was used as the fluorene compound.
  • BPFG 9,9-bis (4-glycidyloxy) phenyl fluorene
  • Example 11 Example 1 except that 20 parts by weight of 9,9-bis (6-hydroxyethoxy-2-naphthyl) fluorene (synthesized according to Example 1 of JP 2011-68624 A, BNEF) was used as the fluorene compound. In the same manner as above, a resin composition was obtained.
  • Example 12 A resin composition was obtained in the same manner as in Example 1 except that 15 parts by weight of 9,9-bis (6-hydroxyethoxy-2-naphthyl) fluorene was used as the fluorene compound.
  • Example 13 A resin composition was obtained in the same manner as in Example 1 except that 10 parts by weight of 9,9-bis (6-hydroxyethoxy-2-naphthyl) fluorene was used as the fluorene compound.
  • Example 14 (Lens molding, evaluation) Using an aspherical mold, an injection molding device (FANUC ROBOSHOT S-2000i50B manufactured by FANUC CORPORATION) was used to mold 10,000 shots continuously at a resin temperature of 300 ° C and a mold temperature of 120 ° C. Produced. It was confirmed that the obtained lens molding was accurately molded. In addition, no stain was observed in any lens molded product. Also, there were no molding problems such as molding defects, spool runner breakage, and gas generation.
  • FANUC ROBOSHOT S-2000i50B manufactured by FANUC CORPORATION
  • the physical properties [glass transition temperature (Tg), melt flow rate (MFR)] and optical properties [refractive index, Abbe number, birefringence] of the resin compositions obtained in Examples 1 to 13 were measured. The measurement results are shown in Table 1.
  • Example 2 A resin composition was prepared in the same manner as in Example 1 except that “APEL” (brand name D5014DP, Tg135 ° C., manufactured by Mitsui Chemicals, Inc.) was used as the cyclic olefin-based resin. It was. The physical properties and optical properties of the resin composition were not measurable.
  • APEL brand name D5014DP, Tg135 ° C., manufactured by Mitsui Chemicals, Inc.
  • Examples 1 to 6 compared to Comparative Example 1, the Abbe number decreased and the refractive index improved as the amount of fluorene compound added increased.
  • Examples 7 to 13 using a fluorene compound having a structure different from that of BPEF the Abbe number was similarly decreased and the refractive index was improved.
  • the resin compositions obtained in Examples 1 to 13 have a relatively high glass transition temperature as well as an Abbe number in the intermediate region and a high refractive index. Further, in Examples 1 to 13, compared to Comparative Example 1, birefringence was also lowered. Further, in Examples 1 to 13, although the load was smaller than that in Comparative Example 1, the MFR value was increased and the fluidity was greatly improved as compared with Comparative Example 1.
  • a composition containing a BNEF or BNF (particularly BNEF) unit is excellent in heat resistance.
  • the composition containing a BOPPEF unit has high heat resistance, and the degree of reduction of the Abbe number is also high.
  • a composition containing BPFG units has high fluidity and low birefringence.
  • a composition containing BNEF units is excellent in the balance of various properties, has the highest heat resistance, and the highest fluidity, and is suitable for molding applications. Birefringence is also lower than the cyclic olefin resin (Comparative Example 1) that does not contain BNEF units.
  • the resin composition and the molded body of the present invention have high heat resistance (glass transition temperature), a medium Abbe number and a high refractive index, so that the degree of freedom in optical design can be improved. Therefore, it can be used as an optical material (for example, optical sheet, optical film, optical lens, etc.).
  • an optical lens of a small camera such as a camera, a digital camera, a surveillance camera, an in-vehicle camera, or a network camera incorporated in a portable communication device such as a mobile phone or a smartphone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

 官能基を有する環状オレフィン系樹脂に、極性置換基を有する下記式(2)で表される9,9-ビスアリールフルオレン骨格を有する化合物を添加し、中程度のアッベ数を有する樹脂組成物を得る。[式中、環Zはアレーン環、R及びRは置換基、基Xは、基-[(ORn1-Y](式中、置換基Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基、(メタ)アクリロイルオキシ基、Rはアルキレン基、n1は0又は1以上の整数を示す。)又は基-[(CHn2-Y](式中、置換基Yは、カルボキシル基、アルコキシカルボニル基、アミノ基又は置換アミノ基、n2は0又は1以上の整数を示す。)、kは0~4の整数、mは0又は1以上の整数、pは1以上の整数を示す。] この樹脂組成物は、中間領域のアッベ数(28~55程度のアッベ数)を有し、光学レンズなどとして有用である。

Description

樹脂組成物及び光学レンズ
 本発明は、環状オレフィン系樹脂と9,9-ビスアリールフルオレン骨格を有する化合物(以下、フルオレン化合物という場合がある)とを含み、光学レンズとして有用な樹脂組成物に関する。
 環状オレフィン系樹脂は、高透明性、高耐熱性、低複屈折などの優れた特性を有するため、光学材料、例えば、携帯電話やスマートフォンなどの携帯型通信器機に含まれる撮像レンズ(又は光学レンズ)などに利用されている。
 近年、このような携帯電話やスマートフォン端末の薄型化や、多機能化に伴って、部品や素子を搭載するためのスペース確保のために、撮像装置に搭載される撮像レンズの小型化が求められている。また、小型化とともに、電荷結合素子を用いたセンサー(CCDセンサー)、相補型金属酸化物半導体を用いたセンサー(CMOSセンサー)などの撮像素子の高画素化に伴い、撮像レンズの高解像度化も要求されている。このような撮像レンズは、コストの制約の中で、小型かつ高い結像性能と諸収差の補正に対応するため、光学設計を駆使して、レンズ構成、形状及び材料の選択に種々の工夫がなされている。撮像レンズユニットの光学設計は計算ソフトにレンズ材料の複数の波長における屈折率のデータを入力して、アルゴリズムに従って自動計算させながら調整を繰り返して行われる。しかし、光学レンズに使用できる樹脂(又は材料)は限られているため、設計の自由度が制限され、有効性の高い又は多様な設計には限界がある。すなわち、撮像レンズのユニットは、アッベ数及び屈折率の異なる複数のレンズで構成されており、そのため、一般的には、アッベ数が大きく、かつ屈折率が中程度のレンズを1枚又は複数枚(例えば、アッベ数が56~57、屈折率が1.51~1.54の環状オレフィン系樹脂で形成されたレンズを2~4枚)と、アッベ数が小さく、かつ屈折率が大きいレンズを複数枚(例えば、アッベ数が22~27、屈折率が1.61~1.64のフルオレン系樹脂で形成されたレンズを1~2枚)とを組み合わせて構成されている。もし、高アッベ数と低アッベ数の中間領域(アッベ数が28~55程度)の材料があれば、設計の自由度が向上し、最適化が期待できる。なお、熱硬化性樹脂及びガラスなどでは、中間領域のアッベ数の材料はあるものの、ガラスはコストが高く、熱硬化性樹脂はレンズの生産性が低いため、携帯電話やスマートフォンなどの光学レンズに使用されていない。
 一方、熱可塑性樹脂にフルオレン骨格を有する化合物又はフルオレン成分を含む樹脂を添加した樹脂組成物が開示されている。例えば、特開2005-162785号公報(特許文献1)又は特開2011-8017号公報(特許文献2)には、樹脂(特に、芳香環含有樹脂)に9,9-ビスアリールフルオレン骨格を有する化合物を添加し、樹脂の屈折率を大きくできること、又は複屈折を低下できることが記載されている。また、これらの文献には、樹脂としてオレフィン系樹脂又は環状オレフィン系樹脂も例示され、光学レンズなどの用途に利用できることも記載されている。
 また、特開2014-205734号公報(特許文献3)には、アッベ数が比較的小さい樹脂(特に、芳香環含有樹脂)に9,9-ビスアリールフルオレン骨格を有する化合物を添加することで、樹脂のアッベ数を大きくできることが記載されている。この文献には、樹脂として環状オレフィン樹脂も例示され、光学レンズ、光学フィルムなどを形成してもよいことも記載されている。なお、実施例では、ポリカーボネート系樹脂又はポリエチレンナフタレートに特定のフルオレン化合物(例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)など)を添加し、アッベ数を大きくしている。しかし、フルオレン化合物の添加量に対してアッベ数が大きくなる割合は僅かであり、アッベ調整剤としては、調整が充分ではなかった。なお、これらの特許文献1~3の実施例には、環状オレフィン系樹脂に関して具体的な記載はない。
 さらに、特開2013-194186号公報(特許文献4)には、ジオール成分に9,9-ビスアリールフルオレン化合物を含む脂環式ポリエステルと、ポリシクロオレフィン(環状オレフィン系樹脂)とを含む樹脂組成物で位相差フィルムを形成することが記載されている。なお、この文献には、ポリシクロオレフィンとの相溶性(混和性)を高めるため、脂環式ジオール成分を含むフルオレン化合物でポリエステルを形成している。しかし、この文献には、アッベ数の調整についての記載はない。
 また、特開2014-218660号公報(特許文献5)には、環状オレフィン共重合体と、9,9-ビスアリールフルオレン骨格を有する化合物とを含む樹脂組成物が記載されている。この文献には、環状オレフィン共重合体の機械的強度(例えば、引張強度など)を向上できることが記載され、アッベ数が低減することも記載されている。この文献の実施例では、環状オレフィン共重合体の「Arton4531F」又は「APEL5014DP」に、9,9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレン(BCF)を添加して樹脂組成物を得ている。後者の樹脂組成物では、アッベ数が低減したことが記載されているが、BCFの添加量に対して、アッベ数の低減の程度は小さい。本発明者らは、これらの樹脂組成物を作製したところ、後者の樹脂組成物では、樹脂とBCFとの混和性(相溶性)が低く、一見透明性を有しているように見えるものの、ホットプレスや成形等の処理を行うと樹脂組成物が白濁する場合があることが判明し、アッベ数の測定ができないことがあった。また、これらの樹脂組成物は耐熱性(ガラス転移温度)が十分でないことも判明した。そのため、光学レンズなどの用途に利用できないことが判明した。
特開2005-162785号公報(特許請求の範囲、[0015][0059][0079]、実施例) 特開2011-8017号公報(特許請求の範囲、[0017][0082]、実施例) 特開2014-205734号公報(特許請求の範囲、[0087][0126]、実施例) 特開2013-194186号公報(特許請求の範囲、[0015][0025]、実施例) 特開2014-218660号公報(特許請求の範囲、[0028][0029][0034]、実施例)
 従って、本発明の目的は、フルオレン化合物の含有量が少なくても、環状オレフィン系樹脂のアッベ数を有効に低減して、中間領域のアッベ数(例えば、28~55程度のアッベ数)に調整でき、光学レンズなどの用途に有用な樹脂組成物を提供することにある。
 本発明の他の目的は、比較的多量のフルオレン化合物を含有させても、透明性が高く、高い耐熱性(ガラス転移温度)を有する樹脂組成物を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、官能基を有する環状オレフィン系樹脂に対して、所定の9,9-ビスアリールフルオレン骨格を有する化合物(フルオレン化合物という場合がある)を単量体の形態で添加又は混合すると、前記フルオレン化合物の含有量が少なくても、前記環状オレフィン系樹脂のアッベ数を中間領域に有効に低減できること、中間領域のアッベ数に調整しても、耐熱性(ガラス転移温度)が高い樹脂組成物が得られることを見出し、本発明を完成した。
 すなわち、本発明の樹脂組成物は、官能基を有する環状オレフィン系樹脂と、極性置換基を有する9,9-ビスアリールフルオレン骨格を有する化合物とを含んでいる。前記環状オレフィン系樹脂は、ノルボルネン骨格を含む樹脂であってもよく、例えば、環状オレフィン系樹脂は、少なくとも下記式(1)で表される構成単位を含む樹脂であってもよい。
Figure JPOXMLDOC01-appb-C000003
(式中、基Rは水素原子又はアルキル基、基Rは水素原子、アルキル基又はアリール基を示し、基Wはカルボキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、ヒドロキシアルキルカルボニル基、グリシジルオキシカルボニル基、シアノ基又はアミド基を示し、qは0又は1を示す。)
 前記式(1)において、基Rは水素原子又はメチル基、基Rは水素原子、基Wはカルボキシル基、C1-2アルコキシ-カルボニル基、シアノ基又はアミド基、qは0であってもよい。また、環状オレフィン系樹脂のガラス転移温度は、140~250℃程度であってもよい。
 また、前記9,9-ビスアリールフルオレン骨格を有する化合物は、下記式(2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000004
[式中、環Zはアレーン環、Rはハロゲン原子、シアノ基、アルキル基、アリール基、カルボキシル基又はアルコキシカルボニル基、Rはハロゲン原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アラルキルチオ基、カルボキシル基、アルコキシカルボニル基、アルキルカルボニル基、ニトロ基、シアノ基、アミノ基又は置換アミノ基を示すか若しくは2つの環ZのRは、互いに結合し、直接結合又はアルキレン基を形成して、隣接する炭素原子とともに炭化水素環を形成していてもよく、基Xは、基-[(ORn1-Y](式中、置換基Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基、Rはアルキレン基、n1は0又は1以上の整数を示す。)又は基-[(CHn2-Y](式中、置換基Yは、カルボキシル基、アルコキシカルボニル基、アミノ基又は置換アミノ基、n2は0又は1以上の整数を示す。)、kは0~4の整数、mは0又は1以上の整数、pは1以上の整数を示す。]
 前記式(2)において、基Xが[(ORn1-Y]のとき、置換基Yはヒドロキシル基又はグリシジルオキシ基、環Zはベンゼン環、ナフタレン環又はビフェニル環(特にナフタレン環)、RはC1-4アルキル基、kは0又は1、RはC1-4アルキル基、C1-4アルコキシ基、mは0又は1、RはC2-4アルキレン基、n1は0~2の整数、pは1又は2であってもよい。
 具体的には、前記式(2)で表される化合物は、9,9-ビス(モノ又はジヒドロキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-ヒドロキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジC1-4アルキル-ヒドロキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジヒドロキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-ヒドロキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[モノ又はジC1-4アルキル-ヒドロキシ(ポリ)C2-4アルコキシC6-12アリール]フルオレン、9,9-ビス(モノ又はジグリジシルオキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-グリジシルオキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジC1-4アルキル-グリジシルオキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジグリジシルオキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-ヒドロキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[モノ又はジC1-4アルキル-グリジシルオキシ(ポリ)C2-4アルコキシC6-12アリール]フルオレンから選択された少なくとも1種を含んでいてもよい。特に、前記式(2)で表される化合物は、9,9-ビス(モノ又はジヒドロキシ(ポリ)C2-4アルコキシナフチル)フルオレンであってもよい。
 また、前記環状オレフィン系樹脂と前記9,9-ビスアリールフルオレン骨格を有する化合物との割合は、前者/後者(重量比)=99/1~30/70程度であってもよい。さらに、前記樹脂組成物において、C線、D線及びF線のスペクトルに対する屈折率から算出したアッベ数は28~55及び/又は波長589nmにおける屈折率は1.51~1.60程度であってもよい。
 本発明は、前記樹脂組成物で形成された成形体及び光学レンズも包含する。
 なお、本明細書中、「(メタ)アクリロイルオキシ基」とは、アクリロイルオキシ基及びメタアクリロイルオキシ基を意味する。
 本発明の樹脂組成物は、環状オレフィン系樹脂が所定の官能基を有しているためか、環状オレフィン系樹脂のアッベ数を有効に低減でき、中間領域のアッベ数に容易に調整できる。しかも、環状オレフィン系樹脂が、前記官能基を有する多環式構造を有しているため、耐熱性(ガラス転移温度)が高く、フルオレン化合物を添加しても、耐熱性を維持できる。そのため、中間領域のアッベ数及び耐熱性(高いガラス転移温度)を両立できる。さらに、両者の相溶性が高いため、フルオレン化合物の割合が多くても、白濁することなく均一に混和でき、高い透明性を有し、アッベ数を大きく低減することもできる。このような樹脂組成物は、レンズなどの設計の自由度を広げることができ、光学材料(例えば、光学レンズ)などの用途に有用である。
 本発明の樹脂組成物は、官能基を有する環状オレフィン系樹脂と、極性置換基を有する9,9-ビスアリールフルオレン骨格を有する化合物(フルオレン化合物という場合がある。)とを含んでいる。
 [環状オレフィン系樹脂]
 環状オレフィン系樹脂は、官能基(A)を有している。環状オレフィン系樹脂は、環内にエチレン性二重結合を有する環状オレフィンを少なくとも重合成分とする樹脂(例えば、環状オレフィンの単独重合体、環状オレフィンと共重合性単量体との共重合体)であってもよい。なお、前記官能基(A)は、環状オレフィン及び/又は共重合性単量体に含まれていてもよく、好ましくは少なくとも環状オレフィンに含まれていてもよい。
 官能基(A)を有する環状オレフィンは、単環式オレフィンであってもよいが、通常、多環式オレフィン(例えば、二乃至四環式オレフィンなど)である場合が多い。多環式オレフィンは、官能基(A)及び炭素-炭素不飽和二重結合を有する不飽和化合物と、置換基(C)を含んでいてもよい環状ジ又はトリエン(例えば、シクロペンタジエン、ジシクロペンタジエンなど)とのディールスアルダー反応を利用して調製できる。
 前記不飽和化合物としては、例えば、カルボキシル基を有する化合物{例えば、不飽和モノ又はジカルボン酸[例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、桂皮酸など]など}、アルコキシカルボニル基を有する化合物[例えば、(メタ)アクリル酸アルキル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸t-ブチルなどの(メタ)アクリル酸C1-6アルキル、好ましくは(メタ)アクリル酸C1-4アルキルなど)、不飽和ジカルボン酸アルキルエステル(例えば、イタコン酸メチルエステルなどのイタコン酸C1-4アルキルエステル、マレイン酸ジメチルエステルなどのマレイン酸ジC1-4アルキルエステルなど)など]、シクロアルキルオキシカルボニル基を有する化合物[例えば、(メタ)アクリル酸シクロアルキル(例えば、(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸C5-8シクロアルキルなど)など]、アリールオキシカルボニル基を有する化合物[例えば、(メタ)アクリル酸フェニルなどの(メタ)アクリル酸C6-10アリールなど]、ヒドロキシル基を有する化合物[例えば、(メタ)アクリル酸ヒドロキシアルキル(例えば、(メタ)アクリル酸ヒドロキシエチルなどの(メタ)アクリル酸ヒドロキシC2-4アルキルなど)など]、アルコキシ基を有する化合物[例えば、(メタ)アクリル酸メトキシエチルなどの(メタ)アクリル酸C2-4アルコキシC2-4アルキルなど]、メルカプト基を有する化合物(例えば、前記ヒドロキシル基を有する化合物に対応する化合物など)、グリシジル基を有する化合物(例えば、(メタ)アクリル酸グリシジルなど)、アミド基を有する化合物(例えば、(メタ)アクリルアミドなど)、シアノ基を有する化合物(例えば、(メタ)アクリロニトリルなど)などが例示できる。これらの不飽和化合物は単独で又は二種以上組み合わせて使用できる。これらの不飽和化合物のうち、カルボキシル基、C1-2アルコキシ-カルボニル基、シアノ基又はアミド基を有する化合物が好ましい。
 環状オレフィンの置換基(C)としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭化原子、ヨウ素原子など)、アルキル基(メチル基、エチル基などのC1-6アルキル基、好ましくはC1-4アルキル基など)、シクロアルキル基(例えば、シクロヘキシル基などのC5-10シクロアルキル基)、アリール基(例えば、フェニル基などのC6-10アリール基)、アラルキル基(ベンジル基、フェネチル基などのC6-10アリール-C1-4アルキル基など)などが例示できる。環状オレフィンは、単独又は二種以上の置換基(C)を含んでいてもよい。
 官能基(A)を有する環状オレフィンのうち、二環式オレフィン類(ビシクロアルケン類)としては、例えば、2-ノルボルネン、2,5-ノルボルナジエンなどに少なくとも官能基(A)が置換した環状オレフィン(例えば、5-カルボキシ-2-ノルボルネン、5-メトキシカルボニル-2-ノルボルネン、5-エトキシカルボニル-2-ノルボルネン、5-メチル-5-カルボキシ-2-ノルボルネンなどの5-C1-4アルキル-5-カルボキシ-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネン、5-メチル-5-エトキシカルボニル-2-ノルボルネンなどの5-C1-4アルキル-5-C1-2アルコキシ-カルボニル-2-ノルボルネン、5-メチル-5-シクロヘキシルオキシカルボニル-2-ノルボルネンなどの5-C1-4アルキル-5-C5-10シクロアルコキシ-カルボニル-2-ノルボルネン、5-ヒドロキシエトキシカルボニル-2-ノルボルネンなどの5-ヒドロキシ直鎖状又は分岐鎖状C2-3アルコキシ-カルボニル-2-ノルボルネン、5-シアノ-2-ノルボルネン、5-アミド-2-ノルボルネン、5,6-ジカルボキシ-2-ノルボルネン、5,6-ジメトキシカルボニル-2-ノルボルネンなどの5,6-ジC1-2アルコキシ-カルボニル-2-ノルボルネン、6-フェニル-5-カルボキシ-2-ノルボルネンなど)などが例示できる。
 官能基(A)を有する三環式オレフィン類(トリシクロアルケン類)としては、例えば、トリシクロ[5.2.1.02,6]デカン-3-エンに少なくとも官能基(A)が置換した環状オレフィン(例えば、8-ヒドロキシ-トリシクロ[5.2.1.02,6]デカン-3-エン、9-ヒドロキシ-トリシクロ[5.2.1.02,6]デカン-3-エン、8-メトキシ-トリシクロ[5.2.1.02,6]デカン-3-エンなどの8-C1-4アルコキシ-トリシクロ[5.2.1.02,6]デカン-3-エン、9-メトキシ-トリシクロ[5.2.1.02,6]デカン-3-エンなどの9-C1-4アルコキシ-トリシクロ[5.2.1.02,6]デカン-3-エン、8-シアノ-トリシクロ[5.2.1.02,6]デカン-3-エン、9-シアノ-トリシクロ[5.2.1.02,6]デカン-3-エン)などが例示できる。
 官能基(A)を有する四環式オレフィン類(テトラシクロアルケン類)としては、例えば、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセンなど)に少なくとも官能基(A)が置換した環状オレフィン{例えば、8-カルボキシ-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどの8-C1-2アルコキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチル-8-カルボキシ-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどの8-C1-4アルキル-8-カルボキシ-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチル-8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチル-8-エトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどの8-C1-4アルキル-8-C1-2アルコキシ-カルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチル-8-シクロヘキシルオキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどの8-C1-4アルキル-8-C5-8シクロアルコキシ-カルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ヒドロキシエトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどの8-ヒドロキシ直鎖状又は分岐鎖状C2-3アルコキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シアノ-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-アミド-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8,9-ジカルボキシ-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8,9-ジメトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどの8,9-ジC1-2アルコキシ-カルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-9-カルボキシ-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなど}などが例示できる。これらの環状オレフィンは単独で又は二種以上組み合わせて使用できる。これらの環状オレフィンのうち、耐熱性の観点から、ノルボルネン骨格を含む環状オレフィン(特に、二環式オレフィン、四環式オレフィンなど)が好ましい。
 官能基(A)を有する環状オレフィンは、官能基(A)を有さない環状オレフィン(例えば、シクロヘプテンなどの単環式オレフィン、2-ノルボルネン、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセンなどの二乃至四環式オレフィンなど)と組み合わせて使用してもよい。
 環状オレフィン系樹脂(例えば、官能基(A)を有する環状オレフィンと官能基(A)を有さない環状オレフィンとの共重合体など)において、官能基(A)を有する環状オレフィンと官能基(A)を有さない環状オレフィンとの割合は、例えば、前者/後者(モル比)=50/50~100/0(例えば、60/40~95/5)、好ましくは70/30~100/0(例えば、75/25~90/10)、さらに好ましくは80/20~100/0(例えば、85/15~95/5)、特に90/10~100/0(例えば、95/5~100/0)程度であってもよい。官能基(A)を有する環状オレフィンの割合が少なすぎると、アッベ数を有効に低減できなくなる虞がある。
 具体的には、環状オレフィン系樹脂としては、少なくとも下記式(1)で表される構成単位を含む樹脂(単独重合体又は共重合体)が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、基Rは水素原子又はアルキル基、基Rは水素原子、アルキル基又はアリール基を示し、基Wはカルボキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、ヒドロキシアルキルカルボニル基、グリシジルオキシカルボニル基、シアノ基又はアミド基を示し、qは0又は1を示す。)
 置換基R及びRのアルキル基としては、例えば、メチル基、エチル基などのC1-4アルキル基などが挙げられる。置換基Rのアリール基としては、例えば、フェニル基などが挙げられる。Rは水素原子、メチル基が好ましく、Rは水素原子が好ましい。
 基Wにおいて、アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基などの直鎖状又は分岐鎖状C1-6アルコキシ-カルボニル基などが例示でき、好ましくは直鎖状又は分岐鎖状C1-4アルコキシ-カルボニル基などが挙げられる。なお、アルコキシカルボニル基は、炭素数が短くなるほど、ガラス転移温度が高くなる場合が多いため、特にC1-2アルコキシ-カルボニル基が好ましい。
 シクロアルキルオキシカルボニル基としては、例えば、シクロヘキシルオキシ-カルボニル基などのC5-8シクロアルキルオキシ-カルボニル基などが例示できる。
 アリールオキシカルボニル基としては、例えば、フェノキシカルボニル基などのC6-10アリールオキシ-カルボニル基などが例示できる。
 ヒドロキシアルキルカルボニル基としては、2-ヒドロキシエチルカルボニル基、2-ヒドロキシプロピルカルボニル基などのヒドロキシ直鎖状又は分岐鎖状C2-4アルキル-カルボニル基などが例示できる。
 基Wのうち、耐熱性(ガラス転移温度)の観点から、カルボキシル基、C1-2アルコキシカルボニル基、シアノ基、アミド基などが好ましい。なお、qは0又は1、通常0である場合が多い。
 また、環状オレフィン系樹脂は、単独重合体であってもよいが、通常、共重合性単量体との共重合体などであってもよい。
 共重合性単量体としては、例えば、鎖状オレフィン[アルケン(例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、2-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセンなどのC2-12アルケン)など]などが例示でき、好ましくはα-オレフィン類(例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセンなどのC2-10α-オレフィン類、好ましくはC2-6α-オレフィン類、特にエチレン)であってもよい。なお、共重合性単量体は、官能基(A)を有していてもよく、例えば、前記例示の不飽和化合物と同様の化合物(例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの(メタ)アクリル酸C1-2アルキルなど)であってもよい。
 これらの共重合性単量体のうち、C2-6α-オレフィン類、(メタ)アクリル酸、(メタ)アクリル酸C1-2アルキルなどが好ましい。
 環状オレフィン系樹脂(例えば、前記共重合性単量体と環状オレフィンとの共重合体など)において、環状オレフィンの割合は、例えば、20~99モル%(例えば、25~90モル%)、好ましくは30~95モル%(例えば、35~90モル%)、さらに好ましくは40~90モル%(例えば、50~80モル%)程度であってもよく、例えば、30~70モル%、好ましくは40~60モル%(例えば、45~55モル%)程度であってもよい。環状オレフィンの割合が少なすぎると、前記フルオレン化合物に対する混和性(又は親和性)が低下し、アッベ数を有効に低減できなくなる虞があるとともに、耐熱性(ガラス転移温度)が低下する虞がある。
 また、共重合体としては、前記式(1)で表される構成単位と、鎖状アルキレン(例えば、エチレン、プロピレン、ブチレンなどのC2-6アルケンに対応する)単位とを有する樹脂であってもよい。例えば、下記式(1a)で表される構成単位を有する共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000006
(r及びsは各構成単位の繰り返し数を示し、1以上の整数を示す。rとsとの割合r/s=90/10~10/90(モル比)を示す。W、R、R、qは前記に同じ。)
 なお、式(1a)で表される構成単位を有する共重合体は、交互共重合体、ランダム共重合体、ブロック共重合体などであってもよい。
 前記環状オレフィン系樹脂は、官能基(A)を有する環状オレフィンの割合が大きくなると、耐熱性(ガラス転移温度)が向上する場合が多い。前記環状オレフィン系樹脂のガラス転移温度は、JIS K7121に準拠して測定したとき、120~250℃程度の範囲から選択でき、例えば、140~250℃、好ましくは150~220℃、さらに好ましくは160~200℃(例えば、160~180℃)程度であってもよい。また、環状オレフィン系樹脂のガラス転移温度は、例えば、120~180℃、好ましくは130~180℃、さらに好ましくは140~170℃程度であってもよい。官能基(A)を有する環状オレフィンの割合が少なすぎると、前記フルオレン化合物に対する混和性(又は親和性)が低下し、耐熱性(ガラス転移温度)が低下する虞があるとともに、アッベ数を有効に低減できなくなる虞がある。なお、樹脂の種類によっては、分解温度以下では検出できないことがある。また、ガラス転移温度は、示差走査熱量計などを用いて測定できる。
 前記環状オレフィン系樹脂の重量平均分子量(ポリスチレン換算)は、ゲル浸透クロマトグラフィ-(GPC)で測定したとき、例えば、10000~200000(例えば、20000~190000)、好ましくは30000~170000(例えば、40000~150000、さらに好ましくは40000~130000(例えば、50000~130000)程度である。分子量が大きすぎると溶融粘度が高くなり、光学材料の生産性及び加工性が低下する虞があり、分子量が小さすぎると機械的強度が低下する。
 このような前記環状オレフィン系樹脂は、市販品(例えば、JSR(株)製、「ARTONF4520」など)を用いてもよい。なお、「ARTONF4520」は、官能基(A)として、カルボキシル基、メトキシカルボニル基又はエトキシカルボニル基等からアルコキシカルボニル基を有する四環式オレフィン(テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン)の開環重合体を水素添加反応して得られた樹脂である。なお、三井化学(株)製、「APEL5014DP」は、官能基を有さない二環式オレフィン(2-ノルボルネン)とエチレンとの付加重合体である。
 環状オレフィン系樹脂の製造方法は、慣用の方法[例えば、付加重合、開環重合(開環メタセシス重合など)などの方法、前記開環重合(開環メタセシス重合など)の後に、水添触媒(例えば、パラジウム触媒、アルミナ担持パラジウム触媒、ルテニウム触媒など)を用いて水素添加する方法]などであってもよい。
 なお、環状オレフィン系樹脂のアッベ数は比較的高い。本発明では、添加成分に脂環構造を導入しなくても、単量体の形態のフルオレン化合物を比較的アッベ数の高い環状オレフィン系樹脂に添加することにより、環状オレフィン系樹脂のアッベ数を有効に低減することができる。
 [フルオレン化合物]
 フルオレン化合物は、9,9-ビスアリールフルオレン骨格及び極性置換基(B)を有している。この極性置換基(B)と、前記官能基(A)との組み合わせにより、フルオレン化合物と環状オレフィン系樹脂との相溶性(又は混和性)が向上すると推定され、有効にアッベ数を低減できる。
 前記フルオレン化合物の具体的な例としては、下記式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
[式中、環Zはアレーン環、Rはハロゲン原子、シアノ基、アルキル基、アリール基、カルボキシル基又はアルコキシカルボニル基、Rはハロゲン原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アラルキルチオ基、カルボキシル基、アルコキシカルボニル基、アルキルカルボニル基、ニトロ基、シアノ基、アミノ基又は置換アミノ基を示すか若しくは2つの環ZのRは、互いに結合し、直接結合又はアルキレン基を形成して、隣接する炭素原子とともに炭化水素環を形成していてもよく、基Xは、基-[(ORn1-Y](式中、置換基Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基、Rはアルキレン基、n1は0又は1以上の整数を示す。)又は-[(CHn2-Y](式中、置換基Yは、カルボキシル基、アルコキシカルボニル基、アミノ基又は置換アミノ基、n2は0又は1以上の整数を示す。)、kは0~4の整数、mは0又は1以上の整数、pは1以上の整数を示す。]
 前記式(2)において、環Zで表されるアレーン環としては、ベンゼン環などの単環式アレーン環、多環式アレーン環などが挙げられ、多環式アレーン環には、縮合多環式アレーン環(縮合多環式炭化水素環)、環集合アレーン環(環集合芳香族炭化水素環)などが含まれる。
 縮合多環式アレーン環としては、例えば、縮合二環式アレーン(例えば、ナフタレンなどの縮合二環式C10-16アレーン)環、縮合三環式アレーン(例えば、アントラセン、フェナントレンなど)環などの縮合二乃至四環式アレーン環などが挙げられる。好ましい縮合多環式アレーン環としては、ナフタレン環、アントラセン環などの縮合C10-14多環式アレーン環などが挙げられ、特に、ナフタレン環が好ましい。
 環集合アレーン環としては、ビアレーン環、例えば、ビフェニル環、ビナフチル環、フェニルナフタレン環(1-フェニルナフタレン環、2-フェニルナフタレン環など)などのビC6-12アレーン環、テルアレーン環、例えば、テルフェニレン環などのテルC6-12アレーン環などが例示できる。好ましい環集合アレーン環としては、ビC6-10アレーン環、特にビフェニル環などが挙げられる。なお、2つの環Zは同一の又は異なる環であってもよい。
 前記式(2)において、基Rとしては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子など)、シアノ基、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などのC1-6アルキル基)、アリール基(フェニル基などのC6-10アリール基など)、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基などのC1-6アルコキシ-カルボニル基、好ましくはC1-4アルコキシ-カルボニル基など)などが挙げられる。基Rは、前記極性置換基(B)であってもよく、このような極性置換基(B)としては、例えば、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基などのC1-6アルコキシ-カルボニル基、好ましくはC1-4アルコキシ-カルボニル基など)などが挙げられる。特に、基Rはカルボキシル基などの極性置換基(B)、アルキル基などであってもよい。置換数kは0~4(例えば、0~3)の整数、好ましくは0~2の整数(例えば、0又は1)である。なお、置換数kは、互いに同一又は異なっていてもよく、kが2以上である場合、置換基Rの種類は互いに同一又は異なっていてもよく、フルオレン環の2つのベンゼン環に置換する置換基Rの種類は同一又は異なっていてもよい。また、置換基Rの置換位置は、特に限定されず、例えば、フルオレン環の2-位乃至7-位(2-位、3-位及び/又は7-位など)であってもよい。
 これらの環Zのうち、耐熱性及び光学特性のバランスに優れる点から、多環式アレーン環が好ましく、ナフタレン環が特に好ましい。
 前記式(2)において、基Rとしては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基などの直鎖状又は分岐鎖状C1-10アルキル基、好ましくは直鎖状又は分岐鎖状C1-6アルキル基など)、シクロアルキル基(シクロペンチル基、シクロへキシル基などのC5-10シクロアルキル基など)、アラルキル基(ベンジル基、フェネチル基などのC6-10アリール-C1-4アルキル基など)、ニトロ基などが例示できる。基Rは、極性置換基(B)であってもよく、このような極性置換基(B)としては、例えば、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基などのC1-10アルコキシ基など)、シクロアルコキシ基(例えば、シクロへキシルオキシ基などのC5-10シクロアルキルオキシ基など)、アリールオキシ基(例えば、フェノキシ基などのC6-10アリールオキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基などのC6-10アリール-C1-4アルキルオキシ基など)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基などのC1-10アルキルチオ基など)、シクロアルキルチオ基(例えば、シクロへキシルチオ基などのC5-10シクロアルキルチオ基など)、アリールチオ基(例えば、チオフェノキシ基などのC6-10アリールチオ基など)、アラルキルチオ基(例えば、ベンジルチオ基などのC6-10アリール-C1-4アルキルチオ基など)、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基などのC1-6アルコキシ-カルボニル基、好ましくはC1-4アルコキシ-カルボニル基など)、アルキルカルボニル基(例えば、アセチル基、プロピオニル基などのC1-4アルキル-カルボニル基など)、シアノ基、置換アミノ基(例えば、ジメチルアミノ基などのジC1-4アルキルアミノ基、ジアセチルアミノ基などのジC1-4アルキル-カルボニルアミノ基など)などが例示できる。
 これらの置換基Rのうち、代表的には、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アルキルカルボニル基、シアノ基、置換アミノ基などの極性置換基(B)、ハロゲン原子、アルキル基、シクロアルキル基、アラルキル基、ニトロ基などが挙げられる。好ましい置換基Rとしては、アルコキシ基、アルキル基など、特にメチル基などのC1-4アルキル基が挙げられる。置換基Rの種類は、同一の又は異なる環Zにおいて、同一又は異なっていてもよい。
 また、2つの環ZのRは、互いに結合して、直接結合又はアルキレン基(例えば、メチレン基、エチレン基などのC1-6アルキレン基、好ましくはC1-4アルキレン基など)を形成し、隣接する炭素原子とともに炭化水素環を形成していてもよい。炭化水素環は、例えば、5~10員(例えば、5~8員)炭化水素環などであってもよい。また、2つの環ZのRと隣接する炭素原子とが炭化水素環を形成するとき、Rの結合位置は、例えば、環Zがベンゼン環であるとき、フェニル基の2-位、3-位(特に2-位)である場合が多く、環Zがナフタレン環であり、ナフタレン環の1-位又は2-位にフルオレンの9-位が結合するとき、ナフタレン環のα-位、β-位(特にα-位)である場合が多い。前記炭化水素環と2つの環Zとが形成する環は、例えば、フルオレン環などであってもよい。なお、フルオレンの9-位のスピロ炭素原子は、不斉炭素原子であってもよく、光学異性体R体又はS体を形成してもよい。代表的な化合物としては、下記式(3)で表される化合物などが例示できる。
Figure JPOXMLDOC01-appb-C000008
(式中、X、R、k、pは前記に同じ)
 置換数mの数は、環Zの種類やmの数などに応じて適宜選択でき、例えば、0~8程度の整数であってもよく、0~4の整数、好ましくは0~3(例えば、0~2)の整数、特に0又は1であってもよい。特に、mが1又は2である場合、環Zがベンゼン環、ナフタレン環又はビフェニル環、置換基Rがメチル基であってもよい。
 前記式(2)の基Xにおいて、アルキレン基Rには、直鎖状又は分岐鎖状アルキレン基が含まれ、例えば、エチレン基、トリメチレン基、テトラメチレン基などのC2-6アルキレン基(好ましくは直鎖状C2-4アルキレン基、特にエチレン基)、例えば、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基などの分岐鎖状C3-6アルキレン基(好ましくは分岐鎖状C3-4アルキレン基、特にプロピレン基)などが挙げられる。なお、n1が2以上の整数である場合、アルキレン基Rの種類は、同一又は異なっていてもよい。また、アルキレン基Rの種類は、同一の又は異なる環Zにおいて、同一又は異なっていてもよい。
 オキシアルキレン基(OR)の数n1は、0~15の整数(例えば、0~10の整数)程度の範囲から選択でき、例えば、0~8(例えば、1~8)の整数、好ましくは0~5(例えば、1~5)の整数、さらに好ましくは0~4(例えば、1~4)の整数、特に0~3(例えば、1~3)程度の整数であってもよく、通常、0~2の整数(例えば、0又は1)であってもよい。
 また、n2は0又は1以上の整数(例えば、1~6、好ましくは1~4、さらに好ましくは1~2程度)であってもよい。n2は、通常、0又は1~2の整数であってもよい。
 置換基Yとしては、極性置換基(B)である部分が多く、例えば、ヒドロキシル基、メルカプト基、グリシジルオキシ基、(メタ)アクリロイルオキシ基などが挙げられ、置換基Yとしては、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシ基カルボニル基などのC1-6アルコキシ-カルボニル基など)、アミノ基、置換アミノ基(例えば、ジメチルアミノ基などのジC1-4アルキルアミノ基、ジアセチルアミノ基などのジC1-4アルキル-カルボニルアミノ基など)などが挙げられる。
 前記式(2)において、基Xの置換数pは、環Zの種類に応じて、1以上の整数であればよく、例えば、1~4の整数、好ましくは1~3の整数、さらに好ましくは1~2の整数、特に1であってもよい。なお、置換数n1又はn2は、それぞれの環Zにおいて、同一又は異なっていてもよい。
 なお、基Xは、環Zの適当な位置に置換でき、例えば、環Zがベンゼン環である場合には、フェニル基の2-,3-,4-位(特に、3-位及び/又は4-位)に置換している場合が多く、環Zがナフタレン環である場合には、ナフチル基の5~8-位である場合が多く、例えば、フルオレンの9-位に対してナフタレン環の1-位又は2-位が置換し(1-ナフチル又は2-ナフチルの関係で置換し)、この置換位置に対して、1,5-位、2,6-位などの関係(特にpが1である場合、2,6-位の関係)で基Xが置換している場合が多い。また、pが2以上である場合、置換位置は、特に限定されない。また、環集合アレーン環Zにおいて、基Xの置換位置は、特に限定されず、例えば、フルオレンの9-位に結合したアレーン環及び/又はこのアレーン環に隣接するアレーン環に置換していてもよい。例えば、ビフェニル環Zの3-位又は4-位がフルオレンの9-位に結合していてもよく、ビフェニル環Zの4-位がフルオレンの9-位に結合しているとき、基Xの置換位置は、2-,3-,2’-,3’-,4’-位のいずれであってもよく、通常、2-,3’-,4’-位、好ましくは2-,4’-位(特に、2-位)に置換していてもよい。
 なお、基X{基-[(ORn1-Y]}において、置換基Yはヒドロキシ基、グリシジルオキシ基であるのが好ましい。
 なお、フルオレン化合物の極性置換基(B)は、例えば、置換基Y、Y、置換基R、Rのいずれに由来していてもよく、通常、少なくとも置換基Y、Yに由来している場合が多い。極性置換基(B)としては、例えば、ヒドロキシル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、メルカプト基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アラルキルチオ基、グリシジルオキシ基、(メタ)アクリロイルオキシ、カルボキシル基、アルコキシカルボニル基、アミノ基、置換アミノ基、アルキルカルボニル基、シアノ基、置換アミノ基などが挙げられる。フルオレン化合物は、単独又は二種以上の極性置換基(B)を含んでいてもよい。これらの極性置換基(B)のうち、ヒドロキシル基、グリシジルオキシ基などが好ましい。
 具体的に、前記式(2)において、基Xにおいて、置換基Yがヒドロキシ基又はグリシジルオキシ基である化合物としては、置換基Yがヒドロキシ基、n1が0であり、pが1である化合物、例えば、9,9-ビス(ヒドロキシアレーン)フルオレン類{例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(3-ヒドロキシフェニル)フルオレン、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン、9,9-ビス(5-ヒドロキシ-1-ナフチル)フルオレンなどの9,9-ビス(ヒドロキシC6-12アリール)フルオレン、9,9-ビス(3-フェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-フェニル-3-ヒドロキシフェニル)フルオレンなどの9,9-ビス(C6-12アリール-ヒドロキシC6-12アリール)フルオレン、9,9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-メチル-3-ヒドロキシフェニル)フルオレンなどの9,9-ビス(モノ又はジC1-4アルキル-ヒドロキシC6-12アリール)フルオレン}、2,7-ジヒドロキシ-9,9’-スピロビフルオレンなどのジヒドロキシ-9,9’-スピロビフルオレンなどが例示できる。
 前記式(2)において、基Xにおいて、置換基Yがヒドロキシ基、n1が0であり、pが2以上である化合物としては、例えば、9,9-ビス[(ポリ)ヒドロキシアレーン]フルオレン類{9,9-ビス(3,4-ジヒドロキシフェニル)フルオレン、9,9-ビス(2,4-ジヒドロキシフェニル)フルオレンなどの9,9-ビス(ジヒドロキシC6-12アリール)フルオレンなど}などが例示できる。
 前記式(2)において、基Xにおいて、置換基Yがヒドロキシ基、n1が1であり、pが1である化合物としては、例えば、9,9-ビス(ヒドロキシアルコキシアレーン)フルオレン類{例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレン、9,9-ビス[5-(2-ヒドロキシプロポキシ)-1-ナフチル]フルオレンなどの9,9-ビス(ヒドロキシC2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[4-フェニル-3-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-フェニル-3-(2-ヒドロキシプロポキシ)フェニル]フルオレンなどの9,9-ビス[C6-12アリール-ヒドロキシC2-4アルコキシC6-12アリール]フルオレン、9,9-ビス[3-メチル-4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-メチル-3-(2-ヒドロキシプロポキシ)フェニル]フルオレンなどの9,9-ビス[モノ又はジC1-4アルキル-ヒドロキシC2-4アルコキシC6-12アリール]フルオレンなど}、2,7-ジ(2-ヒドロキシエトキシ)-9,9’-スピロビフルオレンなどのジ(ヒドロキシC2-4アルコキシ)-9,9’-スピロビフルオレンなどが例示できる。
 前記式(2)において、基Xにおいて、置換基Yがヒドロキシ基、n1が1であり、pが2以上である化合物としては、例えば、9,9-ビス[(ポリ)ヒドロキシアルコキシアレーン]フルオレン類{9,9-ビス[3,4-ジ(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[5,6-ジ(2-ヒドロキシエトキシ)ナフチル]フルオレンなどの9,9-ビス(ジヒドロキシC2-4アルコキシC6-12アリール)フルオレンなど}などが例示できる。
 前記式(2)において、基Xにおいて、置換基Yがヒドロキシル基、n1が2以上であり、pが1である化合物としては、前記n1が0又は1の化合物に対応し、オキシアルキレン基(特に、オキシC2-4アルキレン基)の繰り返し単位n1が2~5である化合物、例えば、9,9-ビス{4-[2-(2-ヒドロキシエトキシ)エトキシ]フェニル}フルオレン、9,9-ビス{6-[2-(2-ヒドロキシエトキシ)エトキシ]-2-ナフチル}フルオレン、9,9-ビス{5-[2-(2-ヒドロキシエトキシ)エトキシ]-1-ナフチル}フルオレン、9,9-ビス[3,4-ジ[2-(2-ヒドロキシエトキシ)エトキシ]フェニル]フルオレン、9,9-ビス[5,6-ジ[2-(2-ヒドロキシエトキシ)エトキシ]ナフチル]フルオレンなどの9,9-ビス(モノ又はジヒドロキシポリC2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[4-フェニル-3-[2-(2-ヒドロキシエトキシ)エトキシ]フェニル]フルオレンなどの9,9-ビス[C6-12アリール-ヒドロキシポリC2-4アルコキシC6-12アリール]フルオレン、9,9-ビス[4-メチル-3-[2-(2-ヒドロキシエトキシ)エトキシ]フェニル]フルオレンなどの9,9-ビス[モノ又はジC1-4アルキル-ヒドロキシポリC2-4アルコキシC6-12アリール]フルオレン、2,7-ジ[2-(2-ヒドロキシエトキシ)エトキシ]-9,9’-スピロビフルオレンなどのジ(ヒドロキシポリC2-4アルコキシ)-9,9’-スピロビフルオレンなどが例示できる。
 また、前記式(2)において、基Xにおいて、置換基Yがグリシジルオキシ基の化合物としては、例えば、前記例示のヒドロキシル基に代えて、グリシジルオキシ基が置換した化合物、例えば、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(6-グリシジルオキシ-2-ナフチル)フルオレン、9,9-ビス(3,4-ジグリシジルオキシフェニル)フルオレンなどの9,9-ビス(モノ又はジグリシジルオキシC6-12アリール)フルオレン、9,9-ビス(4-フェニル-3-グリシジルオキシフェニル)フルオレンなどの9,9-ビス(C6-12アリール-グリシジルオキシC6-12アリール)フルオレン、9,9-ビス(3-メチル-4-グリシジルオキシフェニル)フルオレンなどの9,9-ビス(モノ又はジC1-4アルキル-グリシジルオキシC6-12アリール)フルオレン、9,9-ビス[4-(2-グリシジルオキシエトキシ)フェニル]フルオレン、9,9-ビス[6-(2-グリシジルオキシエトキシ)-2-ナフチル]フルオレン、9,9-ビス[3-メチル-4-(2-グリシジルオキシエトキシ)フェニル]フルオレンなどの9,9-ビス(モノ又はジグリシジルオキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[4-フェニル-3-(2-グリシジルオキシエトキシ)フェニル]フルオレンなどの9,9-ビス[C6-12アリール-グリシジルオキシ(ポリ)C2-4アルコキシC6-12アリール]フルオレン、9,9-ビス[3-メチル-4-(2-グリシジルオキシエトキシ)フェニル]フルオレンなどの9,9-ビス[モノ又はジC1-4アルキル-グリシジルオキシ(ポリ)C2-4アルコキシC6-12アリール]フルオレン、2,7-ジグリシジルオキシ-9,9’-スピロビフルオレンなどのジグリシジルオキシ-9,9’-スピロビフルオレン、2,7-ジ(2-グリシジルオキシエトキシ)-9,9’-スピロビフルオレンなどのジ(グリシジルオキシ(ポリ)C2-4アルコキシ)-9,9’-スピロビフルオレンなどが例示できる。
 なお、「(ポリ)C2-4アルコキシ」とは、C2-4アルコキシの繰り返し数n1又はn2が1以上の整数である基を意味する。
 また、前記式(2)で表される化合物には、具体例に示したヒドロキシル基又はグリシジルオキシ基に代えて、メルカプト基、(メタ)アクリロイルオキシ基が置換した化合物も含まれる。
 前記式(2)において、基X{基-[(CHn2-Y]}において、置換基Yがカルボキシル基である化合物としては、n2が0であり、pが1である化合物、例えば、9,9-ビス(カルボキシアリール)フルオレン類{例えば、9,9-ビス(3-カルボキシフェニル)フルオレン、9,9-ビス(4-カルボキシフェニル)フルオレン、9,9-ビス(5-カルボキシ-1-ナフチル)フルオレン、9,9-ビス(6-カルボキシ-2-ナフチル)フルオレンなどの9,9-ビス(カルボキシC6-12アリール)フルオレン;n2が1であり、pが1である化合物としては、例えば、9,9-ビス(カルボキシアルキル-アリール)フルオレン類{例えば、9,9-ビス(4-(カルボキシメチル)フェニル)フルオレン、9,9-ビス(4-(2-カルボキシエチル)フェニル)フルオレン、9,9-ビス(3-(カルボキシメチル)フェニル)フルオレン、9,9-ビス(5-(カルボキシメチル)-1-ナフチル)フルオレン、9,9-ビス(6-(カルボキシメチル)-2-ナフチル)フルオレンなどの9,9-ビス(カルボキシC1-6アルキル-C6-12アリール)フルオレンなどが例示できる。
 なお、前記式(2)で表される化合物には、具体例に示したカルボキシル基に代えて、アルキルカルボニル基、アミノ基又は置換アミノ基が置換した化合物も含まれる。
 これらの化合物のうち、耐熱性の観点から、前記式(2)において、環Zがベンゼン環、Yがヒドロキシル基、n1=0、p=1、m=1又は2、R=C1-4アルキル基である化合物、例えば、9,9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレン(BCF);前記式(2)において、環Zが縮合多環式C10-14アレーン環、Yがヒドロキシル基、n1=0、p=1である化合物、例えば、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン(BNF)、9,9-ビス(5-ヒドロキシ-1-ナフチル)フルオレン、9,9-ビス(4-メチル-3-ヒドロキシフェニル)フルオレン;前記式(2)において、環Zが縮合多環式C10-14アレーン環、Yがヒドロキシル基、n1=1~3、p=1である化合物、例えば、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン(BNEF)、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレン;前記式(2)において、環Zがビ又はテルC6-12アレーン環、Yがヒドロキシル基、n1=1~3、R=C2-4アルキレン基、p=1である化合物、例えば、9,9-ビス[3-フェニル-4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BOPPEF)、9,9-ビス[4-フェニル-3-(2-ヒドロキシエトキシ)フェニル]フルオレンなどが好ましい。
 流動性(又は成形性)の観点から、前記式(2)において、環Zがベンゼン環、Yがヒドロキシル基、n1=1~3、RがC2-4アルキレン基、p=1である化合物、例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)、9,9-ビス[3-(2-ヒドロキシエトキシ)フェニル]フルオレン;前記式(2)において、環Zが縮合多環式C10-14アレーン環、Yがヒドロキシル基、n1=1~3、p=1である化合物、例えば、BNEF、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレン;前記式(2)において、環Zがベンゼン環、Yがグリシジル基、n1=0、p=1である化合物、例えば、9,9-ビス(4-グリシジルオキシフェニル)フルオレン(BPFG)、9,9-ビス(3-グリシジルオキシフェニル)フルオレンなどが好ましい。
 特に、前記式(2)において、環Zが縮合多環式C10-14アレーン環、Yがヒドロキシル基、n1=0、p=1である化合物[例えば、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン(BNF)など];前記式(2)において、環Zが縮合多環式C10-14アレーン環、Yがヒドロキシル基、n1=1~3、p=1である化合物、例えば、BNEF、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレンは、環状オレフィン系樹脂の高い耐熱性(ガラス転移温度)を有効に維持しつつ、アッベ数を低減可能であり、しかも流動性(又は成形性)も大きく向上できる点から好ましく、さらに前記式(2)において、環Zが縮合多環式C10-14アレーン環、Yがヒドロキシル基、n1=1~2(特に1)、p=1である化合物、例えば、BNEFは、耐熱性、光学特性、成形性を高度に両立できる点から特に好ましい。
 前記式(2)で表される化合物は、市販品を使用してもよく、慣用の方法により製造してもよい。例えば、基Xにおいて、置換基Yがヒドロキシル基の化合物は、9-フルオレノン類と、環Zに基[HO-(RO)n1-]が置換したヒドロキシル基含有アレーン環化合物(例えば、2-フェノキシエタノールなどのフェノキシアルカノール類など)とを酸触媒の存在下で反応させる方法、フルオレン類の9-位にヒドロキシアリール基が置換したフルオレン化合物[例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレンなど]と、基ORに対応するアルキレンオキシド、アルキレンカーボネート及びハロアルカノールから選択された少なくとも1種とを反応させる方法で合成してもよい。また、例えば、基Xの置換基Yがグリシジルオキシ基で表される化合物は、環Zに基[HO-(RO)n1-]が置換したフルオレン類とエピクロルヒドリンとの反応により調製できる。
 [樹脂組成物]
 本発明の樹脂組成物は、官能基(A)を有する前記環状オレフィン系樹脂と、極性置換基(B)を有する前記フルオレン化合物とを含んでおり、前記フルオレン化合物の添加又は混合(又は溶融混練の)割合が少量であっても、環状オレフィン系樹脂のアッベ数を有効に低減可能であり、中間領域のアッベ数を有する樹脂組成物を得ることができる。また、環状オレフィン系樹脂(例えば、多環式オレフィン系樹脂)であっても、所定の官能基を有しているためか、極性基を有するフルオレン化合物との相溶性が高く、フルオレン化合物の割合が多くても、白濁することなく、均一に混和可能であり、大きくアッベ数を低減することができるとともに、透明性に優れている。また、このような環状オレフィン系樹脂は、前記官能基を有する剛直な架橋構造(例えば、ノルボルネン骨格を有する二環式構造、三環式構造など)を有しているため、ガラス転移温度が高く、フルオレン化合物を添加しても、高い耐熱性(ガラス転移温度)を維持できる。さらに、アッベ数の低減とともに、屈折率も有効に大きくできるため、中間領域のアッベ数であっても屈折率が高い。そのため、光学設計の自由度を向上でき、光学材料用途(例えば、光学レンズ、光学シート、光学フィルムなど)として利用できる。
 環状オレフィン系樹脂とフルオレン化合物との割合は、例えば、前者/後者(重量比)=99/1~40/60(97/3~40/60)程度の範囲から選択でき、例えば、95/5~45/55(例えば、93/7~45/55)、好ましくは90/10~50/50(例えば、87/13~60/40)、さらに好ましくは85/15~70/30程度であってもよい。環状オレフィン系樹脂の割合が小さすぎると耐熱性が十分でなくなる虞があり、逆に大きすぎるとアッベ数が有効に低減できなくなる虞があるとともに、成形性(又は流動性)が低下する虞がある。
 アッベ数は、例えば、28~55、好ましくは30~53(例えば、32~51)、さらに好ましくは35~50(例えば、40~50)程度であってもよい。なお、アッベ数は、C線(656nm)、D線(589nm)及びF線(456nm)のスペクトルに対する屈折率から算出することができる。
 また、前記樹脂組成物(又は成形体)の波長589nmにおける屈折率は、例えば、1.51~1.60、好ましくは1.52~1.58、さらに好ましくは1.53~1.57程度であってもよい。
 また、前記フルオレン化合物は、フルオレン環と二つのアリール環(ベンゼン環など)とが互いに直交した立体配座(カルド構造)を有し、光学的等方性示す。そのため、フルオレン化合物の添加により、比較的複屈折の低い脂環構造の環状オレフィン系樹脂の複屈折をさらに低減することができる。そのため、前記樹脂組成物は、比較的低い複屈折を有している。すなわち、樹脂組成物の複屈折は、例えば、30~56nm、好ましくは33~55nm、さらに好ましくは35~54nm程度であってもよい。なお、複屈折は実施例の方法により測定できる。
 なお、前記樹脂組成物(又は成形体)は、中間領域のアッベ数及び耐熱性(高いガラス転移温度)を両立できる。すなわち、前記樹脂組成物のガラス転移温度(Tg)は、官能基の種類(又は樹脂の種類)にもよるが、例えば、100~200℃(例えば、120~190℃)、好ましくは130~180℃(例えば、135~180℃)、さらに好ましくは140~170℃(例えば、145~165℃)程度であってもよく、例えば、135~250℃(例えば、150~230℃)、好ましくは160~210℃、さらに好ましくは170~200℃程度であってもよい。ガラス転移温度が低すぎると耐熱性などが低下する虞があり、高すぎると成形性が低下する虞がある。なお、前記ガラス転移温度は、示差走査熱量分析(測定)により測定できる。
 また、前記樹脂組成物は、必要に応じて、各種添加剤[例えば、充填剤又は補強剤、着色剤(染料、蛍光増白剤など)、導電剤、難燃剤、可塑剤、滑剤、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、離型剤、帯電防止剤、分散剤、流動調整剤、レベリング剤、消泡剤、表面改質剤、低応力化剤、炭素材など]を含んでいてもよい。これらの添加剤は単独で又は二種以上組み合わせてもよい。なお、耐熱安定性の観点から酸化防止剤、耐候安定性の観点から紫外線吸収剤などを用いてもよい。
 酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,2’ -ジオキシ-3,3’-ジ-t-ブチル-5,5’-ジメチルジフェニルメタン、テトラキス(メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-ジオキシ-3,3’-ジ-t-ブチル-5,5’-ジエチルフェニルメタン、3,9-ビス[1,1-ジメチル-2-(β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)エチル]、2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイトなどが挙げられる。
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ペンチルフェノール、2-(ベンゾトリアゾール-2-イル)-4,6-ジ-t-ブチルフェノール、2,2’-メチレンビス{4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]}などが挙げられる。
 添加剤の割合は、添加剤の種類にもよるが、前記樹脂組成物100重量部に対して、例えば、0.001~10重量部、好ましくは0.01~7重量部、さらに好ましくは0.05~5重量部程度であってもよい。
 また、前記樹脂組成物は、前記環状オレフィン系樹脂と前記フルオレン化合物と[必要に応じて他の成分(例えば、前記添加剤)と]を混合することで得ることができる。混合方法は、特に限定されず、例えば、溶融混練により混合してもよく、溶媒に各成分を溶解させることで混合してもよい。
 前記樹脂組成物は、高い耐熱性を維持しつつ、流動性も大きく改善することができ、成形性も向上できる。樹脂組成物のメルトフローレート(MFR)は、樹脂の種類にもよるが、JIS K7210に準じた方法(温度280℃、荷重2.16kgf)で、例えば、5~50g/10分、好ましくは7~47g/10分、さらに好ましくは10~45g/10分程度であってもよい。
 さらに、本発明には、このような樹脂組成物で形成された成形体も含まれる。このような成形体の形状は、特に限定されず、用途に応じて適宜選択でき、例えば、二次元的形状(平面形状、フィルム状、シート状など)、三次元的形状[凹凸状、非球面形状(例えば、楕円形状)、管状、棒状、チューブ状、中空状など]などが挙げられる。
 成形体は、例えば、射出成形法、射出圧縮成形法、押出成形法、トランスファー成形法、ブロー成形法、加圧成形法、キャスティング成形法などを利用して製造することができる。
 また、本発明の成形体又は樹脂組成物は、光学的特性に優れているため、光学材料(例えば、光学レンズ、光学シート、光学フィルムなど)の用途に好適に使用できる。特に、本発明の樹脂組成物は、中程度のアッベ数を有するため、光学レンズなどを形成するのに有用である。
 例えば、光学レンズは、生産性の観点から、通常、射出成形法により製造される。射出成形法において、樹脂温度、金型温度、圧力などの成形条件を適正に調整することにより、光学歪の小さい光学レンズを得ることができる。また、光学レンズでは、レンズ面の形状を精密に制御する必要があるため、流動性の低い樹脂では高精度での曲面の転写が困難であり、成形時の樹脂温度及び金型温度などを高くし、流動性を向上させて成形する場合が多い。しかし、樹脂温度及び金型温度などを高くすると、樹脂の分解や添加剤などの分解、揮発、金型への貼り付き、汚れなどの問題が生じることがある。本発明の樹脂組成物は、樹脂の耐熱性(高いガラス転移温度)を維持しつつ、樹脂の流動性を改善することもできるため、これらの問題を防止することができる。なお、前記樹脂温度は、例えば、200~350℃程度であってもよく、前記金型温度は、例えば、樹脂(又は環状オレフィン系樹脂)のガラス転移温度(Tg)より10~30℃低い温度であってもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例及び比較例における各測定方法及び評価方法は以下の通りである。
 (分子量(Mw)の測定)
 試料をテトラヒドロフラン(THF)に溶解させ、ゲル浸透クロマトグラフィー(東ソー(株)製、HLC-8120GPC)を用いて、ポリスチレン換算で、重量平均分子量(Mw)を測定した。
 (ガラス転移温度(Tg)の測定)
 示差走査熱量計(パーキンエルマー(株)製、DSC 8500)を用いて、JIS K 7121に準拠して測定した。
 (メルトフローレートの測定)
 メルトフローレート(MFR)はJIS K7210に準拠し、実施例1~10及び比較例2では、温度280℃、荷重2.16kg、比較例1では、温度280℃、荷重16kgの条件で測定した。
 (屈折率及びアッベ数の測定)
 屈折率及びアッベ数はカルニュー精密屈折計[(株)島津デバイス製、KPR2000]を用いて測定温度20℃、D線(波長589nm)に対する屈折率nDを測定した。なお、アッベ数(vD)は、vD=(nD-1)/(nF-nC)の式を用いて算出した。nFは、F線(波長486nm)に対する屈折率、nCは、C線(波長656nm)に対する屈折率を示す。
 (複屈折の評価)
 ヒートプレス機((株)井元製作所製B-012C)を用いて、厚み200μmのフィルムを成形し、縦1cm×横6cmの試験片を作製した。この試験片を温度[ガラス転移温度(Tg)+10℃]で一軸延伸を使用して3倍延伸した。延伸後のサンプルのレタデーションを位相差フィルム・光学材料測定装置(大塚電子社製 RETS100)を使用して測定した。測定値は厚み50μmに換算した値とした。
 (樹脂組成物の物性測定)
 得られた樹脂組成物のガラス転移温度(Tg)、メルトフローレート(MFR)、屈折率、アッベ数及び複屈折を測定した。測定結果を表1に示す。
 (実施例1)
 環状オレフィン系樹脂として、「ARTON」(JSR(株)製、F4520、Tg=164℃、Mw=60000)のペレット85重量部と、フルオレン化合物として、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(大阪ガスケミカル(株)製、以下BPEF)15重量部とを二軸押出装置((株)テクノベル製、型番KZW15/45)を用いて混練し、ストランドを押出し、カッターで切断してペレットを得た。樹脂組成物の外観は無色透明のペレットであった。
 (実施例2)
 環状オレフィン系樹脂90重量部及びBPEF10重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例3)
 環状オレフィン系樹脂95重量部及びBPEF5重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例4)
 環状オレフィン系樹脂80重量部及びBPEF20重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例5)
 環状オレフィン系樹脂70重量部及びBPEF30重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例6)
 環状オレフィン系樹脂50重量部及びBPEF50重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例7)
 BPEFに代えて、フルオレン化合物として、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン(大阪ガスケミカル(株)製、以下、BOPPEF)15重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例8)
 BPEFに代えて、フルオレン化合物として、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン(特開2007-099741の実施例1に従って合成、以下、BNF)15重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例9)
 フルオレン化合物として9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(大阪ガスケミカル(株)製、以下、BCF)15重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例10)
 フルオレン化合物として9,9-ビス(4-グリシジルオキシ)フェニル)フルオレン(大阪ガスケミカル(株)製、以下、BPFG)15重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例11)
 フルオレン化合物として9,9-ビス(6-ヒドロキシエトキシ-2-ナフチル)フルオレン(特開2011-68624号公報の実施例1に従って合成、以下、BNEF)20重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例12)
 フルオレン化合物として9,9-ビス(6-ヒドロキシエトキシ-2-ナフチル)フルオレン15重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例13)
 フルオレン化合物として9,9-ビス(6-ヒドロキシエトキシ-2-ナフチル)フルオレン10重量部を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
 (実施例14)
 (レンズ成形、評価)
 非球面形状の金型を使用して射出成型装置(ファナック(株)製、FANUC ROBOSHOT S-2000i50B)によって、樹脂温度300℃、金型温度120℃で連続1万ショットの成形を行い、レンズを作製した。得られたレンズ成形物は精度よく成形できていることを確認した。また、いずれのレンズ成形物も汚れは全く認められなかった。また、成形不良やスプールランナー折れ、ガス発生などの成形トラブルもなかった。
 実施例1~13で得られた樹脂組成物の物性[ガラス転移温度(Tg)、メルトフローレート(MFR)]、光学特性[屈折率、アッベ数、複屈折]を測定した。測定結果を表1に示す。
 (比較例1)
 環状オレフィン系樹脂として、「ARTON」(F4520)の物性及び光学特性を測定した。測定結果を表1に示す。
 (比較例2)
 環状オレフィン系樹脂として、「APEL」(三井化学(株)製、銘柄D5014DP、Tg135℃)を用いたこと以外は実施例1と同様にして、樹脂組成物を作製したが、白濁のペレットが得られた。樹脂組成物の物性及び光学特性は測定不能であった。
Figure JPOXMLDOC01-appb-T000009
 表1から明らかなように、実施例1~6では、比較例1と比べ、フルオレン化合物の添加量が大きくなるほど、アッベ数が減少し、かつ屈折率が向上した。また、BPEFと構造の異なるフルオレン化合物を用いた実施例7~13においても、同様にアッベ数が減少し、屈折率が向上した。そして、実施例1~13で得られた樹脂組成物では、中間領域のアッベ数及び高い屈折率を有するとともに、比較的高いガラス転移温度を有している。さらに、実施例1~13では、比較例1と比べ、複屈折も低下した。さらには、実施例1~13では、比較例1よりも荷重が小さいにもかかわらず、比較例1と比べ、MFR値が大きくなり、流動性が大きく向上した。特に、BPEF、BOPPEF、BNF、BCF、BPFG、BNEFの中でも、BNEF、BNF(特にBNEF)単位を含む組成物は耐熱性に優れている。また、BOPPEF単位を含む組成物は耐熱性が高く、アッベ数の低減の程度も高い。さらに、BPFG単位を含む組成物は、流動性が高く、複屈折も低い。
 特に、BNEF単位を含む組成物は、諸特性のバランスに優れており、耐熱性が最も高い一方で、流動性も最も高く、成形用途に適する。複屈折もBNEF単位を含まない環状オレフィン系樹脂(比較例1)よりも低い。
 なお、比較例2では、混和性(相溶性)が低く、白濁した。
 本発明の樹脂組成物及び成形体は、耐熱性(ガラス転移温度)が高く、中程度のアッベ数及び高い屈折率を有するため、光学設計の自由度を向上できる。そのため、光学材料(例えば、光学シート、光学フィルム、光学レンズなど)用途として利用できる。特に、携帯電話やスマートフォンなどの携帯型通信器機に内蔵されるカメラ、デジタルカメラ、監視用カメラ、車載カメラ、ネットワークカメラ等の小型カメラの光学レンズなどとして有用である。

Claims (14)

  1.  官能基を有する環状オレフィン系樹脂と、極性置換基を有する9,9-ビスアリールフルオレン骨格を有する化合物とを含む樹脂組成物。
  2.  環状オレフィン系樹脂が、ノルボルネン骨格を含む樹脂である請求項1に記載の樹脂組成物。
  3.  環状オレフィン系樹脂が、少なくとも下記式(1)で表される構成単位を含む樹脂である請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、基Rは水素原子又はアルキル基、基Rは水素原子、アルキル基又はアリール基を示し、基Wはカルボキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、ヒドロキシアルキルカルボニル基、グリシジルオキシカルボニル基、シアノ基又はアミド基を示し、qは0又は1を示す。)
  4.  式(1)において、基Rが水素原子又はメチル基、基Rが水素原子、基Wがカルボキシル基、C1-2アルコキシ-カルボニル基、シアノ基又はアミド基、qが0である請求項3に記載の樹脂組成物。
  5.  環状オレフィン系樹脂のガラス転移温度が、140~250℃である請求項1~4のいずれかに記載の樹脂組成物。
  6.  9,9-ビスアリールフルオレン骨格を有する化合物が、下記式(2)で表される化合物である請求項1~5のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     [式中、環Zはアレーン環、Rはハロゲン原子、シアノ基、アルキル基、アリール基、カルボキシル基又はアルコキシカルボニル基、Rはハロゲン原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アラルキルチオ基、カルボキシル基、アルコキシカルボニル基、アルキルカルボニル基、ニトロ基、シアノ基、アミノ基又は置換アミノ基を示すか若しくは2つの環ZのRは、互いに結合し、直接結合又はアルキレン基を形成して、隣接する炭素原子とともに炭化水素環を形成していてもよく、基Xは、基-[(ORn1-Y](式中、置換基Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基、Rはアルキレン基、n1は0又は1以上の整数を示す。)又は基-[(CHn2-Y](式中、置換基Yは、カルボキシル基、アルコキシカルボニル基、アミノ基又は置換アミノ基、n2は0又は1以上の整数を示す。)、kは0~4の整数、mは0又は1以上の整数、pは1以上の整数を示す。]
  7.  式(2)において、基Xが[(ORn1-Y]のとき、置換基Yがヒドロキシル基又はグリシジルオキシ基、環Zがベンゼン環、ナフタレン環又はビフェニル環、RがC1-4アルキル基、kが0又は1、RがC1-4アルキル基又はC1-4アルコキシ基、mが0又は1の整数、RがC2-4アルキレン基、n1が0~2の整数、pが1又は2である請求項6に記載の樹脂組成物。
  8.  式(2)において、環Zがナフタレン環である請求項6又は7記載の樹脂組成物。
  9.  式(2)で表される化合物が、9,9-ビス(モノ又はジヒドロキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-ヒドロキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジC1-4アルキル-ヒドロキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジヒドロキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-ヒドロキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[モノ又はジC1-4アルキル-ヒドロキシ(ポリ)C2-4アルコキシC6-12アリール]フルオレン、9,9-ビス(モノ又はジグリジシルオキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-グリジシルオキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジC1-4アルキル-グリジシルオキシC6-12アリール)フルオレン、9,9-ビス(モノ又はジグリジシルオキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス(C6-12アリール-ヒドロキシ(ポリ)C2-4アルコキシC6-12アリール)フルオレン、9,9-ビス[モノ又はジC1-4アルキル-グリジシルオキシ(ポリ)C2-4アルコキシC6-12アリール]フルオレンから選択された少なくとも1種を含む請求項6~8のいずれかに記載の樹脂組成物。
  10.  式(2)で表される化合物が、9,9-ビス(モノ又はジヒドロキシ(ポリ)C2-4アルコキシナフチル)フルオレンである請求項1~9のいずれかに記載の樹脂組成物。
  11.  環状オレフィン系樹脂と9,9-ビスアリールフルオレン骨格を有する化合物との割合が、前者/後者(重量比)=99/1~30/70である請求項1~10のいずれかに記載の樹脂組成物。
  12.  C線、D線及びF線のスペクトルに対する屈折率から算出したアッベ数が28~55及び/又は波長589nmにおける屈折率が1.51~1.60である請求項1~11のいずれかに記載の樹脂組成物。
  13.  請求項1~12のいずれかに記載の樹脂組成物で形成された成形体。
  14.  請求項1~12のいずれかに記載の樹脂組成物で形成された光学レンズ。
     
PCT/JP2016/056036 2015-03-13 2016-02-29 樹脂組成物及び光学レンズ WO2016147847A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680015257.1A CN107429033B (zh) 2015-03-13 2016-02-29 树脂组合物和光学透镜
KR1020177024286A KR102418855B1 (ko) 2015-03-13 2016-02-29 수지 조성물 및 광학 렌즈
JP2017506183A JP6734840B2 (ja) 2015-03-13 2016-02-29 樹脂組成物及び光学レンズ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015051253 2015-03-13
JP2015-051253 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147847A1 true WO2016147847A1 (ja) 2016-09-22

Family

ID=56918898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056036 WO2016147847A1 (ja) 2015-03-13 2016-02-29 樹脂組成物及び光学レンズ

Country Status (5)

Country Link
JP (1) JP6734840B2 (ja)
KR (1) KR102418855B1 (ja)
CN (1) CN107429033B (ja)
TW (1) TWI678394B (ja)
WO (1) WO2016147847A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097033A (ja) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 光学フィルム
WO2020137926A1 (ja) 2018-12-27 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
KR102148772B1 (ko) * 2020-04-09 2020-08-27 로움하이텍 주식회사 신규한 중합체, 이를 포함하는 하층막 형성용 조성물 및 이를 이용한 방법
JP2020139013A (ja) * 2019-02-27 2020-09-03 大阪ガスケミカル株式会社 フルオレン誘導体を含む樹脂組成物及びその成形体
WO2023195346A1 (ja) * 2022-04-08 2023-10-12 大阪ガスケミカル株式会社 紫外線吸収剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131872A (ko) * 2018-03-30 2020-11-24 미쓰이 가가쿠 가부시키가이샤 광학 렌즈
CN109917497A (zh) * 2019-05-08 2019-06-21 河南达人视界眼镜有限公司 一种阿贝数45的高清镜片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174679A (ja) * 2007-01-22 2008-07-31 Nippon Zeon Co Ltd 樹脂組成物及び光学用成形品
WO2014168108A1 (ja) * 2013-04-10 2014-10-16 大阪ガスケミカル株式会社 フルオレン化合物を含む樹脂組成物および成形体並びに波長分散調整剤および樹脂の波長分散調整方法
JP2014218660A (ja) * 2013-04-10 2014-11-20 大阪瓦斯株式会社 環状オレフィン樹脂組成物
JP2014218659A (ja) * 2013-04-10 2014-11-20 大阪瓦斯株式会社 強度向上剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410540B2 (ja) 2003-11-28 2010-02-03 大阪瓦斯株式会社 フルオレン骨格含有樹脂組成物およびその成形体
JP4908781B2 (ja) * 2005-06-06 2012-04-04 大阪瓦斯株式会社 ポリエステル樹脂組成物および光学部品
CN101300286B (zh) * 2005-11-10 2011-03-30 帝人化成株式会社 光学元件以及色差补正透镜
WO2008018951A1 (en) * 2006-08-04 2008-02-14 Exxonmobil Chemical Patents Inc. Polymer compositions comprising cyclic olefin polymers, polyolefin modifiers, and fillers
JP5507128B2 (ja) 2009-06-25 2014-05-28 大阪瓦斯株式会社 光学用樹脂組成物及び成形体
CN103201307B (zh) * 2010-12-06 2015-05-13 Jsr株式会社 环状烯烃开环聚合物、其氢化物及该氢化物组合物、以及三环戊二烯
JP2013194186A (ja) 2012-03-21 2013-09-30 Nippon Shokubai Co Ltd 透明樹脂組成物、透明フィルムおよび画像表示装置
JP6077918B2 (ja) 2013-04-10 2017-02-08 大阪瓦斯株式会社 アッベ数向上剤
KR20150142681A (ko) * 2013-04-10 2015-12-22 오사카 가스 케미칼 가부시키가이샤 파장 분산 조정제, 수지 조성물 및 수지의 파장 분산 조정 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174679A (ja) * 2007-01-22 2008-07-31 Nippon Zeon Co Ltd 樹脂組成物及び光学用成形品
WO2014168108A1 (ja) * 2013-04-10 2014-10-16 大阪ガスケミカル株式会社 フルオレン化合物を含む樹脂組成物および成形体並びに波長分散調整剤および樹脂の波長分散調整方法
JP2014218660A (ja) * 2013-04-10 2014-11-20 大阪瓦斯株式会社 環状オレフィン樹脂組成物
JP2014218659A (ja) * 2013-04-10 2014-11-20 大阪瓦斯株式会社 強度向上剤

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097033A (ja) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 光学フィルム
WO2020137926A1 (ja) 2018-12-27 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
KR20210114919A (ko) 2018-12-27 2021-09-24 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 성형체, 광학 렌즈, 및 광학 렌즈 유닛
JPWO2020137926A1 (ja) * 2018-12-27 2021-11-18 三菱瓦斯化学株式会社 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
JP7367704B2 (ja) 2018-12-27 2023-10-24 三菱瓦斯化学株式会社 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
US12091498B2 (en) 2018-12-27 2024-09-17 Mitsubishi Gas Chemical Company, Inc. Resin composition, molded body, optical lens, and optical lens unit
JP2020139013A (ja) * 2019-02-27 2020-09-03 大阪ガスケミカル株式会社 フルオレン誘導体を含む樹脂組成物及びその成形体
JP7166197B2 (ja) 2019-02-27 2022-11-07 大阪ガスケミカル株式会社 フルオレン誘導体を含む樹脂組成物及びその成形体
KR102148772B1 (ko) * 2020-04-09 2020-08-27 로움하이텍 주식회사 신규한 중합체, 이를 포함하는 하층막 형성용 조성물 및 이를 이용한 방법
WO2023195346A1 (ja) * 2022-04-08 2023-10-12 大阪ガスケミカル株式会社 紫外線吸収剤

Also Published As

Publication number Publication date
CN107429033B (zh) 2020-11-24
JP6734840B2 (ja) 2020-08-05
TW201641584A (zh) 2016-12-01
KR20170127431A (ko) 2017-11-21
KR102418855B1 (ko) 2022-07-11
CN107429033A (zh) 2017-12-01
JPWO2016147847A1 (ja) 2017-12-21
TWI678394B (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
JP6734840B2 (ja) 樹脂組成物及び光学レンズ
JP6328499B2 (ja) メタクリル系樹脂組成物、成形体、樹脂フィルム、偏光子保護フィルム、および位相差フィルム
JP7082872B2 (ja) 高耐熱性ポリカーボネート樹脂及び成形体
JP2018059074A (ja) フルオレン骨格を有するポリエステル樹脂
JP2017179323A (ja) 高屈折率ポリカーボネート系樹脂及び成形体
KR20150142682A (ko) 플루오렌 화합물을 포함하는 수지 조성물 및 성형체 및 파장 분산 조정제 및 수지의 파장 분산 조정 방법
TW200946570A (en) Method for producing laminated optical thin film, laminated optical thin film, polarizer and liquid crystal display device
KR20150142681A (ko) 파장 분산 조정제, 수지 조성물 및 수지의 파장 분산 조정 방법
JP2018010176A (ja) 位相差フィルムおよび位相差フィルムの製造方法
JP2011168721A (ja) フルオレン骨格を有するポリエステル樹脂
WO2020137926A1 (ja) 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
JP6235959B2 (ja) 環状オレフィン樹脂組成物
KR102650418B1 (ko) 환상 올레핀계 수지 조성물, 성형체 및 광학 부품
WO2021149400A1 (ja) 光学部品
JPWO2017146169A1 (ja) メタクリル樹脂組成物および射出成形品
JP5304244B2 (ja) 環状オレフィン系開環共重合体およびその用途
TWI819173B (zh) 光學零件用環狀烯烴共聚合物、光學零件用環狀烯烴共聚合物組成物及成形體
KR20200131872A (ko) 광학 렌즈
JP2023180149A (ja) 光学フィルム、光学フィルムの製造方法、及び位相差フィルム用樹脂組成物
JP2023180148A (ja) 光学フィルム、光学フィルムの製造方法、及び位相差フィルム用樹脂組成物
JP6200192B2 (ja) 耐熱性向上剤
JP2018173628A (ja) 光学部品
KR20100059791A (ko) 액정 패널 및 액정 패널용 광학 필름 세트
JP2009098682A (ja) 液晶パネル、光学フィルムおよび液晶パネル用光学フィルムセット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506183

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024286

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764677

Country of ref document: EP

Kind code of ref document: A1