WO2016039098A1 - 温度検出装置 - Google Patents
温度検出装置 Download PDFInfo
- Publication number
- WO2016039098A1 WO2016039098A1 PCT/JP2015/073233 JP2015073233W WO2016039098A1 WO 2016039098 A1 WO2016039098 A1 WO 2016039098A1 JP 2015073233 W JP2015073233 W JP 2015073233W WO 2016039098 A1 WO2016039098 A1 WO 2016039098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- detection
- battery
- circuits
- processing unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/24—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00038—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
- H02J7/00041—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a temperature detection device used for state management of an assembled battery (battery pack) in which a plurality of battery cells are combined.
- a battery power storage device that supplies electric power to a motor is mounted on this type of vehicle.
- a lithium ion battery is used as the battery.
- the battery generates heat during its charging / discharging process (particularly, when charging continues at full charge and when a large current continues to flow in response to a continuous high load state), and its temperature rises. When the battery temperature rises, the output characteristics of the battery may change. Therefore, it is preferable to charge and discharge in consideration of the battery temperature.
- an assembled battery in which a plurality of battery cells (unit batteries) are combined is generally used.
- this assembled battery since temperature distribution may occur in the assembled battery due to the degree of heat radiation being different for each battery cell, it is desirable to manage the temperature for each battery cell.
- one conventional temperature detection device detects the temperature of an assembled battery (battery pack) using a plurality of temperature sensors.
- a plurality of temperature sensors are arranged along the arrangement direction of the battery cells in the assembled battery.
- the conventional device arranges three temperature sensors for 100 or more battery cells.
- the conventional apparatus estimates the internal temperature of the assembled battery based on the output value of the temperature sensor and other parameters (for example, ambient temperature, cooling air volume, etc.).
- a temperature sensitive element such as a thermistor is used as the temperature sensor (see, for example, Patent Document 1).
- the temperature of the assembled battery is estimated by a number of temperature sensors smaller than the number of battery cells. Therefore, when the number of temperature sensors is insufficient with respect to the number of battery cells, the conventional device may not be able to grasp the temperature state inside the assembled battery with good resolution. Furthermore, since the conventional apparatus has a pair of detection lines (wirings connected to the temperature sensors) for each temperature sensor, if the number of temperature sensors is increased to increase the resolution of temperature detection, the number of temperature sensors is increased. The number of detection lines also increases in proportion to. As a result, a large number of detection lines are routed in a limited space in the case that accommodates the assembled battery, and the wiring operation of the detection lines may be complicated. As described above, the conventional apparatus has a trade-off relationship between the improvement of the temperature detection resolution and the workability of the detection line arrangement.
- an object of the present invention is to provide a temperature detection device that can detect the temperature state of an assembled battery with high resolution and is excellent in the routing of detection lines.
- the temperature detection device has the following features (1) to (3).
- a temperature detection device for detecting the temperature of a battery pack combining a plurality of battery cells, A plurality of detection circuits provided corresponding to each of the plurality of battery cells; A pair of detection lines electrically connecting the plurality of detection circuits in parallel; A processing unit that detects the temperature of each of the plurality of battery cells by inputting a sine wave detection signal to the pair of detection lines via a voltage dividing resistor;
- Each of the plurality of detection circuits includes: Consists of a circuit in which a temperature-sensitive resistor whose electrical characteristics change according to temperature, a coil, and a capacitor are connected in series. It must be a temperature detection device.
- the inductance of the coil and the capacitance of the capacitor in each of the plurality of detection circuits are:
- the resonance frequencies of the plurality of detection circuits are set to have different values, respectively.
- the processing unit is The sine wave detection signal is input to the pair of detection lines while changing the frequency of the sine wave detection signal so as to correspond to the resonance frequency of each of the plurality of detection circuits. It must be a temperature detection device.
- the processing unit is The resistance value of the temperature sensing resistor in the detection circuit corresponding to the frequency of the sine wave detection signal corresponding to the resonance frequency is calculated based on the voltage in the voltage dividing resistor, Based on the resistance value of the temperature sensitive resistor, the temperature of the battery cell provided with a detection circuit corresponding to the resonance frequency is detected, It must be a temperature detection device.
- a plurality of detection circuits are provided corresponding to each of the temperature detection target battery cells (that is, the battery cell and the detection circuit correspond one-to-one), so that the temperature of each battery cell is determined. The state can be detected. Further, since all the detection circuits share a pair of (two) detection lines, it is not necessary to provide a detection line for each detection circuit. As a result, it is possible to provide a temperature detection device that detects the temperature state of the assembled battery with high resolution and is excellent in the arrangement of the detection lines.
- FIG. 1 is an explanatory diagram schematically showing a configuration of a temperature detection device according to an embodiment of the present invention.
- FIG. 2 is an explanatory diagram showing a circuit configuration of the temperature detection device according to the embodiment of the present invention.
- FIG. 3 is a diagram illustrating an example of inductance and capacitance regarding each detection circuit in the temperature detection device according to the embodiment of the present invention, and a resonance frequency thereof.
- FIG. 4 is a flowchart showing temperature detection processing by the temperature detection apparatus according to the embodiment of the present invention.
- temperature detection device 1 As shown in FIGS. 1 and 2, the temperature detection device according to the embodiment of the present invention (hereinafter referred to as “temperature detection device 1”) is used for state management of the assembled battery 100.
- the assembled battery 100 is obtained by electrically connecting a plurality of battery cells 101.
- the assembled battery 100 includes six battery cells 101.
- the plurality of battery cells 101 are accommodated in a module case (not shown) in a state where they are stacked in the thickness direction.
- each of the plurality of battery cells 101 is configured from one battery element or by electrically connecting a plurality of battery elements.
- a lithium ion battery can be used as the battery cell 101.
- Lithium ion batteries generally have large changes in characteristics at high temperatures, so it is desirable to perform temperature control as strictly as possible.
- the temperature detection device 1 includes a plurality of detection circuits 10 provided corresponding to each of the plurality of battery cells 101, a pair of detection lines 15 electrically connecting the plurality of detection circuits in parallel, and detection A detection processing device 20 is provided that inputs a temperature detection signal to the line 15 and detects the temperature of the battery cell 101 based on the output from the detection line.
- the plurality of detection circuits 10 are independent circuits.
- six detection circuits 10 corresponding to each of the six battery cells 101 are provided, and each of the detection circuits 10 and each of the battery cells 101 has a one-to-one relationship.
- FIG. 2 for the purpose of identifying the plurality of detection circuits 10, reference numerals “S1” to “S6” are given to the detection circuits 10.
- Each of the detection circuits 10 is a circuit that detects the temperature of the corresponding battery cell 101, and is provided for each battery cell 101 (one detection circuit 10 for each battery cell 101).
- Each of the detection circuits 10 is a circuit (RLC circuit) in which a resistor, a coil, and a capacitor are connected in series.
- the first detection circuit 10 (S1) is an RLC circuit including a resistor Rth1, a coil L1, and a capacitor C1.
- the second detection circuit 10 (S2) is an RLC circuit composed of a resistor Rth2, a coil L2, and a capacitor C2, and the third detection circuit 10 (S3) is composed of a resistor Rth3, a coil L3, and a capacitor C3.
- the fourth detection circuit 10 (S4) is an RLC circuit including a resistor Rth4, a coil L4, and a capacitor C4.
- the fifth detection circuit 10 (S5) is a resistor Rth5, a coil L5, and a capacitor C5.
- the sixth detection circuit 10 (S6) is an RLC circuit including a resistor Rth6, a coil L6, and a capacitor C6.
- the resistors Rth1 to Rth6 are disposed in thermal contact with the corresponding battery cell 101 (in other words, the heat of the battery cell 101 can be transferred to the corresponding resistor).
- the resistors Rth1 to Rth6 are temperature sensitive resistors whose electrical characteristics change according to temperature.
- a thermistor or the like can be used as the resistors Rth1 to Rth6, for example, a thermistor or the like can be used.
- the inductances of the coils L1 to L6 and the capacitances of the capacitors C1 to C6 are set so that each resonance frequency (natural frequency) of the detection circuit 10 has a different value.
- the inductances L of the coils L1 to L6 are all set to 47 ⁇ H.
- Capacitances C of the capacitors C1 to C6 are set to 0.1 ⁇ F, 0.15 ⁇ F, 0.22 ⁇ F, 0.33 ⁇ F, 0.47 ⁇ F, and 0.56 ⁇ F, respectively.
- the resonance frequencies f0 of the detection circuit 10 are 73.4 kHz, 59.9 kHz, 49.5 kHz, 40.4 kHz, 33.9 kHz, and 31.0 kHz.
- the pair of detection lines 15 electrically connects the six detection circuits 10 in parallel.
- the first detection line 15a is connected to the resistances Rth1 to Rth6 side of each detection circuit 10
- the second detection line 15b is connected to the capacitors C1 to C6 side of each detection circuit 10.
- a power supply 30 for applying a power supply voltage Vcc is connected between the first detection line 15a and the second detection line 15b.
- the second detection line 15b is connected to the ground.
- the detection processing device 20 includes a voltage dividing resistor 21, a voltage sensor 22, a processing unit 23, and a power supply 30.
- the voltage dividing resistor 21 is connected to the first detection line 15a.
- a voltage output from the power supply 30 (in other words, a sine wave detection signal described later) is applied to the plurality of detection circuits 10 through the voltage dividing resistor 21 and the detection line 15. That is, the voltage of the power supply 30 is divided into the voltage dividing resistor 21 and the plurality of detection circuits 10.
- the resistance value of the voltage dividing resistor 21 is “r”.
- the voltage sensor 22 is a sensor that detects a voltage applied to the voltage dividing resistor 21.
- the processing unit 23 detects the temperature of each battery cell 101.
- a microcomputer mainly composed of a CPU, a ROM, a RAM, and an I / O interface can be used.
- the processing unit 23 can supply a sine wave detection signal having a specific frequency to the pair of detection lines 15 via the voltage dividing resistor 21 and can detect a voltage applied to the voltage dividing resistor 21. is there.
- the power source 30 is an AC power source with variable frequency, and is controlled by the processing unit 23 to output a sine wave detection signal (AC voltage) having a specific frequency.
- the power supply 30 can be composed of, for example, an inverter circuit. However, the power supply 30 is not limited to this.
- the detection circuit (for example, the detection circuit S1) ) Is in a resonance state.
- the detection circuit 10 (S1) in the resonance state since the potentials of the coils L1 to L6 and the capacitors C1 to C6 cancel each other, the combined impedance of the coil and the capacitor can be regarded as 0 ⁇ .
- the current flowing through the detection circuit (S1) having the resonance frequency that matches the frequency of the sine wave detection signal becomes the maximum value, and the current flowing through the other detection circuits (S2 to S6) becomes relatively small (resonance frequency). If the difference is sufficiently large, it can be regarded as substantially zero).
- the impedance of the entire circuit can be grasped as the sum of the resistance value r of the voltage dividing resistor 21 and the resistance value R of the resistance (Rth1) of the detection circuit 10 in the resonance state. Therefore, if the voltage Vr in the voltage dividing resistor 21 is detected by the voltage sensor 22, the resonance state is determined based on the detected voltage Vr, the input voltage (power supply voltage Vcc), and the resistance value r of the voltage dividing resistor 21. The resistance value R of the resistance (Rth1) of the detection circuit 10 (S1) can be obtained.
- the temperature of the battery cell 101 provided with the resistance can be specified based on the resistance value R. That is, since the resistors Rth1 to Rth6 of the detection circuit 10 are in thermal contact with the battery cell 101, the specified temperature represents the temperature of the battery cell 101.
- the processing unit 23 sets the frequency of the sine wave detection signal in step 10 (S10).
- the processing unit 23 inputs the sine wave detection signal to the pair of detection lines 15 while changing the frequency of the sine wave detection signal so as to correspond to the resonance frequency of each of the plurality of detection circuits 10.
- the processing unit 23 selects the resonance frequency f0 of the detection circuit (one of S1 to S6) corresponding to the battery cell 101 that detects the temperature from the six detection circuits S1 to S6. Is set as the frequency of the sine wave detection signal.
- step 11 the processing unit 23 controls the power supply 30 and outputs a sine wave detection signal having the frequency set in step 10.
- the output sine wave detection signal is input to the voltage dividing resistor 21 and the pair of detection lines 15.
- step 12 the processing unit 23 detects the voltage at the voltage dividing resistor 21 by the voltage sensor 22.
- step 13 (S13) the processing unit 23 calculates the temperature of the battery cell 101 provided with the detection circuit 10 corresponding to the frequency (resonance frequency f0) set in step 10. Specifically, the processing unit 23 calculates the resistance value R of the resistors Rth1 to Rth6 of the detection circuit 10 based on the voltage of the voltage dividing resistor 21. Then, the processing unit 23 calculates the temperature of the battery cell 101 based on the calculated resistance value R. Thereby, the temperature detection of the battery cell 101 corresponding to the detection circuit (one of S1 to S6) selected in step 10 (S10) is performed.
- step 14 the processing unit 23 determines whether there is a next battery cell 101 for which temperature detection is to be performed. If there is no next battery cell 101, the processing unit 23 determines “No” in step 14 and once ends the routine. On the other hand, when there is the next battery cell 101, the processing unit 23 determines “Yes” in Step 14 and returns to Step 10. Then, in step 10, the processing unit 23 selects a new battery cell 101 that has not yet been detected for temperature among the six battery cells 101. The processing unit 23 selects the resonance frequency f0 of the detection circuit (one of S1 to S6) corresponding to the selected battery cell 101, uses this as the frequency of the sine wave detection signal, and uses the temperature of the battery cell 101. Perform detection. The processing unit 23 repeats the above-described processing until the temperature is detected for all the battery cells 101 that are temperature detection targets.
- the temperature detection device 1 of the present embodiment since the six detection circuits 10 are provided corresponding to the six battery cells 101, the temperature state of each of the battery cells 101 is determined. It becomes possible to detect. Furthermore, since all the detection circuits 10 share a pair of detection lines 15, it is not necessary to provide a pair of detection lines 15 for each detection circuit 10. Thereby, while detecting the temperature state of the assembled battery 100 with sufficient resolution, the temperature detection apparatus 1 which is excellent in the routing property of the detection line 15 can be provided.
- a temperature detection device for detecting the temperature of an assembled battery (100) in which a plurality of battery cells (101) are combined, A plurality of detection circuits (S1 to S6) provided corresponding to each of the plurality of battery cells; A pair of detection lines (15a, 15b) for electrically connecting the plurality of detection circuits in parallel; A processing unit (23) for detecting the temperature of each of the plurality of battery cells by inputting a sine wave detection signal to the pair of detection lines via the voltage dividing resistor (21),
- Each of the plurality of detection circuits (S1 to S6) includes: It is constituted by a circuit in which a temperature-sensitive resistor (Rth1 and others) whose electrical characteristics change in response to temperature, a coil (L1 and others), and a capacitor (C1 and others) are connected in series.
- Temperature detection device (2) In the temperature detection apparatus according to (1) above, Inductance of the coil (L1 and others) and capacitance of the capacitor (C1 and others) in each of the plurality of detection circuits (S1 to S6) are: The resonance frequencies (f0) of the plurality of detection circuits are set to be different from each other, The processing unit (23) The sine wave detection signal is input to the pair of detection lines (15a, 15b) while changing the frequency of the sine wave detection signal so as to correspond to the resonance frequency of each of the plurality of detection circuits. Temperature detection device.
- the processing unit (23) Based on the voltage at the voltage dividing resistor (21), the resistance value of the temperature sensitive resistor (Rth1, etc.) in the detection circuit (S1 to S6) corresponding to the frequency of the sine wave detection signal corresponds to the resonance frequency (f0). Calculate Detecting the temperature of the battery cell (101) provided with the detection circuits (S1 to S6) corresponding to the resonance frequency based on the resistance value of the temperature sensitive resistor (Rth1, etc.); Temperature detection device.
- the number of battery cells constituting the assembled battery 100 is six, but the number of battery cells is not particularly limited thereto. Furthermore, in the above embodiment, all the battery cells 101 constituting the assembled battery 100 are targeted for temperature detection, and the detection circuits S1 to S6 are provided so as to correspond to each of the battery cells 101. Only some selected battery cells 101 may be temperature detection targets.
- the temperature detection device of the present invention can be applied not only to a vehicle battery but also to a battery mounted on an electric appliance and a mobile phone.
- the present invention it is possible to detect the temperature state of the assembled battery with high resolution and to enhance the wiring property of the detection line.
- the present invention that exhibits this effect is useful for a temperature detection device that detects the temperature state of an assembled battery.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
温度検出装置(1)は、複数の電池セル(101)の各々に対応して設けられる複数の検出回路(10)と、それら検出回路を電気的に並列に接続する一対の検出線(15a,15b)と、分圧抵抗(21)を介して検出線に正弦波検出信号を入力して複数の電池セルの各々の温度を検出する処理部(23)と、を備える。複数の検出回路(10)の各々は、温度に対応して電気特性が変化する感温抵抗と、コイルと、コンデンサと、を直列に接続した回路によって構成される。
Description
本発明は、複数の電池セルを組合せた組電池(電池パック)の状態管理に用いられる温度検出装置に関する。
従来から、電気自動車(EV)及びハイブリッド自動車(HEV)のように、電動機(モータ)を駆動源として用いて走行する車両が知られている。この種の車両には、モータに電力を供給するバッテリ(蓄電装置)が搭載されている。バッテリとしては、例えば、リチウムイオン電池が用いられる。バッテリは、その充放電過程(特に、満充電で充電を継続した場合、及び、継続的な高負荷状態に対応して大きな電流を流し続けた場合など)において発熱し、その温度が上昇する。バッテリの温度が上昇するとバッテリの出力特性が変化し得るため、バッテリの温度を考慮した上で充放電を行うことが好ましい。
一方、車両のモータを駆動させるバッテリには高い出力電圧が求められるため、一般に、複数の電池セル(単位電池)を組み合わせた組電池(電池パック)が用いられる。この組電池においては、電池セル毎に放熱の程度が異なることに起因して組電池内に温度分布が発生する場合があるため、電池セル毎に温度を管理することが望ましい。
例えば、従来の温度検出装置の一つ(以下「従来装置」という。)は、組電池(電池パック)の温度を複数の温度センサを用いて検出するようになっている。具体的には、従来装置は、組電池における電池セルの配列方向に沿って複数の(但し、電池セルの数よりも少ない数の)温度センサを配置している。一例として、従来装置は、100個以上の電池セルに対して3個の温度センサを配置している。そして、従来装置は、温度センサの出力値と、他のパラメータ(例えば、周辺温度、冷却風量など)と、に基づき、組電池の内部の温度を推定するようになっている。なお、温度センサとして、サーミスタ等の感温素子が用いられている(例えば、特許文献1を参照。)。
従来装置では、電池セルの数よりも少ない数の温度センサによって組電池の温度を推定している。そのため、従来装置は、電池セルの数に対して温度センサの数が不十分であると、組電池の内部の温度状態を分解能よく把握できない場合がある。更に、従来装置は、温度センサの各々に対して一対の検出線(温度センサに繋がった配線)を設けているため、温度検出の分解能を高めるべく温度センサの数を増やすと、温度センサの数に比例して検出線の数も増えることになる。その結果、組電池を収容するケース内の限られたスペースに多数の検出線を配索することとなり、検出線の配索作業が煩雑となる場合がある。このように、従来装置には、温度検出の分解能の向上と、検出線の配索の作業性と、の間に二律背反の関係がある。
本発明の目的は、上記課題に鑑み、組電池の温度状態を分解能よく検出すると共に検出線の配索性に優れる温度検出装置を提供することにある。
上述した目的を達成するために、本発明に係る温度検出装置は、下記(1)~(3)の特徴を有している。
(1)
複数の電池セルを組み合わせた組電池の温度を検出する温度検出装置であって、
前記複数の電池セルの各々に対応して設けられる複数の検出回路と、
前記複数の検出回路を電気的に並列に接続する一対の検出線と、
分圧抵抗を介して前記一対の検出線に正弦波検出信号を入力することにより、前記複数の電池セルの各々の温度を検出する処理部と、を備え、
前記複数の検出回路の各々は、
温度に対応して電気特性が変化する感温抵抗と、コイルと、コンデンサと、を直列に接続した回路によって構成される、
温度検出装置であること。
(2)
上記(1)に記載の温度検出装置において、
前記複数の検出回路の各々における前記コイルのインダクタンス及び前記コンデンサの静電容量が、
前記複数の検出回路の各々の共振周波数がそれぞれ異なる値となるように設定され、
前記処理部が、
前記複数の検出回路の各々の共振周波数と対応するように前記正弦波検出信号の周波数を変動させながら、前記一対の検出線に前記正弦波検出信号を入力する、
温度検出装置であること。
(3)
上記(2)に記載の温度検出装置において、
前記処理部が、
前記正弦波検出信号の周波数が共振周波数と対応する前記検出回路における前記感温抵抗の抵抗値を、前記分圧抵抗における電圧に基づいて算出し、
前記感温抵抗の抵抗値に基づき、前記共振周波数と対応する検出回路が設けられた前記電池セルの温度を検出する、
温度検出装置であること。
(1)
複数の電池セルを組み合わせた組電池の温度を検出する温度検出装置であって、
前記複数の電池セルの各々に対応して設けられる複数の検出回路と、
前記複数の検出回路を電気的に並列に接続する一対の検出線と、
分圧抵抗を介して前記一対の検出線に正弦波検出信号を入力することにより、前記複数の電池セルの各々の温度を検出する処理部と、を備え、
前記複数の検出回路の各々は、
温度に対応して電気特性が変化する感温抵抗と、コイルと、コンデンサと、を直列に接続した回路によって構成される、
温度検出装置であること。
(2)
上記(1)に記載の温度検出装置において、
前記複数の検出回路の各々における前記コイルのインダクタンス及び前記コンデンサの静電容量が、
前記複数の検出回路の各々の共振周波数がそれぞれ異なる値となるように設定され、
前記処理部が、
前記複数の検出回路の各々の共振周波数と対応するように前記正弦波検出信号の周波数を変動させながら、前記一対の検出線に前記正弦波検出信号を入力する、
温度検出装置であること。
(3)
上記(2)に記載の温度検出装置において、
前記処理部が、
前記正弦波検出信号の周波数が共振周波数と対応する前記検出回路における前記感温抵抗の抵抗値を、前記分圧抵抗における電圧に基づいて算出し、
前記感温抵抗の抵抗値に基づき、前記共振周波数と対応する検出回路が設けられた前記電池セルの温度を検出する、
温度検出装置であること。
本発明によれば、温度検出対象の電池セルの各々に対応して複数の検出回路を設けている(即ち、電池セルと検出回路とが一対一に対応する)ため、電池セルの各々の温度状態を検出できる。更に、一対の(2本の)検出線を全ての検出回路が共用するため、検出線を検出回路ごとに設ける必要がない。これにより、組電池の温度状態を分解能よく検出すると共に検出線の配索性に優れた温度検出装置を提供できる。
以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。
図1及び図2に示すように、本発明の実施形態に係る温度検出装置(以下「温度検出装置1」という。)は、組電池100の状態管理に用いられる。
組電池100は、複数の電池セル101を電気的に接続したものである。本実施形態においては、組電池100は、6つの電池セル101から構成されている。複数の電池セル101は、それらの厚さ方向に積層された状態にてモジュールケース(図示省略)に収容されている。
なお、複数の電池セル101の各々は、1つの電池要素から又は複数の電池要素を電気的に接続することにより、構成されている。電池セル101として、例えば、リチウムイオン電池を用いることができる。リチウムイオン電池は、一般に高温下での特性変化が大きいため、出来る限り厳密に温度管理を行うことが望ましい。
温度検出装置1は、複数の電池セル101の各々に対応して設けられている複数の検出回路10と、複数の検出回路を電気的に並列に接続している一対の検出線15と、検出線15に温度検出用の信号を入力すると共に検出線からの出力に基づいて電池セル101の温度を検出する検出処理装置20とを有している。
複数の検出回路10は、それぞれが独立した回路である。本実施形態では、6つの電池セル101の各々に対応する6つの検出回路10が設けられ、検出回路10の各々と電池セル101の各々とが一対一の関係となるようになっている。なお、図2においては、複数の検出回路10を識別する目的にて、各々の検出回路10に「S1」から「S6」までの符号が付されている。
検出回路10の各々は、対応する電池セル101の温度を検出する回路であり、電池セル101ごとに(1つの電池セル101に1つの検出回路10が)設けられている。検出回路10の各々は、抵抗と、コイルと、コンデンサとを直列に接続した回路(RLC回路)である。
具体的には、第1の検出回路10(S1)は、抵抗Rth1、コイルL1及びコンデンサC1からなるRLC回路である。同様に、第2の検出回路10(S2)は、抵抗Rth2、コイルL2及びコンデンサC2からなるRLC回路であり、第3の検出回路10(S3)は、抵抗Rth3、コイルL3及びコンデンサC3からなるRLC回路であり、第4の検出回路10(S4)は、抵抗Rth4、コイルL4及びコンデンサC4からなるRLC回路であり、第5の検出回路10(S5)は、抵抗Rth5、コイルL5及びコンデンサC5からなるRLC回路であり、第6の検出回路10(S6)は、抵抗Rth6、コイルL6及びコンデンサC6からなるRLC回路である。
抵抗Rth1~Rth6は、対応する電池セル101に対して熱的に接触して(換言すると、電池セル101の熱が対応する抵抗に伝達可能であるように)配設されている。抵抗Rth1~Rth6は、温度に応じて電気特性が変化する感温抵抗である。抵抗Rth1~Rth6はとして、例えば、サーミスタなどが用いられ得る。
検出回路10の各々において、コイルL1~L6のインダクタンス及びコンデンサC1~C6の静電容量は、検出回路10の各々の共振周波数(固有周波数)がそれぞれ異なる値となるように、設定されている。
一例として、図3に示すように、本実施形態(温度検出装置1)において、コイルL1~L6のインダクタンスLは、いずれも47μHに設定されている。コンデンサC1~C6の静電容量Cは、それぞれ、0.1μF、0.15μF、0.22μF、0.33μF、0.47μF及び0.56μFに設定されている。検出回路10の共振周波数f0は、73.4kHz、59.9kHz、49.5kHz、40.4kHz、33.9kHz及び31.0kHzである。
一対の検出線15は、6つの検出回路10を電気的に並列に接続している。一対の検出線15のうち、第1の検出線15aは、各検出回路10の抵抗Rth1~Rth6側に接続され、第2の検出線15bは、各検出回路10のコンデンサC1~C6側に接続されている。第1の検出線15aと第2の検出線15bとの間には、電源電圧Vccを印加する電源30が接続されている。なお、第2の検出線15bは、グランドに接続されている。
検出処理装置20は、分圧抵抗21と、電圧センサ22と、処理部23と、電源30と、を含んでいる。
分圧抵抗21は、第1の検出線15aに接続されている。電源30から出力される電圧(換言すると、後述する正弦波検出信号)は、分圧抵抗21と、検出線15を通じて複数の検出回路10に印加される。即ち、電源30の電圧は、分圧抵抗21と、複数の検出回路10と、に分圧されることになる。以下、分圧抵抗21の抵抗値を「r」とする。
電圧センサ22は、分圧抵抗21に印加される電圧を検出するセンサである。
処理部23は、電池セル101の各々の温度を検出する。処理部23として、CPU、ROM、RAM、I/Oインターフェースを主体に構成されたマイクロコンピュータを用いることができる。処理部23は、例えば、一対の検出線15に分圧抵抗21を介して特定周波数の正弦波検出信号を供給すること、及び、分圧抵抗21に印加される電圧を検出することが可能である。
電源30は、周波数可変の交流電源であり、処理部23によって制御されて特定の周波数の正弦波検出信号(交流電圧)を出力する。電源30は、例えば、インバータ回路等で構成することが可能である。但し、電源30は、これに限定されるものではない。
以下、温度検出装置1における温度検出の原理について、説明する。
一対の検出線15に入力される正弦波検出信号の周波数が、検出回路S1~S6のいずれか(例えば、検出回路S1)の共振周波数f0と一致した場合、その検出回路(例えば、検出回路S1)は共振状態となる。共振状態の検出回路10(S1)では、コイルL1~L6及びコンデンサC1~C6の電位が打ち消し合うため、コイル及びコンデンサの合成インピーダンスを0Ωとみなすことができる。換言すると、正弦波検出信号の周波数と一致する共振周波数を有する検出回路(S1)を流れる電流が最大値となり、他の検出回路(S2~S6)を流れる電流が相対的に小さくなる(共振周波数の差が十分に大きければ、実質的にゼロとみなし得る)。
この場合、全回路のインピーダンスは、分圧抵抗21の抵抗値rと共振状態の検出回路10の抵抗(Rth1)の抵抗値Rとの和として捉えることができる。そのため、分圧抵抗21における電圧Vrを電圧センサ22によって検出すれば、検出された電圧Vrと、入力電圧(電源電圧Vcc)と、分圧抵抗21の抵抗値rとに基づいて、共振状態の検出回路10(S1)の抵抗(Rth1)の抵抗値Rを求めることができる。
更に、検出回路10の抵抗Rth1~Rth6は温感特性を有しているので、抵抗値Rに基づき、その抵抗(検出回路S1)が設けられている電池セル101の温度を特定できる。即ち、検出回路10の抵抗Rth1~Rth6は電池セル101に熱的に接触されているため、特定された温度がその電池セル101の温度を表すこととなる。
以下、温度検出装置1における温度検出処理の手順について、図4を参照しながら説明する。図4にフローチャートによって示す処理は、所定の周期で呼び出され、処理部23により実行される。
例えば、所定のタイミングにて処理部23が処理を開始すると、処理部23は、ステップ10(S10)において、正弦波検出信号の周波数を設定する。本温度検出処理では、処理部23は、複数の検出回路10の各々の共振周波数と対応するように正弦波検出信号の周波数を変動させながら、一対の検出線15に正弦波検出信号を入力する。本ステップでは、処理部23は、6つの検出回路S1~S6の中から温度検出をする電池セル101に対応する検出回路(S1~S6のうちの1つ)の共振周波数f0を選択し、これを正弦波検出信号の周波数として設定する。
次いで、ステップ11(S11)において、処理部23は、電源30を制御して、ステップ10で設定された周波数の正弦波検出信号を出力する。出力された正弦波検出信号は、分圧抵抗21及び一対の検出線15に入力される。
次いで、ステップ12(S12)において、処理部23は、電圧センサ22により、分圧抵抗21における電圧を検出する。
次いで、ステップ13(S13)において、処理部23は、ステップ10で設定した周波数(共振周波数f0)に対応する検出回路10が設けられた電池セル101の温度を算出する。具体的には、処理部23は、分圧抵抗21の電圧に基づいて、その検出回路10の抵抗Rth1~Rth6の抵抗値Rを演算する。そして、処理部23は、演算した抵抗値Rに基づき、電池セル101の温度を演算する。これにより、ステップ10(S10)にて選択した検出回路(S1~S6のうちの1つ)に対応した電池セル101の温度検出が行われる。
次いで、ステップ14(S14)において、処理部23は、温度検出をすべき次の電池セル101があるか否かを判定する。次の電池セル101がない場合、処理部23はステップ14にて「No」と判定し、本ルーチンを一旦終了する。これに対し、次の電池セル101がある場合、処理部23はステップ14にて「Yes」と判定し、ステップ10に戻る。そして、処理部23は、ステップ10にて、6つの電池セル101の中で未だに温度検出がなされていない新たな電池セル101を選択する。処理部23は、選択した電池セル101に対応する検出回路(S1~S6のうちの1つ)の共振周波数f0を選択し、これを正弦波検出信号の周波数として用い、その電池セル101の温度検出を行う。処理部23は、温度検出対象となる全ての電池セル101について温度が検出されるまで、上述の処理を繰り返す。
以上に説明したように、本実施形態の温度検出装置1によれば、6つの電池セル101のそれぞれに対応して6つの検出回路10を設けているため、電池セル101の各々の温度状態を検出することが可能となる。更に、一対の検出線15を全ての検出回路10が共用することにより、一対の検出線15を検出回路10ごとに設ける必要がない。これにより、組電池100の温度状態を分解能よく検出すると共に、検出線15の配索性に優れる温度検出装置1を提供できる。
ここで、上述した本発明に係る温度検出装置の実施形態の特徴を、下記(1)~(3)に簡潔に纏めて列記する。
(1)
複数の電池セル(101)を組み合わせた組電池(100)の温度を検出する温度検出装置(1)であって、
前記複数の電池セルの各々に対応して設けられる複数の検出回路(S1~S6)と、
前記複数の検出回路を電気的に並列に接続する一対の検出線(15a,15b)と、
分圧抵抗(21)を介して前記一対の検出線に正弦波検出信号を入力することにより、前記複数の電池セルの各々の温度を検出する処理部(23)と、を備え、
前記複数の検出回路(S1~S6)の各々は、
温度に対応して電気特性が変化する感温抵抗(Rth1他)と、コイル(L1他)と、コンデンサ(C1他)と、を直列に接続した回路によって構成される、
温度検出装置。
(2)
上記(1)に記載の温度検出装置において、
前記複数の検出回路(S1~S6)の各々における前記コイル(L1他)のインダクタンス及び前記コンデンサ(C1他)の静電容量が、
前記複数の検出回路の各々の共振周波数(f0)がそれぞれ異なる値となるように設定され、
前記処理部(23)が、
前記複数の検出回路の各々の共振周波数と対応するように前記正弦波検出信号の周波数を変動させながら、前記一対の検出線(15a,15b)に前記正弦波検出信号を入力する、
温度検出装置。
(3)
上記(2)に記載の温度検出装置において、
前記処理部(23)が、
前記正弦波検出信号の周波数が共振周波数(f0)と対応する前記検出回路(S1~S6)における前記感温抵抗(Rth1他)の抵抗値を、前記分圧抵抗(21)における電圧に基づいて算出し、
前記感温抵抗(Rth1他)の抵抗値に基づき、前記共振周波数と対応する検出回路(S1~S6)が設けられた前記電池セル(101)の温度を検出する、
温度検出装置。
(1)
複数の電池セル(101)を組み合わせた組電池(100)の温度を検出する温度検出装置(1)であって、
前記複数の電池セルの各々に対応して設けられる複数の検出回路(S1~S6)と、
前記複数の検出回路を電気的に並列に接続する一対の検出線(15a,15b)と、
分圧抵抗(21)を介して前記一対の検出線に正弦波検出信号を入力することにより、前記複数の電池セルの各々の温度を検出する処理部(23)と、を備え、
前記複数の検出回路(S1~S6)の各々は、
温度に対応して電気特性が変化する感温抵抗(Rth1他)と、コイル(L1他)と、コンデンサ(C1他)と、を直列に接続した回路によって構成される、
温度検出装置。
(2)
上記(1)に記載の温度検出装置において、
前記複数の検出回路(S1~S6)の各々における前記コイル(L1他)のインダクタンス及び前記コンデンサ(C1他)の静電容量が、
前記複数の検出回路の各々の共振周波数(f0)がそれぞれ異なる値となるように設定され、
前記処理部(23)が、
前記複数の検出回路の各々の共振周波数と対応するように前記正弦波検出信号の周波数を変動させながら、前記一対の検出線(15a,15b)に前記正弦波検出信号を入力する、
温度検出装置。
(3)
上記(2)に記載の温度検出装置において、
前記処理部(23)が、
前記正弦波検出信号の周波数が共振周波数(f0)と対応する前記検出回路(S1~S6)における前記感温抵抗(Rth1他)の抵抗値を、前記分圧抵抗(21)における電圧に基づいて算出し、
前記感温抵抗(Rth1他)の抵抗値に基づき、前記共振周波数と対応する検出回路(S1~S6)が設けられた前記電池セル(101)の温度を検出する、
温度検出装置。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
例えば、上記実施形態では、組電池100を構成する電池セルの数を6つとしたが、電池セルの数は特にこれに限定されない。更に、上記実施形態では、組電池100をなす全ての電池セル101を温度検出対象とし、検出回路S1~S6が電池セル101の各々に対応するように設けているが、組電池100の中から選択した一部の電池セル101のみを温度検出対象としてもよい。
更に、例えば、本発明の温度検出装置は、車両のバッテリ以外にも、電化製品および携帯電話に実装されるバッテリなどについても適用が可能である。
本出願は、2014年9月10日出願の日本特許出願(特願2014-184074)に基づくものであり、その内容はここに参照として取り込まれる。
本発明によれば、組電池の温度状態を分解能よく検出すると共に検出線の配索性を高めることが可能である。この効果を奏する本発明は、組電池の温度状態を検出する温度検出装置に関して有用である。
1 温度検出装置
10 検出回路
Rth1~Rth6 抵抗
L1~L6 コイル
C1~C6 コンデンサ
15a,15b 一対の検出線
21 分圧抵抗
23 処理部
10 検出回路
Rth1~Rth6 抵抗
L1~L6 コイル
C1~C6 コンデンサ
15a,15b 一対の検出線
21 分圧抵抗
23 処理部
Claims (3)
- 複数の電池セルを組み合わせた組電池の温度を検出する温度検出装置であって、
前記複数の電池セルの各々に対応して設けられる複数の検出回路と、
前記複数の検出回路を電気的に並列に接続する一対の検出線と、
分圧抵抗を介して前記一対の検出線に正弦波検出信号を入力することにより、前記複数の電池セルの各々の温度を検出する処理部と、を備え、
前記複数の検出回路の各々は、
温度に対応して電気特性が変化する感温抵抗と、コイルと、コンデンサと、を直列に接続した回路によって構成される、
温度検出装置。 - 請求項1に記載の温度検出装置において、
前記複数の検出回路の各々における前記コイルのインダクタンス及び前記コンデンサの静電容量が、
前記複数の検出回路の各々の共振周波数がそれぞれ異なる値となるように設定され、
前記処理部が、
前記複数の検出回路の各々の共振周波数と対応するように前記正弦波検出信号の周波数を変動させながら、前記一対の検出線に前記正弦波検出信号を入力する、
温度検出装置。 - 請求項2に記載の温度検出装置において、
前記処理部が、
前記正弦波検出信号の周波数が共振周波数と対応する前記検出回路における前記感温抵抗の抵抗値を、前記分圧抵抗における電圧に基づいて算出し、
前記感温抵抗の抵抗値に基づき、前記共振周波数と対応する検出回路が設けられた前記電池セルの温度を検出する、
温度検出装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112015004134.6T DE112015004134T5 (de) | 2014-09-10 | 2015-08-19 | Temperatursensorvorrichtung |
CN201580048947.2A CN106687784B (zh) | 2014-09-10 | 2015-08-19 | 温度检测装置 |
US15/450,090 US10355323B2 (en) | 2014-09-10 | 2017-03-06 | Temperature detecting apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014184074A JP6211493B2 (ja) | 2014-09-10 | 2014-09-10 | 温度検出装置 |
JP2014-184074 | 2014-09-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/450,090 Continuation US10355323B2 (en) | 2014-09-10 | 2017-03-06 | Temperature detecting apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039098A1 true WO2016039098A1 (ja) | 2016-03-17 |
Family
ID=55458854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/073233 WO2016039098A1 (ja) | 2014-09-10 | 2015-08-19 | 温度検出装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10355323B2 (ja) |
JP (1) | JP6211493B2 (ja) |
CN (1) | CN106687784B (ja) |
DE (1) | DE112015004134T5 (ja) |
WO (1) | WO2016039098A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018066643A (ja) * | 2016-10-19 | 2018-04-26 | 矢崎総業株式会社 | 温度検出装置 |
JP6939308B2 (ja) * | 2017-09-19 | 2021-09-22 | トヨタ自動車株式会社 | 電池の異常診断方法 |
KR102209933B1 (ko) * | 2017-10-16 | 2021-01-29 | 주식회사 엘지화학 | 배터리 온도 검출 시스템 및 방법 |
CN110907056A (zh) * | 2018-09-14 | 2020-03-24 | 宁德时代新能源科技股份有限公司 | 一种电池组温度检测系统 |
WO2021199418A1 (ja) * | 2020-04-03 | 2021-10-07 | 三菱電機株式会社 | 温度検出回路 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010122088A (ja) * | 2008-11-20 | 2010-06-03 | Yazaki Corp | 温度検出モジュール |
WO2013178324A2 (de) * | 2012-06-01 | 2013-12-05 | Sew-Eurodrive Gmbh & Co. Kg | Modulares system, insbesondere modular aufgebauter energiespeicher |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2442380A (en) * | 1942-02-25 | 1948-06-01 | John P Schrodt | Method and system for warming dry batteries |
JP3331529B2 (ja) * | 1993-01-29 | 2002-10-07 | キヤノン株式会社 | 蓄電装置及び電力システム |
TW418323B (en) * | 1998-02-19 | 2001-01-11 | Sumitomo Metal Ind | Capacitance detection system and method |
US5945803A (en) * | 1998-06-09 | 1999-08-31 | Black & Decker Inc. | Apparatus for determining battery pack temperature and identity |
DE10394007T5 (de) * | 2002-12-31 | 2006-02-02 | Midtronics, Inc., Willowbrook | Vorrichtung und Verfahren zum Vorhersagen der verbleibenden Entladezeit einer Batterie |
US8344685B2 (en) * | 2004-08-20 | 2013-01-01 | Midtronics, Inc. | System for automatically gathering battery information |
JP4831396B2 (ja) * | 2005-03-01 | 2011-12-07 | レシップホールディングス株式会社 | インバータトランス |
JP5402792B2 (ja) | 2010-04-02 | 2014-01-29 | トヨタ自動車株式会社 | 電池パック入出力制御装置 |
JP5554622B2 (ja) * | 2010-04-21 | 2014-07-23 | 株式会社マキタ | 電動工具用装置 |
EP2579058A4 (en) * | 2010-06-04 | 2015-01-07 | Toyota Motor Co Ltd | SECONDARY BATTERY, TEST DEVICE AND METHOD FOR A SECONDARY BATTERY AND BATTERY TEST SYSTEM |
TWI440280B (zh) * | 2010-11-23 | 2014-06-01 | Univ Nat Changhua Education | Automatic tracking of the best charging frequency of the chord battery charger |
US8702303B2 (en) * | 2011-06-29 | 2014-04-22 | Schneider Electric USA, Inc. | Sensor mounting methodology |
JP5951959B2 (ja) | 2011-10-28 | 2016-07-13 | 株式会社マキタ | 温度検出装置及びバッテリパック |
US9201119B2 (en) * | 2011-12-19 | 2015-12-01 | Qualcomm Incorporated | Battery fuel gauge |
CN203339809U (zh) * | 2013-07-15 | 2013-12-11 | 中兴能源有限公司 | 一种可远程监控电池组的管理系统 |
US9869724B2 (en) * | 2013-07-24 | 2018-01-16 | Rohm Co., Ltd. | Power management system |
CN203552057U (zh) * | 2013-11-28 | 2014-04-16 | 国网河南省电力公司三门峡供电公司 | 变压器温控器检验仪检测系统 |
JP6206275B2 (ja) * | 2014-03-19 | 2017-10-04 | トヨタ自動車株式会社 | 車両 |
JP6728200B2 (ja) * | 2015-09-25 | 2020-07-22 | 三洋電機株式会社 | バッテリシステムの温度検出方法 |
US20180010919A1 (en) * | 2016-07-05 | 2018-01-11 | NextEv USA, Inc. | System and method for tracking and storing battery data, and utilizing the data to appropriately match batteries upon swapping |
JP6556175B2 (ja) * | 2017-02-28 | 2019-08-07 | 矢崎総業株式会社 | 導電モジュール、及び、電池パック |
-
2014
- 2014-09-10 JP JP2014184074A patent/JP6211493B2/ja active Active
-
2015
- 2015-08-19 CN CN201580048947.2A patent/CN106687784B/zh active Active
- 2015-08-19 DE DE112015004134.6T patent/DE112015004134T5/de active Pending
- 2015-08-19 WO PCT/JP2015/073233 patent/WO2016039098A1/ja active Application Filing
-
2017
- 2017-03-06 US US15/450,090 patent/US10355323B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010122088A (ja) * | 2008-11-20 | 2010-06-03 | Yazaki Corp | 温度検出モジュール |
WO2013178324A2 (de) * | 2012-06-01 | 2013-12-05 | Sew-Eurodrive Gmbh & Co. Kg | Modulares system, insbesondere modular aufgebauter energiespeicher |
Also Published As
Publication number | Publication date |
---|---|
JP2016057173A (ja) | 2016-04-21 |
CN106687784B (zh) | 2019-06-14 |
US20170179550A1 (en) | 2017-06-22 |
DE112015004134T5 (de) | 2017-06-22 |
US10355323B2 (en) | 2019-07-16 |
JP6211493B2 (ja) | 2017-10-11 |
CN106687784A (zh) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016039098A1 (ja) | 温度検出装置 | |
JP5861954B2 (ja) | バッテリーの絶縁抵抗測定装置及び方法 | |
JP5683710B2 (ja) | 電池システム監視装置 | |
JP5687340B2 (ja) | 電池制御装置、電池システム | |
JP4987581B2 (ja) | 電池制御装置 | |
KR101984326B1 (ko) | 배터리의 절연 저항 측정 장치 및 방법 | |
Guo et al. | Mathematical model for a spirally-wound lithium-ion cell | |
TW201142313A (en) | Device for detecting deterioration in insulation | |
JP4898982B1 (ja) | 電池電源装置、及び電池電源システム | |
JP7226147B2 (ja) | 電池監視装置 | |
JP5376045B2 (ja) | 電池パック | |
WO2018079164A1 (ja) | 電池制御装置 | |
CN104330737B (zh) | 蓄电池检测电路通道电阻补偿系统和方法 | |
WO2018180333A1 (ja) | 車載用電源システムの制御装置及び車載用電源装置 | |
CN104937387A (zh) | 蓄电装置温度测量方法 | |
JP2013032947A (ja) | 内部抵抗値算出装置及び内部抵抗値算出方法 | |
JP5853633B2 (ja) | 電池監視装置 | |
KR20150077007A (ko) | 배터리 모듈용 승온 시스템 및 상기 승온 시스템 제어 방법 | |
CN110800152A (zh) | 电池温度检测系统和方法 | |
EP3323665B1 (en) | A battery pack balancing system and method | |
JP2018066643A (ja) | 温度検出装置 | |
JP6468787B2 (ja) | 電圧検出装置 | |
KR20150028070A (ko) | 배터리 예열 시스템 및 이를 이용한 배터리 예열방법 | |
JP2020155218A (ja) | 電池モジュールの昇温装置 | |
JP6383496B2 (ja) | 電池監視装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15840498 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015004134 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15840498 Country of ref document: EP Kind code of ref document: A1 |