Nothing Special   »   [go: up one dir, main page]

WO2016027797A1 - ゴーストイメージングを利用した物質測定装置 - Google Patents

ゴーストイメージングを利用した物質測定装置 Download PDF

Info

Publication number
WO2016027797A1
WO2016027797A1 PCT/JP2015/073097 JP2015073097W WO2016027797A1 WO 2016027797 A1 WO2016027797 A1 WO 2016027797A1 JP 2015073097 W JP2015073097 W JP 2015073097W WO 2016027797 A1 WO2016027797 A1 WO 2016027797A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measured
polarization
pattern
irradiation
Prior art date
Application number
PCT/JP2015/073097
Other languages
English (en)
French (fr)
Inventor
水谷 康弘
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Publication of WO2016027797A1 publication Critical patent/WO2016027797A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the present invention relates to a substance measuring apparatus using ghost imaging.
  • Ellipsometry is a method for measuring the thickness of a thin film using the polarization of light. Specifically, in ellipsometry, light emitted from a light source is incident on a measurement object through a polarizer, and the transmitted light or reflected light is received by a detector through the analyzer. Since the polarization state of transmitted light and reflected light changes from incident light depending on the physical property of the measurement object, the physical property of the measurement object can be measured by calculating the amount of change in the polarization state.
  • ellipsometry In the case of ellipsometry, incident light can be irradiated only to a narrow area limited to be measured. In other words, ellipsometry can only measure points. For this reason, in the case of a measurement object having a certain size, in order to measure the physical properties of the entire measurement object using ellipsometry, the entire measurement object must be scanned. For this reason, ellipsometry has a problem that it takes a long time to measure the entire measurement object even if the measurement time at each point can be shortened using PEM.
  • ghost imaging as a method for measuring the physical properties of a measurement object two-dimensionally.
  • ghost imaging illuminates an object (measurement target) multiple times with a spatially modulated light intensity distribution, detects scattered light from the object with a point detector, and then images from the intensity correlation between the illumination light and the detected light It is a technique to do.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 1 light emitted from a laser is illuminated on a diffuser plate, and circularly polarized light having a random light intensity distribution is generated using a polarizer and a wave plate.
  • the circularly polarized light is illuminated onto the measurement object, the reflected light is separated into P-polarized light and S-polarized light by a polarization beam splitter, and the light intensity of each polarized light is measured using a point detector.
  • the circularly polarized light (that is, the illumination light of the measurement object) is branched before illuminating the measurement object, and is acquired by the CCD camera.
  • Non-Patent Document 1 correlation calculation between circularly polarized light and reflected light obtained by a CCD camera is performed 100,000 times, and then the sum and difference of the intensity of each polarized light are calculated to obtain an image for each polarization (ghost image). Is reproduced. And it succeeded in identifying a stone and a metal in a ghost image using the stone and the metal embedded in the tree as a measuring object.
  • Non-Patent Document 1 if ghost imaging and polarization measurement can be combined, there is a possibility that the thickness of the thin film can be measured two-dimensionally. However, with the technique of Non-Patent Document 1, it is impossible to perform measurement using PEM, so it is difficult to measure the thickness of the thin film with high accuracy like ellipsometry. In addition, since the technique of Non-Patent Document 1 cannot measure the amplitude ratio ⁇ and the phase difference ⁇ , a ghost image of P-polarized light and S-polarized light can be formed. Cannot be grasped. Therefore, with the technique of Non-Patent Document 1, it is substantially difficult to measure the physical properties of the entire measurement object, such as ellipsometry.
  • an object of the present invention is to provide a substance measuring apparatus using ghost imaging capable of spatially measuring the structure, defects, optical characteristics, and the like inside an object to be measured.
  • a substance measuring apparatus using ghost imaging a light irradiation means for irradiating the object to be measured with irradiation light having a spatial intensity distribution, and light transmitted through the object to be measured or the object to be measured. Based on information on light detected by the detection means and information on irradiation light irradiated on the object to be measured, a property of the object to be measured is estimated.
  • a light source that emits light having a spatial intensity distribution, and periodically modulates the polarization state of the light emitted by the light source to form the irradiation light.
  • the light source has a function capable of emitting a plurality of pattern lights having different intensity distributions, and the calculation means includes the intensity distribution of the pattern lights and the pattern light. Is released
  • the polarization parameter of each part of the object to be measured is calculated based on the information on the information and the information on the intensity of the light detected by the detection means, and a ghost image of the object to be measured is formed based on the polarization parameter. It has a function.
  • the substance measuring apparatus using ghost imaging according to a second aspect of the present invention is the material measuring apparatus according to the first aspect, wherein the light source has a longer period during which one pattern light is emitted than a period in which the polarization of the irradiation light is modulated.
  • the substance measuring apparatus using ghost imaging according to the third invention is characterized in that, in the first or second invention, the plurality of pattern lights emitted from the light source are circulation patterns.
  • the substance measuring apparatus using ghost imaging according to a fourth aspect of the present invention is the first, second or third aspect, wherein the polarization adjusting unit converts the light emitted from the light source into linearly polarized light, and the polarized light.
  • a modulation unit that modulates the polarized light converted into linearly polarized light by the optical element into the irradiation light, and the detection means transmits light that is transmitted through the object to be measured or light that is reflected by the object to be measured. Is provided with a detector for converting the light into linearly polarized light.
  • a substance measuring apparatus using ghost imaging according to a fifth invention is characterized in that, in the fourth invention, the modulator is a photoelastic modulator.
  • the polarization parameter of each part of the measurement object can be obtained by the calculation means, a ghost image of the measurement object can be formed based on the polarization parameter. If such a ghost image is formed, it is possible to spatially grasp the structure, defects, optical characteristics, and the like inside the object to be measured based on the ghost image.
  • the second aspect of the present invention it is possible to grasp the fluctuation of the light transmitted through the object to be measured or the light reflected by the object to be measured when the polarization of each pattern fluctuates for one period. Then, since the direct current component in the signal detected by the detection means can be properly grasped, the polarization parameter can be appropriately calculated, and a ghost image can be formed with high accuracy.
  • the polarization parameter can be measured with high accuracy.
  • stable phase modulation can be realized, so that the polarization parameter can be measured stably and with high accuracy.
  • the phase difference angle can be measured with high accuracy, and the polarization can be changed at a high frequency, so that the measurement time can be shortened.
  • FIG. 6 is a diagram showing the results of Example 1.
  • FIG. 6 is a diagram showing the results of Example 2.
  • FIG. 6 is the figure which showed the result of Example 3.
  • FIG. 3 It is the figure which showed the result of Example 3.
  • the substance measuring apparatus using ghost imaging is an apparatus that can measure physical properties of a measurement target based on the polarization state of light irradiated on the measurement target, and relates to a spatial polarization state distribution. It is characterized in that information can be obtained.
  • the substance measuring apparatus using ghost imaging of the present invention is applied to, for example, imaging of a cell structure by a microscope, analysis of a fine structure, detection of a defect, measurement of a thin film thickness and a thin film optical property (for example, a refractive index). can do. It can also be used for inspection in semiconductor processes (nanoimprinting and shape measurement and defect detection in ordinary exposure methods) and detection of minute dust, and its application is not particularly limited.
  • the substance measuring apparatus 1 of this embodiment is demonstrated based on drawing. As shown in FIGS. 1 and 2, the substance measuring apparatus 1 according to the present embodiment includes a light irradiation means 10, a detection means 20, and a calculation means 30.
  • the measurement target M is disposed between the light irradiation means 10 and the detection means 20, and the measurement target M is irradiated from the light irradiation means 10 with the irradiation light SL.
  • the detecting means 20 detects the transmitted light TL.
  • a configuration may be employed in which the light to be measured M is irradiated with the irradiation light SL from the light irradiation means 10 and the detection means 20 detects the reflected light.
  • the method of detecting the transmitted light TL is suitable for an internal structure inspection or an internal defect inspection of a transparent plastic molded product or a lens.
  • the method of detecting the reflected light TL is suitable for nanoimprinting, surface inspection of semiconductor devices, and the like.
  • the light irradiation means 10 includes a light source 11, a polarizer 12, and a modulation unit 13.
  • the light source 11 is capable of emitting pattern light having a spatial light intensity distribution.
  • Pattern light having a spatial light intensity distribution means light that is not uniform in intensity and forms portions with different intensities when the pattern light is irradiated onto a screen or the like to form a two-dimensional image. ing.
  • the light source 11 has a function of switching and emitting a plurality of pattern lights having different light intensity distributions.
  • the plurality of pattern lights may have different light intensity distributions, and the light intensity distribution of each pattern light is not particularly limited.
  • the plurality of pattern lights those in which the light intensity distribution changes randomly when the plurality of pattern lights are switched and irradiated onto the screen or the like can be adopted.
  • a light source 11 for example, a liquid crystal projector, a DLP type projector, or the like can be used, but it is not particularly limited as long as it has the functions described above.
  • the calculation means 30 can shorten the time for forming the ghost image of the polarization parameter.
  • the number of pattern lights is large. However, when the number of pattern lights increases, it takes time to measure. However, if the cyclic pattern light is used, the number of pattern lights to be used can be reduced, so that the measurement time can be shortened.
  • the spatial resolution of the ghost image that is, the spatial resolution of the measurement location of the measurement target M
  • the polarizer 12 and the modulation unit 13 are arranged in this order from the light source 11 toward the measurement target M between the light source 11 and the measurement target M.
  • the polarizer 12 converts light emitted from the light source 11, that is, pattern light, into linearly polarized light.
  • the polarizer 12 is disposed so that the direction of the transmission axis is 45 ° with respect to the transmission axis of the photoelastic modulator 13.
  • the modulator 13 modulates the polarization state of the polarized light converted by the polarizer 12 to form the irradiation light SL that irradiates the measurement target M. Specifically, linearly polarized light is periodically changed from linearly polarized light, and the polarization state of the irradiation light SL is changed in the order of linearly polarized light, elliptically polarized light, circularly polarized light, elliptically polarized light, and linearly polarized light. It is.
  • the modulator 13 is not particularly limited as long as it has a function as described above. For example, a photoelastic modulator (PEM) can be used.
  • PEM photoelastic modulator
  • a photoelastic modulator is composed of a transparent and high-quality optical crystal such as quartz and a piezoelectric element. When a periodic voltage is applied to the piezoelectric element, the piezoelectric element expands and contracts and stress is applied to the optical crystal. This causes birefringence due to photoelasticity. In the photoelastic modulator, since birefringence can be controlled by the applied voltage, stable phase modulation can be realized, so that the polarization parameter can be measured stably and with high accuracy.
  • the measurement target M is irradiated with the irradiation light SL whose polarization state is modulated by the photoelastic modulator, the intensity of the measurement light is modulated at the modulation frequency, so that the phase difference angle ⁇ of the measurement target M is small.
  • the phase difference angle ⁇ can be accurately measured.
  • a photoelastic modulator can change polarization
  • the polarizer 12 may not be provided when the linear polarization degree of the light source 11 is good, but it is preferable to provide the polarizer 12 in that the reliability of the measurement value can be increased.
  • the detection means 20 includes a light detection unit 21 and an analyzer 22.
  • the light detection unit 21 includes a light detector 21a that detects the transmitted light TL that has passed through the measurement target M, and a lens 21b that collects the transmitted light TL and supplies it to the light detector 21a.
  • the light detector 21a detects the intensity of the transmitted light TL collected by the lens 21b. That is, the photodetector 21a is configured to measure the light intensity that is the sum of the intensities of the transmitted light TL transmitted through the measurement target M.
  • the photodetector 21a is not particularly limited as long as it can measure the intensity of light.
  • a photomultiplier tube or a photodiode can be used as the photodetector 21a.
  • the lens 21b is capable of condensing all the transmitted light TL transmitted through the measurement target M and supplying it to the photodetector 21a.
  • this lens 21b a known condensing lens can be used.
  • a part of the transmission light TL transmitted through the measurement target M Only the transmitted light TL may be condensed on the photodetector 21a.
  • the transmitted light TL in an appropriate range is condensed on the photodetector 21a in accordance with the purpose of measurement, such as a part where there is a high possibility that an important part of the measurement target M or a defect exists. What should I do?
  • an analyzer 22 is provided between the light detection unit 21 and the measurement target M.
  • the analyzer 22 converts the transmitted light TL transmitted through the measurement target M into linearly polarized light.
  • the analyzer 22 is arranged so that the direction of the transmission axis is parallel to the transmission axis of the polarizer 12. For example, when the direction of the transmission axis of the polarizer 12 is 45 ° with respect to the polarization axis of the photoelastic modulator 13, the analyzer 22 also has the direction of the transmission axis of the photoelastic modulator 13. It is arrange
  • calculation means 30 As shown in FIG. 2, the calculation means 30 is electrically connected to the light source 11 of the light irradiation means 10, the modulation section 13, and the light detection section 21 of the detection means 20, and various information is received from the light source 11 and the like. It comes to be supplied.
  • the light source 11 is provided with a control unit that controls pattern light emitted from the light source 11, and information on the pattern light emitted from the light source 11 is supplied from the control unit.
  • the pattern light information includes the light intensity distribution of each pattern light, the time when each pattern light is emitted (emission timing, emission period, etc.), the wavelength of light emitted from the light source 11, and the like. Also, information such as the modulation frequency and phase of the modulation unit is supplied from the modulation unit 13.
  • the light detection unit 21 supplies information such as the detected light intensity and measurement timing, and the detected light wavelength.
  • the computing unit 30 includes a polarization parameter calculation unit 31, a physical property estimation unit 32, a ghost image formation unit 33, and a storage unit 34, so that each unit processes information from the light source 11 and the like. It has become.
  • the storage unit 34 has a function of storing information processed by each unit, information necessary for processing, and the like.
  • the polarization parameter calculation unit 31 is based on the information on the pattern light emitted from the light source 11 and the information on the light (detection light) detected by the light detection unit 21 of the detection unit 20. It has a function of calculating the polarization parameter at each position.
  • the polarization parameter calculation unit 31 has a function of obtaining a cross-correlation between the pattern light and the detection light at each position and each time of the measurement target M.
  • the cross correlation result is subjected to a Fourier transform such as FFT, and the result obtained by the Fourier transform is used to calculate the phase difference angle ⁇ and the amplitude ratio ⁇ , which are polarization parameters.
  • the polarization parameter calculation unit 31 calculates a cross-correlation function between the pattern light and the detection light at each position and time of the measurement target M.
  • phase difference angle ⁇ tan -1 (-0.432I 1f /0.519I 2f )
  • Amplitude ratio ⁇ 1 / 2sin -1 ((I 1f /1.038I dc ) 2 + (I 2f /0.864I dc ) 2 )
  • the cross-correlation function may be calculated for the Fourier-transformed data after performing the Fourier transform on the pattern light and the detection light, respectively.
  • the calculation speed is improved as compared with the case where the Fourier transform is performed on the cross correlation function.
  • the control system is simplified.
  • the physical property estimation unit 32 has a function of calculating the characteristics of each part of the measurement target M based on the polarization parameters (phase difference angle ⁇ and amplitude ratio ⁇ ) calculated by the polarization parameter calculation unit 31. Specifically, the physical property estimation unit 32 calculates the characteristics of each part of the measurement target M using the information stored in the storage unit 34 and the polarization parameter.
  • a polarization parameter that changes due to the fine shape of the object to be measured is stored in the storage unit 34 in advance. Then, if the measured polarization parameter is processed as follows using the relationship between the fine shape stored in the storage unit 34 and the polarization parameter, a ghost image (2) of the fine shape of the measurement object. Dimensional images).
  • the ghost image forming unit 33 includes each polarization parameter (phase difference angle ⁇ and amplitude ratio ⁇ ) obtained by the polarization parameter calculation unit 31, an ellipso parameter ⁇ , and an object to be measured obtained by the physical property estimation unit 32. It has a function of making the characteristic of M a two-dimensional image as a ghost image. That is, since each polarization parameter and the like are associated with the position of the measurement target M, the two-dimensional configuration is such that each position of the measurement target M has a color and brightness corresponding to the value of the polarization parameter and the like at each position.
  • the ghost image forming unit 33 has a function of forming an image. Then, since the distribution of the polarization parameter and the like of the measurement object M can be visualized, the polarization parameter and the like of the measurement object M can be grasped spatially.
  • the substance measuring apparatus 1 of the present embodiment if a plurality of pattern lights having a spatial light intensity distribution are emitted from the light source 11 of the light irradiation means 10 to irradiate the measurement target M, A ghost image of the measurement target M can be formed.
  • the irradiation light SL applied to the measurement target M is obtained by periodically modulating the polarization of the plurality of pattern lights emitted from the light source 11, so that the polarization parameters of each part of the measurement target M are grasped. it can. Then, based on the polarization parameter, it is possible to form a ghost image that two-dimensionally displays the structure, defects, optical characteristics, and the like of each part of the measurement target M. Therefore, the measurement target is based on the ghost image.
  • the internal structure, defects, optical characteristics, etc. can be grasped spatially.
  • the light source 11 emits the plurality of pattern lights so that the period during which one pattern light is emitted is longer than the period of modulating the polarization of the irradiation light SL by the modulation unit 13 that switches and emits the plurality of pattern lights. It is desirable to be controlled to switch and release. In this case, any pattern light always changes in the polarization for one period while the pattern light is emitted, so that the fluctuation of the light intensity of the detection light when the one-period polarization fluctuates can be grasped by all the pattern lights. .
  • the direct current component I dc included in the signal detected by the detection means 20 can be grasped appropriately. Therefore, since the polarization parameter can be calculated using the light intensity signal from which the DC component has been removed, the polarization parameter can be calculated appropriately, so that a ghost image can be formed with high accuracy.
  • the sample (object to be measured) used in the numerical simulation is (1) a sample having a fixed phase difference angle ⁇ 30 degrees and having an amplitude ratio ⁇ in FIG. 3B, and (2) a phase difference angle ⁇ in FIG. , A sample with an amplitude ratio ⁇ fixed at 30 degrees, (3) a sample of the phase difference angle in FIG. 3A and the amplitude ratio ⁇ in FIG. 3B.
  • a ghost image having a phase difference angle ⁇ and an amplitude ratio ⁇ was created when a random pattern light was irradiated.
  • the sample (object to be measured) used in the numerical simulation is the sample (3) of Example 1 (the sample having the phase difference angle in FIG. 3A and the amplitude ratio ⁇ in FIG. 3B).
  • This sample was irradiated with pattern light of a random pattern, and the number of times of illumination (that is, the number of pattern lights) was changed to create a ghost image with a phase difference angle ⁇ and an amplitude ratio ⁇ .
  • the apparatus of the present invention was configured, and it was confirmed that the spatial parameters of the surface of the measurement object can be measured.
  • a gold (Au) plate and a silicon (Si) plate were used as objects to be measured, and the region surrounded by a dotted line (about 35 mm ⁇ 18 mm) in FIG. Detected. Then, based on the detected information (light intensity) of the reflected light, a ghost image of the phase difference angle was formed.
  • random pattern light was used as the pattern light emitted from the light source.
  • the pattern light emitted from the light source was controlled by a program created by the control program labview.
  • the information of the reflected light detected by the photodetector was analyzed by a program created by the control program labview to form a phase difference ghost image.
  • the experimental conditions are as follows. Modulation frequency: 42.08 Hz
  • the number of samplings corresponds to the number of times the photodetector has measured the intensity of the reflected light, and the sampling period is a time interval for measuring the reflected light.
  • the number of times of irradiation corresponds to the number of irradiated pattern lights.
  • “Average number” is the number of times of averaging per pattern. In this case, since the number of times of illumination is 46000 times and the average number is 64 times, the total number of times of illumination is 46000 patterns ⁇ 64 times.
  • FIG. 7 shows a spatial image of the direct current component, the primary frequency component, and the secondary frequency component of the light intensity fluctuation of the detected reflected light.
  • FIG. 8 when a ghost image of the phase difference angle of the measurement target is formed using each component at each position of the measurement target, FIG. 8 is obtained.
  • the boundary between the Au portion and the Si portion could be clearly recognized, and that the difference in materials could be recognized using the apparatus of the present invention.
  • a difference in the phase difference angle can be confirmed depending on the position, and a difference in surface properties can be detected in each region.
  • the substance measuring apparatus using ghost imaging of the present invention is suitable for photographing a cell structure with a microscope, detecting a defect of a fine structure, and measuring a thin film thickness and a thin film optical property.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】物質の光学的性質を2次元的に測定することができるゴーストイメージングを利用した物質測定装置を提供する。 【解決手段】光照射手段10と、被測定対象物Mを透過した光または被測定対象物Mで反射した光を検出する検出手段20と、検出手段20が検出した光の情報と被測定対象物Mに照射された照射光SLの情報に基づいて、被測定対象物Mの性質を推定する演算手段30と、を備えており、光照射手段10は、光源11と、光源11が放出した光の偏光状態を周期的に変調して照射光SLを形成する偏光調整部12と、を備えており、光源11は、異なる強度分布を有する複数のパターン光を放出し得る機能を有しており、演算手段30は、パターン光の強度分布およびパターン光が放出されるタイミングに関する情報と、検出手段が検出した光の強度に関する情報と、に基づいて、被測定対象物Mのゴーストイメージを形成する機能を備えている。

Description

ゴーストイメージングを利用した物質測定装置
 本発明は、ゴーストイメージングを利用した物質測定装置に関する。
 従来、物体の表面に形成された薄膜の厚さや薄膜の物性等を測定する場合には、エリプソメトリが使用されていた(例えば特許文献1)。エリプソメトリは、光の偏光を利用して薄膜の厚さ等を測定する方法である。具体的には、エリプソメトリでは、光源から放出される光を偏光子を通して測定対象に入射し、その透過光または反射光を検光子を通して検出器で受光する。透過光や反射光は、測定対象の物性などによって入射光から偏光状態が変化しているので、この偏光状態の変化量を算出することによって、測定対象の物性等を測定することができる。近年では、偏光子と測定対象との間にPEM(光弾性変調器)を配置することによって、入射光の偏光を変化させる技術も開発されている。かかるPEMを用いれば、振幅比ψおよび位相差Δを精度よく測定できる。また、高い周波数で偏光を変化させることができるので、測定時間を短くできるという利点が得られる。
 しかるに、エリプソメトリの場合、入射光は測定対象の限られた狭い領域にしか照射できない。つまり、エリプソメトリは点測定しかできない。このため、ある程度の広さを有する測定対象の場合、エリプソメトリを用いて測定対象全体の物性等を測定するには、測定対象全面をスキャニングしなければならない。このため、エリプソメトリでは、PEMを用いて各ポイントでの測定時間を短くできたとしても、測定対象全体を測定するには長時間を要するという問題がある。
 ところで、2次元的に測定対象の物性等を測定する方法として、ゴーストイメージングがある。ゴーストイメージングは、空間的に変調された光強度分布を複数回物体(測定対象)に照明して、物体からの散乱光を点検出器で検出した後に、照明光と検出光の強度相関からイメージングする手法である。
 従来、ゴーストイメージングは、三次元形状測定や蛍光計測、セキュリティー分野などに応用されてきたが、偏光計測への応用例が報告されている(非特許文献1)。
 非特許文献1では、レーザーから出射された光を拡散板に照明し偏光子と波長板を用いてランダムな光強度分布の円偏光を発生させている。この円偏光の光を測定対象物に照明して、反射光を偏光ビームスプリッターでP偏光とS偏光に分離し、点検出器を用いて各偏光の光強度を測定している。また、円偏光(つまり測定対象物の照明光)は、測定対象物に照明する前に分岐されて、CCDカメラで取得されるように構成されている。そして、非特許文献1では、CCDカメラで取得した円偏光と反射光の相関計算を10万回行った後、各偏光の強度の和と差を計算することで偏光毎の像(ゴーストイメージ)を再現している。そして、測定対象物として木に埋め込まれた石と金属を用いて、ゴーストイメージにおいて石と金属を識別することに成功している。
特公平7-81837号公報
"Polarimetric Ghost Imaging",D. Shi, S. Hu and Y. Wang: Opt. Lett., 39, No. 5 (2014) 1231-1234]
 非特許文献1のように、ゴーストイメージングと偏光計測を組み合わせることができれば、薄膜の厚さ等を2次元的に測定できる可能性はある。しかし、非特許文献1の技術では、PEMを用いた測定を行うことが不可能であるので、エリプソメトリのように薄膜の厚さ等を高精度に測定することは困難である。しかも、非特許文献1の技術では、振幅比ψおよび位相差Δを測定できないので、P偏光とS偏光のゴーストイメージを形成することはできるものの、測定対象の振幅比ψおよび位相差Δを空間的に把握することができない。したがって、非特許文献1の技術では、実質的には、エリプソメトリのように測定対象全体の物性等を測定することは困難である。
 本発明は上記事情に鑑み、被測定対象物内部の構造や欠陥、光学的特性等を空間的に測定することが可能であるゴーストイメージングを利用した物質測定装置を提供することを目的とする。
 第1発明のゴーストイメージングを利用した物質測定装置は、空間的に強度分布を有する照射光を前記被測定対象物に照射する光照射手段と、前記被測定対象物を透過した光または前記被測定対象物で反射した光を検出する検出手段と、該検出手段が検出した光の情報と前記被測定対象物に照射された照射光の情報に基づいて、前記被測定対象物の性質を推定する演算手段と、を備えており、前記光照射手段は、空間的に強度分布を有する光を放出する光源と、該光源が放出した光の偏光状態を周期的に変調して前記照射光を形成する偏光調整部と、を備えており、前記光源は、異なる強度分布を有する複数のパターン光を放出し得る機能を有しており、前記演算手段は、前記パターン光の強度分布および該パターン光が放出されるタイミングに関する情報と、前記検出手段が検出した光の強度に関する情報と、に基づいて前記被測定対象物各部の偏光パラメータを算出し、該偏光パラメータに基づいて前記被測定対象物のゴーストイメージを形成する機能を備えていることを特徴とする。
 第2発明のゴーストイメージングを利用した物質測定装置は、第1発明において、前記光源は、前記照射光の偏光が変調する周期よりも一のパターン光が放出される期間が長くなるように、前記複数のパターン光を切り換えて放出するように制御されていることを特徴とする。
 第3発明のゴーストイメージングを利用した物質測定装置は、第1または第2発明において、前記光源が放出する複数のパターン光が、循環パターンであることを特徴とする。
 第4発明のゴーストイメージングを利用した物質測定装置は、第1、第2または第3発明において、前記偏光調整部は、前記光源から放出された光を直線偏光に変換する偏光子と、該偏光子によって直線偏光に変換された偏光光を前記照射光に変調する変調部と、を備えており、前記検出手段は、前記被測定対象物を透過した光または前記被測定対象物で反射した光を直線偏光に変換する検出子を備えていることを特徴とする。
 第5発明のゴーストイメージングを利用した物質測定装置は、第4発明において、前記変調部が、光弾性変調器であることを特徴とする。
 第1発明によれば、演算手段によって被測定対象物各部の偏光パラメータを得ることができるので、偏光パラメータに基づいて被測定対象物のゴーストイメージを形成することができる。かかるゴーストイメージが形成されれば、ゴーストイメージに基づいて被測定対象物内部の構造や欠陥、光学的特性等を空間的に把握することができる。
 第2発明によれば、各パターンについて偏光が一周期変動した場合における被測定対象物を透過した光または被測定対象物で反射した光の変動を把握できる。すると、検出手段によって検出された信号における直流成分を適切に把握できるから、偏光パラメータを適切に算出でき、ゴーストイメージを精度よく形成することができる。
 第3発明によれば、複数のパターン光が循環パターンであるので、偏光パラメータのゴーストイメージを短時間で形成することができる。
 第4発明によれば、偏光子を通してから調整部によって変調するので、偏光パラメータを高精度に測定できる。
 第5発明によれば、安定した位相変調を実現できるので、安定かつ高精度で偏光パラメータの測定を行うことができる。しかも、位相差角が小さくても位相差角を精度よく測定できるし、高い周波数で偏光を変化させることができるので、測定時間を短くできる。
本実施形態のゴーストイメージングを利用した物質測定装置1による被測定対象物Mを測定している状態の概略イメージ図である。 本実施形態のゴーストイメージングを利用した物質測定装置1の概略ブロック図である。 実施例で採用したサンプルの説明図である。 実施例1の結果を示した図である。 実施例2の結果を示した図である。 実施例3に使用した被測定対象の説明図である。 実施例3の結果を示した図である。 実施例3の結果を示した図である。
 つぎに、本発明の実施形態を図面に基づき説明する。
 本発明のゴーストイメージングを利用した物質測定装置は、被測定対象に照射した光の偏光状態に基づいて被測定対象の物性等を測定することができる装置であり、空間的な偏光状態の分布に関する情報を得ることができるようにしたことに特徴を有している。
 本発明のゴーストイメージングを利用した物質測定装置は、例えば、顕微鏡による細胞の構造の撮影や微細構造の解析や欠陥検出、薄膜の厚さや薄膜の光学的性質(例えば屈折率等)の測定に適用することができる。また、半導体プロセス(ナノインプリンティングや通常の露光法における形状計測や欠陥検出)における検査や微小なダストの検出などにも使用することは可能であり、その用途はとくに限定されない。
(物質測定装置1の説明)
 本実施形態の物質測定装置1を図面に基づいて説明する。
 図1および図2に示すように、本実施形態の物質測定装置1は、光照射手段10と、検出手段20と、演算手段30と、から構成されている。
 なお、図1の本実施形態の物質測定装置1では、光照射手段10と検出手段20との間に被測定対象Mを配置し、光照射手段10から被測定対象Mに照射光SLを照射し、その透過光TLを検出手段20が検出する構成になっている。しかし、光照射手段10から被測定対象Mに照射光SLを照射し、その反射光を検出手段20が検出する構成としてもよい。
 透過光TLを検出する場合には、被測定対象Mの内部情報を測定できるという利点がある。このため、透過光TLを検出する方法は、透明なプラスチック成形品やレンズ等の内部構造検査や内部欠陥検査などに適している。
 一方、反射光を検出する場合には、透過光TLに比べて、被測定対象Mの表面情報のみを測定できるという利点がある。このため、反射光TLを検出する方法は、ナノインプリンティングや半導体デバイスの表面検査等に適している。
(光照射手段10)
 図1に示すように、光照射手段10は、光源11と、偏光子12と、変調部13と、を備えている。
 光源11は、空間的に光強度分布を有するパターン光を放出することができるものである。空間的に光強度分布を有するパターン光とは、そのパターン光をスクリーン等に照射して2次元画像を形成したときに、強度が均一ではなく、強度の異なる部分ができるような光を意味している。
 そして、光源11は、光強度分布が異なる複数のパターン光を切り換えて放出することができる機能を有している。複数のパターン光は、光強度分布が異なるものであればよく、各パターン光の光強度分布はとくに限定されない。例えば、複数のパターン光は、複数のパターン光を切り換えてスクリーン等に照射したときに、光強度分布がランダムに変化するものを採用することができる。
 かかる光源11としては、例えば、液晶プロジェクタやDLPタイプのプロジェクタ等を使用することができるが、上述したような機能を有するものであればよく、とくに限定されない。
 なお、アダマール行列による循環パターンのパターン光を採用すれば、演算手段30が、偏光パラメータのゴーストイメージを形成する時間を短くすることができるという利点が得られる。ゴーストイメージの精度を向上させる上ではパターン光の数は多い方が好ましいが、パターン光の数が多くなると測定に時間を要する。しかし、循環パターンのパターン光を採用すれば、使用するパターン光の数を削減できるので、測定時間を短くできる。
 また、ゴーストイメージの空間分解能、つまり、被測定対象Mの測定箇所の空間分解能を高める上では、パターン光の一画素を回析限界近傍まで小さくすることが望ましい。
(偏光子12および変調部13)
 図1に示すように、光源11と被測定対象Mとの間には、光源11から被測定対象Mに向かって、偏光子12、変調部13の順に並ぶように配設されている。
 偏光子12は、光源11から放出される光、つまりパターン光を直線偏光の偏光光に変換するものである。例えば、偏光子12は、透過軸の方向が光弾性変調器13の透過軸に対して45°となるように配設される。
 変調部13は、偏光子12が変換した偏光光の偏光状態を変調して、被測定対象Mに照射する照射光SLを形成するものである。具体的には、直線偏光の偏光光を、直線偏光から周期的に変化させて、照射光SLの偏光状態を、直線偏光、楕円偏光、円偏光、楕円偏光、直線偏光の順で変化させるものである。変調部13は、上記のごとき機能を有するものであればよくとくに限定されないが、例えば、光弾性変調器(PEM)を使用することができる。光弾性変調器は、石英などの透明かつ高品質な光学結晶と圧電素子とによって構成されたものであり、圧電素子に周期的な電圧を印加すると圧電素子が伸縮し、光学結晶に応力が加わることで光弾性による複屈折を生じさせるものである。そして、光弾性変調器では、印加電圧によって複屈折を制御できるので、安定した位相変調を実現できるから、安定かつ高精度で偏光パラメータの測定を行うことができる。しかも、光弾性変調器によって偏光状態を変調した照射光SLを被測定対象Mに照射すれば、変調周波数で測定光の強度が変調されているので、被測定対象Mの位相差角Δが小さくても位相差角Δを精度よく測定できる。そして、光弾性変調器では、高い周波数で偏光を変化させることができるので、測定時間を短くできるという利点も得られる。
 なお、偏光子12は、光源11の直線偏光度が良い場合などには設けなくてもよいが、偏光子12を設けておくと測定値の信頼性を高くすることができるという点で好ましい。
(検出手段20)
 図1に示すように、検出手段20は、光検出部21と、検光子22と、を備えている。
(光検出部21)
 光検出部21は、被測定対象Mを透過した透過光TLを検出する光検出器21aと、透過光TLを集光して光検出器21aに供給するレンズ21bと、を備えている。
 光検出器21aは、レンズ21bによって集光された透過光TLの強度を検出するものである。つまり、光検出器21aは、被測定対象Mを透過した透過光TLの強度を合計した光強度を測定するように構成されている。光検出器21aは、光の強度を測定できるものであればよく、とくに限定されない。例えば、光電子増倍管やフォトダイオード等を光検出器21aとして使用することができる。
 レンズ21bは、被測定対象Mを透過した透過光TLを全て集光して光検出器21aに供給することができるものである。このレンズ21bは公知の集光レンズを使用することができる。
 なお、被測定対象Mを透過した透過光TLを全て光検出器21aに集光することが望ましい。しかし、被測定対象Mの大きさや各部のレイアウト上の制限などによって全ての透過光TLを光検出器21aに集光できない場合には、被測定対象Mを透過した透過光TLのうち、一部の透過光TLだけを光検出器21aに集光するようにしてもよい。この場合でも、被測定対象Mの重要な部位や欠陥などが存在している可能性が高い部位等、測定の目的に応じて、適切な範囲の透過光TLを光検出器21aに集光するようにすればよい。
(検光子22)
 図1に示すように、光検出部21と被測定対象Mとの間には、検光子22が設けられている。検光子22は、被測定対象Mを透過した透過光TLを直線偏光の光に変換するものである。検光子22は、透過軸の方向が偏光子12の透過軸と平行となるように配設される。例えば、偏光子12の透過軸の方向が光弾性変調器13の偏光軸に対して45°となるように配設された場合には、検光子22も透過軸の方向が光弾性変調器13の偏光軸に対して45°となるように配設される。
(演算手段30)
 図2に示すように、演算手段30は、光照射手段10の光源11、変調部13および検出手段20の光検出部21とそれぞれ電気的に接続されており、光源11等から種々の情報が供給されるようになっている。
 光源11には、光源11から放出されるパターン光を制御する制御部が設けられており、この制御部から光源11から放出されるパターン光の情報が供給されている。パターン光の情報とは、各パターン光の光強度分布と各パターン光が放出されている時間(放出タイミングや放出期間等)や光源11から放出される光の波長等である。
 また、変調部13からは、変調部の変調周波数や位相等の情報が供給されている。
 そして、光検出部21からは、検出した光強度と測定タイミングや検出した光の波長等の情報が供給されている。
 そして、演算手段30は、偏光パラメータ算出部31と、物性推定部32と、ゴーストイメージ形成部33と、記憶部34と、を備えており、各部が光源11等からの情報を処理するようになっている。なお、記憶部34は、各部が処理した情報や処理のために必要な情報等を記憶しておく機能を有している。
(偏光パラメータ算出部31)
 まず、偏光パラメータ算出部31は、光源11から放出されるパターン光の情報と、検出手段20の光検出部21が検出した光(検出光)の情報と、に基づいて、被測定対象物Mの各位置における偏光パラメータを算出する機能を有している。
 具体的には、偏光パラメータ算出部31は、被測定対象物Mの各位置および各時間におけるパターン光と検出光の相互相関をとる機能を有している。そして、相互相関の結果についてFFT等のフーリエ変換を行い、このフーリエ変換によって得られた結果を用いて、偏光パラメータである位相差角Δおよび振幅比ψを算出する機能を有している。
 まず、偏光パラメータ算出部31において、被測定対象物Mの各位置および時間におけるパターン光と検出光の相互相関関数を算出する。被測定対象物Mの各位置における相互相関関数は、以下の式で求めることができる。なお、nは、何番目のパターン光であるかを示している。
 
G(x,y,t)=〈I1(x,y,n)I2(t,n)〉-〈I1(x,y,n)〉〈I2(t,n)〉
 
 ついで、被測定対象物Mの各位置において得られた相互相関関数についてFFT等のフーリエ変換を行う。すると、各位置における光強度変動の直流成分Idcと、1次振動数成分I1fおよび2次振動数成分I2fを求めることができる。
 そして、各位置における光強度変動の直流成分Idcと、1次振動数成分I1fおよび2次振動数成分I2fが得られれば、以下の式によって、位相差角Δおよび振幅比ψを求めることができる。
 
位相差角Δ=tan-1(-0.432I1f/0.519I2f)
振幅比ψ=1/2sin-1((I1f/1.038Idc)2+(I2f/0.864Idc)2)
 
 なお、上記例では、相互相関関数についてフーリエ変換を行った。しかし、パターン光および検出光についてそれぞれフーリエ変換を行ったのち、フーリエ変換されたデータ同士について相互相関関数を算出してもよい。この場合には、相互相関関数についてフーリエ変換を行うよりも計算速度が向上するという利点が得られる。一方、上記のごとく相互相関関数についてフーリエ変換を行った場合には、制御システムが簡素になるという利点が得られる。
(物性推定部32)
 物性推定部32は、偏光パラメータ算出部31が算出した偏光パラメータ(位相差角Δおよび振幅比ψ)に基づいて、被測定対象物M各部の特性を算出する機能を有している。具体的には、物性推定部32は、記憶部34に記憶されている情報と偏光パラメータとを用いて被測定対象物Mの各部の特性を算出する。
 例えば、微細な形状を有する被測定対象物を測定する場合には、記憶部34に被測定対象物の微細な形状に起因して変化する偏光パラメータを予め記憶させておく。すると、測定された偏光パラメータについて、記憶部34に記憶されている微細な形状と偏光パラメータとの関係を用いて以下のように処理すれば、被測定対象物の微細な形状のゴーストイメージ(2次元画像)を把握することができる。
(ゴーストイメージ形成部33)
 ゴーストイメージ形成部33は、上記偏光パラメータ算出部31で求められた各偏光パラメータ(位相差角Δおよび振幅比ψ)や、エリプソパラメータΔψ、また、物性推定部32で求められた被測定対象物Mの特性を、ゴーストイメージとして2次元画像とする機能を有するものである。つまり、各偏光パラメータなどは被測定対象物Mの位置と関連付けられているので、被測定対象物Mの各位置が各位置の偏光パラメータなどの値に対応した色や輝度となるように2次元画像を形成する機能をゴーストイメージ形成部33は有している。すると、被測定対象物Mの偏光パラメータなどの分布を可視化することができるので、被測定対象物Mの偏光パラメータなどを空間的に把握することができる。
 以上のごとく、本実施形態の物質測定装置1によれば、光照射手段10の光源11から空間的に光強度分布を有する複数のパターン光を放出して被測定対象物Mに照射すれば、被測定対象物Mのゴーストイメージを形成することができる。
 しかも、被測定対象物Mに照射される照射光SLは、光源11から放出される複数のパターン光の偏光を周期的に変調したものであるので、被測定対象物M各部の偏光パラメータを把握できる。
 すると、偏光パラメータに基づいて、被測定対象物Mの各部の構造や欠陥、光学的特性等を2次元的に表示したゴーストイメージを形成することができるので、ゴーストイメージに基づいて被測定対象物内部の構造や欠陥、光学的特性等を空間的に把握することができる。
 なお、光源11は、複数のパターン光を切り換えて放出する変調部13による照射光SLの偏光を変調する周期よりも一のパターン光が放出される期間が長くなるように、複数のパターン光を切り換えて放出するように制御されていることが望ましい。この場合、どのパターン光でも、そのパターン光が放出されている間に必ず偏光が一周期変動するので、一周期偏光が変動したときにおける検出光の光強度の変動を全てのパターン光で把握できる。つまり、全てのパターン光について、全ての偏光状態における検出光の光強度を把握できるので、検出手段20によって検出された信号に含まれる直流成分Idcを適切に把握できる。したがって、直流成分を除去した光強度の信号を用いて偏光パラメータを算出できるから、偏光パラメータを適切に算出できるので、ゴーストイメージを精度よく形成することができる。
 本発明の装置によって、被測定対象物の偏光パラメータを空間的に求めることができることを数値シミュレーションによって確認した。
 数値シミュレーションで使用したサンプル(被測定対象物)は、(1)位相差角Δ30度固定、図3(B)の振幅比ψを有するサンプル、(2)図3(A)の位相差角Δ、振幅比ψ30度固定のサンプル、(3)図3(A)の位相差角および図3(B)の振幅比ψのサンプル、である。このサンプルに、ランダムパターンのパターン光を照射した場合ついて、位相差角Δおよび振幅比ψのゴーストイメージを作成した。
 数値シミュレーションは、National Instruments社製Lab Viewを使用して、以下の計算条件で実施した。
 
 変調周波数    :50000Hz
 サンプリング数  :10000回
 サンプリング周期 :500ns
 照明回数     :10000回
 パターンサイズ  :10×10pixel
 ドットサイズ   :1×1pixel
 
 なお、サンプリング数は検出手段が検出光の強度を測定した回数に相当し、サンプリング周期は検出光を測定する時間間隔である。照射回数は照射したパターン光の数に相当する。
 結果を図4に示す。
 図4に示すように、サンプルの位相差角Δおよび振幅比ψを取得でき、位相差角Δおよび振幅比ψのゴーストイメージを作成できることが確認された。そして、取得された位相差角Δおよび振幅比ψが、ほぼサンプルに設定された位相差角Δおよび振幅比ψと一致することが確認された。
 測定される被測定対象物の偏光パラメータに対してパターン光の数が与える影響を数値シミュレーションによって確認した。
 数値シミュレーションで使用したサンプル(被測定対象物)は、実施例1の(3)のサンプル(図3(A)の位相差角および図3(B)の振幅比ψのサンプル)である。このサンプルに、ランダムパターンのパターン光を照射し、その照明回数(つまりパターン光の数)を変更して、位相差角Δおよび振幅比ψのゴーストイメージを作成した。
 数値シミュレーションは、National Instruments社製Lab Viewを使用して、以下の計算条件で実施した。
 
 変調周波数    :50000Hz
 サンプリング数  :10000回
 サンプリング周期 :500ns
 照明回数     :100、1000、10000回
 パターンサイズ  :10×10pixel
 ドットサイズ   :1×1pixel
 
 なお、サンプリング数は検出手段が検出光の強度を測定した回数に相当し、サンプリング周期は検出光を測定する時間間隔である。照射回数は照射したパターン光の数に相当する。
 結果を図5に示す。
 図5に示すように、照明回数を増加させることによって取得される位相差角Δおよび振幅比ψが、ほぼサンプルに設定された位相差角Δおよび振幅比ψに近づくことが確認された。
 実際に本発明の装置を構成し、被測定対象物の表面の空間パラメータを測定できることを確認した。
 実験では、被測定対象として、金(Au)プレートとシリコン(Si)プレートを使用し、図6における点線で囲んだ領域(約35mm×18mm)に、光源からパターン光を照射して反射光を検出した。そして、検出した反射光の情報(光強度)に基づいて、位相差角のゴーストイメージを形成した。
 実験に使用した装置は、実質的に図1と同等の配置となるように、以下の機器をレイアウトした。
 なお、実験に使用した装置は、反射光を測定するようにした点が図1とは異なっている。
 
1)光源:液晶プロジェクタ(3M製、型番:MP410)
2)偏光子:Thorlabs 製:型番 CRM1P1M
3)光弾性変調器(PEM):HINDS instruments製、型番:PEM-100
4)検光子:Thorlabs 製、型番:CRM1P1M
5)レンズ:シグマ光機 製、型番:SLB-50-70P
6)光検出器:フォトダイオード(浜松フォトニクス 製、型番:S1336-44BK)
 
 光源から照射したパターン光には、実施例1と同様に、ランダムパターンのパターン光を使用した。なお、光源から照射するパターン光は、制御プログラムlabviewによって作成したプログラムによって制御した。
 また、光検出器で検出した反射光の情報は、制御プログラムlabviewによって作成したプログラムによって解析して、位相差のゴーストイメージを形成した。
 実験条件は以下のとおりである。
 
 変調周波数    :42.08Hz
 サンプリング数  :50MHz
 サンプリング周期 :20ns
 照明回数     :46000回
 パターンサイズ  :25×25pixel
 ドットサイズ   :2pixel
 average number  :64回
 
 なお、サンプリング数は光検出器が反射光の強度を測定した回数に相当し、サンプリング周期は反射光を測定する時間間隔である。照射回数は照射したパターン光の数に相当する。
 また、“average number”は,1つのパターンあたりの平均化回数である。今回の場合、照明回数が46000回、average numberが64回であるので、トータルの照明回数は、46000パターン×64回になる。
 結果を図7および図8に示す。
 図7には、検出された反射光の光強度変動の直流成分、1次振動数成分および2次振動数成分の空間イメージを示している。このように、本発明の装置を使用することによって、被測定対象の各位置における各成分を測定できることが確認された。
 そして、被測定対象の各位置の各成分を用いて、被測定対象の位相差角のゴーストイメージを形成すると、図8のようになる。
 図8から分かるように、Auの部分とSiの部分の境界がはっきりと認識でき、本発明の装置を使用して、物質の相違を認識できることが確認された。
 また、Auの領域内、また、Siの領域内でも、位置によって位相差角に相違が確認でき、各領域内において表面の性状の相違を検出できることが確認された。
 本発明のゴーストイメージングを利用した物質測定装置は、顕微鏡による細胞の構造の撮影や微細構造の欠陥検出、薄膜の厚さや薄膜の光学的性質などの測定に適している。
  1     物質測定装置
 10     光照射手段
 11     光源
 12     偏光子
 13     変調部
 20     検出手段
 21     光検出部
 22     検光子
 30     演算手段
 31     偏光パラメータ算出部
 32     物性推定部
 33     ゴーストイメージ形成部
  M     被測定対象物
 SL     照射光
 TL     透過光

Claims (5)

  1.  空間的に強度分布を有する照射光を前記被測定対象物に照射する光照射手段と、
    前記被測定対象物を透過した光または前記被測定対象物で反射した光を検出する検出手段と、
    該検出手段が検出した光の情報と前記被測定対象物に照射された照射光の情報に基づいて、前記被測定対象物の性質を推定する演算手段と、と備えており、
    前記光照射手段は、
    空間的に強度分布を有する光を放出する光源と、
    該光源が放出した光の偏光状態を周期的に変調して前記照射光を形成する偏光調整部と、を備えており、
    前記光源は、
    異なる強度分布を有する複数のパターン光を放出し得る機能を有しており、
    前記演算手段は、
    前記パターン光の強度分布および該パターン光が放出されるタイミングに関する情報と、前記検出手段が検出した光の強度に関する情報と、に基づいて前記被測定対象物各部の偏光パラメータを算出し、該偏光パラメータに基づいて前記被測定対象物のゴーストイメージを形成する機能を備えている
    ことを特徴とするゴーストイメージングを利用した物質測定装置。
  2.  前記光源は、
    前記照射光の偏光が変調する周期よりも一のパターン光が放出される期間が長くなるように、前記複数のパターン光を切り換えて放出するように制御されている
    ことを特徴とする請求項1記載のゴーストイメージングを利用した物質測定装置。
  3.  前記光源が放出する複数のパターン光が、循環パターンである
    ことを特徴とする請求項1または2記載のゴーストイメージングを利用した物質測定装置。
  4.  前記偏光調整部は、
    前記光源から放出された光を直線偏光に変換する偏光子と、
    該偏光子によって直線偏光に変換された偏光光を前記照射光に変調する変調部と、を備えており、
    前記検出手段は、
    前記被測定対象物を透過した光または前記被測定対象物で反射した光を直線偏光に変換する検出子を備えている
    ことを特徴とする請求項1、2または3記載のゴーストイメージングを利用した物質測定装置。
  5.  前記変調部が、光弾性変調器である
    ことを特徴とする請求項4記載のゴーストイメージングを利用した物質測定装置。
     
PCT/JP2015/073097 2014-08-19 2015-08-18 ゴーストイメージングを利用した物質測定装置 WO2016027797A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166515 2014-08-19
JP2014-166515 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016027797A1 true WO2016027797A1 (ja) 2016-02-25

Family

ID=55350741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073097 WO2016027797A1 (ja) 2014-08-19 2015-08-18 ゴーストイメージングを利用した物質測定装置

Country Status (1)

Country Link
WO (1) WO2016027797A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248351A (zh) * 2016-08-24 2016-12-21 中国科学院西安光学精密机械研究所 一种光学系统鬼像测量装置及其测量方法
CN106725319A (zh) * 2016-12-12 2017-05-31 四川大学 一种光通过散射介质聚焦的单元裂解调制方法
CN107831144A (zh) * 2017-10-20 2018-03-23 上海理工大学 基于压缩感知时间关联成像的滤光片透过率检测方法
CN110230995A (zh) * 2019-05-10 2019-09-13 首都师范大学 一种基于鬼成像的感兴趣区域成像装置
JP2020518359A (ja) * 2017-05-05 2020-06-25 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・エディンバラThe University Court of the University of Edinburgh 光学システムと方法
WO2020186394A1 (zh) * 2019-03-15 2020-09-24 中国科学院微电子研究所 成像方法及装置
JPWO2020218282A1 (ja) * 2019-04-22 2020-10-29
WO2021079810A1 (ja) * 2019-10-23 2021-04-29 株式会社小糸製作所 イメージング装置、車両用灯具、車両、イメージング方法
JP2021185384A (ja) * 2016-08-15 2021-12-09 国立大学法人大阪大学 電磁波位相振幅生成装置、電磁波位相振幅生成方法及び電磁波位相振幅生成プログラム
JP2022146636A (ja) * 2021-03-22 2022-10-05 株式会社東芝 光学装置、光学検査方法及び光学検査プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078339A (ja) * 2008-09-24 2010-04-08 Fujifilm Corp 3次元形状計測装置および方法並びにプログラム
JP2010197370A (ja) * 2009-02-02 2010-09-09 Takaoka Electric Mfg Co Ltd 光応用計測装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078339A (ja) * 2008-09-24 2010-04-08 Fujifilm Corp 3次元形状計測装置および方法並びにプログラム
JP2010197370A (ja) * 2009-02-02 2010-09-09 Takaoka Electric Mfg Co Ltd 光応用計測装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KELLOCK ET AL.: "Image quality in double- and triple-intensity ghost imaging with classical partially polarized light", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, vol. 29, no. 11, November 2012 (2012-11-01), pages 2459 - 2468 *
SHI ET AL.: "Polarimetric ghost imaging", OPTICS LETTERS, vol. 39, no. 5, pages 1231 - 1234 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274234B2 (ja) 2016-08-15 2023-05-16 国立大学法人大阪大学 電磁波位相振幅生成装置、電磁波位相振幅生成方法及び電磁波位相振幅生成プログラム
JP2021185384A (ja) * 2016-08-15 2021-12-09 国立大学法人大阪大学 電磁波位相振幅生成装置、電磁波位相振幅生成方法及び電磁波位相振幅生成プログラム
CN106248351A (zh) * 2016-08-24 2016-12-21 中国科学院西安光学精密机械研究所 一种光学系统鬼像测量装置及其测量方法
CN106725319A (zh) * 2016-12-12 2017-05-31 四川大学 一种光通过散射介质聚焦的单元裂解调制方法
JP2020518359A (ja) * 2017-05-05 2020-06-25 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・エディンバラThe University Court of the University of Edinburgh 光学システムと方法
US11696676B2 (en) 2017-05-05 2023-07-11 The University Of Bath Optical system and method
JP7249647B2 (ja) 2017-05-05 2023-03-31 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・エディンバラ 光学システムと方法
CN107831144B (zh) * 2017-10-20 2020-02-21 上海理工大学 基于压缩感知时间关联成像的滤光片透过率检测方法
CN107831144A (zh) * 2017-10-20 2018-03-23 上海理工大学 基于压缩感知时间关联成像的滤光片透过率检测方法
WO2020186394A1 (zh) * 2019-03-15 2020-09-24 中国科学院微电子研究所 成像方法及装置
JPWO2020218282A1 (ja) * 2019-04-22 2020-10-29
WO2020218282A1 (ja) * 2019-04-22 2020-10-29 株式会社小糸製作所 イメージング装置、車両用灯具、自動車、イメージング方法
CN113767304A (zh) * 2019-04-22 2021-12-07 株式会社小糸制作所 成像装置、车辆用灯具、汽车、成像方法
US12003839B2 (en) 2019-04-22 2024-06-04 Koito Manufacturing Co., Ltd. Imaging apparatus using ghost imaging
JP7408642B2 (ja) 2019-04-22 2024-01-05 株式会社小糸製作所 イメージング装置、車両用灯具、自動車、イメージング方法
CN110230995A (zh) * 2019-05-10 2019-09-13 首都师范大学 一种基于鬼成像的感兴趣区域成像装置
WO2021079810A1 (ja) * 2019-10-23 2021-04-29 株式会社小糸製作所 イメージング装置、車両用灯具、車両、イメージング方法
US20230062169A1 (en) * 2021-03-22 2023-03-02 Kabushiki Kaisha Toshiba Optical apparatus, optical inspection method and non-transitory storage medium
JP2022146636A (ja) * 2021-03-22 2022-10-05 株式会社東芝 光学装置、光学検査方法及び光学検査プログラム
JP7524119B2 (ja) 2021-03-22 2024-07-29 株式会社東芝 光学装置、光学検査方法及び光学検査プログラム
US12123703B2 (en) * 2021-03-22 2024-10-22 Kabushiki Kaisha Toshiba Optical apparatus, optical inspection method and non-transitory storage medium

Similar Documents

Publication Publication Date Title
WO2016027797A1 (ja) ゴーストイメージングを利用した物質測定装置
KR101005179B1 (ko) 광학적 간섭을 이용한 ocd 측정 방법 및 장치
US11264256B2 (en) Wafer inspection apparatus
CN112771432A (zh) 图像生成装置及图像生成方法
JP2010515027A5 (ja)
EP3161437B1 (en) Measuring polarisation
TW200930977A (en) Interferometer utilizing polarization scanning
KR20160040737A (ko) 근적외선 스펙트럼 범위를 이용한 오버레이 메트롤러지
JPH03115834A (ja) 薄い層の物理特性を検査する方法
JP2007139751A (ja) 偏光変調型イメージング・エリプソメータ
WO2016084261A1 (ja) 欠陥検査装置及び欠陥検査方法
JP6173188B2 (ja) 被検光学素子の光学性能の測定装置、その測定装置を制御するプログラムおよび方法
JP2010025922A (ja) 干渉装置
KR102007004B1 (ko) 3차원 형상 측정장치
KR20170055661A (ko) 대면적 실시간 박막 측정 분광 영상 타원계측 장치
JPH10281876A (ja) 偏光性イメージング装置
KR20220032922A (ko) 퓨필 타원 편광 계측 장치 및 방법, 및 그 방법을 이용한 반도체 소자 제조방법
JP4555900B2 (ja) 試料の光学測定を行う方法
KR101692869B1 (ko) 인디케이터를 이용한 광학 현미경
KR102553788B1 (ko) 시료의 광학적 이방성을 정량화하는 현미경 시스템
JP2015224912A (ja) 欠陥測定装置及び欠陥測定方法
CN111033228A (zh) 检测设备和检测方法
KR101826191B1 (ko) 렌즈의 양면 곡률 형상과 굴절률 분포의 동시 측정 장치 및 방법
KR20240160886A (ko) 공간 광 변조기를 이용한 각도 분해 분광 타원 편광 분석계 및 박막 두께 측정 방법
JP3436704B2 (ja) 複屈折測定方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP