WO2016013674A1 - Nickel manganese compound hydroxide particles and method for producing same - Google Patents
Nickel manganese compound hydroxide particles and method for producing same Download PDFInfo
- Publication number
- WO2016013674A1 WO2016013674A1 PCT/JP2015/071163 JP2015071163W WO2016013674A1 WO 2016013674 A1 WO2016013674 A1 WO 2016013674A1 JP 2015071163 W JP2015071163 W JP 2015071163W WO 2016013674 A1 WO2016013674 A1 WO 2016013674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite hydroxide
- hydroxide particles
- particles
- manganese composite
- nickel manganese
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to nickel manganese composite hydroxide particles, which are precursors of a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same.
- lithium ion secondary battery that is a kind of non-aqueous electrolyte secondary battery.
- This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material used as a material for the negative electrode and the positive electrode.
- lithium-ion secondary batteries are being actively carried out.
- lithium using a positive electrode active material composed of layered or spinel type lithium transition metal composite oxide particles as a positive electrode material. Since an ion secondary battery can obtain a high voltage of 4 V class, it is being put to practical use as a material having a high energy density.
- lithium cobalt composite oxide (LiCoO 2 ), which is currently relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel which is cheaper than cobalt with a small amount of reserves, Lithium manganese composite oxide (LiMn 2 O 4 ), lithium nickel manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 ), lithium nickel cobalt manganese composite oxide (LiNi 1 / Lithium transition metal composite oxides such as 3 Co 1/3 Mn 1/3 O 2 ) have been proposed.
- lithium nickel manganese composite oxide having excellent thermal stability and high capacity without using cobalt, or good cycle characteristics, low resistance and high output can be obtained.
- Lithium nickel manganese cobalt composite oxide which can be used, is currently attracting attention.
- a lithium transition metal composite oxide used as a positive electrode active material It is required to strictly control the powder properties such as the average particle size, particle size distribution, specific surface area, and crystallite size, and the crystallinity thereof.
- the method of using the transition metal composite hydroxide particles obtained by the crystallization reaction as the precursor of the positive electrode active material has a uniform composition at the atomic level by appropriately controlling the crystallization conditions, and There is an advantage that a positive electrode active material excellent in powder characteristics can be obtained.
- the impurity component contained in the lithium transition metal composite oxide particles may cause a decrease in battery characteristics, it becomes an important management item in production, as with the above-described powder characteristics and crystallinity. . That is, it is necessary to reduce the amount of impurities contained in the transition metal composite hydroxide particles that are precursors of the positive electrode active material and to optimize the impurities.
- transition metal composite hydroxide particles are obtained by crystallization reaction, and the obtained transition metal composite hydroxide particles are filtered or filtered. Prior to this, it is described that excess base and ammonia contained in the transition metal composite hydroxide particles are removed by washing with a centrifugal separator, a suction filter, or the like.
- the aqueous solution for nucleation is controlled so that the pH value on the basis of the liquid temperature of 25 ° C. is 12.0 to 14.0, and the oxygen concentration is 1% by volume.
- a nucleation step in which nucleation is performed in an oxidizing atmosphere that exceeds the above, and an aqueous solution for particle growth containing nuclei formed in the nucleation step, having a pH value of 10.5 to 12.0 at a liquid temperature of 25 ° C.
- a mixed atmosphere of oxygen and inert gas having an oxygen concentration of 1% by volume or less from an oxidizing atmosphere in the range of 0% to 40% with respect to the whole particle growing process from the beginning of the particle growing process.
- a crystallization step comprising a particle growth step for growing the nuclei, and having a central portion made of fine primary particles and comprising plate-like primary particles larger than the fine primary particles outside the central portion. Having an outer shell, The Kkerumangan composite hydroxide particles, it is disclosed that obtained by industrial-scale mass production.
- nickel-manganese composite hydroxide particles having such a structure as a precursor, a hollow structure comprising an outer shell portion in which aggregated primary particles are sintered and a hollow portion existing inside thereof is provided.
- a positive electrode active material having excellent powder characteristics can be obtained.
- nickel-manganese composite hydroxide particles having such a structure sodium contained in the central part consisting of fine primary particles, particularly by simply washing the obtained nickel-manganese composite hydroxide particles. Is extremely difficult to remove.
- the present invention is a positive electrode active material capable of producing a non-aqueous electrolyte secondary battery in which deterioration and variation in battery characteristics are suppressed, particularly in mass production on an industrial scale, and transition metal composite hydroxide particles that are precursors thereof, particularly
- An object of the present invention is to provide nickel manganese composite hydroxide particles.
- the slurry is held in a non-oxidizing atmosphere in which the oxygen partial pressure is controlled to 10 Pa or less from the end of the crystallization process to the start of the cleaning process.
- the slurry is controlled to have a pH value in the range of 10.5 to 13.0 based on a liquid temperature of 25 ° C. from the end of the crystallization step to the start of the washing step. It is preferable to hold at.
- the holding time is preferably 10 hours or less.
- the method for producing nickel manganese composite hydroxide particles of the present invention is for producing nickel manganese composite hydroxide particles composed of secondary particles formed by agglomeration of a plurality of primary particles obtained by a crystallization reaction.
- the nickel manganese composite hydroxide particles have a central portion made of fine primary particles, and are made of plate-like primary particles larger than the fine primary particles outside the central portion. It is suitably applied to the production of nickel manganese composite hydroxide particles composed of secondary particles having an outer shell portion.
- the aqueous solution for nucleation is controlled so that the pH value on the basis of the liquid temperature of 25 ° C. is 12.0 to 14.0, and the oxygen concentration is 1 volume.
- the nickel manganese composite hydroxide particles of the present invention have a central portion made of fine primary particles, and an outer shell portion made of plate-like primary particles larger than the fine primary particles outside the central portion. It is preferably composed of secondary particles.
- the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is characterized by comprising lithium nickel manganese composite oxide particles having the nickel manganese composite hydroxide particles as precursors.
- the present invention particularly in mass production on an industrial scale, when nickel manganese composite hydroxide particles containing manganese as a constituent metal element are obtained by a crystallization reaction using inexpensive sodium hydroxide as a neutralizing agent
- the alkali metal content particularly the sodium content
- the positive electrode active material for a non-aqueous electrolyte secondary battery obtained using such nickel manganese composite hydroxide particles as a precursor the positive electrode active material is used as the positive electrode in order to inherit the powder characteristics of low alkali metal content.
- a non-aqueous electrolyte secondary battery in which deterioration and variation in battery characteristics due to the presence of alkali metal are suppressed is provided. For this reason, the industrial significance of the present invention is extremely large.
- the present inventors have used a transition metal composite hydroxide particle, in particular, a positive electrode active material containing nickel manganese composite hydroxide particles as a precursor, containing manganese as a constituent metal element.
- a transition metal composite hydroxide particle in particular, a positive electrode active material containing nickel manganese composite hydroxide particles as a precursor, containing manganese as a constituent metal element.
- the inventors have obtained knowledge that the oxidation state of nickel manganese composite hydroxide particles during washing affects the removal of alkali metals, particularly sodium, and have reached the present invention.
- the method for producing nickel manganese composite hydroxide particles of the present invention comprises a general formula (A): Ni x M y y by a crystallization reaction using sodium hydroxide as a neutralizing agent.
- M is one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W)
- Nickel-manganese composite hydroxide particles obtained by crystallization reaction are usually composed of secondary particles formed by aggregation of a plurality of primary particles. Most of the alkali metal salt adhering to the primary particle surface during crystallization is removed by washing with water after crystallization. However, the alkali metal contained as an impurity exists not only in the alkali metal salt adhering to the surface of the primary particle, but also in a state in which a part is incorporated in the crystal of the composite hydroxide particle. Such an alkali metal is difficult to remove by washing with water after crystallization, and when the alkali metal taken into the crystal increases, the content of the alkali metal as an impurity increases.
- an alkali metal particularly sodium
- an alkali metal is taken into the crystals of the composite hydroxide particles with the oxidation of manganese in the composite hydroxide particles. That is, manganese in the composite hydroxide particles is easily oxidized, and when the composite hydroxide particles obtained by the crystallization reaction are placed in an atmosphere in which oxygen is present, the composite hydroxide particles are oxidized.
- the degree to which manganese is oxidized increases. As the degree of oxidation of manganese increases in this way, the content of alkali metal taken into the crystal increases accordingly. Thus, even if it wash
- the degree of oxidation of the composite hydroxide particles in advance specifically, the average valence of the metal element in the composite hydroxide particles at the start of the cleaning process is controlled to 2.4 or less. By this, it becomes possible to suppress the alkali metal taken into the crystal.
- the method for producing composite hydroxide particles of the present invention is divided into (1) a crystallization step, (2) from the end of the crystallization step to the start of the cleaning step, and (3) the cleaning step. explain.
- the crystallization step is a step of obtaining composite hydroxide particles by a crystallization reaction. More specifically, nickel (Ni) and manganese (Mn), which are main metal elements, or a mixed aqueous solution containing nickel, manganese, and cobalt (Co) and an additive element M, water as a neutralizing agent.
- This is a step of forming a reaction aqueous solution by supplying an aqueous solution of sodium oxide and a complexing agent such as aqueous ammonia, crystallizing the composite hydroxide particles, and obtaining a slurry containing the composite hydroxide particles.
- the conditions in the crystallization step are not particularly limited, and are appropriately selected according to the composition, particle structure or powder characteristics of the target composite hydroxide particles.
- M is selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W
- the ratio of the metal compounds is adjusted so that the composition is the same as the composition of the composite hydroxide particles, and these metal compounds are dissolved in water. To produce a mixed aqueous solution.
- the crystallization process grows mainly from the nucleation process in which nucleation occurs and the nuclei generated in the nucleation process as particles. It is preferable to divide into the particle growth process to be performed.
- the composite hydroxide has a uniform composition at the atomic level and is composed of secondary particles obtained by agglomeration of primary particles, and has excellent powder characteristics such as a narrow particle size distribution. Particles are obtained.
- a composite hydroxide particle having a particle structure composed of a central part composed of fine primary particles and an outer shell part formed outside the central part and composed of plate-like primary particles larger than the fine primary particles.
- the aqueous solution for nucleation has a pH value of 12.0 to 14.0 based on a liquid temperature of 25 ° C.
- the pH value is controlled to be 10.5 to 12.0, and the oxygen concentration is 1 volume from the oxidizing atmosphere in the range of 0% to 40% with respect to the whole particle growth process from the start of the particle growth process.
- % Oxygen and inert Switch to scan a mixed atmosphere of, by the particle growth step of growing the nucleus to form a crystallization step.
- reaction atmosphere the atmosphere in the reaction vessel including the reaction field (in the reaction aqueous solution) during the crystallization reaction
- reaction atmosphere an oxidizing atmosphere needs to be selected.
- a non-oxidizing atmosphere is preferable, and a nitrogen atmosphere is more preferable.
- the oxygen partial pressure in the reaction atmosphere is preferably 1013 Pa or less, more preferably 1000 Pa or less, and even more preferably 990 Pa or less.
- the non-oxidizing atmosphere in the crystallization process can also be adjusted so that the oxygen partial pressure is 10 Pa or less.
- the crystallization step in such a reaction atmosphere it is possible to suppress the oxidation of manganese during the crystallization reaction and further reduce the alkali metal, particularly sodium, taken into the crystal.
- the average valence of the metal elements constituting the composite hydroxide particles obtained by the crystallization reaction is generally in the range of 2.00 to 2.15.
- the composite hydroxide particles are held in a slurry state, usually in an air atmosphere.
- this slurry is held while being stirred from the viewpoint of preventing aggregation of the composite hydroxide particles.
- the composite hydroxide particles are easily oxidized, and this is affected by the degree of stirring of the slurry and the contact state with the air atmosphere. Average valence increases.
- the alkali metal incorporated in the crystal is suppressed, and the primary particles are mainly washed by washing after crystallization.
- the alkali metal existing on the surface is removed.
- the content of alkali metal remaining in the composite hydroxide particles, particularly the content of sodium can be reduced to 500 ppm by mass or less.
- the average valence of the metal element in the composite hydroxide particles means the arithmetic average value of the valences of nickel, cobalt, manganese, and additive element M contained in the composite hydroxide particles, and the composite hydroxide It can be obtained by redox titration of a solution obtained by dissolving particles in hydrochloric acid.
- the average valence of the metal element in the composite hydroxide particles is preferably controlled to 2.2 or less, more preferably 2.15 or less.
- the atmosphere from the end of the crystallization process to the start of the cleaning process (hereinafter referred to as “holding atmosphere”) is preferably a non-oxidizing atmosphere, and more preferably a nitrogen atmosphere. That is, it is preferable to control the oxygen partial pressure in the holding atmosphere to 10 Pa or less, preferably 5 Pa or less.
- the holding atmosphere in such a range, even if the time from the end of the crystallization reaction to the start of the washing process is a long time, for example, 12 hours or more, the average of the main metal element M The valence can be kept below 2.4.
- the oxygen partial pressure in the holding atmosphere exceeds 10 Pa
- the time from the completion of the crystallization reaction to the start of the washing step is long, for example, 12 hours or more
- the average valence of the metal element may exceed 2.4.
- an inert gas preferably nitrogen gas
- the oxygen partial pressure may be 10 Pa or less from the oxygen partial pressure (for example, 1013 Pa or less) at the end of the crystallization reaction.
- the atmosphere during the crystallization reaction may be set as a non-oxidizing atmosphere in advance so that the non-oxidizing atmosphere is maintained even after the crystallization process is completed. Furthermore, even when the composite hydroxide particles are continuously separated by solid-liquid separation due to overflow, the composite hydroxide particles directly come into contact with the atmosphere. It is effective to maintain an atmosphere of 10 Pa or less.
- an air atmosphere oxygen partial pressure: 21273 Pa
- the average valence of the metal element in the composite hydroxide particles is 2.4 or less.
- the time from the end of the crystallization process to the start of the washing process is within 12 hours, preferably within 10 hours, More preferably, it must be within 8 hours.
- Stirring involving air atmosphere promotes oxidation of metal elements, so it is necessary to further reduce the retention time in the slurry state, and the average valence of metal elements depending on stirring conditions can be controlled to 2.4 or less. It is sufficient to confirm the appropriate holding time by a preliminary test.
- the pH value based on the liquid temperature of the slurry at 25 ° C. is preferably 13.0 or less, more preferably 12.5 or less, and even more preferably 12.0 or less.
- the pH value of the slurry is preferably 10.5 or more, more preferably 11.0 or more, based on the liquid temperature of 25 ° C.
- the oxidation of manganese in the composite hydroxide particles subjected to the washing process is suppressed, the amount of alkali metal taken into the crystal along with the oxidation of manganese is reduced, and the alkali metal is on the surface of the primary particles. Stays present.
- the alkali metal remaining on the surface of the primary particles of such composite hydroxide particles can be removed sufficiently and easily by washing.
- the method for cleaning the composite hydroxide particles is not particularly limited, and for example, a method of adding an appropriate amount of cleaning water to the slurry containing the composite hydroxide particles and stirring the slurry can be employed.
- washing water it is preferable to use pure water such as ion-exchanged water or distilled water having as little impurity content as possible from the viewpoint of preventing contamination of impurities. Further, it is preferable to perform the cleaning in a plurality of times rather than only once.
- the composite hydroxide particles can be washed using a filter press or the like.
- the slurry is filtered or before it is filtered, it can be washed using a centrifugal separator, a suction filter, or the like. In any case, it is necessary to appropriately adjust the cleaning conditions according to the characteristics of the apparatus to be used, the amount of composite hydroxide particles to be cleaned, and the like.
- the average valence of the metal element is in the range of 2.4 or less at the end of the washing step, but thereafter, the oxidation proceeds with time, so that the average valence is not necessarily limited.
- the numbers are not in this range.
- the composite hydroxide particles of the present invention contain at least nickel (Ni) and manganese (Mn) as main metal elements, and preferably contain nickel, manganese, and cobalt (Co).
- the present invention can be suitably applied to composite hydroxide particles containing manganese in which y in general formula (A) is 0.1 or more and 0.55 or less, indicating the composition of manganese. .
- Nickel is an element that contributes to improving battery capacity. Therefore, the ratio of the number of nickel atoms to the total number of atoms of the metal element (Ni / total metal elements) is preferably 0.3 to 0.7, more preferably 0.3 to 0.6, and even more preferably 0. 3 to 0.5.
- Ni / total metal elements is preferably 0.3 to 0.7, more preferably 0.3 to 0.6, and even more preferably 0. 3 to 0.5.
- the value of Ni / all metal elements is less than 0.3, a secondary battery using a positive electrode active material having the composite hydroxide particles as a precursor does not have a high capacity.
- the Ni / M ratio exceeds 0.7, the content of cobalt and manganese decreases, and the effect of addition cannot be sufficiently obtained.
- Manganese is an element that contributes to improved thermal stability. Therefore, the ratio of the number of manganese atoms to the total number of atoms of metal elements (Mn / total metal elements) is preferably 0.1 to 0.55, more preferably 0.2 to 0.4, and even more preferably. 0.2 to 0.35. If the value of Mn / all metal elements is less than 0.1, the thermal stability cannot be sufficiently improved. On the other hand, if the value of Mn / all metal elements exceeds 0.55, the elution amount of manganese increases at high temperature operation, and the cycle characteristics may be deteriorated.
- Cobalt is an element that contributes to improved cycle characteristics.
- addition of cobalt is optional, but when cobalt is added, the ratio of the number of cobalt atoms to the total number of atoms of the metal element (Co / total metal elements) is preferably 0.05 to 0.00. 4, more preferably 0.1 to 0.4, and still more preferably 0.2 to 0.35.
- the value of Co / all metal elements is less than 0.05, the effect of addition cannot be sufficiently obtained.
- the value of Co / all metal elements exceeds 0.4, the initial discharge capacity may be reduced.
- the composite hydroxide particles of the present invention can contain an additive element M in addition to the main metal element.
- the additive element M include magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), and molybdenum.
- At least one selected from the group consisting of (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W) can be used.
- the value of t in the general formula (A) indicating the content of the additive element M is 0.1 or less, preferably 0.05 or less, more preferably 0.02 or less. If the value of t exceeds 0.1, the metal element that contributes to the Redox reaction decreases, and the battery capacity decreases.
- a in the general formula (A) indicating the content of the hydroxyl group (OH) contained in the composite hydroxide particles of the present invention is the average value of the metal elements in the composite hydroxide at the end of the crystallization process. Controlled by number. That is, a is expressed as 1 ⁇ average valence of metal element ⁇ 2. When the average valence of metal element at the end of the crystallization process is 2.1, a is 0.1.
- composition when used as a positive electrode active material, it can function as a positive electrode material with better cycle characteristics, low resistance and high output when used as a positive electrode active material. Further, in such a composition, the effect of the production method of the present invention is sufficiently exerted, and the improvement of the characteristics is sufficiently achieved while suppressing the deterioration of the characteristics as the positive electrode material due to the suppression of the alkali metal content. Can do.
- the content of alkali metal contained in the composite hydroxide particles of the present invention is 500 ppm by mass or less, preferably 400 ppm by mass or less, more preferably 270 ppm by mass or less. is there.
- Alkali metal is used as a neutralizing agent in the crystallization process, and industrially, sodium (Na), potassium (K) or the like is used and contained as an impurity in the obtained composite hydroxide particles. Is done.
- the positive electrode active material obtained using such composite hydroxide particles as a precursor When the content of alkali metal in the composite hydroxide particles increases, in the positive electrode active material obtained using such composite hydroxide particles as a precursor, the output characteristics deteriorate due to a decrease in battery capacity or an increase in reaction resistance. Will result. Therefore, by making the content of the alkali metal contained in the composite hydroxide particles 500 mass ppm or less, the positive electrode active material obtained using this as a precursor can function as a positive electrode material having excellent battery characteristics. It becomes possible.
- the sodium content is 500 mass ppm or less. And is preferably 400 mass ppm or less, and more preferably 250 mass ppm or less.
- the potassium content is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, and further preferably 20 ppm by mass or less. preferable.
- the particle structure of the composite hydroxide particle of the present invention is not limited as long as it is composed of secondary particles formed by aggregation of a plurality of primary particles.
- the composite hydroxide particles have a central portion constituted by fine primary particles and It is preferable that a particle structure including an outer shell portion composed of plate-like primary particles larger than the fine primary particles is provided outside the center portion.
- the positive electrode active material having a composite hydroxide particle having such a particle structure as a precursor has a hollow structure, and a sufficient contact area with the electrolyte is ensured when a secondary battery is configured. Therefore, the output characteristics can be greatly improved.
- the powder characteristics of the composite hydroxide particles can be adjusted according to the conditions in the crystallization process described above.
- the powder characteristics are inherited by the positive electrode active material having the composite hydroxide particles as a precursor. That is, the powder characteristics of the composite hydroxide particles can be controlled by adjusting the conditions in the crystallization process according to the powder characteristics required for the target positive electrode active material.
- the average particle size means an average particle diameter based on volume, and can be determined by, for example, a laser diffraction scattering method.
- Positive electrode active material for non-aqueous electrolyte secondary battery (1) Positive electrode active material for non-aqueous electrolyte secondary battery
- the positive electrode active material for non-aqueous electrolyte secondary battery of the present invention (hereinafter referred to as “positive electrode active material”) is the present invention. It is characterized by comprising lithium nickel manganese composite oxide particles obtained by the production method of the present invention and using the nickel manganese composite hydroxide particles of the present invention as a precursor.
- the value of u indicating the content of lithium (Li) is 0.95 to 1.50, preferably 1.00 to 1.35, more preferably 1.00 to 1. It is controlled in the range of 20. If the value of u is less than 0.95, the positive electrode resistance of the secondary battery using this positive electrode active material will increase, and the output of the battery will decrease. On the other hand, when the value of u exceeds 1.50, the initial discharge capacity of the secondary battery using this positive electrode active material is lowered.
- the particle structure and powder characteristics of the present invention basically inherit the particle structure and powder characteristics of the composite oxide particles of the present invention. That is, the positive electrode active material of the present invention is not limited in its particle structure as long as it is composed of secondary particles formed by aggregating a plurality of primary particles. However, when a secondary battery having excellent output characteristics is to be obtained, the positive electrode active material preferably has a hollow particle structure. The powder characteristics of the positive electrode active material of the present invention are adjusted according to the intended use of the secondary battery and the required performance, and are not particularly limited.
- the average particle diameter of the positive electrode active material is preferably adjusted to a volume-based average particle diameter of 3 ⁇ m to 20 ⁇ m by the laser diffraction scattering method. It is preferable to adjust to a range of ⁇ 15 ⁇ m.
- the method for producing the positive electrode active material of the present invention is the same as that of the prior art, except that the composite hydroxide particles of the present invention described above are used as a precursor. That is, the non-aqueous electrolyte secondary battery of the present invention is obtained by firing the obtained lithium mixture (firing step) after mixing the composite hydroxide particles and the lithium compound described above (mixing step) (firing step). Process).
- a heat treatment step, a calcination step, a crushing step, and the like can be appropriately performed as necessary.
- the heat treatment step is a step of heating the composite hydroxide particles at 105 ° C. to 750 ° C. in an oxidizing atmosphere to remove moisture contained in the composite hydroxide particles to obtain heat treated particles.
- the heat treated particles include not only the composite hydroxide particles from which excess moisture has been removed in the heat treatment step, but also transition metal composite oxide particles converted by the heat treatment step (hereinafter referred to as “composite oxide particles”), Alternatively, a mixture thereof is also included.
- the mixing step is a step of mixing the lithium compound with the composite hydroxide particles or the heat-treated particles to obtain a lithium mixture.
- the lithium compound is not particularly limited, but lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof can be used in consideration of availability. Among these, it is preferable to use lithium hydroxide, lithium carbonate, or a mixture thereof in consideration of ease of handling and quality stability.
- the lithium mixture is sufficiently mixed before firing.
- mixing is insufficient, Li / Me varies among individual particles, and sufficient battery characteristics may not be obtained.
- a general mixer can be used for mixing, for example, a shaker mixer, a V blender, a ribbon mixer, a Julia mixer, a Ladige mixer, or the like can be used.
- the composite hydroxide particles or the heat-treated particles and the lithium compound may be sufficiently mixed so that the shape of the composite hydroxide particles or the heat-treated particles is not destroyed.
- the lithium mixture is lower than the firing temperature and is 350 ° C. to 800 ° C., preferably 450 ° C. to 780 ° C. after the mixing step and before the firing step. That is, calcination may be performed at a reaction temperature (calcination temperature) between lithium hydroxide or lithium carbonate and the composite oxide particles. Thereby, the diffusion of lithium into the composite hydroxide particles is promoted, and more uniform lithium composite oxide particles can be obtained.
- the firing step is a step in which the lithium mixture obtained in the mixing step is fired at a predetermined temperature to synthesize a positive electrode active material composed of lithium transition metal composite oxide particles (hereinafter referred to as “lithium composite oxide particles”). .
- the atmosphere in the firing step is an oxidizing atmosphere, but it is preferably performed in an atmosphere having an oxygen concentration of 18% by volume to 100% by volume, that is, in the air to an oxygen stream. Is more preferable. If the oxygen concentration is less than 18% by volume, the oxidation reaction does not proceed sufficiently, and the crystallinity of the positive electrode active material may not be sufficient.
- the firing temperature needs to be appropriately adjusted depending on the composition of the composite hydroxide particles or heat-treated particles in the lithium mixture, particularly the composition ratio of the main metal element M.
- the firing temperature is preferably 800 ° C. to 1100 ° C., more preferably 800 ° C. to 950 ° C.
- baking time shall be 3 hours or more.
- the aggregate or sintered body can be crushed to adjust the powder characteristics of the positive electrode active material to a suitable range.
- pulverization means that mechanical energy is applied to an aggregate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. An operation of separating secondary particles and loosening aggregates.
- known means can be used, for example, a pin mill or a hammer mill can be used. At this time, it is preferable to adjust the crushing force to an appropriate range so as not to destroy the secondary particles.
- Non-aqueous electrolyte secondary battery to which the positive electrode active material of the present invention is applied as a positive electrode material is a general non-aqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. It is comprised by the same component.
- the positive electrode active material of the present invention is applied as a positive electrode material
- the content of sodium in the positive electrode active material constituting the positive electrode material is reduced, and the thermal stability, charge / discharge capacity, and output characteristics are reduced.
- the battery characteristics are prevented from being deteriorated, and the variation is small.
- the reaction aqueous solution is formed by supplying the above-described mixed aqueous solution, 20% by mass sodium hydroxide aqueous solution, and 25% by mass ammonia water into the reaction vessel.
- the composite hydroxide particles were crystallized.
- the supply amounts of the mixed aqueous solution, the aqueous sodium hydroxide solution, and the aqueous ammonia were adjusted so that the pH value on the basis of the liquid temperature of 25 ° C. was maintained at 11.5 and the ammonia concentration was maintained at 10 g / L.
- the reaction atmosphere was maintained in a nitrogen atmosphere having an oxygen partial pressure of 5 Pa and the temperature of the reaction aqueous solution was maintained at 50 ° C. through the crystallization reaction.
- the slurry containing the composite hydroxide particles obtained as described above was dispensed in a separately prepared container in an air atmosphere (oxygen partial pressure: 21273 Pa), and then washed without being retained. Specifically, the operation of solid-liquid separation of the slurry containing the composite hydroxide particles was repeated twice while being washed with pure water (ion exchange water) using 5C quantitative filter paper. The composite hydroxide particles thus washed and solid-liquid separated were subjected to a vacuum drying treatment at 120 ° C. for 12 hours to obtain powdered composite hydroxide particles.
- Example 2 From the end of the crystallization process to the start of the washing process, the slurry containing the composite hydroxide particles is stirred for 2 hours in an atmospheric atmosphere (oxygen partial pressure: 21273 Pa). Using a magnetic stirrer HSD-6), composite hydroxide particles were obtained in the same manner as in Example 1 except that the atmospheric atmosphere was not entangled and maintained while stirring at a rotation speed of 500 rpm. The same measurement was performed.
- Example 3 The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 4 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed.
- the average valence of the metal element constituting the composite hydroxide particles is 2.15, and the sodium content in the composite hydroxide particles after washing is 260 mass ppm, The potassium content was less than 20 ppm by mass.
- Example 4 The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 8 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.22, and the sodium content in the composite hydroxide particles after washing is 280 mass ppm, The potassium content was less than 20 ppm by mass.
- Example 1 The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 16 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed.
- the average valence of the metal element constituting the composite hydroxide particles is 2.41
- the sodium content in the composite hydroxide particles after washing is 510 mass ppm
- the potassium content was less than 20 ppm by mass, and the potassium content was less than 20 ppm by mass.
- Example 2 The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 24 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed.
- the average valence of the metal element constituting the composite hydroxide particles is 2.44
- the sodium content in the composite hydroxide particles after washing is 520 mass ppm
- the potassium content was less than 20 ppm by mass.
- Example 3 The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 32 hours from the end of the crystallization step to the start of the washing step. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.51, and the sodium content in the composite hydroxide particles after washing is 520 mass ppm. The potassium content was less than 20 ppm by mass.
- Example 4 The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 96 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed.
- the average valence of the metal element constituting the composite hydroxide particles is 2.66, and the sodium content in the composite hydroxide particles after washing is 980 mass ppm, Potassium content was less than 20 ppm by weight (Example 5) From the end of the crystallization process to the start of the washing process, except that the slurry containing the composite hydroxide particles was maintained with stirring for 4 hours while maintaining the nitrogen atmosphere (oxygen partial pressure: 5 Pa). In the same manner as in Example 2, composite hydroxide particles were obtained and the same measurement was performed.
- the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 210 mass ppm, The potassium content was less than 20 ppm by mass.
- Example 6 The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 24 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.07, and the sodium content in the composite hydroxide particles after washing is 220 mass ppm, The potassium content was less than 20 ppm by mass.
- Example 7 The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 32 hours from the end of the crystallization step to the start of the washing step. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 220 mass ppm, The potassium content was less than 20 ppm by mass.
- Example 8 The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 96 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 240 mass ppm, The potassium content was less than 20 ppm by mass.
- Example 9 to 12 Comparative Examples 5 to 8, Examples 13 to 16
- the atmosphere in the reaction vessel was an atmospheric atmosphere (oxygen partial pressure: 21273 Pa)
- the pH value of the aqueous reaction solution was maintained at 13.0 on the basis of the liquid temperature of 25 ° C.
- the ammonia concentration was maintained at 15 g / L for 2 minutes and 30 seconds.
- the supply of 25% by mass aqueous sodium hydroxide is stopped until the pH value of the reaction aqueous solution becomes 11.6 based on the liquid temperature of 25 ° C.
- alkali metal particularly sodium
- composite hydroxide It is understood that the content of alkali metal remaining in the product particles can be reduced.
- composite hydroxide particles are provided as a precursor for obtaining a positive electrode active material with a small content of alkali metal remaining in the crystal, and the composite hydroxide of the present invention It is understood that by using a positive electrode active material having a product particle as a precursor as a positive electrode material, it is possible to manufacture a secondary battery in which deterioration and variation in battery characteristics are suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
[Problem] To provide nickel manganese compound hydroxide particles which can be used as a precursor for a cathode active material in which sodium content is reduced and for which reduction of and variation in battery characteristics are prevented. [Solution] A slurry including nickel manganese compound hydroxide particles is obtained by a crystallization reaction using sodium hydroxide as a neutralizer, the nickel manganese compound hydroxide particles being represented by general formula (A): NixMnyCozMt(OH)2+a (x+y+z+t=1, 0.3≤x≤0.7, 0.1≤y≤0.55, 0≤z≤0.4, 0≤t≤0.1, 0≤a≤0.5, where M is one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W). The nickel manganese compound hydroxide particles are washed in a state in which an average valence of the metallic elements in the nickel manganese compound hydroxide particles is controlled at 2.4 or less.
Description
本発明は、非水系電解質二次電池用正極活物質の前駆体である、ニッケルマンガン複合水酸化物粒子およびその製造方法に関する。
The present invention relates to nickel manganese composite hydroxide particles, which are precursors of a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same.
近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高エネルギ密度を有する小型で軽量な二次電池に対する要求が高まっている。また、ハイブリット自動車をはじめとする電気自動車の電源として、高出力の二次電池の開発が強く望まれている。
In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, there is an increasing demand for small and lightweight secondary batteries having high energy density. In addition, development of a high output secondary battery is strongly desired as a power source for electric vehicles such as hybrid vehicles.
このような要求を満たす二次電池として、非水系電解質二次電池の一種であるリチウムイオン二次電池がある。このリチウムイオン二次電池は、負極、正極、電解液などにより構成され、その負極および正極の材料として用いられる活物質には、リチウムを脱離および挿入することが可能な材料が使用される。
As a secondary battery that satisfies such requirements, there is a lithium ion secondary battery that is a kind of non-aqueous electrolyte secondary battery. This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material used as a material for the negative electrode and the positive electrode.
リチウムイオン二次電池については、現在、研究開発が盛んに行われているところであるが、その中でも、層状またはスピネル型のリチウム遷移金属複合酸化物粒子からなる正極活物質を正極材料として用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギ密度を有する材料として実用化が進められている。
Currently, research and development of lithium-ion secondary batteries are being actively carried out. Among them, lithium using a positive electrode active material composed of layered or spinel type lithium transition metal composite oxide particles as a positive electrode material. Since an ion secondary battery can obtain a high voltage of 4 V class, it is being put to practical use as a material having a high energy density.
このような正極活物質として、現在、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)、埋蔵量の少ないコバルトよりも安価であるニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)、正極材料として広く使われているマンガンを用いたリチウムマンガン複合酸化物(LiMn2O4)、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5O2)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3O2)などのリチウム遷移金属複合酸化物が提案されている。
As such a positive electrode active material, lithium cobalt composite oxide (LiCoO 2 ), which is currently relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel which is cheaper than cobalt with a small amount of reserves, Lithium manganese composite oxide (LiMn 2 O 4 ), lithium nickel manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 ), lithium nickel cobalt manganese composite oxide (LiNi 1 / Lithium transition metal composite oxides such as 3 Co 1/3 Mn 1/3 O 2 ) have been proposed.
これらの正極活物質の中でも、正極材料として、コバルトを用いずに熱安定性に優れかつ高容量である、リチウムニッケルマンガン複合酸化物、あるいは、サイクル特性が良好で、低抵抗で高出力を取り出すことが可能である、リチウムニッケルマンガンコバルト複合酸化物が、現在、注目を集めている。
Among these positive electrode active materials, as a positive electrode material, lithium nickel manganese composite oxide having excellent thermal stability and high capacity without using cobalt, or good cycle characteristics, low resistance and high output can be obtained. Lithium nickel manganese cobalt composite oxide, which can be used, is currently attracting attention.
このようなリチウムイオン二次電池が良好な性能、具体的には、高サイクル特性、低抵抗、および高出力であるという電池特性を得るためには、正極活物質として用いるリチウム遷移金属複合酸化物を構成する粒子の平均粒径、粒度分布、比表面積、および結晶子径などの粉体特性やその結晶性などを厳密に制御することが要求される。
In order to obtain such lithium ion secondary battery with good performance, specifically battery characteristics of high cycle characteristics, low resistance, and high output, a lithium transition metal composite oxide used as a positive electrode active material It is required to strictly control the powder properties such as the average particle size, particle size distribution, specific surface area, and crystallite size, and the crystallinity thereof.
正極活物質の製造方法として、さまざまな方法が提案されている。その中でも、晶析反応により得られる遷移金属複合水酸化物質粒子を正極活物質の前駆体として用いる方法は、晶析条件を適切に制御することにより、原子レベルで均一な組成を有し、かつ、粉体特性に優れた正極活物質を得ることができるという利点がある。
Various methods have been proposed as a method for producing a positive electrode active material. Among them, the method of using the transition metal composite hydroxide particles obtained by the crystallization reaction as the precursor of the positive electrode active material has a uniform composition at the atomic level by appropriately controlling the crystallization conditions, and There is an advantage that a positive electrode active material excellent in powder characteristics can be obtained.
また、リチウム遷移金属複合酸化物粒子に含有される不純物成分は、電池特性の低下を引き起こす可能性があるため、上述した粉体特性や結晶性と同様に、製造上の重要な管理項目となる。すなわち、正極活物質の前駆体となる遷移金属複合水酸化物粒子に含有される不純物量を低減させて、その最適化を図ることが必要である。
Moreover, since the impurity component contained in the lithium transition metal composite oxide particles may cause a decrease in battery characteristics, it becomes an important management item in production, as with the above-described powder characteristics and crystallinity. . That is, it is necessary to reduce the amount of impurities contained in the transition metal composite hydroxide particles that are precursors of the positive electrode active material and to optimize the impurities.
特開2013-171743号公報および特開2013-171744号公報には、晶析反応により遷移金属複合水酸化物粒子を得るとともに、得られた遷移金属複合水酸化物粒子を、濾過した後または濾過する前に、遠心分離機や吸引濾過機などを用いて洗浄することにより、この遷移金属複合水酸化物粒子に含まれる余剰の塩基やアンモニアを除去することが記載されている。
In JP2013-171743A and JP2013-171744A, transition metal composite hydroxide particles are obtained by crystallization reaction, and the obtained transition metal composite hydroxide particles are filtered or filtered. Prior to this, it is described that excess base and ammonia contained in the transition metal composite hydroxide particles are removed by washing with a centrifugal separator, a suction filter, or the like.
このような晶析反応を用いた製造方法においては、中和剤として安価な水酸化ナトリウム水溶液が用いられている。このため、晶析反応により得られた遷移金属複合水酸化物粒子には、水酸化ナトリウム水溶液に起因するナトリウムが不純物として混入する。このようなナトリウムは、上述のような多量の水を用いた長時間の洗浄により、ある程度除去することが可能である。しかしながら、粒子中に様々な状態で含まれるナトリウムのすべてを十分に除去することは困難である。
In the production method using such a crystallization reaction, an inexpensive sodium hydroxide aqueous solution is used as a neutralizing agent. For this reason, sodium resulting from the sodium hydroxide aqueous solution is mixed as an impurity in the transition metal composite hydroxide particles obtained by the crystallization reaction. Such sodium can be removed to some extent by long-time washing with a large amount of water as described above. However, it is difficult to sufficiently remove all of the sodium contained in various states in the particles.
ところで、国際公開第WO2012/131881号公報には、核生成用水溶液を、液温25℃基準でのpH値が12.0~14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、該核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃でのpH値が10.5~12.0となるように制御するとともに、粒子成長工程の開始時から粒子成長工程の全体に対して0%~40%の範囲で酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替えて、前記核を成長させる粒子成長工程とからなる晶析工程により、微細一次粒子からなる中心部を有し、この中心部の外側に前記微細一次粒子よりも大きな板状一次粒子からなる外殻部を有する、ニッケルマンガン複合水酸化物粒子を、工業規模の量産工程により得ることが開示されている。
By the way, in International Publication No. WO2012 / 1318181, the aqueous solution for nucleation is controlled so that the pH value on the basis of the liquid temperature of 25 ° C. is 12.0 to 14.0, and the oxygen concentration is 1% by volume. A nucleation step in which nucleation is performed in an oxidizing atmosphere that exceeds the above, and an aqueous solution for particle growth containing nuclei formed in the nucleation step, having a pH value of 10.5 to 12.0 at a liquid temperature of 25 ° C. And a mixed atmosphere of oxygen and inert gas having an oxygen concentration of 1% by volume or less from an oxidizing atmosphere in the range of 0% to 40% with respect to the whole particle growing process from the beginning of the particle growing process. And a crystallization step comprising a particle growth step for growing the nuclei, and having a central portion made of fine primary particles and comprising plate-like primary particles larger than the fine primary particles outside the central portion. Having an outer shell, The Kkerumangan composite hydroxide particles, it is disclosed that obtained by industrial-scale mass production.
このような構造のニッケルマンガン複合水酸化物粒子を前駆体として用いることにより、凝集した一次粒子が焼結している外殻部と、その内側に存在する中空部とからなる中空構造を備えた、粉体特性に優れた正極活物質が得られる。
By using nickel-manganese composite hydroxide particles having such a structure as a precursor, a hollow structure comprising an outer shell portion in which aggregated primary particles are sintered and a hollow portion existing inside thereof is provided. Thus, a positive electrode active material having excellent powder characteristics can be obtained.
ただし、このような構造のニッケルマンガン複合水酸化物粒子の場合、単に得られたニッケルマンガン複合水酸化物粒子を洗浄することのみによっては、特に微細一次粒子からなる中心部に含有されているナトリウムを除去することがきわめて困難である。
However, in the case of nickel-manganese composite hydroxide particles having such a structure, sodium contained in the central part consisting of fine primary particles, particularly by simply washing the obtained nickel-manganese composite hydroxide particles. Is extremely difficult to remove.
このような工業規模の量産工程において、晶析反応により得られた遷移金属複合水酸化物粒子を洗浄した場合でも、この遷移金属複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池において、粒子中のナトリウムに起因して充放電容量や出力特性などの電池特性の低下やばらつきが生じている。このように、非水系電解質二次電池の分野では、二次電池の電池特性に影響を及ぼす、正極活物質中のナトリウムの存在が、大きな問題となっている。
In such an industrial-scale mass production process, even when the transition metal composite hydroxide particles obtained by the crystallization reaction are washed, two positive electrode active materials using the transition metal composite hydroxide particles as a precursor are used. In secondary batteries, battery characteristics such as charge / discharge capacity and output characteristics are degraded and varied due to sodium in the particles. Thus, in the field of non-aqueous electrolyte secondary batteries, the presence of sodium in the positive electrode active material, which affects the battery characteristics of the secondary battery, has become a major problem.
本発明は、特に、工業規模の量産において、電池特性の低下やばらつきが抑制された非水系電解質二次電池を製造可能な正極活物質とその前駆体である遷移金属複合水酸化物粒子、特に、ニッケルマンガン複合水酸化物粒子を提供することを目的とする。
The present invention is a positive electrode active material capable of producing a non-aqueous electrolyte secondary battery in which deterioration and variation in battery characteristics are suppressed, particularly in mass production on an industrial scale, and transition metal composite hydroxide particles that are precursors thereof, particularly An object of the present invention is to provide nickel manganese composite hydroxide particles.
本発明のニッケルマンガン複合水酸化物粒子の製造方法は、中和剤として水酸化ナトリウムを用いた晶析反応により、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルマンガン複合水酸化物粒子を含むスラリーを得る晶析工程と、前記ニッケルマンガン複合水酸化物粒子中の金属元素の平均価数を2.4以下に制御した状態で、該ニッケルマンガン複合水酸化物粒子を洗浄する洗浄工程と、を備えることを特徴とする。
Method for producing a nickel-manganese composite hydroxide particles of the present invention, the crystallization reaction with sodium hydroxide as a neutralizing agent, the general formula (A): Ni x Mn y Co z M t (OH) 2 + a (X + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M Is a slurry containing nickel-manganese composite hydroxide particles represented by one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W). A crystallization step to be obtained, and a washing step for washing the nickel manganese composite hydroxide particles in a state where the average valence of the metal element in the nickel manganese composite hydroxide particles is controlled to 2.4 or less. It is characterized by that.
前記晶析工程終了から前記洗浄工程を開始するまでの間、前記スラリーを、酸素分圧を10Pa以下に制御した非酸化性雰囲気中に保持することが好ましい。
It is preferable that the slurry is held in a non-oxidizing atmosphere in which the oxygen partial pressure is controlled to 10 Pa or less from the end of the crystallization process to the start of the cleaning process.
代替的または追加的に、前記晶析工程終了から前記洗浄工程を開始するまでの間、前記スラリーを、液温25℃基準でのpH値を10.5~13.0の範囲に制御した状態で保持することが好ましい。
Alternatively or additionally, the slurry is controlled to have a pH value in the range of 10.5 to 13.0 based on a liquid temperature of 25 ° C. from the end of the crystallization step to the start of the washing step. It is preferable to hold at.
なお、前記晶析工程終了から前記洗浄工程を開始するまでの間、前記pH値を制御しつつ、前記スラリーを大気雰囲気中で保持する場合には、保持時間を10時間以下とすることが好ましい。
In addition, when holding the slurry in an air atmosphere while controlling the pH value from the end of the crystallization process to the start of the washing process, the holding time is preferably 10 hours or less. .
本発明のニッケルマンガン複合水酸化物粒子の製造方法は、晶析反応によって得られる、複数の一次粒子が凝集して形成された二次粒子によって構成されたニッケルマンガン複合水酸化物粒子の製造に適用されるが、特に、前記ニッケルマンガン複合水酸化物粒子が、微細一次粒子からなる中心部を有し、かつ、該中心部の外側に、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部を有する二次粒子から構成されるニッケルマンガン複合水酸化物粒子の製造に、好適に適用される。この場合、具体的には、前記晶析工程を、核生成用水溶液を、液温25℃基準でのpH値が12.0~14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、該核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃でのpH値が10.5~12.0となるように制御するとともに、粒子成長工程の開始時から粒子成長工程の全体に対して0%~40%の範囲で酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替えて、前記核を成長させる粒子成長工程と、により構成する。
The method for producing nickel manganese composite hydroxide particles of the present invention is for producing nickel manganese composite hydroxide particles composed of secondary particles formed by agglomeration of a plurality of primary particles obtained by a crystallization reaction. Although applied, in particular, the nickel manganese composite hydroxide particles have a central portion made of fine primary particles, and are made of plate-like primary particles larger than the fine primary particles outside the central portion. It is suitably applied to the production of nickel manganese composite hydroxide particles composed of secondary particles having an outer shell portion. In this case, specifically, in the crystallization step, the aqueous solution for nucleation is controlled so that the pH value on the basis of the liquid temperature of 25 ° C. is 12.0 to 14.0, and the oxygen concentration is 1 volume. A nucleation step in which nucleation is performed in an oxidizing atmosphere exceeding 50%, and an aqueous solution for particle growth containing the nuclei formed in the nucleation step, the pH value at a liquid temperature of 25 ° C. is 10.5 to 12.2. A mixture of oxygen and inert gas with an oxygen concentration of 1% by volume or less from an oxidizing atmosphere in the range of 0% to 40% of the entire particle growth process from the start of the particle growth process. And a particle growth step for growing the nucleus by switching to an atmosphere.
本発明のニッケルマンガン複合水酸化物粒子は、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、複数の一次粒子が凝集して形成された二次粒子からなり、かつ、アルカリ金属の含有量が500質量ppm以下であることを特徴とする。
Nickel manganese composite hydroxide particles of the present invention have the general formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.7,0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, One or more elements selected from Mo, Hf, Ta, and W), secondary particles formed by aggregation of a plurality of primary particles, and an alkali metal content of 500 mass ppm or less It is characterized by being.
本発明のニッケルマンガン複合水酸化物粒子は、微細一次粒子からなる中心部を有し、かつ、該中心部の外側に、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部を有する二次粒子により構成されることが好ましい。
The nickel manganese composite hydroxide particles of the present invention have a central portion made of fine primary particles, and an outer shell portion made of plate-like primary particles larger than the fine primary particles outside the central portion. It is preferably composed of secondary particles.
なお、本発明のニッケルマンガン複合水酸化物粒子は、一般式(B):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.6、0.2≦y≦0.4、0.1≦z≦0.4、0≦t≦0.02、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される組成を有することが好ましい。
Incidentally, nickel manganese composite hydroxide particles of the present invention have the general formula (B): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.6,0 .2 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.02, 0 ≦ a ≦ 0.5, M is Mg, Ca, Al, Ti, V, Cr, It is preferable to have a composition represented by one or more elements selected from Zr, Nb, Mo, Hf, Ta, and W.
本発明の非水系電解質二次電池用正極活物質は、前記ニッケルマンガン複合水酸化物粒子を前駆体とするリチウムニッケルマンガン複合酸化物粒子からなることを特徴とする。
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is characterized by comprising lithium nickel manganese composite oxide particles having the nickel manganese composite hydroxide particles as precursors.
本発明によれば、特に、工業規模の量産において、中和剤として安価な水酸化ナトリウムを用いた晶析反応により、構成金属元素としてマンガンを含む、ニッケルマンガン複合水酸化物粒子を得た場合でも、そのアルカリ金属の含有量、特にナトリウム含有量を低減させることができる。このようなニッケルマンガン複合水酸化物粒子を前駆体として得られる非水系電解質二次電池用正極活物質では、アルカリ金属の含有量が少ないという粉体特性を継承するため、この正極活物質を正極材料として用いることにより、アルカリ金属の存在に起因する電池特性の低下やばらつきが抑制された非水系電解質二次電池が提供される。このため、本発明の工業的意義はきわめて大きい。
According to the present invention, particularly in mass production on an industrial scale, when nickel manganese composite hydroxide particles containing manganese as a constituent metal element are obtained by a crystallization reaction using inexpensive sodium hydroxide as a neutralizing agent However, the alkali metal content, particularly the sodium content, can be reduced. In the positive electrode active material for a non-aqueous electrolyte secondary battery obtained using such nickel manganese composite hydroxide particles as a precursor, the positive electrode active material is used as the positive electrode in order to inherit the powder characteristics of low alkali metal content. By using it as a material, a non-aqueous electrolyte secondary battery in which deterioration and variation in battery characteristics due to the presence of alkali metal are suppressed is provided. For this reason, the industrial significance of the present invention is extremely large.
本発明者らは、上述した問題に鑑みて、遷移金属複合水酸化物粒子、特に、構成金属元素としてマンガンを含む、ニッケルマンガン複合水酸化物粒子を前駆体とする正極活物質を用いて二次電池を構成した場合に、その電池特性の低下やばらつきが生じる原因について鋭意研究を重ねた。
In view of the problems described above, the present inventors have used a transition metal composite hydroxide particle, in particular, a positive electrode active material containing nickel manganese composite hydroxide particles as a precursor, containing manganese as a constituent metal element. When the secondary battery was configured, we conducted intensive research on the cause of the deterioration and variation in battery characteristics.
その結果、洗浄時のニッケルマンガン複合水酸化物粒子の酸化状態がアルカリ金属、特にナトリウムの除去に影響を及ぼすとの知見を得て、本発明に至ったものである。
As a result, the inventors have obtained knowledge that the oxidation state of nickel manganese composite hydroxide particles during washing affects the removal of alkali metals, particularly sodium, and have reached the present invention.
1.ニッケルマンガン複合水酸化物粒子の製造方法
本発明のニッケルマンガン複合水酸化物粒子の製造方法は、中和剤として水酸化ナトリウムを用いた晶析反応により、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルマンガン複合水酸化物粒子を含むスラリーを得る晶析工程と、前記ニッケルマンガン複合水酸化物粒子中の金属元素の平均価数を2.4以下に制御した状態で、該ニッケルマンガン複合水酸化物粒子を洗浄する洗浄工程と、を備えることを特徴とする。 1. Method for Producing Nickel Manganese Composite Hydroxide Particles The method for producing nickel manganese composite hydroxide particles of the present invention comprises a general formula (A): Ni x M y y by a crystallization reaction using sodium hydroxide as a neutralizing agent. Co z M t (OH) 2 + a (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1 , 0 ≦ a ≦ 0.5, M is one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) A crystallization step of obtaining a slurry containing manganese composite hydroxide particles, and the nickel manganese composite hydroxide in a state in which the average valence of metal elements in the nickel manganese composite hydroxide particles is controlled to 2.4 or less. And a cleaning step for cleaning the particles.
本発明のニッケルマンガン複合水酸化物粒子の製造方法は、中和剤として水酸化ナトリウムを用いた晶析反応により、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルマンガン複合水酸化物粒子を含むスラリーを得る晶析工程と、前記ニッケルマンガン複合水酸化物粒子中の金属元素の平均価数を2.4以下に制御した状態で、該ニッケルマンガン複合水酸化物粒子を洗浄する洗浄工程と、を備えることを特徴とする。 1. Method for Producing Nickel Manganese Composite Hydroxide Particles The method for producing nickel manganese composite hydroxide particles of the present invention comprises a general formula (A): Ni x M y y by a crystallization reaction using sodium hydroxide as a neutralizing agent. Co z M t (OH) 2 + a (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1 , 0 ≦ a ≦ 0.5, M is one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) A crystallization step of obtaining a slurry containing manganese composite hydroxide particles, and the nickel manganese composite hydroxide in a state in which the average valence of metal elements in the nickel manganese composite hydroxide particles is controlled to 2.4 or less. And a cleaning step for cleaning the particles.
晶析反応によって得られるニッケルマンガン複合水酸化物粒子(以下、単に「複合水酸化物粒子」という)は、通常、複数の一次粒子が凝集して形成された二次粒子から構成される。晶析時に一次粒子表面に付着したアルカリ金属塩は、晶析後の水洗によって大部分が除去される。しかしながら、不純物として含有されるアルカリ金属は、一次粒子表面に付着したアルカリ金属塩のみならず、一部は複合水酸化物粒子の結晶中に取り込まれた状態で存在する。このようなアルカリ金属は、晶析後の水洗で除去することが困難であり、結晶中に取り込まれるアルカリ金属が増加すると、不純物としてのアルカリ金属の含有量が増加する。
Nickel-manganese composite hydroxide particles (hereinafter simply referred to as “composite hydroxide particles”) obtained by crystallization reaction are usually composed of secondary particles formed by aggregation of a plurality of primary particles. Most of the alkali metal salt adhering to the primary particle surface during crystallization is removed by washing with water after crystallization. However, the alkali metal contained as an impurity exists not only in the alkali metal salt adhering to the surface of the primary particle, but also in a state in which a part is incorporated in the crystal of the composite hydroxide particle. Such an alkali metal is difficult to remove by washing with water after crystallization, and when the alkali metal taken into the crystal increases, the content of the alkali metal as an impurity increases.
本発明者は、詳細は不明であるが、複合水酸化物粒子中のマンガンの酸化に伴って、複合水酸化物粒子の結晶中にアルカリ金属、特にナトリウムが取り込まれるとの知見を得た。すなわち、複合水酸化物粒子中のマンガンは酸化しやすく、晶析反応により得られた複合水酸化物粒子が、酸素の存在する雰囲気中に置かれると、複合水酸化物粒子が酸化されるに伴って、特にマンガンが酸化される程度が大きくなる。このようにマンガンが酸化される程度が大きくなると、これに伴って、結晶中に取り込まれるアルカリ金属の含有量が多くなる。このように結晶中に取り込まれてしまったアルカリ金属については、晶析工程後に水洗を施したとしても、その除去はきわめて困難となる。
Although the details are unknown, the present inventor has obtained knowledge that an alkali metal, particularly sodium, is taken into the crystals of the composite hydroxide particles with the oxidation of manganese in the composite hydroxide particles. That is, manganese in the composite hydroxide particles is easily oxidized, and when the composite hydroxide particles obtained by the crystallization reaction are placed in an atmosphere in which oxygen is present, the composite hydroxide particles are oxidized. Along with this, in particular, the degree to which manganese is oxidized increases. As the degree of oxidation of manganese increases in this way, the content of alkali metal taken into the crystal increases accordingly. Thus, even if it wash | cleans with water after the crystallization process about the alkali metal taken in in the crystal | crystallization, the removal will become very difficult.
したがって、あらかじめ複合水酸化物粒子の酸化の程度を制御することにより、具体的には、洗浄工程開始時における複合水酸化物粒子中の金属元素の平均価数を2.4以下に制御することによって、前記結晶中に取り込まれるアルカリ金属を抑制することが可能となる。
Therefore, by controlling the degree of oxidation of the composite hydroxide particles in advance, specifically, the average valence of the metal element in the composite hydroxide particles at the start of the cleaning process is controlled to 2.4 or less. By this, it becomes possible to suppress the alkali metal taken into the crystal.
以下、本発明の複合水酸化物粒子の製造方法について、(1)晶析工程と、(2)晶析工程終了から洗浄工程開始まで、および、(3)洗浄工程とに分けて、詳細に説明する。
Hereinafter, the method for producing composite hydroxide particles of the present invention is divided into (1) a crystallization step, (2) from the end of the crystallization step to the start of the cleaning step, and (3) the cleaning step. explain.
(1)晶析工程
晶析工程は、晶析反応により、複合水酸化物粒子を得る工程である。より具体的には、主要金属元素であるニッケル(Ni)およびマンガン(Mn)、もしくは、ニッケル、マンガン、およびコバルト(Co)と、添加元素Mとを含む混合水溶液に、中和剤としての水酸化ナトリウム水溶液と、アンモニア水などの錯化剤とを供給することにより反応水溶液を形成し、複合水酸化物粒子を晶析させ、この複合水酸化物粒子を含むスラリーを得る工程である。 (1) Crystallization step The crystallization step is a step of obtaining composite hydroxide particles by a crystallization reaction. More specifically, nickel (Ni) and manganese (Mn), which are main metal elements, or a mixed aqueous solution containing nickel, manganese, and cobalt (Co) and an additive element M, water as a neutralizing agent. This is a step of forming a reaction aqueous solution by supplying an aqueous solution of sodium oxide and a complexing agent such as aqueous ammonia, crystallizing the composite hydroxide particles, and obtaining a slurry containing the composite hydroxide particles.
晶析工程は、晶析反応により、複合水酸化物粒子を得る工程である。より具体的には、主要金属元素であるニッケル(Ni)およびマンガン(Mn)、もしくは、ニッケル、マンガン、およびコバルト(Co)と、添加元素Mとを含む混合水溶液に、中和剤としての水酸化ナトリウム水溶液と、アンモニア水などの錯化剤とを供給することにより反応水溶液を形成し、複合水酸化物粒子を晶析させ、この複合水酸化物粒子を含むスラリーを得る工程である。 (1) Crystallization step The crystallization step is a step of obtaining composite hydroxide particles by a crystallization reaction. More specifically, nickel (Ni) and manganese (Mn), which are main metal elements, or a mixed aqueous solution containing nickel, manganese, and cobalt (Co) and an additive element M, water as a neutralizing agent. This is a step of forming a reaction aqueous solution by supplying an aqueous solution of sodium oxide and a complexing agent such as aqueous ammonia, crystallizing the composite hydroxide particles, and obtaining a slurry containing the composite hydroxide particles.
[晶析条件]
本発明において、晶析工程における条件は特に制限されることなく、目的とする複合水酸化物粒子の組成、粒子構造または粉体特性などに応じて適宜選択される。 [Crystallization conditions]
In the present invention, the conditions in the crystallization step are not particularly limited, and are appropriately selected according to the composition, particle structure or powder characteristics of the target composite hydroxide particles.
本発明において、晶析工程における条件は特に制限されることなく、目的とする複合水酸化物粒子の組成、粒子構造または粉体特性などに応じて適宜選択される。 [Crystallization conditions]
In the present invention, the conditions in the crystallization step are not particularly limited, and are appropriately selected according to the composition, particle structure or powder characteristics of the target composite hydroxide particles.
一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される複合水酸化物粒子を得る場合、複合水酸化物粒子の組成と同様の組成となるように金属化合物の割合を調整して、これらの金属化合物を水に溶解させることにより、混合水溶液を作製する。
Formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.7,0.1 ≦ y ≦ 0.55,0 ≦ z ≦ 0 .4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W In the case of obtaining composite hydroxide particles represented by an element of more than species, the ratio of the metal compounds is adjusted so that the composition is the same as the composition of the composite hydroxide particles, and these metal compounds are dissolved in water. To produce a mixed aqueous solution.
また、晶析工程を、反応水溶液のpH(液温25℃基準でのpH値)を制御することにより、主として核生成を行う核生成工程と、主として核生成工程で生成した核を粒子として成長させる粒子成長工程とに分けることが好ましい。このような工程により、原子レベルで均一な組成を有し、かつ、一次粒子が凝集することより得られた二次粒子から構成され、粒度分布が狭いといった粉体特性に優れた複合水酸化物粒子が得られる。
In addition, by controlling the pH of the reaction aqueous solution (pH value based on a liquid temperature of 25 ° C.), the crystallization process grows mainly from the nucleation process in which nucleation occurs and the nuclei generated in the nucleation process as particles. It is preferable to divide into the particle growth process to be performed. By such a process, the composite hydroxide has a uniform composition at the atomic level and is composed of secondary particles obtained by agglomeration of primary particles, and has excellent powder characteristics such as a narrow particle size distribution. Particles are obtained.
特に、微細一次粒子からなる中心部と、中心部の外側に形成され、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部とにより構成された粒子構造を備える複合水酸化物粒子を得ようとする場合、たとえば、国際公開第WO2012/131881号公報に記載されているように、核生成用水溶液を、液温25℃基準でのpH値が12.0~14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、該核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃でのpH値が10.5~12.0となるように制御するとともに、粒子成長工程の開始時から粒子成長工程の全体に対して0%~40%の範囲で酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替えて、前記核を成長させる粒子成長工程とにより、晶析工程を構成する。
In particular, a composite hydroxide particle having a particle structure composed of a central part composed of fine primary particles and an outer shell part formed outside the central part and composed of plate-like primary particles larger than the fine primary particles. In the case of obtaining, for example, as described in International Publication No. WO2012 / 131881, the aqueous solution for nucleation has a pH value of 12.0 to 14.0 based on a liquid temperature of 25 ° C. A nucleation step for performing nucleation in an oxidizing atmosphere with an oxygen concentration exceeding 1% by volume, and an aqueous solution for particle growth containing nuclei formed in the nucleation step at a liquid temperature of 25 ° C. The pH value is controlled to be 10.5 to 12.0, and the oxygen concentration is 1 volume from the oxidizing atmosphere in the range of 0% to 40% with respect to the whole particle growth process from the start of the particle growth process. % Oxygen and inert Switch to scan a mixed atmosphere of, by the particle growth step of growing the nucleus to form a crystallization step.
ただし、晶析工程において、晶析反応中の反応場(反応水溶液中)を含む反応槽内の雰囲気(以下、「反応雰囲気」という)は、酸化性雰囲気を選択する必要がある場合を除き、非酸化性雰囲気とすることが好ましく、窒素雰囲気とすることがより好ましい。具体的には、反応雰囲気中の酸素分圧を1013Pa以下とすることが好ましく、1000Pa以下とすることがより好ましく、990Pa以下とすることがさらに好ましい。ただし、本発明では、晶析終了から洗浄開始までの間で、ニッケルマンガン複合水酸化物粒子を含むスラリーを、酸素分圧が10Pa以下に制御された非酸化性雰囲気中に保持することが好ましく、このような条件を採用する場合には、晶析工程における非酸化性雰囲気についても、その酸素分圧が10Pa以下となるように調整することも可能である。このような反応雰囲気で晶析工程を行うことにより、晶析反応中におけるマンガンの酸化を抑制して、結晶中に取り込まれるアルカリ金属、特にナトリウムをさらに低減させることが可能となる。
However, in the crystallization process, the atmosphere in the reaction vessel including the reaction field (in the reaction aqueous solution) during the crystallization reaction (hereinafter referred to as “reaction atmosphere”) is required unless an oxidizing atmosphere needs to be selected. A non-oxidizing atmosphere is preferable, and a nitrogen atmosphere is more preferable. Specifically, the oxygen partial pressure in the reaction atmosphere is preferably 1013 Pa or less, more preferably 1000 Pa or less, and even more preferably 990 Pa or less. However, in the present invention, it is preferable to hold the slurry containing nickel manganese composite hydroxide particles in a non-oxidizing atmosphere in which the oxygen partial pressure is controlled to 10 Pa or less between the end of crystallization and the start of washing. When such conditions are employed, the non-oxidizing atmosphere in the crystallization process can also be adjusted so that the oxygen partial pressure is 10 Pa or less. By performing the crystallization step in such a reaction atmosphere, it is possible to suppress the oxidation of manganese during the crystallization reaction and further reduce the alkali metal, particularly sodium, taken into the crystal.
(2)晶析工程終了から洗浄工程開始まで
晶析工程における晶析反応によって得られた複合水酸化物粒子は、洗浄工程に付される。しかしながら、一般的には、複合水酸化物粒子を安定化させるため、スラリー中で保持される。さらに、工業規模の生産においては、晶析工程からの洗浄工程への移行が円滑になされることはなく、通常は、その移行に数時間から24時間を超える時間が必要とされる。 (2) From the end of the crystallization process to the start of the washing process The composite hydroxide particles obtained by the crystallization reaction in the crystallization process are subjected to the washing process. However, in general, it is retained in the slurry to stabilize the composite hydroxide particles. Further, in industrial scale production, the transition from the crystallization process to the washing process is not smoothly performed, and usually, the transition requires a time from several hours to over 24 hours.
晶析工程における晶析反応によって得られた複合水酸化物粒子は、洗浄工程に付される。しかしながら、一般的には、複合水酸化物粒子を安定化させるため、スラリー中で保持される。さらに、工業規模の生産においては、晶析工程からの洗浄工程への移行が円滑になされることはなく、通常は、その移行に数時間から24時間を超える時間が必要とされる。 (2) From the end of the crystallization process to the start of the washing process The composite hydroxide particles obtained by the crystallization reaction in the crystallization process are subjected to the washing process. However, in general, it is retained in the slurry to stabilize the composite hydroxide particles. Further, in industrial scale production, the transition from the crystallization process to the washing process is not smoothly performed, and usually, the transition requires a time from several hours to over 24 hours.
したがって、晶析工程終了後、直ちに洗浄工程に付されることはなく、この間、たとえば、バッチ式晶析法においては、保持されるスラリー中の複合水酸化物粒子の凝集を抑制するため、晶析工程で得られたスラリーは、一定の速度で撹拌される。また、連続晶析法における回収では、このスラリーを別途用意した槽に回収した上で、スラリーは一定の速度で撹拌しながら保持される。
Therefore, after completion of the crystallization process, it is not immediately subjected to the washing process. During this time, for example, in the batch crystallization method, in order to suppress aggregation of the composite hydroxide particles in the retained slurry, The slurry obtained in the deposition process is stirred at a constant speed. Moreover, in the collection | recovery in a continuous crystallization method, after collect | recovering this slurry to the tank prepared separately, the slurry is hold | maintained, stirring at a fixed speed | rate.
[金属元素の平均価数]
晶析工程終了時点において、晶析反応により得られた複合水酸化物粒子を構成する金属元素の平均価数は、概ね2.00~2.15の範囲にある。しかしながら、上述の通り、工業規模の量産においては、複合水酸化物粒子は、スラリーの状態で、通常は大気雰囲気中において保持される。また、このスラリーは、複合水酸化物粒子の凝集を防止する観点から、その間は撹拌されながら保持される。大気雰囲気などの酸素が存在する雰囲気中では、複合水酸化物粒子は容易に酸化するため、スラリーの撹拌の程度や大気雰囲気との接触状態にも影響されるが、時間の経過とともに金属元素の平均価数が上昇する。この平均価数が2.4を超えると、複合水酸化物粒子を構成するマンガンの酸化の程度が大きくなり、これに伴って、結晶中に取り込まれるアルカリ金属も多くなる。このような結晶中に取り込まれたアルカリ金属は、晶析後の水洗によっても除去することが困難であり、複合水酸化物粒子中に残存するアルカリ金属の含有量を低減させることができない。 [Average valence of metal elements]
At the end of the crystallization step, the average valence of the metal elements constituting the composite hydroxide particles obtained by the crystallization reaction is generally in the range of 2.00 to 2.15. However, as described above, in industrial scale mass production, the composite hydroxide particles are held in a slurry state, usually in an air atmosphere. In addition, this slurry is held while being stirred from the viewpoint of preventing aggregation of the composite hydroxide particles. In an atmosphere such as an air atmosphere where oxygen is present, the composite hydroxide particles are easily oxidized, and this is affected by the degree of stirring of the slurry and the contact state with the air atmosphere. Average valence increases. When this average valence exceeds 2.4, the degree of oxidation of manganese constituting the composite hydroxide particles increases, and along with this, more alkali metals are incorporated into the crystal. The alkali metal taken into the crystal is difficult to remove even by washing with water after crystallization, and the content of the alkali metal remaining in the composite hydroxide particles cannot be reduced.
晶析工程終了時点において、晶析反応により得られた複合水酸化物粒子を構成する金属元素の平均価数は、概ね2.00~2.15の範囲にある。しかしながら、上述の通り、工業規模の量産においては、複合水酸化物粒子は、スラリーの状態で、通常は大気雰囲気中において保持される。また、このスラリーは、複合水酸化物粒子の凝集を防止する観点から、その間は撹拌されながら保持される。大気雰囲気などの酸素が存在する雰囲気中では、複合水酸化物粒子は容易に酸化するため、スラリーの撹拌の程度や大気雰囲気との接触状態にも影響されるが、時間の経過とともに金属元素の平均価数が上昇する。この平均価数が2.4を超えると、複合水酸化物粒子を構成するマンガンの酸化の程度が大きくなり、これに伴って、結晶中に取り込まれるアルカリ金属も多くなる。このような結晶中に取り込まれたアルカリ金属は、晶析後の水洗によっても除去することが困難であり、複合水酸化物粒子中に残存するアルカリ金属の含有量を低減させることができない。 [Average valence of metal elements]
At the end of the crystallization step, the average valence of the metal elements constituting the composite hydroxide particles obtained by the crystallization reaction is generally in the range of 2.00 to 2.15. However, as described above, in industrial scale mass production, the composite hydroxide particles are held in a slurry state, usually in an air atmosphere. In addition, this slurry is held while being stirred from the viewpoint of preventing aggregation of the composite hydroxide particles. In an atmosphere such as an air atmosphere where oxygen is present, the composite hydroxide particles are easily oxidized, and this is affected by the degree of stirring of the slurry and the contact state with the air atmosphere. Average valence increases. When this average valence exceeds 2.4, the degree of oxidation of manganese constituting the composite hydroxide particles increases, and along with this, more alkali metals are incorporated into the crystal. The alkali metal taken into the crystal is difficult to remove even by washing with water after crystallization, and the content of the alkali metal remaining in the composite hydroxide particles cannot be reduced.
このように、複合水酸化物粒子中の金属元素の平均価数を2.4以下に制御することにより、結晶中に取り込まれるアルカリ金属を抑制して、晶析後の水洗によって主として一次粒子の表面に存在するアルカリ金属を除去する。これにより、具体的には、複合水酸化物粒子に残存するアルカリ金属の含有量、特にナトリウムの含有量を、500質量ppm以下に低減させることが可能となる。
Thus, by controlling the average valence of the metal element in the composite hydroxide particles to 2.4 or less, the alkali metal incorporated in the crystal is suppressed, and the primary particles are mainly washed by washing after crystallization. The alkali metal existing on the surface is removed. Thus, specifically, the content of alkali metal remaining in the composite hydroxide particles, particularly the content of sodium, can be reduced to 500 ppm by mass or less.
なお、複合水酸化物粒子中の金属元素の平均価数は、複合水酸化物粒子に含まれるニッケル、コバルト、マンガン、および添加元素Mの価数の算術平均値を意味し、複合水酸化物粒子を塩酸にて溶解して得られた溶液を酸化還元滴定することにより求めることができる。
The average valence of the metal element in the composite hydroxide particles means the arithmetic average value of the valences of nickel, cobalt, manganese, and additive element M contained in the composite hydroxide particles, and the composite hydroxide It can be obtained by redox titration of a solution obtained by dissolving particles in hydrochloric acid.
晶析工程終了から洗浄工程を開始するまでの間において、複合水酸化物粒子中の金属元素の平均価数は、好ましくは2.2以下、さらに好ましくは2.15以下に制御される。
Between the end of the crystallization process and the start of the washing process, the average valence of the metal element in the composite hydroxide particles is preferably controlled to 2.2 or less, more preferably 2.15 or less.
[雰囲気制御]
晶析工程終了から洗浄工程を開始するまでの間の雰囲気(以下、「保持雰囲気」という)は、非酸化性雰囲気とすることが好ましく、窒素雰囲気とすることがより好ましい。すなわち、保持雰囲気中の酸素分圧を10Pa以下、好ましくは、5Pa以下に制御することが好ましい。保持雰囲気をこのような範囲に制御することにより、晶析反応終了から洗浄工程を開始するまでの時間が長時間、たとえば、12時間以上となった場合であっても、主要金属元素Mの平均価数を2.4以下に維持し続けることができる。一方、保持雰囲気中の酸素分圧が10Paを超えると、晶析反応終了から洗浄工程を開始するまでの時間が長時間、たとえば、12時間以上となった場合に、複合水酸化物粒子中の金属元素の平均価数が、2.4を超えてしまう場合がある。 [Atmosphere control]
The atmosphere from the end of the crystallization process to the start of the cleaning process (hereinafter referred to as “holding atmosphere”) is preferably a non-oxidizing atmosphere, and more preferably a nitrogen atmosphere. That is, it is preferable to control the oxygen partial pressure in the holding atmosphere to 10 Pa or less, preferably 5 Pa or less. By controlling the holding atmosphere in such a range, even if the time from the end of the crystallization reaction to the start of the washing process is a long time, for example, 12 hours or more, the average of the main metal element M The valence can be kept below 2.4. On the other hand, when the oxygen partial pressure in the holding atmosphere exceeds 10 Pa, when the time from the completion of the crystallization reaction to the start of the washing step is long, for example, 12 hours or more, The average valence of the metal element may exceed 2.4.
晶析工程終了から洗浄工程を開始するまでの間の雰囲気(以下、「保持雰囲気」という)は、非酸化性雰囲気とすることが好ましく、窒素雰囲気とすることがより好ましい。すなわち、保持雰囲気中の酸素分圧を10Pa以下、好ましくは、5Pa以下に制御することが好ましい。保持雰囲気をこのような範囲に制御することにより、晶析反応終了から洗浄工程を開始するまでの時間が長時間、たとえば、12時間以上となった場合であっても、主要金属元素Mの平均価数を2.4以下に維持し続けることができる。一方、保持雰囲気中の酸素分圧が10Paを超えると、晶析反応終了から洗浄工程を開始するまでの時間が長時間、たとえば、12時間以上となった場合に、複合水酸化物粒子中の金属元素の平均価数が、2.4を超えてしまう場合がある。 [Atmosphere control]
The atmosphere from the end of the crystallization process to the start of the cleaning process (hereinafter referred to as “holding atmosphere”) is preferably a non-oxidizing atmosphere, and more preferably a nitrogen atmosphere. That is, it is preferable to control the oxygen partial pressure in the holding atmosphere to 10 Pa or less, preferably 5 Pa or less. By controlling the holding atmosphere in such a range, even if the time from the end of the crystallization reaction to the start of the washing process is a long time, for example, 12 hours or more, the average of the main metal element M The valence can be kept below 2.4. On the other hand, when the oxygen partial pressure in the holding atmosphere exceeds 10 Pa, when the time from the completion of the crystallization reaction to the start of the washing step is long, for example, 12 hours or more, The average valence of the metal element may exceed 2.4.
なお、このような雰囲気制御を行うためには、この間に複合水酸化物粒子もしくは複合水酸化物粒子を含むスラリーが保持される閉鎖空間内に、不活性ガス、好ましくは、窒素ガスを導入することにより、晶析反応終了時の酸素分圧(たとえば、1013Pa以下)から、酸素分圧が10Pa以下となるようにすればよい。あるいは、あらかじめ晶析反応時の雰囲気を、非酸化性雰囲気として、晶析工程終了後も、その非酸化性雰囲気を維持するようにすればよい。さらに、オーバーフローによって複合水酸化物粒子を連続的に固液分離して回収する場合も、複合水酸化物粒子が直接的に雰囲気に接触することから、保持される閉鎖空間内を酸素分圧が10Pa以下の雰囲気に保持することが有効である。
In order to perform such atmosphere control, an inert gas, preferably nitrogen gas, is introduced into the closed space in which the composite hydroxide particles or the slurry containing the composite hydroxide particles is held during this time. Thus, the oxygen partial pressure may be 10 Pa or less from the oxygen partial pressure (for example, 1013 Pa or less) at the end of the crystallization reaction. Alternatively, the atmosphere during the crystallization reaction may be set as a non-oxidizing atmosphere in advance so that the non-oxidizing atmosphere is maintained even after the crystallization process is completed. Furthermore, even when the composite hydroxide particles are continuously separated by solid-liquid separation due to overflow, the composite hydroxide particles directly come into contact with the atmosphere. It is effective to maintain an atmosphere of 10 Pa or less.
本発明において、保持雰囲気として大気雰囲気(酸素分圧:21273Pa)を選択することもできるが、この場合には、複合水酸化物粒子中の金属元素の平均価数が2.4以下となるように制御する。たとえば、スラリーの状態で大気雰囲気を巻き込ませずに凝集を防止する程度に撹拌して保持する場合、晶析工程終了から洗浄工程を開始するまでの時間を12時間以内、好ましくは10時間以内、より好ましくは8時間以内とする必要がある。大気雰囲気を巻き込むような撹拌では、金属元素の酸化が促進されるため、さらにスラリー状態での保持時間を短縮する必要があり、撹拌条件による金属元素の平均価数を2.4以下に制御可能な保持時間を予備試験などで確認しておけばよい。
In the present invention, an air atmosphere (oxygen partial pressure: 21273 Pa) can be selected as the holding atmosphere. In this case, the average valence of the metal element in the composite hydroxide particles is 2.4 or less. To control. For example, in the case where the slurry is stirred and held to an extent that prevents aggregation without involving an atmospheric atmosphere, the time from the end of the crystallization process to the start of the washing process is within 12 hours, preferably within 10 hours, More preferably, it must be within 8 hours. Stirring involving air atmosphere promotes oxidation of metal elements, so it is necessary to further reduce the retention time in the slurry state, and the average valence of metal elements depending on stirring conditions can be controlled to 2.4 or less. It is sufficient to confirm the appropriate holding time by a preliminary test.
工業規模の生産において複合水酸化物粒子を大量に生産する場合には、通常、晶析工程終了から洗浄工程を開始するまでに長時間を要し、大気雰囲気中では撹拌状態を制御しながら前記金属元素の平均価数を2.4以下に維持することが困難であるため、保持雰囲気を非酸化性雰囲気に維持する方が好ましい。
When producing a large amount of composite hydroxide particles in industrial scale production, it usually takes a long time from the end of the crystallization process to the start of the washing process, and in the air atmosphere while controlling the stirring state, Since it is difficult to maintain the average valence of the metal element at 2.4 or less, it is preferable to maintain the holding atmosphere in a non-oxidizing atmosphere.
[スラリーのpH値]
晶析工程で得られた複合水酸化物粒子は、これを含むスラリーのpH値が高いほど酸化が進行しやすくなる。このため、スラリーの液温25℃基準でのpH値を13.0以下とすることが好ましく、12.5以下とすることがより好ましく、12.0以下とすることがさらに好ましい。スラリーのpH値をこのような範囲に制御することにより、複合水酸化物粒子の酸化が抑制され、マンガンの酸化によるアルカリ金属の結晶中への取り込みを低減させることができる。ただし、スラリーのpH値は、液温25℃基準で10.5以上とすることが好ましく、11.0以上とすることがより好ましい。スラリーのpH値の下限値をこのような範囲に制御することにより、スラリー中の複合水酸化物粒子の損傷を抑制することができる。 [PH value of slurry]
The higher the pH value of the slurry containing the composite hydroxide particles obtained in the crystallization step, the easier the oxidation proceeds. For this reason, the pH value based on the liquid temperature of the slurry at 25 ° C. is preferably 13.0 or less, more preferably 12.5 or less, and even more preferably 12.0 or less. By controlling the pH value of the slurry in such a range, oxidation of the composite hydroxide particles can be suppressed, and incorporation of alkali metal into crystals due to oxidation of manganese can be reduced. However, the pH value of the slurry is preferably 10.5 or more, more preferably 11.0 or more, based on the liquid temperature of 25 ° C. By controlling the lower limit of the pH value of the slurry within such a range, damage to the composite hydroxide particles in the slurry can be suppressed.
晶析工程で得られた複合水酸化物粒子は、これを含むスラリーのpH値が高いほど酸化が進行しやすくなる。このため、スラリーの液温25℃基準でのpH値を13.0以下とすることが好ましく、12.5以下とすることがより好ましく、12.0以下とすることがさらに好ましい。スラリーのpH値をこのような範囲に制御することにより、複合水酸化物粒子の酸化が抑制され、マンガンの酸化によるアルカリ金属の結晶中への取り込みを低減させることができる。ただし、スラリーのpH値は、液温25℃基準で10.5以上とすることが好ましく、11.0以上とすることがより好ましい。スラリーのpH値の下限値をこのような範囲に制御することにより、スラリー中の複合水酸化物粒子の損傷を抑制することができる。 [PH value of slurry]
The higher the pH value of the slurry containing the composite hydroxide particles obtained in the crystallization step, the easier the oxidation proceeds. For this reason, the pH value based on the liquid temperature of the slurry at 25 ° C. is preferably 13.0 or less, more preferably 12.5 or less, and even more preferably 12.0 or less. By controlling the pH value of the slurry in such a range, oxidation of the composite hydroxide particles can be suppressed, and incorporation of alkali metal into crystals due to oxidation of manganese can be reduced. However, the pH value of the slurry is preferably 10.5 or more, more preferably 11.0 or more, based on the liquid temperature of 25 ° C. By controlling the lower limit of the pH value of the slurry within such a range, damage to the composite hydroxide particles in the slurry can be suppressed.
(3)洗浄工程
上述したように、晶析工程で得られた複合水酸化物粒子は、pH値が高いため、酸素が存在する雰囲気中では、直ちに酸化が進行する。特に、酸素を高濃度で含有する雰囲気中や高温雰囲気中では、酸化速度が速く、複合水酸化物粒子の酸化の程度が急激に増加する。このため、洗浄工程を開始する時点において、複合水酸化物粒子を構成する金属元素の平均価数を2.4以下、好ましくは2.2以下、より好ましくは2.15以下に制御することが重要である。これにより、洗浄工程に供される複合水酸化物粒子におけるマンガンの酸化が抑制され、マンガンの酸化に伴って結晶中に取り込まれるアルカリ金属の量が低減され、アルカリ金属は一次粒子の表面上に存在するにとどまる。このような複合水酸化物粒子の一次粒子の表面に付着して残存するアルカリ金属は、洗浄によって、十分かつ容易に除去することが可能である。 (3) Washing step As described above, since the composite hydroxide particles obtained in the crystallization step have a high pH value, oxidation proceeds immediately in an atmosphere containing oxygen. In particular, in an atmosphere containing oxygen at a high concentration or in a high temperature atmosphere, the oxidation rate is fast, and the degree of oxidation of the composite hydroxide particles increases rapidly. For this reason, at the time of starting the cleaning step, the average valence of the metal elements constituting the composite hydroxide particles can be controlled to 2.4 or less, preferably 2.2 or less, more preferably 2.15 or less. is important. As a result, the oxidation of manganese in the composite hydroxide particles subjected to the washing process is suppressed, the amount of alkali metal taken into the crystal along with the oxidation of manganese is reduced, and the alkali metal is on the surface of the primary particles. Stays present. The alkali metal remaining on the surface of the primary particles of such composite hydroxide particles can be removed sufficiently and easily by washing.
上述したように、晶析工程で得られた複合水酸化物粒子は、pH値が高いため、酸素が存在する雰囲気中では、直ちに酸化が進行する。特に、酸素を高濃度で含有する雰囲気中や高温雰囲気中では、酸化速度が速く、複合水酸化物粒子の酸化の程度が急激に増加する。このため、洗浄工程を開始する時点において、複合水酸化物粒子を構成する金属元素の平均価数を2.4以下、好ましくは2.2以下、より好ましくは2.15以下に制御することが重要である。これにより、洗浄工程に供される複合水酸化物粒子におけるマンガンの酸化が抑制され、マンガンの酸化に伴って結晶中に取り込まれるアルカリ金属の量が低減され、アルカリ金属は一次粒子の表面上に存在するにとどまる。このような複合水酸化物粒子の一次粒子の表面に付着して残存するアルカリ金属は、洗浄によって、十分かつ容易に除去することが可能である。 (3) Washing step As described above, since the composite hydroxide particles obtained in the crystallization step have a high pH value, oxidation proceeds immediately in an atmosphere containing oxygen. In particular, in an atmosphere containing oxygen at a high concentration or in a high temperature atmosphere, the oxidation rate is fast, and the degree of oxidation of the composite hydroxide particles increases rapidly. For this reason, at the time of starting the cleaning step, the average valence of the metal elements constituting the composite hydroxide particles can be controlled to 2.4 or less, preferably 2.2 or less, more preferably 2.15 or less. is important. As a result, the oxidation of manganese in the composite hydroxide particles subjected to the washing process is suppressed, the amount of alkali metal taken into the crystal along with the oxidation of manganese is reduced, and the alkali metal is on the surface of the primary particles. Stays present. The alkali metal remaining on the surface of the primary particles of such composite hydroxide particles can be removed sufficiently and easily by washing.
複合水酸化物粒子の洗浄方法は、特に制限されることはなく、たとえば、この複合水酸化物粒子を含むスラリーに適量の洗浄水を加え、撹拌する方法を採用することができる。この際、洗浄水としては、不純物の混入を防止する観点から、可能な限り不純物の含有量が少ないイオン交換水や蒸留水などの純水を用いることが好ましい。また、洗浄は1回のみ行うよりも、複数回に分けて行うことが好ましい。このほか、フィルタープレスなどを用いて複合水酸化物粒子を洗浄することも可能である。さらに、スラリーを濾過した後または濾過する前に、遠心分離機や吸引濾過機などを用いて洗浄することもできる。いずれの方法を採用する場合も、使用する装置の特性や洗浄する複合水酸化物粒子の量などに応じて、洗浄条件を適宜調整することが必要となる。
The method for cleaning the composite hydroxide particles is not particularly limited, and for example, a method of adding an appropriate amount of cleaning water to the slurry containing the composite hydroxide particles and stirring the slurry can be employed. At this time, as washing water, it is preferable to use pure water such as ion-exchanged water or distilled water having as little impurity content as possible from the viewpoint of preventing contamination of impurities. Further, it is preferable to perform the cleaning in a plurality of times rather than only once. In addition, the composite hydroxide particles can be washed using a filter press or the like. Furthermore, after the slurry is filtered or before it is filtered, it can be washed using a centrifugal separator, a suction filter, or the like. In any case, it is necessary to appropriately adjust the cleaning conditions according to the characteristics of the apparatus to be used, the amount of composite hydroxide particles to be cleaned, and the like.
2.遷移金属複合水酸化物粒子
本発明の複合水酸化物粒子は、上述した本発明の製造方法により得られ、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、複数の一次粒子が凝集して形成された二次粒子からなり、かつ、アルカリ金属の含有量が500質量ppm以下であることを特徴とする。なお、本発明の複合水酸化物粒子は、洗浄工程終了時点では、金属元素の平均価数が2.4以下の範囲にあるが、その後は、経時的に酸化が進行するため、必ずしも平均価数がこの範囲にあるわけではない。 2. Composite hydroxide particles of the transition metal complex hydroxide particles present invention is obtained by the production method of the present invention described above, the general formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is Secondary element formed by agglomeration of a plurality of primary particles represented by Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W). It consists of particle | grains, and content of an alkali metal is 500 mass ppm or less, It is characterized by the above-mentioned. In the composite hydroxide particles of the present invention, the average valence of the metal element is in the range of 2.4 or less at the end of the washing step, but thereafter, the oxidation proceeds with time, so that the average valence is not necessarily limited. The numbers are not in this range.
本発明の複合水酸化物粒子は、上述した本発明の製造方法により得られ、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、複数の一次粒子が凝集して形成された二次粒子からなり、かつ、アルカリ金属の含有量が500質量ppm以下であることを特徴とする。なお、本発明の複合水酸化物粒子は、洗浄工程終了時点では、金属元素の平均価数が2.4以下の範囲にあるが、その後は、経時的に酸化が進行するため、必ずしも平均価数がこの範囲にあるわけではない。 2. Composite hydroxide particles of the transition metal complex hydroxide particles present invention is obtained by the production method of the present invention described above, the general formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is Secondary element formed by agglomeration of a plurality of primary particles represented by Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W). It consists of particle | grains, and content of an alkali metal is 500 mass ppm or less, It is characterized by the above-mentioned. In the composite hydroxide particles of the present invention, the average valence of the metal element is in the range of 2.4 or less at the end of the washing step, but thereafter, the oxidation proceeds with time, so that the average valence is not necessarily limited. The numbers are not in this range.
(1)組成
[主要金属元素]
本発明の複合水酸化物粒子は、主要金属元素として、少なくとも、ニッケル(Ni)とマンガン(Mn)とを含み、好ましくは、ニッケル、マンガン、およびコバルト(Co)を含む。本発明は、マンガンの組成を示す、一般式(A)中のyが0.1以上0.55以下となる、マンガンを含む複合水酸化物粒子に対して好適に適用することが可能である。 (1) Composition [Main metal elements]
The composite hydroxide particles of the present invention contain at least nickel (Ni) and manganese (Mn) as main metal elements, and preferably contain nickel, manganese, and cobalt (Co). The present invention can be suitably applied to composite hydroxide particles containing manganese in which y in general formula (A) is 0.1 or more and 0.55 or less, indicating the composition of manganese. .
[主要金属元素]
本発明の複合水酸化物粒子は、主要金属元素として、少なくとも、ニッケル(Ni)とマンガン(Mn)とを含み、好ましくは、ニッケル、マンガン、およびコバルト(Co)を含む。本発明は、マンガンの組成を示す、一般式(A)中のyが0.1以上0.55以下となる、マンガンを含む複合水酸化物粒子に対して好適に適用することが可能である。 (1) Composition [Main metal elements]
The composite hydroxide particles of the present invention contain at least nickel (Ni) and manganese (Mn) as main metal elements, and preferably contain nickel, manganese, and cobalt (Co). The present invention can be suitably applied to composite hydroxide particles containing manganese in which y in general formula (A) is 0.1 or more and 0.55 or less, indicating the composition of manganese. .
ニッケルは、電池容量の向上に寄与する元素である。このため、金属元素の合計原子数に対するニッケルの原子数の比(Ni/全金属元素)は、好ましくは0.3~0.7、より好ましくは0.3~0.6、さらに好ましくは0.3~0.5とする。Ni/全金属元素の値が0.3未満では、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池が高容量なものとならない。一方、Ni/M比が0.7を超えると、コバルトやマンガンの含有量が減少してしまい、その添加効果を十分に得ることができない。
Nickel is an element that contributes to improving battery capacity. Therefore, the ratio of the number of nickel atoms to the total number of atoms of the metal element (Ni / total metal elements) is preferably 0.3 to 0.7, more preferably 0.3 to 0.6, and even more preferably 0. 3 to 0.5. When the value of Ni / all metal elements is less than 0.3, a secondary battery using a positive electrode active material having the composite hydroxide particles as a precursor does not have a high capacity. On the other hand, if the Ni / M ratio exceeds 0.7, the content of cobalt and manganese decreases, and the effect of addition cannot be sufficiently obtained.
マンガンは、熱安定性の向上に寄与する元素である。このため、金属元素の合計原子数に対する、マンガンの原子数の比(Mn/全金属元素)は、好ましくは0.1~0.55、より好ましくは0.2~0.4、さらに好ましくは0.2~0.35とする。Mn/全金属元素の値が0.1未満では、熱安定性を十分に向上させることができない。一方、Mn/全金属元素の値が0.55を超えると、高温作動時にマンガンの溶出量が増加し、サイクル特性が低下するおそれがある。
Manganese is an element that contributes to improved thermal stability. Therefore, the ratio of the number of manganese atoms to the total number of atoms of metal elements (Mn / total metal elements) is preferably 0.1 to 0.55, more preferably 0.2 to 0.4, and even more preferably. 0.2 to 0.35. If the value of Mn / all metal elements is less than 0.1, the thermal stability cannot be sufficiently improved. On the other hand, if the value of Mn / all metal elements exceeds 0.55, the elution amount of manganese increases at high temperature operation, and the cycle characteristics may be deteriorated.
コバルトは、サイクル特性の向上に寄与する元素である。本発明において、コバルトの添加は任意であるが、コバルトを添加する場合、金属元素の合計原子数に対する、コバルトの原子数の比(Co/全金属元素)は、好ましくは0.05~0.4、より好ましくは0.1~0.4、さらに好ましくは0.2~0.35とする。コバルトを添加する場合、Co/全金属元素の値が0.05未満では、その添加効果を十分に得ることができない。一方、Co/全金属元素の値が0.4を超えると、初期放電容量が低下するおそれがある。
Cobalt is an element that contributes to improved cycle characteristics. In the present invention, addition of cobalt is optional, but when cobalt is added, the ratio of the number of cobalt atoms to the total number of atoms of the metal element (Co / total metal elements) is preferably 0.05 to 0.00. 4, more preferably 0.1 to 0.4, and still more preferably 0.2 to 0.35. When adding cobalt, if the value of Co / all metal elements is less than 0.05, the effect of addition cannot be sufficiently obtained. On the other hand, if the value of Co / all metal elements exceeds 0.4, the initial discharge capacity may be reduced.
[添加元素]
本発明の複合水酸化物粒子は、主要金属元素のほかに、添加元素Mを含有することができる。添加元素Mを含有することで、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池の充放電容量や出力特性などを向上させることができる。このような添加元素Mとしては、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、およびタングステン(W)の群から選択される少なくとも1種を使用することができる。 [Additive elements]
The composite hydroxide particles of the present invention can contain an additive element M in addition to the main metal element. By containing the additive element M, the charge / discharge capacity, the output characteristics, and the like of the secondary battery using the positive electrode active material having the composite hydroxide particles as a precursor can be improved. Examples of the additive element M include magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), and molybdenum. At least one selected from the group consisting of (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W) can be used.
本発明の複合水酸化物粒子は、主要金属元素のほかに、添加元素Mを含有することができる。添加元素Mを含有することで、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池の充放電容量や出力特性などを向上させることができる。このような添加元素Mとしては、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、およびタングステン(W)の群から選択される少なくとも1種を使用することができる。 [Additive elements]
The composite hydroxide particles of the present invention can contain an additive element M in addition to the main metal element. By containing the additive element M, the charge / discharge capacity, the output characteristics, and the like of the secondary battery using the positive electrode active material having the composite hydroxide particles as a precursor can be improved. Examples of the additive element M include magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), and molybdenum. At least one selected from the group consisting of (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W) can be used.
添加元素Mの含有量を示す一般式(A)中のtの値は、0.1以下、好ましくは0.05以下、より好ましくは0.02以下である。tの値が0.1を超えると、Redox反応に貢献する金属元素が減少するため、電池容量が低下してしまう。
The value of t in the general formula (A) indicating the content of the additive element M is 0.1 or less, preferably 0.05 or less, more preferably 0.02 or less. If the value of t exceeds 0.1, the metal element that contributes to the Redox reaction decreases, and the battery capacity decreases.
[水酸基]
本発明の複合水酸化物粒子に含まれる水酸基(OH)の含有量を示す、一般式(A)中のaの値は、晶析工程終了時の複合水酸化物中の金属元素の平均価数によって制御される。すなわち、aは、1×金属元素の平均価数-2と表され、晶析工程終了時の金属元素の平均価数が2.1の場合には、aは0.1である。 [Hydroxyl group]
The value of a in the general formula (A) indicating the content of the hydroxyl group (OH) contained in the composite hydroxide particles of the present invention is the average value of the metal elements in the composite hydroxide at the end of the crystallization process. Controlled by number. That is, a is expressed as 1 × average valence of metal element−2. When the average valence of metal element at the end of the crystallization process is 2.1, a is 0.1.
本発明の複合水酸化物粒子に含まれる水酸基(OH)の含有量を示す、一般式(A)中のaの値は、晶析工程終了時の複合水酸化物中の金属元素の平均価数によって制御される。すなわち、aは、1×金属元素の平均価数-2と表され、晶析工程終了時の金属元素の平均価数が2.1の場合には、aは0.1である。 [Hydroxyl group]
The value of a in the general formula (A) indicating the content of the hydroxyl group (OH) contained in the composite hydroxide particles of the present invention is the average value of the metal elements in the composite hydroxide at the end of the crystallization process. Controlled by number. That is, a is expressed as 1 × average valence of metal element−2. When the average valence of metal element at the end of the crystallization process is 2.1, a is 0.1.
[組成の好適例]
本発明のニッケルマンガン複合水酸化物粒子は、一般式(B):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.6、0.2≦y≦0.4、0.1≦z≦0.4、0≦t≦0.02、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるものであることが好ましい。 [Preferred examples of composition]
Nickel manganese composite hydroxide particles of the present invention have the general formula (B): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.6,0.2 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.02, 0 ≦ a ≦ 0.5, M is Mg, Ca, Al, Ti, V, Cr, Zr, One or more elements selected from Nb, Mo, Hf, Ta, and W) are preferable.
本発明のニッケルマンガン複合水酸化物粒子は、一般式(B):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.6、0.2≦y≦0.4、0.1≦z≦0.4、0≦t≦0.02、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるものであることが好ましい。 [Preferred examples of composition]
Nickel manganese composite hydroxide particles of the present invention have the general formula (B): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.6,0.2 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.02, 0 ≦ a ≦ 0.5, M is Mg, Ca, Al, Ti, V, Cr, Zr, One or more elements selected from Nb, Mo, Hf, Ta, and W) are preferable.
このような組成により、構成金属元素の含有効果および添加効果、すなわち、正極活物質として用いた場合に、サイクル特性がより良好で、低抵抗で高出力が取り出せる正極材料として機能することができる。また、このような組成において、本発明の製造方法による効果が十分に発揮され、アルカリ金属の含有量の抑制による、正極材料として特性の低下を抑制しつつ、その特性の向上を十分に図ることができる。
With such a composition, when used as a positive electrode active material, it can function as a positive electrode material with better cycle characteristics, low resistance and high output when used as a positive electrode active material. Further, in such a composition, the effect of the production method of the present invention is sufficiently exerted, and the improvement of the characteristics is sufficiently achieved while suppressing the deterioration of the characteristics as the positive electrode material due to the suppression of the alkali metal content. Can do.
(2)アルカリ金属の含有量
本発明の複合水酸化物粒子に含まれるアルカリ金属の含有量は、500質量ppm以下であり、好ましくは400質量ppm以下であり、さらに好ましくは270質量ppm以下である。 (2) Content of alkali metal The content of alkali metal contained in the composite hydroxide particles of the present invention is 500 ppm by mass or less, preferably 400 ppm by mass or less, more preferably 270 ppm by mass or less. is there.
本発明の複合水酸化物粒子に含まれるアルカリ金属の含有量は、500質量ppm以下であり、好ましくは400質量ppm以下であり、さらに好ましくは270質量ppm以下である。 (2) Content of alkali metal The content of alkali metal contained in the composite hydroxide particles of the present invention is 500 ppm by mass or less, preferably 400 ppm by mass or less, more preferably 270 ppm by mass or less. is there.
アルカリ金属は、晶析工程における中和剤として用いられるものであり、工業的には、ナトリウム(Na)やカリウム(K)などが用いられ、得られた複合水酸化物粒子中に不純物として含有される。
Alkali metal is used as a neutralizing agent in the crystallization process, and industrially, sodium (Na), potassium (K) or the like is used and contained as an impurity in the obtained composite hydroxide particles. Is done.
複合水酸化物粒子中のアルカリ金属の含有量が多くなると、このような複合水酸化物粒子を前駆体として得られた正極活物質において、電池容量の低下や反応抵抗の増加による出力特性の低下を生じることになる。したがって、複合水酸化物粒子に含まれるアルカリ金属の含有量を500質量ppm以下とすることで、これを前駆体として得られた正極活物質を、電池特性の優れた正極材料として機能させることが可能となる。
When the content of alkali metal in the composite hydroxide particles increases, in the positive electrode active material obtained using such composite hydroxide particles as a precursor, the output characteristics deteriorate due to a decrease in battery capacity or an increase in reaction resistance. Will result. Therefore, by making the content of the alkali metal contained in the composite hydroxide particles 500 mass ppm or less, the positive electrode active material obtained using this as a precursor can function as a positive electrode material having excellent battery characteristics. It becomes possible.
特に、中和剤としてナトリウムを用いた場合には、複合水酸化物粒子中にナトリウムが残留して、電池容量や出力特性の低下を生じることになるため、ナトリウムの含有量を500質量ppm以下とする必要があり、400質量ppm以下とすることが好ましく、250質量ppm以下とすることがさらに好ましい。
In particular, when sodium is used as the neutralizing agent, sodium remains in the composite hydroxide particles, resulting in a decrease in battery capacity and output characteristics, so the sodium content is 500 mass ppm or less. And is preferably 400 mass ppm or less, and more preferably 250 mass ppm or less.
また、カリウムも電池容量や出力特性を低下させることから、カリウムの含有量を100質量ppm以下とすることが好ましく、50質量ppm以下とすることがより好ましく、20質量ppm以下とすることがさらに好ましい。
Moreover, since potassium also reduces battery capacity and output characteristics, the potassium content is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, and further preferably 20 ppm by mass or less. preferable.
(3)粒子構造
本発明の複合水酸化物粒子は、複数の一次粒子が凝集して形成された二次粒子から構成される限り、その粒子構造が制限されることはない。しかしながら、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池の出力特性をより向上させるためには、複合水酸化物粒子が、微細一次粒子によって構成される中心部と、中心部の外側に、この微細一次粒子よりも大きな板状一次粒子によって構成される外殻部とからなる粒子構造を備えることが好ましい。すなわち、このような粒子構造を備えた複合水酸化物粒子を前駆体とする正極活物質は中空構造を備えたものとなり、二次電池を構成した場合に電解液との接触面積を十分に確保することができるため、その出力特性を大幅に向上させることが可能となる。 (3) Particle Structure The particle structure of the composite hydroxide particle of the present invention is not limited as long as it is composed of secondary particles formed by aggregation of a plurality of primary particles. However, in order to further improve the output characteristics of the secondary battery using the positive electrode active material having the composite hydroxide particles as a precursor, the composite hydroxide particles have a central portion constituted by fine primary particles and It is preferable that a particle structure including an outer shell portion composed of plate-like primary particles larger than the fine primary particles is provided outside the center portion. In other words, the positive electrode active material having a composite hydroxide particle having such a particle structure as a precursor has a hollow structure, and a sufficient contact area with the electrolyte is ensured when a secondary battery is configured. Therefore, the output characteristics can be greatly improved.
本発明の複合水酸化物粒子は、複数の一次粒子が凝集して形成された二次粒子から構成される限り、その粒子構造が制限されることはない。しかしながら、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池の出力特性をより向上させるためには、複合水酸化物粒子が、微細一次粒子によって構成される中心部と、中心部の外側に、この微細一次粒子よりも大きな板状一次粒子によって構成される外殻部とからなる粒子構造を備えることが好ましい。すなわち、このような粒子構造を備えた複合水酸化物粒子を前駆体とする正極活物質は中空構造を備えたものとなり、二次電池を構成した場合に電解液との接触面積を十分に確保することができるため、その出力特性を大幅に向上させることが可能となる。 (3) Particle Structure The particle structure of the composite hydroxide particle of the present invention is not limited as long as it is composed of secondary particles formed by aggregation of a plurality of primary particles. However, in order to further improve the output characteristics of the secondary battery using the positive electrode active material having the composite hydroxide particles as a precursor, the composite hydroxide particles have a central portion constituted by fine primary particles and It is preferable that a particle structure including an outer shell portion composed of plate-like primary particles larger than the fine primary particles is provided outside the center portion. In other words, the positive electrode active material having a composite hydroxide particle having such a particle structure as a precursor has a hollow structure, and a sufficient contact area with the electrolyte is ensured when a secondary battery is configured. Therefore, the output characteristics can be greatly improved.
本発明を適用することにより、このような構造の複合水酸化物粒子およびこれを前駆体として得られた正極活物質において、結晶中に含まれるアルカリ金属の含有量を効果的に低減させることが可能となる。
By applying the present invention, it is possible to effectively reduce the content of alkali metal contained in crystals in the composite hydroxide particles having such a structure and the positive electrode active material obtained using the composite hydroxide particles as a precursor. It becomes possible.
(3)粉体特性
複合水酸化物粒子の粉体特性は、上述した晶析工程における条件によって調整することができる。また、粉体特性は、この複合水酸化物粒子を前駆体とする正極活物質に継承されることとなる。すなわち、複合水酸化物粒子の粉体特性は、目的とする正極活物質に要求される粉体特性に応じて、晶析工程における条件を調整することにより制御することが可能である。たとえば、平均粒径が3μm~20μmの正極活物質を得ようとする場合、その前駆体である複合水酸化物粒子では、平均粒径を3μm~20μmに制御することが好ましく、3μm~15μmに制御することがより好ましい。これにより、平均粒径が上述した範囲にある正極活物質を容易に得ることができる。なお、本発明において平均粒径とは、体積基準による平均粒径を意味し、たとえば、レーザ回折散乱法により求めることができる。 (3) Powder characteristics The powder characteristics of the composite hydroxide particles can be adjusted according to the conditions in the crystallization process described above. The powder characteristics are inherited by the positive electrode active material having the composite hydroxide particles as a precursor. That is, the powder characteristics of the composite hydroxide particles can be controlled by adjusting the conditions in the crystallization process according to the powder characteristics required for the target positive electrode active material. For example, when obtaining a positive electrode active material having an average particle size of 3 μm to 20 μm, it is preferable to control the average particle size to 3 μm to 20 μm in the composite hydroxide particles that are precursors thereof. It is more preferable to control. Thereby, the positive electrode active material whose average particle diameter is in the above-described range can be easily obtained. In the present invention, the average particle diameter means an average particle diameter based on volume, and can be determined by, for example, a laser diffraction scattering method.
複合水酸化物粒子の粉体特性は、上述した晶析工程における条件によって調整することができる。また、粉体特性は、この複合水酸化物粒子を前駆体とする正極活物質に継承されることとなる。すなわち、複合水酸化物粒子の粉体特性は、目的とする正極活物質に要求される粉体特性に応じて、晶析工程における条件を調整することにより制御することが可能である。たとえば、平均粒径が3μm~20μmの正極活物質を得ようとする場合、その前駆体である複合水酸化物粒子では、平均粒径を3μm~20μmに制御することが好ましく、3μm~15μmに制御することがより好ましい。これにより、平均粒径が上述した範囲にある正極活物質を容易に得ることができる。なお、本発明において平均粒径とは、体積基準による平均粒径を意味し、たとえば、レーザ回折散乱法により求めることができる。 (3) Powder characteristics The powder characteristics of the composite hydroxide particles can be adjusted according to the conditions in the crystallization process described above. The powder characteristics are inherited by the positive electrode active material having the composite hydroxide particles as a precursor. That is, the powder characteristics of the composite hydroxide particles can be controlled by adjusting the conditions in the crystallization process according to the powder characteristics required for the target positive electrode active material. For example, when obtaining a positive electrode active material having an average particle size of 3 μm to 20 μm, it is preferable to control the average particle size to 3 μm to 20 μm in the composite hydroxide particles that are precursors thereof. It is more preferable to control. Thereby, the positive electrode active material whose average particle diameter is in the above-described range can be easily obtained. In the present invention, the average particle diameter means an average particle diameter based on volume, and can be determined by, for example, a laser diffraction scattering method.
3.非水系電解質二次電池用正極活物質
(1)非水系電解質二次電池用正極活物質
本発明の非水系電解質二次電池用正極活物質(以下、「正極活物質」という)は、本発明の製造方法によって得られた、本発明のニッケルマンガン複合水酸化物粒子を前駆体とするリチウムニッケルマンガン複合酸化物粒子からなることを特徴とする。 3. Positive electrode active material for non-aqueous electrolyte secondary battery (1) Positive electrode active material for non-aqueous electrolyte secondary battery The positive electrode active material for non-aqueous electrolyte secondary battery of the present invention (hereinafter referred to as “positive electrode active material”) is the present invention. It is characterized by comprising lithium nickel manganese composite oxide particles obtained by the production method of the present invention and using the nickel manganese composite hydroxide particles of the present invention as a precursor.
(1)非水系電解質二次電池用正極活物質
本発明の非水系電解質二次電池用正極活物質(以下、「正極活物質」という)は、本発明の製造方法によって得られた、本発明のニッケルマンガン複合水酸化物粒子を前駆体とするリチウムニッケルマンガン複合酸化物粒子からなることを特徴とする。 3. Positive electrode active material for non-aqueous electrolyte secondary battery (1) Positive electrode active material for non-aqueous electrolyte secondary battery The positive electrode active material for non-aqueous electrolyte secondary battery of the present invention (hereinafter referred to as “positive electrode active material”) is the present invention. It is characterized by comprising lithium nickel manganese composite oxide particles obtained by the production method of the present invention and using the nickel manganese composite hydroxide particles of the present invention as a precursor.
具体的には、本発明の正極活物質は、一般式(C):LiuNixMnyCozMt(OH)2+a(0.95≦u≦1.50、x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、複数の一次粒子が凝集して形成された二次粒子からなるリチウムニッケルマンガン複合酸化物粒子により構成され、かつ、リチウムニッケルマンガン複合酸化物粒子中のナトリウム含有量が500質量ppm以下である。
Specifically, the positive electrode active material of the present invention have the general formula (C): Li u Ni x Mn y Co z M t (OH) 2 + a (0.95 ≦ u ≦ 1.50, x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is Mg, Ca 1 or more elements selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W), and secondary particles formed by aggregating a plurality of primary particles. It is comprised by lithium nickel manganese complex oxide particle, and sodium content in lithium nickel manganese complex oxide particle is 500 mass ppm or less.
上述した一般式(C)において、リチウム(Li)の含有量を示すuの値は、0.95~1.50、好ましくは1.00~1.35、より好ましくは1.00~1.20の範囲に制御される。uの値が0.95未満では、この正極活物質を用いた二次電池の正極抵抗が大きくなるため、電池の出力が低くなってしまう。一方、uの値が1.50を超えると、この正極活物質を用いた二次電池の初期放電容量が低下してしまう。
In the above general formula (C), the value of u indicating the content of lithium (Li) is 0.95 to 1.50, preferably 1.00 to 1.35, more preferably 1.00 to 1. It is controlled in the range of 20. If the value of u is less than 0.95, the positive electrode resistance of the secondary battery using this positive electrode active material will increase, and the output of the battery will decrease. On the other hand, when the value of u exceeds 1.50, the initial discharge capacity of the secondary battery using this positive electrode active material is lowered.
なお、本発明の正極活物質の組成は、好ましくは、一般式(D):LiuNixMnyCozMt(OH)2+a(0.95≦u≦1.50、x+y+z+t=1、0.3≦x≦0.6、0.2≦y≦0.4、 0.1≦z≦0.4、0≦t≦0.02、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される。
The composition of the positive electrode active material of the present invention, preferably, the general formula (D): Li u Ni x Mn y Co z M t (OH) 2 + a (0.95 ≦ u ≦ 1.50, x + y + z + t = 1, 0.3 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.02, 0 ≦ a ≦ 0.5, M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W.
また、本発明の粒子構造および粉体特性は、本発明の複合酸化物粒子の粒子構造および粉体特性を基本的に継承する。すなわち、本発明の正極活物質は、複数の一次粒子が凝集して形成された二次粒子から構成される限り、その粒子構造が制限されることはない。ただし、優れた出力特性を備える二次電池を得ようとする場合、正極活物質の粒子構造を中空構造とすることが好ましい。また、本発明の正極活物質の粉体特性は、目的とする二次電池の用途や要求される性能に応じて調整され、特に制限されることはない。高容量の二次電池を得ようとする場合には、正極活物質の平均粒径を、レーザ回折散乱法による体積基準における平均粒径で、3μm~20μmの範囲に調整することが好ましく、3μm~15μmの範囲に調整することが好ましい。
Further, the particle structure and powder characteristics of the present invention basically inherit the particle structure and powder characteristics of the composite oxide particles of the present invention. That is, the positive electrode active material of the present invention is not limited in its particle structure as long as it is composed of secondary particles formed by aggregating a plurality of primary particles. However, when a secondary battery having excellent output characteristics is to be obtained, the positive electrode active material preferably has a hollow particle structure. The powder characteristics of the positive electrode active material of the present invention are adjusted according to the intended use of the secondary battery and the required performance, and are not particularly limited. In order to obtain a high-capacity secondary battery, the average particle diameter of the positive electrode active material is preferably adjusted to a volume-based average particle diameter of 3 μm to 20 μm by the laser diffraction scattering method. It is preferable to adjust to a range of ˜15 μm.
本発明の正極活物質の製造方法は、前駆体として、上述した本発明の複合水酸化物粒子を用いること以外、従来技術と同様である。すなわち、本発明の非水系電解質二次電池は、上述した複合水酸化物粒子とリチウム化合物を混合した後(混合工程)、得られたリチウム混合物を焼成する(焼成工程)ことにより得られる(焼成工程)。なお、このような正極活物質の製造方法において、上記工程のほかに、必要に応じて、熱処理工程、仮焼工程および解砕工程などを適宜行うことも可能である。
The method for producing the positive electrode active material of the present invention is the same as that of the prior art, except that the composite hydroxide particles of the present invention described above are used as a precursor. That is, the non-aqueous electrolyte secondary battery of the present invention is obtained by firing the obtained lithium mixture (firing step) after mixing the composite hydroxide particles and the lithium compound described above (mixing step) (firing step). Process). In addition, in such a method for producing a positive electrode active material, in addition to the above steps, a heat treatment step, a calcination step, a crushing step, and the like can be appropriately performed as necessary.
[熱処理工程]
熱処理工程は、複合水酸化物粒子を、酸化性雰囲気中、105℃~750℃で加熱することで複合水酸化物粒子に含まれる水分を除去し、熱処理粒子とする工程である。ここで、熱処理粒子には、熱処理工程において余剰水分を除去された複合水酸化物粒子のみならず、熱処理工程によって転換された遷移金属複合酸化物粒子(以下、「複合酸化物粒子」という)、または、これらの混合物も含まれる。このような熱処理工程を行うことにより、粒子中に、焼成工程まで残留する水分を一定量まで減少させることができるため、得られる正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じることを防止することができる。 [Heat treatment process]
The heat treatment step is a step of heating the composite hydroxide particles at 105 ° C. to 750 ° C. in an oxidizing atmosphere to remove moisture contained in the composite hydroxide particles to obtain heat treated particles. Here, the heat treated particles include not only the composite hydroxide particles from which excess moisture has been removed in the heat treatment step, but also transition metal composite oxide particles converted by the heat treatment step (hereinafter referred to as “composite oxide particles”), Alternatively, a mixture thereof is also included. By performing such a heat treatment step, moisture remaining in the particles until the firing step can be reduced to a certain amount, so that the ratio of the number of metal atoms and the number of lithium atoms in the obtained positive electrode active material Variations can be prevented from occurring.
熱処理工程は、複合水酸化物粒子を、酸化性雰囲気中、105℃~750℃で加熱することで複合水酸化物粒子に含まれる水分を除去し、熱処理粒子とする工程である。ここで、熱処理粒子には、熱処理工程において余剰水分を除去された複合水酸化物粒子のみならず、熱処理工程によって転換された遷移金属複合酸化物粒子(以下、「複合酸化物粒子」という)、または、これらの混合物も含まれる。このような熱処理工程を行うことにより、粒子中に、焼成工程まで残留する水分を一定量まで減少させることができるため、得られる正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じることを防止することができる。 [Heat treatment process]
The heat treatment step is a step of heating the composite hydroxide particles at 105 ° C. to 750 ° C. in an oxidizing atmosphere to remove moisture contained in the composite hydroxide particles to obtain heat treated particles. Here, the heat treated particles include not only the composite hydroxide particles from which excess moisture has been removed in the heat treatment step, but also transition metal composite oxide particles converted by the heat treatment step (hereinafter referred to as “composite oxide particles”), Alternatively, a mixture thereof is also included. By performing such a heat treatment step, moisture remaining in the particles until the firing step can be reduced to a certain amount, so that the ratio of the number of metal atoms and the number of lithium atoms in the obtained positive electrode active material Variations can be prevented from occurring.
[混合工程]
混合工程は、複合水酸化物粒子または熱処理粒子に、リチウム化合物を混合し、リチウム混合物を得る工程である。リチウム化合物は、特に制限されることはないが、入手のしやすさを考慮すると、水酸化リチウム、硝酸リチウム、炭酸リチウムまたはこれらの混合物を使用することができる。これらの中でも、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウム、炭酸リチウムまたはこれらの混合物を使用することが好ましい。 [Mixing process]
The mixing step is a step of mixing the lithium compound with the composite hydroxide particles or the heat-treated particles to obtain a lithium mixture. The lithium compound is not particularly limited, but lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof can be used in consideration of availability. Among these, it is preferable to use lithium hydroxide, lithium carbonate, or a mixture thereof in consideration of ease of handling and quality stability.
混合工程は、複合水酸化物粒子または熱処理粒子に、リチウム化合物を混合し、リチウム混合物を得る工程である。リチウム化合物は、特に制限されることはないが、入手のしやすさを考慮すると、水酸化リチウム、硝酸リチウム、炭酸リチウムまたはこれらの混合物を使用することができる。これらの中でも、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウム、炭酸リチウムまたはこれらの混合物を使用することが好ましい。 [Mixing process]
The mixing step is a step of mixing the lithium compound with the composite hydroxide particles or the heat-treated particles to obtain a lithium mixture. The lithium compound is not particularly limited, but lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof can be used in consideration of availability. Among these, it is preferable to use lithium hydroxide, lithium carbonate, or a mixture thereof in consideration of ease of handling and quality stability.
なお、リチウム混合物は、焼成前に十分混合しておくことが好ましい。混合が不十分だと、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られない場合がある。
In addition, it is preferable that the lithium mixture is sufficiently mixed before firing. When mixing is insufficient, Li / Me varies among individual particles, and sufficient battery characteristics may not be obtained.
また、混合には、一般的な混合機を使用することができ、たとえば、シェーカミキサ、Vブレンダ、リボンミキサ、ジュリアミキサ、レーディゲミキサなどを用いることができる。いずれの混合機を使用する場合も、複合水酸化物粒子または熱処理粒子の形状が破壊されない程度に、複合水酸化物粒子または熱処理粒子と、リチウム化合物とを十分に混合すればよい。
Moreover, a general mixer can be used for mixing, for example, a shaker mixer, a V blender, a ribbon mixer, a Julia mixer, a Ladige mixer, or the like can be used. In using any mixer, the composite hydroxide particles or the heat-treated particles and the lithium compound may be sufficiently mixed so that the shape of the composite hydroxide particles or the heat-treated particles is not destroyed.
[仮焼工程]
リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程後焼成工程前に、リチウム混合物を、焼成温度より低く、かつ、350℃~800℃、好ましくは450℃~780℃、すなわち、水酸化リチウムや炭酸リチウムと複合酸化物粒子との反応温度(仮焼温度)で仮焼してもよい。これにより、複合水酸化物粒子内へのリチウムの拡散が促進され、より均一なリチウム複合酸化物粒子を得ることができる。 [Calcination process]
When lithium hydroxide or lithium carbonate is used as the lithium compound, the lithium mixture is lower than the firing temperature and is 350 ° C. to 800 ° C., preferably 450 ° C. to 780 ° C. after the mixing step and before the firing step. That is, calcination may be performed at a reaction temperature (calcination temperature) between lithium hydroxide or lithium carbonate and the composite oxide particles. Thereby, the diffusion of lithium into the composite hydroxide particles is promoted, and more uniform lithium composite oxide particles can be obtained.
リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程後焼成工程前に、リチウム混合物を、焼成温度より低く、かつ、350℃~800℃、好ましくは450℃~780℃、すなわち、水酸化リチウムや炭酸リチウムと複合酸化物粒子との反応温度(仮焼温度)で仮焼してもよい。これにより、複合水酸化物粒子内へのリチウムの拡散が促進され、より均一なリチウム複合酸化物粒子を得ることができる。 [Calcination process]
When lithium hydroxide or lithium carbonate is used as the lithium compound, the lithium mixture is lower than the firing temperature and is 350 ° C. to 800 ° C., preferably 450 ° C. to 780 ° C. after the mixing step and before the firing step. That is, calcination may be performed at a reaction temperature (calcination temperature) between lithium hydroxide or lithium carbonate and the composite oxide particles. Thereby, the diffusion of lithium into the composite hydroxide particles is promoted, and more uniform lithium composite oxide particles can be obtained.
[焼成工程]
焼成工程は、混合工程で得られたリチウム混合物を、所定温度で焼成し、リチウム遷移金属複合酸化物粒子(以下、「リチウム複合酸化物粒子」という)からなる正極活物質を合成する工程である。 [Baking process]
The firing step is a step in which the lithium mixture obtained in the mixing step is fired at a predetermined temperature to synthesize a positive electrode active material composed of lithium transition metal composite oxide particles (hereinafter referred to as “lithium composite oxide particles”). .
焼成工程は、混合工程で得られたリチウム混合物を、所定温度で焼成し、リチウム遷移金属複合酸化物粒子(以下、「リチウム複合酸化物粒子」という)からなる正極活物質を合成する工程である。 [Baking process]
The firing step is a step in which the lithium mixture obtained in the mixing step is fired at a predetermined temperature to synthesize a positive electrode active material composed of lithium transition metal composite oxide particles (hereinafter referred to as “lithium composite oxide particles”). .
焼成工程における雰囲気は酸化性雰囲気とするが、酸素濃度が18容量%~100容量%の雰囲気、すなわち、大気~酸素気流中で行うことが好ましく、コスト面を考慮すると、空気気流中で行うことがより好ましい。酸素濃度が18容量%未満では、酸化反応が十分に進行せず、正極活物質の結晶性が十分なものとならない場合がある。
The atmosphere in the firing step is an oxidizing atmosphere, but it is preferably performed in an atmosphere having an oxygen concentration of 18% by volume to 100% by volume, that is, in the air to an oxygen stream. Is more preferable. If the oxygen concentration is less than 18% by volume, the oxidation reaction does not proceed sufficiently, and the crystallinity of the positive electrode active material may not be sufficient.
一方、焼成温度は、リチウム混合物中の複合水酸化物粒子または熱処理粒子の組成、特に主要金属元素Mの組成比により適宜調整することが必要となる。たとえば、本発明の組成の複合水酸化物粒子を用いる場合、焼成温度は、800℃~1100℃とすることが好ましく、800℃~950℃とすることがより好ましい。また、焼成時間を3時間以上とすることが好ましい。このような焼成温度および焼成時間を採用することにより、結晶性の高い正極活物質を得ることができる。
On the other hand, the firing temperature needs to be appropriately adjusted depending on the composition of the composite hydroxide particles or heat-treated particles in the lithium mixture, particularly the composition ratio of the main metal element M. For example, when using composite hydroxide particles having the composition of the present invention, the firing temperature is preferably 800 ° C. to 1100 ° C., more preferably 800 ° C. to 950 ° C. Moreover, it is preferable that baking time shall be 3 hours or more. By adopting such a firing temperature and firing time, a positive electrode active material with high crystallinity can be obtained.
[解砕工程]
焼成工程後の正極活物質における凝集または軽度の焼結を除去するために、これら凝集体または焼結体を解砕して、正極活物質の粉体特性を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく二次粒子を分離させて、凝集体をほぐす操作のことをいう。 [Crushing process]
In order to remove aggregation or light sintering in the positive electrode active material after the firing step, the aggregate or sintered body can be crushed to adjust the powder characteristics of the positive electrode active material to a suitable range. . Note that pulverization means that mechanical energy is applied to an aggregate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. An operation of separating secondary particles and loosening aggregates.
焼成工程後の正極活物質における凝集または軽度の焼結を除去するために、これら凝集体または焼結体を解砕して、正極活物質の粉体特性を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく二次粒子を分離させて、凝集体をほぐす操作のことをいう。 [Crushing process]
In order to remove aggregation or light sintering in the positive electrode active material after the firing step, the aggregate or sintered body can be crushed to adjust the powder characteristics of the positive electrode active material to a suitable range. . Note that pulverization means that mechanical energy is applied to an aggregate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. An operation of separating secondary particles and loosening aggregates.
解砕の方法としては、公知の手段を用いることができ、たとえば、ピンミルやハンマーミルなどを使用することができる。なお、この際、二次粒子を破壊しないように解砕力を適切な範囲に調整することが好ましい。
As the crushing method, known means can be used, for example, a pin mill or a hammer mill can be used. At this time, it is preferable to adjust the crushing force to an appropriate range so as not to destroy the secondary particles.
4.非水液電解質二次電池
本発明の正極活物質が正極材料として適用される、非水系電解質二次電池は、正極、負極、セパレータ、非水系電解液などの、一般の非水系電解質二次電池と同様の構成要素により構成される。 4). Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery to which the positive electrode active material of the present invention is applied as a positive electrode material is a general non-aqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. It is comprised by the same component.
本発明の正極活物質が正極材料として適用される、非水系電解質二次電池は、正極、負極、セパレータ、非水系電解液などの、一般の非水系電解質二次電池と同様の構成要素により構成される。 4). Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery to which the positive electrode active material of the present invention is applied as a positive electrode material is a general non-aqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. It is comprised by the same component.
本発明の正極活物質を正極材料として適用した非水系電解質二次電池では、正極材料を構成する正極活物質中のナトリウムの含有量が低減されており、熱安定性、充放電容量、出力特性などの電池特性の低下が抑制され、かつ、そのばらつきが少ないという特徴を有する。
In the non-aqueous electrolyte secondary battery in which the positive electrode active material of the present invention is applied as a positive electrode material, the content of sodium in the positive electrode active material constituting the positive electrode material is reduced, and the thermal stability, charge / discharge capacity, and output characteristics are reduced. Thus, the battery characteristics are prevented from being deteriorated, and the variation is small.
以下、実施例および比較例を用いて本発明を詳細に説明するが、本発明は、この実施形態により限定されることはない。
Hereinafter, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to the embodiments.
(実施例1)
はじめに、反応槽(60L)に、その容積の1/3の量の水を供給した後、槽内温度を50℃まで加温した。この状態で、反応槽内に窒素を流通し、酸素分圧を5Paに調整した。同時に、イオン交換水に、硫酸ニッケル、硫酸コバルト、および硫酸マンガンを、モル比でNi:Co:Mn=1:1:1となるように溶解し、2.0mоl/Lの混合水溶液を作製した。 (Example 1)
First, after supplying 1/3 of the volume of water to the reaction tank (60 L), the temperature in the tank was heated to 50 ° C. In this state, nitrogen was circulated in the reaction vessel, and the oxygen partial pressure was adjusted to 5 Pa. At the same time, nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in ion-exchanged water so that the molar ratio was Ni: Co: Mn = 1: 1: 1 to prepare a 2.0 mol / L mixed aqueous solution. .
はじめに、反応槽(60L)に、その容積の1/3の量の水を供給した後、槽内温度を50℃まで加温した。この状態で、反応槽内に窒素を流通し、酸素分圧を5Paに調整した。同時に、イオン交換水に、硫酸ニッケル、硫酸コバルト、および硫酸マンガンを、モル比でNi:Co:Mn=1:1:1となるように溶解し、2.0mоl/Lの混合水溶液を作製した。 (Example 1)
First, after supplying 1/3 of the volume of water to the reaction tank (60 L), the temperature in the tank was heated to 50 ° C. In this state, nitrogen was circulated in the reaction vessel, and the oxygen partial pressure was adjusted to 5 Pa. At the same time, nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in ion-exchanged water so that the molar ratio was Ni: Co: Mn = 1: 1: 1 to prepare a 2.0 mol / L mixed aqueous solution. .
次に、反応槽内の水を撹拌しながら、反応槽内に、上述した混合水溶液と、20質量%の水酸化ナトリウム水溶液と、25質量%のアンモニア水の供給することで反応水溶液を形成し、複合水酸化物粒子を晶析させた。この際、液温25℃基準でのpH値が11.5、アンモニア濃度が10g/Lに維持されるように、混合水溶液、水酸化ナトリウム水溶液、およびアンモニア水の供給量を調整した。なお、本実施例では、晶析反応を通じて、反応雰囲気を酸素分圧が5Paの窒素雰囲気に、反応水溶液の温度を50℃に保持した。
Next, while stirring the water in the reaction vessel, the reaction aqueous solution is formed by supplying the above-described mixed aqueous solution, 20% by mass sodium hydroxide aqueous solution, and 25% by mass ammonia water into the reaction vessel. The composite hydroxide particles were crystallized. At this time, the supply amounts of the mixed aqueous solution, the aqueous sodium hydroxide solution, and the aqueous ammonia were adjusted so that the pH value on the basis of the liquid temperature of 25 ° C. was maintained at 11.5 and the ammonia concentration was maintained at 10 g / L. In this example, the reaction atmosphere was maintained in a nitrogen atmosphere having an oxygen partial pressure of 5 Pa and the temperature of the reaction aqueous solution was maintained at 50 ° C. through the crystallization reaction.
晶析反応終了の時点において、得られた複合水酸化物粒子を塩酸で溶解した水溶液に対して酸化還元滴定を行ったところ、複合水酸化物粒子を構成する金属元素の平均価数は、2.11であった。
At the time of completion of the crystallization reaction, when oxidation-reduction titration was performed on an aqueous solution obtained by dissolving the obtained composite hydroxide particles with hydrochloric acid, the average valence of the metal element constituting the composite hydroxide particles was 2 .11.
上述のようにして得られた複合水酸化物粒子を含むスラリーを、大気雰囲気(酸素分圧:21273Pa)中で、別途用意した容器に分取した後、保持することなく洗浄した。具体的には、複合水酸化物粒子を含むスラリーを、5C定量濾紙を用いて純水(イオン交換水)で洗浄しながら固液分離する操作を2回繰り返した。このように洗浄および固液分離した複合水酸化物粒子に、120℃で12時間の真空乾燥処理を施すことにより、粉末状の複合水酸化物粒子を得た。
The slurry containing the composite hydroxide particles obtained as described above was dispensed in a separately prepared container in an air atmosphere (oxygen partial pressure: 21273 Pa), and then washed without being retained. Specifically, the operation of solid-liquid separation of the slurry containing the composite hydroxide particles was repeated twice while being washed with pure water (ion exchange water) using 5C quantitative filter paper. The composite hydroxide particles thus washed and solid-liquid separated were subjected to a vacuum drying treatment at 120 ° C. for 12 hours to obtain powdered composite hydroxide particles.
得られた複合水酸化物粒子の組成を、ICP発光分光分析装置(セイコーインスツル株式会社、Plasma Spectrometer SPS3000)を用いて分析した結果、一般式:Ni0.33Mn0.33Co0.334(OH)2.11で表されるものであることが確認された。また、ナトリウム含有量は170質量ppmであり、カリウム含有量は20質量ppm未満であった。さらに、粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いた、レーザ回折散乱法による体積基準の平均粒径の測定の結果、平均粒径MVは9.6μmであった。以上の結果を表1に示す。
As a result of analyzing the composition of the obtained composite hydroxide particles using an ICP emission spectrometer (Seiko Instruments Inc., Plasma Spectrometer SPS3000), the general formula: Ni 0.33 Mn 0.33 Co 0.334 (OH) 2.11 . It was confirmed that Moreover, sodium content was 170 mass ppm and potassium content was less than 20 mass ppm. Furthermore, as a result of measuring the volume-based average particle diameter by a laser diffraction scattering method using a particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac HRA), the average particle diameter MV was 9.6 μm. The results are shown in Table 1.
(実施例2)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを、大気雰囲気(酸素分圧:21273Pa)中で2時間、マグネチックスターラ(アズワン株式会社製、多連式マグネチックスターラHSD-6)を用いて、大気雰囲気を巻き込ませないように、500rpmの回転速度で撹拌しながら保持したこと以外は、実施例1と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.11で、水洗後の複合水酸化物粒子中のナトリウム含有量は240質量ppmであり、カリウム含有量は20質量ppm未満であった
(実施例3)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを4時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.15で、水洗後の複合水酸化物粒子中のナトリウム含有量は260質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 2)
From the end of the crystallization process to the start of the washing process, the slurry containing the composite hydroxide particles is stirred for 2 hours in an atmospheric atmosphere (oxygen partial pressure: 21273 Pa). Using a magnetic stirrer HSD-6), composite hydroxide particles were obtained in the same manner as in Example 1 except that the atmospheric atmosphere was not entangled and maintained while stirring at a rotation speed of 500 rpm. The same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.11, and the sodium content in the composite hydroxide particles after washing is 240 mass ppm, The potassium content was less than 20 mass ppm (Example 3)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 4 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.15, and the sodium content in the composite hydroxide particles after washing is 260 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを、大気雰囲気(酸素分圧:21273Pa)中で2時間、マグネチックスターラ(アズワン株式会社製、多連式マグネチックスターラHSD-6)を用いて、大気雰囲気を巻き込ませないように、500rpmの回転速度で撹拌しながら保持したこと以外は、実施例1と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.11で、水洗後の複合水酸化物粒子中のナトリウム含有量は240質量ppmであり、カリウム含有量は20質量ppm未満であった
(実施例3)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを4時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.15で、水洗後の複合水酸化物粒子中のナトリウム含有量は260質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 2)
From the end of the crystallization process to the start of the washing process, the slurry containing the composite hydroxide particles is stirred for 2 hours in an atmospheric atmosphere (oxygen partial pressure: 21273 Pa). Using a magnetic stirrer HSD-6), composite hydroxide particles were obtained in the same manner as in Example 1 except that the atmospheric atmosphere was not entangled and maintained while stirring at a rotation speed of 500 rpm. The same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.11, and the sodium content in the composite hydroxide particles after washing is 240 mass ppm, The potassium content was less than 20 mass ppm (Example 3)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 4 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.15, and the sodium content in the composite hydroxide particles after washing is 260 mass ppm, The potassium content was less than 20 ppm by mass.
(実施例4)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを8時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.22で、水洗後の複合水酸化物粒子中のナトリウム含有量は280質量ppmであり、カリウム含有量は20質量ppm未満であった。 Example 4
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 8 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.22, and the sodium content in the composite hydroxide particles after washing is 280 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを8時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.22で、水洗後の複合水酸化物粒子中のナトリウム含有量は280質量ppmであり、カリウム含有量は20質量ppm未満であった。 Example 4
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 8 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.22, and the sodium content in the composite hydroxide particles after washing is 280 mass ppm, The potassium content was less than 20 ppm by mass.
(比較例1)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを16時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.41で、水洗後の複合水酸化物粒子中のナトリウム含有量は510質量ppmであり、カリウム含有量は20質量ppm未満であったカリウム含有量は20質量ppm未満であった。 (Comparative Example 1)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 16 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.41, and the sodium content in the composite hydroxide particles after washing is 510 mass ppm, The potassium content was less than 20 ppm by mass, and the potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを16時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.41で、水洗後の複合水酸化物粒子中のナトリウム含有量は510質量ppmであり、カリウム含有量は20質量ppm未満であったカリウム含有量は20質量ppm未満であった。 (Comparative Example 1)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 16 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.41, and the sodium content in the composite hydroxide particles after washing is 510 mass ppm, The potassium content was less than 20 ppm by mass, and the potassium content was less than 20 ppm by mass.
(比較例2)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを24時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.44で、水洗後の複合水酸化物粒子中のナトリウム含有量は520質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Comparative Example 2)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 24 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.44, and the sodium content in the composite hydroxide particles after washing is 520 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを24時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.44で、水洗後の複合水酸化物粒子中のナトリウム含有量は520質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Comparative Example 2)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 24 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.44, and the sodium content in the composite hydroxide particles after washing is 520 mass ppm, The potassium content was less than 20 ppm by mass.
(比較例3)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを32時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.51で、水洗後の複合水酸化物粒子中のナトリウムの含有量は520質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Comparative Example 3)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 32 hours from the end of the crystallization step to the start of the washing step. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.51, and the sodium content in the composite hydroxide particles after washing is 520 mass ppm. The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを32時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.51で、水洗後の複合水酸化物粒子中のナトリウムの含有量は520質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Comparative Example 3)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is held with stirring for 32 hours from the end of the crystallization step to the start of the washing step. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.51, and the sodium content in the composite hydroxide particles after washing is 520 mass ppm. The potassium content was less than 20 ppm by mass.
(比較例4)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを96時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.66で、水洗後の複合水酸化物粒子中のナトリウム含有量は980質量ppmであり、カリウム含有量は20質量ppm未満であった
(実施例5)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを、窒素雰囲気(酸素分圧:5Pa)を維持した状態で、4時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.08で、水洗後の複合水酸化物粒子中のナトリウム含有量は210質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Comparative Example 4)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 96 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the retention, the average valence of the metal element constituting the composite hydroxide particles is 2.66, and the sodium content in the composite hydroxide particles after washing is 980 mass ppm, Potassium content was less than 20 ppm by weight (Example 5)
From the end of the crystallization process to the start of the washing process, except that the slurry containing the composite hydroxide particles was maintained with stirring for 4 hours while maintaining the nitrogen atmosphere (oxygen partial pressure: 5 Pa). In the same manner as in Example 2, composite hydroxide particles were obtained and the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 210 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを96時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.66で、水洗後の複合水酸化物粒子中のナトリウム含有量は980質量ppmであり、カリウム含有量は20質量ppm未満であった
(実施例5)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを、窒素雰囲気(酸素分圧:5Pa)を維持した状態で、4時間、撹拌しながら保持したこと以外は、実施例2と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.08で、水洗後の複合水酸化物粒子中のナトリウム含有量は210質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Comparative Example 4)
The composite hydroxide particles are obtained in the same manner as in Example 2 except that the slurry containing the composite hydroxide particles is maintained with stirring for 96 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the retention, the average valence of the metal element constituting the composite hydroxide particles is 2.66, and the sodium content in the composite hydroxide particles after washing is 980 mass ppm, Potassium content was less than 20 ppm by weight (Example 5)
From the end of the crystallization process to the start of the washing process, except that the slurry containing the composite hydroxide particles was maintained with stirring for 4 hours while maintaining the nitrogen atmosphere (oxygen partial pressure: 5 Pa). In the same manner as in Example 2, composite hydroxide particles were obtained and the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 210 mass ppm, The potassium content was less than 20 ppm by mass.
(実施例6)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを24時間、撹拌しながら保持したこと以外は、実施例5と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.07で、水洗後の複合水酸化物粒子中のナトリウム含有量は220質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 6)
The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 24 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.07, and the sodium content in the composite hydroxide particles after washing is 220 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを24時間、撹拌しながら保持したこと以外は、実施例5と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.07で、水洗後の複合水酸化物粒子中のナトリウム含有量は220質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 6)
The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 24 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.07, and the sodium content in the composite hydroxide particles after washing is 220 mass ppm, The potassium content was less than 20 ppm by mass.
(実施例7)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを32時間、撹拌しながら保持したこと以外は、実施例5と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.08で、水洗後の複合水酸化物粒子中のナトリウム含有量は220質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 7)
The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 32 hours from the end of the crystallization step to the start of the washing step. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 220 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを32時間、撹拌しながら保持したこと以外は、実施例5と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.08で、水洗後の複合水酸化物粒子中のナトリウム含有量は220質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 7)
The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 32 hours from the end of the crystallization step to the start of the washing step. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 220 mass ppm, The potassium content was less than 20 ppm by mass.
(実施例8)
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを96時間、撹拌しながら保持したこと以外は、実施例5と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.08で、水洗後の複合水酸化物粒子中のナトリウム含有量は240質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 8)
The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 96 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 240 mass ppm, The potassium content was less than 20 ppm by mass.
晶析工程終了から洗浄工程を開始するまでの間、複合水酸化物粒子を含むスラリーを96時間、撹拌しながら保持したこと以外は、実施例5と同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。上記保持後の酸化還元滴定の結果、複合水酸化物粒子を構成する金属元素の平均価数は2.08で、水洗後の複合水酸化物粒子中のナトリウム含有量は240質量ppmであり、カリウム含有量は20質量ppm未満であった。 (Example 8)
The composite hydroxide particles are obtained in the same manner as in Example 5 except that the slurry containing the composite hydroxide particles is maintained with stirring for 96 hours from the end of the crystallization process to the start of the washing process. At the same time, the same measurement was performed. As a result of the oxidation-reduction titration after the holding, the average valence of the metal element constituting the composite hydroxide particles is 2.08, and the sodium content in the composite hydroxide particles after washing is 240 mass ppm, The potassium content was less than 20 ppm by mass.
(実施例9~12、比較例5~8、実施例13~16)
反応槽内の雰囲気を大気雰囲気(酸素分圧:21273Pa)として、反応水溶液のpH値を液温25℃基準で13.0に、アンモニア濃度を15g/Lに維持して、2分30秒間の晶析を行い、核生成を行った(核生成工程)のち、反応水溶液のpH値を液温25℃基準で11.6になるまで、25質量%水酸化ナトリウム水溶液の供給を停止し、その後、その供給を再開して、反応水溶液のpH値を液温25℃基準で11.6に、アンモニア濃度を15g/Lに維持して、30分間の晶析を行い、給液を一旦停止し、反応槽内の雰囲気を窒素雰囲気(酸素分圧;200Pa)となるまで窒素ガスを流通させ、その後、給液を開始し、成長開始から合計で2時間の晶析を行い(粒子成長工程)、粒子成長工程後にさらに窒素ガスを流通させて、雰囲気の酸素分圧を5Paとしたこと以外は、実施例1~4、比較例1~4、実施例5~8と同様の同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。その測定結果を表2に示す。 (Examples 9 to 12, Comparative Examples 5 to 8, Examples 13 to 16)
The atmosphere in the reaction vessel was an atmospheric atmosphere (oxygen partial pressure: 21273 Pa), the pH value of the aqueous reaction solution was maintained at 13.0 on the basis of the liquid temperature of 25 ° C., and the ammonia concentration was maintained at 15 g / L for 2 minutes and 30 seconds. After crystallization and nucleation (nucleation step), the supply of 25% by mass aqueous sodium hydroxide is stopped until the pH value of the reaction aqueous solution becomes 11.6 based on the liquid temperature of 25 ° C. Then, the supply was resumed, the pH value of the reaction aqueous solution was maintained at 11.6 on the basis of the liquid temperature of 25 ° C., the ammonia concentration was maintained at 15 g / L, crystallization was carried out for 30 minutes, and the liquid supply was temporarily stopped. Then, nitrogen gas was circulated until the atmosphere in the reaction tank became a nitrogen atmosphere (oxygen partial pressure; 200 Pa), and then the liquid supply was started, and crystallization was performed for a total of 2 hours from the start of growth (particle growth process) Circulate nitrogen gas after the grain growth process The composite hydroxide particles were obtained in the same manner as in Examples 1 to 4, Comparative Examples 1 to 4, and Examples 5 to 8, except that the oxygen partial pressure in the atmosphere was changed to 5 Pa. Went. The measurement results are shown in Table 2.
反応槽内の雰囲気を大気雰囲気(酸素分圧:21273Pa)として、反応水溶液のpH値を液温25℃基準で13.0に、アンモニア濃度を15g/Lに維持して、2分30秒間の晶析を行い、核生成を行った(核生成工程)のち、反応水溶液のpH値を液温25℃基準で11.6になるまで、25質量%水酸化ナトリウム水溶液の供給を停止し、その後、その供給を再開して、反応水溶液のpH値を液温25℃基準で11.6に、アンモニア濃度を15g/Lに維持して、30分間の晶析を行い、給液を一旦停止し、反応槽内の雰囲気を窒素雰囲気(酸素分圧;200Pa)となるまで窒素ガスを流通させ、その後、給液を開始し、成長開始から合計で2時間の晶析を行い(粒子成長工程)、粒子成長工程後にさらに窒素ガスを流通させて、雰囲気の酸素分圧を5Paとしたこと以外は、実施例1~4、比較例1~4、実施例5~8と同様の同様にして、複合水酸化物粒子を得るとともに、同様の測定を行った。その測定結果を表2に示す。 (Examples 9 to 12, Comparative Examples 5 to 8, Examples 13 to 16)
The atmosphere in the reaction vessel was an atmospheric atmosphere (oxygen partial pressure: 21273 Pa), the pH value of the aqueous reaction solution was maintained at 13.0 on the basis of the liquid temperature of 25 ° C., and the ammonia concentration was maintained at 15 g / L for 2 minutes and 30 seconds. After crystallization and nucleation (nucleation step), the supply of 25% by mass aqueous sodium hydroxide is stopped until the pH value of the reaction aqueous solution becomes 11.6 based on the liquid temperature of 25 ° C. Then, the supply was resumed, the pH value of the reaction aqueous solution was maintained at 11.6 on the basis of the liquid temperature of 25 ° C., the ammonia concentration was maintained at 15 g / L, crystallization was carried out for 30 minutes, and the liquid supply was temporarily stopped. Then, nitrogen gas was circulated until the atmosphere in the reaction tank became a nitrogen atmosphere (oxygen partial pressure; 200 Pa), and then the liquid supply was started, and crystallization was performed for a total of 2 hours from the start of growth (particle growth process) Circulate nitrogen gas after the grain growth process The composite hydroxide particles were obtained in the same manner as in Examples 1 to 4, Comparative Examples 1 to 4, and Examples 5 to 8, except that the oxygen partial pressure in the atmosphere was changed to 5 Pa. Went. The measurement results are shown in Table 2.
(比較例9、実施例17、比較例10、11)
晶析工程終了から洗浄工程を開始するまでの間、スラリーのpH値を25℃基準で13.5としたこと(比較例9)以外は実施例12と同様にして、酸素分圧を10Paとしたこと(実施例17)、酸素分圧を50Paおよび200Paとしたこと(比較例10、11)以外は、実施例16と同様にして、それぞれ複合水酸化物粒子を得るとともに、同様の測定を行った。その測定結果を表2に合わせて示す。 (Comparative Example 9, Example 17, Comparative Examples 10 and 11)
From the end of the crystallization step to the start of the washing step, the oxygen partial pressure was set to 10 Pa in the same manner as in Example 12 except that the pH value of the slurry was 13.5 on the basis of 25 ° C. (Comparative Example 9). (Example 17) Except that the oxygen partial pressure was 50 Pa and 200 Pa (Comparative Examples 10 and 11), the composite hydroxide particles were obtained in the same manner as in Example 16 and the same measurement was performed. went. The measurement results are shown in Table 2.
晶析工程終了から洗浄工程を開始するまでの間、スラリーのpH値を25℃基準で13.5としたこと(比較例9)以外は実施例12と同様にして、酸素分圧を10Paとしたこと(実施例17)、酸素分圧を50Paおよび200Paとしたこと(比較例10、11)以外は、実施例16と同様にして、それぞれ複合水酸化物粒子を得るとともに、同様の測定を行った。その測定結果を表2に合わせて示す。 (Comparative Example 9, Example 17, Comparative Examples 10 and 11)
From the end of the crystallization step to the start of the washing step, the oxygen partial pressure was set to 10 Pa in the same manner as in Example 12 except that the pH value of the slurry was 13.5 on the basis of 25 ° C. (Comparative Example 9). (Example 17) Except that the oxygen partial pressure was 50 Pa and 200 Pa (Comparative Examples 10 and 11), the composite hydroxide particles were obtained in the same manner as in Example 16 and the same measurement was performed. went. The measurement results are shown in Table 2.
なお、実施例9~12,比較例5~9,実施例13~17のいずれにおいても、カリウム含有量は20質量ppm未満であった。
In Examples 9 to 12, Comparative Examples 5 to 9, and Examples 13 to 17, the potassium content was less than 20 ppm by mass.
(総合評価)
表1および表2より、洗浄工程の開始時点における複合水酸化物粒子を構成する金属元素の平均価数が大きくなるほど、最終的に得られる複合水酸化物粒子中のアルカリ金属の含有量、特にナトリウム含有量が大きくなることが理解される。特に、平均価数が2.4を超えると、ナトリウム単独でもその含有量が500ppmを超えてしまうことが理解される。 (Comprehensive evaluation)
From Table 1 and Table 2, as the average valence of the metal element constituting the composite hydroxide particles at the start of the washing step increases, the content of alkali metal in the finally obtained composite hydroxide particles, particularly It is understood that the sodium content is increased. In particular, when the average valence exceeds 2.4, it is understood that the content of sodium alone exceeds 500 ppm.
表1および表2より、洗浄工程の開始時点における複合水酸化物粒子を構成する金属元素の平均価数が大きくなるほど、最終的に得られる複合水酸化物粒子中のアルカリ金属の含有量、特にナトリウム含有量が大きくなることが理解される。特に、平均価数が2.4を超えると、ナトリウム単独でもその含有量が500ppmを超えてしまうことが理解される。 (Comprehensive evaluation)
From Table 1 and Table 2, as the average valence of the metal element constituting the composite hydroxide particles at the start of the washing step increases, the content of alkali metal in the finally obtained composite hydroxide particles, particularly It is understood that the sodium content is increased. In particular, when the average valence exceeds 2.4, it is understood that the content of sodium alone exceeds 500 ppm.
したがって、洗浄工程の開始時点において、金属元素の平均価数を2.4以下に制御した状態で複合水酸化物粒子を洗浄することにより、アルカリ金属、特にナトリウムを十分に除去でき、複合水酸化物粒子中に残存するアルカリ金属の含有量を低減させうることが理解される。
Therefore, at the start of the cleaning process, by washing the composite hydroxide particles in a state where the average valence of the metal element is controlled to 2.4 or less, alkali metal, particularly sodium can be sufficiently removed, and composite hydroxide It is understood that the content of alkali metal remaining in the product particles can be reduced.
このため、本発明によれば、結晶中に残存するアルカリ金属の含有量が少ない正極活物質を得るための前駆体として複合水酸化物粒子が提供されること、および、本発明の複合水酸化物粒子を前駆体とする正極活物質を正極材料として用いることで、電池特性の低下やばらつきが抑制された二次電池を製造することが可能となることが理解される。
Therefore, according to the present invention, composite hydroxide particles are provided as a precursor for obtaining a positive electrode active material with a small content of alkali metal remaining in the crystal, and the composite hydroxide of the present invention It is understood that by using a positive electrode active material having a product particle as a precursor as a positive electrode material, it is possible to manufacture a secondary battery in which deterioration and variation in battery characteristics are suppressed.
Claims (9)
- 中和剤として水酸化ナトリウムを用いた晶析反応により、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルマンガン複合水酸化物粒子を含むスラリーを得る晶析工程と、
前記ニッケルマンガン複合水酸化物粒子中の金属元素の平均価数を2.4以下に制御した状態で、該ニッケルマンガン複合水酸化物粒子を洗浄する洗浄工程と、
を備える、ことを特徴とするニッケルマンガン複合水酸化物粒子の製造方法。 The crystallization reaction using sodium hydroxide as a neutralizing agent, the general formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is Mg, Ca, Al, Ti, V, Cr, Zr Crystallization step of obtaining a slurry containing nickel manganese composite hydroxide particles represented by Nb, Mo, Hf, Ta, W).
A washing step of washing the nickel manganese composite hydroxide particles in a state where the average valence of the metal element in the nickel manganese composite hydroxide particles is controlled to 2.4 or less;
A method for producing nickel manganese composite hydroxide particles, comprising: - 前記晶析工程終了から前記洗浄工程を開始するまでの間、前記スラリーを、酸素分圧を10Pa以下に制御した非酸化性雰囲気中に保持する、請求項1に記載のニッケルマンガン複合水酸化物粒子の製造方法。 2. The nickel manganese composite hydroxide according to claim 1, wherein the slurry is maintained in a non-oxidizing atmosphere in which an oxygen partial pressure is controlled to 10 Pa or less from the end of the crystallization step to the start of the cleaning step. Particle manufacturing method.
- 前記晶析工程終了から前記洗浄工程を開始するまでの間、前記スラリーを、液温25℃基準でのpH値を10.5~13.0の範囲に制御した状態で保持する、請求項1または2に記載のニッケルマンガン複合水酸化物粒子の製造方法。 2. The slurry is maintained in a state in which the pH value based on a liquid temperature of 25 ° C. is controlled in the range of 10.5 to 13.0 from the end of the crystallization step to the start of the washing step. Or the manufacturing method of the nickel manganese composite hydroxide particle | grains of 2 or 2.
- 前記晶析工程終了から前記洗浄工程を開始するまでの間、前記スラリーを、大気雰囲気中で、液温25℃基準でのpH値を10.5~13.0の範囲に制御した状態で保持し、かつ、該保持時間を10時間以下とする、請求項1に記載のニッケルマンガン複合水酸化物粒子の製造方法。 From the end of the crystallization process to the start of the washing process, the slurry is maintained in an air atmosphere in a state where the pH value based on a liquid temperature of 25 ° C. is controlled within the range of 10.5 to 13.0. And the manufacturing method of the nickel manganese composite hydroxide particle | grains of Claim 1 which makes this holding time 10 hours or less.
- 前記晶析工程を、核生成用水溶液を、液温25℃基準でのpH値が12.0~14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、該核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃でのpH値が10.5~12.0となるように制御するとともに、粒子成長工程の開始時から粒子成長工程の全体に対して0%~40%の範囲で酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替えて、前記核を成長させる粒子成長工程とにより構成し、前記ニッケルマンガン複合水酸化物粒子を、微細一次粒子からなる中心部を有し、かつ、該中心部の外側に、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部を有する二次粒子として得る、請求項1~4のいずれかに記載のニッケルマンガン複合水酸化物粒子の製造方法。 In the crystallization step, the aqueous solution for nucleation is controlled so that the pH value on the basis of a liquid temperature of 25 ° C. is 12.0 to 14.0, in an oxidizing atmosphere in which the oxygen concentration exceeds 1% by volume. A nucleation step for nucleation and an aqueous solution for particle growth containing nuclei formed in the nucleation step are controlled so that the pH value at a liquid temperature of 25 ° C. is 10.5 to 12.0. The nuclei are switched from an oxidizing atmosphere to a mixed atmosphere of oxygen and inert gas having an oxygen concentration of 1% by volume or less in the range of 0% to 40% with respect to the whole of the particle growth process from the start of the particle growth process. The nickel-manganese composite hydroxide particles have a central part composed of fine primary particles, and the plate-like primary larger than the fine primary particles outside the central part. Secondary particle having outer shell made of particles And get method of nickel-manganese composite hydroxide particles according to any one of claims 1-4.
- 一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、複数の一次粒子が凝集して形成された二次粒子からなり、かつ、アルカリ金属の含有量が500質量ppm以下であることを特徴とする、ニッケルマンガン複合水酸化物粒子。 Formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.7,0.1 ≦ y ≦ 0.55,0 ≦ z ≦ 0 .4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W Nickel manganese composite water characterized by comprising secondary particles formed by agglomerating a plurality of primary particles and having an alkali metal content of 500 ppm by mass or less. Oxide particles.
- 一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、微細一次粒子が凝集した中心部を有し、かつ、該中心部の外側に、前記微細一次粒子よりも大きな板状一次粒子が凝集した外殻部を有する二次粒子からなり、および、アルカリ金属の含有量が500質量ppm以下であることを特徴とする、ニッケルマンガン複合水酸化物粒子。 Formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.7,0.1 ≦ y ≦ 0.55,0 ≦ z ≦ 0 .4, 0 ≦ t ≦ 0.1, 0 ≦ a ≦ 0.5, M is selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W 2) having a central portion in which fine primary particles are aggregated and an outer shell portion in which plate-like primary particles larger than the fine primary particles are aggregated outside the central portion. Nickel-manganese composite hydroxide particles comprising secondary particles and having an alkali metal content of 500 ppm by mass or less.
- 一般式(B):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.6、0.2≦y≦0.4、0.1≦z≦0.4、0≦t≦0.02、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される、請求項6または7に記載のニッケルマンガン複合水酸化物粒子。 Formula (B): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t = 1,0.3 ≦ x ≦ 0.6,0.2 ≦ y ≦ 0.4,0.1 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.02, 0 ≦ a ≦ 0.5, M is selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W The nickel manganese composite hydroxide particles according to claim 6 or 7, represented by: one or more elements.
- 請求項5~8のいずれかに記載のニッケルマンガン複合水酸化物粒子を前駆体とするリチウムニッケルマンガン複合酸化物粒子からなることを特徴とする、非水系電解質二次電池用正極活物質。 A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising lithium nickel manganese composite oxide particles having the nickel manganese composite hydroxide particles according to any one of claims 5 to 8 as a precursor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016536005A JP6747291B2 (en) | 2014-07-25 | 2015-07-24 | Nickel-manganese composite hydroxide particles and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014151295 | 2014-07-25 | ||
JP2014-151295 | 2014-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013674A1 true WO2016013674A1 (en) | 2016-01-28 |
Family
ID=55163196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071163 WO2016013674A1 (en) | 2014-07-25 | 2015-07-24 | Nickel manganese compound hydroxide particles and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6747291B2 (en) |
WO (1) | WO2016013674A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190106637A (en) * | 2018-03-09 | 2019-09-18 | 주식회사 엘지화학 | Lithium Secondary Battery |
JP2019220353A (en) * | 2018-06-20 | 2019-12-26 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery |
WO2020153093A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
WO2020153094A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
WO2020153096A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
JPWO2020027204A1 (en) * | 2018-08-03 | 2020-08-06 | 住友金属鉱山株式会社 | Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery |
CN113003616A (en) * | 2021-05-25 | 2021-06-22 | 河南科隆新能源股份有限公司 | Method for improving specific surface area of lithium ion battery anode material precursor |
CN113330606A (en) * | 2019-01-22 | 2021-08-31 | 住友金属矿山株式会社 | Nickel-cobalt-aluminum composite hydroxide, method for producing nickel-cobalt-aluminum composite hydroxide, lithium-nickel-cobalt-aluminum composite oxide, and lithium ion secondary battery |
CN113330605A (en) * | 2019-01-22 | 2021-08-31 | 住友金属矿山株式会社 | Nickel-manganese-cobalt composite hydroxide, method for producing nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
CN113330607A (en) * | 2019-01-22 | 2021-08-31 | 住友金属矿山株式会社 | Nickel-manganese-cobalt composite hydroxide, method for producing nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
EP3916856A4 (en) * | 2019-01-22 | 2023-03-15 | Sumitomo Metal Mining Co., Ltd. | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
JP7549150B2 (en) | 2021-12-27 | 2024-09-10 | ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド | Positive electrode material, its preparation and use, and lithium-ion battery |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113683130B (en) * | 2021-10-26 | 2022-02-08 | 金驰能源材料有限公司 | Preparation method of nickel-rich large-particle-size ternary precursor with low sodium and sulfur impurity content |
CN114573053B (en) * | 2022-05-05 | 2022-08-09 | 南通金通储能动力新材料有限公司 | Dynamic repairing method for spherical cracking high-nickel ternary precursor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515799A (en) * | 2005-08-12 | 2009-04-16 | トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Inorganic compounds |
JP2011153067A (en) * | 2009-12-28 | 2011-08-11 | Sumitomo Chemical Co Ltd | Method for producing composite metal hydroxide and lithium composite metal oxide, and nonaqueous electrolyte secondary battery |
WO2012020768A1 (en) * | 2010-08-10 | 2012-02-16 | Agcセイミケミカル株式会社 | Production method for a composite compound comprising nickel and cobalt |
WO2012131881A1 (en) * | 2011-03-28 | 2012-10-04 | 住友金属鉱山株式会社 | Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
CN103178257A (en) * | 2012-12-10 | 2013-06-26 | 深圳市天骄科技开发有限公司 | Method for preparing precursor of positive material of nickel manganese cobalt multi-element lithium ion battery |
CN103915615A (en) * | 2014-04-15 | 2014-07-09 | 江西理工大学 | Lithium-rich manganese-based positive electrode material and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010015368A1 (en) * | 2008-08-04 | 2010-02-11 | Umicore | Highly crystalline lithium transition metal oxides |
-
2015
- 2015-07-24 WO PCT/JP2015/071163 patent/WO2016013674A1/en active Application Filing
- 2015-07-24 JP JP2016536005A patent/JP6747291B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515799A (en) * | 2005-08-12 | 2009-04-16 | トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Inorganic compounds |
JP2011153067A (en) * | 2009-12-28 | 2011-08-11 | Sumitomo Chemical Co Ltd | Method for producing composite metal hydroxide and lithium composite metal oxide, and nonaqueous electrolyte secondary battery |
WO2012020768A1 (en) * | 2010-08-10 | 2012-02-16 | Agcセイミケミカル株式会社 | Production method for a composite compound comprising nickel and cobalt |
WO2012131881A1 (en) * | 2011-03-28 | 2012-10-04 | 住友金属鉱山株式会社 | Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
CN103178257A (en) * | 2012-12-10 | 2013-06-26 | 深圳市天骄科技开发有限公司 | Method for preparing precursor of positive material of nickel manganese cobalt multi-element lithium ion battery |
CN103915615A (en) * | 2014-04-15 | 2014-07-09 | 江西理工大学 | Lithium-rich manganese-based positive electrode material and preparation method thereof |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190106637A (en) * | 2018-03-09 | 2019-09-18 | 주식회사 엘지화학 | Lithium Secondary Battery |
US11848448B2 (en) | 2018-03-09 | 2023-12-19 | Lg Energy Solution, Ltd. | Lithium secondary battery |
KR102160712B1 (en) | 2018-03-09 | 2020-09-28 | 주식회사 엘지화학 | Lithium Secondary Battery |
JP2019220353A (en) * | 2018-06-20 | 2019-12-26 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery |
US11894555B2 (en) | 2018-08-03 | 2024-02-06 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
JP7198777B2 (en) | 2018-08-03 | 2023-01-04 | 住友金属鉱山株式会社 | Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery |
JPWO2020027204A1 (en) * | 2018-08-03 | 2020-08-06 | 住友金属鉱山株式会社 | Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery |
CN113330605A (en) * | 2019-01-22 | 2021-08-31 | 住友金属矿山株式会社 | Nickel-manganese-cobalt composite hydroxide, method for producing nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
CN113330606A (en) * | 2019-01-22 | 2021-08-31 | 住友金属矿山株式会社 | Nickel-cobalt-aluminum composite hydroxide, method for producing nickel-cobalt-aluminum composite hydroxide, lithium-nickel-cobalt-aluminum composite oxide, and lithium ion secondary battery |
CN113330607A (en) * | 2019-01-22 | 2021-08-31 | 住友金属矿山株式会社 | Nickel-manganese-cobalt composite hydroxide, method for producing nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
WO2020153096A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
EP3916857A4 (en) * | 2019-01-22 | 2023-03-15 | Sumitomo Metal Mining Co., Ltd. | Nickel-cobalt-aluminum composite hydroxide, production method for nickel-cobalt-aluminum composite hydroxide, lithium-nickel-cobalt-aluminum composite oxide, and lithium ion secondary battery |
EP3916856A4 (en) * | 2019-01-22 | 2023-03-15 | Sumitomo Metal Mining Co., Ltd. | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
EP3916858A4 (en) * | 2019-01-22 | 2023-03-15 | Sumitomo Metal Mining Co., Ltd. | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
EP3916855A4 (en) * | 2019-01-22 | 2023-03-15 | Sumitomo Metal Mining Co., Ltd. | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
WO2020153094A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
WO2020153093A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
CN113003616B (en) * | 2021-05-25 | 2021-07-20 | 河南科隆新能源股份有限公司 | Method for improving specific surface area of lithium ion battery anode material precursor |
CN113003616A (en) * | 2021-05-25 | 2021-06-22 | 河南科隆新能源股份有限公司 | Method for improving specific surface area of lithium ion battery anode material precursor |
JP7549150B2 (en) | 2021-12-27 | 2024-09-10 | ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド | Positive electrode material, its preparation and use, and lithium-ion battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016013674A1 (en) | 2017-04-27 |
JP6747291B2 (en) | 2020-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6747291B2 (en) | Nickel-manganese composite hydroxide particles and method for producing the same | |
US9583764B2 (en) | Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery | |
KR101694086B1 (en) | Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material | |
JP6201895B2 (en) | Method for producing nickel cobalt manganese composite hydroxide | |
JP6089433B2 (en) | Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP6344007B2 (en) | Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP6428105B2 (en) | Nickel cobalt manganese compound and method for producing the same | |
WO2017061633A1 (en) | Lithium-nickel-containing composite oxide and method for producing same, and nonaqueous electrolyte secondary battery | |
JP6237330B2 (en) | Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery | |
JP5754416B2 (en) | Method for producing nickel cobalt composite hydroxide | |
JP5811383B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP7293576B2 (en) | Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same | |
JP7452570B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries | |
JP2016031854A (en) | Transition metal complex hydroxide particle and manufacturing method thereof, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries with the same | |
JP6686641B2 (en) | Manganese composite hydroxide and method for producing the same, transition metal salt aqueous solution and method for preparing the same | |
JP6357978B2 (en) | Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP6245081B2 (en) | Nickel cobalt manganese composite hydroxide and method for producing the same | |
JP2022504835A (en) | Lithium transition metal composite oxide and its manufacturing method | |
JP6876600B2 (en) | Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method | |
WO2020152768A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, and lithium-nickel-manganese-cobalt composite oxide | |
JP7313112B2 (en) | Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
WO2021235470A1 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP2015173122A (en) | Method for producing positive electrode active material for nonaqueous electrolyte secondary battery | |
JP2020047534A (en) | Nickel complex compound particle, manufacturing method thereof, and manufacturing method of cathode active material for lithium ion secondary battery | |
JP7371354B2 (en) | Method for producing nickel composite hydroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15825420 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016536005 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15825420 Country of ref document: EP Kind code of ref document: A1 |