JP2019220353A - Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery - Google Patents
Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery Download PDFInfo
- Publication number
- JP2019220353A JP2019220353A JP2018117136A JP2018117136A JP2019220353A JP 2019220353 A JP2019220353 A JP 2019220353A JP 2018117136 A JP2018117136 A JP 2018117136A JP 2018117136 A JP2018117136 A JP 2018117136A JP 2019220353 A JP2019220353 A JP 2019220353A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- solid
- ion battery
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 72
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 54
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims description 6
- 239000002245 particle Substances 0.000 claims abstract description 42
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 43
- 239000007864 aqueous solution Substances 0.000 claims description 42
- 239000011572 manganese Substances 0.000 claims description 29
- 239000002002 slurry Substances 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 25
- 239000012298 atmosphere Substances 0.000 claims description 19
- 238000005507 spraying Methods 0.000 claims description 18
- 239000010955 niobium Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000012798 spherical particle Substances 0.000 claims description 10
- XNHGKSMNCCTMFO-UHFFFAOYSA-D niobium(5+);oxalate Chemical compound [Nb+5].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O XNHGKSMNCCTMFO-UHFFFAOYSA-D 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 8
- 239000007784 solid electrolyte Substances 0.000 claims description 8
- 238000001694 spray drying Methods 0.000 claims description 8
- 239000010953 base metal Substances 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 4
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 claims description 4
- PKMASXCLWGABIO-UHFFFAOYSA-N C(C(=O)[O-])(=O)[O-].[NH4+].[NH4+].[Ti] Chemical compound C(C(=O)[O-])(=O)[O-].[NH4+].[NH4+].[Ti] PKMASXCLWGABIO-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000010304 firing Methods 0.000 description 25
- 239000007788 liquid Substances 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- -1 flame-retardant compound Chemical class 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910010835 LiI-Li2S-P2S5 Inorganic materials 0.000 description 2
- 229910010840 LiI—Li2S—P2S5 Inorganic materials 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000007885 magnetic separation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229940053662 nickel sulfate Drugs 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- BBJSDUUHGVDNKL-UHFFFAOYSA-J oxalate;titanium(4+) Chemical compound [Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O BBJSDUUHGVDNKL-UHFFFAOYSA-J 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池及び全固体リチウムイオン電池用正極活物質の製造方法に関する。 The present invention relates to a positive electrode active material for an all solid lithium ion battery, a positive electrode for an all solid lithium ion battery, an all solid lithium ion battery, and a method for producing a positive electrode active material for an all solid lithium ion battery.
現在、使用されているリチウムイオン電池は、正極活物質として層状化合物LiMeO2(Meは平均で+III価となるように選択されるカチオンであり、レドックスカチオンを必ず含む)、スピネル化合物LiMeQO4(Qは平均で+IV価となるように選択されるカチオン)、オリビン系化合物LiX1X2O4(X1は+II価となるように選択されるカチオンであり、レドックスカチオンを必ず含む、X2は+V価となるように選択されるカチオン)や蛍石型化合物Li5MeO4等を用いており、一方でその特性を生かすことができるよう、電解液その他構成要件が年々改善されてきている。 Currently used lithium ion batteries include, as a positive electrode active material, a layered compound LiMeO 2 (Me is a cation selected to have an average of + III valence and always includes a redox cation), and a spinel compound LiMeQO 4 (Q cation) is chosen to be the average at + IV-valent, olivine compound LiX 1 X 2 O 4 (X 1 is a cation selected such that + II valence, always includes a redox cation, X 2 is (Cation selected to have a + V value), a fluorite-type compound Li 5 MeO 4, and the like, and on the other hand, an electrolytic solution and other constituent requirements have been improved year by year so that the characteristics can be utilized.
ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池(以下、液系LIBとする)の代替候補として、電解質を固体とした全固体リチウムイオン電池(以下、全固体LIBとする)が近年注目を集めている(特許文献1等)。その中でも、固体電解質としてLi2S−P2S5などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of a lithium ion battery, most of the electrolyte is an organic compound, and even if a flame-retardant compound is used, it cannot be said that there is no danger of causing a fire. As an alternative candidate for such a liquid-based lithium-ion battery (hereinafter, referred to as a liquid-based LIB), an all-solid-state lithium-ion battery (hereinafter, referred to as an all-solid-state LIB) having a solid electrolyte has attracted attention in recent years (Patent Document 1). etc). Among them, sulfides such as Li 2 S—P 2 S 5 as solid electrolytes and all solid-state lithium ion batteries to which lithium halide is added are becoming mainstream.
全固体LIBでは、予想外の電池燃焼の可能性が液系LIBに比べて著しく低い反面、電流を取り出しにくいといった欠点があり、このための対策として、例えば、正極で用いる活物質の粒子を小さくしたり、正極中に固体電解質を2〜3割程度混合したり、正極活物質粒子の表面にLiNbO3を被覆するといった技術が開発されている。 The all-solid-state LIB has a significantly lower possibility of unexpected battery combustion than the liquid-type LIB, but has a drawback that current is difficult to be extracted. As a countermeasure, for example, the active material particles used in the positive electrode are reduced in size. For example, techniques have been developed in which a solid electrolyte is mixed in the positive electrode by about 20 to 30%, or the surface of the positive electrode active material particles is coated with LiNbO 3 .
しかしながら、これらの技術を全て駆使したとしても、液系LIBから全固体LIBへの転換が円滑に進むとは予想しがたい状況にある。この原因として以下の例で示すような欠点があった。
(1)用途がPCやモバイル機器用途の場合、当該用途の液系LIBと電池特性を同等にしようとすると固体電解質を正極中に2〜3割混合しなければならず、かつ粒子径も小さくしなければならないので、体積エネルギー密度の点で不利となる。
(2)用途がEVや動力機器用途の場合、もともと当該用途の液系LIBで想定されていた正極活物質の粒子径が小さいので、全固体LIBで液系LIBと同等の特性を得ようとするとそれよりもさらに粒子径を小さくする必要があり、また電極厚さも薄くしなくてはならなくなり、電極の製造が困難となる。
However, even if all of these technologies are used, it is difficult to expect that the conversion from liquid LIB to all solid LIB will proceed smoothly. As a cause of this, there was a defect as shown in the following example.
(1) When the application is a PC or mobile device application, in order to make the battery characteristics equal to the liquid LIB of the application, the solid electrolyte must be mixed 20 to 30% in the positive electrode, and the particle size is small. , Which is disadvantageous in terms of volumetric energy density.
(2) When the application is an EV or power equipment application, since the particle diameter of the positive electrode active material originally assumed in the liquid LIB for the application is small, it is attempted to obtain the same characteristics as the liquid LIB with all solid LIBs. Then, it is necessary to further reduce the particle diameter, and the thickness of the electrode must be reduced, which makes the production of the electrode difficult.
従って、まずはLIB用電解液が分解または気化するリスクの高い60℃以上の高温域、あるいはLIB用電解液が増粘または凍結するリスクの高い−30℃以下の低温域で作動する可能性のある用途から全固体LIBの実用化が始まるのではないかと想定されている。 Therefore, there is a possibility of operating in a high temperature region of 60 ° C. or higher where the risk of decomposition or vaporization of the LIB electrolyte is high, or in a low temperature region of −30 ° C. or lower where the risk of thickening or freezing of the LIB electrolyte is high. It is assumed that practical use of the all-solid-state LIB will start from the use.
ここで、現在一般的に実施されていると想定される正極活物質のうち、上述の層状化合物の製造方法について述べる。例として、MeがNiとCoとMnとからなるものとする。まず、水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液と、アンモニアなどのMeイオンと錯形成する物質の水溶液と、Ni、Co、Mnイオンが溶解している硫酸塩水溶液とを準備する。これらの水溶液を同時にかつ個別に一つの反応槽の中へ入れる(アルカリ金属水酸化物の水溶液はpH制御のために入れているので、pHと連動した形で断続的に行ってもよい)。この際、水酸化物粒子が発生してスラリーとなるが、反応pH、反応温度や各原料水溶液の添加速度等によってこの水酸化物粒子の大きさや形を調節することとなる。最終製品となる正極活物質の粒子の大きさはこの水酸化物粒子と同じ位か、若干小さくなる。従って、この製造方法に従った場合、この調節は大変重要である。このスラリーをろ過・水洗し、乾燥することで、水酸化物粒子のみを取り出す。 Here, a method for producing the above-mentioned layered compound among the positive electrode active materials that are assumed to be currently generally practiced will be described. As an example, it is assumed that Me is made of Ni, Co, and Mn. First, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, an aqueous solution of a substance that forms a complex with Me ions such as ammonia, and a sulfate aqueous solution in which Ni, Co, and Mn ions are dissolved are prepared. These aqueous solutions are simultaneously and individually placed in one reaction tank (the aqueous solution of the alkali metal hydroxide is used for pH control, so it may be performed intermittently in conjunction with the pH). At this time, hydroxide particles are generated to form a slurry, and the size and shape of the hydroxide particles are adjusted by the reaction pH, the reaction temperature, the addition rate of each raw material aqueous solution, and the like. The size of the particles of the positive electrode active material as the final product is the same as or slightly smaller than the hydroxide particles. Therefore, this adjustment is very important when following this manufacturing method. This slurry is filtered, washed with water, and dried to extract only hydroxide particles.
この水酸化物粒子またはその熱分解物たる酸化物粒子をLi2CO3やLiOH・H2Oなどと混合し、450〜1000℃で焼成する。焼成温度は(Ni、Co、Mn)の総物質量に対するNiの比(以下、Ni/Me比とする)が小さいほど高く、Ni/Meが大きいほど低くし、焼成時の雰囲気はNi/Meが小さいものは大気雰囲気とし、Ni/Meを増やすにつれて酸素分圧を高くしていく。焼成後は塊状となるため、これを乾燥空気中で解砕して正極活物質とする。 The hydroxide particles or thermal decomposition products serving oxide particles thereof are mixed such as Li 2 CO 3 or LiOH · H 2 O, calcined at from 450 to 1,000 ° C.. The firing temperature is higher as the ratio of Ni to the total amount of (Ni, Co, Mn) (hereinafter referred to as Ni / Me ratio) is lower, and is lower as Ni / Me is higher. The firing temperature is Ni / Me. Those with a small value are in the air atmosphere, and the oxygen partial pressure is increased as Ni / Me is increased. After firing, it becomes a lump and is crushed in dry air to form a positive electrode active material.
上述のような製造方法では、粒子内部が緻密であるため体積エネルギー密度が高くなった正極活物質を得ることができるが、これを用いて全固体LIBとした際に、取り出しできる電流値が少ないものとなってしまっていた。従って本発明は、全固体リチウムイオン電池に適用したときに良好なレート特性を有する全固体リチウムイオン電池用正極活物質を提供することを目的とする。 In the manufacturing method as described above, a positive electrode active material having a high volume energy density can be obtained because the inside of the particles is dense, but when this is used as an all-solid LIB, the current value that can be taken out is small. Had become something. Accordingly, an object of the present invention is to provide a positive electrode active material for an all-solid-state lithium-ion battery having good rate characteristics when applied to an all-solid-state lithium-ion battery.
本発明者は、種々の検討を行った結果、所定の組成を有し、Sの含有量、粒子の断面形状、及び、所定元素の分散性が制御された全固体リチウムイオン電池用正極活物質によれば、上述の課題が解決されることを見出した。 The present inventor has conducted various studies and found that a positive electrode active material for an all-solid-state lithium ion battery having a predetermined composition, having a controlled S content, particle cross-sectional shape, and dispersibility of a predetermined element is controlled. Have found that the above-mentioned problem is solved.
上記知見を基礎にして完成した本発明は実施形態において、LixNiaCobMncMdO2+α(a+b+c+d=1、1.0≦x≦1.1、0<d/(a+b+c)≦0.1、0<α≦0.2、MはNbであるか、NbとTi、Mg、Al、Zr、Mo、Wから選ばれる少なくとも1種とからなる)で表される組成を有し、Sの含有量が100質量ppm以下で、非球形粒子であり、粒子断面のEDX測定において、Al以外のM、Ni、Co、Mnがいずれも均一に分散している全固体リチウムイオン電池用正極活物質である。 In the present invention the embodiment was completed the basis of the above findings, Li x Ni a Co b Mn c M d O 2 + α (a + b + c + d = 1,1.0 ≦ x ≦ 1.1,0 <d / (a + b + c ) ≦ 0.1, 0 <α ≦ 0.2, and M is Nb or a composition represented by Nb and at least one selected from Ti, Mg, Al, Zr, Mo and W). An all-solid lithium ion having non-spherical particles with an S content of 100 mass ppm or less, and in which E, M, Ni, Co, and Mn other than Al are uniformly dispersed in EDX measurement of the particle cross section. It is a positive electrode active material for batteries.
本発明の全固体リチウムイオン電池用正極活物質は実施形態において、Sの含有量が70質量ppm以下である。 In the positive electrode active material for an all solid state lithium ion battery of the present invention, the content of S is 70 mass ppm or less in the embodiment.
本発明は別の実施形態において、本発明の全固体リチウムイオン電池用正極活物質を備えた全固体リチウムイオン電池用正極である。 In another embodiment, the present invention is a positive electrode for an all-solid lithium-ion battery including the positive electrode active material for an all-solid lithium-ion battery of the present invention.
本発明は更に別の実施形態において、本発明の正極と、負極と、固体電解質とを含む全固体リチウムイオン電池である。 In still another embodiment, the present invention is an all-solid lithium-ion battery including the positive electrode of the present invention, a negative electrode, and a solid electrolyte.
本発明は更に別の実施形態において、前記MがNbであり、ニッケル地金、コバルト地金、マンガン地金を硝酸に溶解して地金溶解液を得る工程、前記地金溶解液を炭酸リチウム懸濁水に添加して噴霧前スラリーを得る工程、前記噴霧前スラリーにシュウ酸ニオブ水溶液を添加し、噴霧乾燥して乾燥粉を得る工程、及び、前記乾燥粉に乾燥状態の酸素含有雰囲気中775〜950℃で焼成を行う工程を含む本発明の全固体リチウムイオン電池用正極活物質の製造方法である。 In still another embodiment of the present invention, the M is Nb, a step of dissolving a nickel ingot, a cobalt ingot, and a manganese ingot in nitric acid to obtain a ingot dissolving solution; Adding a suspension of water to obtain a slurry before spraying, adding an aqueous niobium oxalate solution to the slurry before spraying and spray-drying to obtain a dry powder, and adding 775 to the dry powder in an oxygen-containing atmosphere in a dry state. It is a method for producing a positive electrode active material for an all-solid-state lithium ion battery of the present invention, which includes a step of firing at 950 ° C.
本発明は更に別の実施形態において、前記MがNbとTi、Mg、Al、Zr、Mo、Wから選ばれる少なくとも1種とからなり、ニッケル地金、コバルト地金、マンガン地金を硝酸に溶解して地金溶解液を得る工程、前記地金溶解液を炭酸リチウム懸濁水に添加して噴霧前スラリーを得る工程、前記噴霧前スラリーにシュウ酸ニオブ水溶液と、シュウ酸チタン二アンモニウム水溶液、硝酸マグネシウム水溶液、硝酸アルミニウム水溶液、オキシ硝酸ジルコニル水溶液、モリブデン酸リチウム水溶液、パラタングステン酸アンモニウム水溶液から選択される少なくとも1種とを添加し、噴霧乾燥して乾燥粉を得る工程、及び、前記乾燥粉に乾燥状態の酸素含有雰囲気中775〜950℃で焼成を行う工程を含む本発明の全固体リチウムイオン電池用正極活物質の製造方法である。 In still another embodiment of the present invention, the M is composed of Nb and at least one selected from Ti, Mg, Al, Zr, Mo, and W, and the nickel metal, the cobalt metal, and the manganese metal are converted to nitric acid. Dissolving to obtain an ingot solution, adding the ingot solution to lithium carbonate suspension water to obtain a slurry before spraying, an aqueous solution of niobium oxalate and an aqueous solution of titanium diammonium oxalate in the slurry before spraying, Adding at least one selected from an aqueous solution of magnesium nitrate, an aqueous solution of aluminum nitrate, an aqueous solution of zirconyl oxynitrate, an aqueous solution of lithium molybdate, and an aqueous solution of ammonium paratungstate, and spray-drying to obtain a dry powder; All-solid lithium ion of the present invention including a step of firing at 775 to 950 ° C. in an oxygen-containing atmosphere in a dry state It is a method for producing a positive electrode active material for a pond.
本発明によれば、全固体リチウムイオン電池に適用したときに良好なレート特性を有する全固体リチウムイオン電池用正極活物質を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for all-solid-state lithium-ion batteries which has favorable rate characteristics when applied to an all-solid-state lithium-ion battery can be provided.
(全固体リチウムイオン電池用正極活物質)
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質は、LixNiaCobMncMdO2+α(a+b+c+d=1、1.0≦x≦1.1、0<d/(a+b+c)≦0.1、0<α≦0.2、MはNbであるか、NbとTi、Mg、Al、Zr、Mo、Wから選ばれる少なくとも1種とからなる)で表される組成を有している。なお、以下では「正極活物質」「正極活物質粉体」「正極活物質粒子」の用語が用いられているが、本発明品は全て粉末状であるため、これらの用語は全て同じ意味を持つものとする。
(Positive electrode active material for all solid-state lithium ion batteries)
The positive electrode active material for an all-solid-state lithium ion battery according to the embodiment of the present invention includes Li x Ni a Co b M c M d O 2 + α (a + b + c + d = 1, 1.0 ≦ x ≦ 1.1, 0 <d /(A+b+c)≦0.1, 0 <α ≦ 0.2, where M is Nb or is composed of Nb and at least one selected from Ti, Mg, Al, Zr, Mo and W) It has the following composition. In the following, the terms “positive electrode active material”, “positive electrode active material powder”, and “positive electrode active material particles” are used, but since the present invention is all in powder form, these terms all have the same meaning. Shall have.
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質は、Sの含有量が100質量ppm以下に制御されている。液系LIBの場合、緻密な中実粒子であってもレート特性が良好であり、表面に例えば500〜11000ppm程度硫酸根が存在しても良好な電池特性を有するが、全固体LIBの場合、表面にわずかに硫酸根があったとしても電池特性(容量、サイクル特性、レート特性)に重大な影響を及ぼすことから、極力Sの含有量が小さい方がよく、具体的には100質量ppm以下に制御されていることが好ましい。Sの含有量は70質量ppm以下が好ましく、50質量ppm以下がより好ましく、30質量ppm以下がより好ましい。 In the positive electrode active material for an all-solid-state lithium ion battery according to the embodiment of the present invention, the content of S is controlled to 100 ppm by mass or less. In the case of the liquid LIB, even if the solid particles are dense, the rate characteristics are good, and the surface has good battery characteristics even if, for example, about 500 to 11000 ppm of sulfate is present, but in the case of the all solid LIB, Even if there is a slight amount of sulfate on the surface, since the battery characteristics (capacity, cycle characteristics, rate characteristics) are significantly affected, the content of S is preferably as small as possible, specifically, 100 mass ppm or less. Is preferably controlled. The content of S is preferably 70 mass ppm or less, more preferably 50 mass ppm or less, and still more preferably 30 mass ppm or less.
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質は非球形粒子である。正極活物質粒子が球形であると、粒子内部が緻密になり過ぎてしまい、これを用いて全固体LIBとした際に、取り出しできる電流値が少ないものとなる問題が生じる。これに対し、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質は、非球形粒子であるため、特に球形品や特許第5971109号公報の図7及び明細書の段落0145に記載のような緻密でない部分を有するだけの正極活物質に比べてレート特性が高いという特長を有する。ここで、本発明における「非球形粒子」とは、球形とは異なる形状を有する粒子を意味する。例えば、非球形粒子は、真球の形状から変形した“いびつ(歪)な形状”の粒子、又は、小板状の粒子、棒状の粒子が挙げられる。また、一次粒子が凝集して二次粒子を形成する場合は、当該二次粒子が非球形である場合に、本発明における「非球形粒子」となる。このような非球形粒子により、粒子間の接触が改善され、特にリチウムイオンについての接触移動抵抗を低減することができる。粒子の球形/非球形の判断は、SEM観察で行うことができる。 The positive electrode active material for an all solid lithium ion battery according to the embodiment of the present invention is a non-spherical particle. If the positive electrode active material particles are spherical, the inside of the particles becomes too dense, and when this is used as an all-solid LIB, there is a problem that the current value that can be taken out is small. On the other hand, since the positive electrode active material for an all-solid lithium ion battery according to the embodiment of the present invention is a non-spherical particle, it is particularly a spherical product, and is described in FIG. 7 of Japanese Patent No. 5971109 and paragraph 0145 of the specification. It has a feature that the rate characteristic is higher than that of a positive electrode active material having only such a non-dense portion. Here, “non-spherical particles” in the present invention means particles having a shape different from a spherical shape. For example, examples of the non-spherical particles include particles having a “distorted (distorted) shape” deformed from a true spherical shape, platelet-like particles, and rod-like particles. When the primary particles are aggregated to form secondary particles, the secondary particles are “non-spherical particles” in the present invention when the secondary particles are non-spherical. Such non-spherical particles can improve the contact between the particles and reduce the contact transfer resistance, particularly for lithium ions. The spherical / non-spherical shape of the particles can be determined by SEM observation.
すなわち、全固体LIBの正極中での活物質の存在を見るに、従来の球形品では粒子内が緻密で、粒子内のLi移動の距離が長く、Li挿入脱離に伴う正極活物質結晶格子の膨張収縮を強制的に抑制するため、特に全固体LIBではLiイオン移動がしにくいものとなっている。これに対し本発明の実施形態に係る正極活物質では球形でない粒子を用いることで、Liの移動に伴う膨張収縮をなるべく妨げないようにし、かつその際に粒子破壊を伴っても、常にNbが表面に存在するように制御することができる。このため、当該全固体リチウムイオン電池用正極活物質を用いた全固体リチウムイオン電池のレート特性が良好となる。 That is, the existence of the active material in the positive electrode of the all-solid LIB shows that the conventional spherical product has a dense particle, a long Li movement distance in the particle, and a positive electrode active material crystal lattice accompanying the Li insertion and desorption. In order to forcibly suppress the expansion and contraction of Li, the transfer of Li ions is particularly difficult in all solid LIB. On the other hand, by using non-spherical particles in the positive electrode active material according to the embodiment of the present invention, expansion and shrinkage due to movement of Li are prevented as much as possible, and even when particle destruction occurs at that time, Nb is always Nb. It can be controlled to be on the surface. Therefore, the rate characteristics of the all-solid-state lithium-ion battery using the positive electrode active material for an all-solid-state lithium-ion battery are improved.
全固体LIBにおいてはLiNbO3を正極活物質粒子表面に被覆することで、被覆無しよりも電池特性が改善する、と言われている。これは、一般的な酸化物系正極活物質と硫化物系固体電解質とでは正極−電解質界面のエネルギーギャップが大きいが、結晶格子緩和効果のあるLiNbO3を間におくことで正極−電解質界面の全エネルギーギャップを小さくしたものである。球形品の場合、Nbが緻密な粒子の内部に固溶してしまうと、エネルギーギャップを抑制することが困難となるため、被覆後の焼成条件を調節して、LiNbO3が正極活物質に固溶せずかつ該粒子表面に十分形成する条件で焼成するのが一般的である。ところが、非球形粒子の場合は、Nbが活物質粒子内部に存在しても、エネルギーギャップの抑制がうまくいくことが判明した。 It is said that by coating LiNbO 3 on the surface of the positive electrode active material particles in the all solid state LIB, the battery characteristics are improved as compared with the case without the coating. This is because the energy gap at the positive electrode-electrolyte interface between a general oxide-based positive electrode active material and a sulfide-based solid electrolyte is large, but by interposing LiNbO 3 having a crystal lattice relaxation effect between the positive electrode-electrolyte interface, The total energy gap is reduced. In the case of a spherical product, if Nb forms a solid solution inside the dense particles, it becomes difficult to suppress the energy gap. Therefore, the firing conditions after coating are adjusted so that LiNbO 3 is solidified into the positive electrode active material. In general, firing is performed under conditions that do not dissolve and sufficiently form on the particle surface. However, it has been found that in the case of non-spherical particles, even if Nb is present inside the active material particles, the suppression of the energy gap is successful.
詳細なメカニズムは不明であるが、非球形品の場合は球形品と異なり、粒子表面に突起を有し、これが折れた際にも活物質として働くため、割れた断面にもなんらかのLi−Nb酸化物を存在させることが、電池特性の向上につながった可能性がある。また、同様にTi、Mg、Zr、Mo、Wについても、粒子内に均一に存在していることが好ましい。Alについては、粒子内の存在形態は問わないが、電子伝導性確保の観点からある程度存在位置が限られた不均一な形で存在することが好ましい。 Although the detailed mechanism is unknown, the non-spherical product has a projection on the particle surface unlike the spherical product and acts as an active material even when the particle is broken. It is possible that the presence of the substance has led to an improvement in battery characteristics. Similarly, it is preferable that Ti, Mg, Zr, Mo, and W are uniformly present in the particles. Al may be present in any form in the particle, but is preferably present in a non-uniform form whose position is limited to some extent from the viewpoint of securing electron conductivity.
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質は、断面のEDX測定(Energy dispersive X-ray spectrometry:エネルギー分散型X線分析による測定)において、Al以外のM、Ni、Co、Mnがいずれも均一に分散している。 The positive electrode active material for an all-solid-state lithium ion battery according to the embodiment of the present invention has a cross section of E, M, Ni, Co other than Al in EDX measurement (energy dispersive X-ray spectrometry: measurement by energy dispersive X-ray analysis). All of Mn are uniformly dispersed.
(リチウムイオン電池)
本発明の各実施形態に係る全固体リチウムイオン電池用正極活物質を用いて全固体リチウムイオン電池用正極を作製し、更に当該全固体リチウムイオン電池用正極と、負極と、固体電解質とを用いて全固体リチウムイオン電池を作製することができる。
(Lithium ion battery)
Using the all-solid-state lithium-ion battery positive electrode active material according to each embodiment of the present invention to produce an all-solid-state lithium-ion battery positive electrode, further using the all-solid-state lithium-ion battery positive electrode, a negative electrode, and a solid electrolyte To produce an all-solid-state lithium-ion battery.
(全固体リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法について詳細に説明する。まず、ニッケル地金、コバルト地金、マンガン地金(Ni地金、Co地金、Mn地金)を用意し、硝酸に溶解した液(以下、「地金溶解液」とも称する)を作製する。この際、水素と酸化窒素(NOx)が発生するので、適切な排ガス処理装置を用いて排ガス処理し大気排出することが好ましい。また、本発明において「地金」とは、金属を貯蔵しやすいような形で固めたものであり、金属塊、インゴット、バー等を示す。
(Method of producing positive electrode active material for all solid-state lithium ion battery)
Next, a method for producing a positive electrode active material for an all solid state lithium ion battery according to an embodiment of the present invention will be described in detail. First, a nickel ingot, a cobalt ingot, and a manganese ingot (Ni ingot, Co ingot, Mn ingot) are prepared, and a solution dissolved in nitric acid (hereinafter also referred to as “ingot solution”) is prepared. . At this time, since hydrogen and nitrogen oxide (NO x ) are generated, it is preferable to perform exhaust gas treatment using an appropriate exhaust gas treatment device and discharge the air to the atmosphere. Further, in the present invention, the “metal” is a metal that is hardened in a form that is easy to store metal, and indicates a metal lump, an ingot, a bar, or the like.
次に、最終生成物中のLi/(Ni+Co+Mn+M)モル比を決定し、その量に対応するLi2CO3を用意し、1〜10倍質量分の水中に懸濁して懸濁液とする。その後、上述の地金溶解液を懸濁液中に滴下する。この際、懸濁液槽に入れるための地金溶解液の配管数はいくつでも構わないが、懸濁液槽のスケールに合わせて配管数を増やすことが好ましい。もちろん、設計上スケールの小さい層にたくさんの配管数を配置し、地金溶解液を分割滴下してもよいが、設備上の複雑さのため、以下の実施例では200Lの槽に内径が3〜12mmのものを3〜8本用意し、これらの配管の出口から懸濁液槽中に同時に地金溶解液を撹拌しながら分割滴下した。これによりスラリーが生成する。このスラリーを「噴霧前スラリー」と称することとする。 Next, the Li / (Ni + Co + Mn + M) molar ratio in the final product was determined by preparing a Li 2 CO 3 corresponding to the amount, the suspension is suspended in water of 1 to 10 times the mass fraction. Then, the above-mentioned metal solution is dropped into the suspension. At this time, the number of pipes of the base metal solution to be put into the suspension tank may be any number, but it is preferable to increase the number of pipes according to the scale of the suspension tank. Of course, a large number of pipes may be arranged on a small-scale layer by design and the metal solution may be divided and dropped. However, due to the complexity of equipment, in the following embodiment, a 200-L tank has an inner diameter of 3. 3 to 8 tubes each having a size of 1212 mm were prepared, and a base metal solution was dropped into the suspension tank at the same time from the outlets of these pipes while stirring. This produces a slurry. This slurry is referred to as “pre-spray slurry”.
得られた噴霧前スラリーを中継槽に全て充填し、撹拌しながらシュウ酸ニオブ水溶液を添加する、または、シュウ酸ニオブ水溶液や他のM成分(シュウ酸チタン二アンモニウム水溶液、硝酸マグネシウム水溶液、硝酸アルミニウム水溶液、オキシ硝酸ジルコニル水溶液、モリブデン酸リチウム水溶液、パラタングステン酸アンモニウム水溶液から選択される少なくとも1種)をそれぞれの仕込み比を決めた上で添加する。充分均一になった時点で噴霧乾燥を行う。噴霧乾燥はどのような形式でも構わないが、藤崎電機製マイクロミストドライヤを用いると容易に乾燥された粉末(以下、「乾燥粉」と称することがある)を得ることができ、製造の管理がしやすくなるため好ましい。該マイクロミストドライヤを用いる場合、入口温度が150〜350℃、出口温度が120〜150℃になるように、空気流量およびヒーター出力を調整するとよい。得られた乾燥粉を匣鉢に充填して焼成を行う。 The obtained pre-spray slurry is filled in a relay tank, and an aqueous niobium oxalate solution is added with stirring, or a niobium oxalate aqueous solution or another M component (a titanium diammonium oxalate aqueous solution, a magnesium nitrate aqueous solution, an aluminum nitrate aqueous solution) is added. An aqueous solution, an aqueous solution of zirconyl oxynitrate, an aqueous solution of lithium molybdate, and an aqueous solution of ammonium paratungstate) are added after the respective charging ratios are determined. When it becomes sufficiently uniform, spray drying is performed. Spray drying may be performed in any form, but using a micro mist dryer manufactured by Fujisaki Electric Co., Ltd. can easily obtain a dried powder (hereinafter, sometimes referred to as “dried powder”) and control production. It is preferable because it can be easily performed. When using the micro mist dryer, the air flow rate and the heater output may be adjusted so that the inlet temperature is 150 to 350 ° C and the outlet temperature is 120 to 150 ° C. The obtained dried powder is filled in a sagger and fired.
焼成は上記の匣鉢全体を均一に加熱でき、かつ焼成雰囲気を適切に調整できるものであれば何でも構わないが、例えば、ローラーハースキルン、プッシャーキルン、箱型炉、回転炉などを用いるとよい。好ましくは、炉体材質剥離による夾雑物が少ないと考えられるローラーハースキルンまたは箱型炉を用いるのがよく、より好ましくは、連続生産が容易に可能となることからローラーハースキルンを用いるのが特によい。 The sintering may be anything as long as it can uniformly heat the entire sagger and can appropriately adjust the sintering atmosphere.For example, a roller hearth kiln, a pusher kiln, a box furnace, a rotary furnace, or the like may be used. . Preferably, it is preferable to use a roller hearth kiln or a box furnace in which it is considered that impurities due to furnace body material peeling are small, and it is particularly preferable to use a roller hearth kiln because continuous production is easily possible. Good.
焼成条件としては、乾燥状態の酸素含有雰囲気中、775〜950℃で焼成を行う。より好ましくは、乾燥空気中で850〜950℃まで昇温し、直ちに750〜800℃まで降温させてそのまま14〜20時間保持する条件が好ましい。ただし、降温後の保持時間の末期では、硝酸根の量が少なくなり酸欠のリスクが高まるので、上記保持時間に入ったあたりで、焼成雰囲気を乾燥純酸素へ切り替えると、容易に本発明の実施形態に係る正極活物質を製造することができる。尚、焼成雰囲気を調整するための流通ガスはそのまま炉内に導入してもよいが、一旦当該ガスを焼成炉内の温度かそれよりやや高めになるまで予備加熱しておき、焼成炉の導入時に所望の温度となるように設計すると、より容易に焼成炉内の温度分布の不要な勾配やばらつきを少なくすることができる。また、例えば焼成炉中に焼成ゾーンを設定し、焼成ゾーン境界ごとにシャッターを設置し、異なる焼成ゾーンの雰囲気同士が混ざらないようにするのが好ましい。 As firing conditions, firing is performed at 775 to 950 ° C. in an oxygen-containing atmosphere in a dry state. More preferably, the temperature is preferably raised to 850 to 950 ° C. in dry air, immediately lowered to 750 to 800 ° C., and maintained for 14 to 20 hours. However, at the end of the holding time after cooling, the amount of nitrate decreases and the risk of oxygen deficiency increases. The positive electrode active material according to the embodiment can be manufactured. The flowing gas for adjusting the firing atmosphere may be directly introduced into the furnace. However, the gas is first preheated until the temperature in the firing furnace is slightly higher than the temperature in the furnace, and the gas is introduced into the furnace. If the temperature is sometimes designed to be a desired temperature, unnecessary gradients and variations in the temperature distribution in the firing furnace can be reduced more easily. Further, for example, it is preferable that a firing zone is set in a firing furnace and a shutter is provided at each firing zone boundary so that atmospheres in different firing zones are not mixed.
焼成後は塊状となるため、焼成時から乾燥状態の雰囲気を引き継いだままロールクラッシャーとパルベライザーとで解砕して正極活物質粉体とする。製造設備にFeなどの磁気の発生する可能性のある金属を含む材料(鋳鉄、ステンレス、ハステロイ等)を用いる場合、解砕後磁選して正極活物質粉体とするのが好ましい。乾燥状態の雰囲気として乾燥空気(ドライエアー)を採用する場合、当該ドライエアーの露点は−30℃以下とすることが好ましい。より好ましくは−40℃以下である。本発明の実施形態に係る正極活物質は吸湿性が強く、また表面酸素欠陥も発生しやすいため、できれば焼成後から保管まで乾燥状態の酸素含有雰囲気に保つことが好ましい。例えば、ドライエアー中で適当なアルミラミネート中に正極活物質粉体を入れ、当該ドライエアー雰囲気を保ったまま封口すると容易に保管が可能となる。 After firing, the powder becomes a lump, and is crushed by a roll crusher and a pulverizer while maintaining a dry atmosphere from the firing to obtain a positive electrode active material powder. When a material (eg, cast iron, stainless steel, Hastelloy, etc.) containing a metal that may generate magnetism, such as Fe, is used for the manufacturing equipment, it is preferable that the material be subjected to magnetic separation after crushing to obtain a positive electrode active material powder. When dry air is used as the atmosphere in the dry state, the dew point of the dry air is preferably -30 ° C or less. More preferably, it is -40C or lower. Since the positive electrode active material according to the embodiment of the present invention has high hygroscopicity and easily generates surface oxygen defects, it is preferable to keep the oxygen-containing atmosphere in a dry state from baking to storage if possible. For example, if the positive electrode active material powder is placed in an appropriate aluminum laminate in dry air and sealed while keeping the dry air atmosphere, storage becomes easy.
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
(実施例1)
−スラリーの作製−
まず、ニッケル地金、コバルト地金、マンガン地金を用意し、これら3種類の地金を硝酸(55%水溶液)に溶解させて地金溶解液とした。この際、地金溶解液中のNi:Co:Mnがモル比で85:12:3となるよう、また、NO3/(Ni+Co+Mn)のモル比が3.28となるよう、仕込みモル比を調整した。また、水素およびNOx除去のため、排ガス処理装置を同時に作動させた。溶解開始から3時間は目標温度を110℃として加熱を行い、溶解反応を継続させた。全溶解時間は24時間であった。これとは別に、水に炭酸リチウムを分散させ、45Hzで撹拌混合させて懸濁液を作製した。次に、当該懸濁液に地金溶解液を約2L/minで滴下し、Li、Ni、Co、Mnを含むスラリーを作製した。この滴下の際、10mm径の配管を3本用意し、それぞれに地金溶解液を分割して滴下した。こうして噴霧前スラリーを作製した。
Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.
(Example 1)
-Preparation of slurry-
First, a nickel ingot, a cobalt ingot, and a manganese ingot were prepared, and these three kinds of ingots were dissolved in nitric acid (55% aqueous solution) to obtain an ingot solution. At this time, the charge molar ratio was adjusted so that the molar ratio of Ni: Co: Mn in the base metal solution was 85: 12: 3 and the molar ratio of NO 3 / (Ni + Co + Mn) was 3.28. It was adjusted. Further, since hydrogen and NO x removal, was operated exhaust gas treatment device simultaneously. Heating was performed at a target temperature of 110 ° C. for 3 hours from the start of dissolution, and the dissolution reaction was continued. Total dissolution time was 24 hours. Separately, lithium carbonate was dispersed in water and stirred and mixed at 45 Hz to prepare a suspension. Next, a metal solution was dropped into the suspension at a rate of about 2 L / min to prepare a slurry containing Li, Ni, Co, and Mn. At the time of this dropping, three pipes each having a diameter of 10 mm were prepared, and a base metal solution was separately dropped into each of the pipes. Thus, a slurry before spraying was prepared.
この噴霧前スラリーに、シュウ酸ニオブ(HCスタルク製)の水溶液をNb/(Ni+Co+Mn)がモル比で0.01となるように添加して溶解させた。これを藤崎電機製マイクロミストドライヤで噴霧乾燥した。噴霧乾燥条件としては、入口温度を280±2℃、出口温度を160±5℃、乾燥塔への給気を1.5±0.1m3/min、スラリー流量に対するノズルエアー流量の比(G/S)を2400となるようにヒーター出力、ノズルエアー流量、乾燥塔への給気量、スラリー流量を制御した。 To the slurry before spraying, an aqueous solution of niobium oxalate (manufactured by HC Starck) was added and dissolved so that the molar ratio of Nb / (Ni + Co + Mn) was 0.01. This was spray-dried with a micro mist dryer manufactured by Fujisaki Electric. The spray drying conditions were as follows: inlet temperature 280 ± 2 ° C., outlet temperature 160 ± 5 ° C., air supply to the drying tower 1.5 ± 0.1 m 3 / min, ratio of nozzle air flow rate to slurry flow rate (G / S) was adjusted to 2400 to control the heater output, the nozzle air flow rate, the amount of air supplied to the drying tower, and the slurry flow rate.
この噴霧乾燥で得られた乾燥粉を、アルミナ匣鉢に充填して焼成した。匣鉢への充填高さは1.5cmとした。焼成パターンとしては、表1に示す通りとした。本実施例では焼成炉にローラーハースキルンを用い、1時間毎に焼成ゾーンを設定し、焼成ゾーン境界については匣鉢通過時を除いて基本的にシャッターを閉じて各焼成ゾーンの雰囲気をなるべく導入ガスと同じになるように保った。 The dried powder obtained by this spray drying was filled in an alumina sagger and fired. The filling height of the sagger was 1.5 cm. The firing pattern was as shown in Table 1. In this embodiment, a roller hearth kiln is used for the firing furnace, and a firing zone is set every hour. At the boundary of the firing zone, the shutter is basically closed except for when passing through the sagger and the atmosphere of each firing zone is introduced as much as possible. Kept the same as the gas.
こうして得られた塊状の焼成物について、置かれている雰囲気を乾燥純酸素から乾燥空気に切り替え、その乾燥空気中でロールミルとパルベライザーを用いて解砕してすぐに磁選して実施例1の正極活物質とした。 The atmosphere in which the massive fired material thus obtained was placed was switched from dry pure oxygen to dry air, and was crushed using a roll mill and a pulverizer in the dry air. Active material.
(実施例2)
地金溶解液の組成をNi:Co:Mn=90:5:5に変更したこと、表1中の(1)の温度を850℃としたこと以外は実施例1と同様に正極活物質を作製し、実施例2の正極活物質とした。
(Example 2)
A positive electrode active material was prepared in the same manner as in Example 1 except that the composition of the base metal solution was changed to Ni: Co: Mn = 90: 5: 5, and the temperature of (1) in Table 1 was set to 850 ° C. It was prepared and used as a positive electrode active material of Example 2.
(実施例3)
表1中の(2)の時間(15hr)を20hrにすること以外は実施例1と同様に正極活物質を作製し、実施例3の正極活物質とした。
(Example 3)
A positive electrode active material was prepared in the same manner as in Example 1 except that the time (15 hours) in (2) in Table 1 was set to 20 hours, and used as a positive electrode active material in Example 3.
(実施例4)
噴霧前スラリーに、さらにシュウ酸チタン二アンモニウムの水溶液をTi/(Ni+Co+Mn)がモル比で0.02となるように添加して溶解させたこと以外は実施例1と同様に正極活物質を作製し、実施例4の正極活物質とした。
(Example 4)
A positive electrode active material was produced in the same manner as in Example 1, except that an aqueous solution of titanium oxalate was added and dissolved in the slurry before spraying so that the molar ratio of Ti / (Ni + Co + Mn) became 0.02. Thus, a positive electrode active material of Example 4 was obtained.
(実施例5)
噴霧前スラリーに、さらに硝酸マグネシウムの水溶液をMg/(Ni+Co+Mn)がモル比で0.014となるように添加して溶解させたこと以外は実施例1と同様に正極活物質を作製し、実施例5の正極活物質とした。
(Example 5)
A positive electrode active material was prepared and implemented in the same manner as in Example 1, except that an aqueous solution of magnesium nitrate was further added and dissolved in the slurry before spraying so that the molar ratio of Mg / (Ni + Co + Mn) became 0.014. The positive electrode active material of Example 5 was used.
(実施例6)
噴霧前スラリーに、さらに硝酸アルミニウムの水溶液をAl/(Ni+Co+Mn)がモル比で0.015となるように添加して溶解させたこと以外は実施例1と同様に正極活物質を作製し、実施例6の正極活物質とした。
(Example 6)
A positive electrode active material was prepared and carried out in the same manner as in Example 1 except that an aqueous solution of aluminum nitrate was further added to and dissolved in the slurry before spraying so that the molar ratio of Al / (Ni + Co + Mn) became 0.015. The positive electrode active material of Example 6 was used.
(実施例7)
噴霧前スラリーに、さらにオキシ硝酸ジルコニルの水溶液をZr/(Ni+Co+Mn)がモル比で0.013となるように添加して溶解させたこと以外は実施例1と同様に正極活物質を作製し、実施例7の正極活物質とした。
(Example 7)
A positive electrode active material was prepared in the same manner as in Example 1, except that an aqueous solution of zirconyl oxynitrate was further added to and dissolved in the slurry before spraying so that the molar ratio of Zr / (Ni + Co + Mn) was 0.013. The positive electrode active material of Example 7 was used.
(実施例8)
噴霧前スラリーに、モリブデン酸リチウムの水溶液をMo/(Ni+Co+Mn)がモル比で0.05となるように添加して溶解させたこと以外は実施例1と同様に正極活物質を作製し、実施例8の正極活物質とした。
(Example 8)
A positive electrode active material was prepared in the same manner as in Example 1, except that an aqueous solution of lithium molybdate was added to the slurry before spraying so that the molar ratio of Mo / (Ni + Co + Mn) became 0.05, and the mixture was dissolved. The positive electrode active material of Example 8 was used.
(実施例9)
噴霧前スラリーに、パラタングステン酸アンモニウムの水溶液をW/(Ni+Co+Mn)がモル比で0.1となるように添加して溶解させたこと以外は実施例1と同様に正極活物質を作製し、実施例9の正極活物質とした。
(Example 9)
A positive electrode active material was prepared in the same manner as in Example 1, except that an aqueous solution of ammonium paratungstate was added to and dissolved in the slurry before spraying so that the molar ratio of W / (Ni + Co + Mn) was 0.1. The positive electrode active material of Example 9 was used.
(比較例1)
窒素雰囲気とした反応容器を用意し、それに3Lの純水を入れて、撹拌した。硫酸ニッケル、硫酸コバルト、硫酸マンガンの1.5mol/L水溶液をそれぞれ作製し、各水溶液を所定量秤量して、Ni:Co:Mn=0.85:0.12:0.03となるように混合硫酸塩水溶液を調製して、反応タンク1に入れた。また、反応タンク2に3mol/Lとなるように苛性ソーダ水溶液を作製した。さらに、反応タンク3に20質量%となるようにアンモニア水溶液を作製した。
(Comparative Example 1)
A reaction vessel having a nitrogen atmosphere was prepared, 3 L of pure water was added thereto, and the mixture was stirred. A 1.5 mol / L aqueous solution of nickel sulfate, cobalt sulfate, and manganese sulfate was prepared, and a predetermined amount of each aqueous solution was weighed so that Ni: Co: Mn = 0.85: 0.12: 0.03. A mixed sulfate aqueous solution was prepared and placed in the reaction tank 1. Further, an aqueous caustic soda solution was prepared in the reaction tank 2 so as to have a concentration of 3 mol / L. Further, an aqueous ammonia solution was prepared in the reaction tank 3 so as to have a concentration of 20% by mass.
反応容器の撹拌を維持しながら、この反応タンク1、反応タンク3から、5mL/minの速度で、反応容器中に送液した。その際、pHが11.0となるように、反応容器内に反応タンク2から苛性ソーダ水溶液を投入した。この時、反応容器内の液の温度が50℃となるように調整した。これを3時間継続し種晶スラリーを作製した。 While maintaining the stirring of the reaction vessel, the solution was fed from the reaction tank 1 and the reaction tank 3 into the reaction vessel at a rate of 5 mL / min. At that time, an aqueous caustic soda solution was charged from the reaction tank 2 into the reaction vessel so that the pH became 11.0. At this time, the temperature of the liquid in the reaction vessel was adjusted to 50 ° C. This was continued for 3 hours to prepare a seed crystal slurry.
次に、反応容器中の撹拌を維持しながら、反応タンク1と反応タンク3から5mL/minの速度で、反応容器中に送液した。その際、pHが10.5となるように、反応容器内に反応タンク2から苛性ソーダ水溶液を投入した。この時、反応容器内の液の温度は50℃となるように調整した。液が10Lになった時点で、反応容器下の循環ポンプを作動させ、濃縮槽に15mL/minの速度で送液し、濃縮槽で液成分のみを一部ろ過し、ろ過後の液を反応容器内に戻した。反応容器内の液が3L以下になった時点で循環ポンプを停止し、再び10Lになった時に作動させた。これらの操作を反応容器・濃縮槽とも窒素雰囲気のまま10時間継続実施した。こうして、晶析法によってNi0.85Co0.12Mn0.03(OH)2を作製した。この液をフィルタープレスでろ過・水洗し、120℃で12時間、大気中で乾燥した。 Next, the solution was fed from the reaction tank 1 and the reaction tank 3 into the reaction vessel at a rate of 5 mL / min while maintaining the stirring in the reaction vessel. At that time, an aqueous caustic soda solution was charged from the reaction tank 2 into the reaction vessel so that the pH became 10.5. At this time, the temperature of the liquid in the reaction vessel was adjusted to 50 ° C. When the liquid reaches 10 L, the circulating pump below the reaction vessel is operated, the liquid is sent to the concentration tank at a rate of 15 mL / min, only the liquid component is partially filtered in the concentration tank, and the filtered liquid is reacted. Returned to container. The circulation pump was stopped when the liquid in the reaction vessel became 3 L or less, and was activated when the liquid became 10 L again. These operations were continuously performed for 10 hours in a nitrogen atmosphere in both the reaction vessel and the concentration tank. Thus, Ni 0.85 Co 0.12 Mn 0.03 (OH) 2 was produced by the crystallization method. This solution was filtered and washed with a filter press, and dried in air at 120 ° C. for 12 hours.
このNi0.85Co0.12Mn0.03(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.01となるように一つの袋に計量し、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体(粗混合粉)を袋から全部ヘンシェルミキサーに入れて、1500rpmで5分間混合し、混合した粉体(混合粉)をアルミナ匣鉢に充填した。匣鉢への充填高さは1cmとした。焼成炉としてローラーハースキルンを用い、ローラーハースキルン中に乾燥酸素を10m3/minで流通して乾燥酸素雰囲気とし、該アルミナ匣鉢をローラーハースキルン中に入れ、490℃で8時間保持した後、昇温して700℃で4時間保持するように焼成パターンを設定し匣鉢を動かした。これを5℃/minで室温まで冷却するように焼成パターンを設定し匣鉢を動かした。こうして得られた塊状の焼成物について、置かれている雰囲気を乾燥純酸素から乾燥空気に切り替え、その乾燥空気中でロールミルとパルベライザーを用いて解砕した。 This Ni 0.85 Co 0.12 Mn 0.03 (OH) 2 and LiOH · H 2 O having a D90 of 20 μm or less are mixed in one atmosphere so that Li / (Ni + Co + Mn) becomes 1.01 in an atmosphere of 60% humidity. The bag was weighed, the bag was inflated, the opening was grasped by hand to prevent the powder from leaking, and the unclamped hand was placed on the bottom of the bag, and the bag was shaken with both hands to perform coarse mixing. All of the coarsely mixed powder (coarse mixed powder) was put into a Henschel mixer from the bag, mixed at 1500 rpm for 5 minutes, and the mixed powder (mixed powder) was filled in an alumina sagger. The filling height of the sagger was 1 cm. After using a roller hearth kiln as a firing furnace, dry oxygen is passed through the roller hearth kiln at 10 m 3 / min to form a dry oxygen atmosphere, and the alumina sagger is put in the roller hearth kiln and kept at 490 ° C. for 8 hours. The firing pattern was set so that the temperature was raised and the temperature was maintained at 700 ° C. for 4 hours, and the sagger was moved. The baking pattern was set so that this was cooled to room temperature at 5 ° C./min, and the sagger was moved. With respect to the massive fired product thus obtained, the atmosphere in which it was placed was changed from dry pure oxygen to dry air, and the fired material was crushed in the dry air using a roll mill and a pulverizer.
解砕後の粉末を、LiアルコキシドとNbアルコキシドを用いて、常法により当該粉末の表面にLiNbO3を被覆し、当該被覆後の粉末を磁選して比較例1の正極活物質を作製した。 The powder after the disintegration was coated with LiNbO 3 on the surface of the powder using a Li alkoxide and an Nb alkoxide by a conventional method, and the powder after the coating was subjected to magnetic separation to produce a positive electrode active material of Comparative Example 1.
(比較例2)
実施例1の噴霧前スラリーにおいて、シュウ酸ニオブ水溶液を添加せず、実施例1で添加したシュウ酸ニオブ水溶液と同質量の純水を噴霧前スラリーに添加してよく撹拌し均一にさせたこと、ロールミルとパルベライザーを用いて解砕した粉末にLiアルコキシドとNbアルコキシドを用いて、常法により当該粉末の表面にLiNbO3を被覆し、当該被覆後の粉末を磁選したこと以外は実施例1と同様にして比較例2の正極活物質を作製した。
(Comparative Example 2)
In the slurry before spraying of Example 1, the same mass of pure water as that of the aqueous solution of niobium oxalate added in Example 1 was added to the slurry before spraying without adding the aqueous solution of niobium oxalate, and the mixture was thoroughly stirred and homogenized. Example 1 was the same as Example 1 except that the powder obtained by pulverizing using a roll mill and a pulverizer was coated with LiNbO 3 on the surface of the powder using Li alkoxide and Nb alkoxide by an ordinary method, and the coated powder was magnetically selected. Similarly, a positive electrode active material of Comparative Example 2 was produced.
(評価)
こうしてできた各実施例及び比較例のサンプルを用いて下記の条件にて各評価を実施した。
−SEMおよびEDXの評価−
粒子表面や粒子断面について、SEM観察には日本電子製のJSM−7000F型、EDXには日本電子製のJXA−8500F型を用いた。SEMでの球形/非球形の判断(粒子形態の判断)およびEDXでの各元素のスポットの有無(各元素存在状態)については常法にて判断した。断面作製は高分子で正極活物質粉体を固めた後、クロスセクションポリッシャーで断面出しを行うことにより実施した。
(Evaluation)
Each evaluation was performed under the following conditions using the samples of each of the examples and comparative examples thus obtained.
-Evaluation of SEM and EDX-
Regarding the particle surface and particle cross section, JEM JSM-7000F type was used for SEM observation, and JXA-8500F type made by JEOL was used for EDX. Judgment of spherical / non-spherical shape by SEM (judgment of particle morphology) and presence / absence of spot of each element by EDX (state of presence of each element) were determined by a conventional method. The cross section was prepared by solidifying the positive electrode active material powder with a polymer and then performing cross sectioning with a cross section polisher.
−S(硫黄)含有量の評価−
ICPにてSO4 2-を測定し、それをSに換算した。
-Evaluation of S (sulfur) content-
SO 4 2- was measured by ICP and converted to S.
−電池特性の評価(全固体リチウムイオン電池)−
実施例および比較例の正極活物質と、LiI−Li2S−P2S5とを、7:3の割合で秤量し、混合して正極合剤とした。内径40mmの金型中にLi−In合金、LiI−Li2S−P2S5、正極合剤、Al箔をこの順で充填し、500MPaでプレスした。このプレス後の成形体を、金属製治具を用いて100MPaで拘束することにより、全固体リチウムイオン電池を作製した。この電池について、放電レート0.05Cで得られた初期容量(25℃、充電上限電圧:4.55V、放電下限電圧:2.5V)を測定し、次に放電レート1Cで得られた高率容量(25℃、充電上限電圧:4.55V、放電下限電圧:2.5V)を測定し、(高率容量)/(初期容量)の比を百分率としてレート特性(%)とした。
評価条件及び結果を表1及び表2に示す。
-Evaluation of battery characteristics (all-solid lithium-ion battery)-
Positive active materials of Examples and Comparative Examples, a LiI-Li 2 S-P 2 S 5, 7: weighed at a ratio of 3 to obtain a positive electrode mixture by mixing. Li-an In alloy into a mold having an inner diameter of 40mm, LiI-Li 2 S- P 2 S 5, the positive electrode mixture, filling the Al foil in this order, and pressed at 500 MPa. The pressed compact was restrained at 100 MPa using a metal jig to produce an all-solid lithium-ion battery. For this battery, the initial capacity (25 ° C., upper limit voltage of charge: 4.55 V, lower limit voltage of discharge: 2.5 V) obtained at a discharge rate of 0.05 C was measured, and then the high rate obtained at a discharge rate of 1 C was obtained. The capacity (25 ° C., upper limit voltage of charge: 4.55 V, lower limit voltage of discharge: 2.5 V) was measured, and the ratio of (high rate capacity) / (initial capacity) was defined as a percentage to obtain rate characteristics (%).
The evaluation conditions and results are shown in Tables 1 and 2.
Claims (6)
Sの含有量が100質量ppm以下で、
非球形粒子であり、
粒子断面のEDX測定において、Al以外のM、Ni、Co、Mnがいずれも均一に分散している全固体リチウムイオン電池用正極活物質。 Li x Ni a Co b M c M d O 2 + α (a + b + c + d = 1, 1.0 ≦ x ≦ 1.1, 0 <d / (a + b + c) ≦ 0.1, 0 <α ≦ 0.2, M Is Nb or a composition represented by Nb and at least one selected from Ti, Mg, Al, Zr, Mo and W)
S content is 100 mass ppm or less,
Non-spherical particles,
A positive electrode active material for an all-solid-state lithium ion battery in which M, Ni, Co, and Mn other than Al are uniformly dispersed in EDX measurement of a particle cross section.
ニッケル地金、コバルト地金、マンガン地金を硝酸に溶解して地金溶解液を得る工程、
前記地金溶解液を炭酸リチウム懸濁水に添加して噴霧前スラリーを得る工程、
前記噴霧前スラリーにシュウ酸ニオブ水溶液を添加し、噴霧乾燥して乾燥粉を得る工程、及び、
前記乾燥粉に乾燥状態の酸素含有雰囲気中775〜950℃で焼成を行う工程、
を含む請求項1又は2に記載の全固体リチウムイオン電池用正極活物質の製造方法。 M is Nb,
A process of dissolving nickel ingot, cobalt ingot, and manganese ingot in nitric acid to obtain a ingot solution;
A step of adding the base metal solution to lithium carbonate suspension water to obtain a slurry before spraying,
Adding an aqueous solution of niobium oxalate to the slurry before spraying, and spray-drying to obtain a dry powder, and
Baking the dried powder at 775 to 950 ° C. in an oxygen-containing atmosphere in a dry state,
The method for producing a positive electrode active material for an all-solid lithium ion battery according to claim 1, comprising:
ニッケル地金、コバルト地金、マンガン地金を硝酸に溶解して地金溶解液を得る工程、
前記地金溶解液を炭酸リチウム懸濁水に添加して噴霧前スラリーを得る工程、
前記噴霧前スラリーにシュウ酸ニオブ水溶液と、シュウ酸チタン二アンモニウム水溶液、硝酸マグネシウム水溶液、硝酸アルミニウム水溶液、オキシ硝酸ジルコニル水溶液、モリブデン酸リチウム水溶液、パラタングステン酸アンモニウム水溶液から選択される少なくとも1種とを添加し、噴霧乾燥して乾燥粉を得る工程、及び、
前記乾燥粉に乾燥状態の酸素含有雰囲気中775〜950℃で焼成を行う工程、
を含む請求項1又は2に記載の全固体リチウムイオン電池用正極活物質の製造方法。 M comprises Nb and at least one selected from Ti, Mg, Al, Zr, Mo and W;
A process of dissolving nickel ingot, cobalt ingot, and manganese ingot in nitric acid to obtain a ingot solution;
A step of adding the base metal solution to lithium carbonate suspension water to obtain a slurry before spraying,
An aqueous solution of niobium oxalate and at least one selected from an aqueous solution of titanium diammonium oxalate, an aqueous solution of magnesium nitrate, an aqueous solution of aluminum nitrate, an aqueous solution of zirconyl oxynitrate, an aqueous solution of lithium molybdate, and an aqueous solution of ammonium paratungstate are added to the slurry before spraying. Adding and spray-drying to obtain a dry powder; and
Baking the dried powder at 775 to 950 ° C. in an oxygen-containing atmosphere in a dry state,
The method for producing a positive electrode active material for an all-solid lithium ion battery according to claim 1, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018117136A JP6883003B2 (en) | 2018-06-20 | 2018-06-20 | Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, positive electrode active material for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018117136A JP6883003B2 (en) | 2018-06-20 | 2018-06-20 | Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, positive electrode active material for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019220353A true JP2019220353A (en) | 2019-12-26 |
JP6883003B2 JP6883003B2 (en) | 2021-06-02 |
Family
ID=69096837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018117136A Active JP6883003B2 (en) | 2018-06-20 | 2018-06-20 | Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, positive electrode active material for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6883003B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7518972B2 (en) | 2020-09-03 | 2024-07-18 | ナノ ワン マテリアルズ コーポレーション | Alternative one-pot method for producing CAM precursors using metal sources |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002170562A (en) * | 2000-11-30 | 2002-06-14 | Nikko Materials Co Ltd | Positive electrode material for lithium secondary battery and method for manufacturing the same |
JP2003059490A (en) * | 2001-08-17 | 2003-02-28 | Tanaka Chemical Corp | Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method |
JP2006147500A (en) * | 2004-11-24 | 2006-06-08 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
JP2006147499A (en) * | 2004-11-24 | 2006-06-08 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
JP2006344567A (en) * | 2005-06-10 | 2006-12-21 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material |
JP2010170741A (en) * | 2009-01-20 | 2010-08-05 | Panasonic Corp | Manufacturing method of cathode active material for nonaqueous electrolyte secondary battery |
JP2012014887A (en) * | 2010-06-30 | 2012-01-19 | Hitachi Ltd | Lithium ion secondary battery |
JP2012017253A (en) * | 2010-06-09 | 2012-01-26 | Toda Kogyo Corp | Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery |
WO2012073550A1 (en) * | 2010-12-03 | 2012-06-07 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
JP2012230898A (en) * | 2011-04-14 | 2012-11-22 | Toda Kogyo Corp | Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
JP2015122299A (en) * | 2013-11-22 | 2015-07-02 | 住友金属鉱山株式会社 | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof |
JP2015167095A (en) * | 2014-03-04 | 2015-09-24 | Dowaホールディングス株式会社 | All-solid lithium ion secondary battery |
WO2016013674A1 (en) * | 2014-07-25 | 2016-01-28 | 住友金属鉱山株式会社 | Nickel manganese compound hydroxide particles and method for producing same |
JP2016081790A (en) * | 2014-10-20 | 2016-05-16 | トヨタ自動車株式会社 | Method for manufacturing all-solid type secondary battery |
JP2016122546A (en) * | 2014-12-24 | 2016-07-07 | Jx金属株式会社 | Positive electrode active material for lithium ion battery and manufacturing method of positive electrode active material for lithium ion battery |
JP2017084673A (en) * | 2015-10-29 | 2017-05-18 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery |
JP2017204331A (en) * | 2016-05-09 | 2017-11-16 | トヨタ自動車株式会社 | Positive electrode active material, and lithium ion secondary battery using the positive electrode active material |
JP2018022568A (en) * | 2016-08-01 | 2018-02-08 | 住友金属鉱山株式会社 | Method for manufacturing nickel manganese composite hydroxide particles, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery |
WO2018043669A1 (en) * | 2016-08-31 | 2018-03-08 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery |
JP2018090431A (en) * | 2016-11-30 | 2018-06-14 | 住友金属鉱山株式会社 | Nickel cobalt manganese composite hydroxide, method for producing nickel cobalt manganese composite hydroxide, and lithium metal composite oxide particle |
-
2018
- 2018-06-20 JP JP2018117136A patent/JP6883003B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002170562A (en) * | 2000-11-30 | 2002-06-14 | Nikko Materials Co Ltd | Positive electrode material for lithium secondary battery and method for manufacturing the same |
JP2003059490A (en) * | 2001-08-17 | 2003-02-28 | Tanaka Chemical Corp | Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method |
JP2006147500A (en) * | 2004-11-24 | 2006-06-08 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
JP2006147499A (en) * | 2004-11-24 | 2006-06-08 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
JP2006344567A (en) * | 2005-06-10 | 2006-12-21 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material |
JP2010170741A (en) * | 2009-01-20 | 2010-08-05 | Panasonic Corp | Manufacturing method of cathode active material for nonaqueous electrolyte secondary battery |
JP2012017253A (en) * | 2010-06-09 | 2012-01-26 | Toda Kogyo Corp | Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery |
JP2012014887A (en) * | 2010-06-30 | 2012-01-19 | Hitachi Ltd | Lithium ion secondary battery |
WO2012073550A1 (en) * | 2010-12-03 | 2012-06-07 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
JP2012230898A (en) * | 2011-04-14 | 2012-11-22 | Toda Kogyo Corp | Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
JP2015122299A (en) * | 2013-11-22 | 2015-07-02 | 住友金属鉱山株式会社 | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof |
JP2015167095A (en) * | 2014-03-04 | 2015-09-24 | Dowaホールディングス株式会社 | All-solid lithium ion secondary battery |
WO2016013674A1 (en) * | 2014-07-25 | 2016-01-28 | 住友金属鉱山株式会社 | Nickel manganese compound hydroxide particles and method for producing same |
JP2016081790A (en) * | 2014-10-20 | 2016-05-16 | トヨタ自動車株式会社 | Method for manufacturing all-solid type secondary battery |
JP2016122546A (en) * | 2014-12-24 | 2016-07-07 | Jx金属株式会社 | Positive electrode active material for lithium ion battery and manufacturing method of positive electrode active material for lithium ion battery |
JP2017084673A (en) * | 2015-10-29 | 2017-05-18 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery |
JP2017204331A (en) * | 2016-05-09 | 2017-11-16 | トヨタ自動車株式会社 | Positive electrode active material, and lithium ion secondary battery using the positive electrode active material |
JP2018022568A (en) * | 2016-08-01 | 2018-02-08 | 住友金属鉱山株式会社 | Method for manufacturing nickel manganese composite hydroxide particles, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery |
WO2018043669A1 (en) * | 2016-08-31 | 2018-03-08 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery |
JP2018090431A (en) * | 2016-11-30 | 2018-06-14 | 住友金属鉱山株式会社 | Nickel cobalt manganese composite hydroxide, method for producing nickel cobalt manganese composite hydroxide, and lithium metal composite oxide particle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7518972B2 (en) | 2020-09-03 | 2024-07-18 | ナノ ワン マテリアルズ コーポレーション | Alternative one-pot method for producing CAM precursors using metal sources |
Also Published As
Publication number | Publication date |
---|---|
JP6883003B2 (en) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6230540B2 (en) | Positive electrode active material for lithium secondary battery and positive electrode using the same | |
CN103094576B (en) | A kind of nickel-base anode material and preparation method thereof and battery | |
Son et al. | One-pot synthesis of Fe 2 O 3 yolk–shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries | |
JP7265194B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
CN106299352A (en) | The preparation method of positive pole material of secondary lithium battery | |
JP2022009262A (en) | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery | |
WO2012131881A1 (en) | Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery | |
JP2017091953A (en) | Lithium ion conductor and lithium ion battery using the same | |
CN109728262B (en) | Lithium ion battery anode material and preparation method and application thereof | |
JP2022166095A (en) | Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
JP2017091955A (en) | Lithium ion conductor and lithium ion battery using the same | |
WO2014061579A1 (en) | Method for producing positive electrode active material for lithium secondary battery, and active material precursor powder used therein | |
CN106684374A (en) | Preparation method for porous spherical lithium nickel cobalt manganate used as ternary positive electrode material of lithium ion battery | |
JP7224754B2 (en) | Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery manufacturing method | |
JP7452570B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries | |
WO2014061580A1 (en) | Process for manufacturing positive electrode active material for lithium secondary battery, and active material precursor powder to be used therein | |
TWI460906B (en) | Production method of positive electrode active material for lithium ion battery | |
JP7452569B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries | |
CN106384813A (en) | Fast synthesis method of positive electrode material for lithium ion battery | |
CN105473506B (en) | Use the titanium oxide manufacture method for the porosity titanium compound for being impregnated with solution | |
JP2016213178A (en) | Lithium ion conductor and lithium ion battery arranged by use thereof | |
JP7389376B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries | |
Malik et al. | Effect of Synthesis Method on the Electrochemical Performance of LiNi x MnCo 1-xy O 2 (NMC) Cathode for Li-Ion Batteries: A Review | |
CN102219265A (en) | Method for preparing nickel-cobalt-manganese composite oxide powder | |
JP7273260B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190604 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190604 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210507 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6883003 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |