Nothing Special   »   [go: up one dir, main page]

WO2016010003A1 - 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法 - Google Patents

樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法 Download PDF

Info

Publication number
WO2016010003A1
WO2016010003A1 PCT/JP2015/070073 JP2015070073W WO2016010003A1 WO 2016010003 A1 WO2016010003 A1 WO 2016010003A1 JP 2015070073 W JP2015070073 W JP 2015070073W WO 2016010003 A1 WO2016010003 A1 WO 2016010003A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyimide
resin
resin film
film
Prior art date
Application number
PCT/JP2015/070073
Other languages
English (en)
French (fr)
Inventor
佳季 宮本
敏章 奥田
昌樹 米谷
康史 飯塚
隆行 金田
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN201580037788.6A priority Critical patent/CN106661326B/zh
Priority to KR1020197017235A priority patent/KR102312462B1/ko
Priority to US15/319,508 priority patent/US20170165879A1/en
Priority to JP2016534423A priority patent/JP6670238B2/ja
Priority to KR1020187025487A priority patent/KR101994059B1/ko
Priority to KR1020167028236A priority patent/KR101992525B1/ko
Publication of WO2016010003A1 publication Critical patent/WO2016010003A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/42Removing articles from moulds, cores or other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/05Forming flame retardant coatings or fire resistant coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/009Using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • B29C33/64Silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0073Solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate

Definitions

  • the present invention is, for example, used for a substrate for a flexible device, a resin precursor and a resin composition containing the resin precursor, a polyimide resin film, a resin film and a manufacturing method thereof, a laminate and a manufacturing method thereof, and a display substrate And a manufacturing method thereof.
  • a polyimide (PI) resin film is used as a resin film for applications requiring high heat resistance.
  • a general polyimide resin is a solution polymerization of an aromatic dianhydride and an aromatic diamine to produce a polyimide precursor, followed by ring-closing dehydration at high temperature, thermal imidization, or chemical imidization using a catalyst. It is a highly heat-resistant resin that is manufactured.
  • Polyimide resin is an insoluble and infusible super heat resistant resin, and has excellent characteristics such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. For this reason, polyimide resins are used in a wide range of fields including electronic materials such as insulating coating agents, insulating films, semiconductors, and electrode protection films for TFT-LCDs, and recently in the field of display materials such as liquid crystal alignment films. Instead of the conventionally used glass substrate, the adoption of a colorless and transparent flexible substrate utilizing its lightness and flexibility is also being studied.
  • Non-Patent Document 1 a method for inhibiting the formation of a charge transfer complex and introducing transparency by introducing fluorine into the polyimide resin, imparting flexibility to the main chain, introducing bulky side chains, etc.
  • the polyimide resin obtained from PMDA, 6FDA and TFMB is excellent in light transmittance, yellowness (YI value) and thermal expansion coefficient (CTE), and can be applied as a material for LCD.
  • Patent Documents 2 and 3 the polyimide resin obtained from PMDA, 6FDA and TFMB has a small difference in CTE from the gas barrier film (inorganic film), and a display device having a gas barrier layer on the polyimide resin film has been proposed (Patent Literature). 4).
  • the proposal which uses for a flexible device use is made about the resin composition which has a polyimide precursor and an alkoxysilane compound (patent document 5).
  • transparent polyimides were not sufficient for use as, for example, semiconductor insulating films, TFT-LCD insulating films, electrode protective films, ITO electrode substrates for touch panels, and heat-resistant colorless transparent substrates for flexible displays.
  • the energy required for peeling the polyimide film and the glass substrate by laser peeling is low, but in the case of a polymer having a low residual stress, the energy required Therefore, there is a problem that particles are generated during laser peeling.
  • the first aspect of the present invention has been made in view of the above-described problems, It is another object of the present invention to provide a resin composition that has good adhesion to a glass substrate and does not generate particles during laser peeling even in the case of a polymer having low residual stress.
  • the first aspect of the present invention has been made in view of the above-described problems, and is a resin composition containing a polyimide precursor that has excellent adhesion to a glass substrate and does not generate particles during laser peeling. The purpose is to provide.
  • the second aspect of the present invention has been made in view of the above-described problems, It aims at providing the resin composition containing the polyimide precursor which is excellent in storage stability and excellent in coating property.
  • the present invention has a low residual stress, a small yellowness (YI value), a small influence on the YI value and the total light transmittance due to the oxygen concentration during the curing process (heat curing process), and a difference in refractive index between the front and back sides.
  • An object is to provide a small polyimide resin film and resin film, a manufacturing method thereof, a laminate, and a manufacturing method thereof.
  • a further object of the present invention is to provide a display substrate having a low refractive index difference between the front and back sides and a low yellowness, and a method for manufacturing the same.
  • a polyimide precursor that generates a residual stress within a specific range when a polyimide is formed, and an alkoxysilane compound having a specific ratio of absorbance at 308 nm are formed of a glass substrate (support). Found that it has excellent adhesion and does not produce particles during laser peeling.
  • the resin composition containing the polyimide precursor having a specific structure has excellent storage stability and excellent coating properties;
  • the polyimide film obtained by curing the composition has a low residual stress, a small yellowness (YI value), and a small influence on the YI value and the total light transmittance due to the oxygen concentration during the curing process;
  • the inorganic film formed on the polyimide film has a small haze; and as a method for peeling the polyimide resin film from the support, a laser film and / or a peeling layer is used to provide a low refractive index difference between the front and back of the resin film.
  • the inventors have found that the low YI value is satisfied, and have reached the present invention based on these findings. That is, the present invention is as follows.
  • a resin composition comprising (a) a polyimide precursor, (b) an organic solvent, and (d) an alkoxysilane compound, After applying the resin composition to the surface of the support, (a) the polyimide obtained by imidizing the polyimide precursor has a residual stress with the support of -5 MPa to 10 MPa, and The (d) alkoxysilane compound is a resin composition having an absorbance at 308 nm of 0.1 or more and 0.5 or less at a thickness of 1 cm when the NMP solution is 0.001% by mass.
  • the (d) alkoxysilane compound has the following general formulas (2) to (4):
  • the (a) polyimide precursor is represented by the following formula (5):
  • a structural unit represented by the following formula (6) The resin composition according to any one of [1] to [3], which has a structural unit represented by: [5]
  • the molar ratio between the structural unit represented by the formula (5) and the structural unit represented by the formula (6) is 90/10 to 50/50, [1]
  • the molar ratio of the structural unit represented by the formula (5) and the structural unit represented by the formula (6) is 90/10 to 50/50, [6] or [7] The resin composition according to [7].
  • (a) a polyimide precursor, and (b) a resin composition containing an organic solvent The (a) polyimide precursor is represented by the following formula (5): A polyimide precursor having a structural unit represented by the following formula (6): The resin composition which is a mixture with the polyimide precursor which has a structural unit shown by these.
  • the weight ratio of the polyimide precursor having the structural unit represented by the formula (5) and the polyimide precursor having the structural unit represented by the formula (6) is 90/10 to 50/50.
  • the resin composition described in 1. [11] The resin composition according to any one of [1] to [10], wherein the water content is 3000 ppm or less. [12] The resin composition according to any one of [1] to [11], wherein (b) the organic solvent is an organic solvent having a boiling point of 170 to 270 ° C. [13] The resin composition according to any one of [1] to [12], wherein the organic solvent (b) is an organic solvent having a vapor pressure at 20 ° C. of 250 Pa or less.
  • the step of peeling the polyimide resin film on which the element or circuit is formed from the support includes the step of peeling the polyimide resin film from the structure including the polyimide resin film / peeling layer / support.
  • the manufacturing method of the resin film of description [28] A laminate comprising a support and a polyimide resin film, which is a cured product of the resin composition according to any one of [6] to [19], formed on the surface of the support. [29] [6] to [18] a step of coating the resin composition according to any one on the surface of the support; A step of heating the support and the resin composition to imidize the resin precursor contained in the resin composition to form a polyimide resin film.
  • [30] Applying the resin composition according to any one of [6] to [18] to a support and heating to form a polyimide resin film; Forming an element or a circuit on the polyimide resin film; Each step of peeling the polyimide resin film on which the element or circuit is formed from the support,
  • a method for manufacturing a display substrate comprising: [31] A display substrate formed by the method for manufacturing a display substrate according to [30]. [32] [19] A laminate obtained by laminating the polyimide film according to [19], SiN, and SiO 2 in this order.
  • the resin composition containing the polyimide precursor according to the present invention is excellent in adhesiveness with a glass substrate (support) and does not generate particles during laser peeling. Therefore, in the first aspect, it is possible to provide a resin composition that is excellent in adhesiveness with a glass substrate (support) and does not generate particles during laser peeling.
  • the storage stability is excellent and the coating property is excellent.
  • the polyimide resin film and resin film obtained from the composition have low residual stress, small yellowness (YI value), and little influence on the YI value and the total light transmittance due to the oxygen concentration during the curing process. Therefore, in this invention, the resin composition containing the polyimide precursor which is excellent in storage stability and excellent in coating property can be provided.
  • the present invention has a low residual stress, a small yellowness (YI value), a small influence on the YI value and the total light transmittance due to the oxygen concentration during the curing process (heat curing process), and a difference in refractive index between the front and back sides.
  • YI value small yellowness
  • the present invention can provide a display substrate having a low refractive index difference between the front and back surfaces and a low yellowness, and a method for manufacturing the same.
  • the resin composition provided by the first aspect of the present invention is: (a) contains a polyimide precursor, (b) an organic solvent, and (d) an alkoxysilane compound.
  • a polyimide precursor contains a polyimide precursor, (b) an organic solvent, and (d) an alkoxysilane compound.
  • each component will be described in order.
  • the polyimide precursor in the first embodiment is a polyimide precursor that has a residual stress of ⁇ 5 MPa or more and 10 MPa or less when it becomes a polyimide.
  • the residual stress can be measured by the method described in Examples described later.
  • Examples of the support in the first embodiment include a glass substrate, a silicone wafer, and an inorganic film.
  • the polyimide precursor in the first embodiment is not limited as long as the residual stress when it becomes a polyimide is ⁇ 5 MPa or more and 10 MPa or less, but from the viewpoint of warping after forming the inorganic film, it is ⁇ 3 MPa or more and 3 MPa or less. preferable. From the viewpoint of application to a flexible display, the yellowness is preferably 15 or less at a film thickness of 10 ⁇ m.
  • a polyimide precursor which gives a polyimide having a residual stress of ⁇ 5 MPa or more and 10 MPa or less and a yellowness of 15 or less at a film thickness of 10 ⁇ m will be described.
  • the polyimide precursor in the first aspect is preferably represented by the following general formula (8).
  • each R 1 is independently a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic group having 6 to 10 carbon atoms;
  • X 1 is a tetravalent organic group having 4 to 32 carbon atoms;
  • X 2 is a divalent organic group having 4 to 32 carbon atoms.
  • the general formula (8) is a structure obtained by reacting tetracarboxylic dianhydride and diamine.
  • X 1 is derived from tetracarboxylic dianhydride and X 2 is derived from diamine.
  • X 2 in the general formula (8) is derived from 2,2′-bis (trifluoromethyl) benzidine, 4,4- (diaminodiphenyl) sulfone, and 3,3- (diaminodiphenyl) sulfone. It is preferable that it is a residue.
  • ⁇ Tetracarboxylic dianhydride> Next, the tetracarboxylic dianhydride that leads to the tetravalent organic group X 1 contained in the general formula (8) will be described.
  • tetracarboxylic dianhydride examples include aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms, aliphatic tetracarboxylic dianhydrides having 6 to 50 carbon atoms, and carbon numbers. Is preferably a compound selected from 6-36 alicyclic tetracarboxylic dianhydrides.
  • the number of carbons herein includes the number of carbons contained in the carboxyl group.
  • examples of the aromatic tetracarboxylic dianhydride having 8 to 36 carbon atoms include 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter also referred to as 6FDA), 5- ( 2,5-dioxotetrahydro-3-furanyl) -3-methyl-cyclohexene-1,2 dicarboxylic acid anhydride, pyromellitic dianhydride (hereinafter also referred to as PMDA), 1,2,3,4-benzene Tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA), 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA), 3, 3,4
  • Examples of the aliphatic tetracarboxylic dianhydride having 6 to 50 carbon atoms include ethylene tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride; Examples of the alicyclic tetracarboxylic dianhydride having 6 to 36 carbon atoms include 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter also referred to as CBDA), cyclopentanetetracarboxylic dianhydride.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • Cyclohexane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride (hereinafter referred to as CHDA), 3,3 ′, 4,4 '-Bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid ) Dianhydride, 1,2-ethylene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethylidene-4,4′-bis (cyclohexane-1,2) Dicarboxylic acid) dianhydride, 2,2-propylidene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride,
  • the use of one or more selected from the group consisting of BTDA, PMDA, BPDA and TAHQ can reduce CTE, improve chemical resistance, improve glass transition temperature (Tg), and improve mechanical elongation. It is preferable from the viewpoint.
  • one or more selected from the group consisting of 6FDA, ODPA and BPADA to reduce yellowness, birefringence, and mechanical elongation. It is preferable from the viewpoint of improvement.
  • BPDA is preferable from the viewpoints of reducing residual stress, reducing yellowness, reducing birefringence, improving chemical resistance, improving Tg, and improving mechanical elongation.
  • CHDA is preferable from the viewpoints of reduction of residual stress and reduction of yellowness.
  • at least one selected from the group consisting of PMDA and BPDA having a tough structure that exhibits high chemical resistance, high Tg and low CTE, and low yellowness and birefringence, from 6FDA, ODPA and CHDA It is preferable to use in combination with at least one selected from the group consisting of high chemical resistance, residual stress reduction, yellowness reduction, birefringence reduction, and total light transmittance improvement. .
  • the resin precursor in the first embodiment may be a polyamideimide precursor by using a dicarboxylic acid in addition to the above-described tetracarboxylic dianhydride as long as the performance is not impaired.
  • a dicarboxylic acid in addition to the above-described tetracarboxylic dianhydride as long as the performance is not impaired.
  • dicarboxylic acids include dicarboxylic acids having an aromatic ring and alicyclic dicarboxylic acids.
  • it is preferably at least one compound selected from the group consisting of aromatic dicarboxylic acids having 8 to 36 carbon atoms and alicyclic dicarboxylic acids having 6 to 34 carbon atoms.
  • the number of carbons herein includes the number of carbons contained in the carboxyl group. Of these, dicarboxylic acids having an aromatic ring are preferred.
  • terephthalic acid is particularly preferable from the viewpoint of reducing the YI value and improving the Tg.
  • dicarboxylic acid is used together with tetracarboxylic dianhydride, it is obtained that the dicarboxylic acid is 50 mol% or less with respect to the total number of moles of the total of dicarboxylic acid and tetracarboxylic dianhydride. It is preferable from the viewpoint of chemical resistance in the film.
  • ⁇ Diamine> Resin precursor according to the first aspect, as the diamine directing X 2, specifically, for example, 4,4- (diaminodiphenyl) sulfone (hereinafter also referred to as 4, 4-DAS), 3,4-( Diaminodiphenyl) sulfone and 3,3- (diaminodiphenyl) sulfone (hereinafter also referred to as 3,3-DAS), 2,2′-bis (trifluoromethyl) benzidine (hereinafter also referred to as TFMB), 2,2 ′ -Dimethyl 4,4'-diaminobiphenyl (hereinafter also referred to as m-TB), 1,4-diaminobenzene (hereinafter also referred to as p-PD), 1,3-diaminobenzene (hereinafter also referred to as m-PD), 4 -Aminophenyl 4'-aminobenzoate (hereinafter also referred to as
  • the number average molecular weight of the resin precursor according to the first embodiment is preferably 3,000 to 1,000,000, more preferably 5,000 to 500,000, still more preferably 7,000 to 300,000. 000, particularly preferably 10,000 to 250,000.
  • the molecular weight is preferably 3,000 or more from the viewpoint of obtaining good heat resistance and strength (for example, high elongation), and is 1,000,000 or less to obtain good solubility in a solvent. From the viewpoint, it is preferable from the viewpoint that coating can be performed without bleeding at a desired film thickness at the time of processing such as coating. From the viewpoint of obtaining a high mechanical elongation, the molecular weight is preferably 50,000 or more.
  • the number average molecular weight is a value determined by standard polystyrene conversion using gel permeation chromatography.
  • the resin precursor according to the first aspect may be partially imidized.
  • the imidation of the resin precursor can be performed by known chemical imidization or thermal imidization. Of these, thermal imidization is preferred.
  • the imidization rate can be controlled by controlling the heating temperature and the heating time. By performing partial imidization, the viscosity stability of the resin composition when stored at room temperature can be improved.
  • the range of the imidization rate is preferably 5% to 70% from the viewpoint of solubility in a solution and storage stability.
  • N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal or the like may be added to the above resin precursor and heated to esterify part or all of the carboxylic acid.
  • the (b) organic solvent in the first embodiment is the same as the (b) organic solvent in the second embodiment described later.
  • the alkoxysilane compound (d) according to the first embodiment has an absorbance at 308 nm of 0.1 to 0.5 at a thickness of 1 cm when the 0.001 wt% NMP solution is used. If this requirement is satisfied, the structure is not particularly limited. When the absorbance is within this range, the obtained resin film can be easily peeled off while maintaining high transparency.
  • the alkoxysilane compound is, for example, Reaction of an acid dianhydride with a trialkoxysilane compound, Reaction of an acid anhydride with a trialkoxysilane compound, It can be synthesized by a reaction between an amino compound and an isocyanate trialkoxysilane compound.
  • the acid dianhydride, acid anhydride, and amino compound each preferably have an aromatic ring (particularly a benzene ring).
  • the alkoxysilane compound according to the first aspect is represented by the following general formula (1) from the viewpoint of adhesiveness: ⁇ In the formula, R represents a single bond, an oxygen atom, a sulfur atom, or an alkylene group having 1 to 5 carbon atoms. ⁇ It is preferable that it is a compound obtained by making the acid dianhydride represented by and an amino trialkoxysilane compound react.
  • reaction of the acid dianhydride and aminotrialkoxysilane in the first embodiment for example, 1 mol of acid dianhydride is added to a solution obtained by dissolving 2 mol of aminotrialkoxysilane in an appropriate solvent.
  • the reaction can be carried out at a reaction temperature of preferably 0 ° C. to 50 ° C., preferably for a reaction time of 0.5 to 8 hours.
  • the solvent is not limited as long as the raw material compound and the product are dissolved.
  • the alkoxysilane compound according to the first embodiment has the following general formulas (2) to (4) from the viewpoint of transparency, adhesiveness, and peelability: It is preferable that it is at least one selected from the group consisting of the compounds represented by each of the above.
  • the content of the (d) alkoxysilane compound in the resin composition according to the first aspect can be appropriately designed as long as sufficient adhesiveness and peelability are exhibited.
  • a preferable range is (d) a range of 0.01 to 20% by mass of the alkoxysilane compound with respect to 100% by mass of the polyimide precursor.
  • the content of the (d) alkoxysilane compound is more preferably 0.02 to 15% by mass, still more preferably 0.05 to 10% by mass, based on (a) the polyimide precursor. It is particularly preferably 1 to 8% by mass.
  • the resin composition provided by the second aspect of the present invention is: (a) contains a polyimide precursor and (b) an organic solvent.
  • a polyimide precursor contains a polyimide precursor and (b) an organic solvent.
  • each component will be described in order.
  • the polyimide precursor in this embodiment is a copolymer having a structural unit represented by the following formulas (5) and (6), or a polyimide precursor having a structural unit represented by the formula (5), and the formula It is a mixture of polyimide precursors having the structural unit represented by (2).
  • the polyimide precursor in this embodiment is characterized in that the content of polyimide precursor molecules having a molecular weight of less than 1,000 is less than 5% by mass of the whole (a) polyimide precursor.
  • the ratio (molar ratio) of the structural units (5) and (6) of the copolymer is the coefficient of thermal expansion (hereinafter also referred to as CTE), residual stress, yellowness (hereinafter referred to as YI) of the obtained cured product.
  • CTE coefficient of thermal expansion
  • YI yellowness
  • the ratio of the above formulas (5) and (6) can be obtained from the result of 1H-NMR spectrum, for example.
  • the copolymer may be a block copolymer or a random copolymer.
  • the polyimide precursor (copolymer) of the present invention comprises pyromellitic dianhydride (hereinafter also referred to as PMDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter also referred to as 6FDA) and 2,2′-bis (trifluoromethyl) benzidine (hereinafter also referred to as TFMB). That is, the structural unit (5) is formed by polymerization of PMDA and TMFB, and the structural unit (6) is formed by polymerization of 6FDA and TFMB. By using PMDA, it is considered that the obtained cured product exhibits good heat resistance and can reduce the residual stress.
  • PMDA pyromellitic dianhydride
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • the obtained cured product exhibits good transparency, has high transmittance, and can reduce YI.
  • said raw material tetracarboxylic acid (PMDA, 6FDA) although these acid anhydrides are used normally, these acids or these other derivatives can also be used.
  • curing material obtained can express favorable heat resistance and transparency by using TFMB.
  • the ratio of the structural units (5) and (6) can be adjusted by changing the ratio of PMDA and 6FDA, which are tetracarboxylic acids.
  • the polyimide precursor (mixture) of the present invention can be obtained by mixing a polymer of PMDA and TFMB and a polymer of 6FDA and TFMB. That is, the polymer of PMDA and TFMB has a structural unit (5), and the polymer of 6FDA and TFMB has a structural unit (6).
  • the total mass of the structural units (5) and (6) is 30% by mass or more based on the total mass of the resin. From the viewpoint of low residual stress, 70 mass% or more is preferable from the viewpoint of low CTE. Most preferably, it is 100 mass%.
  • the resin precursor which concerns on this Embodiment may further contain the structural unit (8) which has a structure represented by following General formula (8) in the range which does not impair performance as needed. .
  • the structural unit (8) has a structure other than the polyimide precursor derived from acid dianhydride: PMDA and / or 6FDA and diamine: TFMB.
  • R 1 is preferably a hydrogen atom.
  • X 3 is preferably a divalent aromatic group or an alicyclic group from the viewpoints of heat resistance, YI value reduction, and total light transmittance.
  • X 4 is preferably a divalent aromatic group or alicyclic group from the viewpoints of heat resistance, YI value reduction, and total light transmittance.
  • the organic groups X 1 , X 2 and X 4 may be the same or different from each other.
  • the mass ratio of the structural unit (8) in the resin precursor according to the present embodiment is 80% by mass or less, preferably 70% by mass or less, based on the total resin structure. This is preferable from the viewpoint of lowering the dependency.
  • the molecular weight of the polyamic acid (polyimide precursor) of the present invention is preferably 10,000 to 500,000, more preferably 10,000 to 300,000, and particularly preferably 20,000 to 200,000 in terms of weight average molecular weight. If the weight average molecular weight is less than 10,000, cracks may occur in the resin film in the step of heating the applied resin composition, and even if it can be formed, the mechanical properties may be poor.
  • the weight average molecular weight is a value determined in terms of standard polystyrene using gel permeation chromatography.
  • the number average molecular weight of the polyimide resin precursor according to the present embodiment is preferably 3000 to 1000000, more preferably 5000 to 500000, still more preferably 7000 to 300000, and particularly preferably 10,000 to 250,000.
  • the molecular weight is preferably 3000 or more from the viewpoint of obtaining good heat resistance and strength (for example, high elongation), and 1000000 or less is preferred from the viewpoint of obtaining good solubility in a solvent, coating and the like. It is preferable from the viewpoint that coating can be performed without bleeding at a desired film thickness during processing. From the viewpoint of obtaining high mechanical elongation, the molecular weight is preferably 50,000 or more. In the present disclosure, the number average molecular weight is a value determined in terms of standard polystyrene using gel permeation chromatography.
  • the resin precursor may be partially imidized.
  • the content of polyimide precursor molecules having a molecular weight of less than 1,000 with respect to the total amount of the polyimide precursor was measured by gel permeation chromatography (hereinafter also referred to as GPC) using a solution in which the polyimide precursor was dissolved. It can be calculated from the peak area.
  • GPC gel permeation chromatography
  • the water content of the solvent includes the grade of solvent used (dehydration grade or general-purpose grade, etc.), solvent container (bottle, 18L can, canister can, etc.), solvent storage state (noble gas sealed or not, etc.) ), Time from opening to use (use immediately after opening, use after aging after opening, etc.), etc., are considered to be involved. It is also considered that the rare gas replacement in the reactor before synthesis, the presence or absence of inflow of rare gas during synthesis, and the like are also involved.
  • the content of the polyimide precursor molecule having a molecular weight of less than 1,000 is determined from the viewpoint of the residual stress of the polyimide resin film obtained by curing the resin composition using the polyimide precursor and the haze of the inorganic film formed on the polyimide resin film.
  • the content of the polyimide precursor is preferably less than 5%, more preferably less than 1%. The reason why these items are good when the content of molecules having a molecular weight of less than 1,000 is in the above range is unclear, but it is considered that low molecular components are involved.
  • the moisture content of the resin composition concerning implementation of this invention is 3000 ppm or less, It is characterized by the above-mentioned.
  • the water content of the resin composition is preferably 3000 ppm or less, more preferably 1000 ppm or less, and even more preferably 500 ppm or less from the viewpoint of viscosity stability during storage of the resin composition. The reason why this item is good when the water content of the resin composition is within the above range is unclear, but it is considered that the water is involved in the decomposition and recombination of the polyimide precursor.
  • the resin precursor of this embodiment can form a polyimide resin having a residual stress of 10 ⁇ m and a thickness of 20 MPa or less, it can be easily applied to a display manufacturing process including a TFT element device on a colorless transparent polyimide substrate. .
  • the polyimide precursor (polyamic acid) of the present invention can be synthesized by a conventionally known synthesis method. For example, after a predetermined amount of TFMB is dissolved in a solvent, PMDA and 6FDA are respectively added to the obtained diamine solution and stirred. When dissolving each monomer component, you may heat as needed.
  • the reaction temperature is preferably ⁇ 30 to 200 ° C., more preferably 20 to 180 ° C., and particularly preferably 30 to 100 ° C. Stirring is continued at room temperature (20 to 25 ° C.) or at an appropriate reaction temperature, and the end point of the reaction is confirmed by GPC to have reached the desired molecular weight.
  • the above reaction can usually be completed in 3 to 100 hours.
  • N, N-dimethylformamide dimethyl acetal or N, N-dimethylformamide diethyl acetal to the polyamic acid as described above and heating, by esterifying a part or all of the carboxylic acid, The viscosity stability of the solution containing the resin precursor and the solvent during storage at room temperature can also be improved.
  • the above-mentioned tetracarboxylic acid anhydride is previously reacted with one equivalent of monohydric alcohol with respect to the acid anhydride group, and then a dehydrating condensing agent such as thionyl chloride or dicyclohexylcarbodiimide After the reaction, it can also be obtained by a condensation reaction with diamine.
  • a solvent of the said reaction if a solvent which can melt
  • examples of the aprotic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1, 3-dimethylimidazolidinone, tetramethylurea, ecamide M100 (trade name: manufactured by Idemitsu Kosan Co., Ltd.) and ecamide B100 (trade name: manufactured by Idemitsu Kosan Co., Ltd.) represented by the following general formula (7)
  • Amide solvents such as lactones; Lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; Phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide; Sulfur solvents; ketone solvents such as cyclohexanone and methylcyclohexanone; tertiary amine solvents such as picoline and pyridine; ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenol solvents examples include phenol, O-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5- Examples include xylenol, 2,6-xylenol, 3,4-xylenol, and 3,5-xylenol.
  • Ether and glycol solvents include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2- Methoxyethoxy) ethyl] ether, tetrahydrofuran, 1,4-dioxane and the like.
  • the boiling point at normal pressure is preferably 60 to 300 ° C, more preferably 140 to 280 ° C, and particularly preferably 170 to 270 ° C.
  • the boiling point of the organic solvent is preferably 170 to 270 ° C.
  • the vapor pressure at 20 ° C. is preferably 250 Pa or less from the viewpoints of solubility and edge repelling during coating. More specifically, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, the ecamide M100, ecamide B100, and the like can be mentioned. These reaction solvents may be used alone or in combination of two or more.
  • the polyimide precursor (polyamic acid) of the present invention is usually obtained as a solution using the reaction solvent as a solvent (hereinafter also referred to as a polyamic acid solution).
  • the ratio of the polyamic acid component (resin non-volatile content: hereinafter referred to as solute) to the total amount of the obtained polyamic acid solution is preferably 5 to 60% by mass, more preferably 10 to 50% by mass from the viewpoint of coating film formation. 10 to 40% by mass is particularly preferable.
  • the solution viscosity of the polyamic acid solution is preferably 500 to 200,000 mPa ⁇ s at 25 ° C., more preferably 2000 to 100,000 mPa ⁇ s, and particularly preferably 3000 to 30,000 mPa ⁇ s.
  • the solution viscosity can be measured using an E-type viscometer (VISCONICEHD manufactured by Toki Sangyo Co., Ltd.).
  • E-type viscometer VISCONICEHD manufactured by Toki Sangyo Co., Ltd.
  • the polyimide of this invention is obtained by heating the said polyimide precursor and carrying out dehydration ring closure.
  • ⁇ Resin composition> Another aspect of the present invention provides a resin composition containing the aforementioned (a) polyimide precursor and (b) an organic solvent.
  • the resin composition is typically a varnish.
  • Organic solvent The (b) organic solvent is not particularly limited as long as it can dissolve the polyimide precursor (polyamic acid) of the present invention. Such (b) organic solvent is used at the time of synthesizing the (a) polyimide precursor. Solvents that can be used can be used.
  • the organic solvent may be the same as or different from the solvent used in the synthesis of (a) polyamic acid.
  • the component (b) is preferably in such an amount that the solid content concentration of the resin composition is 3 to 50% by mass.
  • the viscosity (25 ° C.) of the resin composition is preferably adjusted so as to be 500 mPa ⁇ s to 100,000 mPa ⁇ s.
  • the resin composition according to the present embodiment is excellent in storage stability at room temperature, and the viscosity change rate of the varnish when stored for 2 weeks at room temperature is 10% or less with respect to the initial viscosity. If the storage stability at room temperature is excellent, frozen storage becomes unnecessary and handling becomes easy.
  • the resin composition of the present invention may contain an alkoxysilane compound, a surfactant, a leveling agent or the like in addition to the components (a) and (b).
  • Alkoxysilane compound In order for the polyimide obtained from the resin composition according to the present embodiment to have sufficient adhesion to a support in a manufacturing process such as a flexible device, the resin composition has a polyimide precursor of 100 mass. % Can contain 0.01 to 20% by mass of the alkoxysilane compound.
  • the content of the alkoxysilane compound with respect to 100% by mass of the polyimide precursor is 0.01% by mass or more, good adhesion to the support can be obtained.
  • the content of the alkoxysilane compound is more preferably 0.02 to 15% by mass, further preferably 0.05 to 10% by mass, and more preferably 0.1 to 8% by mass with respect to the polyimide precursor.
  • the coating properties of the resin composition are improved, and the YI value of the cured film obtained is dependent on the oxygen concentration during curing. Can be reduced.
  • alkoxysilane compound examples include 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name: KBM803, manufactured by Chisso Corporation: trade name: Silaace S810), 3-mercaptopropyltriethoxysilane (manufactured by Asmax Co., Ltd .: Trade name: SIM6475.0), 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name: LS1375, manufactured by Azumax Co., Ltd .: trade name: SIM6474.0), mercaptomethyltrimethoxysilane (manufactured by Azumax Corporation: product Name: SIM6473.5C), mercaptomethylmethyldimethoxysilane (manufactured by Azmax Co., Ltd .: trade name: SIM6473.0), 3-mercaptopropyldiethoxyme
  • N- (3-trimethoxysilylpropyl) urea (manufactured by Azmax Co., Ltd .: trade name SIU9058.0), N- (3-diethoxymethoxysilylpropyl) urea, N- (3-ethoxydimethoxysilylpropyl) Urea, N- (3-tripropoxysilylpropyl) urea, N- (3-diethoxypropoxysilylpropyl) urea, N- (3-ethoxydipropoxysilylpropyl) urea, N- (3-dimethoxypropoxysilylpropyl) urea Urea, N- (3-Me Toxidipropoxysilylpropyl) urea, N- (3-trimethoxysilylethyl) urea, N- (3-ethoxydimethoxysilylethyl) urea, N- (3-tripropoxysilylethyl) urea, N- (3- (3-
  • the storage stability of the resin composition is mentioned above from the viewpoint of the coating properties of the resin composition (inhibition of streaks) and the influence on the YI value and the total light transmittance due to the oxygen concentration during the curing process.
  • phenylsilanetriol trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxydiphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol and each of the following structures 1 or more types selected from the alkoxysilane compounds represented by these are preferable.
  • a surfactant or leveling agent Moreover, applicability
  • paintability can be improved by adding surfactant or a leveling agent to a resin composition. Specifically, the generation of streaks after application can be prevented.
  • a surfactant or leveling agent Silicone surfactants: organosiloxane polymers KF-640, 642, 643, KP341, X-70-092, X-70-093, KBM303, KBM403, KBM803 (above, trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), SH -28PA, SH-190, SH-193, SZ-6032, SF-8428, DC-57, DC-190 (above, trade name, manufactured by Toray Dow Corning Silicone), SILWET L-77, L-7001 , FZ-2105, FZ-2120, FZ-2154, FZ-2164, FZ-2166, L-7604 (trade name, manufactured by Nihon Unicar), DBE-814, DBE-224, DBE-621
  • Fluorosurfactants Megafac F171, F173, R-08 (Dainippon Ink Chemical Co., Ltd., trade name), Florard FC4430, FC4432 (Sumitomo 3M Limited, trade name), etc.
  • Other nonionic surfactants polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
  • silicone-based surfactants and fluorine-based surfactants are preferable, and the YI value and total light transmission depending on the oxygen concentration during the curing process. From the viewpoint of influence on the rate, a silicone-based surfactant is preferable.
  • the total amount is preferably 0.001 to 5 parts by mass, and 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyimide precursor in the resin composition. More preferred.
  • the solution may be heated at 130 to 200 ° C. for 5 minutes to 2 hours to partially dehydrate and imidize the polymer to such an extent that the polymer does not precipitate.
  • the imidization rate can be controlled by controlling the temperature and time. By performing partial imidization, the viscosity stability of the resin precursor solution during storage at room temperature can be improved.
  • the range of the imidization rate is preferably 5% to 70% from the viewpoint of the solubility of the resin precursor in the solution and the storage stability of the solution.
  • the method for producing the resin composition of the present invention is not particularly limited. For example, when the solvent used when synthesizing (a) polyamic acid and (b) the organic solvent are the same, the resin composition was synthesized.
  • the resin composition of the present invention can be used to form a transparent substrate of a display device such as a liquid crystal display, an organic electroluminescence display, a field emission display, or electronic paper. Specifically, it can be used for forming a thin film transistor (TFT) substrate, a color filter substrate, a transparent conductive film (ITO, Indium Thin Oxide) substrate, and the like.
  • TFT thin film transistor
  • ITO Indium Thin Oxide
  • the resin composition has the following characteristics.
  • the residual stress with the support indicated by the polyimide obtained by imidizing the polyimide precursor contained in the resin composition is ⁇ 5 MPa or more and 10 MPa or less.
  • the alkoxysilane compound contained in the resin composition of the first aspect has an absorbance at 308 nm of 0.11% or more and 0.5 or less at a thickness of 1 cm when the NMP solution is 0.001% by mass. It is.
  • the resin composition is heated at 300 ° C. to 550 ° C.
  • the yellowness at a film thickness of 15 ⁇ m shown by the resin obtained by imidizing the resin precursor contained in the resin composition is 14 or less.
  • the resin composition is heated at 300 ° C. to 500 ° C. under a nitrogen atmosphere (or by heating at 380 ° C. under a nitrogen atmosphere). Residual stress exhibited by a resin obtained by imidizing a resin precursor contained in the composition is 25 MPa or less.
  • Another aspect of the present invention provides a resin film that is a cured product of the aforementioned resin precursor, a cured product of the aforementioned precursor mixture, or a cured product of the aforementioned resin composition.
  • Another aspect of the present invention includes a step of applying the above-described resin composition on the surface of a support; Drying the applied resin film and removing the solvent; Heating the support and the resin composition to imidize a resin precursor contained in the resin composition to form a resin film; Peeling the resin film from the support; The manufacturing method of the resin film containing is provided.
  • a polyamic acid solution obtained by dissolving and reacting an acid dianhydride component and a diamine component in an organic solvent can be used as the resin composition.
  • the support is not particularly limited as long as it has heat resistance at the drying temperature in the subsequent steps and has good peelability.
  • a substrate made of glass for example, alkali-free glass
  • a silicon wafer or the like a support made of PET (polyethylene terephthalate), OPP (stretched polypropylene) or the like can be mentioned.
  • film-like polyimide moldings include coatings made of glass or silicon wafers, and film- and sheet-like polyimide moldings such as PET (polyethylene terephthalate) and OPP (stretched polypropylene). Is mentioned.
  • substrates include glass substrates, metal substrates such as stainless steel, alumina, copper, nickel, polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polyethersulfone, A resin substrate such as polyphenylene sulfone or polyphenylene sulfide is used.
  • metal substrates such as stainless steel, alumina, copper, nickel, polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polyethersulfone,
  • a resin substrate such as polyphenylene sulfone or polyphenylene sulfide is used.
  • the resin composition described above is applied and dried on the adhesive layer formed on the main surface of the inorganic substrate, and cured at a temperature of 300 to 500 ° C. in an inert atmosphere, to obtain a resin.
  • a film can be formed.
  • the resin film is peeled from the support.
  • a coating method for example, a doctor blade knife coater, an air knife coater, a roll coater, a rotary coater, a flow coater, a die coater, a bar coater, and other coating methods, spin coating, spray coating, dip coating, and the like
  • Printing techniques represented by screen printing and gravure printing can also be applied.
  • the coating thickness of the resin composition of the present invention is appropriately adjusted depending on the desired thickness of the molded article and the ratio of the resin non-volatile component in the resin composition, but is usually about 1 to 1000 ⁇ m.
  • a resin non-volatile component is calculated
  • the coating step is usually performed at room temperature, but the resin composition may be heated in the range of 40 to 80 ° C. for the purpose of reducing the viscosity and improving workability.
  • a drying process is performed.
  • the drying step is performed for the purpose of removing the organic solvent.
  • the drying process can utilize a device such as a hot plate, a box-type dryer or a conveyor-type dryer, and is preferably performed at 80 to 200 ° C, more preferably at 100 to 150 ° C.
  • the heating step is a step of removing the organic solvent remaining in the resin film during the drying step and advancing the imidization reaction of the polyamic acid in the resin composition to obtain a cured film.
  • a heating process is performed using apparatuses, such as an inert gas oven, a hotplate, a box type dryer, and a conveyor type dryer. This step may be performed simultaneously with the drying step or sequentially.
  • an air atmosphere may be sufficient as a heating process, it is recommended to perform in an inert gas atmosphere from a viewpoint of safety
  • the inert gas include nitrogen and argon.
  • the heating temperature is preferably 250 ° C.
  • the heating time is usually about 0.5 to 3 hours.
  • the oxygen concentration in the heating step is preferably 2000 ppm or less, more preferably 100 ppm or less, and further preferably 10 ppm or less from the viewpoint of the transparency of the obtained cured product and the YI value. By setting the oxygen concentration to 2000 ppm or less, the YI value of the obtained cured product can be made 15 or less.
  • the peeling process which peels a cured film from a support body after a heating process is needed.
  • This peeling step is performed after the molded body on the substrate is cooled to room temperature to about 50 ° C.
  • the peeling process includes the following. (1) A method in which a polyimide resin film / support-containing composition is obtained by the above method, and then the polyimide resin interface is ablated by irradiating a laser from the support side, thereby peeling the polyimide resin.
  • the release layer examples include parylene (registered trademark, manufactured by Japan Parylene Godo Kaisha), a method using tungsten oxide, a method using a vegetable oil-based, silicone-based, fluorine-based, alkyd-based release agent, and the like ( In some cases, it may be used in combination with the laser irradiation of 1) (see JP-A 2010-67957, JP-A 2013-179306, etc.).
  • (3) A method of obtaining a polyimide resin film by obtaining a structure including a polyimide resin film / support using a metal that can be etched as a support, and then etching the metal with an etchant.
  • Examples of the metal include copper (specifically, electrolytic copper foil “DFF” manufactured by Mitsui Mining & Smelting Co., Ltd.), aluminum, and the like.
  • Examples of the etchant include copper: ferric chloride, aluminum: dilute hydrochloric acid, and the like.
  • (1) and (2) are appropriate from the viewpoint of the refractive index difference, YI value, and elongation of the obtained polyimide resin film, and the refractive index of the obtained polyimide resin film. From the viewpoint of the difference, (1) is more appropriate.
  • the YI value of the resulting polyimide resin film is large and the elongation is small, but this is thought to be due to some involvement of copper ions. It is done.
  • the thickness of the resin film (cured product) according to the present embodiment is not particularly limited, but is preferably in the range of 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the resin film according to the present embodiment preferably has a residual stress of ⁇ 5 MPa or more and 10 MPa or less with the support.
  • the yellowness is preferably 15 or less at a film thickness of 10 ⁇ m.
  • the absorbance at 308 nm of the alkoxysilane compound contained in the resin composition of the first aspect in a 0.001% by mass NMP solution is 0.1 or more at a thickness of 1 cm of the solution, By setting it to 0.5 or less, it is realized well.
  • the resulting resin film can facilitate laser peeling while maintaining high transparency.
  • the resin film according to the second embodiment preferably has a yellowness of 14 or less at a film thickness of 15 ⁇ m.
  • the residual stress is preferably 25 MPa or less.
  • the yellowness at a film thickness of 15 ⁇ m is 14 or less and the residual stress is 25 MPa or less.
  • Such characteristics are improved, for example, by imidizing the resin precursor of the present disclosure in a nitrogen atmosphere, more preferably at an oxygen concentration of 2000 ppm or less, at 300 ° C. to 550 ° C., and more particularly at 380 ° C. Realized.
  • ⁇ Laminate> Another aspect of the present invention provides a laminate comprising a support and a polyimide resin film formed on the surface of the support, which is a cured product of the resin composition described above. Moreover, another aspect of the present invention includes a step of applying the above-described resin composition on the surface of the support, The support and the resin composition are heated to imidize the resin precursor contained in the resin composition to form a polyimide resin film, thereby obtaining a laminate including the support and the polyimide resin film. Process, The manufacturing method of a laminated body containing is provided. Such a laminate can be produced, for example, by not peeling off a polyimide resin film formed in the same manner as in the resin film production method described above from the support.
  • the resin precursor according to the present embodiment a resin composition containing the resin precursor having excellent storage stability and excellent coating properties can be produced.
  • the yellowness (YI value) of the obtained polyimide resin film is less dependent on the oxygen concentration during curing.
  • the residual stress is low. Therefore, the resin precursor is suitable for use on a transparent substrate of a flexible display.
  • the resin film according to the present embodiment preferably has a residual stress between the resin film and the glass of 25 MPa or less.
  • the polyimide resin film according to the present embodiment preferably has a yellowness of 14 or less with reference to a film thickness of 15 ⁇ m.
  • the resin film according to the present embodiment is more preferably 30% or more in tensile elongation from the viewpoint of improving yield by being excellent in breaking strength when handling a flexible substrate.
  • Another aspect of the present invention provides a polyimide resin film used for manufacturing a display substrate.
  • the step of applying the resin composition on the support, the step of forming the polyimide resin film, and the step of peeling off the polyimide resin film are performed in the same manner as in the method for producing the resin film and laminate described above. be able to.
  • the resin film according to the present embodiment satisfying the above-described physical properties is suitably used as an application whose use is restricted by the yellow color of the existing polyimide film, particularly as a colorless transparent substrate for flexible displays, a protective film for color filters, and the like.
  • a protective film or a light-diffusing sheet and coating film for example, TFT-LCD interlayer, gate insulating film, and liquid crystal alignment film
  • TFT-LCD interlayer, gate insulating film, and liquid crystal alignment film on TFT-LCD, touch panel ITO substrate, smartphone cover glass substitute resin It can also be used in fields requiring colorless and transparent and low birefringence such as substrates.
  • the polyimide according to the present embodiment is applied as the liquid crystal alignment film, it contributes to an increase in aperture ratio, and a TFT-LCD with a high contrast ratio can be manufactured.
  • the resin film and laminate produced using the resin precursor according to the present embodiment are particularly suitable as a substrate for the production of, for example, semiconductor insulation films, TFT-LCD insulation films, electrode protection films, and flexible devices.
  • the flexible device include a flexible display, a flexible solar cell, a flexible touch panel electrode substrate, flexible illumination, and a flexible battery.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • N N-dimethylformamide
  • Mn number average molecular weight
  • Purity 99.5% 63.2 mmol / L phosphoric acid
  • a calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Tosoh Corporation).
  • This alkoxysilane compound 1 was made into a 0.001% by mass NMP solution, filled in a quartz cell having a measurement thickness of 1 cm, and the absorbance measured by UV-1600 (manufactured by Shimadzu Corporation) was 0.13.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 170,000.
  • the residual stress of P-18 was -1 MPa.
  • P-19 was obtained in the same manner as in Example 1 except that the raw material charge was changed to 42.6 mmol of PMDA and 7.4 mmol of TAHQ instead of 6FDA.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 175,000.
  • the residual stress of P-19 was 1 MPa.
  • P-20 was obtained in the same manner as in Example 1 except that the raw material charge was changed to 39.3 mmol PMDA and 10.7 mmol BPDA instead of 6FDA.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 175,000.
  • the residual stress of P-20 was 2 MPa.
  • Examples 28 to 31 and Comparative Examples 4 and 5 In a container, the above-mentioned solution P-1 (10 g) and the alkoxysilane compound of the type and amount shown in Table 1 were charged and stirred well to obtain a resin composition containing polyamic acid as a polyimide precursor. Prepared.
  • Table 2 shows the adhesiveness, laser peelability, and YI (in terms of film thickness of 10 ⁇ m) measured by the methods described above or below for each resin composition part.
  • Excimer laser (wavelength: 308 nm, repetition frequency: 300 Hz) is irradiated to a laminate having a 10 ⁇ m-thick polyimide film on an alkali-free glass obtained by the coating method and the curing method described above, and a 10 cm ⁇ 10 cm polyimide film The minimum energy required to peel the entire surface of the film was determined.
  • the polyimide resin films of Examples 28 to 34 have high adhesiveness to the glass substrate and low energy when peeled. Further, no particles were generated during peeling.
  • Comparative Example 4 containing no alkoxysilane compound the adhesiveness with the glass substrate is low, and the energy at the time of peeling is large. In addition, particles were generated during peeling.
  • the polyimide resin film obtained from the resin composition according to the first aspect of the present invention is a resin film that has excellent adhesion to a glass substrate (support) and does not generate particles during laser peeling. Was confirmed.
  • Example 2 Varnish P-2 was obtained in the same manner as in Example 1 except that the raw material charge was changed to 9.27 g (42.5 mmol) of PMDA and 3.33 g (7.5 mmol) of 6FDA.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 190,000.
  • Example 3 Varnish P-3 was obtained in the same manner as in Example 1 except that the raw material charge was changed to 7.63 g (35.0 mmol) of PMDA and 6.66 g (15.0 mmol) of 6FDA.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 190,000.
  • Example 6 The 500 ml separable flask was purged with nitrogen, and NMP (water content 250 ppm) immediately after opening the 18 L can was put into the separable flask in an amount corresponding to a solid content of 15 wt%, and 15.69 g (49.0 mmol) of TFMB was added. ) And stirred to dissolve TFMB. Thereafter, 10.91 g (50.0 mmol) of PMDA was added, and the mixture was stirred at 80 ° C. for 4 hours under a nitrogen flow to obtain varnish P-5a.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 180,000.
  • the 500 ml separable flask was purged with nitrogen, and NMP (water content 250 ppm) immediately after opening the 18 L can was put into the separable flask in an amount corresponding to a solid content of 15 wt%, and 15.69 g (49 0.0 mmol) was added and stirred to dissolve the TFMB. Thereafter, 22.21 g (50.0 mmol) of 6FDA was added, and the mixture was stirred at 80 ° C. for 4 hours under a nitrogen flow to obtain varnish P-5b.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 200,000.
  • varnishes P-5a and P-5b were weighed so as to have a weight ratio of 85:15, and the viscosity of the resin composition was adjusted to 5000 mPa ⁇ s by adding NMP to obtain varnish P-5. .
  • Example 7 Varnish P-6 was obtained in the same manner as in Example 2 except that the synthetic solvent was changed to ⁇ -butyrolactone (GBL) (water content 280 ppm) immediately after opening the 18L can.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 180,000.
  • Example 8 Varnish P-7 was obtained in the same manner as in Example 7, except that the synthetic solvent was changed to Ecamide M100 (product name, manufactured by Idemitsu) (water content 260 ppm) immediately after opening the 18 L can.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 190,000.
  • Example 9 Varnish P-8 was obtained in the same manner as in Example 7 except that the synthetic solvent was changed to Ecamide B100 (product name, manufactured by Idemitsu) (water content 270 ppm) immediately after opening the 18 L can.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 190,000.
  • Example 10 The experiment was carried out in the same manner as in Example 2 except that the initial separable flask was not replaced with nitrogen and the nitrogen flow during synthesis was not performed. 9 was obtained.
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 180,000.
  • Example 11 Varnish P-10 was obtained in the same manner as in Example 10, except that the synthetic solvent was changed to NMP (general grade, not dehydrated grade) (water content 1120 ppm) immediately after opening the 500 ml bottle.
  • the resulting polyamic acid had a weight average molecular weight (Mw) of 170,000.
  • Example 12 Varnish P-11 was obtained in the same manner as in Example 10, except that the synthetic solvent was changed to GBL (general grade, not dehydrated grade) immediately after opening the 500 ml bottle (water content 1610 ppm).
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 160,000.
  • Example 13 Varnish P-12 was obtained in the same manner as in Example 10, except that the synthetic solvent was changed to Ecamide M100 (general grade, not dehydrated grade) (water content 1250 ppm) immediately after opening the 500 ml bottle.
  • the resulting polyamic acid had a weight average molecular weight (Mw) of 170,000.
  • Example 14 Varnish P-13 was obtained in the same manner as in Example 10 except that the synthetic solvent was changed to DMAc immediately after opening the 500 ml bottle (general grade, not dehydrated grade) (water content 2300 ppm).
  • the obtained polyamic acid had a weight average molecular weight (Mw) of 160,000.
  • Viscosity measurement at 23 ° C. was performed using a sample obtained by allowing the resin composition prepared in each of the above Examples and Comparative Examples to stand at room temperature for 3 days. Thereafter, the sample that was allowed to stand at room temperature for 2 weeks was used as a sample after 2 weeks, and the viscosity was measured again at 23 ° C. Viscosity was measured using a viscometer with a temperature controller (TV-22 manufactured by Toki Sangyo Co., Ltd.). Using the above measured values, the viscosity change rate at room temperature for 4 weeks was calculated according to the following formula.
  • ⁇ Coating property Evaluation of edge repellency> Using a bar coater on the alkali-free glass substrate (size 10 ⁇ 10 mm, thickness 0.7 mm), the resin composition prepared in each of the above Examples and Comparative Examples is cured to a film thickness of 15 ⁇ m. Coating was performed. And after leaving it to stand at room temperature for 5 hours, the degree of repelling of the coating edge was observed. The sum of the widths of the four sides of the coating film was calculated and evaluated according to the following criteria. A: The edge width (the sum of the four sides) of the coating edge is more than 0 and 5 mm or less (the edge repellent evaluation is “excellent”).
  • the repel width (the sum of four sides) is more than 5 mm and not more than 15 mm (Evaluation of edge repellency is “good”)
  • X The repellency width (sum of four sides) is more than 15 mm (edge repelling evaluation “impossible”)
  • Residual stress is more than ⁇ 5 to 15 MPa or less (residual stress evaluation “excellent”)
  • Residual stress of more than 15 and 25 MPa or less (residual stress evaluation “good”)
  • This wafer was immersed in a dilute hydrochloric acid aqueous solution, and the polyimide resin film was peeled off to obtain a resin film. Then, YI of the obtained polyimide resin film was measured using a D65 light source (Spectrophotometer: SE600) manufactured by Nippon Denshoku Industries Co., Ltd. Measured a film thickness of 15 ⁇ m).
  • the laminate wafer obtained above was immersed in a dilute hydrochloric acid aqueous solution, and the two layers of the inorganic film and the polyimide film were integrally peeled from the wafer to obtain a polyimide film sample having an inorganic film formed on the surface.
  • Haze was measured using an SC-3H type haze meter manufactured by Suga Test Instruments Co., Ltd. according to the JIS K7105 transparency test method. The measurement results were evaluated according to the following criteria.
  • Haze is more than 5 and 15 or less (Haze “good”)
  • X Haze is more than 15 (Haze “bad”)
  • Table 3 shows the results of evaluation for each item as described above.
  • Example 15 In Examples 15 to 21 shown below, experiments were conducted on the oxygen concentration during heat curing and the method for removing the resin film.
  • the polyimide precursor varnish P-2 obtained in Example 2 was coated on an alkali-free glass substrate (thickness 0.7 mm) using a bar coater. Subsequently, leveling was performed at room temperature for 5 to 10 minutes, and then heated in a hot air oven at 140 ° C. for 60 minutes to produce a glass substrate laminate on which a coating film was formed. The film thickness of the coating film was adjusted to 15 ⁇ m after curing.
  • the oxygen concentration is adjusted to 10 ppm or less, and heat-curing treatment is performed at 380 ° C. for 60 minutes.
  • a glass substrate laminate in which a polyimide film (polyimide resin film) was formed by imidization was produced. After the cured laminate was allowed to stand at room temperature for 24 hours, the polyimide film was peeled off from the glass substrate by the following method. That is, the laser beam was irradiated from the glass substrate side toward the polyimide film by the third harmonic (355 nm) of the Nd: Yag laser. The irradiation energy was increased stepwise and laser irradiation was performed with the minimum irradiation energy at which peeling was possible, and the polyimide film was peeled from the glass substrate to obtain a polyimide film.
  • Example 16 instead of the glass substrate of Example 14, a glass substrate in which Parylene HT (registered trademark, manufactured by Japan Parylene LLC) was formed as a release layer on the glass substrate was used.
  • the glass substrate on which Parylene HT was formed was produced by the following method.
  • a parylene precursor (parylene dimer) was placed in a thermal evaporation apparatus, and a glass substrate (15 cm ⁇ 15 cm) covered with a hollow pad (8 cm ⁇ 8 cm) was placed in the sample chamber.
  • the parylene precursor was vaporized at 150 ° C. in a vacuum, decomposed at 650 ° C., and then introduced into the sample chamber. And parylene was vapor-deposited on the area
  • Example 15 the glass substrate in which the polyimide film / parylene HT was formed by the method similar to Example 15 was produced. Then, when the glass laminated body of the outer peripheral part of 8 cm x 8 cm in which parylene HT was not formed was cut, the polyimide film could be easily peeled from the glass substrate, and a polyimide film was obtained.
  • Example 18 A polyimide film was prepared by referring to the methods described in the prior art, Patent Document 4, and Example 5. After producing a glass substrate on which a polyimide film obtained by the same method as in Example 15 was formed, an adhesive film (PET film 100 ⁇ m, adhesive 33 ⁇ m) was bonded to the surface of the polyimide film, and the polyimide film was attached from the glass substrate. After peeling, the polyimide film was separated from the adhesive film to obtain a polyimide film.
  • PET film 100 ⁇ m, adhesive 33 ⁇ m adhesive to the surface of the polyimide film
  • Example 19 A polyimide film was obtained in the same manner as in Example 15 except that the curing oxygen concentration was adjusted to 100 ppm among the experimental conditions of Example 15.
  • Example 20 A polyimide film was obtained in the same manner as in Example 15 except that the curing oxygen concentration was adjusted to 2000 ppm among the experimental conditions of Example 15.
  • Example 21 Of the experimental conditions of Example 15, except that the oxygen concentration during curing was adjusted to 5000 ppm, the same operation as in Example 15 was performed to obtain a polyimide film.
  • YI value ⁇ Evaluation of yellowness (YI value)> YI values (converted to a film thickness of 15 ⁇ m) were measured for YI of the polyimide resin films obtained in Examples 15 to 21 using a D65 light source manufactured by Nippon Denshoku Industries Co., Ltd. (Spectrophotometer: SE600).
  • the polyimide resin film obtained from the polyimide precursor according to the present invention has low yellowness, low residual stress, excellent mechanical properties, and further, the influence on the yellowness due to the oxygen concentration during curing. It was confirmed to be a small resin film.
  • Example 22 In Examples 22 to 27 shown below, experiments were conducted on the effects of adding a surfactant and / or alkoxysilane to the polyimide precursor. Using the varnish of the polyimide precursor obtained in Example 2, the coating stripe and the yellowing degree (YI value) dependency on the oxygen concentration during curing were evaluated. [Example 22] The polyimide precursor varnish P-2 obtained in Example 2 was used.
  • Example 24 In the polyimide precursor varnish obtained in Example 2, 0.025 parts by weight of the fluorosurfactant 2 (Megafac F171, product name, manufactured by DIC) is dissolved with respect to 100 parts by weight of the resin.
  • the resin composition was prepared by filtering with a 0.1 ⁇ m filter.
  • Example 26 In the varnish of the polyimide precursor obtained in Example 2, the alkoxysilane compound 2 represented by the following formula in terms of 0.5 parts by weight of the following structure is dissolved with respect to 100 parts by weight of the resin.
  • the polyimide precursor resin composition was adjusted by filtering with a filter.
  • A 0 continuous coating streaks with a width of 1 mm or more and a length of 1 mm or more (evaluation of coating streaks “excellent”)
  • One or two coating lines (evaluation of coating lines “good”)
  • 3-5 coating stripes (coating stripe evaluation “OK”)
  • the YI values shown in Table 5 indicate the results (10 ppm / 100 ppm / 2000 ppm) when the oxygen concentration in the oven is adjusted to 10 ppm, 100 ppm, and 2,000 ppm, respectively.
  • Table 5 As is apparent from Table 5, in Examples 23 to 27 in which the surfactant and / or alkoxysilane compound was added to the resin composition, compared with Example 21 in which the surfactant was not added, the streaks during application of the resin composition Is less than 2, and it was confirmed that the yellowing degree of the polyimide resin film had a low oxygen concentration dependency at the same time.
  • the resin composition using the polyimide precursor according to the first aspect of the present invention is It contains an alkoxysilane compound having an absorbance at 308 nm of 0.1 to 0.5 when the 0.001 mass% NMP solution is used.
  • the polyimide resin film obtained by curing the resin composition has a residual stress with the support of ⁇ 5 MPa or more and 10 MPa or less. From this result, the polyimide resin film obtained from the resin composition according to the first aspect of the present invention is excellent in adhesiveness with a glass substrate (support) and is a resin film that does not generate particles during laser peeling. confirmed.
  • the resin composition using the polyimide precursor according to the second aspect of the present invention is: (1) Viscosity stability during storage is 10% or less. (2) Edge repelling during coating is simultaneously observed to be 15 mm or less.
  • the polyimide resin film obtained by curing the resin composition is (3) Residual stress is 25 MPa or less (4) Yellowness is 14 or less (15 ⁇ m film thickness) (5) Simultaneously see that the inorganic film formed on the polyimide resin film has a Haze of 15 or less.
  • the polyimide resin film is (6)
  • the yellowness can be further reduced by setting the oxygen concentration during curing to 2,000, 100, 10 ppm, (7)
  • the low refractive index difference and low yellowness of the resin film can be satisfied by laser peeling and / or a peeling method using a peeling layer.
  • the number of streaks during coating of the resin composition is 2 or less, (9)
  • the yellowing degree of the polyimide resin film has a low oxygen concentration dependency upon curing.
  • the polyimide resin film obtained from the polyimide precursor according to the present invention has a low yellowness, a low residual stress, excellent mechanical properties, and a small influence on the yellowness due to the oxygen concentration during curing. It was confirmed to be a resin film.
  • the present invention can be suitably used, for example, as a substrate for manufacturing semiconductor insulating films, TFT-LCD insulating films, electrode protective films, flexible displays, touch panel ITO electrode substrates, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 ガラス基板との接着性に優れ、レーザー剥離の際にパーティクルを生じない、ポリイミド前駆体を含む樹脂組成物を提供する。樹脂組成物は、(a)ポリイミド前駆体、(b)有機溶剤、及び(d)アルコキシシラン化合物と、を含有する樹脂組成物であって、樹脂組成物を支持体の表面に塗布した後、(a)ポリイミド前駆体をイミド化して得られるポリイミドが示す、支持体との残留応力が-5MPa以上、10MPa以下であり、(d)アルコキシシラン化合物は、0.001質量%のNMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて0.1以上、0.5以下である。

Description

樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
 本発明は、例えば、フレキシブルデバイスのための基板に用いられる、樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法、積層体及びその製造方法、並びに、ディスプレイ基板及びその製造方法に関する。
 一般に、高耐熱性が要求される用途には、樹脂フィルムとしてポリイミド(PI)樹脂のフィルムが用いられる。一般的なポリイミド樹脂は、芳香族二無水物と芳香族ジアミンとを溶液重合し、ポリイミド前駆体を製造した後、高温で閉環脱水させ、熱イミド化して、又は、触媒を用いて化学イミド化して、製造される高耐熱樹脂である。
 ポリイミド樹脂は、不溶、不融の超耐熱性樹脂であり、耐熱酸化性、耐熱特性、耐放射線性、耐低温性、耐薬品性等に優れた特性を有している。このため、ポリイミド樹脂は、絶縁コーティング剤、絶縁膜、半導体、TFT-LCDの電極保護膜等の電子材料を含む広範囲な分野で用いられ、最近は、液晶配向膜のようなディスプレイ材料の分野で従来使用されていたガラス基板に代わり、その軽さ、柔軟性を利用した無色透明フレキシブル基板への採用も検討されている。
 しかしながら、一般的なポリイミド樹脂は、高い芳香環密度により、茶色又は黄色に着色し、可視光線領域での透過率が低く、透明性が要求される分野に用いることは困難であった。そこで、ポリイミド樹脂へフッ素を導入すること、主鎖に屈曲性を与えること、嵩高い側鎖を導入すること等により、電荷移動錯体の形成を阻害し、透明性を発現させる方法が提案されている(非特許文献1)。
 ここでピロメリット酸二無水物(以下、PMDAともいう),4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAともいう)からなる酸二無水物群、2,2’-ビス(トリフルオロメチル)ベンジジン(以下、TFMBともいう)のジアミンから得られるポリイミド樹脂は、モノマー比を変更することにより、自由に屈折率を制御することができ、光導波路の材料として用いられてきた(特許文献1)。
 また、PMDA,6FDA及び、TFMBから得られるポリイミド樹脂は、光透過率、黄色度(YI値)と熱線膨張率(CTE)にすぐれ、LCD用材料としての適用可能であることが記載されている(特許文献2、3)。
 そして、PMDA,6FDA及び、TFMBから得られるポリイミド樹脂は、ガスバリア膜(無機膜)とのCTEの差が小さく、前記ポリイミド樹脂膜上にガスバリア層を備えた表示装置が提案されている(特許文献4)。
 また、ポリイミド前駆体と、アルコキシシラン化合物を有する樹脂組成物について、フレキシブルデバイス用途に用いる提案がされている(特許文献5)。
特開平4-008734号公報 特表2010-538103号公報 韓国特許公開第10-2014-0049382号 国際公開第2013/191180号パンフレット 国際公開第2014/073591号パンフレット
Polymer (米国)、第47巻、p.2337-2348
 しかし、公知の透明ポリイミドの物性特性は、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜、タッチパネル用ITO電極基板及びフレキシブルディスプレイ用耐熱性無色透明基板として用いるのに十分ではなかった。
 近年、有機ELディスプレイのプロセスではTFT材料としてIGZO等を使用する場合があり、より低CTE材料が求められている。特許文献2に記載されたポリイミド樹脂の場合、CTEが27であり、CTEが大きいという課題があった。
 そして、特許文献3に記載されたポリイミド樹脂の場合、CTEは小さいものの、本発明者が確認したところ、実施例で使用している溶媒の場合、該ポリイミド樹脂を含む樹脂組成物の塗布性が悪いという課題があることが分かった(後述する比較例3)。
 そして、特許文献4に記載されたポリイミド樹脂の場合、CTEは無機膜と同等であった。しかし、特許文献4に記載の、支持体からのポリイミド樹脂を剥離する方法は、本発明者が確認したところ、剥離後のポリイミドフィルムのYI値が大きい、伸度が小さい、表裏の屈折率差が大きいという課題があることが分かった(後述する比較例2)。
 また、特許文献5に記載されたポリイミド樹脂とアルコキシシラン化合物では、残留応力の高いポリイミド樹脂が開示されている。本発明者らが検討したところでは、残留応力の高いポリマーの場合は、レーザー剥離によりポリイミドフィルムとガラス基板を剥離する際に要するエネルギーは低いが、残留応力の低いポリマーの場合には、要するエネルギーが高いために、レーザー剥離の際にパーティクルが生じるという課題があった。
 本発明の第一の態様は、上記説明した問題点に鑑みてなされたものであり、
残留応力の低いポリマーの場合でも、ガラス基板と良好な接着性を有し、かつレーザー剥離の際にパーティクルが発生しない樹脂組成物を提供することも目的とする。
 本発明の第一の態様は、上記説明した問題点に鑑みてなされたものであり、ガラス基板との接着性に優れ、レーザー剥離の際にパーティクルを生じない、ポリイミド前駆体を含む樹脂組成物を提供することを目的とする。
 本発明の第二の態様は、上記説明した問題点に鑑みてなされたものであり、
保存安定性に優れ、塗工性に優れる、ポリイミド前駆体を含む樹脂組成物を提供することを目的とする。また本発明は、残留応力が低く、黄色度(YI値)が小さく、キュア工程(加熱硬化工程)時の酸素濃度によるYI値及び全光線透過率への影響が小さく、表裏の屈折率差が小さい、ポリイミド樹脂膜および樹脂フィルム及びその製造方法、積層体及びその製造方法、を提供することを目的とする。さらに本発明は、表裏で屈折率差が低く、黄色度が低いディスプレイ基板及びその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、
第一の態様では、ポリイミドとなった時に支持体と特定の範囲内の残留応力を生じるポリイミド前駆体と、308nmに特定の割合の吸光度を有するアルコキシシラン化合物が、ガラス基板(支持体)との接着性に優れ、かつレーザー剥離時にパーティクルを生じないことを見出し、
第二の態様では、特定構造のポリイミド前駆体を含む樹脂組成物は、保存安定性に優れ、塗工性に優れること;
当該組成物を硬化して得られるポリイミドフィルムは、残留応力が低く、黄色度(YI値)が小さく、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響が小さいこと; 
該ポリイミドフィルム上に形成した無機膜は、Hazeが小さいこと;並びに
支持体から該ポリイミド樹脂膜を剥離する方法として、レーザー剥離及び/または剥離層を用いることにより、樹脂膜表裏の低屈折率差、低YI値を満たすこと
を見出し、これらの知見に基づいて本発明をなすに至った。
 すなわち、本発明は、以下の通りのものである。
[1]
 (a)ポリイミド前駆体、(b)有機溶剤、及び(d)アルコキシシラン化合物と、を含有する樹脂組成物であって、
 前記樹脂組成物を支持体の表面に塗布した後、前記(a)ポリイミド前駆体をイミド化して得られるポリイミドが示す、支持体との残留応力が-5MPa以上、10MPa以下であり、そして、
 前記(d)アルコキシシラン化合物は、0.001質量%のNMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて0.1以上、0.5以下である、樹脂組成物。
[2]
 前記(d)アルコキシシラン化合物が、
下記一般式(1):
Figure JPOXMLDOC01-appb-C000010
{式中、Rは、単結合、酸素原子、硫黄原子、又は炭素数1~5のアルキレン基を示す。}で表される酸二無水物と、
アミノトリアルコキシシラン化合物と、
を反応させて得られる化合物である、[1]に記載の樹脂組成物。
[3]
前記(d)アルコキシシラン化合物が、下記一般式(2)~(4):
Figure JPOXMLDOC01-appb-C000011
のそれぞれで示される化合物より成る群から選択される少なくとも1種である、[1]又は[2]に記載の樹脂組成物。
[4]
 前記(a)ポリイミド前駆体が、下記式(5):
Figure JPOXMLDOC01-appb-C000012
で示される構造単位、及び、下記式(6): 
Figure JPOXMLDOC01-appb-C000013
で示される構造単位を有する、[1]~[3]のいずれかに記載の樹脂組成物。
[5]
 前記(a)ポリイミド前駆体において、前記式(5)で示される構造単位と、前記式(6)で示される構造単位とのモル比が、90/10~50/50である、[1]~[4]のいずれかに記載の樹脂組成物。
[6]
 (a)ポリイミド前駆体と、(b)有機溶剤を含有する樹脂組成物であって、
 前記(a)ポリイミド前駆体が、下記式(5):
Figure JPOXMLDOC01-appb-C000014
で示される構造単位、及び、下記式(6): 
Figure JPOXMLDOC01-appb-C000015
で示される構造単位を有し、かつ、前記(a)ポリイミド前駆体の全量に対する、分子量1,000未満のポリイミド前駆体分子の含有量が5質量%未満である、樹脂組成物。
[7]
 前記(a)ポリイミド前駆体の分子量1,000未満の分子の含有量が1質量%未満である、[6]に記載の樹脂組成物。
[8]
 前記(a)ポリイミド前駆体において、前記式(5)で示される構造単位と、式(6)で示される構造単位とのモル比が、90/10~50/50である、[6]または[7]に記載の樹脂組成物。
[9]
 (a)ポリイミド前駆体と、(b)有機溶剤を含有する樹脂組成物であって、
 前記(a)ポリイミド前駆体が、下記式(5):
Figure JPOXMLDOC01-appb-C000016
で示される構造単位を有するポリイミド前駆体と、下記式(6):
Figure JPOXMLDOC01-appb-C000017
で示される構造単位とを有するポリイミド前駆体との混合物である、樹脂組成物。
[10]
 前記式(5) で示される構造単位を有するポリイミド前駆体と、前記式(6) で示される構造単位を有するポリイミド前駆体との重量比が90/10~50/50である、[9]に記載の樹脂組成物。
[11]
 水分量が3000ppm以下である、[1]~[10]のいずれかに記載の樹脂組成物。
[12]
 前記(b)有機溶剤が、沸点が170~270℃の有機溶剤である、[1]~[11]のいずれかに記載の樹脂組成物。
[13]
 前記(b)有機溶剤が、20℃における蒸気圧が250Pa以下の有機溶剤である、[1]~[12]のいずれかに記載の樹脂組成物。
[14]
 前記(b)有機溶剤が、N-メチル-2-ピロリドン、γ-ブチロラクトン、下記一般式(7):
Figure JPOXMLDOC01-appb-C000018
(式中、Rはメチル基またはn-ブチル基である。)
で表される化合物からなる群から選択される少なくとも一種の有機溶剤である[12]または[13]に記載の樹脂組成物。
[15]
 (c)界面活性剤をさらに含有する、[1]~[14]のいずれかに記載の樹脂組成物。
[16]
 前記(c)界面活性剤が、フッ素系界面活性剤及びシリコーン系界面活性剤からなる群より選択される1種以上である、[15]に記載の樹脂組成物。
[17]
 前記(c)界面活性剤が、シリコーン系界面活性剤である、[15]に記載の樹脂組成物。
[18]
 (d)アルコキシシラン化合物をさらに含有する、[6]~[17]のいずれかに記載の樹脂組成物。
[19]
 [1]~[18]のいずれかに記載の樹脂組成物を加熱して得られるポリイミド樹脂膜。
[20]
 [19]に記載のポリイミド樹脂膜を含む、樹脂フィルム。
[21]
 [1]~[18]のいずれかに記載の樹脂組成物を支持体の表面上に塗布する工程と、
 塗布した樹脂組成物を乾燥し、溶媒を除去する工程と、
 前記支持体及び前記樹脂組成物を加熱して該樹脂組成物に含まれる樹脂前駆体をイミド化してポリイミド樹脂膜を形成する工程と、
 前記ポリイミド樹脂膜を該支持体から剥離する工程と、
を含む、樹脂フィルムの製造方法。
[22]
 前記樹脂組成物を支持体の表面上に塗布する工程に先立って、前記支持体上に剥離層を形成する工程を含む、[21]に記載の樹脂フィルムの製造方法。
[23]
 前記加熱しポリイミド樹脂膜を形成する工程において、酸素濃度が2000ppm以下である、[21]に記載の樹脂フィルムの製造方法。
[24]
 前記加熱しポリイミド樹脂膜を形成する工程において、酸素濃度が100ppm以下である、[21]に記載の樹脂フィルムの製造方法。
[25]
 前記加熱しポリイミド樹脂膜を形成する工程において、酸素濃度が10ppm以下である、[21]に記載の樹脂フィルムの製造方法。
[26]
 前記ポリイミド樹脂膜を支持体から剥離する工程が、支持体側からレーザーを照射したのち剥離する工程を含む、[21]に記載の樹脂フィルムの製造方法。
[27]
 前記素子または回路が形成されたポリイミド樹脂膜を支持体から剥離する工程が、該ポリイミド樹脂膜/剥離層/支持体を含む構成体から該ポリイミド樹脂膜を剥離する工程を含む、[21]に記載の樹脂フィルムの製造方法。
[28]
 支持体と、該支持体の表面上に形成された、[6]~[19]のいずれかに記載の樹脂組成物の硬化物であるポリイミド樹脂膜とを含む、積層体。
[29]
 [6]~[18]のいずれかに記載の樹脂組成物を支持体の表面上に塗布する工程と、
 該支持体及び該樹脂組成物を加熱して該樹脂組成物に含まれる該樹脂前駆体をイミド化してポリイミド樹脂膜を形成する工程と、を含む、積層体の製造方法。
[30]
 [6]~[18]のいずれかに記載の樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、
 前記ポリイミド樹脂膜上に素子または回路を形成する工程と、
 前記素子または回路が形成されたポリイミド樹脂膜を支持体から剥離する各工程と、
を含む、ディスプレイ基板の製造方法。
[31]
 [30]に記載のディスプレイ基板の製造方法により形成された、ディスプレイ基板。
[32]
 [19]記載のポリイミドフィルムと、SiNと、SiOと、をこの順で積層してなる積層体。
 本発明に係るポリイミド前駆体を含む樹脂組成物は、第一の態様では、ガラス基板(支持体)との接着性に優れ、レーザー剥離時にパーティクルを生じない。
 したがって、第一の態様では、ガラス基板(支持体)との接着性に優れ、レーザー剥離時にパーティクルを生じない樹脂組成物を提供することができる。
 第二の態様では、保存安定性に優れ、塗工性に優れる。また、当該組成物から得られるポリイミド樹脂膜および樹脂フィルムは、残留応力が低く、黄色度(YI値)が小さく、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響が小さい。
 したがって、本発明では、保存安定性に優れ、塗工性に優れる、ポリイミド前駆体を含む樹脂組成物を提供することができる。また本発明は、残留応力が低く、黄色度(YI値)が小さく、キュア工程(加熱硬化工程)時の酸素濃度によるYI値及び全光線透過率への影響が小さく、表裏の屈折率差が小さい、ポリイミド樹脂膜および樹脂フィルム及びその製造方法、積層体及びその製造方法、を提供することができる。さらに本発明は、表裏で屈折率差が低く、黄色度が低いディスプレイ基板及びその製造方法を提供することができる。
 以下、本発明の例示の実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、本開示の式中の構造単位の繰り返し数は、特記がない限り、樹脂前駆体全体において当該構造単位が含まれ得る数を意図するに過ぎず、従って、ブロック構造等の特定の結合様式を意図するものではないことに留意すべきである。また、本開示で記載する特性値は、特記がない限り、[実施例]の項において記載する方法又はこれと同等であることが当業者に理解される方法で測定される値であることを意図する。
<樹脂組成物>
 本発明の第一の態様が提供する樹脂組成物は、
(a)ポリイミド前駆体、(b)有機溶媒、及び(d)アルコキシシラン化合物を含有する。
以下各成分を順に説明する。
[(a)ポリイミド前駆体]
 第一の態様におけるポリイミド前駆体は、ポリイミドとなった時の支持体との残留応力が-5MPa以上、10MPa以下となるポリイミド前駆体である。ここで、残留応力は後述する実施例に記載の方法にて測定することができる。
 第一の態様における支持体は、ガラス基板、シリコーンウエハ、無機膜などが挙げられる。
 第一の態様におけるポリイミド前駆体は、ポリイミドとなった時に残留応力が-5MPa以上、10MPa以下であれば限定されないが、無機膜を形成した後の反りの観点から、-3MPa以上、3MPa以下が好ましい。
 また、フレキシブルディスプレイへの適用の観点から、黄色度が膜厚10μmにおいて15以下であることが好ましい。
 以下、残留応力が-5MPa以上、10MPa以下、かつ黄色度が膜厚10μmにおいて15以下のポリイミドを与えるポリイミド前駆体について説明する。
 第一の態様におけるポリイミド前駆体は、下記一般式(8)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000019
{前記一般式(8)中、Rは、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素、又は炭素数6~10の芳香族基であり;
は炭素数4~32の4価の有機基であり;そして
は炭素数4~32の2価の有機基である。}
 上記、樹脂前駆体において、一般式(8)は、テトラカルボン酸二無水物とジアミンとを反応させることにより得られる構造である。Xはテトラカルボン酸二無水物に由来し、Xはジアミンに由来する。
 第一の態様における、一般式(8)におけるXが、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4-(ジアミノジフェニル)スルホン、3,3-(ジアミノジフェニル)スルホンに由来する残基であることが好ましい。
<テトラカルボン酸二無水物>
 次に、前記一般式(8)に含まれる4価の有機基Xを導くテトラカルボン酸二無水物について説明する。
 上記テトラカルボン酸二無水物としては、具体的には、炭素数が8~36の芳香族テトラカルボン酸二無水物、炭素数が6~50の脂肪族テトラカルボン酸二無水物、及び炭素数が6~36の脂環式テトラカルボン酸二無水物から選択される化合物であることが好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。
 さらに具体的には、炭素数が8~36の芳香族テトラカルボン酸二無水物として、例えば4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAとも記す)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物(以下、PMDAとも記す)、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAとも記す)、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAととも記す)、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物(以下、DSDAとも記す)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物(以下、ODPAとも記す)、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(以下、TAHQとも言う)、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(以下、BPADAとも記す)、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等を;
 炭素数が6~50の脂肪族テトラカルボン酸二無水物として、例えばエチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等を;
炭素数が6~36の脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下、CBDAとも記す)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物(以下、CHDAと記す)、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-(3,4-ジカルボン酸無水物フェニル)エーテル等が、それぞれ挙げられる。
 その中でも、BTDA、PMDA、BPDA及びTAHQから成る群より選択される1種以上を使用することが、CTEの低減、耐薬品性の向上、ガラス転移温度(Tg)向上、及び機械伸度向上の観点で好ましい。また、透明性のより高いフィルムを得たい場合は、6FDA、ODPA及びBPADAから成る群より選択される1種以上を使用することが、黄色度の低下、複屈折率の低下、及び機械伸度向上の観点で好ましい。また、BPDAが、残留応力の低減、黄色度の低下、複屈折率の低下、耐薬品性の向上、Tg向上、及び機械伸度向上の観点で好ましい。また、CHDAが、残留応力の低減、及び黄色度の低下の観点で好ましい。これらの中でも、高耐薬品性、高Tg及び低CTEを発現する強直構造のPMDA及びBPDAから成る群より選択される1種以上と、黄色度及び複屈折率が低い、6FDA、ODPA及びCHDAからなる群から選択される1種以上と、を組み合わせて使用することが、高耐薬品性、残留応力低下、黄色度低下、複屈折率の低下、及び、全光線透過率の向上の観点から好ましい。
 第一の態様における樹脂前駆体は、その性能を損なわない範囲で、上述のテトラカルボン酸二無水物に加えてジカルボン酸を使用することにより、ポリアミドイミド前駆体としてもよい。このような前駆体を使用することにより、得られるフィルムにおいて、機械伸度の向上、ガラス転移温度の向上、黄色度の低減等の諸性能を調整することができる。そのようなジカルボン酸として、芳香環を有するジカルボン酸及び脂環式ジカルボン酸が挙げられる。特に炭素数が8~36の芳香族ジカルボン酸、及び炭素数が6~34の脂環式ジカルボン酸からなる群から選択される少なくとも1つの化合物であることが好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。
 これらのうち、芳香環を有するジカルボン酸が好ましい。
 具体的には、例えばイソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-スルホニルビス安息香酸、3,4’-スルホニルビス安息香酸、3,3’-スルホニルビス安息香酸、4,4’-オキシビス安息香酸、3,4’-オキシビス安息香酸、3,3’-オキシビス安息香酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2’-ジメチル-4,4’-ビフェニルジカルボン酸、3,3’-ジメチル-4,4’-ビフェニルジカルボン酸、2,2’-ジメチル-3,3’-ビフェニルジカルボン酸、9,9-ビス(4-(4-カルボキシフェノキシ)フェニル)フルオレン、9,9-ビス(4-(3-カルボキシフェノキシ)フェニル)フルオレン、4,4’-ビス(4-カルボキシフェノキシ)ビフェニル、4,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,4’-ビス(4-カルボキシフェノキシ)ビフェニル、3,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,3’-ビス(4-カルボキシフェノキシ)ビフェニル、3,3’-ビス(3―カルボキシフェノキシ)ビフェニル、4,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、1,1-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、1,3-フェニレン二酢酸、1,4-フェニレン二酢酸等;及び
国際公開第2005/068535号パンフレットに記載の5-アミノイソフタル酸誘導体等が挙げられる。これらジカルボン酸をポリマーに実際に共重合させる場合には、塩化チオニル等から誘導される酸クロリド体、活性エステル体等の形で使用してもよい。
 これらの中でも、テレフタル酸が、YI値の低減、及びTgの向上の観点から特に好ましい。ジカルボン酸をテトラカルボン酸二無水物とともに使用する場合は、ジカルボン酸とテトラカルボン酸二無水物とを合わせた全体のモル数に対して、ジカルボン酸が50モル%以下であることが、得られるフィルムにおける耐薬品性の観点から好ましい。
<ジアミン>
 第一の態様に係る樹脂前駆体は、Xを導くジアミンとして、具体的には、例えば4,4-(ジアミノジフェニル)スルホン(以下、4,4-DASとも記す)、3,4-(ジアミノジフェニル)スルホン及び3,3-(ジアミノジフェニル)スルホン(以下、3,3-DASとも記す)、2,2’-ビス(トリフルオロメチル)ベンジジン(以下、TFMBとも記す)、2,2’-ジメチル4,4’-ジアミノビフェニル(以下、m-TBとも記す)、1,4-ジアミノベンゼン(以下p-PDとも記す)、1,3-ジアミノベンゼン(以下m-PDとも記す)、4-アミノフェニル4’-アミノベンゾエート(以下、APABとも言う)、4,4’-ジアミノベンゾエート(以下、DABAとも言う)、4,4’-(又は3,4’-、3,3’-、2,4’-)ジアミノジフェニルエーテル、4,4’-(又は3,3’-)ジアミノジフェニルスルフォン、4,4’-(又は3,3’-)ジアミノジフェニルスルフィド、4,4’-ベンゾフェノンジアミン、3,3’-ベンゾフェノンジアミン、4,4’-ジ(4-アミノフェノキシ)フェニルスルフォン、4,4’-ジ(3-アミノフェノキシ)フェニルスルフォン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’,6,6’-テトラメチル-4,4’-ジアミノビフェニル、2,2’,6,6’-テトラトリフルオロメチル-4,4’-ジアミノビフェニル、ビス{(4-アミノフェニル)-2-プロピル}1,4-ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、3,3’-ジメチルベンチジン、3,3’-ジメトキシベンチジン及び3,5-ジアミノ安息香酸、2,6-ジアミノピリジン、2,4-ジアミノピリジン、ビス(4-アミノフェニル-2-プロピル)-1,4-ベンゼン、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(3,3’-TFDB)、2,2’-ビス[3(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3-BDAF)、2,2’-ビス[4(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4-BDAF)、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン(3,3’-6F)、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン(4,4’-6F)等の芳香族ジアミンを挙げることができる。これらのうち、4,4-DAS,3,3-DAS、1,4-シクロヘキサンジアミン、TFMB、及びAPABから成る群より選択される1種以上を使用することが、黄色度の低下、CTEの低下、高いTgの観点から好ましい。
 第一の態様に係る樹脂前駆体の数平均分子量は、3,000~1,000,000であることが好ましく、より好ましくは5,000~500,000、更に好ましくは7,000~300,000、特に好ましくは10,000~250,000である。該分子量が3,000以上であることが、耐熱性及び強度(例えば強伸度)を良好に得る観点で好ましく、1,000,000以下であることが、溶媒への溶解性を良好に得る観点、塗工等の加工の際に所望する膜厚にて滲み無く塗工できる観点で好ましい。高い機械伸度を得る観点からは、分子量は50,000以上であることが好ましい。本開示において、前記の数平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて標準ポリスチレン換算により求められる値である。
 第一の態様に係る樹脂前駆体は、その一部がイミド化されていてもよい。樹脂前駆体のイミド化は、公知の化学イミド化又は熱イミド化により、行うことができる。これらのうち熱イミド化が好ましい。具体的な手法としては、後述の方法によって樹脂組成物を作製した後、溶液を130~200℃で5分~2時間加熱する方法が好ましい。この方法により、樹脂前駆体が析出を起こさない程度にポリマーの一部を脱水イミド化することができる。ここで、加熱温度及び加熱時間をコントロールすることにより、イミド化率を制御することができる。部分イミド化をすることにより、樹脂組成物の室温保管時の粘度安定性を向上することができる。イミド化率の範囲としては、5%~70%が、溶液への溶解性及び保存安定性の観点から好ましい。
 また、上述の樹脂前駆体に、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール等を加えて加熱し、カルボン酸の一部、又は全部をエステル化してもよい。こうすることにより、樹脂組成物の、室温保管時の粘度安定性を向上することができる。
 第一の態様における(b)有機溶媒は、後述する第二の態様における(b)有機溶媒と同様である。
<(d)アルコキシシラン化合物>
 次に、第一の態様に係る(d)のアルコキシシラン化合物について説明する。
 第一の態様に係るアルコキシシラン化合物は、0.001重量%NMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて、0.1以上0.5以下である。この要件を充足すれば、その構造は特に限定されない。吸光度がこの範囲内にあることにより、得られる樹脂膜が、高い透明性を保ったまま、レーザー剥離を容易とすることができる。
 上記アルコキシシラン化合物は、例えば、
酸二無水物とトリアルコキシシラン化合物との反応、
酸無水物とトリアルコキシシラン化合物との反応、
アミノ化合物とイソシアネートトリアルコキシシラン化合物との反応
等により、合成することができる。上記酸二無水物、酸無水物、及びアミノ化合物は、それぞれ、芳香族環(特にベンゼン環)を有するものであることが好ましい。
 第一の態様に係るアルコキシシラン化合物は、接着性の観点から、下記一般式(1):
Figure JPOXMLDOC01-appb-C000020
{式中、Rは、単結合、酸素原子、硫黄原子、又は炭素数1~5のアルキレン基を示す。}で表される酸二無水物と、アミノトリアルコキシシラン化合物と、を反応させて得られる化合物であることが好ましい。
 第一の態様における上記酸二無水物とアミノトリアルコキシシランの反応は、例えば、2モルのアミノトリアルコキシシランを適当な溶媒に溶解させて得られた溶液に1モルの酸二無水物を添加し、好ましくは0℃~50℃の反応温度において、好ましくは0.5~8時間の反応時間で行うことができる。
 上記溶媒は、原料化合物及び生成物が溶解すれば限定されないが、上記(a)ポリイミド前駆体との相溶性の観点から、例えば、N-メチル-2-ピロリドン、γ-ブチロラクトン、エクアミドM100(商品名、出光リテール販売社製)、エクアミドB100(商品名、出光リテール販売社製)等が、好ましい。
 第一の態様に係るアルコキシシラン化合物は、透明性、接着性、及び剥離性の観点から、下記一般式(2)~(4):
Figure JPOXMLDOC01-appb-C000021
のそれぞれで示される化合物より成る群から選択される少なくとも1種であることが好ましい。
 第一の態様に係る樹脂組成物における(d)アルコキシシラン化合物の含有量は、十分な接着性と剥離性とが発現される範囲で、適宜設計可能である。好ましい範囲として、(a)ポリイミド前駆体100質量%に対して、(d)アルコキシシラン化合物を0.01~20質量%の範囲を例示することができる。
 (a)ポリイミド前駆体100質量%に対する(d)アルコキシシラン化合物の含有量が0.01質量%以上であることにより、得られる樹脂膜において、支持体との良好な密着性を得ることができる。(b)アルコキシシラン化合物の含有量が20質量%以下であることが、樹脂組成物の保存安定性の観点から好ましい。(d)アルコキシシラン化合物の含有量は、(a)ポリイミド前駆体に対して、0.02~15質量%であることがより好ましく、0.05~10質量%であることが更に好ましく、0.1~8質量%であることが特に好ましい。
<樹脂組成物>
 本発明の第二の態様が提供する樹脂組成物は、
(a)ポリイミド前駆体と、(b)有機溶媒を含有する。
以下各成分を順に説明する。
[(a)ポリイミド前駆体]
 本実施形態におけるポリイミド前駆体は、下記式(5)及び(6)で示される構造単位を有する共重合体、または、前記式(5) で示される構造単位を有するポリイミド前駆体と、前記式(2) で示される構造単位を有するポリイミド前駆体の混合物である。そして、本実施形態におけるポリイミド前駆体は、前記(a)ポリイミド前駆体の全体のうち、分子量1,000未満のポリイミド前駆体分子の含有量が、5質量%未満であることを特徴とする。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 ここで、前記共重合体の構造単位(5)と(6)の比(モル比)は、得られる硬化物の熱線膨張率(以下、CTEともいう)、残留応力、黄色度(以下、YIともいう)の観点から(5):(6)=95:5~40:60が好ましい。また、YIの観点から(5):(6)=90:10~50:50がより好ましく、CTE、残留応力の観点から(5):(6)=95:5~50:50がさらに好ましい。上記式(5)及び(6)の比は、たとえば、1H-NMRスペクトルの結果から求めることができる。また、共重合体は、ブロック共重合体でもランダム共重合体でもよい。
 また、前記ポリイミド前駆体の混合物の前記式(5) で示される構造単位を有するポリイミド前駆体と、前記式(6) で示される構造単位を有するポリイミド前駆体の重量比は、得られる硬化物のCTE、残留応力の観点から(5):(6)=95:5~40:60が好ましく、CTEの観点から(5):(6)=95:5~50:50がより好ましい。
 本発明のポリイミド前駆体(共重合体)は、ピロメリット酸二無水物(以下、PMDAともいう)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAともいう)及び、2,2’-ビス(トリフルオロメチル)ベンジジン(以下、TFMBともいう)を重合させることにより得ることができる。すなわち、PMDAとTMFBとが重合することにより構造単位(5)を形成し、6FDAとTFMBとが重合することにより構造単位(6)を形成する。
 PMDAを用いることで、得られる硬化物が良好な耐熱性を発現し、かつ残留応力を小さくすることができると考えられる。
 6FDAを用いることで、得られる硬化物が良好な透明性を発現し、かつ透過率を高く、YIを小さくすることができると考えられる。
 尚、上記原料テトラカルボン酸(PMDA,6FDA)としては、通常これらの酸無水物を用いるが、これらの酸又はこれらの他の誘導体を用いることもできる。
 また、TFMBを用いることで、得られる硬化物が良好な耐熱性と透明性を発現することができると考えられる。
 上記構造単位(5)及び(6)の比は、テトラカルボン酸類である、PMDAと6FDAの比率を変えることで、調整することができる。
 本発明のポリイミド前駆体(混合物)は、PMDAとTFMBの重合体と、6FDAとTFMBの重合体を混合することにより得ることができる。すなわち、PMDAとTFMBとの重合体は構造単位(5)を有し、6FDAとTFMBとの重合体は構造単位(6)を有する。
 本実施の形態に係るポリイミド前駆体(共重合体)においては、上記構造単位(5)及び(6)の合計質量が、樹脂の総質量基準で、30質量%以上であることが、低CTE、低残留応力の観点から好ましく、更に、70質量%以上が、低CTEの観点から好ましい。最も好ましくは100質量%である。
 また、本実施の形態に係る樹脂前駆体は、必要に応じて、性能を損なわない範囲で、下記一般式(8)で表される構造を有する構造単位(8)を更に含有してもよい。
Figure JPOXMLDOC01-appb-C000024
{式中、複数存在するR1は、それぞれ独立に、水素原子、炭素数1~20の一価の脂肪族炭化水素、又は一価の芳香族基であり、複数存在してもよい。X3は、それぞれ独立に、炭素数4~32の二価の有機基であり、複数存在してもよい。X4は、それぞれ独立に、炭素数4~32の四価の有機基であり、そしてtは1~100の整数である。}
 構造単位(8)は、酸二無水物:PMDA及び/または6FDA及び、ジアミン:TFMBに由来するポリイミド前駆体以外の構造を有するものである。
 構造単位(8)において、R1は、好ましくは水素原子である。またX3は、耐熱性、YI値の低減と全光線透過率の観点から、好ましくは二価の芳香族基又は脂環式基である。またX4は、耐熱性、YI値の低減と全光線透過率の観点から、好ましくは二価の芳香族基又は脂環式基である。有機基X1、X2及びX4は、互いに、同一でもよく、異なっていてもよい。
 本実施の形態に係る樹脂前駆体における構造単位(8)の質量割合は、全樹脂構造中の80質量%以下、好ましくは70質量%以下であることが、YI値と全光線透過率の酸素依存性の低下の観点から好ましい。
 本発明のポリアミド酸(ポリイミド前駆体)の分子量は、重量平均分子量で10000~500000が好ましく、10000~300000がより好ましく、20000~200000が特に好ましい。重量平均分子量が10000より小さいと、塗布した樹脂組成物を加熱する工程において、樹脂膜にクラックが発生する場合があり、また形成することができても機械特性に乏しくなるおそれがある。重量平均分子量が500000よりも大きいと、ポリアミド酸の合成時に重量平均分子量をコントロールするのが難しく、また適度な粘度の樹脂組成物を得ることが難しくなるおそれがある。本開示で、重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用い、標準ポリスチレン換算にて求められる値である。
 また、本実施の形態に係るポリイミド樹脂前駆体の数平均分子量は、3000~1000000であることが好ましく、より好ましくは5000~500000、さらに好ましくは7000~300000、特に好ましくは10000~250000である。該分子量が3000以上であることが、耐熱性や強度(例えば強伸度)を良好に得る観点で好ましく、1000000以下であることが、溶媒への溶解性を良好に得る観点、塗工等の加工の際に所望する膜厚にて滲み無く塗工できる観点で好ましい。高い機械伸度を得る観点からは、分子量は50000以上であることが好ましい。本開示で、数平均分子量は、ゲルパーミエーションクロマトグラフィーを用い、標準ポリスチレン換算にて求められる値である。
 好ましい態様において、樹脂前駆体は、一部イミド化されていてもよい。
 ポリイミド前駆体の全量に対する、分子量1,000未満のポリイミド前駆体分子の含有量は、該ポリイミド前駆体を溶解した溶液を用いて、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)測定し、そのピーク面積から算出することができる。
 この分子量1,000未満の分子が残存するのは、合成時に使用する溶媒の水分量が関与していると考えられる。すなわち、該水分の影響で、一部の酸二無水物モノマーの酸無水物基が加水分解しカルボキシル基になり、高分子量化することなく低分子の状態で残存すると考えられる。
 そして、該溶媒の水分量は、使用する溶媒のグレード(脱水グレードまたは汎用グレード、等)、溶媒容器(ビン、18L缶、キャニスター缶、等)、溶媒保管状態(希ガス封入済または無、等)、開封から使用までの時間(開封後すぐ使用、開封後経時後使用、等)、等が関与すると考えられる。また、合成前の反応器の希ガス置換、合成中の希ガス流入の有無、等も関与すると考えられる。
 分子量1,000未満のポリイミド前駆体分子の含有量は、該ポリイミド前駆体を用いた樹脂組成物を硬化したポリイミド樹脂膜の残留応力、該ポリイミド樹脂膜上に形成した無機膜のHazeの観点から、ポリイミド前駆体の全量に対し5%未満であることが好ましく、1%未満であることがさらに好ましい。
 これらの項目が、分子量1,000未満の分子の含有量が上記範囲内である場合、良好である理由は不明確であるが、低分子成分が関与していると考えられる。
 そして、本発明の実施にかかる樹脂組成物の水分量は、3000ppm以下であることを特徴とする。
 該樹脂組成物の水分量は、樹脂組成物の保存時の粘度安定性の観点から、3000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、500ppm以下であることがさらに好ましい。
 この項目が樹脂組成物の水分量が上記範囲内である場合、良好である理由は不明確であるが、該水分がポリイミド前駆体の分解再結合に関与していると考えられる。
 本実施の形態の樹脂前駆体は、残留応力が10μm膜厚で20MPa以下であるようなポリイミド樹脂を形成しうるため、無色透明ポリイミド基板上にTFT素子装置を備えたディスプレイ製造工程に適用しやすい。
 また、好ましい態様において、樹脂前駆体は以下の特性を有する。
 樹脂前駆体を溶媒(たとえば、N-メチル-2-ピロリドン)に溶解して得られる溶液を支持体の表面に塗布した後、該溶液を窒素雰囲気下300~550℃(例えば380℃)で加熱(例えば1時間)することによって該樹脂前駆体をイミド化して得られる樹脂において、15μm膜厚での黄色度が14以下である。
 樹脂前駆体を溶媒(たとえば、N-メチル-2-ピロリドン)に溶解して得られる溶液を支持体の表面に塗布した後、該溶液を窒素雰囲気下(例えば酸素濃度2000ppm以下)300~500℃(例えば380℃)で加熱(例えば1時間)することによって該樹脂前駆体をイミド化して得られる樹脂において、残留応力が25MPa以下である。
<樹脂前駆体の製造>
 本発明のポリイミド前駆体(ポリアミド酸)は、従来公知の合成方法で合成することができる。例えば、溶媒に所定量のTFMBを溶解させた後、得られたジアミン溶液に、PMDA、及び6FDAをそれぞれ所定量添加し、撹拌する。
 各モノマー成分を溶解させるときには、必要に応じて加熱してもよい。反応温度は-30~200℃が好ましく、20~180℃がより好ましく、30~100℃が特に好ましい。そのまま室温(20~25℃)、又は適当な反応温度で撹拌を続け、GPCで所望の分子量になったことを確認した時点を反応の終点とする。上記反応は、通常3~100時間で完了できる。
 また、上述のようなポリアミド酸に、N,N-ジメチルホルムアミドジメチルアセタール又はN,N-ジメチルホルムアミドジエチルアセタールを加えて加熱することで、カルボン酸の一部、又は全部をエステル化することにより、樹脂前駆体と溶媒とを含む溶液の、室温保管時の粘度安定性を向上することもできる。これらエステル変性ポリアミド酸は、他に、上述のテトラカルボン酸無水物を予め酸無水物基に対して1当量の1価のアルコールと反応させた後、塩化チオニルやジシクロヘキシルカルボジイミド等の脱水縮合剤と反応させた後、ジアミンと縮合反応させることでも得ることができる。
 そして、上記反応の溶媒としては、ジアミン、テトラカルボン酸類及び生じたポリアミド酸を溶解することのできる溶媒であれば特に制限はされない。このような溶媒の具体例としては、非プロトン性溶媒、フェノ-ル系溶媒、エーテル及びグリコ-ル系溶媒等が挙げられる。
 具体的には、非プロトン性溶媒としては、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素、下記一般式(7)で表される、エクアミドM100(商品名:出光興産社製)及びエクアミドB100(商品名:出光興産社製)
Figure JPOXMLDOC01-appb-C000025
(M100:R=メチル基、B100:R=n-ブチル基)
等のアミド系溶媒;γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒;ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含りん系アミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;ピコリン、ピリジン等の3級アミン系溶媒;酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶媒等が挙げられる。フェノ-ル系溶媒としては、フェノ-ル、O-クレゾ-ル、m-クレゾ-ル、p-クレゾ-ル、2,3-キシレノ-ル、2,4-キシレノ-ル、2,5-キシレノ-ル、2,6-キシレノ-ル、3,4-キシレノ-ル、3,5-キシレノ-ル等が挙げられる。エ-テル及びグリコ-ル系溶媒としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エ-テル、1,2-ビス(2-メトキシエトキシ)エタン、ビス[2- (2-メトキシエトキシ)エチル]エ-テル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 これらの中でも、常圧における沸点は、60~300℃が好ましく、140~280℃がより好ましく、170~270℃が特に好ましい。沸点が300℃より高いと乾燥工程が長時間必要となり、60℃より低いと、乾燥工程において樹脂膜の表面に荒れが発生したり、樹脂膜中に気泡が混入したりし、均一な膜が得られない可能性がある。このように、有機溶剤の沸点が170~270℃であることおよび、20℃における蒸気圧が250Pa以下であることが、溶解性及び、塗工時エッジはじきの観点から好ましい。より具体的には、N-メチル-2-ピロリドン、γ-ブチロラクトン、前記エクアミドM100及び、エクアミドB100、等が挙げられる。これらの反応溶媒は単独で又は2種類以上混合して用いてもよい。
 本発明のポリイミド前駆体(ポリアミド酸)は、通常、上記反応溶媒を溶媒とする溶液(以下、ポリアミド酸溶液ともいう)として得られる。得られたポリアミド酸溶液の全量に対するポリアミド酸成分(樹脂不揮発分:以下、溶質という)の割合は、塗膜形成性の観点から5~60質量%が好ましく、10~50質量%がさらに好ましく、10~40質量%が特に好ましい。
 上記ポリアミド酸溶液の溶液粘度は、25℃で500~200000mPa・sが好ましく、2000~100000mPa・sがより好ましく、3000~30000mPa・sが特に好ましい。溶液粘度は、E型粘度計(東機産業株式会社製VISCONICEHD)を用いて測定できる。溶液粘度が300mPa・sより低いと膜形成の際の塗布がしにくく、200000mPa・sより高いと合成の際の撹拌が困難になるという問題が生じる恐れがある。しかしながら、ポリアミド酸合成の際に溶液が高粘度になったとしても、反応終了後に溶媒を添加して撹拌することで、取扱い性のよい粘度のポリアミド酸溶液を得ることも可能である。本発明のポリイミドは、上記ポリイミド前駆体を加熱し、脱水閉環することにより得られる。
<樹脂組成物>
 本発明の別の態様は、前述した(a)ポリイミド前駆体と、(b)有機溶剤とを含有する、樹脂組成物を提供する。樹脂組成物は、典型的にはワニスである。
[(b)有機溶剤]
(b)有機溶剤は、本発明のポリイミド前駆体(ポリアミド酸)を溶解できるものであれば特に制限はなく、このような(b)有機溶剤としては上記(a)ポリイミド前駆体の合成時に用いることのできる溶媒を用いることができる。(b)有機溶剤は(a)ポリアミド酸の合成時に用いられる溶媒と同一でも異なってもよい。
(b)成分は、樹脂組成物の固形分濃度が3~50質量%となる量とすることが好ましい。樹脂組成物の粘度(25℃)としては、500mPa・s~100000mPa・sとなるように調整して加えることが好ましい。
 本実施の形態に係る樹脂組成物は、室温保存安定性に優れ、室温で2週間保存した場合のワニスの粘度変化率は、初期粘度に対して10%以下である。室温保存安定性に優れると、冷凍保管が不要となり、ハンドリングし易くなる。
[その他の成分]
 本発明の樹脂組成物は、上記(a)、(b)成分の他にアルコキシシラン化合物、界面活性剤又はレベリング剤等を含有してもよい。
(アルコキシシラン化合物)
 本実施の形態に係る樹脂組成物から得られるポリイミドが、フレキデバイス等の製造プロセスにおいて、支持体との間の密着性を十分なものとするために、樹脂組成物は、ポリイミド前駆体100質量%に対してアルコキシシラン化合物を0.01~20質量%を含有することができる。
 ポリイミド前駆体100質量%に対するアルコキシシラン化合物の含有量が0.01質量%以上であることにより、支持体との良好な密着性を得ることができる。またアルコキシシラン化合物の含有量が20質量%以下であることが、樹脂組成物の保存安定性の観点から好ましい。アルコキシシラン化合物の含有量は、ポリイミド前駆体に対して、0.02~15質量%であることがより好ましく、0.05~10質量%であることがさらに好ましく、0.1~8質量%であることが特に好ましい。
 本実施形態にかかる樹脂組成物の添加剤としてアルコキシシラン化合物を用いることにより、樹脂組成物の塗工性(スジムラ抑制)を向上し、得られる硬化膜のYI値のキュア時酸素濃度依存性を低下させることができる。
 アルコキシシラン化合物としては、例えば3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製:商品名 KBM803、チッソ株式会社製:商品名 サイラエースS810)、3-メルカプトプロピルトリエトキシシラン(アズマックス株式会社製:商品名 SIM6475.0)、3-メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製:商品名 LS1375、アズマックス株式会社製:商品名 SIM6474.0)、メルカプトメチルトリメトキシシラン(アズマックス株式会社製:商品名 SIM6473.5C)、メルカプトメチルメチルジメトキシシラン(アズマックス株式会社製:商品名 SIM6473.0)、3-メルカプトプロピルジエトキシメトキシシラン、3-メルカプトプロピルエトキシジメトキシシラン、3-メルカプトプロピルトリプロポキシシラン、3-メルカプトプロピルジエトキシプロポキシシラン、3-メルカプトプロピルエトキシジプロポキシシラン、3-メルカプトプロピルジメトキシプロポキシシラン、3-メルカプトプロピルメトキシジプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルジエトキシメトキシシラン、2-メルカプトエチルエトキシジメトキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルエトキシジプロポキシシラン、2-メルカプトエチルジメトキシプロポキシシラン、2-メルカプトエチルメトキシジプロポキシシラン、4-メルカプトブチルトリメトキシシラン、4-メルカプトブチルトリエトキシシラン、4-メルカプトブチルトリプロポキシシラン、N-(3-トリエトキシシリルプロピル)ウレア(信越化学工業株式会社製:商品名 LS3610、アズマックス株式会社製:商品名 SIU9055.0)、N-(3-トリメトキシシリルプロピル)ウレア(アズマックス株式会社製:商品名 SIU9058.0)、N-(3-ジエトキシメトキシシリルプロピル)ウレア、N-(3-エトキシジメトキシシリルプロピル)ウレア、N-(3-トリプロポキシシリルプロピル)ウレア、N-(3-ジエトキシプロポキシシリルプロピル)ウレア、N-(3-エトキシジプロポキシシリルプロピル)ウレア、N-(3-ジメトキシプロポキシシリルプロピル)ウレア、N-(3-メトキシジプロポキシシリルプロピル)ウレア、N-(3-トリメトキシシリルエチル)ウレア、N-(3-エトキシジメトキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-エトキシジプロポキシシリルエチル)ウレア、N-(3-ジメトキシプロポキシシリルエチル)ウレア、N-(3-メトキシジプロポキシシリルエチル)ウレア、N-(3-トリメトキシシリルブチル)ウレア、N-(3-トリエトキシシリルブチル)ウレア、N-(3-トリプロポキシシリルブチル)ウレア、3-(m-アミノフェノキシ)プロピルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0598.0)、m-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.0)、p-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.1)アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.2)、2-(トリメトキシシリルエチル)ピリジン(アズマックス株式会社製:商品名 SIT8396.0)、2-(トリエトキシシリルエチル)ピリジン、2-(ジメトキシシリルメチルエチル)ピリジン、2-(ジエトキシシリルメチルエチル)ピリジン、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート、(3-グリシドキシプロピル)トリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシラン、テトラキス(メトキシエトキシシラン)、テトラキス(メトキシ-n-プロポキシシラン)、テトラキス(エトキシエトキシシラン)、テトラキス(メトキシエトキシエトキシシラン)、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)エチレン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)オクタジエン、ビス[3-(トリエトキシシリル)プロピル]ジスルフィド、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド、ジ-t-ブトキシジアセトキシシラン、ジ-i-ブトキシアルミノキシトリエトキシシラン、ビス(ペンタジオネート)チタン-O,O’-ビス(オキシエチル)-アミノプロピルトリエトキシシラン、フェニルシラントリオール、メチルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n-ブチルシフェニルシランジオール、イソブチルフェニルシランジオール、tert-ブチルフェニルシランジオール、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、エチルメチルフェニルシラノール、n-プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n-ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert-ブチルメチルフェニルシラノール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n-ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert-ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n-ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert-ブチルジフェニルシラノール、トリフェニルシラノール、3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリメトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン等が挙げられるが、これらに限定されない。これらは単独で用いても、複数種を組み合わせて用いてもよい。
 アルコキシシラン化合物としては、樹脂組成物の塗工性(スジ抑制)、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響の観点から、前記した中でも、樹脂組成物の保存安定性を確保する観点から、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール及び下記構造のそれぞれで表されるアルコキシシラン化合物から選択される1種以上が好ましい。
Figure JPOXMLDOC01-appb-C000026
(界面活性剤又はレベリング剤)
 また、界面活性剤又はレベリング剤を樹脂組成物に添加することによって、塗布性を向上することができる。具体的には、塗布後のスジの発生を防ぐことができる。
 このような界面活性剤又はレベリング剤としては、
シリコーン系界面活性剤:オルガノシロキサンポリマーKF-640、642、643、KP341、X-70-092、X-70-093、KBM303、KBM403、KBM803(以上、商品名、信越化学工業社製)、SH-28PA、SH-190、SH-193、SZ-6032、SF-8428、DC-57、DC-190(以上、商品名、東レ・ダウコーニング・シリコーン社製)、SILWET L-77,L-7001,FZ-2105,FZ-2120,FZ-2154,FZ-2164,FZ-2166,L-7604(以上、商品名、日本ユニカー社製)、DBE-814、DBE-224、DBE-621、CMS-626、CMS-222、KF-352A、KF-354L、KF-355A、KF-6020、DBE-821、DBE-712(Gelest)、BYK-307、BYK-310、BYK-378、BYK-333(以上、商品名、ビックケミー・ジャパン製)、グラノール(商品名、共栄社化学社製)、等が挙げられ、
フッ素系界面活性剤:メガファックF171、F173、R-08(大日本インキ化学工業株式会社製、商品名)、フロラードFC4430、FC4432(住友スリーエム株式会社、商品名)、等が挙げられ、
その他の非イオン界面活性剤:ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル、等が挙げられる。
 これらの界面活性剤の中でも、樹脂組成物の塗工性(スジ抑制)の観点から、シリコーン系界面活性剤、フッ素系界面活性剤が好ましく、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響の観点から、シリコーン系界面活性剤が好ましい。
 界面活性剤又はレベリング剤を用いる場合、その合計の配合量は、樹脂組成物中のポリイミド前駆体100質量部に対して、0.001~5質量部が好ましく、0.01~3質量部がより好ましい。
 そして、上述の樹脂組成物を作製した後、溶液を130~200℃で5分~2時間加熱することで、ポリマーが析出を起こさない程度にポリマーの一部を脱水イミド化してもよい。温度と時間とのコントロールにより、イミド化率は制御することができる。部分イミド化をすることで、樹脂前駆体溶液の室温保管時の粘度安定性を向上することができる。イミド化率の範囲としては、5%~70%が溶液への樹脂前駆体の溶解性と溶液の保存安定性との観点から好ましい。
 本発明の樹脂組成物の製造方法は、特に限定されるものではないが、例えば、(a)ポリアミド酸を合成した際に用いた溶媒と(b)有機溶剤が同一の場合には、合成したポリアミド酸溶液を樹脂組成物とすることができる。また、必要に応じて、室温(25℃)~80℃の温度範囲で、(b)有機溶剤及び他の添加剤を添加して、攪拌混合してもよい。この攪拌混合は撹拌翼を備えたスリーワンモータ(新東化学株式会社製)、自転公転ミキサー等の装置を用いることができる。また必要に応じて40~100℃の熱を加えてもよい。
 また、(a)ポリアミド酸を合成した際に用いた溶媒と(b)有機溶剤が異なる場合には、合成したポリアミド酸溶液中の溶媒を、再沈殿や溶媒留去の方法により除去し、(a)ポリアミド酸を得た後に、室温~80℃の温度範囲で、(b)有機溶剤及び必要に応じて他の添加剤を添加して、攪拌混合してもよい。
 本発明の樹脂組成物は、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ、電子ペーパー等の表示装置の透明基板を形成するために用いることができる。具体的には、薄膜トランジスタ(TFT)の基板、カラーフィルタの基板、透明導電膜(ITO、IndiumThinOxide)の基板等を形成するために用いることができる。
 また、好ましい態様において、樹脂組成物は以下の特性を有する。
 本発明の第一の態様では、樹脂組成物を支持体の表面に塗布した後、該樹脂組成物に含まれるポリイミド前駆体をイミド化して得られるポリイミドが示す、支持体との残留応力が-5MPa以上、10MPa以下である。
 また、第一の態様の樹脂組成物に含まれるアルコキシシラン化合物は、0.001質量%のNMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて0.1以上、0.5以下である。
 また、本発明の第二の態様では、樹脂組成物を支持体の表面に塗布した後、該樹脂組成物を窒素雰囲気下300℃~550℃で加熱することによって(又は酸素濃度2000ppm以下にて380℃で加熱することによって)樹脂組成物に含まれる樹脂前駆体をイミド化して得られる樹脂が示す15μm膜厚での黄色度が14以下である。
 第二の態様の樹脂組成物を支持体の表面に塗布した後、該樹脂組成物を窒素雰囲気下300℃~500℃で加熱することによって(又は窒素雰囲気下380℃で加熱することによって)樹脂組成物に含まれる樹脂前駆体をイミド化して得られる樹脂が示す残留応力が25MPa以下である。
<樹脂フィルム>
 本発明の別の態様は、前述の樹脂前駆体の硬化物、又は前述の前駆体混合物の硬化物、又は前述の樹脂組成物の硬化物である樹脂フィルムを提供する。
 また、本発明の別の態様は、前述の樹脂組成物を支持体の表面上に塗布する工程と、
塗布した樹脂膜を乾燥し、溶媒を除去する工程と、
 該支持体及び該樹脂組成物を加熱して該樹脂組成物に含まれる樹脂前駆体をイミド化して樹脂フィルムを形成する工程と、
 該樹脂フィルムを該支持体から剥離する工程と、
を含む、樹脂フィルムの製造方法を提供する。
 樹脂フィルムの製造方法の好ましい態様においては、樹脂組成物として、酸二無水物成分及びジアミン成分を有機溶剤中に溶解して反応させて得られるポリアミド酸溶液を用いることができる。
 ここで、支持体は、その後の工程の乾燥温度における耐熱性を有し、剥離性が良好であれば特に限定されない。例えば、ガラス(例えば、無アルカリガラス)、シリコンウェハー等からなる基材、PET(ポリエチレンテレフタレート)、OPP(延伸ポリプロピレン)等からなる支持体が挙げられる。また、膜状のポリイミド成形体ではガラスやシリコンウェハー等からなる被コーティング物が挙げられ、フィルム状及びシート状のポリイミド成形体ではPET(ポリエチレンテレフタラート)、OPP(延伸ポリプロピレン)等からなる支持体が挙げられる。基板としては他に、ガラス基板、ステンレス、アルミナ、銅、ニッケル等の金属基板、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド等の樹脂基板等が用いられる。
 より具体的には、上述の樹脂組成物を、無機基板の主面上に形成された接着層上に塗布及び乾燥し、不活性雰囲気下で300~500℃の温度にて硬化して、樹脂フィルムを形成することができる。最後に、樹脂フィルムを支持体から剥離する。
 ここで、塗布方法としては、例えば、ドクターブレードナイフコーター、エアナイフコーター、ロールコーター、ロータリーコーター、フローコーター、ダイコーター、バーコーター等の塗布方法、スピンコート、スプレイコート、ディップコート等の塗布方法、スクリーン印刷やグラビア印刷等に代表される印刷技術を応用することもできる。
 本発明の樹脂組成物の塗布厚は、目的とする成形体の厚さと樹脂組成物中の樹脂不揮発成分の割合により適宜調整されるものであるが、通常1~1000μm程度である。樹脂不揮発成分は上述の測定方法により求められる。塗布工程は、通常室温で実施されるが、粘度を下げて作業性をよくする目的で樹脂組成物を40~80℃の範囲で加温して実施してもよい。
 塗布工程に続き、乾燥工程を行う。乾燥工程は、有機溶剤除去の目的で行われる。乾燥工程はホットプレート、箱型乾燥機やコンベヤー型乾燥機等の装置を利用することができ、80~200℃で行うことが好ましく、100~150℃で行うことがより好ましい。
 続いて、加熱工程を行う。加熱工程は乾燥工程で樹脂膜中に残留した有機溶剤の除去を行うとともに、樹脂組成物中のポリアミド酸のイミド化反応を進行させ、硬化膜を得る工程である。
 加熱工程は、イナートガスオーブンやホットプレート、箱型乾燥機、コンベヤー型乾燥機等の装置を用いて行う。この工程は前記乾燥工程と同時に行っても、逐次的に行ってもよい。
 加熱工程は、空気雰囲気下でもよいが、安全性及び得られる硬化物の透明性、YI値の観点から、不活性ガス雰囲気下で行うことが推奨される。不活性ガスとしては窒素、アルゴン等が挙げられる。加熱温度は(b)有機溶剤の種類にもよるが、250℃~550℃が好ましく、300~350℃がより好ましい。250℃より低いとイミド化が不十分となり、550℃より高いとポリイミド成形体の透明性が低下したり、耐熱性が悪化したりする恐れがある。加熱時間は、通常0.5~3時間程度である。
 本発明の場合、該加熱工程における酸素濃度は、得られる硬化物の透明性、YI値の観点から2000ppm以下が好ましく、100ppm以下がより好ましく、10ppm以下がさらに好ましい。酸素濃度を2000ppm以下にすることにより、得られる硬化物のYI値を15以下にすることができる。
 そして、ポリイミド樹脂膜の使用用途・目的によっては、加熱工程の後、支持体から硬化膜を剥離する剥離工程が必要となる。この剥離工程は、基材上の成形体を室温~50℃程度まで冷却後、実施される。
 この剥離工程としては、下記がある。
(1)前記方法により、ポリイミド樹脂膜/支持体を含む構成体を得て、その後支持体側からレーザーを照射することにより、ポリイミド樹脂界面をアブレーション加工することにより、ポリイミド樹脂を剥離する方法。レーザーの種類としては、固体(YAG)レーザー、ガス(UVエキシマー)レーザーがあり、308nm等のスペクトルを用いる(特表2007-512568公報、特表2012‐511173公報、他参照)。
(2)支持体に樹脂組成物を塗工する前に、支持体に剥離層を形成し、その後ポリイミド樹脂膜/剥離層/支持体を含む構成体を得て、ポリイミド樹脂膜を剥離する方法。剥離層としては、パリレン(登録商標、日本パリレン合同会社製)、酸化タングステンを用いた方法、植物油系、シリコーン系、フッ素系、アルキッド系の離型剤を用いた方法、等があり、前記(1)のレーザー照射と併用する場合もある(特開2010-67957公報、特開2013-179306公報、他参照)。
(3)支持体としてエッチング可能な金属を用いて、ポリイミド樹脂膜/支持体を含む構成体を得て、その後、エッチャントで金属をエッチングして、ポリイミド樹脂膜を得る方法。金属としては銅(具体例としては、三井金属鉱業株式会社製の電解銅箔「DFF」)、アルミ等があり、エッチャントとしては、銅:塩化第二鉄、アルミ:希塩酸等がある。
(4)前記方法により、ポリイミド樹脂膜/支持体を含む構成体を得て、ポリイミド樹脂膜表面に粘着フィルムを貼り付け、支持体から粘着フィルム/ポリイミド樹脂膜を分離し、その後粘着フィルムからポリイミド樹脂膜を分離する方法。
 これらの剥離方法の中でも、得られるポリイミド樹脂膜の表裏の屈折率差、YI値、伸度の観点から、(1)及び(2)が適切であり、得られるポリイミド樹脂膜の表裏の屈折率差の観点からより(1)が適切である。
 なお、(3)の支持体に銅を用いた場合は、得られるポリイミド樹脂膜のYI値が大きくなり、伸度が小さくなっているが、これは銅イオンが何らかの関与をしていると考えられる。
 また、本実施の形態に係る樹脂フィルム(硬化物)の厚さは、特に限定されず、5~200μmの範囲であることが好ましく、より好ましくは10~100μmである。
 本実施の形態に係る樹脂フィルムは、第一の態様において、支持体との残留応力が-5MPa以上、10MPa以下であることが好ましい。また、フレキシブルディスプレイへの適用の観点から、黄色度が膜厚10μmにおいて15以下であることが好ましい。
 このような特性は、第一の態様の樹脂組成物に含まれるアルコキシシラン化合物の、0.001質量%のNMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて0.1以上、0.5以下とすることにより、良好に実現される。これにより得られる樹脂膜が、高い透明性を保ったまま、レーザー剥離を容易とすることができる。
 また、第二の態様に係る樹脂フィルムは、15μm膜厚での黄色度が14以下であることが好ましい。また、残留応力が25MPa以下であることが好ましい。特に、15μm膜厚での黄色度が14以下であり、かつ、残留応力が25MPa以下であることがさらに好ましい。このような特性は、例えば、本開示の樹脂前駆体を、窒素雰囲気下、より好ましくは、酸素濃度2000ppm以下で、300℃~550℃、より特別には380℃でイミド化することにより良好に実現される。
<積層体>
 本発明の別の態様は、支持体と、該支持体の表面上に形成された、前述の樹脂組成物の硬化物であるポリイミド樹脂膜とを含む、積層体を提供する。
 また本発明の別の態様は、支持体の表面上に、前述の樹脂組成物を塗布する工程と、
 該支持体及び該樹脂組成物を加熱して該樹脂組成物に含まれる該樹脂前駆体をイミド化してポリイミド樹脂膜を形成し、これにより該支持体及び該ポリイミド樹脂膜を含む積層体を得る工程と、
を含む、積層体の製造方法を提供する。
 このような積層体は、例えば、前述の樹脂フィルムの製造方法と同様に形成したポリイミド樹脂膜を、支持体から剥離しないことによって製造できる。
 この積層体は、例えば、フレキシブルデバイスの製造に用いられる。より具体的には、支持体上に形成したポリイミド樹脂膜の上に素子または回路等を形成し、その後、支持体を剥離してポリイミド樹脂膜からなるフレキシブル透明基板を具備するフレキシブルデバイスを得ることができる。
 従って、本発明の別の態様は、前述の樹脂前駆体、又は前述の前駆体混合物を硬化して得られるポリイミド樹脂膜を含むフレキシブルデバイス材料を提供する。
 本実施の形態では、ポリイミドフィルムと、SiNと、SiOとを、この順で積層してなる積層体を得ることが出来る。この順とすることで、反りのないフィルムが得られるだけでなく、積層体とした後に、無機膜との剥がれのない良好な積層体を得ることが出来る。
 以上説明したように、本実施の形態に係る樹脂前駆体を用いて、保存安定性に優れ、塗工性に優れた該樹脂前駆体を含む樹脂組成物を製造することができる。また得られたポリイミド樹脂膜の黄色度(YI値)が、キュア時の酸素濃度に依存することが少ない。また、残留応力が低い。従って該樹脂前駆体は、フレキシブルディスプレイの透明基板における使用に適している。
 さらに詳細に説明すると、フレキシブルディスプレイを形成する場合、ガラス基板を支持体として用いてその上にフレキシブル基板を形成し、その上にTFT等の形成を行う。TFTを基板上に形成する工程は、典型的には、150~650℃の広い範囲の温度で実施されるが、実際に所望する性能具現のためには、主に250℃~350℃付近で、無機物材料を用いて、TFT-IGZO(InGaZnO)酸化物半導体又はTFT(a-Si-TFT、poly-Si-TFT)を形成する。
 この際、フレキシブル基板とポリイミド樹脂膜とに生じる残留応力が高ければ、高温のTFT工程で膨張した後、常温冷却時に収縮する際、ガラス基板の反りや破損、フレキシブル基板のガラス基板からの剥離等の問題が生じる。一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、フレキシブル基板との間に残留応力が発生する。本実施の形態に係る樹脂フィルムは、この点を考慮して、樹脂フィルムとガラスとの間に生じる残留応力が25MPa以下であることが好ましい。
 また、本実施の形態に係るポリイミド樹脂膜は、フィルムの厚さ15μmを基準として、黄色度が14以下であることが好ましい。また、熱硬化フィルムを作製する際に使用するオーブン内の酸素濃度依存性が少ない方が、安定的にYI値の低い樹脂フィルムを得るのに有利であり、2000ppm以下の酸素濃度で、熱硬化フィルムのYI値が安定していることが好ましい。
 また、本実施の形態に係る樹脂フィルムは、フレキシブル基板を取り扱う際に破断強度に優れることにより、歩留まりを向上させる観点から、引張伸度が30%以上であることがより好ましい。
 本発明の別の態様は、ディスプレイ基板の製造に用いられるポリイミド樹脂膜を提供する。また本発明の別の態様は、支持体の表面上にポリイミド前駆体を含む樹脂組成物を塗布する工程と、
 該支持体及び該樹脂組成物を加熱してポリイミド前駆体をイミド化して、前述のポリイミド樹脂膜を形成する工程と、
 該ポリイミド樹脂膜上に素子または回路を形成する工程と、
 該素子または回路が形成された該ポリイミド樹脂膜を形成する工程と
を含む、ディスプレイ基板の製造方法を提供する。
 上記方法において、支持体上に樹脂組成物を塗布する工程、ポリイミド樹脂膜を形成する工程、および、ポリイミド樹脂膜を剥離する工程は、上述した樹脂フィルムおよび積層体の製造方法と同様にして行うことができる。
 上記物性を満たす本実施の形態に係る樹脂フィルムは、既存のポリイミドフィルムが有する黄色により使用が制限された用途、特にフレキシブルディスプレイ用無色透明基板、カラーフィルタ用保護膜等として好適に使用される。さらには、例えば、保護膜又はTFT-LCD等での散光シート及び塗膜(例えば、TFT-LCDのインターレイヤー、ゲイト絶縁膜、及び液晶配向膜)、タッチパネル用ITO基板、スマートフォン用カバーガラス代替樹脂基板等の無色透明性かつ、低複屈折が要求される分野でも使用可能である。液晶配向膜として本実施の形態に係るポリイミドを適用するとき、開口率の増加に寄与し、高コントラスト比のTFT-LCDの製造が可能である。
 本実施の形態に係る樹脂前駆体を用いて製造される樹脂フィルム及び積層体は、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜、及び、フレキシブルデバイスの製造に、特に基板として好適に利用することができる。ここで、フレキシブルデバイスとは、例えば、フレキシブルディスプレイ、フレキシブル太陽電池、フレキシブルタッチパネル電極基板、フレキシブル照明、及び、フレキシブルバッテリーを挙げることができる。
 以下、本発明について、実施例に基づきさらに詳述するが、これらは説明のために記述されるものであって、本発明の範囲が下記実施例に限定されるものではない。
 実施例及び比較例における各種評価は次の通り行った。
(重量平均分子量及び、数平均分子量の測定)
 重量平均分子量(Mw)及び、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて、下記の条件により測定した。溶媒としては、N,N-ジメチルホルムアミド(和光純薬工業社製、高速液体クロマトグラフ用)を用い、測定前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えたものを使用した。また、重量平均分子量を算出するための検量線は、スタンダードポリスチレン(東ソー社製)を用いて作成した。
  カラム:Shodex KD-806M(昭和電工社製)
  流速:1.0mL/分
  カラム温度:40℃
  ポンプ:PU-2080Plus(JASCO社製)
  検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)
      UV‐2075Plus(UV-VIS:紫外可視吸光計、JASCO社製)
 (第一の態様)
 以下では、樹脂組成物について、アルコキシシラン化合物の吸光度と、得られた樹脂組成物の特性とについて実験を行い、評価した。
<アルコキシシラン化合物の合成>
[合成例1]
 50mlのセパラブルフラスコを窒素置換し、そのセパラブルフラスコにN-メチル-2-ピロリドン(NMP)を19.5g入れ、更に原料化合物1としてBTDA(ベンゾフェノンテトラカルボン酸二無水物)2.42g(7.5mmol)及び原料化合物2として3-アミノプロピルトリエトキシシラン(商品名:LS-3150、信越化学社製社製)3.321g(15mmol)を入れ、室温において5時間反応させることにより、アルコキシシラン化合物1のNMP溶液を得た。
 このアルコキシシラン化合物1を0.001質量%のNMP溶液とし、測定厚さ1cmの石英セルに充填し、UV-1600(島津社製)で測定した時の吸光度は0.13であった。
[合成例2~5]
 上記合成例1において、N-メチル-2-ピロリドン(NMP)の使用量、並びに原料化合物1及び2の種類及び使用量を、それぞれ表1に記載のとおりとした他は合成例1と同様にして、アルコキシシラン化合物2~5のNMP溶液を得た。
 これらのアルコキシシラン化合物を、それぞれ、0.001質量%のNMP溶液とし、上記合成例1におけるのと同様にして測定した吸光度を、表1に合わせて示した。
[合成例6]
 後述の実施例1において、原料仕込みをPMDAを40.2mmolに、6FDAの代わりにODPA9.8mmolに変更した以外は実施例1と同様にしてP-18を得た。得られたポリアミド酸の重量平均分子量(Mw)は、170,000であった。
 また、P-18の残留応力は-1MPaであった。
[合成例7]
 後述の実施例1において、原料仕込みをPMDAを42.6mmolに、6FDAの代わりにTAHQ7.4mmolに変更した以外は実施例1と同様にしてP-19を得た。得られたポリアミド酸の重量平均分子量(Mw)は、175,000であった。
 また、P-19の残留応力は1MPaであった。
[合成例8]
 後述の実施例1において、原料仕込みをPMDAを39.3mmolに、6FDAの代わりにBPDA10.7mmolに変更した以外は実施例1と同様にしてP-20を得た。得られたポリアミド酸の重量平均分子量(Mw)は、175,000であった。
 また、P-20の残留応力は2MPaであった。
Figure JPOXMLDOC01-appb-T000027
[実施例28~31、並びに比較例4及び5]
 容器中で、上記溶液P-1(10g)と、表1に示した種類及び量のアルコキシシラン化合物を仕込み、よく撹拌することにより、ポリイミド前駆体であるポリアミド酸を含有する樹脂組成物をそれぞれ調製した。
 上記各樹脂組成部について、上記あるいは下記に記載の方法によって測定した接着性、レーザー剥離性、及びYI(膜厚10μm換算)を、それぞれ表2に示した。
(レーザー剥離強度の測定)
 上記に記載したコート方法及びキュア方法によって得た、無アルカリガラス上に膜厚10μmのポリイミド膜を有する積層体に、エキシマレーザー(波長308nm、繰り返し周波数300Hz)を照射し、10cm×10cmのポリイミド膜の全面を剥離するのに必要な最小エネルギーを求めた。
Figure JPOXMLDOC01-appb-T000028
 表2から明らかなように、吸光度が0.1以上0.5以下のアルコキシシラン化合物を含有する樹脂組成物から得られるポリイミド樹脂膜であって、残留応力が-5MPa以上、10MPa以下である実施例28~34のポリイミド樹脂膜は、ガラス基板との接着性が高く、剥離する際のエネルギーが小さい。また、剥離時にパーティクルの発生もなかった。
 一方、アルコキシシラン化合物を含有しない比較例4では、ガラス基板との接着性が低く、剥離する際のエネルギーが大きい。また、剥離時にパーティクルが発生してしまった。吸光度が0.1よりも小さい(0.015)アルコキシシラン化合物5を用いた比較例では、接着性が低く、剥離する際のエネルギーが大きい。また、剥離時にパーティクルが発生してしまった。これらの比較例4,5では、黄色度が不十分であった。
 以上の結果から、本発明の第一の態様に係る樹脂組成物から得られるポリイミド樹脂膜は、ガラス基板(支持体)との接着性に優れ、レーザー剥離時にパーティクルを生じない樹脂フィルムであることが確認された。
 (第二の態様)
 以下では、ポリイミド前駆体について、構造単位および分子量1000未満の低分子量の含有率と、得られた樹脂組成物の特性とについて実験を行い、評価した。
[実施例1]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を15.69g(49.0mmol)を入れ、撹拌してTFMBを溶解させた。その後、ピロメリット酸二無水物(PMDA)を9.82g(45.0mmol)及び、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)を2.22g(5.0mmol)加え、窒素フロー下で80℃4時間撹拌し、室温まで冷却後、前記NMPを加えて樹脂組成物粘度が51000mPa・sになるように調整し、ポリアミド酸のNMP溶液(以下、ワニスともいう)P-1を得た。得られたポリアミド酸の重量平均分子量(Mw)は、180,000であった。
 また、P-1の残留応力は-2MPaであった。
[実施例2]
 原料の仕込みを、PMDAを9.27g(42.5mmol)に、6FDAを3.33g(7.5mmol)に変更した以外は、実施例1と同様にしてワニスP-2を得た。得られたポリアミド酸の重量平均分子量(Mw)は190,000であった。
[実施例3]
 原料の仕込みを、PMDAを7.63g(35.0mmol)に、6FDAを6.66g(15.0mmol)に変更した以外は、実施例1と同様にしてワニスP-3を得た。得られたポリアミド酸の重量平均分子量(Mw)は190,000であった。
[実施例4]
 原料の仕込みを、PMDAを5.45g(25.0mmol)に、6FDAを11.11g(25.0mmol)に変更した以外は、実施例1と同様にしてワニスP-4を得た。得られたポリアミド酸の重量平均分子量(Mw)は200,000であった。
[実施例5]
 原料の仕込みを、PMDAを3.27g(15.0mmol)に、6FDAを15.55g(35.0mmol)に変更した以外は、実施例1と同様にしてワニスP-15を得た。得られたポリアミド酸の重量平均分子量(Mw)は201,000であった。
[実施例6]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、18L缶開封直後のNMP(水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、TFMBを15.69g(49.0mmol)を入れ、撹拌してTFMBを溶解させた。その後、PMDAを10.91g(50.0mmol)加え、窒素フロー下で80℃4時間撹拌し、ワニスP-5aを得た。得られたポリアミド酸の重量平均分子量(Mw)は、180,000であった。
 次に500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、18L缶開封直後のNMP(水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、TFMBを15.69g(49.0mmol)を入れ、撹拌してTFMBを溶解させた。その後、6FDAを22.21g(50.0mmol)加え、窒素フロー下で80℃4時間撹拌し、ワニスP-5bを得た。得られたポリアミド酸の重量平均分子量(Mw)は、200,000であった。
 そして、ワニスP-5aとP-5bを重量比85:15になるように秤量し、前記NMPを加えて樹脂組成物粘度が5000mPa・sになるように調整し、ワニスP-5を得た。
[実施例7]
 合成溶剤を18L缶開封直後のγ―ブチロラクトン(GBL)(水分量280ppm)に変更した以外は、実施例2と同様にしてワニスP-6を得た。得られたポリアミド酸の重量平均分子量(Mw)は180,000であった。
[実施例8]
 合成溶剤を18L缶開封直後のエクアミドM100(製品名、出光製)(水分量260ppm)に変更した以外は、実施例7と同様にしてワニスP-7を得た。得られたポリアミド酸の重量平均分子量(Mw)は190,000であった。
[実施例9]
 合成溶剤を18L缶開封直後のエクアミドB100(製品名、出光製)(水分量270ppm)に変更した以外は、実施例7と同様にしてワニスP-8を得た。得られたポリアミド酸の重量平均分子量(Mw)は190,000であった。
[実施例10]
 実施例2の実験条件の内、初めのセパラブルフラスコの窒素置換を行わないことと、合成中の窒素フローを行わないことを変更した以外は、実施例2と同様にして行い、ワニスP-9を得た。得られたポリアミド酸の重量平均分子量(Mw)は180,000であった。
[実施例11]
 合成溶剤を500mlビン開封直後のNMP(汎用グレード、脱水グレードではない)(水分量1120ppm)に変更した以外は、実施例10と同様にしてワニスP-10を得た。得られたポリアミド酸の重量平均分子量(Mw)は170,000であった。
[実施例12]
 合成溶剤を500mlビン開封直後のGBL(汎用グレード、脱水グレードではない)(水分量1610ppm)に変更した以外は、実施例10と同様にしてワニスP-11を得た。得られたポリアミド酸の重量平均分子量(Mw)は160,000であった。
[実施例13]
 合成溶剤を500mlビン開封直後のエクアミドM100(汎用グレード、脱水グレードではない)(水分量1250ppm)に変更した以外は、実施例10と同様にしてワニスP-12を得た。得られたポリアミド酸の重量平均分子量(Mw)は170,000であった。
[実施例14]
 合成溶剤を500mlビン開封直後のDMAc(汎用グレード、脱水グレードではない)(水分量2300ppm)に変更した以外は、実施例10と同様にしてワニスP-13を得た。得られたポリアミド酸の重量平均分子量(Mw)は160,000であった。
[比較例1]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、18L缶開封直後のNMP(水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、TFMBを15.69g(49.0mmol)を入れ、撹拌してTFMBを溶解させた。その後、ピロメリット酸二無水物(PMDA)を10.91g(50.0mmol)加え、窒素フロー下で80℃4時間撹拌し、室温まで冷却後、前記NMPを加えて樹脂組成物粘度が51000mPa・sになるように調整し、ワニスP-14を得た。得られたポリアミド酸の重量平均分子量(Mw)は、180,000であった。
[比較例2]
 合成溶剤を、500mlビン入りDMAcを開封し一か月以上放置したもの(水分量3150ppm)に変更し、TFMBの仕込みを16.01g(50.0mmol)にした以外は、実施例10と同様にしてワニスP-16を得た。得られたポリアミド酸の重量平均分子量(Mw)は170,000であった。
[比較例3]
 合成溶剤を、500mlビン入りDMFを開封し一か月以上放置したもの(水分量3070ppm)に変更し、TFMBの仕込みを16.01g(50.0mmol)にした以外は、実施例10と同様にしてワニスP-17を得た。得られたポリアミド酸の重量平均分子量(Mw)は170,000であった。
 以上のようにして作製された各実施例および比較例の樹脂組成物について、各種特性を測定し、評価した。結果はまとめて表3に示す。
<分子量1,000以下の含有量の評価>
 上記、GPCの測定結果を用いて、下記式から算出した。
分子量1,000以下の含有量(%)=
 分子量1,000の成分の占めるピーク面積/分子量分布全体のピーク面積
    ×100
<水分量の評価>
 合成溶剤及び、樹脂組成物(ワニス)の水分量は、カールフィッシャー水分測定装置(微量水分測定装置AQ-300、平沼産業社製)を用いて測定を行った。
<樹脂組成物、粘度安定性の評価>
 前記の実施例及び比較例のそれぞれで調製した樹脂組成物を、室温で3日間静置したサンプルを調製後のサンプルとして23℃における粘度測定を行った。その後さらに室温で2週間静置したサンプルを2週間後のサンプルとし、再度23℃における粘度測定を行った。
 粘度測定は、温調機付粘度計(東機産業械社製TV-22)を用いて行った。
 上記の測定値を用いて、下記数式により室温4週間粘度変化率を算出した。
  室温2週間粘度変化率(%)=[(2週間後のサンプルの粘度)-(調整後のサンプルの粘度)]/(調整製後のサンプルの粘度)×100
 室温2週間粘度変化率は、下記基準で評価した。
 ◎:粘度変化率が5%以下(保存安定性「優良」)
 ○:粘度変化率が5超10%以下(保存安定性「良好」)
 ×:粘度変化率が10%超(保存安定性「不良」)
<塗工性:エッジはじきの評価>
 前記の実施例及び比較例のそれぞれで調製した樹脂組成物を、無アルカリガラス基板(サイズ10×10mm、厚さ0.7mm)上にバーコーターを用いて、キュア後膜厚15μmになるように塗工を行った。そして、室温にて5時間放置したのち、塗工エッジのハジキの程度を観察した。塗工膜四辺のハジキ幅の和を算出し、下記基準で評価した。
 ◎:塗工エッジのハジキ幅(四辺の和)が0超5mm以下である(エッジはじきの評価「優良」)
 ○:前記ハジキ幅(四辺の和)が5mm超15mm以下である(エッジはじきの評価「良好」)
 ×:前記ハジキ幅(四辺の和)が15mm超である(エッジはじきの評価「不可」)
<残留応力の評価>
 残留応力測定装置(テンコール社製、型式名FLX-2320)を用いて、予め「反り量」を測定しておいた、厚み625μm±25μmの6インチシリコンウェハー上に、樹脂組成物をバーコーターにより塗布し、140℃にて60分間プリベークした。その後、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)を用いて、酸素濃度が10ppm以下になるように調整して、380℃において60分間の加熱硬化処理(キュア処理)を施し、硬化後膜厚15μmのポリイミド樹脂膜のついたシリコンウェハーを作製した。このウェハーの反り量を前述の残留応力測定装置を用いて測定し、シリコンウェハーと樹脂膜の間に生じた残留応力を評価した。
 ◎:残留応力が-5超15MPa以下(残留応力の評価「優良」)
 ○:残留応力が15超25MPa以下(残留応力の評価「良好」)
 ×:残留応力が25MPa超(残留応力の評価「不可」)
<黄色度(YI値)の評価>
 上記実施例及び比較例のそれぞれで調製した樹脂組成物を、表面にアルミ蒸着層を設けた6インチシリコンウェハー基板に、硬化後膜厚が15μmになるようにコートし、140℃にて60分間プリベークした。その後、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)を用いて、酸素濃度が10ppm以下になるように調整して、380℃1時間の加熱硬化処理を施し、ポリイミド樹脂膜が形成されたウェハーを作製した。このウェハーを希塩酸水溶液に浸漬し、ポリイミド樹脂膜を剥離することにより、樹脂膜を得た。そして、得られたポリイミド樹脂膜のYIを、日本電色工業(株)製(Spectrophotometer:SE600)にてD65光源を用いて、YI値(第一の態様は膜厚10μm換算、第二の態様は膜厚15μm換算)を測定した。
<無機膜を形成したポリイミド樹脂膜のHaze評価>
 上記<黄色度(YI値)の評価>において作製した、ポリイミド樹脂膜が形成されたウェハーを用いて、ポリイミド樹脂膜上に、CVD法を用いて350℃において、無機膜である窒化ケイ素(SiNx)膜を100nmの厚さで形成し、無機膜/ポリイミド樹脂が形成された積層体ウェハーを得た。
 上記で得られた積層体ウェハーを希塩酸水溶液に浸漬し、無機膜及びポリイミドフィルムの二層を一体としてウェハーから剥離することにより、表面に無機膜が形成されたポリイミドフィルムのサンプルを得た。このサンプルを用いて、スガ試験機社製SC-3H型ヘイズメーターを用いてJIS  K7105透明度試験法に準拠してHazeの測定を行った。
 測定結果は下記基準で評価した。
 ◎:Hazeが5以下(Haze「優良」)
 ○:Hazeが5超15以下(Haze「良好」)
 ×:Hazeが15超(Haze「不良」)
 以上のようにして各項目について評価した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000029
 表3から明らかなように、一般式(1)および(2)で表される2つの構造単位(PMDAおよび6FDA)を含み、溶媒中の水分量が3000ppm未満であった実施例1~14では、得られた樹脂組成物のポリイミド前駆体の分子量1,000未満の含有量が5質量%未満であった。このような樹脂組成物は、保存時の粘度安定性が10%以下であり、塗工時エッジはじきが15mm以下であるのを同時にみたした。
 そして、このような樹脂組成物を硬化したポリイミド樹脂膜は、残留応力が十分に小さく、黄色度が14以下(15μm膜厚)であり、該ポリイミド樹脂膜上に形成した無機膜のHazeが15以下であることを同時に満たし、優れた特性を有することが確認された。
 PMDAと6FDAとのモル比を90/10~50/50とした場合に、残留応力が25MPa以下であり、特に良好な特性が得られていた。これに対し、PMDAと6FDAとのモル比を30:70とした実施例5では、樹脂膜の残留応力が不十分であった。また、一方の構造単位しか含まず、すなわちPMDAと6FDAとのモル比を100:0とした比較例1では、ポリイミド樹脂膜の残留応力および黄色度が不十分であった。
 また、溶媒中の水分量が3000ppm以上であった比較例2,3では、ポリイミド前駆体の分子量1,000未満の含有量が5質量%以上となった。この場合、保存時の粘度安定性が低く、塗工時のエッジはじきが不十分であった。このような樹脂組成物を用いたポリイミド樹脂膜は、残留応力およびHazeが不十分であった。
 つぎに示す実施例15~実施例21では、加熱硬化時の酸素濃度、および樹脂膜の剥離方法についての実験を行った。
[実施例15]
 実施例2で得られたポリイミド前駆体のワニスP-2を、無アルカリガラス基板(厚さ0.7mm)上にバーコーターを用いて塗工した。続いて、室温において5分間~10分間のレベリングを行った後、熱風オーブン中で140℃において60分間加熱し、塗膜が形成されたガラス基板積層体を作製した。塗膜の膜厚は、キュア後膜厚が15μmになるようにした。次いで、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)を用いて、酸素濃度が10ppm以下になるように調整して、380℃60分間の加熱硬化処理をして、塗膜をイミド化し、ポリイミド膜(ポリイミド樹脂膜)が形成されたガラス基板積層体を作製した。キュア後の積層体を室温において24時間静置した後、下記方法でポリイミド膜をガラス基板から剥離した。
 すなわち、ガラス基板の側からポリイミド膜に向けて、Nd:Yagレーザーの第3高調波(355nm)により、レーザー光を照射した。段階的に照射エネルギーを増やし、剥離が可能となった最少照射エネルギーにてレーザー照射して、ガラス基板からポリイミド膜を剥離し、ポリイミド膜を得た。
[実施例16]
 実施例14のガラス基板の代わりに、ガラス基板上に剥離層としてパリレンHT(登録商標、日本パリレン合同会社製)が形成されたガラス基板を用いた。
 パリレンHTが形成されたガラス基板は、下記方法により作製した。
 パリレン前駆体(パリレンの二量体)を熱蒸着装置内に入れ、中空パッド(8cm×8cm)で覆ったガラス基板(15cm×15cm)を試料室に置いた。真空中にてパリレン前駆体を150℃で気化させ、650℃で分解してから、試料室に導入した。そして、室温で、パッドに覆われていない領域上にパリレンを蒸着し、下記式(9)で表されるパリレンHTが形成されたガラス基板を(8cm×8cm)を作製した。
Figure JPOXMLDOC01-appb-C000030
 そして、実施例15と同様の方法で、ポリイミド膜/パリレンHTが形成されたガラス基板を作製した。
 その後、パリレンHTが形成されていない8cm×8cmの外周部分のガラス積層体をカットすると、ポリイミド膜はガラス基板から容易に剥離することができ、ポリイミド膜を得た。
[実施例17]
 先行技術、特許文献4、実施例1に記載の方法を参照し、ポリイミド膜を作製した。
 上記実施例15のガラス基板の代わりに、厚さ18μmの銅箔(三井金属鉱業株式会社製の電解銅箔「DFF」) を用いて、実施例14と同様の方法で、ポリイミド膜が形成された銅箔を作製した。次にこのポリイミド膜が形成された銅箔を塩化第二鉄エッチング液に浸漬させ、銅箔を除去し、ポリイミド膜を得た。
[実施例18]
 先行技術、特許文献4、実施例5に記載の方法を参照し、ポリイミド膜を作製した。
 上記実施例15と同様の方法で得られたポリイミド膜が形成されたガラス基板を作製したのち、ポリイミド膜の表面に粘着フィルム(PETフィルム100μm、粘着剤33μm)を張り合わせ、ガラス基板からポリイミド膜を剥離し、次いで粘着フィルムからポリイミド膜を分離し、ポリイミド膜を得た。
[実施例19]
 実施例15の実験条件の内、キュア時の酸素濃度を、100ppmに調整した以外は、実施例15と同様に操作を行い、ポリイミド膜を得た。
[実施例20]
 実施例15の実験条件の内、キュア時の酸素濃度を、2000ppmに調整した以外は、実施例15と同様に操作を行い、ポリイミド膜を得た。
[実施例21]
 実施例15の実験条件の内、キュア時の酸素濃度を、5000ppmに調整した以外は、実施例15と同様に操作を行い、ポリイミド膜を得た。
 以上のようにして得られた各実施例のポリイミド樹脂膜について、各種特性を測定し、評価した。
<ポリイミド樹脂膜表裏の屈折率差の評価>
 実施例15~21で得られたポリイミド膜の表面と裏面の屈折率nを、屈折率測定機Model2010/M(製品名、Merricon製)で測定した。
<黄色度(YI値)の評価>
 実施例15~21で得られたポリイミド樹脂膜のYIを、日本電色工業(株)製(Spectrophotometer:SE600)にてD65光源を用いて、YI値(膜厚15μm換算)を測定した。
<引張伸度の評価>
 実施例15~21で得られたポリイミド樹脂膜を用いて、サンプル長5×50mm、厚み15μmの樹脂フィルムを引張り試験機(株式会社エーアンドディ製:RTG-1210)を用いて、23℃50%Rh雰囲気下で、速度100mm/minで引張り試験を行い、引張伸度を測定した。
 以上のようにして各項目について評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000031
 表4から明らかなように、ポリイミド樹脂膜は、硬化時の酸素濃度を2,000、100、10ppmにすることにより黄色度をさらに低下することができ、レーザー剥離及び/または剥離層を用いた剥離法により、樹脂膜表裏の低屈折率差、低黄色度および十分な引張伸度を満たすことが確認された。
 また、ポリイミド樹脂膜の剥離法として、支持体に銅箔を用いてエッチングした実施例17では、ポリイミド樹脂膜の黄色度が高かった。また、引張伸度も低かった。また、粘着フィルムを用いて剥離した実施例18の場合には、表裏の屈折率差が大きかった。また、引張伸度も十分ではなかった。
 以上の結果から、本発明に係るポリイミド前駆体から得られるポリイミド樹脂膜は、黄色度が小さく、残留応力が低く、機械的物性に優れ、さらに、キュア時の酸素濃度による黄色度への影響が小さい樹脂フィルムであることが確認された。
 つぎに示す実施例22~実施例27では、ポリイミド前駆体に界面活性剤および/またはアルコキシシランを添加した場合の効果について実験を行った。
 実施例2で得られたポリイミド前駆体のワニスを用いて、塗布スジ及び、黄色度(YI値)のキュア時酸素濃度依存性について評価を行った。
[実施例22]
 実施例2で得られたポリイミド前駆体のワニスP-2を用いた。
[実施例23]
 実施例2で得られたポリイミド前駆体のワニスに、樹脂100重量部に対して、0.025重量部換算のシリコーン系界面活性剤1(DBE-821、製品名、Gelest製)を溶解させ、0.1μmのフィルターで濾過することにより、樹脂組成物を調整した。
[実施例24]
 実施例2で得られたポリイミド前駆体のワニスに、樹脂100重量部に対して、0.025重量部換算のフッ素系界面活性剤2(メガファックF171、製品名、DIC製)を溶解させ、0.1μmのフィルターで濾過することにより、樹脂組成物を調整した。
[実施例25]
 実施例2で得られたポリイミド前駆体のワニスに、樹脂100重量部に対して、下記構造の0.5重量部換算の下記式で表されるアルコキシシラン化合物1を溶解させ、0.1μmのフィルターで濾過することにより、ポリイミド前駆体樹脂組成物を調整した。
Figure JPOXMLDOC01-appb-C000032
[実施例26]
 実施例2で得られたポリイミド前駆体のワニスに、樹脂100重量部に対して、下記構造の0.5重量部換算の下記式で表されるアルコキシシラン化合物2を溶解させ、0.1μmのフィルターで濾過することにより、ポリイミド前駆体樹脂組成物を調整した。
Figure JPOXMLDOC01-appb-C000033
[実施例27]
 実施例2で得られたポリイミド前駆体のワニスに、樹脂100重量部に対して、0.025重量部換算の前記界面活性剤1及び、0.5重量部換算の前記アルコキシシラン化合物1を溶解させ、0.1μmのフィルターで濾過することにより、ポリイミド前駆体樹脂組成物を調整した。
 以上のようにして得られた各実施例の樹脂組成物について、各種特性を測定し、評価した。
<塗工性:塗工スジの評価>
 実施例21~26で得られた樹脂組成物を、無アルカリガラス基板(サイズ37×47mm、厚さ0.7mm)上にバーコーターを用いて、キュア後膜厚15μmになるように塗工を行った。そして、室温にて10分放置したのち、塗膜に塗工スジが発生していないか目視で確認した。塗工スジの本数は、3回塗工を行い、平均値を用いた。下記基準で評価を行った。
 ◎:幅1mm以上、長さ1mm以上の連続した塗工スジ0本(塗工スジの評価「優良」)
 ○:塗工スジ1,2本(塗工スジの評価「良好」)
 △:塗工スジ3-5本(塗工スジの評価「可」)
<黄色度(YI値)のキュア時酸素濃度依存性>
 塗工スジの評価で得られた塗膜が形成されたガラス基板を用いて、キュア路内の酸素濃度をそれぞれ10ppm、100ppm、2000ppmにそれぞれ調整し、380℃60分間でキュアした、厚み15μmのポリイミド膜を、日本電色工業(株)製(Spectrophotometer:SE600)にてD65光源を用い、黄色度(YI値)を測定した。そして、YI値のキュア時酸素濃度依存性を下記基準で評価した。
 以上のようにして各項目について評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000034
 なお、表5に示すYI値は、オーブン内の酸素濃度をそれぞれ10ppm、100ppm、2,000ppmにそれぞれ調整したときの結果(10ppm/100ppm/2000ppm)を示している。
 表5から明らかなように、樹脂組成物に界面活性剤及び/またはアルコキシシラン化合物を添加した実施例23~27では、添加していない実施例21に比べて、樹脂組成物の塗工時スジが2本以下であり、ポリイミド樹脂膜の黄色度の硬化時酸素濃度依存性が低いことを同時に満たすことが確認された。
 以上の実施例から明らかなように、本発明の第一の態様に係るポリイミド前駆体を用いた樹脂組成物は、
 0.001質量%のNMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて0.1以上、0.5以下であるアルコキシシラン化合物を含有する。
 また、該樹脂組成物を硬化したポリイミド樹脂膜は、支持体との残留応力が-5MPa以上、10MPa以下である。
 この結果から、本発明の第一の態様に係る樹脂組成物から得られるポリイミド樹脂膜は、ガラス基板(支持体)との接着性に優れ、レーザー剥離時にパーティクルを生じない樹脂フィルムであることが確認された。
 また、以上の実施例から明らかなように、本発明の第二の態様に係るポリイミド前駆体を用いた樹脂組成物は、
(1)保存時の粘度安定性が10%以下
(2)塗工時エッジはじきが15mm以下
であるのを同時にみたす。
 また、該樹脂組成物を硬化したポリイミド樹脂膜は、
(3)残留応力が25MPa以下
(4)黄色度が14以下(15μm膜厚)
(5)該ポリイミド樹脂膜上に形成した無機膜のHazeが15以下
であるのを同時にみたす。
 該ポリイミド樹脂膜は、
(6)硬化時の酸素濃度を2,000、100、10ppmにすることにより黄色度をさらに低下することができ、
(7)レーザー剥離及び/または剥離層を用いた剥離法により、樹脂膜表裏の低屈折率差、低黄色度を満たすことができる。
 そして、該樹脂組成物に界面活性剤及び/またはアルコキシシラン化合物を添加することにより、
(8)樹脂組成物の塗工時スジが2本以下であり、
(9)ポリイミド樹脂膜の黄色度の硬化時酸素濃度依存性が低いこと
を同時にみたす。
 この結果から、本発明に係るポリイミド前駆体から得られるポリイミド樹脂膜は、黄色度が小さく、残留応力が低く、機械的物性に優れ、さらに、キュア時の酸素濃度による黄色度への影響が小さい樹脂フィルムであることが確認された。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。
 本発明は、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜、フレキシブルディスプレイの製造、タッチパネルITO電極用基板に、特に基板として好適に利用することができる。

Claims (32)

  1.  (a)ポリイミド前駆体、(b)有機溶剤、及び(d)アルコキシシラン化合物と、を含有する樹脂組成物であって、
    前記樹脂組成物を支持体の表面に塗布した後、前記(a)ポリイミド前駆体をイミド化して得られるポリイミドが示す、支持体との残留応力が-5MPa以上、10MPa以下であり、そして、
     前記(d)アルコキシシラン化合物は、0.001質量%のNMP溶液とした時の308nmの吸光度が、溶液の厚さ1cmにおいて0.1以上、0.5以下である、樹脂組成物。
  2.  前記(d)アルコキシシラン化合物が、
    下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Rは、単結合、酸素原子、硫黄原子、又は炭素数1~5のアルキレン基を示す。}で表される酸二無水物と、
    アミノトリアルコキシシラン化合物と、
    を反応させて得られる化合物である、請求項1に記載の樹脂組成物。
  3.  前記(d)アルコキシシラン化合物が、下記一般式(2)~(4):
    Figure JPOXMLDOC01-appb-C000002
    のそれぞれで示される化合物より成る群から選択される少なくとも1種である、請求項1又は2に記載の樹脂組成物。
  4.  前記(a)ポリイミド前駆体が、下記式(5):
    Figure JPOXMLDOC01-appb-C000003
    で示される構造単位、及び、下記式(6): 
    Figure JPOXMLDOC01-appb-C000004
    で示される構造単位を有する、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記(a)ポリイミド前駆体において、前記式(5)で示される構造単位と、前記式(6)で示される構造単位とのモル比が、90/10~50/50である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  (a)ポリイミド前駆体と、(b)有機溶剤を含有する樹脂組成物であって、
     前記(a)ポリイミド前駆体が、下記式(5):
    Figure JPOXMLDOC01-appb-C000005
    で示される構造単位、及び、下記式(6): 
    Figure JPOXMLDOC01-appb-C000006
    で示される構造単位を有し、かつ、前記(a)ポリイミド前駆体の全量に対する、分子量1,000未満のポリイミド前駆体分子の含有量が5質量%未満である、樹脂組成物。
  7.  前記(a)ポリイミド前駆体の分子量1,000未満の分子の含有量が1質量%未満である、請求項6に記載の樹脂組成物。
  8.  前記(a)ポリイミド前駆体において、前記式(5)で示される構造単位と、式(6)で示される構造単位とのモル比が、90/10~50/50である、請求項6または7に記載の樹脂組成物。
  9.  (a)ポリイミド前駆体と、(b)有機溶剤を含有する樹脂組成物であって、
     前記(a)ポリイミド前駆体が、下記式(5):
    Figure JPOXMLDOC01-appb-C000007
    で示される構造単位を有するポリイミド前駆体と、下記式(6):
    Figure JPOXMLDOC01-appb-C000008
    で示される構造単位とを有するポリイミド前駆体との混合物である、樹脂組成物。
  10.  前記式(5) で示される構造単位を有するポリイミド前駆体と、前記式(6) で示される構造単位を有するポリイミド前駆体との重量比が90/10~50/50である、請求項9に記載の樹脂組成物。
  11.  水分量が3000ppm以下である、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  前記(b)有機溶剤が、沸点が170~270℃の有機溶剤である、請求項1~11のいずれか1項に記載の樹脂組成物。
  13.  前記(b)有機溶剤が、20℃における蒸気圧が250Pa以下の有機溶剤である、請求項1~12のいずれか1項に記載の樹脂組成物。
  14.  前記(b)有機溶剤が、N-メチル-2-ピロリドン、γ-ブチロラクトン、下記一般式(7):
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rはメチル基またはn-ブチル基である。)
    で表される化合物からなる群から選択される少なくとも一種の有機溶剤である請求項12または13に記載の樹脂組成物。
  15.  (c)界面活性剤をさらに含有する、請求項1~14のいずれか1項に記載の樹脂組成物。
  16.  前記(c)界面活性剤が、フッ素系界面活性剤及びシリコーン系界面活性剤からなる群より選択される1種以上である、請求項15に記載の樹脂組成物。
  17.  前記(c)界面活性剤が、シリコーン系界面活性剤である、請求項15に記載の樹脂組成物。
  18.  (d)アルコキシシラン化合物をさらに含有する、請求項6~17のいずれか1項に記載の樹脂組成物。
  19.  請求項1~18のいずれか1項に記載の樹脂組成物を加熱して得られるポリイミド樹脂膜。
  20.  請求項19に記載のポリイミド樹脂膜を含む、樹脂フィルム。
  21.  請求項1~18のいずれか1項に記載の樹脂組成物を支持体の表面上に塗布する工程と、
     塗布した樹脂組成物を乾燥し、溶媒を除去する工程と、
     前記支持体及び前記樹脂組成物を加熱して該樹脂組成物に含まれる樹脂前駆体をイミド化してポリイミド樹脂膜を形成する工程と、
     前記ポリイミド樹脂膜を該支持体から剥離する工程と、
    を含む、樹脂フィルムの製造方法。
  22.  前記樹脂組成物を支持体の表面上に塗布する工程に先立って、前記支持体上に剥離層を形成する工程を含む、請求項21に記載の樹脂フィルムの製造方法。
  23.  前記加熱しポリイミド樹脂膜を形成する工程において、酸素濃度が2000ppm以下である、請求項21に記載の樹脂フィルムの製造方法。
  24.  前記加熱しポリイミド樹脂膜を形成する工程において、酸素濃度が100ppm以下である、請求項21に記載の樹脂フィルムの製造方法。
  25.  前記加熱しポリイミド樹脂膜を形成する工程において、酸素濃度が10ppm以下である、請求項21に記載の樹脂フィルムの製造方法。
  26.  前記ポリイミド樹脂膜を支持体から剥離する工程が、支持体側からレーザーを照射したのち剥離する工程を含む、請求項21に記載の樹脂フィルムの製造方法。
  27.  前記素子または回路が形成されたポリイミド樹脂膜を支持体から剥離する工程が、該ポリイミド樹脂膜/剥離層/支持体を含む構成体から該ポリイミド樹脂膜を剥離する工程を含む、請求項21に記載の樹脂フィルムの製造方法。
  28.  支持体と、該支持体の表面上に形成された、請求項6~19のいずれか1項に記載の樹脂組成物の硬化物であるポリイミド樹脂膜とを含む、積層体。
  29.  請求項6~18のいずれか1項に記載の樹脂組成物を支持体の表面上に塗布する工程と、
     該支持体及び該樹脂組成物を加熱して該樹脂組成物に含まれる該樹脂前駆体をイミド化してポリイミド樹脂膜を形成する工程と、を含む、積層体の製造方法。
  30.  請求項6~18のいずれか1項に記載の樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、
     前記ポリイミド樹脂膜上に素子または回路を形成する工程と、
     前記素子または回路が形成されたポリイミド樹脂膜を支持体から剥離する各工程と、
    を含む、ディスプレイ基板の製造方法。
  31.  請求項30に記載のディスプレイ基板の製造方法により形成された、ディスプレイ基板。
  32.  請求項19記載のポリイミドフィルムと、SiNと、SiOと、をこの順で積層してなる積層体。
PCT/JP2015/070073 2014-07-17 2015-07-13 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法 WO2016010003A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580037788.6A CN106661326B (zh) 2014-07-17 2015-07-13 树脂前体及含有其的树脂组合物、聚酰亚胺树脂膜、树脂薄膜及其制造方法
KR1020197017235A KR102312462B1 (ko) 2014-07-17 2015-07-13 수지 전구체 및 그것을 함유하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법
US15/319,508 US20170165879A1 (en) 2014-07-17 2015-07-13 Resin precursor, resin composition containing same, polyimide resin membrane, resin film, and method for producing same
JP2016534423A JP6670238B2 (ja) 2014-07-17 2015-07-13 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
KR1020187025487A KR101994059B1 (ko) 2014-07-17 2015-07-13 수지 전구체 및 그것을 함유하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법
KR1020167028236A KR101992525B1 (ko) 2014-07-17 2015-07-13 수지 전구체 및 그것을 함유하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-147186 2014-07-17
JP2014147186 2014-07-17

Publications (1)

Publication Number Publication Date
WO2016010003A1 true WO2016010003A1 (ja) 2016-01-21

Family

ID=55078495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070073 WO2016010003A1 (ja) 2014-07-17 2015-07-13 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法

Country Status (6)

Country Link
US (1) US20170165879A1 (ja)
JP (3) JP6670238B2 (ja)
KR (3) KR102312462B1 (ja)
CN (2) CN111808420B (ja)
TW (1) TWI565765B (ja)
WO (1) WO2016010003A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051169A (ja) * 2014-08-29 2016-04-11 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2016167296A1 (ja) * 2015-04-17 2016-10-20 旭化成株式会社 樹脂組成物、ポリイミド樹脂膜、及びその製造方法
JP2016194025A (ja) * 2015-04-02 2016-11-17 宇部興産株式会社 ポリイミドフィルムの製造方法
WO2017014286A1 (ja) * 2015-07-22 2017-01-26 住友化学株式会社 ポリイミド系ワニス、それを用いたポリイミド系フィルムの製造方法、及び、ポリイミド系フィルム
JP2017066396A (ja) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 ポリイミド前駆体溶液及びその製造方法並びにポリイミドフィルムの製造方法及び積層体の製造方法
JP2017170410A (ja) * 2016-03-25 2017-09-28 株式会社カネカ 機能性フィルムの製造方法
KR20170113416A (ko) 2016-03-31 2017-10-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 플렉시블 기판의 제조 방법
WO2018021747A1 (ko) * 2016-07-26 2018-02-01 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
KR20180012196A (ko) * 2016-07-26 2018-02-05 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
WO2018025953A1 (ja) * 2016-08-03 2018-02-08 日産化学工業株式会社 剥離層形成用組成物及び剥離層
JP2018024839A (ja) * 2016-07-01 2018-02-15 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. ポリイミドドライフィルム及びそれらの適用
KR20180030756A (ko) * 2016-09-16 2018-03-26 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
JP2018145440A (ja) * 2014-07-17 2018-09-20 旭化成株式会社 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
US20180284545A1 (en) * 2017-03-31 2018-10-04 Japan Display Inc. Method of manufacturing alignment film and liquid crystal display device
JP6430675B1 (ja) * 2017-06-05 2018-11-28 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
JPWO2017191830A1 (ja) * 2016-05-02 2019-03-07 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
JP2019059927A (ja) * 2017-09-27 2019-04-18 大日本印刷株式会社 フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
CN109689732A (zh) * 2016-08-23 2019-04-26 大林有限公司 树脂稳定性、耐热性提高、具有透明性的聚酰亚胺前体树脂组合物,利用所述组合物的聚酰亚胺膜制造方法,及由所述方法制造的聚酰亚胺膜
CN109843980A (zh) * 2016-10-31 2019-06-04 株式会社Lg化学 形成聚酰亚胺膜的组合物和通过使用其制造的聚酰亚胺膜
JP2020523427A (ja) * 2017-05-23 2020-08-06 デリム コーポレイション カンパニー リミテッド 光特性及び位相遅延特性に優れた高透明性のポリイミド前駆体樹脂組成物、これを用いたポリイミド樹脂フィルムの製造方法、及びこれによって製造されたポリイミド樹脂フィルム
JP2020528086A (ja) * 2017-05-10 2020-09-17 デュポン エレクトロニクス インコーポレイテッド 電子デバイスにおけるフレキシブル基板のためのロ−カラーポリマー
WO2020255920A1 (ja) * 2019-06-19 2020-12-24 三井化学株式会社 高い全光線透過率を持つポリイミド薄膜上に形成された触覚センサとそれを用いたスイッチングデバイス
KR20210132030A (ko) 2019-02-26 2021-11-03 도레이 카부시키가이샤 폴리아미드산 수지 조성물, 폴리이미드 수지막 및 그의 제조 방법, 적층체, 그리고 전자 디바이스 및 그의 제조 방법
WO2022070617A1 (ja) * 2020-09-29 2022-04-07 東洋紡株式会社 無機基板とポリアミック酸硬化物の積層体
JP2022548708A (ja) * 2019-09-27 2022-11-21 コーロン インダストリーズ インク 優れた表面平坦性を有するポリイミド系フィルム及びその製造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402882B (zh) * 2015-02-10 2024-02-06 日产化学工业株式会社 剥离层形成用组合物
KR102128645B1 (ko) * 2017-05-11 2020-06-30 주식회사 엘지화학 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름 적층체
JP7054064B2 (ja) * 2017-07-03 2022-04-13 日産化学株式会社 フレキシブルデバイス基板形成用組成物
JP7006033B2 (ja) 2017-09-01 2022-02-10 富士フイルムビジネスイノベーション株式会社 ポリイミド前駆体溶液、及びポリイミド成形体
US20200207915A1 (en) * 2017-09-07 2020-07-02 Toray Industries, Inc. Resin composition, method of producing resin film, and method of producing electronic device
JP6550434B2 (ja) * 2017-09-29 2019-07-24 シャープ株式会社 防汚性フィルムの製造方法
KR102462940B1 (ko) 2017-11-03 2022-11-04 삼성전자주식회사 폴리이미드, 폴리이미드 제조용 조성물, 폴리이미드를 포함하는 성형품 및 표시 장치
KR102271028B1 (ko) * 2017-12-29 2021-06-29 코오롱인더스트리 주식회사 폴리아믹산의 제조방법, 이로부터 제조된 폴리아믹산, 폴리이미드 수지 및 폴리이미드 필름
WO2019142866A1 (ja) * 2018-01-17 2019-07-25 旭化成株式会社 ポリイミド前駆体樹脂組成物
US10787466B2 (en) 2018-04-11 2020-09-29 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
US11673903B2 (en) 2018-04-11 2023-06-13 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
KR20240129107A (ko) * 2018-06-21 2024-08-27 인프리아 코포레이션 모노알킬 주석 알콕사이드 및 이들의 가수분해 및 축합 생성물의 안정적인 용액
JP6541855B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
JP6541856B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
WO2020080276A1 (ja) * 2018-10-16 2020-04-23 富士フイルム株式会社 レーザ剥離用の積層体、組成物およびキット
JP7461626B2 (ja) * 2018-12-04 2024-04-04 ユニチカ株式会社 ポリアミック酸溶液およびこれを用いた積層体の製造方法
KR102201820B1 (ko) * 2019-01-30 2021-01-12 주식회사 창성시트 디스플레이 기판
KR102551047B1 (ko) * 2019-02-01 2023-07-04 주식회사 엘지화학 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2020181021A1 (en) * 2019-03-05 2020-09-10 Promerus, Llc Photosensitive polyimide compositions
CN113795383A (zh) * 2019-05-09 2021-12-14 三菱瓦斯化学株式会社 层叠体
CN112521603B (zh) * 2019-09-19 2023-06-02 臻鼎科技股份有限公司 聚酰胺酸嵌段共聚物及其制备方法、聚酰亚胺覆铜板及电路板
TWI773937B (zh) * 2019-10-29 2022-08-11 達興材料股份有限公司 聚(醯亞胺-酯-醯胺)共聚物以及光學膜
JP2021178881A (ja) * 2020-05-11 2021-11-18 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
JPWO2021261177A1 (ja) * 2020-06-23 2021-12-30
CN111791412A (zh) * 2020-06-30 2020-10-20 浙江中科玖源新材料有限公司 一种柔性显示用玻璃基板聚酰亚胺薄膜生产工艺及装置
CN115124716B (zh) * 2021-03-26 2024-04-02 财团法人工业技术研究院 聚酰亚胺、薄膜组合物及其所形成的薄膜

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206434A (ja) * 1983-05-11 1984-11-22 Hitachi Chem Co Ltd ポリアミド酸の製造法
JPS60181128A (ja) * 1984-02-29 1985-09-14 Sumitomo Bakelite Co Ltd 耐熱性樹脂組成物
JPH0736068A (ja) * 1993-07-26 1995-02-07 Hitachi Chem Co Ltd アクティブ光導波路用組成物、これを用いたアクティブ光導波路の製造法及びアクティブ光導波路
JPH1048418A (ja) * 1996-07-31 1998-02-20 Tokai Rubber Ind Ltd 誘電体多層膜光フィルタおよびその製造方法
JP2000044681A (ja) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc 保存安定性の優れた高接着性芳香族ポリイミド前駆体の製造方法
JP2000248064A (ja) * 1998-12-28 2000-09-12 Mitsui Chemicals Inc 保存安定性と接着性に優れた芳香族ポリイミド前駆体及びその製造方法
JP2002357898A (ja) * 2001-03-26 2002-12-13 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物及び半導体装置
WO2005118686A1 (ja) * 2004-06-01 2005-12-15 Kaneka Corporation 可溶性ポリイミド及びこれを使用した光学補償部材
JP2012097254A (ja) * 2010-10-04 2012-05-24 Nippon Shokubai Co Ltd 複写・印刷機部材用ポリイミド
WO2013191180A1 (ja) * 2012-06-19 2013-12-27 新日鉄住金化学株式会社 表示装置及びその製造方法、並びに、表示装置支持基材用ポリイミドフィルム及びその製造方法
JP2014019108A (ja) * 2012-07-20 2014-02-03 Nippon Steel & Sumikin Chemical Co Ltd 透明導電性フィルム及びその製造用ポリイミドフィルム
WO2014073591A1 (ja) * 2012-11-08 2014-05-15 旭化成イーマテリアルズ株式会社 フレキシブルデバイス用基板、フレキシブルデバイス及びその製造方法、積層体及びその製造方法、並びに、樹脂組成物
JP2014118519A (ja) * 2012-12-18 2014-06-30 Kaneka Corp ポリイミド樹脂溶液

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520075A (en) * 1983-09-02 1985-05-28 Nitto Electric Industrial Co., Ltd. Siloxane-modified polyimide precursor and polyimide
US5063115A (en) * 1987-08-21 1991-11-05 E. I. Du Pont De Nemours And Company Electronic device coated with a polyimide coating composition
JP2640553B2 (ja) 1990-04-27 1997-08-13 日本電信電話株式会社 フッ素化ポリイミド共重合体及びその製造方法
JP2813713B2 (ja) * 1990-04-27 1998-10-22 日本電信電話株式会社 ポリイミド系光導波路
JP3002710B2 (ja) * 1991-06-07 2000-01-24 セントラル硝子株式会社 低パーティクル含有ポリイミド前駆体およびポリイミド溶液およびその製造法
US5344916A (en) * 1993-04-21 1994-09-06 The University Of Akron Negative birefringent polyimide films
US5486440A (en) * 1993-06-30 1996-01-23 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same
JP2000063519A (ja) * 1998-06-08 2000-02-29 Toray Ind Inc ポリイミド前駆体組成物およびその製造方法
JP2000187403A (ja) * 1998-12-21 2000-07-04 Nitto Denko Corp 半導電性ベルト
JP2003313361A (ja) * 2002-04-24 2003-11-06 Hitachi Chemical Dupont Microsystems Ltd シランカップリング剤
JP4937745B2 (ja) * 2004-07-16 2012-05-23 旭化成イーマテリアルズ株式会社 ポリアミド
JP2006189596A (ja) * 2005-01-06 2006-07-20 Central Glass Co Ltd 光学多層膜フィルタの製造方法及び光学多層膜フィルタ
JP5092426B2 (ja) * 2006-07-21 2012-12-05 東レ株式会社 位相差薄膜用樹脂組成物、液晶表示装置用カラーフィルター基板、および液晶表示装置、並びに位相差薄膜付き液晶表示装置用カラーフィルター基板の製造方法
JP5321839B2 (ja) * 2007-04-25 2013-10-23 日産化学工業株式会社 ポリイミド前駆体及びポリイミド並びに画像形成下層膜塗布液
KR101225842B1 (ko) 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 무색투명한 폴리이미드 필름
JP2009167235A (ja) * 2008-01-11 2009-07-30 Ube Ind Ltd ポリイミドフィルムの製造方法
JP2010202729A (ja) * 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd フレキシブルデバイス基板用ポリイミド前駆体樹脂組成物及びそれを用いたフレキシブルデバイスの製造方法、フレキシブルデバイス
TWI437025B (zh) * 2009-08-14 2014-05-11 Asahi Kasei E Materials Corp An alkali-soluble polymer, a photosensitive resin composition comprising the same, and a use thereof
TWI560213B (en) * 2010-02-10 2016-12-01 Ube Industries Polyimide, manufacturing process thereof, and laminate
JP5725017B2 (ja) * 2010-03-31 2015-05-27 Jsr株式会社 基板の製造方法およびそれに用いられる組成物
TWI415878B (zh) * 2011-02-10 2013-11-21 Chin Yee Chemical Industres Co Ltd Transparent polyimide siloxane, a method for producing the same, and a film thereof
WO2013154141A1 (ja) * 2012-04-13 2013-10-17 宇部興産株式会社 ポリアミック酸溶液組成物、及びポリイミド
JP6457168B2 (ja) * 2012-06-19 2019-01-23 日鉄ケミカル&マテリアル株式会社 表示装置支持基材用ポリイミドフィルム、及びその積層体、並びその製造方法
KR20140049382A (ko) 2012-10-17 2014-04-25 에스케이씨 주식회사 폴리이미드 필름 및 이의 제조방법
JP6417330B2 (ja) * 2012-11-30 2018-11-07 エルジー ディスプレイ カンパニー リミテッド フレキシブル基板を含む有機発光素子およびその製造方法
US10725379B2 (en) * 2012-12-21 2020-07-28 Hitachi Chemical Dupont Microsystems, Ltd. Polymide precursor resin composition
US10435510B2 (en) * 2013-02-07 2019-10-08 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
CN107522860B (zh) * 2014-05-30 2020-09-25 株式会社Lg化学 聚酰亚胺基液体和使用其制备的聚酰亚胺基膜
KR102312462B1 (ko) 2014-07-17 2021-10-13 아사히 가세이 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법
KR101955957B1 (ko) 2015-04-17 2019-03-08 아사히 가세이 가부시키가이샤 수지 조성물, 폴리이미드 수지막, 및 그 제조 방법
JP2018108057A (ja) * 2017-01-05 2018-07-12 凸版印刷株式会社 防草シート、及びその製造方法並びに敷設方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206434A (ja) * 1983-05-11 1984-11-22 Hitachi Chem Co Ltd ポリアミド酸の製造法
JPS60181128A (ja) * 1984-02-29 1985-09-14 Sumitomo Bakelite Co Ltd 耐熱性樹脂組成物
JPH0736068A (ja) * 1993-07-26 1995-02-07 Hitachi Chem Co Ltd アクティブ光導波路用組成物、これを用いたアクティブ光導波路の製造法及びアクティブ光導波路
JPH1048418A (ja) * 1996-07-31 1998-02-20 Tokai Rubber Ind Ltd 誘電体多層膜光フィルタおよびその製造方法
JP2000044681A (ja) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc 保存安定性の優れた高接着性芳香族ポリイミド前駆体の製造方法
JP2000248064A (ja) * 1998-12-28 2000-09-12 Mitsui Chemicals Inc 保存安定性と接着性に優れた芳香族ポリイミド前駆体及びその製造方法
JP2002357898A (ja) * 2001-03-26 2002-12-13 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物及び半導体装置
WO2005118686A1 (ja) * 2004-06-01 2005-12-15 Kaneka Corporation 可溶性ポリイミド及びこれを使用した光学補償部材
JP2012097254A (ja) * 2010-10-04 2012-05-24 Nippon Shokubai Co Ltd 複写・印刷機部材用ポリイミド
WO2013191180A1 (ja) * 2012-06-19 2013-12-27 新日鉄住金化学株式会社 表示装置及びその製造方法、並びに、表示装置支持基材用ポリイミドフィルム及びその製造方法
JP2014019108A (ja) * 2012-07-20 2014-02-03 Nippon Steel & Sumikin Chemical Co Ltd 透明導電性フィルム及びその製造用ポリイミドフィルム
WO2014073591A1 (ja) * 2012-11-08 2014-05-15 旭化成イーマテリアルズ株式会社 フレキシブルデバイス用基板、フレキシブルデバイス及びその製造方法、積層体及びその製造方法、並びに、樹脂組成物
JP2014118519A (ja) * 2012-12-18 2014-06-30 Kaneka Corp ポリイミド樹脂溶液

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145440A (ja) * 2014-07-17 2018-09-20 旭化成株式会社 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
JP2016051169A (ja) * 2014-08-29 2016-04-11 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2016194025A (ja) * 2015-04-02 2016-11-17 宇部興産株式会社 ポリイミドフィルムの製造方法
WO2016167296A1 (ja) * 2015-04-17 2016-10-20 旭化成株式会社 樹脂組成物、ポリイミド樹脂膜、及びその製造方法
CN107531996A (zh) * 2015-04-17 2018-01-02 旭化成株式会社 树脂组合物、聚酰亚胺树脂膜及其制造方法
CN107683308A (zh) * 2015-07-22 2018-02-09 住友化学株式会社 聚酰亚胺系清漆、使用其的聚酰亚胺系膜的制造方法、及聚酰亚胺系膜
WO2017014286A1 (ja) * 2015-07-22 2017-01-26 住友化学株式会社 ポリイミド系ワニス、それを用いたポリイミド系フィルムの製造方法、及び、ポリイミド系フィルム
JP2017066396A (ja) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 ポリイミド前駆体溶液及びその製造方法並びにポリイミドフィルムの製造方法及び積層体の製造方法
JP2017170410A (ja) * 2016-03-25 2017-09-28 株式会社カネカ 機能性フィルムの製造方法
KR20170113416A (ko) 2016-03-31 2017-10-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 플렉시블 기판의 제조 방법
JP7003914B2 (ja) 2016-05-02 2022-02-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
US11332578B2 (en) 2016-05-02 2022-05-17 Mitsubishi Gas Chemical Company, Inc. Polyimide resin, polyimide resin composition, and polyimide film
JPWO2017191830A1 (ja) * 2016-05-02 2019-03-07 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
JP2018024839A (ja) * 2016-07-01 2018-02-15 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. ポリイミドドライフィルム及びそれらの適用
CN109071810A (zh) * 2016-07-26 2018-12-21 株式会社Lg化学 聚酰亚胺前体溶液及其制造方法
KR20180012196A (ko) * 2016-07-26 2018-02-05 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
JP2019509364A (ja) * 2016-07-26 2019-04-04 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
WO2018021747A1 (ko) * 2016-07-26 2018-02-01 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
CN109071810B (zh) * 2016-07-26 2020-11-13 株式会社Lg化学 聚酰亚胺前体溶液及其制造方法
KR101993647B1 (ko) * 2016-07-26 2019-09-30 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
US11655337B2 (en) 2016-07-26 2023-05-23 Lg Chem, Ltd. Polyimide precursor solution and method for producing same
JP7063266B2 (ja) 2016-08-03 2022-05-09 日産化学株式会社 剥離層形成用組成物及び剥離層
WO2018025953A1 (ja) * 2016-08-03 2018-02-08 日産化学工業株式会社 剥離層形成用組成物及び剥離層
JPWO2018025953A1 (ja) * 2016-08-03 2019-06-06 日産化学株式会社 剥離層形成用組成物及び剥離層
CN109689732B (zh) * 2016-08-23 2022-02-11 (株)大林公司 聚酰亚胺前体树脂组合物、由该组合物制造聚酰亚胺膜的方法及由该方法制造的聚酰亚胺膜
CN109689732A (zh) * 2016-08-23 2019-04-26 大林有限公司 树脂稳定性、耐热性提高、具有透明性的聚酰亚胺前体树脂组合物,利用所述组合物的聚酰亚胺膜制造方法,及由所述方法制造的聚酰亚胺膜
KR102297018B1 (ko) * 2016-09-16 2021-09-01 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
KR102377097B1 (ko) 2016-09-16 2022-03-21 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
KR20180030756A (ko) * 2016-09-16 2018-03-26 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
JP2018048307A (ja) * 2016-09-16 2018-03-29 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
JP7038630B2 (ja) 2016-09-16 2022-03-18 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
KR20210107586A (ko) * 2016-09-16 2021-09-01 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
KR102147082B1 (ko) * 2016-09-16 2020-08-24 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
KR20190111854A (ko) * 2016-09-16 2019-10-02 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
KR20190087366A (ko) * 2016-09-16 2019-07-24 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물, 수지 필름 및 그 제조 방법
JP2019014896A (ja) * 2016-09-16 2019-01-31 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
CN109843980B (zh) * 2016-10-31 2021-06-15 株式会社Lg化学 形成聚酰亚胺膜的组合物和通过使用其制造的聚酰亚胺膜
CN109843980A (zh) * 2016-10-31 2019-06-04 株式会社Lg化学 形成聚酰亚胺膜的组合物和通过使用其制造的聚酰亚胺膜
US11261304B2 (en) 2016-10-31 2022-03-01 Lg Chem, Ltd. Polyimide film forming composition and polyimide film produced by using same
US20180284545A1 (en) * 2017-03-31 2018-10-04 Japan Display Inc. Method of manufacturing alignment film and liquid crystal display device
JP2020528086A (ja) * 2017-05-10 2020-09-17 デュポン エレクトロニクス インコーポレイテッド 電子デバイスにおけるフレキシブル基板のためのロ−カラーポリマー
JP2020523427A (ja) * 2017-05-23 2020-08-06 デリム コーポレイション カンパニー リミテッド 光特性及び位相遅延特性に優れた高透明性のポリイミド前駆体樹脂組成物、これを用いたポリイミド樹脂フィルムの製造方法、及びこれによって製造されたポリイミド樹脂フィルム
JP2019073707A (ja) * 2017-06-05 2019-05-16 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
JP6474936B1 (ja) * 2017-06-05 2019-02-27 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
KR20180134930A (ko) * 2017-06-05 2018-12-19 스미또모 가가꾸 가부시키가이샤 필름, 필름의 광학적 균질성의 평가 방법 및 필름의 제조 방법
WO2018225598A1 (ja) * 2017-06-05 2018-12-13 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
JP6430675B1 (ja) * 2017-06-05 2018-11-28 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
JP2018203986A (ja) * 2017-06-05 2018-12-27 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
KR101955599B1 (ko) 2017-06-05 2019-03-07 스미또모 가가꾸 가부시키가이샤 필름, 필름의 광학적 균질성의 평가 방법 및 필름의 제조 방법
KR20190025061A (ko) * 2017-06-05 2019-03-08 스미또모 가가꾸 가부시키가이샤 필름, 필름의 광학적 균질성의 평가 방법 및 필름의 제조 방법
KR101968720B1 (ko) 2017-06-05 2019-04-12 스미또모 가가꾸 가부시키가이샤 필름, 필름의 광학적 균질성의 평가 방법 및 필름의 제조 방법
TWI760501B (zh) * 2017-06-05 2022-04-11 日商住友化學股份有限公司 膜、膜之光學均勻性之評價方法以及膜之製造方法
JP7363019B2 (ja) 2017-09-27 2023-10-18 大日本印刷株式会社 ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2019059927A (ja) * 2017-09-27 2019-04-18 大日本印刷株式会社 フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
KR20210132030A (ko) 2019-02-26 2021-11-03 도레이 카부시키가이샤 폴리아미드산 수지 조성물, 폴리이미드 수지막 및 그의 제조 방법, 적층체, 그리고 전자 디바이스 및 그의 제조 방법
JPWO2020255920A1 (ja) * 2019-06-19 2020-12-24
JP7064054B2 (ja) 2019-06-19 2022-05-09 三井化学株式会社 高い全光線透過率を持つポリイミド薄膜上に形成された触覚センサとそれを用いたスイッチングデバイス
WO2020255920A1 (ja) * 2019-06-19 2020-12-24 三井化学株式会社 高い全光線透過率を持つポリイミド薄膜上に形成された触覚センサとそれを用いたスイッチングデバイス
JP2022548708A (ja) * 2019-09-27 2022-11-21 コーロン インダストリーズ インク 優れた表面平坦性を有するポリイミド系フィルム及びその製造方法
JP7366250B2 (ja) 2019-09-27 2023-10-20 コーロン インダストリーズ インク 優れた表面平坦性を有するポリイミド系フィルム及びその製造方法
WO2022070617A1 (ja) * 2020-09-29 2022-04-07 東洋紡株式会社 無機基板とポリアミック酸硬化物の積層体

Also Published As

Publication number Publication date
KR101994059B1 (ko) 2019-06-27
TW201610021A (zh) 2016-03-16
JP6648195B2 (ja) 2020-02-14
KR20180100732A (ko) 2018-09-11
JP6670238B2 (ja) 2020-03-18
CN111808420A (zh) 2020-10-23
JP2018145440A (ja) 2018-09-20
KR101992525B1 (ko) 2019-06-24
JPWO2016010003A1 (ja) 2017-04-27
CN111808420B (zh) 2021-09-28
KR20190071842A (ko) 2019-06-24
KR20160132092A (ko) 2016-11-16
US20170165879A1 (en) 2017-06-15
KR102312462B1 (ko) 2021-10-13
CN106661326B (zh) 2020-04-21
CN106661326A (zh) 2017-05-10
JP7152381B2 (ja) 2022-10-12
TWI565765B (zh) 2017-01-11
JP2020037704A (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
JP7152381B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
JP7383764B2 (ja) ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
JP7564622B2 (ja) 樹脂組成物、ポリイミド樹脂膜、及びその製造方法
KR102000855B1 (ko) 폴리이미드 전구체 수지 조성물
JP6458099B2 (ja) ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534423

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167028236

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15319508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821418

Country of ref document: EP

Kind code of ref document: A1