WO2016010051A1 - 艶消し用熱可塑性樹脂組成物、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルム - Google Patents
艶消し用熱可塑性樹脂組成物、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルム Download PDFInfo
- Publication number
- WO2016010051A1 WO2016010051A1 PCT/JP2015/070203 JP2015070203W WO2016010051A1 WO 2016010051 A1 WO2016010051 A1 WO 2016010051A1 JP 2015070203 W JP2015070203 W JP 2015070203W WO 2016010051 A1 WO2016010051 A1 WO 2016010051A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- thermoplastic resin
- acrylic
- matting agent
- film
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1806—C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/16—Homopolymers or copolymers or vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2433/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2433/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2457/00—Characterised by the use of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C08J2457/06—Homopolymers or copolymers containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the present invention relates to a thermoplastic resin composition containing a fluorine-based resin, a fluorine-based matte film obtained by molding it, and a fluorine-based matte laminated film.
- Fluorine-based resins especially fluorine-based films containing vinylidene fluoride-based polymers, have excellent weather resistance, chemical resistance, and contamination resistance, so various types such as plastic, glass, slate, rubber, metal plate, wood plate, etc. It is widely used as a protective film laminated on the surface of a substrate.
- the base material whose surface is protected with a fluorine-based film is used in many applications such as interior materials, exterior materials, and furniture of buildings.
- base materials such as wallpaper and leather furniture used indoors, there has been a demand for a high-quality image, and the use of a laminate of a fluorine-based matte film on the surface is increasing.
- the method for producing this fluorinated matte film is as follows: (1) A method of forming fine irregularities on the film surface with a metal or rubber mat roll whose surface is roughened, and (2) Fine particles such as sand or metal. Spraying the surface of the film to be treated to give fine irregularities (sand blasting method), (3) coating the film to be treated with a matting agent, (4) fine organic filler or inorganic type There are known a method of adding a filler to a resin constituting a film, and (5) a method of producing a film having a matte appearance by using a difference in solubility parameter between a fluororesin and an acrylic resin.
- the mat roll is clogged by an additive such as an ultraviolet absorber added to the fluororesin.
- an additive such as an ultraviolet absorber added to the fluororesin.
- the film to be processed is stretched or broken during sandblasting.
- the matting agent is non-adhesive to the fluororesin and coating is difficult.
- Patent Document 1 a fluorine-based film having good matting properties and excellent chemical resistance can be obtained.
- Patent Document 1 a fluorine-based film having good matting properties and excellent chemical resistance
- Patent Document 1 a fluorine-based film is produced by a melt extrusion molding method using a T die
- the resin is deposited near the discharge port of the T die and becomes a mass.
- a smear occurs, a foreign matter-like or streak-like appearance defect resulting from this occurs in the film.
- the present invention has been made in view of the above circumstances, and enables stable matte expression when producing a fluorinated matte film, and when producing a matte fluororesin molded body such as a film.
- An object of the present invention is to provide a thermoplastic resin composition capable of suppressing the main cause of appearance defects. Furthermore, an object of the present invention is to obtain a fluorine-based matte film and a fluorine-based matte laminated film excellent in matting properties and chemical resistance using the thermoplastic resin composition.
- thermoplastic resin composition ( ⁇ ) for a chemical-resistant matte film From fluorine resin (A), matting agent (B) which is a thermoplastic resin insoluble in fluorine resin (A), and thermoplastic resin (C) soluble in fluorine resin (A) A thermoplastic resin composition ( ⁇ ) for a chemical-resistant matte film.
- matting agent (B) is a hydroxyl group-containing non-crosslinked acrylic resin.
- thermoplastic resin composition ( ⁇ ) according to [1] wherein the thermoplastic resin (C) does not contain a hydroxyl group.
- the material contains 1 to 50 parts by mass of the matting agent (B) and 20 to 90 parts by mass of the thermoplastic resin (C) with respect to 100 parts by mass of the fluororesin (A).
- the thermoplastic resin composition ( ⁇ ). [5] When the SP value of the fluororesin (A) and the thermoplastic resin (C) is SP (AC) and the SP value of the matting agent (B) is SP (B), “5.2 ⁇ SP (B) ⁇ SP (AC) ⁇ 6.6”
- the thermoplastic resin composition ( ⁇ ) according to [1] which satisfies the relationship: [6]
- thermoplastic resin composition ( ⁇ ) according to [1], which satisfies the relationship: [8] A resin composition for a matte film, which contains a fluororesin (A) and an acrylic matting agent (D) which is a thermoplastic resin, and constitutes the acrylic matting agent (D) When the monofunctional monomer unit in the monomer unit is 100% by mass, the content of acrylic acid alkyl ester units is 50 to 100% by mass, and the content of other monofunctional monomer units is 0 to The thermoplastic resin composition ( ⁇ ), which is 50% by mass.
- the acrylic matting agent (D) is a resin obtained by polymerizing the monomer component (m14) in the presence of the alkyl acrylate polymer (P13), and the polymer (P13 )
- the content of the monofunctional monomer unit in the monomer component (m13) unit is 100% by mass
- the content of the acrylic acid alkyl ester unit is 80 to 100% by mass
- the content of body units is 0 to 20% by mass
- the content of polyfunctional monomer units is 0 to 0.6 parts by mass with respect to a total of 100 parts by mass of monofunctional monomer units.
- the content of the alkyl methacrylate is 80 to 100% by mass
- the content of the other monofunctional monomer is The thermoplastic resin composition according to the above [8], which is 0 to 20% by mass. ( ⁇ ).
- the content of the fluororesin (A) is 70 to 99% by mass
- the substituent is selected from the group consisting of a linear alkyl group having 10 to 30 carbon atoms, a branched alkyl group having 10 to 30 carbon atoms, and a cyclic alkyl group having 10 to 30 carbon atoms.
- the acrylic matting agent (E) according to [11], containing 5 parts by mass.
- a thermoplastic resin composition containing 1 to 100 parts by mass of the acrylic matting agent (E) according to [11] or [12] with respect to 100 parts by mass of the fluororesin (A) ( ⁇ ).
- a matting agent used for obtaining a matte fluororesin molded product comprising 50.0 to 99.9% by weight of (meth) acrylic acid ester (b10), other monofunctional monomers (b11
- Cross-linked acrylic matting agent (F) cross-linked acrylic matting agent
- thermoplastic resin containing 70 to 99% by mass of fluorine-based resin (A), 1 to 30% by mass of the cross-linked acrylic matting agent (F), and 0 to 29% by mass of other resin (G) Composition ( ⁇ ).
- the thermoplastic resin composition according to any one of [1] to [10], [13] and [15], wherein the fluororesin (A) is a vinylidene fluoride polymer.
- a fluorine-based matte film obtained by molding the thermoplastic resin composition according to any one of [1] to [10], [13], [15] and [16].
- thermoplastic resin composition of the present invention By molding the thermoplastic resin composition of the present invention, it is possible to obtain a fluorinated matte film with excellent matting and chemical resistance. In addition, when the film is formed, it is possible to prevent the occurrence of a mess that becomes an appearance defect of the film.
- the fluorinated matte film of the present invention has excellent matting properties and chemical resistance, and can be used as a material for a fluorinated matte laminated film.
- the fluorinated matte laminated film of the present invention is excellent in matting properties and chemical resistance.
- (meth) acryl means acrylic or methacrylic acid
- (meth) acrylic acid ester means acrylic acid ester or methacrylic acid ester.
- thermoplastic resin composition ( ⁇ ) for a chemical-resistant matte film made of a plastic resin (C) will be described.
- fluororesin (A) examples include polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoro.
- Acrylic monomers such as propylene copolymer, tetrafluoroethylene-perfluoro (propyl vinyl ether) copolymer, tetrafluoroethylene-vinylidene fluoride copolymer, vinylidene fluoride and alkyl (meth) acrylate And a mixed resin with another resin mainly composed of a vinylidene fluoride polymer.
- a vinylidene fluoride polymer is preferable from the viewpoints of moldability of a fluorine-based matte film and a fluorine-based matte laminated film and compatibility with an acrylic resin.
- the vinylidene fluoride polymer may be a vinyl polymer having a vinylidene fluoride unit, may be a homopolymer of vinylidene fluoride, or a copolymer of vinylidene fluoride and another vinyl monomer. It may be.
- the vinyl monomer include fluorinated vinyl monomers such as vinyl fluoride, tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene; and vinyl monomers such as styrene, ethylene, butadiene, and propylene. It is done.
- the criteria for determining whether the resin is soluble or insoluble in the present invention is as follows. Two thermoplastic raw materials are mixed at a mass ratio of 1: 1. Resin pellets are manufactured by setting the cylinder temperature above the glass transition temperature of these two thermoplastic raw materials and melt-extruding them using a twin-screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.). To do. The obtained pellet was cut with a microtome in a direction perpendicular to the resin extrusion direction, and the cut surface of the obtained test piece was observed with a transmission electron microscope (JEOL Co., Ltd., J100S). Check for sea-island structure.
- the diameter of the island part is less than 100 nm, it is assumed that they are compatible. Moreover, when there is a sea-island structure and the diameter of the island part is 100 nm or more, it is incompatible.
- thermoplastic resin matting agent (B) insoluble in fluorine resin (A) examples include known thermoplastic resins that are insoluble in the fluorine-based resin (A).
- the matting agent (B) which is a thermoplastic resin since a fine matte film can be obtained, it is a hydroxyl group-containing non-crosslinked acrylic resin, that is, contains a hydroxyl group, a crosslinkable monomer unit, An acrylic resin that does not contain a polyfunctional monomer unit such as a graft-crossing monomer unit is preferred.
- hydroxyalkyl (meth) acrylate (b1) having an alkyl group having 1 to 8 carbon atoms 20 to 99% by mass of alkyl methacrylate (b2) having an alkyl group having 1 to 13 carbon atoms, and A polymer obtained by copolymerizing a monomer component containing 0 to 79% by mass of an alkyl acrylate (b3) having an alkyl group having 1 to 8 carbon atoms, and a crosslinkable monomer unit or graft
- the matting agent (B) which is a thermoplastic resin insoluble in the fluororesin (A) may be simply referred to as “matting agent (B)”.
- the hydroxyalkyl (meth) acrylate (b1) having an alkyl group having 1 to 8 carbon atoms may be simply referred to as “monomer (b1)”.
- the alkyl methacrylate (b2) having an alkyl group having 1 to 13 carbon atoms may be simply referred to as “monomer (b2)”.
- the alkyl acrylate (b3) having an alkyl group having 1 to 8 carbon atoms may be simply referred to as “monomer (b3)”.
- the elongation of the resulting fluoromatting film can be made equal to the elongation of the fluororesin.
- the fluorinated matte film and the fluorinated matte laminated film of the present invention are preferred in that no film breakage occurs during secondary processing.
- Examples of the monomer (b1) that is a raw material for the matting agent (B) include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,3-dihydroxypropyl methacrylate, and 2-hydroxyethyl acrylate. And 4-hydroxybutyl acrylate. These may be used alone or in combination of two or more. Among these, 2-hydroxyethyl methacrylate is preferred because the matte appearance of the film is good.
- the content of the monomer (b1) in 100% by mass of the monomer component is preferably 1 to 80% by mass. If the content is 1% by mass or more, the matte effect of the film is good. The content is more preferably 5% by mass or more, and further preferably 20% by mass or more. Moreover, if content rate is 80 mass% or less, generation
- Examples of the monomer (b2) that is a raw material of the matting agent (B) include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, and i methacrylate. -Butyl, t-butyl methacrylate. These may be used alone or in combination of two or more. In these, since the weather resistance of a film is favorable, methyl methacrylate is preferable.
- the content of the monomer (b2) in 100% by mass of the monomer component is preferably 20 to 99% by mass. If content rate is 20 mass% or more, the weather resistance of a film will become favorable. The content is more preferably 30% by mass or more. Moreover, if a content rate is 99 mass% or less, the matte expression of a film will become favorable. The content is preferably 90% by mass or less.
- Examples of the monomer (b3) that is a raw material of the matting agent (B) include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, and acrylic acid i. -Butyl, t-butyl acrylate, 2-ethylhexyl acrylate. These may be used alone or in combination of two or more.
- the content of the monomer (b3) in 100% by mass of the monomer component is preferably 0 to 79% by mass. If the content is 0.5% by mass or more, the dispersibility of the matting agent (B) becomes good, which is more preferable.
- the content is more preferably 5% by mass or more. Moreover, if content rate is 79 mass% or less, the weather resistance and heat resistance of a film will become favorable.
- the content is more preferably 40% by mass or less, and further preferably 25% by mass or less.
- the glass transition temperature of the matting agent (B) which is a thermoplastic resin is from the point that the matting expression of the film is good and the dispersibility of the matting agent (B) particles in the film is good. 90 ° C. or lower is preferable, and 80 ° C. or lower is more preferable.
- the content of the monomer (b3) in 100% by mass of the monomer component is preferably 0.5 to 30% by mass, and more preferably 0.5 to 20% by mass.
- the glass transition temperature of the matting agent (B) is the value of the glass transition temperature of the homopolymer of each monomer component (polymer handbook [Polymer Handbook, J. Brandrup, Interscience, 1989]. ) To calculate from the FOX equation.
- the hydroxyl value of the matting agent (B) is preferably 50 to 200 mgKOH / g.
- the matting agent (B) is non-phasic with respect to the resin mixture of the fluororesin (A) and the thermoplastic resin (C) soluble in the fluororesin (A).
- the film exhibits good matting properties.
- the hydroxyl value of a matting agent (B) is 200 mgKOH / g or less, since the whitening when a film is exposed to warm water is suppressed, it is preferable.
- the hydroxyl value was determined by titrating the number of mg of potassium hydroxide required to neutralize the acetic acid produced by acetylation of the hydroxyl group in 1 g of the solid content of the vinyl polymer solution with acetic anhydride. Measured and calculated.
- the intrinsic viscosity is preferably 0.01 L / g or more from the viewpoint of improving the matte property of the film.
- the intrinsic viscosity of the matting agent (B) is measured at a temperature of 25 ° C. using an AVL-2C automatic viscometer manufactured by Sun Electronics Industry, using chloroform as a solvent.
- a polymerization regulator such as mercaptan
- mercaptans include n-octyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan.
- the content of mercaptan is preferably 0.01 parts by mass or more in terms of good dispersibility with respect to 100 parts by mass of the matting agent (B). Moreover, 1 mass part or less is preferable at the point which makes the matte property of a film favorable.
- the matting agent (B) which is a thermoplastic resin, has a Mw (mass average molecular weight) / Mn (number average molecular weight) of preferably 2.2 or less, and more preferably 2.0 or less. As the Mw / Mn value is smaller, the molecular weight distribution of the matting agent (B) becomes closer to monodisperse, so that the high molecular weight component decreases, and the unmelted material that causes poor appearance such as fish eyes in the film. Is suppressed. In addition, Mw / Mn shows the value obtained by measuring on the following GPC measurement conditions by a gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- Examples of the method for producing the matting agent (B) that is a thermoplastic resin include suspension polymerization and emulsion polymerization.
- Examples of the polymerization initiator used for suspension polymerization include organic peroxides and azo compounds.
- Examples of the suspension stabilizer include organic colloidal polymer materials, inorganic colloidal polymer materials, inorganic fine particles, and combinations of these with surfactants. Among them, organic suspension stabilizers are preferable, for example, a copolymer of methyl methacrylate and potassium methacrylate and a methyl methacrylate, potassium methacrylate and methacrylic compound disclosed in JP-A-1-168702 of Japan. A copolymer with acid 2-sulfoethyl sodium salt is more preferred.
- the inorganic suspension stabilizer those that can be removed by post-polymerization treatment such as washing are preferable, and examples thereof include tricalcium phosphate.
- the amount of the suspension stabilizer used is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the monomer component from the viewpoint of stabilizing the suspension polymerization. Moreover, 10 mass parts or less are preferable at the point of economical efficiency.
- suspension polymerization is carried out using a raw material obtained by suspending an aqueous monomer and the like together with a polymerization initiator in the presence of a suspension stabilizer.
- a polymer soluble in the monomer can be dissolved in the monomer and polymerized when suspension polymerization is performed as required.
- cullet which is a component insoluble in chloroform generated during polymerization, which causes poor appearance
- the matting agent (B) preferably contains no cullet of 300 ⁇ m or more, and more preferably does not contain cullet of 100 ⁇ m or more.
- the bead shape of thermoplastic resin obtained by suspension polymerization is used to suppress the generation of fish eyes in the resulting film and to prevent print loss. It is preferable to wash the product with water to reduce the content of the inorganic substance in the thermoplastic resin.
- the water washing method include, for example, a dispersion washing method in which a washing liquid such as nitric acid is added to a bead-like material of a thermoplastic resin to disperse it, and a solid-liquid separation is performed, and a washing liquid is passed through the bead-like material of a thermoplastic resin.
- a cleaning method is mentioned.
- the washing temperature is preferably 10 to 90 ° C. from the viewpoint of washing efficiency.
- the average particle diameter of the thermoplastic resin is preferably 300 ⁇ m or less, and more preferably 100 ⁇ m or less. Further, the average particle diameter is preferably 10 ⁇ m or more from the viewpoint of the handleability of the polymer.
- the average particle size of the matting agent (B), which is a thermoplastic resin can be measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-910 manufactured by HORIBA.
- thermoplastic resin (C) soluble in fluororesin (A) The thermoplastic resin (C) used in the first invention may be any thermoplastic resin that is soluble in the fluororesin (A). From the viewpoint of compatibility with the fluororesin (A), an acrylic resin is used. preferable. For example, a thermoplastic polymer (C-1) described later which does not use a hydroxyl group-containing monomer as a raw material, or a rubber-containing polymer (R2) which will be described later as a raw material. The thing which is not used for is mentioned. These may be used alone or in combination of two or more.
- thermoplastic resin (C) soluble in the fluororesin (A) may be simply referred to as “thermoplastic resin (C)”.
- thermoplastic polymer (C-1) is a polymer mainly composed of alkyl methacrylate units.
- the polymer having an alkyl methacrylate unit as a main component contains 50 to 100% by mass of alkyl methacrylate, 0 to 50% by mass of alkyl acrylate, and 0 to 49% by mass of other monomers in terms of heat resistance. Polymers obtained by polymerizing monomer components to be polymerized are preferred.
- alkyl methacrylate examples include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and n-butyl methacrylate. These may be used alone or in combination of two or more.
- alkyl acrylate examples include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate. Of these, n-butyl acrylate is preferred. These may be used alone or in combination of two or more.
- Examples of other monomers include acrylic monomers such as lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, and (meth) acrylic acid; aromatic vinyl monomers such as styrene and alkyl-substituted styrene; acrylonitrile, And vinyl cyanide monomers such as methacrylonitrile. These may be used alone or in combination of two or more.
- the content of the alkyl methacrylate is preferably 50 to 100% by mass, more preferably 85 to 99.9% by mass, and still more preferably 92 to 99.9% by mass from the viewpoint of improving the heat resistance of the film.
- the content of the alkyl acrylate is preferably 0 to 50% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.1 to 8% by mass, from the viewpoint that the heat resistance of the film becomes good.
- the content of the other monomer is preferably 0 to 49% by mass from the viewpoint of good heat resistance of the film.
- thermoplastic polymer (C-1) examples include a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method.
- the mass average molecular weight of the thermoplastic polymer (C-1) is preferably 5,000 to 200,000, more preferably 30,000 to 170,000.
- Examples of these commercially available products include “Acrypet VH”, “Acrypet MD”, and “Acrypet MF” (trade name) manufactured by Mitsubishi Rayon.
- thermoplastic resin composition ( ⁇ ) The thermoplastic resin composition ( ⁇ ) according to the first invention comprises a fluororesin (A), a matting agent (B) which is a thermoplastic resin insoluble in the fluororesin (A), and the fluororesin It is a resin composition containing a thermoplastic resin (C) soluble in the resin (A).
- Various additives can be blended in the thermoplastic resin composition ( ⁇ ) as necessary.
- the thermoplastic resin composition ( ⁇ ) contains 1 to 50 parts by mass of the matting agent (B) and 20 to 90 parts by mass of the thermoplastic resin (C) with respect to 100 parts by mass of the fluororesin (A). It is preferable to contain 1 to 30 parts by mass of the matting agent (B) and 27 to 70 parts by mass of the thermoplastic resin (C) with respect to 100 parts by mass of the fluororesin (A). . By setting the content of the matting agent (B) to 1 part by mass or more, it becomes possible to give a good matte appearance to the obtained film.
- thermoplastic resin composition ((alpha)) turns into a viscosity suitable for extrusion molding because content of an eraser (B) shall be 50 mass parts or less.
- content of an eraser (B) shall be 50 mass parts or less.
- additives include, for example, antioxidants, heat stabilizers, light stabilizers, plasticizers, lubricants, spreading agents, antistatic agents, flame retardants, fillers, matting agents, processing aids, impact resistance aids.
- additives such as an agent, an antibacterial agent, an antifungal agent, a foaming agent, a release agent, a coloring agent, an ultraviolet absorber, and a thermoplastic polymer.
- antioxidant examples include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
- heat stabilizer examples include a hindered phenol heat stabilizer, a sulfur heat stabilizer, and a hydrazine heat stabilizer.
- plasticizer examples include phthalic acid esters, phosphoric acid esters, fatty acid esters, aliphatic dibasic acid esters, oxybenzoic acid esters, epoxy compounds, and polyesters.
- the lubricant include fatty acid esters, fatty acids, metal soaps, fatty acid amides, higher alcohols, and paraffins.
- antistatic agent examples include a cationic antistatic agent, an anionic antistatic agent, a nonionic antistatic agent, and a zwitterionic antistatic agent. Each of these additives may be used alone or in combination of two or more.
- Examples of the method of blending the additive include a method of kneading the additive in various kneaders together with the fluororesin (A), the matting agent (B), and the thermoplastic resin (C). .
- Examples of the kneader used in this method include a single screw extruder, a twin screw extruder, a Banbury mixer, and a roll kneader.
- mixing a fluorine resin (A), a matting agent (B), and a thermoplastic resin (C) is not limited, Multistage kneading
- thermoplastic resin composition ( ⁇ ) examples include a lump, a powder, and a pellet. Among these, pellets are preferable from the viewpoint of handleability of the resin composition.
- MFR of the fluororesin (A), the matting agent (B) and the thermoplastic resin (C) under the condition of 250 ° C. and a load of 49 N are respectively MFR (A), MFR (B) and
- MFR (C) it is preferable to satisfy the relationship of “MFR (A)> MFR (C)> MFR (B)”.
- the matting agent (B) is a thermoplastic resin insoluble in the fluororesin (A)
- the thermoplastic resin (C) is a resin soluble in the fluororesin (A).
- the solubility parameter value (SP value) of the resin is an important factor.
- SP value when the SP value of the resin mixture of the fluororesin (A) and the thermoplastic resin (C) is SP (AC) and the SP value of the matting agent (B) is SP (B), It is preferable that 5.2 ⁇ SP (B) ⁇ SP (AC) ⁇ 6.6 ”.
- W A Mass% of fluororesin (A)
- W C Mass% of thermoplastic resin (C)
- W A + W C 100
- thermoplastic resin composition ( ⁇ ) containing the fluororesin (A) and the acrylic matting agent (D), which is the second invention will be described.
- fluororesin (A) used in the second invention include the same resins as those of the thermoplastic resin composition ( ⁇ ) of the first invention.
- the acrylic matting agent (D) which is a thermoplastic resin used in the second invention is a thermoplastic resin, which is a monofunctional monomer unit (i.e., a monomer unit constituting the resin)
- a monofunctional monomer unit i.e., a monomer unit constituting the resin
- the component derived from the monofunctional monomer is 100% by mass
- the content of the alkyl acrylate unit is 50 to 100% by mass
- other monofunctional monomer units other than the alkyl acrylate ester are included.
- the content is 0 to 50% by mass.
- the fluororesin (A) and the thermoplastic resin are used.
- the compatibility between the resin (C) compatible material and the acrylic matting agent (D) is reduced, so that it is possible to impart fine mattness to the film, and the resin composition is formed into a film. It is possible to impart an anti-scratch effect and chemical resistance.
- the content of the acrylic acid alkyl ester unit and the other monofunctional monomer unit is preferably 60 to 100% by mass of the acrylic acid alkyl ester unit and 0 to 40% by mass of the other monofunctional monomer unit. More preferably, the ester unit is 65 to 100% by mass and the other monofunctional monomer unit is 0 to 35% by mass.
- alkyl acrylate examples include acrylic acid C 1 such as methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, i-butyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate. -10 alkyl esters. These may be used alone or in combination of two or more. Among these, acrylic acid C 1-6 alkyl esters, particularly n-butyl acrylate, are preferable from the viewpoint of ease of emulsion polymerization and the like.
- monofunctional monomers include, for example, methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate; 2-methoxyethyl acrylate, etc.
- Lower alkoxyalkyl acrylates Cyanoalkyl acrylates such as cyanoethyl acrylate; Acrylic monomers such as acrylamide and (meth) acrylic acid; Aromatic vinyl monomers such as styrene and alkyl-substituted styrene; Acrylonitrile and methacrylonitrile And vinyl cyanide monomers such as These may be used alone or in combination of two or more.
- the compatibility between the fluoric resin (A) and the thermoplastic resin (C) and the acrylic matting agent (D) can be controlled, and film molding From the point of being excellent in the effect of preventing time-strike, a methacrylic acid alkyl ester is preferable, and a methacrylic acid C 1-6 alkyl ester such as methyl methacrylate is more preferable.
- a polyfunctional monomer having two or more double bonds copolymerizable with the monofunctional monomer in one molecule can be contained.
- the polyfunctional monomer include ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, and di (meth) acryl.
- Alkylene glycol di (meth) acrylates such as propylene glycol acid; Polyvinylbenzenes such as divinylbenzene and trivinylbenzene; Cyanurate monomers such as triallyl cyanurate and triallyl isocyanurate; ⁇ , ⁇ such as allyl methacrylate -Unsaturated carboxylic acids; or allyl, methallyl or crotyl esters of dicarboxylic acids. These may be used alone or in combination of two or more.
- ⁇ , ⁇ -unsaturated carboxylic acid such as allyl methacrylate, or allyl, methallyl or crotyl ester of dicarboxylic acid is preferable as the polyfunctional monomer.
- the proportion of the polyfunctional monomer is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the monofunctional monomer. Part is more preferred.
- the amount of 0.01 to 0.25 parts by mass is particularly preferable from the viewpoint of excellent matte properties of the film.
- the monomer component can contain a polymerization initiator.
- the polymerization initiator include azo compounds such as 2,2′-azobisisobutyronitrile; lauroyl peroxide, benzoyl peroxide, t-butyl perbenzoate, t-butyl hydroperoxide, di-t- Organic peroxides such as butyl peroxide, dicumyl peroxide and cumene hydroperoxide; redox initiators [oxidizers such as organic peroxides and reducing agents such as iron salts (for example, ferrous sulfate) And a combination with a chelating agent (ethylenediaminetetraacetic acid or the like) if necessary.
- azo compounds such as 2,2′-azobisisobutyronitrile
- lauroyl peroxide benzoyl peroxide, t-butyl perbenzoate, t-butyl hydroperoxide
- di-t- Organic peroxides such as buty
- the ratio of the polymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, with respect to 100 parts by mass of the total amount of monofunctional monomers in the monomer component. 1 to 1 part by mass is more preferable.
- the monomer component can contain a chain transfer agent.
- the chain transfer agent include alkyl mercaptans having 2 to 20 carbon atoms, mercaptocarboxylic acids (such as mercaptocarboxylic acid and mercaptocarboxylic acid alkyl ester), thiophenol, and carbon tetrachloride. These may be used alone or in combination of two or more. Of these, alkyl mercaptans having 6 to 10 carbon atoms are preferred, and n-octyl mercaptan is more preferred.
- the ratio of the chain transfer agent is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of monofunctional monomers in the monomer component. 1 to 1 part by mass is more preferable.
- the acrylic matting agent (D) may have a content of the acrylic acid alkyl ester unit in the monofunctional monomer unit constituting the polymer of 50 to 100% by mass.
- Acrylic resin may be used.
- the core constituent resin of the core-shell type acrylic resin include homopolymers of alkyl acrylate esters, alkyl acrylate esters and copolymerizable monomers (vinyl monomers other than alkyl acrylate esters, etc.) And a copolymer [for example, a polymer (P13) described later].
- constituent resin of the shell examples include a homopolymer of methacrylic acid alkyl ester, and a copolymer of methacrylic acid alkyl ester and a copolymerizable monomer (a vinyl monomer other than methacrylic acid alkyl ester) [for example, , Polymer (P14) described later].
- a preferred acrylic matting agent (D) is a resin obtained by polymerizing the monomer component (m14) in the presence of the acrylic acid alkyl ester polymer (P13).
- the alkyl acrylate unit is 80 to 100% by mass
- the monofunctional monomer unit is preferably 0 to 20% by mass
- the acrylic acid alkyl ester is preferably 85 to 100% by mass
- the other monofunctional monomer is more preferably 0 to 15% by mass
- the acrylic acid alkyl ester unit is 90% by mass. More preferably, it is ⁇ 100 mass%, and other monofunctional monomer units are 0 to 10 mass%.
- the content of the acrylic acid alkyl ester unit in 100% of the monofunctional monomer unit in the monomer component (m13) within the above range, the monofunctionality in the monomer component (m14) unit to be described later This is preferable because the content of the acrylic acid alkyl ester in the monomer can be controlled.
- the above-mentioned polyfunctional monomer can be contained in the monomer component (m13).
- the content of the polyfunctional monomer is 0 to 0.6 with respect to 100 parts by mass of the total amount of monofunctional monomers in the monomer component (m13) because the resulting film has excellent matting properties. Mass parts are preferred, 0 to 0.5 parts by mass are more preferred, and 0 to 0.4 parts by mass are even more preferred.
- the alkyl methacrylate is preferably 80 to 100% by mass and the other monofunctional monomer is preferably 0 to 20% by mass. More preferably, the acid alkyl ester is 85 to 100% by mass, the other monofunctional monomer is 0 to 15% by mass, the methacrylic acid alkyl ester is 90 to 100% by mass, and the other monofunctional monomer is 0 to 10% by mass. Further preferred.
- the glass transition temperature (Tg) can be increased, and this is preferable from the viewpoint of the handleability of the acrylic matting agent (D).
- the Tg of the polymer (P14) obtained by polymerizing the monomer component (m14) is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and still more preferably 80 ° C. or higher from the viewpoint of easy handling.
- Method for producing acrylic matting agent (D) examples include a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method. Among these, the emulsion polymerization method is preferable from the viewpoint of easy design of the acrylic matting agent (D) to be obtained.
- a sequential multi-stage emulsion polymerization method may be mentioned.
- examples thereof include a method of polymerizing the monomer component (m14) in the presence of the acrylic acid alkyl ester polymer (P13) obtained by polymerizing the monomer component (m13) mainly composed of an acrylic acid alkyl ester.
- the emulsion component prepared by mixing the monomer component (m13) water and surfactant for obtaining the alkyl acrylate polymer (P13) is supplied into the reactor and polymerized.
- the monomer component (m14) may be sequentially fed into the reactor for polymerization.
- a film obtained by using the acrylic matting agent (D) obtained by this method is preferable in that it has a characteristic that the number of fish eyes in the film is small.
- Examples of a method for preparing an emulsion by mixing the monomer component (m13), water and a surfactant include the following methods (1) to (3).
- the surfactant examples include an anionic surfactant (a sulfonate such as sodium dialkylsulfosuccinate), a cationic surfactant (a quaternary ammonium salt such as an alkyltrimethylammonium salt), a nonionic surfactant, and the like.
- an anionic surfactant a sulfonate such as sodium dialkylsulfosuccinate
- a cationic surfactant a quaternary ammonium salt such as an alkyltrimethylammonium salt
- nonionic surfactant examples include an anionic surfactant (a sulfonate such as sodium dialkylsulfosuccinate), a cationic surfactant (a quaternary ammonium salt such as an alkyltrimethylammonium salt), a nonionic surfactant, and the like.
- Ester type such as polyhydric alcohol fatty acid ester, ether type such as polyoxyethylene alkyl ether.
- the monomer component (m13) and / or the monomer component (m14) can be polymerized in two or more steps as necessary. When the polymerization is performed twice or more, the type and / or amount of the monofunctional monomer in the monomer component may be the same or different.
- the polymerization temperature of the monomer component is 50 to 100 ° C., preferably about 60 to 90 ° C.
- the latex of the acrylic matting agent (D) obtained by emulsion polymerization can be treated using a filtration device provided with a filter medium as necessary. This filtration treatment is used to remove scales generated during the polymerization from the latex of the acrylic matting agent (D) and to remove foreign substances mixed in the polymerization raw material or during the polymerization.
- Examples of the method for recovering the acrylic matting agent (D) from the latex of the acrylic matting agent (D) include a coagulation method by salting out or acid precipitation, a spray drying method, and a freeze drying method.
- the residual metal content in the finally obtained acrylic matting agent (D) is 800 ppm or less.
- the residual metal content is preferably as small as possible.
- thermoplastic resin composition ( ⁇ ) The thermoplastic resin composition ( ⁇ ) of the present invention is a resin composition containing the aforementioned fluororesin (A) and an acrylic matting agent (D).
- the fluororesin (A) and acrylic matting agent (D) content in the thermoplastic resin composition ( ⁇ ) is the matte appearance and chemical resistance of a film formed by molding the resin composition into a film. It is preferable to set from this point.
- the fluororesin (A) when the total of the fluororesin (A) and the acrylic matting agent (D) is 100% by mass, the fluororesin (A) is 70 to 99% by mass and the acrylic matting agent (D) is 1 to 30% by mass is preferable, the fluororesin (A) is preferably 75 to 99% by mass, the acrylic matting agent (D) is more preferably 1 to 25% by mass, and the fluororesin (A) is 80 to 99% by mass. %, And acrylic matting agent (D) is more preferably 1 to 20% by mass.
- thermoplastic resin composition ( ⁇ ) an ionomer resin, a polyolefin resin, a silicone resin, an epoxy resin, a polyurethane resin, etc., as necessary, for the purpose of improving the matte appearance and / or chemical resistance.
- One or more other resins may be contained.
- thermoplastic resin composition ( ⁇ ) The use of various additives, the blending method of the additives, and the shape of the thermoplastic resin composition ( ⁇ ) are the same as those of the thermoplastic resin composition ( ⁇ ) in the first invention.
- the acrylic matting agent (E) in the third invention comprises a linear alkyl group having 10 to 30 carbon atoms, a branched alkyl group having 10 to 30 carbon atoms, and a cyclic alkyl group having 10 to 30 carbon atoms. 21 to 49% by mass of a (meth) acrylic acid alkyl ester (b6) unit having at least one alkyl group optionally selected from the group consisting of other monofunctional monomers (b7 ) A unit containing 51 to 79% by mass (total of monofunctional monomer units is 100% by mass).
- the alkyl group is selected from the group consisting of a linear alkyl group having 10 to 30 carbon atoms, a branched alkyl group having 10 to 30 carbon atoms, and a cyclic alkyl group having 10 to 30 carbon atoms, and has a substituent.
- the (meth) acrylic acid alkyl ester (b6) having at least one alkyl group which may be used is referred to as “acrylic monomer (b6)”, and the other monofunctional monomer (b7) is referred to as “single monomer”. It may be referred to as “functional monomer (b7)”.
- the film obtained from the thermoplastic resin composition ( ⁇ ) has a fine matte appearance. It becomes possible to impart, and further, it is possible to suppress the resin generated when the thermoplastic resin composition ( ⁇ ) is formed into a film. Moreover, it is easy to set the glass transition temperature (Tg) of the acrylic matting agent (E) to be 0 ° C. or higher by setting the content of the acrylic monomer (b6) unit to 49% by mass or less. The handling is improved. In the present invention, the glass transition temperature is calculated using only a monofunctional monomer without using a polyfunctional monomer described later.
- the monofunctional monomer (b7) a known monofunctional monomer can be used.
- the content ratio (% by mass) of the acrylic monomer (b6) unit and the other monofunctional monomer (b7) unit is “24 to 46:76 to 54”. “27 to 43:73 to 57” is more preferable.
- examples of the (meth) acrylic acid alkyl ester having a linear alkyl group having 10 to 30 carbon atoms include decyl (meth) acrylate, dodecyl (meth) acrylate, ( Examples include tridecyl methacrylate, cetyl (meth) acrylate, myristyl (meth) acrylate, stearyl (meth) acrylate, and behenyl (meth) acrylate.
- the (meth) acrylic acid alkyl ester having a branched alkyl group having 10 to 30 carbon atoms includes, for example, isodecyl (meth) acrylate, isomyristyl (meth) acrylate, ( An example of such is meta) isostearyl acrylate.
- examples of the (meth) acrylic acid alkyl ester having a cyclic alkyl group having 10 to 30 carbon atoms include isobornyl (meth) acrylate, adamantyl (meth) acrylate, ( Examples thereof include dicyclopentanyl (meth) acrylate and 4-t-butylcyclohexyl (meth) acrylate.
- (meth) acrylic acid alkyl ester having a linear alkyl group having 10 to 30 carbon atoms is preferable.
- it is liquid at 25 ° C.
- (dec) (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylic acid Myristyl is more preferred.
- These acrylic monomers (b6) may be used individually by 1 type, and may use 2 or more types together.
- Examples of the monofunctional monomer (b7) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid i- (Meth) acrylic acid alkyl esters such as butyl; (meth) acrylic lower monomers, (meth) acrylic acid cyanoethyl, (meth) acrylic acid amide, (meth) acrylic acid and other (meth) acrylic monomers; styrene And aromatic vinyl monomers such as alkyl-substituted styrene; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile. These may be used alone or in combination of two or more.
- a polyfunctional monomer (b8) can be contained in addition to the above-described monofunctional monomer, if necessary.
- the polyfunctional monomer (b8) include ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, di (meth) acrylate, Dialkylene glycols such as propylene glycol (meth) acrylate; Polyvinylbenzenes such as divinylbenzene and trivinylbenzene; Cyanurate monomers such as triallyl cyanurate and triallyl isocyanurate; Allyl methacrylate and the like ⁇ , ⁇ -unsaturated carboxylic acids; allyl, methacrylic or crotyl esters of dicarboxylic acids. These may be used alone or in combination of two or more.
- the amount of the polyfunctional monomer (b8) used is preferably 0 to 0.50 parts by mass with respect to a total of 100 parts by mass of monofunctional monomers. That is, the acrylic matting agent (E) is a polyfunctional monomer (100) based on 100 parts by mass of the monomer units of the acrylic monomer (b6) unit and the monofunctional monomer (b7) unit. b8) It preferably contains 0 to 0.50 parts by mass of units. Fluorine resin of acrylic matting agent (E) obtained by polymerizing the monomer mixture by making the polymerizable raw material into a monomer mixture containing the polyfunctional monomer (b8) It becomes easier to control the compatibility with A).
- the content of the polyfunctional monomer (b8) unit is more preferably 0.01 to 0.48 parts by mass, still more preferably 0.05 to 0.46 parts by mass.
- the content of acetone insolubles when the acrylic matting agent (E) obtained using the polyfunctional monomer (b8) is extracted with an acetone solvent is preferably 10 to 90% by mass.
- Resin obtained by adding acrylic matting agent (E) to fluororesin (A) described later by setting the content of acetone insolubles in acrylic matting agent (E) to 10% by mass or more It becomes easy to obtain a molded body such as a film having a matte appearance from the composition.
- by setting the content of acetone insolubles to 90% by mass or less it becomes easy to suppress foreign matters caused by the resin or the acrylic matting agent (E) generated when the resin composition is molded.
- the content of the acetone insolubles is more preferably 15 to 85% by mass, and further preferably 20 to 80% by mass.
- the mass average molecular weight (Mw) is preferably 30,000 to 5,000,000.
- Mw is 30,000 or more, a molded body such as a film having a desired matte appearance is obtained from the resin composition obtained by adding the acrylic matting agent (E) to the fluororesin (A). It becomes possible. If Mw is 5,000,000 or less, the compatibility between the acrylic matting agent (E) and the fluororesin (A) is not significantly reduced, and fine matting properties can be imparted.
- Mw is more preferably 40,000 to 4,000,000, and further preferably 50,000 to 3,000,000.
- the molecular weight dispersity (Mw / Mn) obtained from the measurement of the molecular weight of the acetone-soluble component is preferably 4.5 or less. If the molecular weight dispersity is 4.5 or less, an acrylic matting agent (E) having a relatively uniform molecular weight can be obtained, so that the matte appearance of the molded product obtained from the thermoplastic resin composition ( ⁇ ) is uniform. It will be easy to keep in.
- the molecular weight dispersity is more preferably 4.0 or less, and still more preferably 3.5 or less.
- Examples of the method for producing the acrylic matting agent (E) include a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method. Among these, it is preferable to use a suspension polymerization method from the viewpoint of ease of polymerization operation and ease of recovery of the resulting polymer.
- Suspension polymerization uses a monofunctional monomer, a polyfunctional monomer, a polymerization initiator, a chain transfer agent, a dispersant, a dispersion aid, etc. and water, and a reaction vessel having a polymerization temperature control function and a stirring function.
- a polymerization initiator known ones can be used, and examples thereof include an azo initiator, a peroxide initiator, and a redox initiator in which a peroxide initiator and an oxidizing agent / reducing agent are combined.
- chain transfer agent examples include alkyl mercaptans having 2 to 20 carbon atoms such as n-octyl mercaptan, mercapto acids, thiophenol and carbon tetrachloride. These may be used alone or in combination of two or more.
- the polymerization temperature is, for example, 40 to 120 ° C.
- the dispersant known ones can be used, and examples thereof include polyvinyl alcohol and potassium methacrylate-methyl methacrylate copolymer.
- the dispersion aid known ones can be used, and examples thereof include sodium sulfate and manganese sulfate.
- the acrylic matting agent (E) obtained by the suspension polymerization method has a bead shape close to a true sphere.
- the average particle size is preferably 10 to 1000 ⁇ m.
- the thermoplastic resin composition ( ⁇ ) of the present invention is a resin composition containing the aforementioned fluororesin (A) and an acrylic matting agent (E).
- the blending amount of the fluororesin (A) and the acrylic matting agent (E) in the thermoplastic resin composition ( ⁇ ) is an acrylic matting agent (100 parts by mass with respect to 100 parts by mass of the fluororesin (A)). It is preferable to contain 1 to 100 parts by mass of E).
- the amount of acrylic matting agent (E) is preferably 1 to 85 parts by weight, more preferably 1 to 70 parts by weight, with respect to 100 parts by weight of the fluororesin (A).
- thermoplastic resin composition ( ⁇ ) the use of various additives, the method of blending the additives, and the shape of the thermoplastic resin composition ( ⁇ ) are the same as in the case of the thermoplastic resin composition ( ⁇ ) in the first invention.
- thermoplastic resin composition ( ⁇ ) containing G) a fourth invention group, a cross-linked acrylic matting agent (F), a fluorine-based resin (A), the cross-linked acrylic matting agent (F), and other resins as optional addition components ( The thermoplastic resin composition ( ⁇ ) containing G) will be described.
- the monomer mixture (b9) that is a raw material of the crosslinked acrylic matting agent (F) may be referred to as a (meth) acrylic acid alkyl ester (b10) (hereinafter referred to as “monofunctional monomer (b10)”). ) 50.0 to 99.9% by mass, monofunctional monomer (b11) other than (meth) acrylic acid ester (hereinafter sometimes referred to as “monofunctional monomer (b11)”) 0 to 49. 9% by mass, polyfunctional monomer (b12) copolymerizable with both of these monomers (hereinafter sometimes referred to as “polyfunctional monomer (b12)”) 0.1 to 3.0% by mass % Monomer mixture.
- the compatibility between the cross-linked acrylic matting agent (F) and the fluororesin (A) is reduced. It is possible to impart matting properties, and by using 3.0% by mass or less of the polyfunctional monomer (b12), the fluororesin (A) and the cross-linked acrylic matting agent (F) can be used. Mayan at the time of shape
- molding the thermoplastic resin composition (delta) to contain can be suppressed.
- the content of the polyfunctional monomer (b12) in the monomer component (b9) is preferably 0.1 to 2.5% by mass, more preferably 0.1 to 2.0% by mass.
- the particle size of the crosslinked acrylic matting agent (F) is preferably 1 to 30 ⁇ m.
- the particle diameter is more preferably 1 to 20 ⁇ m, still more preferably 1 to 10 ⁇ m.
- Examples of the monofunctional monomer (b10) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid i-.
- n-butyl (meth) acrylate since the generation of aggregated particles in the production of the cross-linked acrylic matting agent (F) described later can be suppressed, n-butyl (meth) acrylate, (meth) Highly hydrophobic ones such as i-butyl acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate are preferred. These may be used alone or in combination of two or more.
- Examples of the monofunctional monomer (b11) include (meth) acrylic monomers such as lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, and (meth) acrylic acid; aromatic vinyl such as styrene and alkyl-substituted styrene. Monomer; Vinyl cyanide monomers such as acrylonitrile and methacrylonitrile are listed. These may be used alone or in combination of two or more.
- polyfunctional monomer (b12) examples include ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, di (meth) acrylate, Dialkylene glycols such as propylene glycol (meth) acrylate; Divinylbenzene; Polyvinylbenzene such as trivinylbenzene; Cyanurate monomers such as triallyl cyanurate and triallyl isocyanurate; Allyl methacrylate and the like ⁇ , ⁇ -unsaturated carboxylic acids; allyl, methallyl or crotyl esters of dicarboxylic acids.
- polyfunctional monomer (b12) among these polyfunctional monomers, di (meta) is used from the viewpoint of easy availability and suppression of the resin when molding the thermoplastic resin composition ( ⁇ ).
- Alkylene glycol di (meth) acrylate such as ethylene glycol acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate Is preferred. These may be used alone or in combination of two or more.
- a known polymerization method can be used as the method for producing the crosslinked acrylic matting agent (F).
- examples include emulsion polymerization, soap-free polymerization, or seed emulsion polymerization, swelling polymerization, two-stage swelling polymerization, or fine suspension polymerization using polymer particles obtained by these polymerization methods as seeds. It is done. Among these, the fine suspension polymerization method is preferable.
- the fine suspension polymerization method is a method of forcibly emulsifying a mixture of a monomer, a surfactant, water and a polymerization initiator with a homogenizer, a homomixer or the like to form fine droplets having a particle size of 1.0 to 100 ⁇ m, By heating this, the polymerization initiator dissolved in the droplets is decomposed to generate radicals and advance radical polymerization.
- a latex in which polymer particles of the crosslinked acrylic matting agent (F) are dispersed can be obtained.
- the amount of water used is preferably 50 to 1000 parts by mass with respect to 100 parts by mass of the monomer component (b9).
- surfactant known ones can be appropriately selected and used. Moreover, either a non-reactive surfactant or a reactive surfactant may be used. These may be used alone or in combination of two or more.
- non-reactive surfactant examples include anionic surfactants such as sodium alkyl sulfate, sodium alkyl sulfonate, and sodium alkyl phosphate.
- anionic surfactants such as sodium alkyl sulfate, sodium alkyl sulfonate, and sodium alkyl phosphate.
- commercially available products include “Phosphanol RS-610NA” manufactured by Toho Chemical Industry Co., Ltd.
- Examples of the reactive surfactant include polyoxyethylene alkyl ether having a polymerizable functional group, sulfonate or phosphate thereof; polyoxyethylene phenyl ether having a polymerizable functional group, sulfonate thereof, or An alkyl fatty acid salt having a polymerizable functional group; an alkyl sulfonic acid having a polymerizable functional group, or a salt thereof; an alkyl phosphoric acid having a polymerizable functional group, or a salt thereof.
- Examples of commercially available products include “Latemul PD-104” and “Latemul PD-420” manufactured by Kao Corporation.
- a dispersion stabilizer can be added to the polymerization reaction vessel in order to stabilize the dispersion state of the polymer particles.
- the dispersion stabilizer known ones can be appropriately selected and used.
- the dispersion stabilizer include polyvinyl alcohol, and the polymerization degree and saponification degree of polyvinyl alcohol can be appropriately selected and used.
- Examples of commercially available products include Kuraray Poval “PVA105” and “PVA205” manufactured by Kuraray Co., Ltd.
- the monomer mixture (b9) can contain a chain transfer agent.
- the chain transfer agent include alkyl mercaptans having 2 to 20 carbon atoms such as n-octyl mercaptan, mercapto acids, thiophenol and carbon tetrachloride. These may be used alone or in combination of two or more.
- the polymerization initiator used for the polymerization of the monomer mixture (b9) known ones can be appropriately selected and used. Among these, an oil-soluble polymerization initiator that is soluble in the monomer mixture (b9) and has a solubility in water of less than 0.5% by mass is preferable. If the solubility with respect to water is less than 0.5 mass%, there is no possibility that the emulsion polymerization will occur at the time of the fine suspension polymerization described later, which is preferable.
- polymerization initiator examples include azo radical polymerization initiators such as azonitrile, azoamide, cyclic azoamidine, azoamidine, and macroazo compounds; ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy Examples thereof include peroxide radical polymerization initiators such as esters and peroxydicarbonates. These may be used alone or in combination of two or more.
- the amount of the polymerization initiator used is preferably 0.01 to 1.0 part by mass with respect to 100 parts by mass of the monomer mixture (b9). It is preferable that the amount of the polymerization initiator used is 0.01 parts by mass or more because the polymerization initiator functions sufficiently, the polymerization rate is high, and the amount of unreacted monomers decreases. Moreover, it is preferable that it is 1.0 mass part or less without generation
- Examples of the method for recovering the polymer particles from the latex in which the polymer particles are dispersed include aggregation by salting out or acid precipitation, spray drying, and freeze drying. By these methods, the polymer particles can be recovered as a powder. Of these, the polymer particles are preferably powdered by spray drying.
- As the spray drying method a known method such as a two-flow nozzle method, a pressure nozzle method, or a rotating disk method can be used.
- the outlet temperature of the drying chamber in spray drying is preferably 50 to 120 ° C, more preferably 60 to 100 ° C.
- the other resin (G) is blended for the purpose of improving the matte appearance and chemical resistance and weather resistance of the molded body.
- the other resin (G) include an acrylic resin, an ionomer resin, a polyolefin resin, a silicone resin, an epoxy resin, and a polyurethane resin. These can be used alone or in combination of two or more. It is preferable to blend an acrylic resin from the viewpoint of improving the weather resistance of the molded body.
- thermoplastic resin composition ( ⁇ ) is a resin composition containing a crosslinked acrylic matting agent (F) and a fluororesin (A).
- the content of each resin in 100% by mass of the thermoplastic resin composition ( ⁇ ) is 70 to 99% by mass of the fluororesin (A) and 1 to 30% by mass of the cross-linked acrylic matting agent (F).
- By setting the content of the fluororesin (A) to 70 to 99% by mass it becomes possible to impart chemical resistance to the molded product obtained from the thermoplastic resin composition ( ⁇ ).
- cross-linked acrylic matting agent (F) By setting the cross-linked acrylic matting agent (F) to 1 to 30% by mass, it becomes possible to impart a matte appearance to a molded product obtained from the thermoplastic resin composition ( ⁇ ).
- the ratio of the fluororesin (A) to the cross-linked acrylic matting agent (F) is preferably 75 to 99% by mass of the fluororesin (A) and 1 to 25% by mass of the cross-linked acrylic matting agent (F). More preferably, the resin (A) is 80 to 99% by mass, and the crosslinked acrylic matting agent (F) is 1 to 20% by mass.
- thermoplastic resin composition ( ⁇ ) various additives can be blended as necessary.
- the types of various additives, the additive blending method, and the shape of the thermoplastic resin composition ( ⁇ ) are the same as in the case of the thermoplastic resin composition ( ⁇ ) in the first invention.
- the fluorine-based matte film according to the fifth invention is a matte film obtained by molding any one of the thermoplastic resin compositions ( ⁇ ), ( ⁇ ), ( ⁇ ), and ( ⁇ ). These fluorine-based matte films are excellent in matting properties and chemical resistance.
- the thermoplastic resin compositions ( ⁇ ), ( ⁇ ), ( ⁇ ), and ( ⁇ ) have a very low production shake of the matte appearance at the time of film production, so the productivity when obtaining a film is good, And since generation
- the 60 ° surface gloss measured in accordance with JIS Z8741 and ISO2813 is preferably 5 to 80.
- the incident direction of light is parallel to the flow direction at the time of film forming.
- the 60 ° surface gloss is preferably 5 to 70, more preferably 7 to 65.
- the 60 degree surface glossiness can be measured using a conventional gloss meter, for example, a portable gloss meter (trade name: GM-268, manufactured by Konica Minolta Sensing Co., Ltd.).
- the standard deviation of the 60 degree surface glossiness is preferably 6 or less because production stability is improved and yield is improved. 3 or less is more preferable, and 2 or less is still more preferable.
- the thickness of the fluorinated matte film is preferably from 5 to 500 ⁇ m, more preferably from 5 to 300 ⁇ m, from the viewpoints of film handling properties, laminating properties, film formability to be formed into a film, and processability.
- the total light transmittance measured according to JIS K7361-1 is preferably 80% or more.
- a total light transmittance of 80% or more when a fluorine-based matte film is laminated on the surface of various base materials such as plastic, glass, slate, rubber, metal plate, wood board, Or it is preferable at the point which does not spoil the design of the printing layer provided between the laminated film and the surface of various base materials.
- the total light transmittance is more preferably 83% or more, and still more preferably 85% or more.
- the haze of the fluorinated matte film is preferably 90% or less from the viewpoint of the appearance of the matte film.
- Examples of the method for producing a fluorinated matte film include melt extrusion methods such as a melt casting method, a T-die method, and an inflation method; a calendar method.
- the T-die method is preferable because it is economical.
- the fluorine-based matte film can be formed into a roll-shaped article by forming a film by a T-die method using an extruder or the like and then winding the film on a tubular material such as a paper tube with a winder.
- uniaxial stretching machine direction or transverse direction (direction perpendicular to the machine direction)
- biaxial stretching sinential biaxial stretching, simultaneous biaxial stretching
- a fine structure can also be formed on the surface of the fluorinated matte film as necessary.
- the method for forming a fine structure include a thermal transfer method and an etching method.
- a thermal transfer method in which a microstructure having a fine structure is formed on the surface of the film by pressing the heated mold on the surface of the film after heating the mold having a fine structure is advantageous in terms of productivity and economy.
- the thermal transfer method include the following methods (1) and (2). (1) A method in which a mold having a fine structure is heat-pressed on a fluorine-based matte film cut out from a roll-shaped article to thermally transfer the fine structure with a sheet.
- a fluorinated matte film unwound from a roll-shaped article is sandwiched between a heated mold with a belt-like microstructure using a nip roll and pressed to form a microstructure on the surface of the fluorinated matte film. Continuous forming method by thermal transfer.
- Examples of a method for producing a mold having the above-described fine structure include a sand blast method, an etching method, and an electric discharge machining method.
- the fluorine-based matte film can be laminated not only on the films but also on another substrate.
- a base material used for laminate production for example, a film, a sheet, or a molded product having a three-dimensional shape can be used.
- a fluorine-based matte laminated film according to a sixth aspect of the present invention is a laminate in which any one of the thermoplastic resin compositions ( ⁇ ), ( ⁇ ), ( ⁇ ), and ( ⁇ ) is laminated with an acrylic resin layer. It is a film.
- Lamination with an acrylic resin film obtained by molding the acrylic resin (H) is preferable because the moldability of the laminated film and the visibility of the decorative layer are improved.
- a film made of other resins such as an ionomer resin, a polyolefin resin, a silicone resin, an epoxy resin, and a polyurethane resin can also be used. .
- the ratio of the thickness of the fluorine resin layer and the acrylic resin layer of the fluorine mat layered film is from the viewpoint of chemical resistance, cost, surface hardness, transparency, matte appearance and printability of the fluorine mat layered film.
- Fluorine resin layer / acrylic resin layer 1/99 to 20/80 is preferable, 2/98 to 15/85 is more preferable, and 3/97 to 10/90 is still more preferable.
- the 60 degree surface glossiness of the fluorinated matte laminated film of the present invention is preferably 5 to 80. Since the matte appearance of the film becomes good, the 60 ° surface glossiness is more preferably 5 to 70, and even more preferably 7 to 65.
- the standard deviation of 60 degree surface glossiness is preferably 6 or less because production stability is improved and yield is improved. 3 or less is more preferable, and 2 or less is still more preferable.
- the total light transmittance measured in accordance with JIS K7361-1 is preferably 80% or more.
- the total light transmittance is more preferably 83% or more, and still more preferably 85% or more.
- the haze of the fluorine-based matte laminated film is preferably 90% or less from the viewpoint of the appearance of the fluorine-type matted laminated film.
- the fine structure mentioned above in the term of the matte film can also be formed in the fluorine-type matte laminated film.
- thermoplastic polymer (C-1) mainly composed of the above-mentioned alkyl methacrylate unit may be used, or a rubber-containing polymer (R2) described later may be used. These may be used alone or in combination of two or more.
- the contents of the thermoplastic polymer (C-1) and the rubber-containing polymer (R2) in the acrylic resin (H) include 0 to 100 parts by mass of the thermoplastic polymer (C-1), a rubber-containing polymer ( R2) It is preferably 0 to 100 parts by mass. More preferably, the thermoplastic polymer (C-1) is 10 to 90 parts by mass, the rubber-containing polymer (R2) is 10 to 90 parts by mass, the thermoplastic polymer (C-1) is 20 to 80 parts by mass, and the rubber-containing polymer. (R2) 20 to 80 parts by mass is more preferable.
- the rubber-containing polymer (R2) is prepared by polymerizing an alkyl methacrylate in the presence of a rubber polymer (R1) obtained by polymerizing a monomer component containing an alkyl acrylate ester and a polyfunctional monomer as essential components.
- acrylic acid alkyl ester used as a raw material for the rubber polymer (R1) examples include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, i-butyl acrylate, 2-ethylhexyl acrylate, and acrylic.
- acrylic acid alkyl ester examples include the acid n-octyl.
- Examples of the polyfunctional monomer used as a raw material for the rubber polymer (R1) include ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, di (meth) acrylic acid 1, Dialkylene glycols such as 4-butylene glycol and propylene glycol di (meth) acrylate; Polyvinylbenzenes such as divinylbenzene and trivinylbenzene; Cyanurate-based monomers such as triallyl cyanurate and triallyl isocyanurate Body; ⁇ , ⁇ -unsaturated carboxylic acid such as allyl methacrylate; allyl, methallyl or crotyl ester of dicarboxylic acid.
- the rubber polymer (R1) may use other monomers as raw materials.
- examples of other monomers include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate; lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, Examples thereof include acrylic monomers such as (meth) acrylic acid; aromatic vinyl monomers such as styrene and alkyl-substituted styrene; and vinyl cyanide monomers such as acrylonitrile and methacrylonitrile.
- Examples of the method for producing the rubber-containing polymer (R2) include a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method.
- the emulsion polymerization method is preferable from the viewpoint of easy design of the resulting rubber-containing polymer (R2).
- a preferable emulsion polymerization method a sequential multi-stage emulsion polymerization method may be mentioned.
- the rubber-containing polymer (R2) is produced by sequential multi-stage emulsion polymerization
- the monofunctional monomer in the monomer component containing the alkyl acrylate ester and the polyfunctional monomer as essential components is 100% by mass
- the content of acrylic acid alkyl ester is preferably 80 to 100% by mass, and the content of other monofunctional monomers is preferably 0 to 20% by mass. More preferably, the acrylic acid alkyl ester content is 85 to 100% by mass, the other monofunctional monomer content is 0 to 15% by mass, the acrylic acid alkyl ester content is 90 to 100% by mass,
- the content of the monofunctional monomer is more preferably 0 to 10% by mass.
- the content of the polyfunctional monomer is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the monofunctional monomer.
- the polyfunctional monomer By setting the polyfunctional monomer to 0.1 to 10 parts by mass, it is possible to impart flexibility to the resulting film. 0.3 to 8 parts by mass is more preferable, and 0.5 to 6 parts by mass is still more preferable.
- the content of methacrylic acid alkyl ester is 70 to 100% by mass, and the content of other monofunctional monomers is 0 to 30% by mass. % Is preferred.
- the glass transition temperature of the rubber-containing polymer (R2) can be increased, which is preferable from the viewpoint of the handleability of the rubber-containing polymer (R2).
- the content of the methacrylic acid alkyl ester is more preferably 75 to 100% by mass, and still more preferably 80 to 100% by mass.
- the glass transition temperature of a polymer obtained by polymerizing a monomer component containing methacrylic acid alkyl ester as an essential component is preferably 60 ° C. or higher. By setting the glass transition temperature to 60 ° C. or higher, the handleability of the resulting rubber-containing polymer (R2) becomes easy.
- the glass transition temperature is more preferably 70 ° C or higher, and still more preferably 80 ° C or higher.
- “Monomer component containing acrylic acid alkyl ester and polyfunctional monomer as essential components” and “Monomer component containing methacrylic acid alkyl ester as essential components” are divided into two or more as necessary.
- the polymerization can also be carried out. When the polymerization is performed twice or more, the monomer type and / or amount may be the same or different.
- additives can be blended in the acrylic resin (H) as necessary.
- additives include antioxidants, heat stabilizers, light stabilizers, plasticizers, lubricants, antistatic agents, flame retardants, fillers, matting agents, processing aids, impact resistance aids, antibacterial agents, Examples thereof include an antifungal agent, a foaming agent, a release agent, a colorant, an ultraviolet absorber, and a thermoplastic polymer.
- an ultraviolet absorber in order to impart weather resistance.
- a benzotriazole ultraviolet absorber having a molecular weight of 400 or more and a triazine ultraviolet absorber having a molecular weight of 400 or more are more preferable.
- the commercial product of the former include the product name Tinuvin 234 from BASF, the product name Adeka Stub LA-31 from ADEKA, and examples of the latter commercial product include the product name Tinuvin 1577 from BASF, LA-46.
- a light stabilizer is added to the acrylic resin (H).
- Known light stabilizers can be used, and radical scavengers such as hindered amine light stabilizers are particularly preferred. Examples of such commercially available light stabilizers include ADEKA brand name ADK STAB LA-57, brand name ADK STAB LA-67, and brand name ADK STAB LA-77.
- Examples of a method for producing a fluorinated matte laminated film include the following methods (1) to (3).
- a fluororesin comprising a thermoplastic resin composition ( ⁇ ), ( ⁇ ), ( ⁇ ) and ( ⁇ ), which is a coextrusion molding method through a feed block die or a multi-manifold die
- thermoplastic resin compositions ( ⁇ ), ( ⁇ ), ( ⁇ ) and ( ⁇ ), and an acrylic resin layer of the acrylic resin (H), respectively A method of forming a film by the melt extrusion method used and laminating the two kinds of films by a heat laminating method.
- any one of the thermoplastic resin compositions ( ⁇ ), ( ⁇ ), ( ⁇ ), and ( ⁇ ) can be replaced with the acrylic resin (H).
- a laminated structure of a fluorine resin layer and an acrylic resin layer by a coextrusion molding method.
- a coextrusion method using a feed block die or a multi-manifold die as described above is preferable.
- the fluororesin layer side is in contact with the rubber roll.
- the mirror smoothness on the acrylic resin layer side can be improved without increasing the surface glossiness of the fluororesin layer (that is, while maintaining a good matte degree), and the industrial utility value is high.
- the rubber roll a silicone rubber roll is preferable from the viewpoint of heat resistance.
- a known processing method can be used for the surface finishing of the silicone rubber roll.
- room temperature curable silicone rubber is applied to the outermost surface.
- a rubber roll produced by finishing is preferred.
- the fluorine-based resin layer and the acrylic resin layer constituting the fluorine-based matte laminated film may each be composed of a plurality of layers.
- melt extrusion it is preferable to extrude while filtering the resin composition constituting each layer in a molten state with a screen mesh of 200 mesh or more in order to remove nuclei and foreign matters that cause printing omission.
- the thickness of the fluorinated matte laminated film is preferably 500 ⁇ m or less.
- the thickness is preferably 30 to 400 ⁇ m.
- the thickness is 30 ⁇ m or more, a sufficient depth can be obtained in the appearance of the molded product. In particular, when molding into a complicated shape, a sufficient thickness can be obtained by stretching.
- the laminated film has appropriate rigidity, so that the laminating property, the secondary workability, and the like are improved. In addition, it is economically advantageous in terms of mass per unit area. Furthermore, the film forming property is stable and the film can be easily manufactured.
- Examples relating to the first invention are Preparation Examples 1 to 3, Examples 1 to 9, and Comparative Examples 1 to 5.
- Examples relating to the second invention are Preparation Examples 4 to 10, Examples 11 to 17, and Comparative Example 11.
- Examples relating to the third invention group are Preparation Examples 11 to 21, Examples 21 to 28, and Comparative Examples 21 to 25.
- Examples relating to the fourth invention group are Preparation Examples 31 to 32, Example 31, and Comparative Examples 31 to 32.
- MMA methyl methacrylate MA: methyl acrylate nBA: n-butyl acrylate St: styrene AMA: allyl methacrylate EDMA: ethylene glycol dimethacrylate BDMA: 1,3-butylene glycol dimethacrylate CHP: cumene hydroperoxide LPO : Lauryl peroxide tBH: t-butyl hydroperoxide EDTA: disodium ethylenediaminetetraacetate nOM: n-octyl mercaptan SLMA: mixture of dodecyl methacrylate and tridecyl methacrylate CHMA: cyclohexyl methacrylate nBMA: n-butyl methacrylate iBMA: I-Butyl methacrylate
- total light transmittance and haze The total light transmittance and haze of the film were measured under the following conditions. The total light transmittance was measured in accordance with JIS K7361-1, and the haze was measured in accordance with JIS K7136 using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. with the matte surface of the film disposed on the light source side.
- a two-layer laminated film was discharged from a two-kind, two-layer 400 mm wide multi-manifold T die set at 250 ° C. installed at the leading ends of both extruders. Presence or absence of mess around the T-die outlet 1 hour after the plastic resin composition ( ⁇ ), ( ⁇ ), ( ⁇ ), or ( ⁇ ) was put into the extruder 2 when the laminated film was produced was visually evaluated.
- ⁇ No smearing occurred in the vicinity of the T-die discharge port.
- ⁇ Meani of less than 0.5 mm was generated in the vicinity of the T die discharge port.
- X A mean of 0.5 mm or more occurred in the vicinity of the T-die discharge port.
- Latex of cross-linked acrylic matting agent (F) is diluted with deionized water, and laser diffraction / spawning particle size distribution measuring device (Shimadzu Corporation) “SALD-7100”) was used to determine the median diameter of the crosslinked acrylic matting agent (F) in terms of volume average, and the median diameter was defined as the particle diameter.
- SALD-7100 laser diffraction / spawning particle size distribution measuring device
- the concentration of the latex used for the measurement was appropriately adjusted so as to be within an appropriate range in the scattered light intensity monitor attached to the apparatus.
- As the standard particle size substance 12 monodisperse polystyrenes having a known particle size in the range of 20 to 800 nm were used.
- Monomer mixture (1) MA: 10 parts MMA: 60 parts HEMA: 30 parts nOM: 0.18 parts LPO: 1 part Tricalcium phosphate: 1.8 parts Deionized water: 250 parts.
- the monomer mixture (1) in the reaction vessel was heated to 75 ° C. with stirring, and reacted for 3 hours in a nitrogen atmosphere. Thereafter, the liquid temperature in the reaction vessel was raised to 90 ° C., and the liquid temperature was maintained at 90 ° C. for 45 minutes to obtain polymer beads.
- the obtained polymer beads were sieved under conditions of 150 mesh (aperture 100 ⁇ m), and the beads that passed through the mesh were dehydrated and dried to obtain beads of matting agent (B), which is a thermoplastic resin. .
- the glass transition temperature of the matting agent (B) was 77 ° C.
- the intrinsic viscosity was 0.11 L / g
- the Mw / Mn was 2.1
- the volume average particle size was 70 ⁇ m.
- a monomer mixture (m2) consisting of 9.6 parts of MMA, 14.4 parts of nBA, 1.0 part of BDMA, 0.25 part of AMA, and 0.016 part of CHP was dropped into the polymerization vessel over 90 minutes, The reaction was continued for a minute to obtain a rubber polymer (R1) composed of the monomer mixture (m1) and the monomer mixture (m2).
- a monomer mixture (m3) consisting of 6 parts of MMA, 4 parts of MA, 0.075 part of AMA and 0.0125 part of CHP was dropped into the polymerization vessel over 45 minutes, and then the reaction was continued for 60 minutes to obtain a polymer. It was.
- a monomer mixture (m4) composed of 57 parts of MMA, 3 parts of MA, 0.264 part of nOM and 0.075 part of tBH was dropped into the polymerization vessel over 140 minutes, and then the reaction was continued for 60 minutes to obtain a polymer.
- a latex of a rubber-containing polymer was obtained.
- the obtained latex was filtered using a vibration type filtration device equipped with a SUS mesh (average opening: 62 ⁇ m) as a filter medium, and then salted out in an aqueous solution containing 3.5 parts of calcium acetate and washed with water. It was recovered and dried to obtain a powdery rubber-containing polymer (R2-1) of Preparation Example 2.
- the composition of the rubber-containing polymer (R2-1) is summarized in Table 1.
- the obtained latex was filtered using a vibration type filtration device equipped with a SUS mesh (average opening: 150 ⁇ m) as a filter medium, and then salted out in an aqueous solution containing 3 parts of calcium acetate in 306 parts of deionized water.
- the polymer was washed with water, collected, and dried to obtain a powdery rubber-containing polymer (R2-2) of Preparation Example 3.
- the composition of the rubber-containing polymer (R2-2) is summarized in Table 1.
- thermoplastic resin composition ( ⁇ ) The matting agent (B) of Preparation Example 1 is used for 100 parts of polyvinylidene fluoride (manufactured by Kureha Co., Ltd., trade name: KF T850) as the fluororesin (A). 4.8 parts, 42.2 parts of acrylic resin “Acrypet VH # 001” (trade name) manufactured by Mitsubishi Rayon as the thermoplastic resin (C), and a phenolic antioxidant manufactured by ADEKA as an antioxidant “ ADK STAB AO-60 "(trade name) was blended at a ratio of 0.1 part. This formulation was mixed for 30 seconds using a Henschel mixer.
- the resulting mixture was fed into a twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 140 to 240 ° C. and a die head temperature of 240 ° C. While removing, it was extruded as a molten strand from the nozzle and cut to obtain pellets of the thermoplastic resin composition ( ⁇ ).
- TEM35 twin screw extruder
- acrylic resin (H) 80 parts of rubber-containing polymer (R2-1), 10 parts of rubber-containing polymer (R2-2), 10 parts of thermoplastic polymer (C-1), manufactured by BASF as UV absorber Benzotriazole UV absorber “Tinuvin 234” (trade name) 1.4 parts, ADEKA's hindered amine light stabilizer “Adeka Stub LA-57” (trade name) 0.3 parts and antioxidant A hindered phenol antioxidant “Irganox 1076” (trade name) manufactured by BASF was blended at a ratio of 0.1 part as an agent. This formulation was mixed for 30 seconds using a Henschel mixer.
- the resulting mixture was fed into a twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 140 to 240 ° C. and a die head temperature of 240 ° C. While being removed, it was extruded as a molten strand from the nozzle and cut to obtain acrylic resin (H) pellets.
- TEM35 twin screw extruder
- the weight average molecular weight was 92,000, the molecular weight distribution (mass average molecular weight / number average molecular weight) was 2.2, and the deflection temperature under load at 1.8 MPa was 89 ° C., measured according to JIS K7191.
- thermoplastic resin composition ( ⁇ ) and the pellets of the acrylic resin (H) were dried at 80 ° C. overnight. After drying, acrylic resin (H) pellets were supplied into a non-vented screw type 40 mm ⁇ extruder 1 provided with a # 200 screen mesh set at a cylinder temperature of 240 to 270 ° C. for plasticization. On the other hand, the pellets of the thermoplastic resin composition ( ⁇ ) were supplied into a 30 mm ⁇ extruder 2 provided with a # 200 screen mesh, which was also set to a cylinder temperature of 230 to 250 ° C., to be plasticized.
- the discharge amount of the extruder 1 was set to 16.1 kg / h, and the discharge amount of the extruder 2 was set to 1.24 kg / h.
- a two-layer film was discharged from a two-kind two-layer 400 mm width multi-manifold die set at 250 ° C. installed at the leading ends of both extruders.
- the film is conveyed so that the acrylic resin (H) layer side of the two-layer film is in contact with the first mirror-surface cooling roll having a temperature of 80 ° C. and the second mirror-surface cooling roll having a temperature of 75 ° C.
- a matte laminated film was obtained.
- the film thickness was 125 ⁇ m
- the thermoplastic resin composition ( ⁇ ) layer was 9 ⁇ m
- the acrylic resin (H) layer was 116 ⁇ m.
- Examples 2-1 to 2-3> Manufacture of master batch pellets 35 parts of matting agent (B) of Preparation Example 1, 65 parts of acrylic resin “Acrypet VH # 001” (trade name) manufactured by Mitsubishi Rayon as thermoplastic resin (C), and antioxidant A phenolic antioxidant “ADEKA STAB AO-60” (trade name) manufactured by ADEKA was blended at a ratio of 0.59 parts. This formulation was mixed for 30 seconds using a Henschel mixer. The resulting mixture was fed into a twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 140 to 240 ° C. and a die head temperature of 240 ° C. While being removed, it was extruded as a molten strand from the nozzle and cut to produce a master batch pellet.
- TEM35 twin screw extruder
- thermoplastic resin composition ( ⁇ ) Next, 17.1 parts of master batch pellets, 100 parts of polyvinylidene fluoride (Kureha Co., Ltd., trade name: KF T850) as fluororesin (A), heat As the plastic resin (C), 29.7 parts of acrylic resin “Acrypet VH # 001” (trade name) manufactured by Mitsubishi Rayon was blended. This formulation was mixed for 30 seconds using a Henschel mixer. The resulting mixture was fed into a twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 140 to 240 ° C. and a die head temperature of 240 ° C. While being removed, it was extruded as a molten strand from the nozzle and cut to produce pellets of the thermoplastic resin composition ( ⁇ ).
- KF T850 polyvinylidene fluoride
- acrylic resin “Acrypet VH # 001” trade name
- Examples 3-1 to 3-3 Master batch pellets were produced in the same manner as in Examples 2-1 to 2-3. Further, 20 parts of master batch pellets and 100 parts of acrylic resin “Mitsubishi Rayon” as thermoplastic resin (C) for 100 parts of polyvinylidene fluoride (Kureha Co., Ltd., trade name: KF T850) as fluorine resin (A) Acrypet VH # 001 "(trade name) was blended at a ratio of 26.9 parts to produce pellets of the thermoplastic resin composition ( ⁇ ) in the same manner as in Example 2-1. Except for these, fluorine matte laminated films were obtained and evaluated in the same manner as in Examples 2-1 to 2-3. The evaluation results are summarized in Table 2 and Table 3.
- Examples 4-1 to 4-3 Master batch pellets were produced in the same manner as in Examples 2-1 to 2-3.
- a pellet of the thermoplastic resin composition ( ⁇ ) was produced in the same manner as in Examples 2-1 to 2-3 by blending the resin “Acrypet VH # 001” (trade name) at a ratio of 24 parts. Except for these, fluorine matte laminated films were obtained and evaluated in the same manner as in Examples 2-1 to 2-3. The evaluation results are summarized in Table 2 and Table 3.
- Examples 5-1 to 5-3> Master batch pellets were produced in the same manner as in Examples 2-1 to 2-3. Moreover, 37.1 parts of master batch pellets and 100% of acrylic resin manufactured by Mitsubishi Rayon as thermoplastic resin (C) for 100 parts of polyvinylidene fluoride (made by Kureha Co., Ltd., trade name: KF T850) as fluororesin (A) A pellet of the thermoplastic resin composition ( ⁇ ) was produced in the same manner as in Examples 2-1 to 2-3 by blending the resin “Acrypet VH # 001” (trade name) at a ratio of 9.9 parts. . Except for these, fluorine matte laminated films were obtained and evaluated in the same manner as in Examples 2-1 to 2-3. The evaluation results are summarized in Table 2.
- Examples 6-1 to 6-3> Master batch pellets were produced in the same manner as in Examples 2-1 to 2-3.
- a pellet of the thermoplastic resin composition ( ⁇ ) was produced in the same manner as in Examples 2-1 to 2-3 by blending the resin “Acrypet VH # 001” (trade name) at a ratio of 15.2 parts. .
- fluorine matte laminated films were obtained and evaluated in the same manner as in Examples 2-1 to 2-3. The evaluation results are summarized in Table 2.
- Examples 7-1 to 7-3> Master batch pellets were produced in the same manner as in Examples 2-1 to 2-3. In addition, 22.8 parts of master batch pellets and 100% of acrylic made by Mitsubishi Rayon as thermoplastic resin (C) for 100 parts of polyvinylidene fluoride (Kureha Co., Ltd., trade name: KF T850) as fluorine resin (A) A pellet of the thermoplastic resin composition ( ⁇ ) was produced in the same manner as in Examples 2-1 to 2-3 by blending the resin “Acrypet VH # 001” (trade name) at a ratio of 10.2 parts. . Except for these, fluorine matte laminated films were obtained and evaluated in the same manner as in Examples 2-1 to 2-3. The evaluation results are summarized in Table 2.
- Example 8 Master batch pellets were produced in the same manner as in Example 2-1. Further, for 100 parts of polyvinylidene fluoride (made by Kureha Co., Ltd., trade name: KF T850) as the fluororesin (A), 10 parts of master batch pellets and acrylic resin “Mitsubishi Rayon” as the thermoplastic resin (C) Acrypet VH # 001 "(trade name) was blended at a ratio of 37 parts to produce pellets of the thermoplastic resin composition ( ⁇ ) in the same manner as in Example 2-1. Except for these, a fluorinated matte laminated film was obtained and evaluated in the same manner as in Example 2-1. The evaluation results are summarized in Table 2.
- Example 9 Master batch pellets were produced in the same manner as in Example 2-1. In addition, 34.2 parts of master batch pellets and 100% of acrylic resin manufactured by Mitsubishi Rayon as thermoplastic resin (C) per 100 parts of polyvinylidene fluoride (Kureha Co., Ltd., trade name: KF T850) as fluorine resin (A) A pellet of the thermoplastic resin composition ( ⁇ ) was produced in the same manner as in Example 2-1, except that the resin “Acrypet VH # 001” (trade name) was blended at a ratio of 12.8 parts. Except for these, a fluorinated matte laminated film was obtained and evaluated in the same manner as in Example 2-1. The evaluation results are summarized in Table 2.
- a monomer component (m12) consisting of 50.0 parts monofunctional monomer (MMA 3.0 parts, nBA 47.0 parts), AMA 0.275 parts polyfunctional monomer, and tBH 0.25 parts.
- the solution was dropped into the polymerization vessel over 120 minutes.
- the liquid temperature in the reaction vessel is maintained at 75 ° C. for 60 minutes, and the reaction is continued to obtain a polymer (P12), whereby an acrylic composed of the polymer (P11) and the polymer (P12).
- An acid alkyl ester polymer (P13) was obtained.
- the monomer component (m14) of MMA 40.5 parts, nBA 4.5 parts, tBH 0.062 parts and nOM 0.3 parts was polymerized over 120 minutes. It was dripped in the container. After completion of dropping, the liquid temperature in the reaction vessel was maintained at 75 ° C. for 60 minutes, and the reaction was continued to obtain a polymer (P14), thereby obtaining a latex acrylic matting agent (D). .
- thermoplastic resin composition 90 parts of polyvinylidene fluoride (manufactured by Arkema Co., Ltd., trade name: KYNAR720) as fluororesin (A), 10 parts of acrylic matting agent (D) of Preparation Example 4,
- an antioxidant a hindered phenol antioxidant “Irganox 1076” (trade name) manufactured by BASF was blended at a ratio of 0.1 part. This formulation was mixed for 30 seconds using a Henschel mixer.
- the obtained mixture was fed into a twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 180 to 200 ° C. and a die head temperature of 220 ° C. While removing, it was extruded as a molten strand from the nozzle and cut to obtain pellets of the thermoplastic resin composition ( ⁇ ).
- TEM35 twin screw extruder
- Example 12 to 17 The acrylic matting agent (D) was changed to the one shown in Table 5, and the two-layer fluorine matte laminated film was prepared in the same manner as in Example 11 except that the thickness of the acrylic resin layer was 140 ⁇ m. Obtained.
- the evaluation results are summarized in Table 5.
- thermoplastic resin matting agent (B) of Preparation Example 1 was used in place of the acrylic matting agent (D), 94 parts of the fluororesin (A), and the thermoplastic resin matting agent (B) of Preparation Example 1
- a fluorine-based matte laminated film having a two-layer structure was obtained in the same manner as in Example 11 except that the amount was 6 parts.
- the evaluation results are summarized in Table 5.
- Tg of the acrylic matting agent (E-1), the amount of acetone insolubles, Mn, Mw, and Mw / Mn of acetone solubles were calculated or measured and are shown in Table 6.
- Preparation Examples 12 to 21 Production of acrylic matting agents (E-2) to (E-11) Preparation Example 11 except that the monomer components and chain transfer agents were changed to the types and amounts shown in Table 6. In the same manner, acrylic matting agents (E-2) to (E-11) were obtained. The evaluation results for each polymer are shown in Table 6. In Preparation Example 17, since the Tg of the acrylic matting agent (E-7) was ⁇ 7 ° C., the polymers were fused together, and a polymer that could be used for subsequent evaluation could be obtained. There wasn't.
- thermoplastic resin composition ( ⁇ ) 100 parts of polyvinylidene fluoride (made by Kureha Co., Ltd., trade name: KF polymer T # 850) which is a fluororesin (A), acrylic matting agent (E-1) 5 parts of hindered phenolic antioxidant “Irganox 1076” (trade name) manufactured by BASF as an antioxidant was blended at a ratio of 0.1 part. This formulation was mixed for 30 seconds in a Henschel mixer. The obtained mixture was supplied to a twin-screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 180 to 200 ° C. and a die head temperature of 220 ° C. While removing, it was extruded as a molten strand from the nozzle and cut to obtain pellets of the thermoplastic resin composition ( ⁇ ).
- polyvinylidene fluoride made by Kureha Co., Ltd., trade
- thermoplastic resin composition ( ⁇ ) and the pellets of the acrylic resin (H) were dried overnight at a temperature of 80 ° C. After drying, acrylic resin (H) pellets were supplied into a non-vented screw type 40 mm ⁇ extruder 1 provided with a # 500 screen mesh set at a cylinder temperature of 240 ° C. for plasticization. Further, the pellets of the thermoplastic resin composition ( ⁇ ) were supplied to a 30 mm ⁇ extruder 2 provided with a # 500 screen mesh set to a cylinder temperature of 180 to 220 ° C. for plasticization.
- the melted two-layer film was discharged from a two-kind two-layer multi-manifold die set at the tip of both extruders set at a temperature of 240 ° C.
- the film is conveyed so that the acrylic resin layer side of the two-layer film is in contact with the first mirror-surface cooling roll at a temperature of 80 ° C. and the second mirror-surface cooling roll at a temperature of 75 ° C.
- a laminated film was obtained.
- the laminated film was evaluated in the same manner as in Example 1, and the evaluation results are summarized in Table 7.
- Example 22 to 25 A laminated film was obtained in the same manner as in Example 21 except that the acrylic matting agent (E) was changed to the types and amounts shown in Table 7. The evaluation results are summarized in Table 7.
- Acrylic matting agent (E) was changed to the type and amount shown in Table 7, except that it was changed to polyvinylidene fluoride (Arkema Co., Ltd., trade name: KYNAR720), which is a fluororesin (A).
- a laminated film was obtained in the same manner as Example 21. The evaluation results are summarized in Table 7.
- Comparative Example 22 as a monomer component that is a raw material for the acrylic matting agent (E-9), a monofunctional monofunctional monomer having a linear alkyl group with 4 carbon atoms instead of the acrylic monomer (b6). Since the polymer was used, the laminated film showed a high value of 60 ° surface glossiness of 79, and the desired matte appearance could not be secured.
- Comparative Example 23 as a monomer component that is a raw material of the acrylic matting agent (E-10), a monofunctional compound in which a cyclic alkyl group has 6 carbon atoms is used instead of the acrylic monomer (b6). Since the monomer was used, the laminated film had a high 60 ° surface glossiness of 98, and the desired matte appearance could not be secured.
- thermoplastic resin in the same manner as in Example 26 except that the acrylic matting agent (E-11) (the same raw material as the matting agent (B) in [Preparation Example 1]) was added under the conditions shown in Table 7. Compositions and laminated films were produced. Since the thermoplastic resin composition containing the acrylic matting agent (E-11) uses a monofunctional monomer having a hydroxyl group in the monomer component that is a raw material of the polymer, the discharge port of the multi-manifold die In the vicinity (matte resin layer side), a large amount of adhesion was observed. The evaluation results are summarized in Table 7.
- thermoplastic resin composition used in place of the acrylic matting agent (E), an organic matting agent (manufactured by Nippon Shokubai Co., Ltd., trade name: Eposta MA1004, average particle size 4-5 ⁇ m) was used in the addition amount shown in Table 7.
- a thermoplastic resin composition and a laminated film were produced in the same manner as in Example 26 except for the above. Since the thermoplastic resin composition uses a matting agent in place of the acrylic matting agent (E), the adhesion of the mains due to the matting agent near the discharge port (matte resin layer side) of the multi-manifold die was seen in large quantities. The evaluation results are summarized in Table 7.
- the above emulsified dispersion was put into the reaction vessel, the temperature was raised until the internal temperature reached 70 ° C. while stirring at 200 rpm, and the reaction was continued until a peak due to polymerization exotherm was confirmed. After confirming the exothermic peak, the internal temperature was raised to 80 ° C., and the heating was further continued for 1 hour to complete the polymerization. After completion of the reaction, polymer latex agglomerates were filtered using # 300 mesh, and the particle size of the resulting polymer was measured. The particle size was 4.4 ⁇ m.
- Preparation Example 32 Production of cross-linked acrylic matting agent (F-2) Emulsification, polymerization and polymerization were conducted in the same manner as in Preparation Example 31, except that the amount of the monomer component used was changed to the conditions shown in Table 8. Aggregate filtration was performed. The particle diameter of the polymer was 4.5 ⁇ m.
- thermoplastic resin composition As fluororesin (A), 100 parts of polyvinylidene fluoride (manufactured by Arkema Co., Ltd., trade name: KYNAR720) and 5 parts of cross-linked acrylic matting agent (F-1)
- a phenolic antioxidant “ADEKA STAB AO-60” (trade name) manufactured by ADEKA Corporation was blended at a ratio of 0.1 part. This formulation was mixed for 30 seconds using a Henschel mixer.
- the obtained mixture was fed into a twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and foreign matter was removed with a # 300 screen mesh under conditions of a cylinder temperature of 130 to 220 ° C. and a die head temperature of 220 ° C. While being removed, it was extruded as a molten strand from the nozzle and cut to obtain pellets of the thermoplastic resin composition ( ⁇ ).
- TEM35 twin screw extruder
- Example 31 A fluorine-based matte laminated film was produced and evaluated in the same manner as in Example 31, except that the crosslinked acrylic matting agent (F-2) was used instead of the crosslinked acrylic matting agent (F-1). did.
- the 60 ° surface glossiness of the fluorinated matte laminated film was 40, and the chemical resistance was also good.
- the amount of the polyfunctional monomer when synthesizing the crosslinked acrylic matting agent (F-2) was large, the vicinity of the discharge port of the multi-manifold die (fluorine) On the resin layer side), it was confirmed that a large amount of majani adhered.
- ⁇ Comparative Example 32> Implemented except that a commercially available crosslinked acrylic resin (manufactured by Nippon Shokubai Co., Ltd., trade name: Eposta MA1004, average particle size 4.3 ⁇ m) was used instead of the crosslinked acrylic matting agent (F-1).
- a fluorinated matte laminated film was produced and evaluated. The 60 ° surface glossiness of the fluorinated matte laminated film was 35, and the chemical resistance was also good.
- Fluorine-based matte film and fluorine-based matte laminated film prepared from the thermoplastic resin composition of the present invention are particularly suitable for vehicle use and building material use.
- automotive interior applications such as instrument panels, console boxes, meter covers, door lock pezels, steering wheels, power window switch bases, center clusters, dashboards, weather strips, bumpers, bumper guards, side mud guards, body panels
- Automotive exterior applications such as spoilers, front grilles, strut mounts, wheel caps, center pillars, door mirrors, center ornaments, side moldings, door moldings, wind moldings, windows, headlamp covers, tail lamp covers, windshield parts
- AV equipment and furniture products Applications such as front panels, buttons, emblems, and cosmetics; applications such as mobile phone housings, display windows, and buttons; furniture exterior materials, walls, and ceilings Use for interior materials for buildings such as floors; Use for exterior walls such as siding, fences, roofs, gates, windbreak boards, etc .;
- Use for surface cosmetics for furniture such as window frames, doors, handrails, sills, and duck
- optical components such as various displays, lenses, mirrors, goggles, and window glass
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
〔1〕 フッ素系樹脂(A)、フッ素系樹脂(A)に不溶な熱可塑性樹脂である艶消し剤(B)、及び、フッ素系樹脂(A)に可溶な熱可塑性樹脂(C)からなる、耐薬品艶消しフィルム用熱可塑性樹脂組成物(α)。
〔2〕 前記艶消し剤(B)が水酸基含有非架橋アクリル樹脂である、前記〔1〕に記載の熱可塑性樹脂組成物。
〔3〕 前記熱可塑性樹脂(C)が水酸基を含有しない、前記〔1〕に記載の熱可塑性樹脂組成物(α)。
〔4〕 前記フッ素系樹脂(A)100質量部に対して、前記艶消し剤(B)1~50質量部、及び、前記熱可塑性樹脂(C)20~90質量部を含有する、前記〔1〕に記載の熱可塑性樹脂組成物(α)。
〔5〕 前記フッ素系樹脂(A)と前記熱可塑性樹脂(C)のSP値をSP(AC)、前記艶消し剤(B)のSP値をSP(B)とした場合に、
『5.2<SP(B)-SP(AC)<6.6』
の関係を満たす、前記〔1〕に記載の熱可塑性樹脂組成物(α)。
〔6〕 前記水酸基含有非架橋アクリル樹脂の水酸基価が50~200mgKOH/gである、前記〔2〕に記載の熱可塑性樹脂組成物(α)。
〔7〕 前記フッ素系樹脂(A)、前記艶消し剤(B)及び前記熱可塑性樹脂(C)の250℃、荷重49N条件下でのMFRが、それぞれMFR(A)、MFR(B)及びMFR(C)である場合に、
『MFR(A)>MFR(C)>MFR(B)』
の関係を満たす、前記〔1〕に記載の熱可塑性樹脂組成物(α)。
〔8〕 フッ素系樹脂(A)及び熱可塑性樹脂であるアクリル系艶消し剤(D)を含有する、艶消しフィルム用樹脂組成物であって、前記アクリル系艶消し剤(D)を構成する単量体単位中の単官能単量体単位を100質量%としたときに、アクリル酸アルキルエステル単位の含有率が50~100質量%、他の単官能単量体単位の含有率が0~50質量%である、熱可塑性樹脂組成物(β)。
〔9〕 前記アクリル系艶消し剤(D)が、アクリル酸アルキルエステル重合体(P13)の存在下で、単量体成分(m14)を重合して得られる樹脂であり、前記重合体(P13)を構成する単量体成分(m13)単位中の単官能単量体単位を100質量%としたときに、アクリル酸アルキルエステル単位の含有率が80~100質量%、他の単官能単量体単位の含有率が0~20質量%であり、更に、単官能単量体単位の合計100質量部に対して、多官能単量体単位の含有量が0~0.6質量部であり、前記単量体成分(m14)中の単官能単量体を100質量%としたときに、メタクリル酸アルキルエステルの含有率が80~100質量%、他の単官能単量体の含有率が0~20質量%である、前記〔8〕に記載の熱可塑性樹脂組成物(β)。
〔10〕 前記フッ素系樹脂(A)と前記アクリル系艶消し剤(D)との合計を100質量%としたときに、フッ素系樹脂(A)の含有率が70~99質量%であり、前記アクリル系艶消し剤(D)の含有率が1~30質量%である、前記〔8〕に記載の熱可塑性樹脂組成物(β)。
〔11〕 炭素数が10~30の直鎖アルキル基、炭素数が10~30の分岐アルキル基、及び炭素数が10~30の環状アルキル基からなる群から選ばれ、置換基を有していてもよい、1種以上のアルキル基を有する、(メタ)アクリル酸アルキルエステル(b6)単位を21~49質量%、及び、他の単官能単量体(b7)単位を51~79質量%含有する、アクリル系艶消し剤(E)。
〔12〕 前記(メタ)アクリル酸アルキルエステル(b6)単位及び前記他の単官能単量体(b7)単位の合計100質量部に対して、更に多官能単量体(b8)単位0~0.5質量部を含有する、前記〔11〕に記載のアクリル系艶消し剤(E)。
〔13〕 フッ素系樹脂(A)100質量部に対して、前記〔11〕又は〔12〕に記載のアクリル系艶消し剤(E)1~100質量部を含有する、熱可塑性樹脂組成物(γ)。
〔14〕 艶消しフッ素樹脂成形体を得るために用いられる艶消し剤であって、(メタ)アクリル酸エステル(b10)50.0~99.9質量%、他の単官能単量体(b11)0~49.9質量%、及び多官能単量体(b12)0.1~3.0質量%で構成される単量体混合物(b9)を重合して得られる、熱可塑性樹脂である架橋アクリル系艶消し剤(F)。
〔15〕 フッ素系樹脂(A)70~99質量%、前記架橋アクリル系艶消し剤(F)1~30質量%、及び他の樹脂(G)0~29質量%を含有する、熱可塑性樹脂組成物(δ)。
〔16〕 前記フッ素系樹脂(A)がフッ化ビニリデン系重合体である、前記〔1〕~〔10〕、〔13〕及び〔15〕のいずれかに記載の熱可塑性樹脂組成物。
〔17〕 前記〔1〕~〔10〕、〔13〕、〔15〕及び〔16〕のいずれかに記載の熱可塑性樹脂組成物を成形した、フッ素系艶消しフィルム。
〔18〕 前記〔17〕に記載のフッ素系艶消しフィルムと、アクリル樹脂(H)とを積層した、フッ素系艶消し積層フィルム。
〔19〕 艶消し面の60度表面光沢度が5~80である、前記〔17〕又は〔18〕に記載のフッ素系艶消しフィルム又はフッ素系艶消し積層フィルム。
〔20〕 60度表面光沢度の標準偏差が6以下である、前記〔1〕~〔7〕のいずれかに記載の熱可塑性樹脂組成物を用いた、前記〔17〕~〔19〕のいずれかに記載のフッ素系艶消しフィルム又はフッ素系艶消し積層フィルム。
先ず、第1の発明である、フッ素系樹脂(A)、フッ素系樹脂(A)に不溶な熱可塑性樹脂である艶消し剤(B)、及び、フッ素系樹脂(A)に可溶な熱可塑性樹脂(C)からなる、耐薬品性艶消しフィルム用熱可塑性樹脂組成物(α)について説明する。
本発明で用いるフッ素系樹脂(A)としては、例えば、ポリフッ化ビニリデン、エチレン-テトラフルオロエチレン系共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリフッ化ビニル、テトラフルオロエチレン-ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン-パーフルオロ(プロピルビニルエーテル)系共重合体、テトラフルオロエチレン-フッ化ビニリデン共重合体、フッ化ビニリデンと(メタ)アクリル酸アルキルエステル等のアクリル系単量体との共重合体、フッ化ビニリデン系重合体を主成分とする他樹脂との混合樹脂が挙げられる。これらは、1種を単独で用いてもよく2種以上を併用してもよい。特に、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルムの成形性やアクリル樹脂との相溶性の観点からフッ化ビニリデン系重合体が好ましい。
本発明において、フッ素系樹脂(A)に不溶な熱可塑性樹脂である艶消し剤(B)としてはフッ素系樹脂(A)に不溶である公知の熱可塑性樹脂が挙げられる。熱可塑性樹脂である艶消し剤(B)としては、きめ細やかな艶消しフィルムが得られることから、水酸基含有非架橋アクリル樹脂であること、即ち、水酸基を含有し、架橋性単量体単位やグラフト交叉性単量体単位等の多官能単量体単位を含有しないアクリル樹脂であることが好ましい。例えば、炭素数1~8のアルキル基を有する(メタ)アクリル酸ヒドロキシアルキル(b1)1~80質量%、炭素数1~13のアルキル基を有するメタクリル酸アルキル(b2)20~99質量%及び炭素数1~8のアルキル基を有するアクリル酸アルキル(b3)0~79質量%を含有する単量体成分を共重合して得られる重合体であり、且つ、架橋性単量体単位やグラフト交叉性単量体単位等の多官能単量体単位を含まないアクリル樹脂が挙げられる。
使用機器 :東ソー(株)製HLC-8320GPCシステム
カラム :TSKgel SuperHZM-H(東ソー(株)製、商品名)2本
溶離液 :テトラヒドロフラン
カラム温度:40℃
検出器 :示差屈折率(RI)。
第1の発明で用いられる熱可塑性樹脂(C)としては、フッ素系樹脂(A)に可溶の熱可塑性樹脂であればよく、フッ素系樹脂(A)に対する相溶性の点から、アクリル樹脂が好ましい。例えば、後述の熱可塑性重合体(C-1)の中から水酸基含有単量体を原料に用いていないもの、又は、後述のゴム含有重合体(R2)の中から水酸基含有単量体を原料に用いていないものが挙げられる。これらは、1種を単独で用いてもよく2種以上を併用してもよい。以下、フッ素系樹脂(A)に可溶の熱可塑性樹脂(C)を単に「熱可塑性樹脂(C)」という場合がある。
熱可塑性重合体(C-1)は、メタクリル酸アルキル単位を主成分とする重合体である。メタクリル酸アルキル単位を主成分とする重合体としては、耐熱性の点で、メタクリル酸アルキル50~100質量%、アクリル酸アルキル0~50質量%、他の単量体0~49質量%を含有する単量体成分を重合して得られる重合体が好ましい。
第1の発明である熱可塑性樹脂組成物(α)は、フッ素系樹脂(A)、該フッ素系樹脂(A)に不溶な熱可塑性樹脂である艶消し剤(B)、及び、該フッ素系樹脂(A)に可溶な熱可塑性樹脂(C)を含有する樹脂組成物である。熱可塑性樹脂組成物(α)中には、必要に応じて、各種添加剤を配合することもできる。
第1の発明において、艶消し剤(B)はフッ素系樹脂(A)に不溶な熱可塑性樹脂であり、熱可塑性樹脂(C)はフッ素系樹脂(A)に可溶な樹脂であるので、樹脂の溶解度パラメータ値(SP値)は重要な因子である。第1の発明において、フッ素系樹脂(A)と熱可塑性樹脂(C)の樹脂混合物のSP値をSP(AC)、艶消し剤(B)のSP値をSP(B)とした場合、『5.2<SP(B)-SP(AC)<6.6』であることが好ましい。『SP(B)-SP(AC)』の値を5.2超とすることでフィルムの艶消し性発現が良好となり、『SP(B)-SP(AC)』の値を6.6未満とすることでフッ素系樹脂(A)と熱可塑性樹脂(C)との樹脂混合物中における艶消し剤(B)の分散性が向上し、フィルムの艶消し安定性が向上する。
<Fedorsの式>
σ=(Ev/v)1/2=(ΣΔei/ΣΔvi)1/2
σ:溶解度パラメータ(単位;J1/2cm-3/2)
Ev:蒸発エネルギー
v:モル体積
Δei:各原子又は原子団の蒸発エネルギー
Δvi:各原子又は原子団のモル体積。
次に第2の発明である、フッ素系樹脂(A)及びアクリル系艶消し剤(D)を含有する熱可塑性樹脂組成物(β)について説明する。第2の発明において使用されるフッ素系樹脂(A)としては、第1の発明である熱可塑性樹脂組成物(α)の場合と同様の樹脂が挙げられる。
第2の発明において使用される熱可塑性樹脂であるアクリル系艶消し剤(D)は、熱可塑性樹脂であって、該樹脂を構成する単量体単位中の単官能単量体単位(即ち、単官能単量体に由来する成分)を100質量%としたとき、アクリル酸アルキルエステル単位の含有率が50~100質量%であり、アクリル酸アルキルエステル以外の他の単官能単量体単位の含有率が0~50質量%である。
アクリル系艶消し剤(D)の製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法及び塊状重合法が挙げられる。中でも、得られるアクリル系艶消し剤(D)の設計のし易さの観点から、乳化重合法が好ましい。
(1)反応器内に水と単量体成分(m13)を仕込んだ後、その反応器内に界面活性剤を投入する方法。
(2)反応器内に水と界面活性剤を仕込んだ後、その反応器内に単量体成分(m13)を投入する方法。
(3)反応器内に単量体成分(m13)と界面活性剤を仕込んだ後、その反応器内に水を投入する方法。
本発明の熱可塑性樹脂組成物(β)は、前述したフッ素系樹脂(A)とアクリル系艶消し剤(D)とを含有する樹脂組成物である。熱可塑性樹脂組成物(β)中のフッ素系樹脂(A)とアクリル系艶消し剤(D)含有率は、該樹脂組成物をフィルム状に成形してなるフィルムの艶消し外観及び耐薬品性の点から設定することが好ましい。この観点からフッ素系樹脂(A)及びアクリル系艶消し剤(D)の合計を100質量%としたとき、フッ素系樹脂(A)が70~99質量%、アクリル系艶消し剤(D)が1~30質量%が好ましく、フッ素系樹脂(A)が75~99質量%、アクリル系艶消し剤(D)が1~25質量%がより好ましく、フッ素系樹脂(A)が80~99質量%、アクリル系艶消し剤(D)が1~20質量%が更に好ましい。
次に第3の発明群である、アクリル系艶消し剤(E)、並びに、フッ素系樹脂(A)及び該アクリル系艶消し剤(E)を含有する熱可塑性樹脂組成物(γ)について説明する。
第3の発明におけるアクリル系艶消し剤(E)は、炭素数が10~30の直鎖アルキル基、炭素数が10~30の分岐アルキル基、及び炭素数が10~30の環状アルキル基からなる群から選ばれ、置換基を有していてもよい1種以上のアルキル基を有する(メタ)アクリル酸アルキルエステル(b6)単位を21~49質量%、他の単官能単量体(b7)単位を51~79質量%(単官能単量体単位の合計が100質量%)含有する重合体である。
本発明の熱可塑性樹脂組成物(γ)は、前述したフッ素系樹脂(A)とアクリル系艶消し剤(E)を含有する樹脂組成物である。熱可塑性樹脂組成物(γ)中のフッ素系樹脂(A)とアクリル系艶消し剤(E)の配合量としては、フッ素系樹脂(A)100質量部に対して、アクリル系艶消し剤(E)を1~100質量部含有させることが好ましい。フッ素系樹脂(A)100質量部に対して、アクリル系艶消し剤(E)を1~100質量部含有させることで、該樹脂組成物をフィルム状に成形して得られるフィルムの外観を、艶消し状とすることが可能となる。フッ素系樹脂(A)100質量部に対して、アクリル系艶消し剤(E)1~85質量部がより好ましく、1~70質量部が更に好ましい。
次に第4の発明群である、架橋アクリル系艶消し剤(F)、並びに、フッ素系樹脂(A)、該架橋アクリル系艶消し剤(F)、及び任意添加成分である他の樹脂(G)を含有する熱可塑性樹脂組成物(δ)について説明する。
架橋アクリル系艶消し剤(F)の原料となる単量体混合物(b9)は、(メタ)アクリル酸アルキルエステル(b10)(以下、「単官能単量体(b10)」という場合がある。)50.0~99.9質量%、(メタ)アクリル酸エステル以外の単官能単量体(b11)(以下、「単官能単量体(b11)」という場合がある。)0~49.9質量%、これらの両単量体と共重合可能な多官能単量体(b12)(以下、「多官能単量体(b12)」という場合がある。)0.1~3.0質量%からなる単量体混合物である。
他の樹脂(G)は、成形体の艶消し外観及び耐薬品性や耐候性の向上等を目的として配合される。他の樹脂(G)としては、例えばアクリル樹脂、アイオノマー樹脂、ポリオレフィン系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリウレタン系樹脂等が挙げられる。これらはそれぞれ単独で又は二種類以上を併せて使用できる。成形体の耐候性向上の観点からアクリル樹脂を配合することが好ましい。
第4の発明群において熱可塑性樹脂組成物(δ)は、架橋アクリル系艶消し剤(F)及びフッ素系樹脂(A)を含有する樹脂組成物である。熱可塑性樹脂組成物(δ)100質量%中の、各樹脂の含有率は、フッ素系樹脂(A)70~99質量%、架橋アクリル系艶消し剤(F)1~30質量%である。フッ素系樹脂(A)の含有量を70~99質量%とすることで、熱可塑性樹脂組成物(δ)から得られる成形品に耐薬品性を付与することが可能となる。架橋アクリル系艶消し剤(F)を1~30質量%とすることで、熱可塑性樹脂組成物(δ)から得られる成形品に艶消し外観を付与することが可能となる。
[フッ素系艶消しフィルム]
第5の発明であるフッ素系艶消しフィルムは、前記熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかを成形して得られる艶消しフィルムである。これらのフッ素系艶消しフィルムは、艶消し性及び耐薬品性に優れる。熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)は、フィルム製造時の艶消し外観の製造振れが非常に小さいので、フィルムを得る際の生産性が良好であり、且つ、フィルム製造時のメヤニの発生を防止できることから、得られるフィルムはメヤニに起因する外観欠陥の極めて少ないフィルムとなる。
(1)微細構造を有する金型をロール状物品から切り出されたフッ素系艶消しフィルムに加熱プレスして微細構造を枚葉で熱転写させる方法。
(2)加熱されたベルト状の微細構造を有する金型にニップロールを用いてロール状物品から巻き出されたフッ素系艶消しフィルムを挟みこみ加圧し、フッ素系艶消しフィルムの表面に微細構造を熱転写させる連続賦形方法。
該フッ素系艶消しフィルムは、そのフィルム同士を積層するだけでなく、他の基材に積層することもできる。積層体製造に用いる基材としては、例えば、フィルム、シート、三次元形状を有する成形品を用いることができる。
[フッ素系艶消し積層フィルム]
第6の発明であるフッ素系艶消し積層フィルムは、熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかの樹脂層とアクリル樹脂層とが積層された積層フィルムである。熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかをフィルム状に成形して得られるフッ素系艶消しフィルムと、アクリル樹脂(H)をフィルム状に成形して得られるアクリル樹脂フィルムとが積層されたフィルムであることが好ましい。アクリル樹脂(H)を成形して得たアクリル樹脂フィルムと積層することで、積層フィルムの成形性や加飾層の視認性が向上するため好ましい。アクリル樹脂(H)を成形して得たアクリル樹脂フィルム以外にも、アイオノマー樹脂、ポリオレフィン系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリウレタン系樹脂等の、その他の樹脂からなるフィルムを用いることもできる。
アクリル樹脂(H)としては、前述のメタクリル酸アルキルエステル単位を主成分とする熱可塑性重合体(C-1)を用いてもよく、後述するゴム含有重合体(R2)を用いてもよい。これらは、1種を単独で用いてもよく2種以上を併用してもよい。
フッ素系艶消し積層フィルムを製造する方法としては、例えば、以下の方法(1)~(3)が挙げられる。
(1)フィードブロックダイ又はマルチマニホールドダイ等を介した共押出成形法であって、熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかを含むフッ素系樹脂層と、アクリル樹脂(H)のアクリル樹脂層の積層構造を形成する方法。
(2)熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかを含むフッ素系樹脂層と、アクリル樹脂(H)のアクリル樹脂層とを、それぞれTダイを用いた溶融押出し法等によりフィルムを成形して、その2種のフィルムを熱ラミネート法により積層する方法。
(3)熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかからフィルムを成形し、その後アクリル樹脂(H)を溶融押出し法により積層する押し出しラミネーション法。方法(3)において、熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかの樹脂と、アクリル樹脂(H)とを入れ替えることができる。
MMA :メタクリル酸メチル
MA :アクリル酸メチル
nBA :アクリル酸n-ブチル
St :スチレン
AMA :メタクリル酸アリル
EDMA :ジメタクリル酸エチレングリコール
BDMA :ジメタクリル酸1,3-ブチレングリコール
CHP :クメンハイドロパーオキサイド
LPO :ラウリルパーオキサイド
tBH :t-ブチルハイドロパーオキサイド
EDTA :エチレンジアミン四酢酸二ナトリウム
nOM :n-オクチルメルカプタン
SLMA :メタクリル酸ドデシル、メタクリル酸トリデシルの混合物
CHMA :メタクリル酸シクロヘキシル
nBMA :メタクリル酸n-ブチル
iBMA :メタクリル酸i-ブチル
HEMA :メタクリル酸2-ヒドロキシエチル
nDM :n-ドデシルメルカプタン
OTP :ジアルキルスルホコハク酸ナトリウム70%溶液(花王(株)製、商品名:「ぺレックスOT-P」)
RS610NA:フォスファノールRS610NA(東邦化学工業(株)製、商品名)。
フィルムの全光線透過率及びヘーズを以下の条件で測定した。全光線透過率はJIS K7361-1に準拠し、ヘーズはJIS K7136に準拠して、日本電色工業(株)製のNDH2000を用い、フィルムの艶消し面を光源側に配置して測定した。
目視観察により、フィルムの外観を下記の基準で評価した。
○:艶消しが均一に発現している。
×:艶消しが斑になっている、メルトフラクチャが発生している。
JIS Z8741に準拠し、ポータブル光沢計(コニカミノルタセンシング(株)製、商品名:GM-268)を用い、フィルム(艶消し面を外側)/黒紙台紙の順に重ね、フィルムの製膜幅方向とポータブル光沢計の光源と検知機を結んだ方向が垂直になるように設置して、60度表面光沢度を測定した。測定箇所は、フィルム製膜幅方向に等間隔で5箇所、フィルム製膜流れ方向に20cm間隔で5箇所の、計25か所とし、全測定値を平均して測定値とした。
表2に示す、実施例及び比較例においては、同じ処方で製造された熱可塑性樹脂組成物(α)について前記(3)で測定された3つの測定値の標準偏差を計算した。
積層フィルム(試験片)のフッ素系樹脂層側の表面にガーゼを乗せ、その上にサンタンローション(商品名:Coppertone Waterbabies 30SPF)を1滴垂らし、更にその上に5cm×5cmのアルミニウム製の板、及び500gの荷重をこの順に配置し、74℃で1時間放置した。次いで、試験片を中性洗剤で水洗・風乾し、試験片の表面を目視観察して下記の基準で耐薬品性を評価した。
○:試験片表面に変化はない。
△:試験片表面に僅かに溶剤の痕が残っている。
×:試験片表面に溶剤或いはガーゼの痕がはっきり残っている、又は、溶剤が接触した面が白濁している。
積層フィルム(試験片)のフッ素系樹脂層側の表面に10%乳酸水溶液を1滴垂らし、80℃で24時間放置した。次いで、試験片を中性洗剤で水洗・風乾し、試験片の表面を目視観察して下記の基準で耐薬品性を評価した。
○:試験片表面に変化はない。
△:試験片表面に僅かに溶剤の痕が残っている。
×:試験片表面に溶剤の痕がはっきり残っている、フィルム表面が膨潤している、又は、溶剤が接触した面が白濁している。
積層フィルム(試験片)のフッ素系樹脂層側の表面に内径38mm、高さ15mmのポリエチレン製円筒を置き、圧着器で試験片に強く密着させ、その開口部に自動車用芳香剤((株)ダイヤケミカル製、グレイスメイトポピー柑橘系)を5ml注入した。開口部にガラス板で蓋をした後、55℃に保持した恒温槽に入れ4時間放置した。次いで、圧着器を取り外し、試験片を中性洗剤で水洗・風乾し、試験片表面を目視観察して下記の基準で耐薬品性を評価した。
○:試験片表面に変化はない。
△:試験片表面に僅かに溶剤の痕が残っている。
×:試験片表面に溶剤の痕がはっきり残っている、又は、溶剤が接触した面が白濁している。
積層フィルム(試験片)のフッ素系樹脂層側の表面にジョンソンエンドジョンソン社製の日焼け止め(商品名:「ニュートロジーナSPF45」)を1.5g/100cm2で塗布した後、80℃に保持した恒温槽に入れ24時間放置した。次いで、試験片を中性洗剤で水洗・風乾し、試験片表面を目視観察して下記の基準で耐薬品性を評価した。
○:試験片表面に変化はない。
△:試験片表面に僅かに溶剤の痕が残っている。
×:試験片表面に溶剤の痕がはっきり残っている、又は、溶剤が接触した面が白濁している。
積層フィルム(試験片)のフッ素系樹脂層側の表面にガーゼを乗せ、その上にSCジョンソン社製の虫除けスプレー(商品名:「OFF!ACTIVE Insect repellentIV」、N,N-ジエチル-m-トルアミド(DEET)含有量25%)の液を1滴垂らし、更にその上に5cm×5cmのアルミ板、500gの荷重の順に配置し、23℃で24時間放置した。次いで、試験片を中性洗剤で水洗・風乾し、試験片表面を目視観察して下記の基準で耐薬品性を評価した。
○:試験片表面に変化はない。
△:試験片表面に僅かに溶剤の痕が残っている。
×:試験片表面に溶剤或いはガーゼの痕がはっきり残っている、又は、溶剤が接触した面が白濁している。
シリンダー温度240~270℃に設定したノンベントスクリュー型40mmφの押出機1を用いて、アクリル樹脂(H)のペレットを可塑化し、他方、同じくシリンダー温度230~250℃に設定した♯200のスクリーンメッシュを設けた30mmφの押出機2を用いて熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)のいずれかのペレットを可塑化した。アクリル樹脂(H)側の押出機の吐出量を16.1kg/h、熱可塑性樹脂組成物(α)、(β)、(γ)及び(δ)側の押出機の吐出量を1.24kg/hに設定した。次いで、両押出機の先端部に設置された、250℃に設定した2種2層用400mm幅マルチマニホールドTダイから、2層の積層フィルムを吐出させた。積層フィルムを製造した際に、可塑性樹脂組成物(α)、(β)、(γ)または(δ)を押出機2内に投入してから1時間後のTダイ吐出口付近のメヤニの有無を目視にて評価した。
○:Tダイ吐出口付近にメヤニは発生しなかった。
△:Tダイ吐出口付近に0.5mm未満のメヤニが発生した。
×:Tダイ吐出口付近に0.5mm以上のメヤニが発生した。
積層フィルムを断面方向に70nmの厚みに切断した。この試験片を、透過型電子顕微鏡(日本電子(株)製、商品名J100S)にて観察し、5箇所の厚みを測定し、それらを平均値で表示した。
架橋アクリル系艶消し剤(F)のラテックスを脱イオン水で希釈し、レーザー回折/産卵式粒子径分布測定装置((株)島津製作所製「SALD-7100」)を用い、架橋アクリル系艶消し剤(F)の体積平均換算におけるメジアン径を求め、そのメジアン径を粒子径とした。測定に供するラテックスの濃度は、装置に付属の散乱光強度モニターにおいて適正範囲となるよう適宜調整した。また、標準粒子径物質としては、粒子径20~800nmの範囲で粒子径既知の単分散ポリスチレン12点を用いた。
攪拌機、還流冷却器及び窒素ガス導入口の付いた反応容器内に以下の7成分からなる単量体混合物(1)を仕込んだ。
MA :10部
MMA:60部
HEMA:30部
nOM:0.18部
LPO:1部
第三リン酸カルシウム:1.8部
脱イオン水:250部。
攪拌機を備えた容器内に脱イオン水10.8部を仕込んだ後、MMA0.3部、nBA4.5部、BDMA0.2部、AMA0.05部、CHP0.025部からなる単量体混合物(m1)をこの容器内に投入し、室温下にて攪拌混合した。次いで、攪拌しながら、乳化剤RS610NA1.3部を上記容器内に投入し、攪拌を20分間継続して乳化液を調製した。
窒素雰囲気下、攪拌機及び還流冷却器を備えた反応容器内に脱イオン水204部を入れ、液温度を80℃に昇温し、ソジウムホルムアルデヒドスルホキシレート0.25部、硫酸第一鉄0.0001部及びEDTA0.0003部を添加した。次いで、反応容器内の液体を撹拌しながら、MMA11.2部、nBA12.4部、St1.2部、AMA0.1部、BDMA0.7部、tBH0.04部、乳化剤RS610NA0.7部からなる単量体混合物(m1)の1/10を仕込み、15分間反応させた。更に、単量体混合物(m1)の残りを水に対する単量体混合物の増加率が8%/時間となるように連続的に添加した後に1時間反応させて、ゴム重合体を得た。
1.熱可塑性樹脂組成物(α)の製造
フッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、調製例1の艶消し剤(B)を4.8部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を42.2部、及び酸化防止剤としてADEKA社製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.1部の割合で配合した。この配合物をヘンシェルミキサーを用いて30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)内に供給してシリンダー温度140~240℃及びダイヘッド温度240℃の条件で♯300のスクリーンメッシュで異物を取り除きながら、ノズルから溶融ストランドとして押し出して、切断して、熱可塑性樹脂組成物(α)のペレットを得た。
ゴム含有重合体(R2―1)80部、ゴム含有重合体(R2―2)10部、熱可塑性重合体(C-1)10部、紫外線吸収剤としてBASF社製のベンゾトリアゾール系紫外線吸収剤「チヌビン234」(商品名)1.4部、光安定剤としてADEKA社製のヒンダードアミン系光安定剤「アデカスタブLA-57」(商品名)0.3部及び酸化防止剤としてBASF社製のヒンダードフェノール系酸化防止剤「イルガノックス1076」(商品名)を0.1部の割合で配合した。この配合物をヘンシェルミキサーを用いて30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)内に供給してシリンダー温度140~240℃及びダイヘッド温度240℃の条件で♯300のスクリーンメッシュで異物を取り除きながらノズルから溶融ストランドとして押し出して、切断して、アクリル樹脂(H)のペレットを得た。
熱可塑性樹脂組成物(α)のペレット、及び、アクリル樹脂(H)のペレットを80℃で一昼夜乾燥した。乾燥後、シリンダー温度240~270℃に設定した♯200のスクリーンメッシュを設けたノンベントスクリュー型40mmφの押出機1内に、アクリル樹脂(H)のペレットを供給して可塑化した。他方、同じくシリンダー温度230~250℃に設定した♯200のスクリーンメッシュを設けた30mmφの押出機2内に、熱可塑性樹脂組成物(α)のペレットを供給して可塑化した。押出機1の吐出量は16.1kg/hに、及び押出機2吐出量は1.24kg/hに設定した。次いで、これらの両押出機の先端部に設置された250℃に設定した2種2層用400mm幅マルチマニホールドダイから、2層フィルムを吐出させた。次いで、この2層フィルムのアクリル樹脂(H)層側が温度80℃の第1鏡面冷却ロールと温度75℃の第2鏡面冷却ロールに順次接するようにしてフィルムを搬送し、2層構造のフッ素系艶消し積層フィルムを得た。フィルム厚みは125μm、熱可塑性樹脂組成物(α)層の厚みは9μm、アクリル樹脂(H)層の厚みは116μmであった。
1.マスターバッチペレットの製造
調製例1の艶消し剤(B)を35部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を65部、及び酸化防止剤としてADEKA社製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.59部の割合で配合した。この配合物を、ヘンシェルミキサーを用いて30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)内に供給してシリンダー温度140~240℃及びダイヘッド温度240℃の条件で♯300のスクリーンメッシュで異物を取り除きながらノズルから溶融ストランドとして押し出して切断して、マスターバッチペレットを製造した。
次いで、フッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット17.1部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)29.7部の割合で配合した。この配合物を、ヘンシェルミキサーを用いて30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)内に供給してシリンダー温度140~240℃及びダイヘッド温度240℃の条件で♯300のスクリーンメッシュで異物を取り除きながらノズルから溶融ストランドとして押し出して切断して、熱可塑性樹脂組成物(α)のペレットを製造した。
アクリル樹脂(H)の製造工程以降は、実施例1-1~1-3と同様の方法でフッ素系艶消し積層フィルムを得て評価した。評価結果は表2及び表3にまとめた。
実施例2-1~2-3と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット20部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を26.9部の割合で配合して、実施例2-1と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外はそれぞれ実施例2-1~2-3と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2及び表3にまとめた。
実施例2-1~2-3と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット22.9部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を24部の割合で配合して、実施例2-1~2-3と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外はそれぞれ実施例2-1~2-3と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2及び表3にまとめた。
実施例2-1~2-3と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット37.1部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を9.9部の割合で配合して、実施例2-1~2-3と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外はそれぞれ実施例2-1~2-3と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
実施例2-1~2-3と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット22.8部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を15.2部の割合で配合して、実施例2-1~2-3と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外はそれぞれ実施例2-1~2-3と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
実施例2-1~2-3と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット22.8部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を10.2部の割合で配合して、実施例2-1~2-3と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外はそれぞれ実施例2-1~2-3と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
実施例2-1と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット10部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を37部の割合で配合して、実施例2-1と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外は実施例2-1と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
実施例2-1と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット34.2部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を12.8部の割合で配合して、実施例2-1と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外は実施例2-1と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
実施例2-1~2-3と同様にしてマスターバッチペレットを製造した。またフッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、マスターバッチペレット22.8部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を24.2部の割合で配合して、実施例2-1~2-3と同様にして熱可塑性樹脂組成物(α)のペレットを製造した。これら以外はそれぞれ実施例2-1~2-3と同様の方法で、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
フッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、調製例1の艶消し剤(B)6部、及び酸化防止剤としてADEKA社製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.1部の割合で配合した。これら以外は実施例1-1~1-3と同様に行ない、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2及び表3にまとめた。
フッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を47部、及び酸化防止剤としてADEKA社製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.1部の割合で配合した。これら以外は実施例1-1と同様に行ない、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
フッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、調製例1の艶消し剤(B)8部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を78部、及び酸化防止剤としてADEKA社製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.1部の割合で配合した。これら以外は実施例1-1と同様に行ない、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2及び表3にまとめた。
フッ素系樹脂(A)としてポリフッ化ビニリデン(クレハ(株)製、商品名:KF T850)100部に対して、架橋ポリメタクリル酸メチル粒子として日本触媒(株)製のエポスターMA1004(商品名)を5部、熱可塑性樹脂(C)として三菱レイヨン製のアクリル樹脂「アクリペットVH#001」(商品名)を78部、及び酸化防止剤としてADEKA社製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.1部の割合で配合した。これら以外は実施例1-1と同様に行ない、フッ素系艶消し積層フィルムを得て評価した。評価結果は表2にまとめた。
攪拌機、冷却管、熱電対、窒素導入管を備えた重合容器内に、脱イオン水195部を投入した。次いで、窒素下で攪拌しながら、単官能単量体5.0部(MMA0.3部、nBA4.7部)、多官能単量体であるAMA0.0275部、tBH0.025部及びOTP1.0部からなる単量体成分(m11)を重合容器内に一括で添加した。単量体成分(m11)添加後、30分間かけて反応容器内の液温度を75℃に昇温した。昇温完了後、脱イオン水5部、ソジウムホルムアルデヒドスルホキシレート0.20部、硫酸第一鉄0.0001部及びEDTA0.0003部を反応容器内に一括で添加し、発熱によるピーク温度を観察したところから、反応容器内の液温度を75℃に15分間を維持して反応を継続させ、重合体(P11)を得た。
単量体成分を表4に示す内容に変更した以外は、調製例4と同様にしてアクリル系艶消し剤(D-2)~(D-7)を製造した。アクリル系艶消し剤(D)の原料組成を表4にまとめた。
1.熱可塑性樹脂組成物(α)の製造
フッ素系樹脂(A)としてポリフッ化ビニリデン(アルケマ(株)製、商品名:KYNAR720)90部、調製例4のアクリル系艶消し剤(D)10部、及び酸化防止剤としてBASF社製のヒンダードフェノール系酸化防止剤「イルガノックス1076」(商品名)を0.1部の割合で配合した。この配合物を、ヘンシェルミキサーを用いて30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)内に供給してシリンダー温度180~200℃及びダイヘッド温度220℃の条件で♯300のスクリーンメッシュで異物を取り除きながらノズルから溶融ストランドとして押し出し、切断して、熱可塑性樹脂組成物(β)のペレットを得た。
実施例1と同様にして、アクリル樹脂(H)のペレットを得た。
熱可塑性樹脂組成物(β)のペレットの代わりに、熱可塑性樹脂組成物(β)のペレットを用いたこと以外は実施例1と同様にして、2層構造のフッ素系艶消し積層フィルムを得た。熱可塑性樹脂組成物(β)層の厚みは7μm、アクリル樹脂(H)層の厚みは120μmであった。実施例1と同様にして、積層フィルムを評価し、その評価結果を表5にまとめた。
アクリル系艶消し剤(D)を、表5に示すものに変更し、アクリル樹脂層の厚みを140μmとしたこと以外は実施例11と同様にして、2層構造のフッ素系艶消し積層フィルムを得た。評価結果を表5にまとめた。
アクリル系艶消し剤(D)の代わりに調製例1の熱可塑性樹脂艶消し剤(B)を用い、フッ素系樹脂(A)を94部、調製例1の熱可塑性樹脂艶消し剤(B)を6部とした以外は、実施例11と同様にして、2層構造のフッ素系艶消し積層フィルムを得た。評価結果を表5にまとめた。
攪拌機、冷却管、熱電対、窒素導入管を備えた重合容器内に、脱イオン水235部、硫酸ナトリウム0.3部、分散剤としてメタクリル酸エチルスルホン酸塩の共重合体0.02部を投入した。次いで、重合容器内の雰囲気を窒素で置換した。窒素雰囲気下で重合容器内を攪拌しながら、アクリル単量体(b6)として、直鎖のアルキル基の炭素数が12のメタクリル酸ドデシル及び直鎖のアルキル基の炭素数が13のメタクリル酸トリデシルの混合物であるSLMA35部、他の単官能単量体(b7)としてMMA58部及びMA7部、重合開始剤としてLPO0.40部からなる単量体成分を投入し、投入後液温度が75℃になるよう加熱し、重合を継続した。発熱ピークを確認した後、液温度を90℃に昇温して、更に60分間この温度を維持して重合を完了した。得られた重合体のビーズを150メッシュ(目開き100μm)のフィルターで篩別を行ない、脱水、乾燥してアクリル系艶消し剤(E-1)を得た。
単量体成分、連鎖移動剤を表6に示す種類及び量に変更したこと以外は調製例11と同様にしてアクリル系艶消し剤(E-2)~(E-11)を得た。各重合体の評価結果を表6に示した。調製例17では、アクリル系艶消し剤(E-7)のTgが-7℃であったため、重合体同士が融着してしまい、その後の評価に用いることのできる重合体を得ることができなかった。
1.熱可塑性樹脂組成物(γ)の製造
フッ素系樹脂(A)であるポリフッ化ビニリデン((株)クレハ製、商品名:KFポリマーT♯850)100部、アクリル系艶消し剤(E-1)5部、及び酸化防止剤としてBASF社製のヒンダードフェノール系酸化防止剤「イルガノックス1076」(商品名)を0.1部の割合で配合した。この配合物を、ヘンシェルミキサー内で30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)に供給して、シリンダー温度180~200℃及びダイヘッド温度220℃の条件で♯300のスクリーンメッシュで異物を取り除きながら、ノズルから溶融ストランドとして押し出し、切断して、熱可塑性樹脂組成物(γ)のペレットを得た。
実施例1と同様にして、アクリル樹脂(H)のペレットを得た。
熱可塑性樹脂組成物(γ)のペレット、及び、アクリル樹脂(H)のペレットを温度80℃で一昼夜乾燥した。乾燥後、シリンダー温度240℃に設定した♯500のスクリーンメッシュを設けたノンベントスクリュー型40mmφの押出機1内に、アクリル樹脂(H)のペレットを供給して可塑化した。また、同じくシリンダー温度180~220℃に設定した♯500のスクリーンメッシュを設けた30mmφの押出機2に、熱可塑性樹脂組成物(γ)のペレットを供給して可塑化した。次いで温度240℃に設定した、これらの両押出機の先端部に設置された2種2層用マルチマニホールドダイから溶融状態の2層フィルムを吐出させた。次いで、該2層フィルムのアクリル樹脂層側が、温度80℃の第1鏡面冷却ロールと温度75℃の第2鏡面冷却ロールに順次接するようにしてフィルムを搬送し、2層構造のフッ素系艶消し積層フィルムを得た。実施例1と同様にして、積層フィルムを評価し、その評価結果を表7にまとめた。
アクリル系艶消し剤(E)を、表7に示す種類及び量に変更したこと以外は実施例21と同様にして積層フィルムを得た。評価結果を表7にまとめた。
アクリル系艶消し剤(E)を、表7に示す種類及び量に変更し、フッ素系樹脂(A)であるポリフッ化ビニリデン(アルケマ(株)製、商品名:KYNAR720)に変更したこと以外は実施例21と同様にして積層フィルムを得た。評価結果を表7にまとめた。
アクリル系艶消し剤(E)及びフッ素系樹脂(A)の種類及び量を表7に示す条件に変更したこと以外は実施例21と同様にして積層フィルムを得た。評価結果を表7にまとめた。
アクリル系艶消し剤(E-11)([調製例1]の艶消し剤(B)と同じ原料)を表7に示す条件で添加したこと以外は、実施例26と同様にして熱可塑性樹脂組成物及び積層フィルムを製造した。アクリル系艶消し剤(E-11)を含有する熱可塑性樹脂組成物は、重合体の原料である単量体成分中に水酸基を有する単官能単量体を用いたため、マルチマニホールドダイの吐出口付近(艶消し樹脂層側)にメヤニの付着が多量に見られた。評価結果を表7にまとめた。
アクリル系艶消し剤(E)に代えて、有機系艶消し剤(日本触媒(株)製、商品名:エポスターMA1004、平均粒子径4~5μm)を表7に記載の添加量で使用したこと以外は実施例26と同様にして熱可塑性樹脂組成物及び積層フィルムを製造した。該熱可塑性樹脂組成物は、アクリル系艶消し剤(E)に代えて艶消し剤を用いたため、マルチマニホールドダイの吐出口付近(艶消し樹脂層側)に艶消し剤に起因するメヤニの付着が多量に見られた。評価結果を表7にまとめた。
温度計、攪拌機、冷却管、窒素導入管を装備した容量5リットルの反応容器内に、脱イオン水240部及び分散安定剤としてクラレポバール「PVA105」の10%水溶液を15部添加し、200rpmの速度で攪拌しながら、反応容器内の雰囲気を窒素で置換した。一方、表8に示す種類と量の単量体成分(b9)、乳化剤及び脱イオン水をホモジナイザー(IKA社製、ウルトラタラックスT-25)を用いて11,000rpmで2分間乳化処理し、乳化分散液を得た。
単量体成分の使用量を表8に示す条件に変更したこと以外は、調製例31と同様にして乳化処理、重合及び凝集物のろ過を行なった。重合体の粒子径は4.5μmであった。
1.熱可塑性樹脂組成物(δ)の製造
フッ素系樹脂(A)としてポリフッ化ビニリデン(アルケマ(株)製、商品名:KYNAR720)を100部、架橋アクリル系艶消し剤(F-1)を5部、及び酸化防止剤として(株)ADEKA製のフェノール系酸化防止剤「アデカスタブAO-60」(商品名)を0.1部の割合で配合した。この配合物を、ヘンシェルミキサーを用いて30秒間混合した。得られた混合物を、2軸押出機(東芝機械(株)製、商品名:TEM35)内に供給してシリンダー温度130~220℃及びダイヘッド温度220℃の条件で♯300のスクリーンメッシュで異物を取り除きながらノズルから溶融ストランドとして押し出し、切断して、熱可塑性樹脂組成物(δ)のペレットを得た。
実施例1と同様にして、アクリル樹脂(H)のペレットを得た。
熱可塑性樹脂組成物(γ)のペレットの代わりに、熱可塑性樹脂組成物(δ)のペレットを用いたこと以外は実施例21と同様にして、2層構造のフッ素系艶消し積層フィルムを得た。艶消し樹脂層の厚みは7μm、アクリル樹脂(H)層の厚みは140μmであった。実施例1と同様にして、積層フィルムを評価し、その評価結果を表9にまとめた。
架橋アクリル系艶消し剤(F-1)の代わりに架橋アクリル系艶消し剤(F-2)を用いたこと以外は、実施例31と同様にして、フッ素系艶消し積層フィルムを製造し評価した。フッ素系艶消し積層フィルムの60度表面光沢度は40であり、耐薬品性も良好であった。しかしながら、架橋アクリル系艶消し剤(F-2)を合成する際の多官能単量体の量が多かったため、フッ素系艶消し積層フィルムを成形する際の、マルチマニホールドダイの吐出口付近(フッ素樹脂層側)には、メヤニが多量に付着していることが確認された。
架橋アクリル系艶消し剤(F-1)の代わりに、市販品の架橋アクリル樹脂(日本触媒(株)製、商品名:エポスターMA1004、平均粒子径4.3μm)を用いたこと以外は、実施例31と同様にして、フッ素系艶消し積層フィルムを製造し評価した。フッ素系艶消し積層フィルムの60度表面光沢度は35であり、耐薬品性も良好であった。しかしながら、架橋アクリル樹脂を合成する際の多官能単量体の量が多いと推察されるため、フッ素系艶消し積層フィルムを成形する際の、マルチマニホールドダイの吐出口付近(フッ素樹脂層側)には、メヤニが多量に付着していることが確認された。
Claims (20)
- フッ素系樹脂(A)、フッ素系樹脂(A)に不溶な熱可塑性樹脂である艶消し剤(B)、及び、フッ素系樹脂(A)に可溶な熱可塑性樹脂(C)からなる、耐薬品艶消しフィルム用熱可塑性樹脂組成物(α)。
- 前記艶消し剤(B)が水酸基含有非架橋アクリル樹脂である、請求項1に記載の熱可塑性樹脂組成物。
- 前記熱可塑性樹脂(C)が水酸基を含有しない、請求項1に記載の熱可塑性樹脂組成物(α)。
- 前記フッ素系樹脂(A)100質量部に対して、前記艶消し剤(B)1~50質量部、及び、前記熱可塑性樹脂(C)20~90質量部を含有する、請求項1に記載の熱可塑性樹脂組成物(α)。
- 前記フッ素系樹脂(A)と前記熱可塑性樹脂(C)のSP値をSP(AC)、前記艶消し剤(B)のSP値をSP(B)とした場合に、
5.2<SP(B)-SP(AC)<6.6
の関係を満たす、請求項1に記載の熱可塑性樹脂組成物(α)。 - 前記水酸基含有非架橋アクリル樹脂の水酸基価が50~200mgKOH/gである、請求項2に記載の熱可塑性樹脂組成物(α)。
- 前記フッ素系樹脂(A)、前記艶消し剤(B)及び前記熱可塑性樹脂(C)の250℃、荷重49N条件下でのMFRが、それぞれMFR(A)、MFR(B)及びMFR(C)である場合に、
MFR(A)>MFR(C)>MFR(B)
の関係を満たす、請求項1に記載の熱可塑性樹脂組成物(α)。 - フッ素系樹脂(A)及び熱可塑性樹脂であるアクリル系艶消し剤(D)を含有する、艶消しフィルム用樹脂組成物であって、
前記アクリル系艶消し剤(D)を構成する単量体単位中の単官能単量体単位を100質量%としたときに、アクリル酸アルキルエステル単位の含有率が50~100質量%、他の単官能単量体単位の含有率が0~50質量%である、熱可塑性樹脂組成物(β)。 - 前記アクリル系艶消し剤(D)が、アクリル酸アルキルエステル重合体(P13)の存在下で、単量体成分(m14)を重合して得られる樹脂であり、
前記重合体(P13)を構成する単量体成分(m13)単位中の単官能単量体単位を100質量%としたときに、アクリル酸アルキルエステル単位の含有率が80~100質量%、他の単官能単量体単位の含有率が0~20質量%であり、
更に、単官能単量体単位の合計100質量部に対して、多官能単量体単位の含有量が0~0.6質量部であり、
前記単量体成分(m14)中の単官能単量体を100質量%としたときに、メタクリル酸アルキルエステルの含有率が80~100質量%、他の単官能単量体の含有率が0~20質量%である、請求項8に記載の熱可塑性樹脂組成物(β)。 - 前記フッ素系樹脂(A)と前記アクリル系艶消し剤(D)との合計を100質量%としたときに、フッ素系樹脂(A)の含有率が70~99質量%であり、前記アクリル系艶消し剤(D)の含有率が1~30質量%である、請求項8に記載の熱可塑性樹脂組成物(β)。
- 炭素数が10~30の直鎖アルキル基、炭素数が10~30の分岐アルキル基、及び炭素数が10~30の環状アルキル基からなる群から選ばれ、置換基を有していてもよい、1種以上のアルキル基を有する、(メタ)アクリル酸アルキルエステル(b6)単位を21~49質量%、及び、他の単官能単量体(b7)単位を51~79質量%含有する、アクリル系艶消し剤(E)。
- 前記(メタ)アクリル酸アルキルエステル(b6)単位及び前記他の単官能単量体(b7)単位の合計100質量部に対して、更に多官能単量体(b8)単位0~0.5質量部を含有する、請求項11に記載のアクリル系艶消し剤(E)。
- フッ素系樹脂(A)100質量部に対して、請求項11又は12に記載のアクリル系艶消し剤(E)1~100質量部を含有する、熱可塑性樹脂組成物(γ)。
- 艶消しフッ素樹脂成形体を得るために用いられる艶消し剤であって、(メタ)アクリル酸エステル(b10)50.0~99.9質量%、他の単官能単量体(b11)0~49.9質量%、及び多官能単量体(b12)0.1~3.0質量%で構成される単量体混合物(b9)を重合して得られる、熱可塑性樹脂である架橋アクリル系艶消し剤(F)。
- フッ素系樹脂(A)70~99質量%、前記架橋アクリル系艶消し剤(F)1~30質量%、及び他の樹脂(G)0~29質量%を含有する、熱可塑性樹脂組成物(δ)。
- 前記フッ素系樹脂(A)がフッ化ビニリデン系重合体である、請求項1~10、13及び15のいずれか一項に記載の熱可塑性樹脂組成物。
- 請求項1~10、13、15及び16のいずれか一項に記載の熱可塑性樹脂組成物を成形した、フッ素系艶消しフィルム。
- 請求項17に記載のフッ素系艶消しフィルムと、アクリル樹脂(H)とを積層した、フッ素系艶消し積層フィルム。
- 艶消し面の60度表面光沢度が5~80である、請求項17又は18に記載のフッ素系艶消しフィルム又はフッ素系艶消し積層フィルム。
- 60度表面光沢度の標準偏差が6以下である、請求項1~7のいずれか一項に記載の熱可塑性樹脂組成物を用いた、請求項17~19のいずれか一項に記載のフッ素系艶消しフィルム又はフッ素系艶消し積層フィルム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015537474A JP6686435B2 (ja) | 2014-07-14 | 2015-07-14 | 艶消し用熱可塑性樹脂組成物、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルム |
KR1020177003604A KR101950119B1 (ko) | 2014-07-14 | 2015-07-14 | 소광용 열가소성 수지 조성물, 불소계 소광 필름 및 불소계 소광 적층 필름 |
CN201580049195.1A CN107075220B (zh) | 2014-07-14 | 2015-07-14 | 消光用热塑性树脂组合物、氟系消光膜及氟系消光层叠膜 |
US15/326,144 US10493737B2 (en) | 2014-07-14 | 2015-07-14 | Thermoplastic resin composition for matting, fluorine-based matte film, and fluorine-based matte layered film |
EP15821715.8A EP3170865B1 (en) | 2014-07-14 | 2015-07-14 | Thermoplastic resin composition for matting, fluorine-based matte film, and fluorine-based matte layered film |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014143856 | 2014-07-14 | ||
JP2014-143856 | 2014-07-14 | ||
JP2014-216065 | 2014-10-23 | ||
JP2014216065 | 2014-10-23 | ||
JP2015-013211 | 2015-01-27 | ||
JP2015013211 | 2015-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016010051A1 true WO2016010051A1 (ja) | 2016-01-21 |
Family
ID=55078541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070203 WO2016010051A1 (ja) | 2014-07-14 | 2015-07-14 | 艶消し用熱可塑性樹脂組成物、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルム |
Country Status (6)
Country | Link |
---|---|
US (1) | US10493737B2 (ja) |
EP (1) | EP3170865B1 (ja) |
JP (1) | JP6686435B2 (ja) |
KR (1) | KR101950119B1 (ja) |
CN (1) | CN107075220B (ja) |
WO (1) | WO2016010051A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018174260A1 (ja) * | 2017-03-23 | 2018-09-27 | 三菱ケミカル株式会社 | 樹脂組成物、フッ素系フィルム、フッ素系積層フィルム及び積層成形体 |
JP2020147672A (ja) * | 2019-03-13 | 2020-09-17 | 三菱ケミカル株式会社 | 艶消しフィルム |
JP7585803B2 (ja) | 2021-01-20 | 2024-11-19 | 三菱ケミカル株式会社 | 樹脂組成物、フィルム及び成形体 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7016862B2 (ja) * | 2017-03-29 | 2022-02-07 | 関東電化工業株式会社 | 塗料組成物 |
CN110483958B (zh) * | 2019-08-20 | 2022-01-28 | 江阴市胜赛色母料有限公司 | 假发用亚光母粒及其制备方法 |
CN114437450A (zh) * | 2022-03-15 | 2022-05-06 | 湖南省希润弗高分子新材料有限公司 | 一种消光聚烯烃用母粒 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714650A (en) * | 1980-07-01 | 1982-01-25 | Mitsubishi Rayon Co Ltd | Matted thermoplastic resin composition |
JPS6094413A (ja) * | 1983-10-28 | 1985-05-27 | Kanegafuchi Chem Ind Co Ltd | 艶消用架橋アクリル系共重合体,その製造方法,樹脂組成物及びそれからなるフイルム |
JPH0657007A (ja) * | 1992-08-07 | 1994-03-01 | Nippon Shokubai Co Ltd | 樹脂の艶消し方法 |
JP2001205755A (ja) * | 2000-01-25 | 2001-07-31 | Denki Kagaku Kogyo Kk | フッ化ビニリデン系樹脂フィルム |
JP2005290062A (ja) * | 2004-03-31 | 2005-10-20 | Mitsubishi Rayon Co Ltd | 艶消し塗料組成物 |
JP2007138001A (ja) * | 2005-11-17 | 2007-06-07 | Mitsubishi Rayon Co Ltd | 艶消し熱可塑性樹脂フィルム、艶消し熱可塑性樹脂フィルム積層フィルム又はシート及び艶消し熱可塑性樹脂積層体の製造方法 |
JP2008120943A (ja) * | 2006-11-14 | 2008-05-29 | Mitsubishi Rayon Co Ltd | ポリマー粒子の製造方法、ポリマー粒子、艶消し剤、樹脂組成物、塗料組成物、成形体、及び塗膜 |
WO2011093300A1 (ja) * | 2010-01-26 | 2011-08-04 | 三菱レイヨン株式会社 | フッ素艶消しフィルム、フッ素艶消し積層フィルム、フッ素艶消し加飾積層フィルム、積層シート、及びこれらを積層した積層成形品、並びに、その製造方法 |
JP2013063537A (ja) * | 2011-09-16 | 2013-04-11 | Mitsubishi Rayon Co Ltd | フッ化ビニリデン系樹脂積層フィルム、フッ化ビニリデン系樹脂加飾積層フィルム、積層シート、積層体、化粧材用積層シート状物及び車両用成形体 |
WO2015050266A1 (ja) * | 2013-10-01 | 2015-04-09 | Jx日鉱日石エネルギー株式会社 | ポリマー微粒子組成物およびその光拡散剤としての使用 |
JP2015160874A (ja) * | 2014-02-26 | 2015-09-07 | 三菱レイヨン株式会社 | 艶消しフィルム用樹脂組成物、艶消しフィルム、艶消し積層フィルム、艶消し加飾フィルム、積層シート、及び積層成形品 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5255191B2 (ja) | 2006-06-30 | 2013-08-07 | 電気化学工業株式会社 | 内外装建材用表面保護フィルム及びその製造方法 |
-
2015
- 2015-07-14 EP EP15821715.8A patent/EP3170865B1/en active Active
- 2015-07-14 CN CN201580049195.1A patent/CN107075220B/zh active Active
- 2015-07-14 JP JP2015537474A patent/JP6686435B2/ja active Active
- 2015-07-14 WO PCT/JP2015/070203 patent/WO2016010051A1/ja active Application Filing
- 2015-07-14 US US15/326,144 patent/US10493737B2/en active Active
- 2015-07-14 KR KR1020177003604A patent/KR101950119B1/ko active IP Right Grant
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714650A (en) * | 1980-07-01 | 1982-01-25 | Mitsubishi Rayon Co Ltd | Matted thermoplastic resin composition |
JPS6094413A (ja) * | 1983-10-28 | 1985-05-27 | Kanegafuchi Chem Ind Co Ltd | 艶消用架橋アクリル系共重合体,その製造方法,樹脂組成物及びそれからなるフイルム |
JPH0657007A (ja) * | 1992-08-07 | 1994-03-01 | Nippon Shokubai Co Ltd | 樹脂の艶消し方法 |
JP2001205755A (ja) * | 2000-01-25 | 2001-07-31 | Denki Kagaku Kogyo Kk | フッ化ビニリデン系樹脂フィルム |
JP2005290062A (ja) * | 2004-03-31 | 2005-10-20 | Mitsubishi Rayon Co Ltd | 艶消し塗料組成物 |
JP2007138001A (ja) * | 2005-11-17 | 2007-06-07 | Mitsubishi Rayon Co Ltd | 艶消し熱可塑性樹脂フィルム、艶消し熱可塑性樹脂フィルム積層フィルム又はシート及び艶消し熱可塑性樹脂積層体の製造方法 |
JP2008120943A (ja) * | 2006-11-14 | 2008-05-29 | Mitsubishi Rayon Co Ltd | ポリマー粒子の製造方法、ポリマー粒子、艶消し剤、樹脂組成物、塗料組成物、成形体、及び塗膜 |
WO2011093300A1 (ja) * | 2010-01-26 | 2011-08-04 | 三菱レイヨン株式会社 | フッ素艶消しフィルム、フッ素艶消し積層フィルム、フッ素艶消し加飾積層フィルム、積層シート、及びこれらを積層した積層成形品、並びに、その製造方法 |
JP2013063537A (ja) * | 2011-09-16 | 2013-04-11 | Mitsubishi Rayon Co Ltd | フッ化ビニリデン系樹脂積層フィルム、フッ化ビニリデン系樹脂加飾積層フィルム、積層シート、積層体、化粧材用積層シート状物及び車両用成形体 |
WO2015050266A1 (ja) * | 2013-10-01 | 2015-04-09 | Jx日鉱日石エネルギー株式会社 | ポリマー微粒子組成物およびその光拡散剤としての使用 |
JP2015160874A (ja) * | 2014-02-26 | 2015-09-07 | 三菱レイヨン株式会社 | 艶消しフィルム用樹脂組成物、艶消しフィルム、艶消し積層フィルム、艶消し加飾フィルム、積層シート、及び積層成形品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3170865A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018174260A1 (ja) * | 2017-03-23 | 2018-09-27 | 三菱ケミカル株式会社 | 樹脂組成物、フッ素系フィルム、フッ素系積層フィルム及び積層成形体 |
CN110431182A (zh) * | 2017-03-23 | 2019-11-08 | 三菱化学株式会社 | 树脂组合物、氟系薄膜、氟系层叠薄膜及层叠成型体 |
JPWO2018174260A1 (ja) * | 2017-03-23 | 2020-01-16 | 三菱ケミカル株式会社 | 樹脂組成物、フッ素系フィルム、フッ素系積層フィルム及び積層成形体 |
EP3604429A4 (en) * | 2017-03-23 | 2020-04-08 | Mitsubishi Chemical Corporation | RESIN COMPOSITION, FLUORINE FILM, FLUORINE LAMINATED FILM AND LAMINATED SHAPED BODY |
CN110431182B (zh) * | 2017-03-23 | 2022-07-05 | 三菱化学株式会社 | 树脂组合物、氟系薄膜、氟系层叠薄膜及层叠成型体 |
US11453770B2 (en) | 2017-03-23 | 2022-09-27 | Mitsubishi Chemical Corporation | Resin composition, fluorine-based film, fluorine-based laminated film, and laminated molded body |
JP2020147672A (ja) * | 2019-03-13 | 2020-09-17 | 三菱ケミカル株式会社 | 艶消しフィルム |
JP7207034B2 (ja) | 2019-03-13 | 2023-01-18 | 三菱ケミカル株式会社 | 艶消しフィルム |
JP7585803B2 (ja) | 2021-01-20 | 2024-11-19 | 三菱ケミカル株式会社 | 樹脂組成物、フィルム及び成形体 |
Also Published As
Publication number | Publication date |
---|---|
CN107075220A (zh) | 2017-08-18 |
KR20170028994A (ko) | 2017-03-14 |
JP6686435B2 (ja) | 2020-04-22 |
EP3170865A1 (en) | 2017-05-24 |
KR101950119B1 (ko) | 2019-02-19 |
CN107075220B (zh) | 2020-05-15 |
JPWO2016010051A1 (ja) | 2017-04-27 |
US20170197394A1 (en) | 2017-07-13 |
EP3170865A4 (en) | 2017-09-27 |
US10493737B2 (en) | 2019-12-03 |
EP3170865B1 (en) | 2021-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101346872B1 (ko) | 불소 수지 필름 및 불소 수지 적층 아크릴계 수지 필름 | |
JP6686435B2 (ja) | 艶消し用熱可塑性樹脂組成物、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルム | |
JP5997607B2 (ja) | 含フッ素(メタ)アクリル樹脂フィルム、その積層樹脂フィルム、及び、積層成形品 | |
JP5790498B2 (ja) | フッ素艶消しフィルム、フッ素艶消し積層フィルム、フッ素艶消し加飾積層フィルム、積層シート、及びこれらを積層した積層成形品、並びに、その製造方法 | |
JP2015203093A (ja) | 架橋アクリル樹脂、艶消し樹脂組成物、フッ素樹脂成形体、フィルム、積層フィルム及び積層成形品 | |
JP2012233089A (ja) | フッ素艶消しフィルム、フッ素艶消し積層フィルム、フッ素艶消し加飾積層フィルム、積層シート、及びこれらを積層した積層成形品 | |
JP2011168681A (ja) | フッ素系(メタ)アクリル樹脂、そのフッ素系樹脂組成物、そのフッ素系樹脂フィルムおよびフッ素系樹脂積層アクリル系樹脂フィルム | |
US11453770B2 (en) | Resin composition, fluorine-based film, fluorine-based laminated film, and laminated molded body | |
JP6530745B2 (ja) | フッ素含有アクリル樹脂からなるコーティング層を基材フィルムに積層させたフィルム | |
JP2018193534A (ja) | 艶消し熱可塑性樹脂フィルム及び艶消し熱可塑性樹脂積層フィルム | |
JP6371684B2 (ja) | 積層フィルム | |
JP5987526B2 (ja) | アクリル樹脂ペレットの製造方法及びアクリル樹脂成形体 | |
JP2011231273A (ja) | フッ素系艶消しフィルム用樹脂組成物及びフッ素系艶消しフィルム | |
JP7585803B2 (ja) | 樹脂組成物、フィルム及び成形体 | |
JP6171381B2 (ja) | アクリル樹脂ペレットの製造方法及びアクリル樹脂成形体 | |
JP6515703B2 (ja) | 熱可塑性樹脂成形体の製造方法、及び熱可塑性樹脂成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015537474 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15821715 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015821715 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15326144 Country of ref document: US Ref document number: 2015821715 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177003604 Country of ref document: KR Kind code of ref document: A |